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1 Introduction

Physicists often approximate things by the most symmetric configurations as a starting
point. The most symmetric spacetime is homogeneous and isotropic; it has Poincare in-
variance and may even be supersymmetric. Nevertheless, interesting phenomena are often
associated with dynamics and hence derivatives of fields. Dynamical features such as oscil-
lations of scalar fields appear, e.g., in cosmology. Note that nonzero derivative terms like
the kinetic term breaks supersymmetry spontaneously. The importance of such terms in
supersymmetry and supergravity has been emphasized in the cosmological context [1]. We
extend this philosophy to nonlinear realization of supersymmetry [2–9].

Well below the scale of supersymmetry breaking, supersymmetry is realized nonlin-
early. Similar to the fact that the restriction of the linear sigma model to the non-linear
sigma model is given by a manifestly symmetric constraint equation, the corresponding
constraint in supersymmetry is invariant under supersymmetry transformation [7]. A fa-
mous example is the nilpotency condition S2 = 0 for a chiral superfield S [4, 7, 8]. With
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such an algebraic constraint, the description of the low-energy physics in terms of super-
fields is possible, and resultant interactions are highly restricted (or predictive) due to the
nilpotency. Thus, constrained superfields are convenient tools to describe spontaneously
broken supersymmetry.

Constrained superfields (see ref. [10] for a review) were used in the context of de Sit-
ter [11–13], moduli stabilization [14], inflation [15–25], and late-time universe [26]. They
were studied also in the context of extended supersymmetry [27–33] and in superstring
theory [34–43]. By using constrained superfields, heavy irrelevant modes are automati-
cally decoupled. This means, e.g., in the context of inflation, one does not need to worry
about light isocurvature modes otherwise present in the model. This procedure is actu-
ally nontrivial. From the purely low-energy perspective, imposing a constraint by hand
is perfectly fine. However, if we assume that there is a description with linearly realized
supersymmetry, the constraints should be consistent with the UV description.1 In fact,
refs. [45–47] (see also ref. [48] for a review and ref. [49] for a counter perspective) showed
that the nilpotent superfield is not always obtained as an automatic consequence of su-
persymmetry breaking, but it depends on the couplings in the Kähler potential in the UV
theory. Therefore, it is important to check the UV consistency of constrained superfields
as well as their applicable range and to clarify which types of constraints appear in low
energy from the UV perspective.

In this paper, we derive known and new constraints on superfields from some UV setups
following the approach of refs. [45–47], without neglecting derivative terms. This is in con-
trast to the previous works where such derivative terms are neglected by assuming that they
do not much contribute to supersymmetry breaking.2 The superfield constraints obtained
in our work are widely applicable to cosmological scenarios with dynamical backgrounds due
to non-trivial kinetic terms of a scalar field. They include not only supersymmetry break-
ing at vacuum and de Sitter inflationary phase but also (p)reheating after inflation [54–60],
kinetic-energy dominated universe (kination) [61–63], the curvaton mechanism [64–67], the
kinetic [68] and standard [69–71] axion misalignment, cosmological relaxation [72, 73], etc.,
which opens up new possibilities for model building based on constrained superfields.

The structure of the paper is as follows. In section 2, we begin with a brief review
of the derivation of the nilpotent superfield from a UV model, followed by its general-
ization to the shift-symmetric case. We explicitly show that the cubic shift-symmetric
constraint [8, 74] emerges in the low-energy theory. We also discuss its relation to inflation
mechanisms with a single chiral superfield. In section 3, we extend the discussion into the
double superfield case. We focus on the setup well-motivated by inflation-model build-
ing. We find novel quintic constraints after integrating out the heavy modes. Implications
on cosmological particle production are discussed. These two sections illustrate our main
ideas. Generalizations into supersymmetric gauge theories and supergravity are discussed
in section 4. Section 5 is devoted to our summary and conclusion. Some technical details
and side remarks are included in three appendices.

1One can implement the constraint in the linearly realized theory using Lagrange multipliers [44], but
we would categorize it as one of the low-energy approaches.

2The constraints with derivative terms are studied in the context of partial N = 2→ 1 supersymmetry
breaking, see e.g., refs. [50–53].
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We consider four-dimensional N = 1 supersymmetry and basically follow the conven-
tions of ref. [75]. A superfield is denoted by a bold-face letter. We take the natural unit
c = ~ = 1 and occasionally use MP ≡ 1/

√
8πG = 1.

2 Single superfield

In this section, we consider some UV models with a single superfield and derive super-
symmetric constraints keeping derivative terms as they are. Starting from a review of
the standard nilpotent chiral superfield, we discuss a model that leads to the cubic shift-
symmetric constraint and its application to inflation.

2.1 Review of nilpotent chiral superfield

When supersymmetry is broken, some fields get heavy and decouple from the low-energy
dynamics. Well below the mass scales of the decoupled fields, it is realized nonlinearly. For
our purposes, it is useful to consider the simplest example with a single chiral superfield
S = S +

√
2θχ + θθF that breaks supersymmetry spontaneously. Let us consider a UV

theory in which supersymmetry is linearly realized with the following Kähler potential3

and superpotential:

K(S, S̄) = S̄S − 1
4Λ2

(
S̄S

)2
, (2.1)

W (S) = fS. (2.2)

Here, the superpotential is linear in S to break supersymmetry spontaneously. The role of
the quartic term in K — the Kähler curvature — is to make the scalar component S so
heavy that it decouples. The Lagrangian density in terms of the component fields is

L = KSS̄

(
−∂µS̄∂µS −

i

2 (χσµDµχ̄−Dµχσ
µχ̄) + FF̄

)
+
((

WS −
1
2KSS̄S̄χ̄χ̄

)
F − 1

2WSSχχ

)
+ H.c. + 1

4KSSS̄S̄χχχ̄χ̄, (2.3)

where H.c. denotes the Hermitian conjugate. The covariant derivative is defined as Dµχ
i =

∂µχ
i + Γijk∂µΦjχk for a general set of chiral superfields Φi with Γijk = K

¯̀iKjk ¯̀ being the
Kähler connection and K j̄i the inverse of the Kähler metric Kij̄ .

Now, let us take a formal limit Λ → 0 [7] so that the mass of the complex scalar
S diverges.4 The equation of motion for the heavy field S is dominated by the part
proportional to the Kähler curvature (∼ 1/Λ2),

SF̄F = 1
2 F̄χχ− i∂µ (χσµχ̄S)− 1

2 S̄�(S2) + iSχσµ∂µχ̄. (2.4)

3In the normal coordinates of the Kähler manifold, KSSS̄ = KSSSS̄ = 0 and KSS̄ = 1 [46], where
subscripts denote differentiation.

4Of course, it is not guaranteed to be able to take such a limit in a realistic model since Λ may be
associated with the mass scale of the underlying UV models. Nevertheless, analyses in ref. [23] show that
there exists a narrow range of parameters in the underlying model in which this procedure is valid and
applicable to inflation.
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In the following, we focus on a solution for S which is given by fermion bilinears and
higher-order terms in fermions, if any. Thus, we neglect the purely bosonic contribution to
the solution.5 Then, the equation for S is solved as [7, 8]

S = χχ

2F , (2.5)

provided that F 6= 0. Note that we have not dropped the derivative terms by hand but
they vanish identically because of the fermionic feature (O(χ3) = 0). This implies S2 = 0,
and its supersymmetry transformation also vanishes with this constraint. In general, when
the lowest component of a superfield and its supersymmetry transform vanish, the whole
superfield vanishes.6 Therefore, supersymmetry tells us that

S2 = 0, (2.6)

i.e., the superfield S is nilpotent [7, 8]. Note that the F -term of this constraint gives
eq. (2.5), while the other components do not yield new constraints. The constraint gives
rise to the low-energy theory with spontaneously broken supersymmetry, but the constraint
equation itself is supersymmetric. This is analogous to the constraint in the non-linear
sigma model [7].

We can see this also in the superfield language. The equation of motion in superspace
is W̄S̄ −

1
4D2KS̄ = 0, where D denotes the superderivative. The part enhanced by the

Kähler curvature in the limit Λ→ 0 is

S̄D2S2 = 0. (2.7)

Assuming the nowhere vanishing F -term, D2S 6= 0, we can rewrite it as follows:

S = −
DSDSD̄2S̄ + 4D̄S̄D̄DSDS + S̄

(
2D̄DSD̄DS + SD̄2D2S

)
D2SD̄2S̄ + 2D̄S̄D̄D2S

. (2.8)

Using the anticommutation relation of the superderivatives and solving this equation re-
cursively, one can see that eq. (2.6) follows.

The nilpotency condition (2.6) is often imposed by hand (or equivalently by the La-
grange multiplier) in inflationary applications [15–22, 25]. Here, we have reviewed its
derivation from a UV model, and the derivation implies possible correction terms sup-
pressed by the mass of the heavy particle S.

In this model, the only remaining degree of freedom in the low-energy is the Nambu-
Goldstone fermion (goldstino) χ. Its superpartner, the sgoldstino S has been decoupled.
The low-energy action is equivalent to the Akulov-Volkov action [2, 3] via a field redefini-
tion [9].

5The same comment applies to the remaining sections.
6In the case of the Wess-Zumino gauge of a real superfield, the supersymmetry transformation must

be accompanied by the compensating gauge transformation to keep the Wess-Zumino gauge. Because of
this modification of the transformation law, our statement here does not directly apply to the case of the
Wess-Zumino gauge.
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It is interesting to comment on the fact that the denominator in eq. (2.5) is the F -term
supersymmetry breaking scale F = −f̄ + · · · , where dots represent fermionic terms. The
expression (2.5) is valid only when F is nonvanishing. In inflationary applications, the
nilpotent superfield S is often used with a modification f → f(Φ) where Φ is the inflaton
superfield. As pointed out in ref. [19], the description becomes invalid if f(Φ) vanishes
(and it typically does after inflation). Ref. [19] introduced a specific superpotential to solve
the problem. Instead, we consider an alternative possibility in which the F -term in the
denominator in eq. (2.5) is augmented by the kinetic energy of inflaton. We will discuss
this interesting possibility and obtain novel constrained superfields in section 3. Before
discussing such a multi-superfield scenario, we will now discuss the minimal example with
the essentially same mechanism.

2.2 Shift symmetry and cubic constraint

For the kinetic energy of a scalar field to play a major role in the low-energy theory, we
need a scalar field that is not decoupled. Suppose that the scalar field is protected by
an approximate global shift symmetry. We rename the supersymmetry breaking field Φ
and consider its shift symmetric Kähler potential K(Φ, Φ̄) = K(Φ + Φ̄) invariant under
the imaginary shift of Φ. The shift symmetry may originate, e.g., from a U(1) symmetry
or the dilatation symmetry, and our discussion can be relevant for an axion or a dilaton,
respectively, or any (axionic or dilatonic) light field such as an inflaton.

The component Lagrangian is obtained simply by relabeling S → Φ(≡ 1√
2(φ+ iϕ)) in

eq. (2.3). We take the shift-symmetric version of eq. (2.1),

K(Φ, Φ̄) = 1
2(Φ + Φ̄)2 − 1

4!Λ2 (Φ + Φ̄)4. (2.9)

An analysis for the generic K is given in appendix A including the effects of shift-symmetry
breaking. The quartic term gives a mass to the real part φ, whereas the imaginary part ϕ
remains light.

In the following, we integrate out the heavy mode φ and show that Φ satisfies a
constraint (Φ + Φ̄)3 = 0 [74] in the limit of the large Kähler curvature. The terms in
equations of motion enhanced by the Kähler curvature satisfy

√
2φ
(
−1

2∂
µϕ∂µϕ+ F̄F − i

2 (χσµ∂µχ̄− ∂µχσµχ̄)
)

= F̄

2 χχ+ F

2 χ̄χ̄+ 1√
2
χσµχ̄∂µϕ−

1√
2
φ2�φ− 1√

2
φ∂µφ∂µφ. (2.10)

In the same way as before, this can be solved recursively starting at the quadratic fermion
terms. In fact, the leading-order terms with respect to the fermion number are

φ = 1√
2ρ

(
F̄

2 χχ+ F

2 χ̄χ̄+ 1√
2
χσµχ̄∂µϕ

)
+ · · · , (2.11)

where ρ ≡ −1
2∂

µϕ∂µϕ + F̄F is the background “energy density”7 or the order parameter
of the supersymmetry breaking. This tells us that φ3 = 0, which is again compatible with

7We are assuming that the spatial inhomogeneity is negligible. Too large gradient energy leads to a
singularity (ρ = 0) [74].
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supersymmetry. That is, its supersymmetry transformation vanishes under this constraint.
From supersymmetry, the following superfield constraint is obtained

(Φ + Φ̄)3 = 0. (2.12)

In fact, φ3 = 0 implies φ2∂µφ = 0 and φ2�φ+ 2φ∂µφ∂µφ = 0, etc. Using the latter, we see
that eq. (2.10) reproduces eqs. (15–18) of ref. [74]. The complete solution of eq. (2.10) is
given in ref. [74] and we have confirmed it. Thus, we have derived from UV the constraint
(Φ + Φ̄)3 = 0 rather than imposed it at IR by hand.

We comment on other cubic or higher constraints in the literature. The nilpotency
constraint (2.6) becomes cubic or higher, e.g., S3

1 = S2
1S2 = S1S2

2 = S3
2 = 0 when multiple

superfields break supersymmetry and they couple to each otehr in the Kähler curvature
term [45–48], which was studied without shift symmetry. The constraint with the same
form as eq. (2.12) arises for orthogonal nilpotent superfields X and A [8, 20–22, 76]. They
satisfy X2 = X(A + Ā) = 0, from which (A + Ā)3 = 0 follows. See refs. [8, 74] for more
about this relation. We have another comment on the orthogonal nilpotent superfields at
the end of this section. A cubic constraint was discussed also for a deformed real linear
superfield [77] and in N = 2 supersymmetry [30, 32, 40].

An analogous discussion is possible in superspace. The equation of motion in the large
Kähler curvature limit is

(D2 + D̄2)(Φ + Φ̄)3 = 0. (2.13)

Applying D̄2, we can express (Φ + Φ̄) in terms of superderivatives of Φ and its conjugate.
A manifestly real expression is

(Φ+Φ̄)=−
4
(
D̄Φ̄D̄Φ̄D2Φ+H.c.

)
+8D̄Φ̄DΦ

(
D̄DΦ+H.c.

)
+(Φ+Φ̄)2

(
D̄2D2Φ+H.c.

)
4D2ΦD̄2Φ̄+4

(
(D̄DΦ)2+H.c.

)
+4
(
D̄Φ̄D̄D2Φ+H.c.

) ,

(2.14)
where we assumed that the denominator never vanishes, which is a generalization of the
assumption that the F -term supersymmetry breaking is nonzero. Recursively solving it,
one reproduces eq. (2.12).

Let us compare Φ with the nilpotent superfield S. Similar to the previous case, the
constraint is obtained in the limit of the large Kähler curvature or equivalently the large
mass of φ compared to other mass scales in the theory. For a finite mass, there are
corrections suppressed by the mass of φ similarly to the case of refs. [45–48].

However, there is an interesting difference: the denominator in eq. (2.11) has the
kinetic energy of the light scalar ϕ as well as the usual term |F |2. After elimination of the
auxiliary field by its equation of motion, it becomes |F |2 = V (ϕ)+. . . , where dots represent
the terms depending on the goldstino χ, which contribute to higher-order fermion terms of
φ. The sum of the kinetic energy and the potential energy, namely the total background
energy, generally behaves more regularly than each of them. It is an adiabatic invariant in
the sense that the time derivative is of order the Hubble parameter H times the original
quantity ρ̇/ρ = O(H) [78].
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We can take some limits in the solution, (2.11). First, in the IR limit with vanishing
derivatives (as in refs. [45–48]), we obtain

√
2φ = χχ

2F + χ̄χ̄

2F̄
+ · · · . (2.15)

This is simply the real part of the well-known nilpotent solution (2.5), but we still have
φ3 = 0 with φ2 6= 0.

Second, we take the opposite limit where the F -term is negligible. In this case, super-
symmetry is dominantly broken by the kinetic term of ϕ, and we have

φ = χσνχ̄∂νϕ

−∂µϕ∂µϕ
+ · · · . (2.16)

We cannot take the limit ρ = 0 while maintaining the constraint since it would restore
supersymmetry and φ becomes light.

2.3 Inflationary application and different parametrizations

Constrained superfields can be useful tools to describe inflation. First of all, the inflationary
energy density necessarily breaks supersymmetry. Light scalar fields develop quantum
fluctuations during inflation, so it is often required to stabilize such light fields to satisfy
the bound on isocurvature perturbations [79]. After integrating out the stabilized modes,
the remaining degrees of freedom can be conveniently described by constrained superfields.
For our shift-symmetric single-superfield example, ϕ can be used as the inflaton. The
scalar superpartner of inflaton (sinflaton) φ is decoupled and replaced by terms dependent
on inflatino/goldstino χ.

Deep inside the slow-roll inflationary regime, it is a good approximation to neglect
derivative terms (the slow-roll approximation) reproducing eq. (2.15). After the end of
inflation, the inflaton typically oscillates around its minimum, so both its kinetic energy
and potential energy are relevant [see eq. (2.11)]. Alternatively, the kinetic energy of the
inflaton can dominate to realize the kination era if the potential does not have a minimum
as for the runaway-type potential. In this case, eq. (2.16) becomes relevant. These stories
are not restricted to inflation and can apply to other scalar fields like moduli, dilaton,
axion, curvaton, Higgs field, quintessence field, etc.

In supergravity, realizing large-field inflation is nontrivial because of the exponential
factor and the negative semidefinite term in the scalar potential. There are several mech-
anisms to solve these difficulties. In the following, we discuss which class of models allows
the low-energy description by the constrained superfield obeying (Φ + Φ̄)3 = 0.

Eq. (2.9) is actually nothing but the Kähler potential of the mechanism developed in
refs. [80–84] provided that there is an exponential factor ecΦ with c &

√
3 in the super-

potential (or equivalently the linear term c(Φ + Φ̄) in the Kähler potential). The Kähler
curvature term is an integrated component of this class of models and it ensures a posi-
tive inflationary potential and stabilize the sinflaton simultaneously. It can embed various
inflation models in supergravity. Inflation using this mechanism can be described by the
constrained superfield obying (Φ+Φ̄)3 = 0 if Λ is sufficiently smaller than the Planck scale.
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If Φ keeps supersymmetry breaking by its F -term after inflation, the inflaton is iden-
tified as sgoldstino (sgoldstino inflation) [85–87]. The constrained superfield obeying the
cubic constraint (2.12) and its UV setup (2.9) [80–84] are an explicit realization of sgold-
stino inflation. However, there is a severe gravitino problem when the inflaton is identified
as sgoldstino in vacuum (see ref. [88] and references therein).

There are other inflationary models and mechanisms in supergravity with a single su-
perfield [89–97]. Without the Kähler curvature term, the sinflaton mass is not hierarchically
larger than the Hubble scale, so the inflation in such theories cannot be described by the
constrained superfield satisfying (Φ + Φ̄)3 = 0. To describe the dynamics after inflation,
one has to use the linear description of supersymmetry, which includes the sinflaton φ.

One can modify the Kähler potential so that the Kähler curvature becomes sizable.
For example, the hyperbolic geometry of the Kähler manifold, relevant for the no-scale
supergravity [98–100] and the α-attractor models of inflation [101–103], can be modified
as follows to stabilize the sinflaton [104]

K = −3α
1 + 2c2

log

T + T̄

2
√

T̄ T

1 + c2

(
T − T̄

T + T̄

)2

+ c4

(
T − T̄

T + T̄

)4
 , (2.17)

where α, c2, and c4 are real dimensionless parameters. This is scale invariant under T → cT

and T̄ → cT̄ (c: const.). It is possible to check that this model is also in the same category
as we studied above by field redefinition T = exp(2iΦ/

√
3α):

K = − 3α
2(1 + 2c2)

[
− log 2 + log

(
1 + cos 2(Φ + Φ̄)√

3α

)

+2 log

1 + c2

(
tan 2(Φ + Φ̄)√

3α

)2

+ c4

(
tan 2(Φ + Φ̄)√

3α

)4


= 1
2(Φ + Φ̄)2 + 1 + 8c2 + 6c2

2 − 12c4
36α(1 + 2c2) (Φ + Φ̄)4 + · · · , (2.18)

which is same as eq. (2.9) up to higher order terms if the coefficient of the second term is
negative (and large). As a side remark, we note that T satisfies

(
T
T̄
− 1

)3
= 0 in the low

energy limit as a consequence of (Φ + Φ̄)3 = 0.
In summary, the description by the constrained superdield that satisfies (Φ + Φ̄)3 = 0

is valid when φ is strongly stabilized by the Kähler curvature. The apparent form can
be different from eq. (2.9) as in eq. (2.17), but it should be essentially equivalent in the
canonical field basis.

We have just seen an alternative parametrization in terms of T rather than Φ. Two
other parametrizations have been discussed in ref. [74].8 In the terminology of ref. [74], Φ is
the shift-symmetric variable, and Z = 〈Z〉eΦ (in the natural unit) is the phase-symmetric
variable. The latter satisfies (Z̄Z − 〈Z̄Z〉)3 = 0, so the radial mode and the phase mode
correspond to the heavy mode and light mode, respectively.

8Our notations for superfields are different from ref. [74]. Their S, Z, T , and X are our Φ, Z, A, and
X, respectively. We used S for the standard nilpotent superfield and T in eq. (2.17).
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Φ is also related to the orthogonal nilpotent superfields X and A satisfying X2 =
X(A + Ā) = 0 [8, 20–22, 76] via Φ = log(X + eA) [8, 74]. In appendix B, we comment
on an issue of catastrophic gravitino production [132–134], from a perspective we develop
in this paper, that arises when one uses the orthogonal nilpotent superfields with a generic
superpotential to describe dynamics after inflation. The conclusion of the appendix is that
there is no such issue if we start from a UV model like (2.9) and reduce it to the low-energy
effective theory since the superpotential becomes of a particular form [8]. The result is
consistent with the analysis from another perspective [88].

3 Multiple superfields

In this section, we study a model with multiple superfields and obtain novel constraints
on superfields, again without neglecting derivative terms. It turns out that expressions are
much more complicated than those in the single-superfield case in section 2, so we focus
on a particular setup with two superfields well-motivated from the perspective of inflation.

3.1 Stabilizer model with shift symmetry and quintic constraints

One of the mechanisms of inflation in supergravity utilizes a stabilizer superfield S such that
S = 0 during inflation at least approximately [105–109]. The superpotential is supposed
to be proportional to S. This ensures that the negative term in supergravity is no longer
harmful. The superpotential has the following form,

W (Φ,S) = Sf(Φ), (3.1)

where f(Φ) is a holomorphic function of the inflaton superfield Φ. One can think of
this as the previously constant supersymmetry breaking parameter f , which is now slowly
changing with Φ. In addition, it is typically assumed that the Kähler potential has an
approximate shift symmetry of the inflaton as in the previous section: K(Φ,S, Φ̄, S̄) =
K(Φ + Φ̄,S, S̄) [105, 106, 108, 109].

As we briefly mentioned before section 2.2, the stabilizer superfield is sometimes re-
placed by the nilpotent superfield in the literature. This is usually done by hand, but
whether one obtains the nilpotent condition S2 = 0 depends on the details of the UV cou-
pling [45–48] (but see also ref. [49]). Moreover, it becomes invalid in the inflaton oscillation
regime if the potential V ' |FS |2 vanishes. We address these points simultaneously.

In the case of the single superfield Φ, we saw that the denominator has the kinetic
energy of the inflaton ϕ. This motivates us to consider a UV theory that lets the inflaton
kinetic energy enter the denominator of S. For this to happen, S must feel the supersymme-
try breaking by the kinetic energy. Therefore, we couple S and Φ in the Kähler potential.
Of course, if we couple both the real and imaginary parts of Φ to S, both are stabilized
and inflation does not occur. This consideration guides us again to the (approximate) shift
symmetry of Φ.

Specifically, we consider the following Kähler potential,

K = 1
2(Φ + Φ̄)2 + S̄S − 1

4Λ2
S

(S̄S)2 − 1
2Λ2

Sφ

S̄S(Φ + Φ̄)2 − 1
4!Λ2

φ

(Φ + Φ̄)4. (3.2)
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For the inflationary model building with a stabilizer field S, we assume an (approximate)
R-symmetry under which S is charged. This explains the absence of terms like S2S̄,
S2(Φ + Φ̄)2, etc. We also assumed that the vacuum expectation value of the real part φ is
negligible. For this purpose, we neglected odd terms of (Φ + Φ̄) in the Kähler potential.
Alternatively, one can say that we imposed the (approximate) Z2 symmetry. We could
consider a more general Kähler potential K(Φ,S, Φ̄, S̄) = K(Φ + Φ̄,S, S̄), but the above
form is simple and well motivated.

In the limit 1/Λ2
Sφ → 0, S and Φ decouple in global supersymmetry, so S reduces to the

nilpotent superfield (S2 = 0) and Φ satisfies the constraint discussed in section 2.2 ((Φ +
Φ̄)3 = 0). In the presence of nonzero 1/Λ2

Sφ, both constraints are modified as we see below.
The parts of the equations of motion for S and φ which are enhanced by the Kähler

curvature are as follows:

0 =− 1
Λ2
S

S

(
FSF̄ S̄− i

2
(
χSσµ∂µχ̄

S̄ + χ̄S̄ σ̄µ∂µχ
S
))

− 1
Λ2
Sφ

S

(
FΦF̄ Φ̄− i

2
(
χΦσµ∂µχ̄

Φ̄ + χ̄Φ̄σ̄µ∂µχ
Φ
))

−
√

2
Λ2
Sφ

φ

(
FSF̄ Φ̄− i

2
(
χSσµ∂µχ̄

Φ̄ + χ̄Φ̄σ̄µ∂µχ
S
))

+
(
− 1

Λ2
Sφ

φ2− 1
Λ2
S

S̄S

)
�S−

√
2

Λ2
Sφ

Sφ�Φ

− 1
Λ2
S

S̄∂µS∂µS−
2
√

2
Λ2
Sφ

φ∂µS∂µΦ− 1
Λ2
Sφ

S∂µΦ∂µΦ

− i

Λ2
S

χSσµχ̄S̄∂µS−
i

Λ2
Sφ

χSσµχ̄Φ̄∂µΦ− i

Λ2
Sφ

χΦσµχ̄Φ̄∂µS

− i

2Λ2
S

S∂µ(χSσµχ̄S̄)− i√
2Λ2

Sφ

φ∂µ(χSσµχ̄Φ̄)− i

2Λ2
Sφ

S∂µ(χΦσµχ̄Φ̄)

+ 1
2Λ2

Sφ

FSχ̄Φ̄χ̄Φ̄ + 1
2Λ2

S

F̄ S̄χSχS + 1
Λ2
Sφ

F̄ Φ̄χΦχS , (3.3)

0 =−
√

2
Λ2
φ

φ

(
FΦF̄ Φ̄− i

2
(
χΦσµ∂µχ̄

Φ̄ + χ̄Φ̄σ̄µ∂µχ
Φ
))

−
√

2
Λ2
Sφ

φ

(
FSF̄ S̄− i

2
(
χSσµ∂µχ̄

S̄ + χ̄S̄ σ̄µ∂µχ
S
))

− 1
Λ2
Sφ

S

(
FΦF̄ S̄− i

2
(
χΦσµ∂µχ̄

S̄ + χ̄S̄ σ̄µ∂µχ
Φ
))

− 1
Λ2
Sφ

S̄

(
FSF̄ Φ̄− i

2
(
χSσµ∂µχ̄

Φ̄ + χ̄Φ̄σ̄µ∂µχ
S
))

− 1√
2Λ2

φ

φ(∂µφ∂µφ−∂µϕ∂µϕ)− 1√
2Λ2

Sφ

∂µφ∂µ(S̄S)

− i√
2Λ2

Sφ

∂µϕ(S̄∂µS−S∂µS̄)− 1√
2Λ2

Sφ

φ
(
∂µS∂µS+∂µS̄∂µS̄

)
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− 1√
2

(
1

Λ2
Sφ

SS̄+ 1
Λ2
φ

φ2
)
�φ− 1√

2Λ2
Sφ

φ(S̄�S+S�S̄)

+ 1√
2Λ2

φ

χΦσµχ̄Φ̄∂µϕ+ 1√
2Λ2

Sφ

χSσµχ̄S̄∂µϕ−
i

2Λ2
Sφ

χΦσµχ̄S̄∂µS+ i

2Λ2
Sφ

χSσµχ̄Φ̄∂µS̄

+ 1
2Λ2

φ

(
FΦχ̄Φ̄χ̄Φ̄ + F̄ Φ̄χΦχΦ

)
+ 1

Λ2
Sφ

(
FSχ̄S̄χ̄Φ̄ + F̄ S̄χSχΦ

)
. (3.4)

It is straightforward to solve these equations. At the quadratic order of fermions, the
solution is S

S̄√
2φ

 = 1
2m2

S̄S
(m2

S̄S
m2
φφ − |m2

Sφ|2)

×


2m2

S̄S
m2
φφ − |m2

Sφ|2 m4
S̄φ

−2m2
S̄S
m2
S̄φ

m4
Sφ 2m2

S̄S
m2
φφ − |m2

Sφ|2 −2m2
S̄S
m2
Sφ

−2m2
S̄S
m2
Sφ −2m2

S̄S
m2
S̄φ

4m4
S̄S


AĀ
B

 , (3.5)

where

m2
S̄S
≡ 1

Λ2
S

FSF̄ S̄ + 1
Λ2
Sφ

(
−1

2∂
µϕ∂µϕ+ FΦF̄ Φ̄

)
, (3.6)

m2
S̄φ
≡ 2

Λ2
Sφ

FSF̄ Φ̄, (3.7)

m2
Sφ ≡

2
Λ2
Sφ

FΦF̄ S̄ , (3.8)

m2
φφ ≡

2
Λ2
φ

(
−1

2∂
µϕ∂µϕ+ F̄ Φ̄FΦ

)
+ 2

Λ2
Sφ

F̄ S̄FS , (3.9)

A ≡ 1
2Λ2

S

F̄ S̄χSχS + 1
2Λ2

Sφ

FSχ̄Φ̄χ̄Φ̄ + 1
Λ2
Sφ

F̄ Φ̄χΦχS + 1√
2Λ2

Sφ

∂µϕχ
Sσµχ̄Φ̄, (3.10)

B ≡ 1
2Λ2

φ

(
FΦχ̄Φ̄χ̄Φ̄ + F̄ Φ̄χΦχΦ

)
+ 1

Λ2
Sφ

(
FSχ̄S̄χ̄Φ̄ + F̄ S̄χSχΦ

)
+ 1√

2Λ2
φ

∂µϕχ
Φσµχ̄Φ̄ + 1√

2Λ2
Sφ

∂µϕχ
Sσµχ̄S̄ . (3.11)

It should be emphasized that the effective mass parameters m2
S̄S

and m2
φφ depend on the

kinetic term of the inflaton as well as the F -term supersymmetry breaking terms.
Note that both the expansions of S and φ start with linear combinations of χΦχΦ,

χΦχS , χSχS , χΦσµχ̄Φ̄, χΦσµχ̄S̄ , χSσµχ̄S̄ , and their conjugates generically with nonzero
coefficients. That is, S and φ are proportional to at least quadratic fermion terms without
derivatives. This fact does not change even if we take into account higher-order fermionic
terms. These imply that the fifth power of them vanish, so

φ5 =φ4S=φ3S2 =φ3SS̄=φ2S3 =φ2S2S̄=φS4 =φS3S̄=φS2S̄2 =S5 =S4S̄=S3S̄2 = 0,
(3.12)
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and their complex conjugates are satisfied. Furthermore, the supersymmetry transforma-
tion of these constraints are compatible with these constraints. Because of supersymmetry,
the corresponding equations are satisfied by superfields too,

(Φ+Φ̄)5 = (Φ+Φ̄)4S = (Φ+Φ̄)3S2 = (Φ+Φ̄)3SS̄ = (Φ+Φ̄)2S3 = (Φ+Φ̄)2S2S̄

= (Φ+Φ̄)S4 = (Φ+Φ̄)S3S̄ = (Φ+Φ̄)S2S̄2 = S5 = S4S̄ = S3S̄2 = 0. (3.13)

Some of the constraints further imply a stronger constraint if we assume non-vanishing
F -term: D2S 6= 0 and/or D2Φ 6= 0. For example, S4S̄ = 0 with D̄2S̄ 6= 0 implies S4 = 0.
We have explicitly checked S4 = 0 in terms of the component fields.

The same type of the quintic constraint as (Φ + Φ̄)5 = 0 on an N = 2 superfield were
recently proposed in refs. [33, 110].

Similarly to the previous examples, we view these quintic constraints as consequences
of the superspace equations of motion

0 = D2
[

1
Λ2
S

S̄S2 + 1
Λ2
Sφ

S(Φ + Φ̄)2
]
, (3.14)

0 = (D2 + D̄2)
[

1
Λ2
Sφ

S̄S(Φ + Φ̄) + 1
6Λ2

φ

(Φ + Φ̄)3
]
. (3.15)

Applying superderivatives as in the previous examples, we obtain

S

(
2

Λ2
S

(D̄2S̄D2S+2D̄S̄D̄D2S)+ 2
Λ2
Sφ

(2D̄DΦD̄DΦ+D̄2Φ̄D2Φ+2D̄Φ̄D̄D2Φ)
)

(3.16)

+ 2
Λ2
Sφ

(Φ+Φ̄)
(
SD̄2D2Φ+4D̄DSD̄DΦ+2D̄Φ̄D̄D2S+D2SD̄2Φ̄

)
=− 2

Λ2
S

(
DSDSD̄2S̄+4D̄S̄D̄DSDS+2S̄D̄DSD̄DS+SS̄D̄2D2S

)
− 1

Λ2
Sφ

(
4DSDΦD̄2Φ̄+2D̄Φ̄D̄Φ̄D2S+8D̄Φ̄DSD̄DΦ+8D̄Φ̄D̄DSDΦ+(Φ+Φ̄)2D̄2D2S

)
,

(Φ+Φ̄)
(

2
Λ2
φ

(D̄2Φ̄D2Φ+(D̄DΦD̄DΦ+H.c.)+(D̄Φ̄D̄D2Φ+H.c.)) (3.17)

+ 2
Λ2
Sφ

(D̄2S̄D2S+(D̄S̄D̄D2S+H.c.))
)

+ 2S

Λ2
Sφ

(
D̄2S̄D2Φ+D̄S̄D̄D2Φ+DΦDD̄2S̄+2DD̄S̄DD̄Φ̄

)
+H.c.

=− 1
2Λ2

φ

(
4(D̄Φ̄D̄Φ̄D2Φ+H.c.)+8(D̄Φ̄D̄DΦDΦ+H.c.)+(Φ+Φ̄)2(D̄2D2Φ+H.c.)

)
− 1

Λ2
Sφ

(
4(D̄S̄D̄Φ̄D2S+H.c.)+4(D̄S̄(D̄DSDΦ+D̄DΦDS)+H.c.)+S̄S(D̄2D2Φ+H.c.)

+(Φ+Φ̄)(S̄D̄2D2S+H.c.)
)
.

One can solve these simultaneous equations recursively.
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For the inflationary application with the superpotential (3.1), the purely bosonic part
of the F -term of Φ (FΦ) vanishes on-shell. The equation of motion for FΦ is

FΦ = −K S̄Φf̄(Φ̄)−KΦ̄ΦS̄fΦ̄(Φ̄) + 1
2ΓΦ

jkχ
jχk. (3.18)

The first and second terms are proportional to S̄φ and S̄, respectively, so there are no
purely bosonic terms in FΦ. We see that the leading order solution is

m2
S̄S
S= 1

2Λ2
S

F̄ S̄χSχS + 1
2Λ2

Sφ

FSχ̄Φ̄χ̄Φ̄ + 1√
2Λ2

Sφ

∂µϕχ
Sσµχ̄Φ̄, (3.19)

1√
2
m2
φφφ= 1

Λ2
Sφ

(
FSχ̄S̄χ̄Φ̄ + F̄ S̄χSχΦ

)
+ 1√

2Λ2
φ

∂µϕχ
Φσµχ̄Φ̄ + 1√

2Λ2
Sφ

∂µϕχ
Sσµχ̄S̄ . (3.20)

In this case, compared to eq. (3.12), lower powers of fields vanish on-shell,

φ3S = φS2 = S3 = 0, (3.21)

but φ2S 6= 0, φ2SS̄ 6= 0, and S2S̄2 6= 0. We have confirmed this to the full order of fermions
by counting the number of χS or χ̄Φ̄ without derivatives and the number of their conjugates
separately. By the same technique, we see that the on-shell supersymmetry transformation
of S3 vanishes to the full order, so S3 = 0 is realized in the configuration (3.18). We
also observe that the on-shell supersymmetry transformation of φ3S and φS2 vanish at the
leading order of fermions, which suggests (Φ + Φ̄)3S = (Φ + Φ̄)S2 = 0.

3.2 Implications on cosmological particle production

Similar to the single-superfield case in eq. (2.11), our solutions [eq. (3.5) and its on-shell
truncation eqs. (3.19) and (3.20)] have denominators that depend on the kinetic energy of
the inflaton through the dependence on the effective masses m2

S̄S
and m2

φφ. For simplicity,
let us consider the case Λ2

S = Λ2
φ = Λ2

Sφ ≡ Λ2 in eqs. (3.19) and (3.20). In this case,
m2
S̄S

= ρ/Λ2 = m2
φφ/2 where ρ = −1

2∂
µϕ∂µϕ+ |FS |2 ' 1

2 ϕ̇
2 + |FS |2 is the energy density

(see footnote 7), which takes a nonzero value during inflation and the subsequent inflaton
oscillation period. The leading terms of the heavy scalar fields become S = F̄ S̄

2ρ χ
SχS +

FS

2ρ χ̄
Φ̄χ̄Φ̄ + ∂µϕ√

2ρχ
Sσµχ̄Φ̄ and φ = FS√

2ρ χ̄
S̄χ̄Φ̄ + F̄ S̄√

2ρχ
SχΦ + ∂µϕ

2ρ (χΦσµχ̄Φ̄ + χSσµχ̄S̄). It is
clear that the denominators are governed by the adiabatic invariant ρ. In contrast to the
well-studied case with 1/Λ2

Sφ → 0, where the leading solutions become S = 1
2FSχ

SχS and
φ = 1

−∂νϕ∂νϕ∂µϕχ
Φσµχ̄Φ̄ respectively, the problem of the vanishing denominator does not

happen at a finite cosmological time unless the potential minimum is negative, which is
anyway problematic [111, 112]. Therefore, based on the new set of constraints (eq. (3.5)),
we can expand the scope of application of constrained superfields even to the situation
where either the F -term or the kinetic term becomes 0.

When we remove the assumption of the universal Λ2, different linear combinations of
the F -term and the kinetic term than the energy density appear. However, the qualitative
feature is similar. That is, the oscillation behavior of the denominators (m2

S̄S
and m2

φφ)
becomes mild compared to the minimal case as long as the signs of the Kähler curvature
terms are not changed.
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This mild oscillation behavior may have important implications for particle produc-
tion during the inflaton coherent oscillation period (or analogous situations for other scalar
fields). In general, non-adiabatic changes of a coupling constant can lead to (resonant)
particle production or preheating. The details may depend on the couplings in the super-
potential and canonical normalization etc., but it may well be a sign that violent production
would be suppressed in this framework. This will be beneficial in the context of long-lived
particles like moduli and gravitinos.

Non-thermal gravitino production during the (p)reheating regime in the presence of
the (non-nilpotent) stabilizer field S was discussed in ref. [113] (see also refs. [1, 114–119]
for pioneering work without explicit considerations of the stabilizer field and ref. [120] for
inflatino production during inflation in the presence of the stabilizer field). One of the key
findings there is that gravitino production is suppressed since the gravitino mass approxi-
mately vanishes. However, a finite amplitude of the stabilizer field S is gradually generated
during the inflaton oscillations, which leads to a finite production rate of gravitinos through
the oscillations of the gravitino mass. In the current setup with approximately equal Λ’s,
the mass term of the stabilizer field m2

S̄S
' ρ/Λ2 = 3H2(MP/Λ)2 is larger than the Hubble

scale, so the stabilizer field S is strongly stabilized at the origin even after inflation. This
will further suppress the gravitino production rate.

We also note that the shift-symmetric coupling (Φ + Φ̄)2S̄S in the Kähler potential
does not introduce the gravitino problem due to the coupling between the inflaton and
supersymmetry-breaking field in K discussed in ref. [121].

4 Generalization

So far, we discussed only chiral superfields in global supersymmetry. Some of the discussions
are motivated by cosmological applications, which should be ideally described with realistic
particle contents and (super)gravitational effects. We will briefly discuss generalizations
including real superfields (gauge-field supermultiplets) and supergravity in this section.

Before that, we briefly comment on the possibility of other generalizations. In all the
examples in this paper, we discuss the decoupling of heavy scalar fields and the effect of
the kinetic energy of the light scalar field. In principle, the same idea will apply to the
decoupling of particles with other spins and the kinetic energy of particles with other spins.
For this purpose, one needs superderivative interaction terms. In such a case, one should be
careful about the potential emergence of negative-norm states [122, 123]. In a theory with
superderivatives, supersymmetry breaking in vacuum by the kinetic energy was recently
discussed in ref. [124]. Although our analyses in this paper may not directly apply to the
cases with superderivatives, it will be interesting to see possible connections.

It will be also interesting to generalize our strategy to theories with spacetime dimen-
sions other than 4 and/or the number of supersymmetry other than 1 (see footnote 9).
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4.1 Gauge theory

The equation of motion for a complex scalar X in a theory with chiral supermultiplets
(Φi, χi, F i) and gauge-field supermultiplets (λA, FµνA, DA) is

0 = KX̄ij̄

(
− i2

(
χiσµDµχ̄

j̄ + χ̄j̄ σ̄µDµχ
i
)

+ F iF̄ j̄
)

+KX̄iD
µDµΦi +KX̄ijD

µΦiDµΦj

+ iKX̄ijk̄χ
jσµχ̄k̄DµΦi + i

2KX̄ij̄Dµ(χiσµχ̄j̄)− 1
2KX̄ij̄k̄F

iχ̄j̄χ̄k̄ − 1
2KX̄ījkF̄

īχjχk

+ 1
4KX̄ijk̄ ¯̀χ

iχjχ̄k̄χ̄
¯̀ + W̄X̄īF̄

ī − 1
2W̄X̄īj̄χ̄

īχ̄j̄

− 1
8 h̄AB X̄

(
FAµνF

µν B + 2i
(
λAσµDµλ̄

B + λ̄Aσ̄µDµλ
B
)
− 2DADB

)
+ i

8 h̄AB X̄
(
FAµνF̃

µν B + 2Dµ

(
λAσµλ̄B

))
−DAPAX̄ −

√
2KX̄ij̄

(
kj̄Aλ

Aχi +Ki
Aλ̄

Aχ̄j̄
)
−
√

2Kij̄(k
j̄
A)X̄λ

Aχi

−
√

2
4 h̄AB X̄īχ̄

īσ̄µν λ̄AFBµν −
√

2i
4 h̄AB X̄īχ̄

īλ̄ADB − 1
4 h̄AB X̄īF̄

īλ̄Aλ̄B

+ 1
8 h̄AB X̄īj̄χ̄

īχ̄j̄ λ̄Aλ̄B, (4.1)

where hAB is the holomorphic gauge kinetic function, PA is the Killing potential, kiA =
−iK j̄iPA,j̄ is the holomorphic Killing vector of the Kähler manifold, and the covariant
derivative of the fermion includes the gauge connection, Dµχ

i = ∂µχ
i−AAµ

∂kiA
∂Φj χ

j where AAµ
is the gauge field, but the Kähler connection is stripped away to make the whole expression
simpler. The upper three lines are just covariantizations of the previous result. The lower
five lines are the new contributions from gauge fields, gauginos, and auxiliary D-terms.

The structure of the fourth line looks similar to that of the first line, but these terms
alone cannot stabilize the field X because they give holomorphic mass terms MXX and
MX̄X̄ , that is, tachyonic mass contributions. Nevertheless, in the presence of both F -term
and D-term supersymmetry breaking, it is straightforward to include the additional terms
to obtain new constraints in terms of component fields. However, the D-term/gauge-field
parts significantly affect the constraints only when the relevant coefficient in the gauge
kinetic function is as large as the Kähler curvature.9

As we have repeatedly seen, shift symmetry plays an important role. The equation of
motion for the real part of the shift-symmetric superfield Φ is obtained by simply taking
the real part of eq. (4.1) with Φ replacing X. The holomorphic gauge kinetic function hAB
can depend linearly on Φ without breaking the shift symmetry at the perturbative level.
In such a case, however, hABΦ = (real const.) and hABΦi = 0, so many terms vanish in

9The Kähler potential and the gauge kinetic function are related via the holomorphic prepotential in
N = 2 supersymmetry. The constraints associated to N = 2→ 0 breaking are higher-order polynomials [30,
33, 110] than in the case of N = 1→ 0 or N = 2→ 1 [31]. The situation is analogous to this case.
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the equation of motion:

0 = · · · − 1
8
(
h̄AB Φ̄ + hABΦ

) (
FAµνF

µν B + 2i
(
λAσµDµλ̄

B + λ̄Aσ̄µDµλ
B
)
− 2DADB

)
−DA (PA Φ̄ + PAΦ)−

√
2
(
KΦij̄ +KΦ̄ij̄

) (
kj̄Aλ

Aχi +Ki
Aλ̄

Aχ̄j̄
)

−
√

2Kij̄

(
(kj̄A)Φ̄λ

Aχi + (kiA)Φλ̄
Aχ̄j̄

)
, (4.2)

where dots denote the non-gauge (F -term) part. The bosonic terms in the first line shift the
vacuum expectation value of the field φ, which can be subtracted by field redefinition. On
the other hand, the fermionic term (gaugino bilinear) in the first line affects the solution at
the quadratic level. This means, strictly speaking, that the constraint becomes a higher-
order polynomial equation. Again, this happens practically when the coefficient of the
gauge kinetic function is comparable to the Kähler curvature. Otherwise, the effects of
these new terms appear as small corrections to the original constraint suppressed by the
Kähler curvature. Other terms affect the solution at higher orders.

4.2 Supergravity

If we consider large-field inflation, it is important to consider the effects of coupling to
(super)gravity. Constraint superfields in supergravity have been discussed in early days [6]
and recently, e.g., in refs. [76, 125–130]. Here, we begin with the standard UV setup with a
linearly realized supergravity rather than imposing a constraint by hand. We take the su-
pergravity supermultiplet on-shell while the matter supermultiplets off-shell (see ref. [131]
for off-shell supergravity). For simplicity, we only consider chiral superfields for matter.

The equation of motion for a complex scalar field X in supergravity is given in eq. (C.1)
in appendix C. New terms proportional to the Kähler curvature appear, but these are sup-
pressed by (the ratio between the additional fields and) the reduced Planck scale. Though
there are various contributions at the quartic order in fermions (including gravitino), we do
not find any new contributions at the quadratic level. Thus, we do not find any significant
differences in the supergravity extension.

5 Conclusion

In this paper, we have studied constrained superfields in dynamical/cosmological back-
grounds where derivatives of scalar fields such as the kinetic energy are sizable. We have
started from the models with supersymmetry realized linearly. The Kähler potential has an
enhanced curvature with a shift symmetry, which makes some scalar fields heavy enough
to decouple but keeps other fields light. We have integrated out the heavy modes, i.e.,
we have solved the equations of motion for the heavy scalars to obtain supersymmetric
constraints. The shift-symmetric cubic constraint (2.12) was discussed in the literature,
but we have derived it from a UV model explicitly. We have also derived novel quintic
constraints (3.13) for the double superfield case that is motivated in the context of inflation
with the stabilizer field. Though the details depend on how many superfields are coupled
by the quartic terms in the Kähler potential, the essential thing is that the kinetic energy
of light fields as well as the potential energy contributes to the effective masses of the heavy
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fields. Depending on the sign of the Kähler curvature, the effect of the kinetic energy can
suppress the non-adiabatic changes of the effective masses and coupling constants in the
low-energy theory in which supersymmetry is nonlinearly realized. We have discussed their
cosmological implications. In particular, it is remarkable that the constrained superfields
we obtained in this work allow us to describe the low energy effective field theory even
during the inflaton oscillation era without violating its validity. This is in sharp contrast
to the standard inflation scenarios based on the nilpotent stabilizer superfield. We have
also delineated the generalizations into supersymmetric gauge theories and supergravity.

Key ingredients in our discussion are the shift-symmetric couplings in the Kähler cur-
vature terms. In fact, whether we use constrained superfields or unconstrained superfields
is a matter of choice. In the first place, the shift-symmetric couplings in the Kähler poten-
tial themselves are optional unless there is tachyonic instability. Nevertheless, if there are
indeed the shift-symmetric quartic couplings, it is not only that the description in terms
of constrained superfields can be extended to the large kinetic-energy regime but also that
there are cosmological advantages as discussed in this paper. It is also interesting that the
shift symmetry is favorable in the context of inflation. Meanwhile, it is desirable to explain
the origin of the shift-symmetric quartic terms by an underlying field-theoretic or stringy
mechanism.

Our strategy can be straightforwardly applied also to cases with multiple superfields
breaking supersymmetry. Although calculations to derive explicit forms of the solutions
would become more tedious, it is easy to expect the orders of the algebraic constraints by
counting the number of fermion species involved. When N chiral superfields couple with
each other without shift symmetry, the constraints are expected to be (N+1)-th order (see
refs. [45–47] for a more precise discussion for small values of N). If all the N superfields
respect their shift symmetries, the constraints are expected to be (2N +1)-th order. When
fields with and without shift symmetries couple each other with generic coefficients, the
constraints may depend on how dense the coupling structure is. Our example in section 3
suggests the power of the constraint is still 2N + 1 for a sufficiently large number of shift
symmetries. To check these expectations is one of future work.

Most of our cosmological discussions have been motivated by inflation, but constrained
superfields in the dynamical background can apply to a broader range of cosmological sce-
narios and mechanisms including kination, the curvaton mechanism, the kinetic as well
as standard axion misalignment mechanisms, the relaxion mechanism, and so on. Con-
strained superfields in a dynamical/cosmological background are useful tools to describe
our dynamically evolving universe.
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A Equation of motion for generic Kähler potential with single superfield

Here we show the equation of motion of φ (real part of the scalar component of Φ) for a
generic Kähler potential K(Φ, Φ̄) and superpotential W (Φ), which are not necessarily shift
symmetric. It is given by

0 = Re(K(2,1))
[1

2 (∂µφ)2 − 1
2 (∂µϕ)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄

]
+ Im(K(2,1))

[
−∂µφ∂µϕ+ 1

2∂µ(χσµχ̄)
]

+ 1√
2
K(1,1)�φ− 1√

2
K(2,2)∂µϕχσ

µχ̄

− 1
2 Re

(
FK(1,3)χ̄χ̄+ F̄K(2,2)χχ

)
+ 1

4 Re(K(2,3))χχχ̄χ̄+ Re
(
FW (2)

)
− 1

2 Re
(
W (3)χχ

)
, (A.1)

where we introduced a notation, K(1,2) ≡ ∂3K/∂Φ∂Φ̄2, W (2) ≡ ∂2W/∂Φ2, and so on.
Expanding the equation around a vacuum expectation value as Φ = 〈Φ〉 + Φ̃ with Φ̃ =

1√
2(φ̃+ iϕ̃), up to the cubic order in φ̃, we obtain

∑
i≤j

Re
〈
K(i,j)

〉
A(i,j)+

∑
i<j

Im
〈
K(i,j)

〉
B(i,j)+

(∑
i

〈
W (i)

〉
C(i) + H.c.

)
+O(φ̃3) = 0, (A.2)

where

A(1,1) = 1√
2
�φ̃, (A.3)

A(1,2) = 1
2(∂µφ̃2)− 1

2 (∂µϕ̃)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄+ φ̃�φ̃, (A.4)

A(2,2) = 1√
2
φ̃

[1
2(∂µφ̃2)− 1

2 (∂µϕ̃)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄

]
+ 1

2
√

2
φ̃2�φ̃

− 1√
2
χσµχ̄∂µϕ̃−

1
2Re(Fχ̄χ̄), (A.5)

A(1,3) = 1√
2
φ̃

[1
2(∂µφ̃2)− 1

2 (∂µϕ̃)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄

]
+ 1

2
√

2
φ̃2�φ̃

− 1
2Re(Fχ̄χ̄), (A.6)

A(2,3) = 3
4 φ̃

2
[1

2(∂µφ̃2)− 1
2 (∂µϕ̃)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄

]
− φ̃∂µϕ̃χσµχ̄

− 3
2
√

2
φ̃Re(Fχ̄χ̄) + 1

4χχχ̄χ̄, (A.7)

A(1,4) = 1
4 φ̃

2
[1

2(∂µφ̃2)− 1
2 (∂µϕ̃)2 + FF̄ − i

2χσ
µ∂µχ̄+ i

2∂µχσ
µχ̄

]
− 1

2
√

2
φ̃Re(Fχ̄χ̄), (A.8)

A(3,3) = − 1
2
√

2
φ̃2∂µϕ̃χσ

µχ̄− 3
8 φ̃

2Re(Fχ̄χ̄) + 1
4
√

2
φ̃χχχ̄χ̄, (A.9)
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A(2,4) = − 1
2
√

2
φ̃2∂µϕ̃χσ

µχ̄− 1
2 φ̃

2Re(Fχ̄χ̄) + 1
4
√

2
φ̃χχχ̄χ̄, (A.10)

A(1,5) = −1
8 φ̃

2Re(Fχ̄χ̄), (A.11)

A(3,4) = 3
16 φ̃

2χχχ̄χ̄, (A.12)

A(2,5) = 1
16 φ̃

2χχχ̄χ̄, (A.13)

B(1,2) = ∂µφ̃∂
µϕ̃− 1

2∂µ(χσµχ̄), (A.14)

B(1,3) = 1√
2
φ̃

[
∂µφ̃∂

µϕ̃− 1
2∂µ(χσµχ̄)

]
+ 1

2Im(Fχ̄χ̄), (A.15)

B(1,4) = B(2,3) = 1
4 φ̃

2
[
∂µφ̃∂

µϕ̃− 1
2∂µ(χσµχ̄)

]
+ 1

2
√

2
φ̃Im(Fχ̄χ̄), (A.16)

B(2,4) = 1
4 φ̃

2Im(Fχ̄χ̄), (A.17)

B(1,5) = 1
8 φ̃

2Im(Fχ̄χ̄), (A.18)

and

C(2) = F

2 , (A.19)

C(3) = F

2
√

2
φ̃− 1

4χχ, (A.20)

C(4) = F

8 φ̃
2 − 1

4
√

2
χχφ̃, (A.21)

C(5) = − 1
16χχφ̃

2, (A.22)

Note that when K has an exact shift symmetry, all coefficients of B-terms vanish,
Im
〈
K(i,j)

〉
= 0, and there is no distinction between Φ and Φ̄ superscripts on Re

〈
K(i,j)

〉
,

e.g., Re
〈
K(2,2)

〉
= Re

〈
K(1,3)

〉
. Since the Kähler curvature is determined by the fourth

derivative of the Kähler potential, terms from A(2,2) and A(1,3) would be dominant in the
large curvature limit in shift symmetric case, which leads to eq. (2.10). For general case
with non-shift symmetric Kähler potential, however, there are several corrections with
Im
〈
K(i,j)

〉
(B-terms) and superpotential (C-terms). As long as they can be treated as

small corrections compared to the Kähler curvature, the discussion in the main text can
be applied.

B Comment on the slow gravitino issue

In this appendix, we discuss an issue related to the orthogonal nilpotent superfields X
and A, which satisfy X2 = X(A + Ā) = 0 [8, 20–22, 76] and related to Φ via Φ =
log(X + eA) [8, 74]. An application of the orthogonal nilpotent superfields with a generic
superpotential to the dynamics after inflation is known to produce either a breakdown of
the effective theory [132] or a catastrophic production of gravitinos due to a significant
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change of the propagation speed of gravitino [132–134] (see also refs. [25, 88, 135, 136]).
Since we have started from a perfectly fine theory (2.9) up to the scale around Λ, it is
instructive to see what happens for gravitino in our setup. (Similar or related comments
have been given in refs. [88, 132].)

In the canonical basis, the Kähler potential of the constrained superfields is

K = 1
2(Φ + Φ̄)2

= 1
2(A + Ā)2 + X̄X. (B.1)

Thus, the minimal shift-symmetric K for Φ simply corresponds to the minimal K for A

and X. The general superpotential is expressed as

W (Φ) = W (A) + XW ′(A)e−A , (B.2)

where W ′ is the derivative of W with respect to its argument. This has a very specific
form as a holomorphic function W (A,X) [8]. This specific structure ensures |ṁ3/2|2 =
2|FX |2|Ȧ|2, where m3/2 is the gravitino mass, FX is the F -term of X, and we have used
〈A + Ā〉 = 〈X〉 = 〈eK〉 = 0.10 Therefore, the propagation speed of the longitudinal mode
of gravitino is same as the speed of light,

c2
3/2 =

(
|Ȧ|2 − |FX |2

)2
+ |ṁ3/2|2(

|Ȧ|2 + |FX |2
)2 = 1. (B.3)

This means that the gravitino issue related to the significant change of the propagation
speed is absent in our setup, which is consistent with the analysis in terms of Φ [88].

C Equation of motion in supergravity

The equation of motion for the complex scalar field X (without gauge fields) in supergravity
is as follows:

0=KX̄ij̄

(
− i2

(
χiσµ(∂µ−iAµ)χ̄j̄+χ̄j̄ σ̄µ(∂µ+iAµ)χi

)
+F iF̄ j̄

)
+KX̄i�Φi+KX̄ij∂

µΦi∂µΦj

+iKX̄ijk̄χ
jσµχ̄k̄∂µΦi+ i

2KX̄ij̄∂µ(χiσµχ̄j̄)− 1
2KX̄ij̄k̄F

iχ̄j̄χ̄k̄− 1
2KX̄ījkF̄

īχjχk

+ 1
4KX̄ijk̄ ¯̀χ

iχjχ̄k̄χ̄
¯̀+
(
eK/2D̄īW̄

)
X̄
F̄ ī− 1

2mīj̄X̄ χ̄
īχ̄j̄

+3eKWD̄X̄W̄−
1
2mijX̄χ

iχj+
(
eK/2DiW

)
X̄
F i

− 1
4M2

P
KX̄ik̄Kj ¯̀χ

iχjχ̄k̄χ̄
¯̀−

Kij̄

2M2
P
χiσµχ̄j̄KX̄i∂µΦi− 1

4M2
P
Kij̄KX̄∂µ

(
χiσµχ̄j̄

)
− 1

4M2
P

(
Kij̄k∂µΦk+Kij̄k̄∂µΦ̄k̄

)
Kx̄χ

iσµχ̄j̄

10As we see in section. 4.2 and appendix C, the extension to supergravity does not introduce a big change
to the results obtained in global supersymmetry.
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+ i

4M2
P
KX̄i∂νΦi

(
ψ̄µσ̄

[µσν σ̄ρ]ψρ−ψµσ[µσ̄νσρ]ψ̄ρ
)

+ i

8M2
P
KX̄∂

µ
(
ψ̄µσ̄

[µσν σ̄ρ]ψρ−ψµσ[µσ̄νσρ]ψ̄ρ
)

− 1
2M2

P
KX̄m3/2ψµσ

µνψν−eK/2
(
W̄X̄+ 1

2KX̄W̄

)
ψ̄µσ̄

µνψ̄ν

+ 2
√

2
MP

(
−KX̄ijψµσ

µνχi∂νΦj+KX̄ij̄ψ̄µσ̄
µνχ̄j̄∂νΦi

)
− 2
√

2
M2

P
KiX̄∂ν

(
ψµσ

µνχi
)

+ i√
2MP

ψ̄µσ̄
µ
((
eK/2DiW

)
X̄
χi+iKX̄ij̄σ

ν∂νΦiχ̄j̄
)

+ i√
2MP

ψµσ
µ
((
eK/2D̄j̄W̄

)
X̄
χ̄j̄−iKX̄ij σ̄

ν∂νΦjχi
)

+ 1√
2MP

KiX̄∂ν
(
ψµσ

µσ̄νχi
)

+KX̄ij̄

(
− i

16e
−1εµνρσ

(
ψµσνψ̄ρ+ψ̄µσ̄νψρ

)
χ̄j̄ σ̄σχ

i− 1
2 ψ̄µχ̄

j̄ψµχi
)
, (C.1)

where ψµ is the gravitino field, m3/2 ≡ eK/2W is its mass parameter, Aµ ≡
i

4M2
P

(
Ki∂µΦi −Kī∂µΦ̄ī

)
is the on-shell vector auxiliary field in supergravity, the fermion

mass matrix is given by mij = eK/2(Wij +KiWj +KjWi + (Kij +KiKj)W − g
¯̀kgij ¯̀(Wk +

KkW )), and σ[µσ̄νσρ] = 1
3! (σµσ̄νσρ + · · · ) is totally anti-symmetric with respect to indices

within the parenthesis. Some formulas are given below

(
eK/2DiW

)
X̄

= eK/2
(
KiX̄W + 1

2KX̄(Wi +KiW )
)
, (C.2)(

eK/2D̄īW̄
)
X̄

= eK/2
(
W̄īX̄ +KīX̄W̄ +KīW̄X̄ + 1

2KX̄(W̄ī +KīW̄ )
)
, (C.3)

mijX̄ = eK/2
(
KX̄iWj +KX̄jWi + (KX̄ij +KX̄iKj +KiKX̄j)W

+ 1
2KX̄ (Wij +KiWj +KjWi + (Kij +KiKj)W )

)
, (C.4)

mīj̄X̄ = eK/2
(
W̄X̄īj̄ +KX̄īW̄j̄ +KX̄j̄W̄ī +KīW̄X̄j̄ +Kj̄W̄X̄ī

+ (KX̄īj̄ +KX̄īKj̄ +KīKX̄j̄)W̄ + (Kīj̄ +KīKj̄)W̄X̄

+ 1
2KX̄

(
W̄īj̄ +KīW̄j̄ +Kj̄W̄ī + (Kīj̄ +KīKj̄)W̄

))
. (C.5)

The first three lines of eq. (C.1) are a minor modification of the result in global super-
symmetry: the fermion kinetic term includes the auxiliary vector Aµ, and the derivatives
of the superpotential are associated with the factor eK/2. From the fourth line, the terms
are qualitatively new contributions in supergravity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

– 21 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

References

[1] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry,
supergravity and cosmology, Class. Quant. Grav. 17 (2000) 4269 [Erratum ibid. 21 (2004)
5017] [hep-th/0006179] [INSPIRE].

[2] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16
(1972) 438 [Pisma Zh. Eksp. Teor. Fiz. 16 (1972) 621] [INSPIRE].

[3] D.V. Volkov and V.P. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46
(1973) 109 [INSPIRE].

[4] M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].
[5] E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear

realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].
[6] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300

[INSPIRE].
[7] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization

of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569
[INSPIRE].

[8] Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09
(2009) 066 [arXiv:0907.2441] [INSPIRE].

[9] S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions:
exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298]
[INSPIRE].

[10] F. Farakos, Constrained superfields and applications, PoS CORFU2016 (2017) 090
[arXiv:1704.08569] [INSPIRE].

[11] E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter
supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. 93 (2016) 069901]
[arXiv:1507.08264] [INSPIRE].

[12] F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in
4 dimensional N = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].

[13] R. Kallosh, Matter-coupled de Sitter supergravity, Theor. Math. Phys. 187 (2016) 695 [Teor.
Mat. Fiz. 187 (2016) 283] [arXiv:1509.02136] [INSPIRE].

[14] L. Aparicio, F. Quevedo and R. Valandro, Moduli stabilisation with nilpotent goldstino:
vacuum structure and SUSY breaking, JHEP 03 (2016) 036 [arXiv:1511.08105] [INSPIRE].

[15] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky
supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].

[16] S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014)
143 [arXiv:1408.4096] [INSPIRE].

[17] R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015)
025 [arXiv:1408.5950] [INSPIRE].

[18] R. Kallosh, A. Linde and M. Scalisi, Inflation, de Sitter landscape and super-Higgs effect,
JHEP 03 (2015) 111 [arXiv:1411.5671] [INSPIRE].

[19] G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12
(2014) 172 [arXiv:1411.2605] [INSPIRE].

– 22 –

https://doi.org/10.1088/0264-9381/17/20/308
https://arxiv.org/abs/hep-th/0006179
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0006179
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C16%2C438%22
https://doi.org/10.1016/0370-2693(73)90490-5
https://doi.org/10.1016/0370-2693(73)90490-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB46%2C109%22
https://doi.org/10.1103/PhysRevLett.41.451
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C41%2C451%22
https://doi.org/10.1088/0305-4470/11/12/005
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA11%2C2375%22
https://doi.org/10.1103/PhysRevD.19.2300
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD19%2C2300%22
https://doi.org/10.1016/0370-2693(89)90788-0
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB220%2C569%22
https://doi.org/10.1088/1126-6708/2009/09/066
https://doi.org/10.1088/1126-6708/2009/09/066
https://arxiv.org/abs/0907.2441
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2441
https://doi.org/10.1016/j.physletb.2011.03.020
https://arxiv.org/abs/1009.3298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1009.3298
https://doi.org/10.22323/1.292.0090
https://arxiv.org/abs/1704.08569
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08569
https://doi.org/10.1103/PhysRevD.92.085040
https://arxiv.org/abs/1507.08264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08264
https://doi.org/10.1007/JHEP10(2015)106
https://arxiv.org/abs/1507.08619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08619
https://doi.org/10.1134/S0040577916050068
https://arxiv.org/abs/1509.02136
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02136
https://doi.org/10.1007/JHEP03(2016)036
https://arxiv.org/abs/1511.08105
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.08105
https://doi.org/10.1016/j.physletb.2014.04.015
https://arxiv.org/abs/1403.3269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.3269
https://doi.org/10.1007/JHEP10(2014)143
https://doi.org/10.1007/JHEP10(2014)143
https://arxiv.org/abs/1408.4096
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.4096
https://doi.org/10.1088/1475-7516/2015/01/025
https://doi.org/10.1088/1475-7516/2015/01/025
https://arxiv.org/abs/1408.5950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.5950
https://doi.org/10.1007/JHEP03(2015)111
https://arxiv.org/abs/1411.5671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.5671
https://doi.org/10.1007/JHEP12(2014)172
https://doi.org/10.1007/JHEP12(2014)172
https://arxiv.org/abs/1411.2605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.2605


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[20] Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric
inflation, JHEP 10 (2015) 001 [arXiv:1504.05958] [INSPIRE].

[21] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys.
Rev. D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].

[22] J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev. D 93
(2016) 061301 [arXiv:1512.00546] [INSPIRE].

[23] E. Dudas, L. Heurtier, C. Wieck and M.W. Winkler, UV corrections in sgoldstino-less
inflation, Phys. Lett. B 759 (2016) 121 [arXiv:1601.03397] [INSPIRE].

[24] R. Argurio, D. Coone, L. Heurtier and A. Mariotti, Sgoldstino-less inflation and low energy
SUSY breaking, JCAP 07 (2017) 047 [arXiv:1705.06788] [INSPIRE].

[25] I. Dalianis and F. Farakos, Constrained superfields from inflation to reheating, Phys. Lett. B
773 (2017) 610 [arXiv:1705.06717] [INSPIRE].

[26] C.P. Burgess and F. Quevedo, Who’s afraid of the supersymmetric dark? The Standard
Model vs low-energy supergravity, arXiv:2110.13275 [INSPIRE].

[27] S.M. Kuzenko and I.N. McArthur, Goldstino superfields for spontaneously broken N = 2
supersymmetry, JHEP 06 (2011) 133 [arXiv:1105.3001] [INSPIRE].

[28] S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Nilpotent chiral superfield in N = 2
supergravity and partial rigid supersymmetry breaking, JHEP 03 (2016) 092
[arXiv:1512.01964] [INSPIRE].

[29] N. Cribiori, G. Dall’Agata and F. Farakos, Interactions of N goldstini in superspace, Phys.
Rev. D 94 (2016) 065019 [arXiv:1607.01277] [INSPIRE].

[30] E. Dudas, S. Ferrara and A. Sagnotti, A superfield constraint for N = 2→ N = 0 breaking,
JHEP 08 (2017) 109 [arXiv:1707.03414] [INSPIRE].

[31] I. Antoniadis, J.-P. Derendinger and C. Markou, Nonlinear N = 2 global supersymmetry,
JHEP 06 (2017) 052 [arXiv:1703.08806] [INSPIRE].

[32] S.M. Kuzenko, I.N. McArthur and G. Tartaglino-Mazzucchelli, Goldstino superfields in
N = 2 supergravity, JHEP 05 (2017) 061 [arXiv:1702.02423] [INSPIRE].

[33] Y. Aldabergenov, I. Antoniadis, A. Chatrabhuti and H. Isono, Quintic constraints for
N = 2 multiplets and complete SUSY breaking, Eur. Phys. J. C 82 (2022) 84
[arXiv:2111.02205] [INSPIRE].

[34] R. Kallosh, F. Quevedo and A.M. Uranga, String theory realizations of the nilpotent
Goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].

[35] I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking
and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].

[36] I. García-Etxebarria, F. Quevedo and R. Valandro, Global string embeddings for the
nilpotent goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].

[37] B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT,
JHEP 08 (2016) 132 [arXiv:1605.03961] [INSPIRE].

[38] R. Kallosh, B. Vercnocke and T. Wrase, String theory origin of constrained multiplets,
JHEP 09 (2016) 063 [arXiv:1606.09245] [INSPIRE].

[39] L. Aalsma, J.P. van der Schaar and B. Vercnocke, Constrained superfields on metastable
anti-D3-branes, JHEP 05 (2017) 089 [arXiv:1703.05771] [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP10(2015)001
https://arxiv.org/abs/1504.05958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.05958
https://doi.org/10.1103/PhysRevD.93.043516
https://doi.org/10.1103/PhysRevD.93.043516
https://arxiv.org/abs/1512.00545
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00545
https://doi.org/10.1103/PhysRevD.93.061301
https://doi.org/10.1103/PhysRevD.93.061301
https://arxiv.org/abs/1512.00546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00546
https://doi.org/10.1016/j.physletb.2016.05.072
https://arxiv.org/abs/1601.03397
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.03397
https://doi.org/10.1088/1475-7516/2017/07/047
https://arxiv.org/abs/1705.06788
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.06788
https://doi.org/10.1016/j.physletb.2017.09.020
https://doi.org/10.1016/j.physletb.2017.09.020
https://arxiv.org/abs/1705.06717
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.06717
https://arxiv.org/abs/2110.13275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.13275
https://doi.org/10.1007/JHEP06(2011)133
https://arxiv.org/abs/1105.3001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.3001
https://doi.org/10.1007/JHEP03(2016)092
https://arxiv.org/abs/1512.01964
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.01964
https://doi.org/10.1103/PhysRevD.94.065019
https://doi.org/10.1103/PhysRevD.94.065019
https://arxiv.org/abs/1607.01277
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.01277
https://doi.org/10.1007/JHEP08(2017)109
https://arxiv.org/abs/1707.03414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.03414
https://doi.org/10.1007/JHEP06(2017)052
https://arxiv.org/abs/1703.08806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.08806
https://doi.org/10.1007/JHEP05(2017)061
https://arxiv.org/abs/1702.02423
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.02423
https://doi.org/10.1140/epjc/s10052-021-09943-7
https://arxiv.org/abs/2111.02205
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.02205
https://doi.org/10.1007/JHEP12(2015)039
https://arxiv.org/abs/1507.07556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07556
https://doi.org/10.1007/JHEP02(2016)080
https://arxiv.org/abs/1511.03024
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.03024
https://doi.org/10.1007/JHEP02(2016)148
https://arxiv.org/abs/1512.06926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06926
https://doi.org/10.1007/JHEP08(2016)132
https://arxiv.org/abs/1605.03961
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03961
https://doi.org/10.1007/JHEP09(2016)063
https://arxiv.org/abs/1606.09245
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.09245
https://doi.org/10.1007/JHEP05(2017)089
https://arxiv.org/abs/1703.05771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05771


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[40] S.M. Kuzenko and G. Tartaglino-Mazzucchelli, New nilpotent N = 2 superfields, Phys. Rev.
D 97 (2018) 026003 [arXiv:1707.07390] [INSPIRE].

[41] R. Kallosh and T. Wrase, dS supergravity from 10d, Fortsch. Phys. 67 (2019) 1800071
[arXiv:1808.09427] [INSPIRE].

[42] N. Cribiori, C. Roupec, T. Wrase and Y. Yamada, Supersymmetric anti-D3-brane action in
the Kachru-Kallosh-Linde-Trivedi setup, Phys. Rev. D 100 (2019) 066001
[arXiv:1906.07727] [INSPIRE].

[43] N. Cribiori, C. Roupec, M. Tournoy, A. Van Proeyen and T. Wrase, Non-supersymmetric
branes, JHEP 07 (2020) 189 [arXiv:2004.13110] [INSPIRE].

[44] S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear versus non-linear
supersymmetry, in general, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].

[45] E. Dudas, G. von Gersdorff, D.M. Ghilencea, S. Lavignac and J. Parmentier, On
non-universal goldstino couplings to matter, Nucl. Phys. B 855 (2012) 570
[arXiv:1106.5792] [INSPIRE].

[46] I. Antoniadis, E. Dudas and D.M. Ghilencea, Goldstino and sgoldstino in microscopic
models and the constrained superfields formalism, Nucl. Phys. B 857 (2012) 65
[arXiv:1110.5939] [INSPIRE].

[47] I. Antoniadis and D.M. Ghilencea, Low-scale SUSY breaking and the (s)goldstino physics,
Nucl. Phys. B 870 (2013) 278 [arXiv:1210.8336] [INSPIRE].

[48] D.M. Ghilencea, Comments on the nilpotent constraint of the goldstino superfield, Mod.
Phys. Lett. A 31 (2016) 1630011 [arXiv:1512.07484] [INSPIRE].

[49] N. Cribiori, G. Dall’Agata and F. Farakos, From linear to non-linear SUSY and back again,
JHEP 08 (2017) 117 [arXiv:1704.07387] [INSPIRE].

[50] J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry,
Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].

[51] J. Bagger and A. Galperin, The tensor Goldstone multiplet for partially broken
supersymmetry, Phys. Lett. B 412 (1997) 296 [hep-th/9707061] [INSPIRE].

[52] M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained
superfields, and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232]
[INSPIRE].

[53] F. Gonzalez-Rey, I.Y. Park and M. Roček, On dual 3-brane actions with partially broken
N = 2 supersymmetry, Nucl. Phys. B 544 (1999) 243 [hep-th/9811130] [INSPIRE].

[54] A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov.
J. Nucl. Phys. 51 (1990) 172 [Yad. Fiz. 51 (1990) 273] [INSPIRE].

[55] J.H. Traschen and R.H. Brandenberger, Particle production during out-of-equilibrium phase
transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].

[56] L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73
(1994) 3195 [hep-th/9405187] [INSPIRE].

[57] Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation,
Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

[58] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after
inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevD.97.026003
https://doi.org/10.1103/PhysRevD.97.026003
https://arxiv.org/abs/1707.07390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.07390
https://doi.org/10.1002/prop.201800071
https://arxiv.org/abs/1808.09427
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.09427
https://doi.org/10.1103/PhysRevD.100.066001
https://arxiv.org/abs/1906.07727
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.07727
https://doi.org/10.1007/JHEP07(2020)189
https://arxiv.org/abs/2004.13110
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13110
https://doi.org/10.1007/JHEP04(2016)065
https://arxiv.org/abs/1603.02653
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.02653
https://doi.org/10.1016/j.nuclphysb.2011.10.011
https://arxiv.org/abs/1106.5792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.5792
https://doi.org/10.1016/j.nuclphysb.2011.12.005
https://arxiv.org/abs/1110.5939
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.5939
https://doi.org/10.1016/j.nuclphysb.2013.01.015
https://arxiv.org/abs/1210.8336
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.8336
https://doi.org/10.1142/S0217732316300111
https://doi.org/10.1142/S0217732316300111
https://arxiv.org/abs/1512.07484
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07484
https://doi.org/10.1007/JHEP08(2017)117
https://arxiv.org/abs/1704.07387
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.07387
https://doi.org/10.1103/PhysRevD.55.1091
https://arxiv.org/abs/hep-th/9608177
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9608177
https://doi.org/10.1016/S0370-2693(97)01030-7
https://arxiv.org/abs/hep-th/9707061
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9707061
https://doi.org/10.1103/PhysRevD.59.106001
https://arxiv.org/abs/hep-th/9811232
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9811232
https://doi.org/10.1016/S0550-3213(99)00024-3
https://arxiv.org/abs/hep-th/9811130
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9811130
https://inspirehep.net/search?p=find+J%20%22Sov.J.Nucl.Phys.%2C51%2C172%22
https://doi.org/10.1103/PhysRevD.42.2491
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD42%2C2491%22
https://doi.org/10.1103/PhysRevLett.73.3195
https://doi.org/10.1103/PhysRevLett.73.3195
https://arxiv.org/abs/hep-th/9405187
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9405187
https://doi.org/10.1103/PhysRevD.51.5438
https://arxiv.org/abs/hep-ph/9407247
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9407247
https://doi.org/10.1103/PhysRevD.56.3258
https://arxiv.org/abs/hep-ph/9704452
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9704452


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[59] P.B. Greene and L. Kofman, On the theory of fermionic preheating, Phys. Rev. D 62 (2000)
123516 [hep-ph/0003018] [INSPIRE].

[60] M.A. Amin, M.P. Hertzberg, D.I. Kaiser and J. Karouby, Nonperturbative dynamics of
reheating after inflation: a review, Int. J. Mod. Phys. D 24 (2014) 1530003
[arXiv:1410.3808] [INSPIRE].

[61] B. Spokoiny, Deflationary universe scenario, Phys. Lett. B 315 (1993) 40 [gr-qc/9306008]
[INSPIRE].

[62] M. Joyce, Electroweak baryogenesis and the expansion rate of the universe, Phys. Rev. D 55
(1997) 1875 [hep-ph/9606223] [INSPIRE].

[63] P.G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58
(1998) 023503 [astro-ph/9711102] [INSPIRE].

[64] A.D. Linde and V.F. Mukhanov, Non-Gaussian isocurvature perturbations from inflation,
Phys. Rev. D 56 (1997) R535 [astro-ph/9610219] [INSPIRE].

[65] K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology,
Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

[66] D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys.
Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

[67] T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave
background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. 539 (2002) 303] [hep-ph/0110096]
[INSPIRE].

[68] R.T. Co, L.J. Hall and K. Harigaya, Axion kinetic misalignment mechanism, Phys. Rev.
Lett. 124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].

[69] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120
(1983) 127 [INSPIRE].

[70] L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120
(1983) 133 [INSPIRE].

[71] M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137
[INSPIRE].

[72] L.F. Abbott, A mechanism for reducing the value of the cosmological constant, Phys. Lett.
B 150 (1985) 427 [INSPIRE].

[73] P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak
scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

[74] Y. Aldabergenov, A. Chatrabhuti and H. Isono, Nilpotent superfields for broken Abelian
symmetries, Eur. Phys. J. C 81 (2021) 523 [arXiv:2103.11217] [INSPIRE].

[75] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton, NJ, U.S.A. (1992).

[76] G. Dall’Agata and F. Farakos, Constrained superfields in supergravity, JHEP 02 (2016) 101
[arXiv:1512.02158] [INSPIRE].

[77] S.M. Kuzenko, Nilpotent N = 1 tensor multiplet, JHEP 04 (2018) 131 [arXiv:1712.09258]
[INSPIRE].

[78] Y. Ema, R. Jinno, K. Mukaida and K. Nakayama, On adiabatic invariant in generalized
Galileon theories, JCAP 10 (2015) 049 [arXiv:1505.04670] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.62.123516
https://doi.org/10.1103/PhysRevD.62.123516
https://arxiv.org/abs/hep-ph/0003018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0003018
https://doi.org/10.1142/S0218271815300037
https://arxiv.org/abs/1410.3808
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3808
https://doi.org/10.1016/0370-2693(93)90155-B
https://arxiv.org/abs/gr-qc/9306008
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9306008
https://doi.org/10.1103/PhysRevD.55.1875
https://doi.org/10.1103/PhysRevD.55.1875
https://arxiv.org/abs/hep-ph/9606223
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9606223
https://doi.org/10.1103/PhysRevD.58.023503
https://doi.org/10.1103/PhysRevD.58.023503
https://arxiv.org/abs/astro-ph/9711102
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9711102
https://doi.org/10.1103/PhysRevD.56.R535
https://arxiv.org/abs/astro-ph/9610219
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9610219
https://doi.org/10.1016/S0550-3213(02)00043-3
https://arxiv.org/abs/hep-ph/0109214
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109214
https://doi.org/10.1016/S0370-2693(01)01366-1
https://doi.org/10.1016/S0370-2693(01)01366-1
https://arxiv.org/abs/hep-ph/0110002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0110002
https://doi.org/10.1016/S0370-2693(01)01295-3
https://arxiv.org/abs/hep-ph/0110096
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0110096
https://doi.org/10.1103/PhysRevLett.124.251802
https://doi.org/10.1103/PhysRevLett.124.251802
https://arxiv.org/abs/1910.14152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14152
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C127%22
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C133%22
https://doi.org/10.1016/0370-2693(83)90639-1
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB120%2C137%22
https://doi.org/10.1016/0370-2693(85)90459-9
https://doi.org/10.1016/0370-2693(85)90459-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB150%2C427%22
https://doi.org/10.1103/PhysRevLett.115.221801
https://arxiv.org/abs/1504.07551
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.07551
https://doi.org/10.1140/epjc/s10052-021-09320-4
https://arxiv.org/abs/2103.11217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.11217
https://doi.org/10.1007/JHEP02(2016)101
https://arxiv.org/abs/1512.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.02158
https://doi.org/10.1007/JHEP04(2018)131
https://arxiv.org/abs/1712.09258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09258
https://doi.org/10.1088/1475-7516/2015/10/049
https://arxiv.org/abs/1505.04670
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.04670


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[79] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.
641 (2020) A10 [arXiv:1807.06211] [INSPIRE].

[80] K.I. Izawa and Y. Shinbara, Supersymmetric tuned inflation, arXiv:0710.1141 [INSPIRE].
[81] S.V. Ketov and T. Terada, Inflation in supergravity with a single chiral superfield, Phys.

Lett. B 736 (2014) 272 [arXiv:1406.0252] [INSPIRE].
[82] S.V. Ketov and T. Terada, Generic scalar potentials for inflation in supergravity with a

single chiral superfield, JHEP 12 (2014) 062 [arXiv:1408.6524] [INSPIRE].
[83] S.V. Ketov and T. Terada, Single-superfield helical-phase inflation, Phys. Lett. B 752

(2016) 108 [arXiv:1509.00953] [INSPIRE].
[84] S.V. Ketov and T. Terada, On SUSY restoration in single-superfield inflationary models of

supergravity, Eur. Phys. J. C 76 (2016) 438 [arXiv:1606.02817] [INSPIRE].
[85] A. Achucarro, S. Mooij, P. Ortiz and M. Postma, Sgoldstino inflation, JCAP 08 (2012) 013

[arXiv:1203.1907] [INSPIRE].
[86] L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Minimal inflation, Phys. Lett. B 690 (2010)

68 [arXiv:1001.0010] [INSPIRE].
[87] L. Álvarez-Gaumé, C. Gomez and R. Jimenez, A minimal inflation scenario, JCAP 03

(2011) 027 [arXiv:1101.4948] [INSPIRE].
[88] T. Terada, Minimal supergravity inflation without slow gravitino, Phys. Rev. D 103 (2021)

125022 [arXiv:2104.05731] [INSPIRE].
[89] A.B. Goncharov and A.D. Linde, Chaotic inflation in supergravity, Phys. Lett. B 139

(1984) 27 [INSPIRE].
[90] K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R

invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].
[91] A. Linde, Does the first chaotic inflation model in supergravity provide the best fit to the

Planck data?, JCAP 02 (2015) 030 [arXiv:1412.7111] [INSPIRE].
[92] D. Roest and M. Scalisi, Cosmological attractors from α-scale supergravity, Phys. Rev. D 92

(2015) 043525 [arXiv:1503.07909] [INSPIRE].
[93] A. Linde, Single-field α-attractors, JCAP 05 (2015) 003 [arXiv:1504.00663] [INSPIRE].
[94] M. Scalisi, Cosmological α-attractors and de Sitter landscape, JHEP 12 (2015) 134

[arXiv:1506.01368] [INSPIRE].
[95] S. Ferrara and D. Roest, General sgoldstino inflation, JCAP 10 (2016) 038

[arXiv:1608.03709] [INSPIRE].
[96] I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, Inflation from supersymmetry

breaking, Eur. Phys. J. C 77 (2017) 724 [arXiv:1706.04133] [INSPIRE].
[97] I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, A microscopic model for inflation

from supersymmetry breaking, Eur. Phys. J. C 79 (2019) 624 [arXiv:1905.00706]
[INSPIRE].

[98] E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing
cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].

[99] J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric
Standard Model, Phys. Lett. B 134 (1984) 429 [INSPIRE].

– 26 –

https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://arxiv.org/abs/1807.06211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06211
https://arxiv.org/abs/0710.1141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.1141
https://doi.org/10.1016/j.physletb.2014.07.036
https://doi.org/10.1016/j.physletb.2014.07.036
https://arxiv.org/abs/1406.0252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.0252
https://doi.org/10.1007/JHEP12(2014)062
https://arxiv.org/abs/1408.6524
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6524
https://doi.org/10.1016/j.physletb.2015.11.039
https://doi.org/10.1016/j.physletb.2015.11.039
https://arxiv.org/abs/1509.00953
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00953
https://doi.org/10.1140/epjc/s10052-016-4283-6
https://arxiv.org/abs/1606.02817
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.02817
https://doi.org/10.1088/1475-7516/2012/08/013
https://arxiv.org/abs/1203.1907
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.1907
https://doi.org/10.1016/j.physletb.2010.04.069
https://doi.org/10.1016/j.physletb.2010.04.069
https://arxiv.org/abs/1001.0010
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.0010
https://doi.org/10.1088/1475-7516/2011/03/027
https://doi.org/10.1088/1475-7516/2011/03/027
https://arxiv.org/abs/1101.4948
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.4948
https://doi.org/10.1103/PhysRevD.103.125022
https://doi.org/10.1103/PhysRevD.103.125022
https://arxiv.org/abs/2104.05731
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.05731
https://doi.org/10.1016/0370-2693(84)90027-3
https://doi.org/10.1016/0370-2693(84)90027-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB139%2C27%22
https://doi.org/10.1143/PTP.92.437
https://arxiv.org/abs/hep-ph/9405337
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9405337
https://doi.org/10.1088/1475-7516/2015/02/030
https://arxiv.org/abs/1412.7111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7111
https://doi.org/10.1103/PhysRevD.92.043525
https://doi.org/10.1103/PhysRevD.92.043525
https://arxiv.org/abs/1503.07909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.07909
https://doi.org/10.1088/1475-7516/2015/05/003
https://arxiv.org/abs/1504.00663
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.00663
https://doi.org/10.1007/JHEP12(2015)134
https://arxiv.org/abs/1506.01368
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01368
https://doi.org/10.1088/1475-7516/2016/10/038
https://arxiv.org/abs/1608.03709
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.03709
https://doi.org/10.1140/epjc/s10052-017-5302-y
https://arxiv.org/abs/1706.04133
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.04133
https://doi.org/10.1140/epjc/s10052-019-7141-5
https://arxiv.org/abs/1905.00706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.00706
https://doi.org/10.1016/0370-2693(83)90106-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB133%2C61%22
https://doi.org/10.1016/0370-2693(84)91378-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB134%2C429%22


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[100] A.B. Lahanas and D.V. Nanopoulos, The road to no scale supergravity, Phys. Rept. 145
(1987) 1 [INSPIRE].

[101] R. Kallosh, A. Linde and D. Roest, Superconformal inflationary α-attractors, JHEP 11
(2013) 198 [arXiv:1311.0472] [INSPIRE].

[102] M. Galante, R. Kallosh, A. Linde and D. Roest, Unity of cosmological inflation attractors,
Phys. Rev. Lett. 114 (2015) 141302 [arXiv:1412.3797] [INSPIRE].

[103] J.J.M. Carrasco, R. Kallosh and A. Linde, α-attractors: Planck, LHC and dark energy,
JHEP 10 (2015) 147 [arXiv:1506.01708] [INSPIRE].

[104] J.J.M. Carrasco, R. Kallosh, A. Linde and D. Roest, Hyperbolic geometry of cosmological
attractors, Phys. Rev. D 92 (2015) 041301 [arXiv:1504.05557] [INSPIRE].

[105] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity,
Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].

[106] M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity and
leptogenesis, Phys. Rev. D 63 (2001) 103514 [hep-ph/0011104] [INSPIRE].

[107] R. Kallosh and A. Linde, New models of chaotic inflation in supergravity, JCAP 11 (2010)
011 [arXiv:1008.3375] [INSPIRE].

[108] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D
83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

[109] R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry
breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].

[110] Y. Aldabergenov, Higher-order constraints for N = 1 and N = 2 superfields, and non-linear
supersymmetry, https://indico.cern.ch/event/875077/contributions/4482153/attachments/
2299521/3911230/Constrained, (2021).

[111] A.D. Linde, Fast roll inflation, JHEP 11 (2001) 052 [hep-th/0110195] [INSPIRE].
[112] G.N. Felder, A.V. Frolov, L. Kofman and A.D. Linde, Cosmology with negative potentials,

Phys. Rev. D 66 (2002) 023507 [hep-th/0202017] [INSPIRE].
[113] Y. Ema, K. Mukaida, K. Nakayama and T. Terada, Nonthermal gravitino production after

large field inflation, JHEP 11 (2016) 184 [arXiv:1609.04716] [INSPIRE].
[114] A.L. Maroto and A. Mazumdar, Production of spin 3/2 particles from vacuum fluctuations,

Phys. Rev. Lett. 84 (2000) 1655 [hep-ph/9904206] [INSPIRE].
[115] R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Gravitino production after

inflation, Phys. Rev. D 61 (2000) 103503 [hep-th/9907124] [INSPIRE].
[116] G.F. Giudice, I. Tkachev and A. Riotto, Nonthermal production of dangerous relics in the

early universe, JHEP 08 (1999) 009 [hep-ph/9907510] [INSPIRE].
[117] G.F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos

in the early universe, JHEP 11 (1999) 036 [hep-ph/9911302] [INSPIRE].
[118] H.P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos,

Phys. Rev. Lett. 87 (2001) 051302 [hep-ph/0102264] [INSPIRE].
[119] H.P. Nilles, M. Peloso and L. Sorbo, Coupled fields in external background with application

to nonthermal production of gravitinos, JHEP 04 (2001) 004 [hep-th/0103202] [INSPIRE].
[120] M.A. Roberts and L. Sorbo, Reviving chaotic inflation with fermion production: a

supergravity model, JCAP 06 (2021) 047 [arXiv:2101.01796] [INSPIRE].

– 27 –

https://doi.org/10.1016/0370-1573(87)90034-2
https://doi.org/10.1016/0370-1573(87)90034-2
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C145%2C1%22
https://doi.org/10.1007/JHEP11(2013)198
https://doi.org/10.1007/JHEP11(2013)198
https://arxiv.org/abs/1311.0472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.0472
https://doi.org/10.1103/PhysRevLett.114.141302
https://arxiv.org/abs/1412.3797
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.3797
https://doi.org/10.1007/JHEP10(2015)147
https://arxiv.org/abs/1506.01708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.01708
https://doi.org/10.1103/PhysRevD.92.041301
https://arxiv.org/abs/1504.05557
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.05557
https://doi.org/10.1103/PhysRevLett.85.3572
https://arxiv.org/abs/hep-ph/0004243
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0004243
https://doi.org/10.1103/PhysRevD.63.103514
https://arxiv.org/abs/hep-ph/0011104
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0011104
https://doi.org/10.1088/1475-7516/2010/11/011
https://doi.org/10.1088/1475-7516/2010/11/011
https://arxiv.org/abs/1008.3375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1008.3375
https://doi.org/10.1103/PhysRevD.83.043507
https://doi.org/10.1103/PhysRevD.83.043507
https://arxiv.org/abs/1011.5945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.5945
https://doi.org/10.1103/PhysRevD.84.083519
https://arxiv.org/abs/1106.6025
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.6025
https://indico.cern.ch/event/875077/contributions/4482153/attachments/2299521/3911230/Constrained
https://indico.cern.ch/event/875077/contributions/4482153/attachments/2299521/3911230/Constrained
https://doi.org/10.1088/1126-6708/2001/11/052
https://arxiv.org/abs/hep-th/0110195
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110195
https://doi.org/10.1103/PhysRevD.66.023507
https://arxiv.org/abs/hep-th/0202017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0202017
https://doi.org/10.1007/JHEP11(2016)184
https://arxiv.org/abs/1609.04716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.04716
https://doi.org/10.1103/PhysRevLett.84.1655
https://arxiv.org/abs/hep-ph/9904206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9904206
https://doi.org/10.1103/PhysRevD.61.103503
https://arxiv.org/abs/hep-th/9907124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907124
https://doi.org/10.1088/1126-6708/1999/08/009
https://arxiv.org/abs/hep-ph/9907510
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9907510
https://doi.org/10.1088/1126-6708/1999/11/036
https://arxiv.org/abs/hep-ph/9911302
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9911302
https://doi.org/10.1103/PhysRevLett.87.051302
https://arxiv.org/abs/hep-ph/0102264
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102264
https://doi.org/10.1088/1126-6708/2001/04/004
https://arxiv.org/abs/hep-th/0103202
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0103202
https://doi.org/10.1088/1475-7516/2021/06/047
https://arxiv.org/abs/2101.01796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.01796


J
H
E
P
0
2
(
2
0
2
2
)
1
7
7

[121] F. Hasegawa, K. Nakayama, T. Terada and Y. Yamada, Gravitino problem in inflation
driven by inflaton-Polonyi Kähler coupling, Phys. Lett. B 777 (2018) 270
[arXiv:1709.01246] [INSPIRE].

[122] G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP 05
(2016) 041 [arXiv:1603.03416] [INSPIRE].

[123] T. Fujimori, M. Nitta and Y. Yamada, Ghostbusters in higher derivative supersymmetric
theories: who is afraid of propagating auxiliary fields?, JHEP 09 (2016) 106
[arXiv:1608.01843] [INSPIRE].

[124] Y. Yamada, Aether SUSY breaking: can aether be alternative to F-term SUSY breaking?,
JHEP 08 (2021) 048 [arXiv:2106.07934] [INSPIRE].

[125] F. Farakos and A. Kehagias, Decoupling limits of sgoldstino modes in global and local
supersymmetry, Phys. Lett. B 724 (2013) 322 [arXiv:1302.0866] [INSPIRE].

[126] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of nilpotent supergravity,
JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].

[127] R. Kallosh, A. Karlsson and D. Murli, From linear to nonlinear supersymmetry via
functional integration, Phys. Rev. D 93 (2016) 025012 [arXiv:1511.07547] [INSPIRE].

[128] I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The goldstino brane, the
constrained superfields and matter in N = 1 supergravity, JHEP 11 (2016) 109
[arXiv:1608.05908] [INSPIRE].

[129] N. Cribiori, G. Dall’Agata, F. Farakos and M. Porrati, Minimal constrained supergravity,
Phys. Lett. B 764 (2017) 228 [arXiv:1611.01490] [INSPIRE].

[130] N. Cribiori, F. Farakos, M. Tournoy and A. van Proeyen, Fayet-Iliopoulos terms in
supergravity without gauged R-symmetry, JHEP 04 (2018) 032 [arXiv:1712.08601]
[INSPIRE].

[131] D.Z. Freedman, D. Roest and A. Van Proeyen, Off-shell Poincaré supergravity, JHEP 02
(2017) 102 [arXiv:1701.05216] [INSPIRE].

[132] F. Hasegawa, K. Mukaida, K. Nakayama, T. Terada and Y. Yamada, Gravitino problem in
minimal supergravity inflation, Phys. Lett. B 767 (2017) 392 [arXiv:1701.03106]
[INSPIRE].

[133] E.W. Kolb, A.J. Long and E. McDonough, Catastrophic production of slow gravitinos,
Phys. Rev. D 104 (2021) 075015 [arXiv:2102.10113] [INSPIRE].

[134] E.W. Kolb, A.J. Long and E. McDonough, Gravitino swampland conjecture, Phys. Rev.
Lett. 127 (2021) 131603 [arXiv:2103.10437] [INSPIRE].

[135] E. Dudas, M.A.G. Garcia, Y. Mambrini, K.A. Olive, M. Peloso and S. Verner, Slow and
safe gravitinos, Phys. Rev. D 103 (2021) 123519 [arXiv:2104.03749] [INSPIRE].

[136] I. Antoniadis, K. Benakli and W. Ke, Salvage of too slow gravitinos, JHEP 11 (2021) 063
[arXiv:2105.03784] [INSPIRE].

– 28 –

https://doi.org/10.1016/j.physletb.2017.12.038
https://arxiv.org/abs/1709.01246
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01246
https://doi.org/10.1007/JHEP05(2016)041
https://doi.org/10.1007/JHEP05(2016)041
https://arxiv.org/abs/1603.03416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.03416
https://doi.org/10.1007/JHEP09(2016)106
https://arxiv.org/abs/1608.01843
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01843
https://doi.org/10.1007/JHEP08(2021)048
https://arxiv.org/abs/2106.07934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.07934
https://doi.org/10.1016/j.physletb.2013.06.001
https://arxiv.org/abs/1302.0866
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.0866
https://doi.org/10.1007/JHEP09(2015)217
https://arxiv.org/abs/1507.07842
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.07842
https://doi.org/10.1103/PhysRevD.93.025012
https://arxiv.org/abs/1511.07547
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.07547
https://doi.org/10.1007/JHEP11(2016)109
https://arxiv.org/abs/1608.05908
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.05908
https://doi.org/10.1016/j.physletb.2016.11.040
https://arxiv.org/abs/1611.01490
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.01490
https://doi.org/10.1007/JHEP04(2018)032
https://arxiv.org/abs/1712.08601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.08601
https://doi.org/10.1007/JHEP02(2017)102
https://doi.org/10.1007/JHEP02(2017)102
https://arxiv.org/abs/1701.05216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.05216
https://doi.org/10.1016/j.physletb.2017.02.030
https://arxiv.org/abs/1701.03106
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1701.03106
https://doi.org/10.1103/PhysRevD.104.075015
https://arxiv.org/abs/2102.10113
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.10113
https://doi.org/10.1103/PhysRevLett.127.131603
https://doi.org/10.1103/PhysRevLett.127.131603
https://arxiv.org/abs/2103.10437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.10437
https://doi.org/10.1103/PhysRevD.103.123519
https://arxiv.org/abs/2104.03749
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.03749
https://doi.org/10.1007/JHEP11(2021)063
https://arxiv.org/abs/2105.03784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.03784

	Introduction 
	Single superfield 
	Review of nilpotent chiral superfield 
	Shift symmetry and cubic constraint 
	Inflationary application and different parametrizations

	Multiple superfields 
	Stabilizer model with shift symmetry and quintic constraints 
	Implications on cosmological particle production

	Generalization 
	Gauge theory 
	Supergravity 

	Conclusion 
	Equation of motion for generic Kähler potential with single superfield 
	Comment on the slow gravitino issue 
	Equation of motion in supergravity 

