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1 Introduction

In 1991, Cohen, Kaplan and Nelson proposed a mechanism of “Spontaneous Baryogen-
esis” for producing baryons at the electroweak phase transition in the adiabatic limit of
thick slowly moving bubble walls [1]. Their original idea [2, 3] uses an effective chem-
ical potential for biasing the baryon number, and the effective chemical potential was
brought in by considering a time-dependent parameter. The mechanism avoids the “out
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of thermal equilibrium” condition in the famous Sakharov’s three conditions [4] since the
time-dependent background violates CPT. The mechanism has been considered in many
models of baryogenesis since it has been obvious that the mechanism is quite useful for
constructing mechanisms for generating the baryon number of the Universe. On the other
hand, it has been suggested that the effective chemical potential may disappear from the
Hamiltonian formalism when the field equation of the time-dependent parameter is taken
into account [5, 6]. For us, this point is one of the primary reasons for considering (com-
plex) fundamental equations, instead of using the (useful) effective theory. In this paper,
we are not considering thermal equilibrium, but the basic idea relies on the spontaneous
baryogenesis scenario.

In past studies, such as refs. [7–9], baryogenesis with non-perturbative particle pro-
duction has been discussed with a chemical potential. To show clearly the purpose of
this paper, we first explain how “chemical potential” affects the non-perturbative particle
production.

Let us start with the simplest scenario of bosonic preheating given by the action [19]

S0 =
∫
d4x
√
−g

[
∂µφ

∗∂µφ−m2|φ|2 + ξR|φ|2
]
. (1.1)

Using conformal time η, one can write the metric gµν = a2(η)diag(1,−1,−1,−1) and
R = −6ä/a3, where a is the cosmological scale factor and the dot denotes time-derivative
with respect to the conformal time. A convenient definition of a new field is χ ≡ aφ, which
gives a simple form

S0 =
∫
d4x

[
|χ̇|2 − ω2|χ|2

]
, (1.2)

where

ω2 ≡ a2m2 +
(
−∆ + ä

a
(6ξ − 1)

)
. (1.3)

Here ∆ is the Laplacian. Annihilation (a, b) and creation (a†, b†) operators of “particle”
and “antiparticle” appear in the decomposition

χ =
∫

d3k

(2π)3/2

[
h(η)a(k)eik·x + g∗(η)b†(k)e−ik·x

]
.

(1.4)

For our calculation, we introduce conjugate momenta Π†≡ χ̇, which can be decomposed as

Π† =
∫

d3k

(2π)3/2

[
h̃(η)a(k)eik·x + g̃∗(η)b†(k)e−ik·x

]
.

(1.5)

Following ref. [13], we expand h, h̃ (particles) and g, g̃ (antiparticles) as

h = e−i
∫ η

ωdη′

√
2ω

Ah + ei
∫ η

ωdη′

√
2ω

Bh,

h̃ = −iωe
−i
∫ η

ωdη′

√
2ω

Ah + iωei
∫ η

ωdη′

√
2ω

Bh, (1.6)
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and

g = e−i
∫ η

ωdη′

√
2ω

Ag + ei
∫ η

ωdη′

√
2ω

Bg,

g̃ = −iωe
−i
∫ η

ωdη′

√
2ω

Ag + iωei
∫ η

ωdη′

√
2ω

Bg, (1.7)

where A and B are known as the Bogoliubov coefficients. For further simplification, we
introduce α and β, which are defined as

αh,g ≡ e−i
∫ η

ωdη′
Ah,g (1.8)

βh,g ≡ ei
∫ η

ωdη′
Bh,g. (1.9)

Now the equation of motion can be written as

ḣ− h̃ = 0 (1.10)
˙̃h+ ω2h = 0, (1.11)

which are solved for α̇ and β̇ as

α̇h = −iωαh + ω̇

2ωβh

β̇h = iωβh + ω̇

2ωαh. (1.12)

Let us see what happens when a constant chemical potential is introduced. After
adding a chemical potential

L = χ̇χ̇∗ − ω2|χ|2 − iµχ (χχ̇∗ − χ∗χ̇) , (1.13)

we find

χ̈− 2iµχχ̇+ (ω2 − iµ̇χ)χ = 0. (1.14)

There are two terms which might cause differences. One is −2iµχχ̇, and the other is
−iµ̇χχ. If one assumes a constant chemical potential, only the first term will remain.
Rather surprisingly, a constant chemical potential does not generate asymmetry. The
reason will become very clear when the EWKB formalism is introduced, but here we will
follow the standard formalism. Then the equation of motion can be written as

ḣ− h̃− iµχh = 0
˙̃h+ ω2h− iµχh̃ = 0, (1.15)

where a complex parameter (∼ iµχ) appears. One can solve these equations for α̇ and β̇
to find

α̇h = −i(ω − µχ)αh + ω̇

2ωβh

β̇h = ω̇

2ωαh + i(ω + µχ)βh. (1.16)
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and

α̇g = −i(ω + µχ)αg + ω̇

2ωβg

β̇g = ω̇

2ωαg + i(ω − µχ)βg. (1.17)

One could naively claim that the shift of ω± µχ is the source of the asymmetry. However,
this naive speculation fails in the present model. One can calculate the behavior of |β|2
(both numerically and analytically [19])1 to find that the evolution of |βh|2 and |βg|2 are
identical in this case, resulting no asymmetry production. From this simple model, one
can understand why µ̇ 6= 0 (i.e, a time-dependent chemical potential) is needed for the
asymmetry production.

Using the simplest model, we have seen that a constant chemical potential may not
source the asymmetry. Although the result may depend on the details of the model,
what is important here is that the meaning of “chemical potential” is becoming vague
for the non-perturbative particle production scenario. This is why we have introduced
mathematical tools for analyzing the asymmetry. Of course, in reality the above scenario
should be considered with a time-dependent chemical potential, since usually µ is defined
using a time-dependent parameter and such parameter is normally time-dependent during
cosmological evolution. Therefore, usually the numerical calculation of a phenomenological
model will generate the asymmetry, but still the meaning of “chemical potential” is vague.

On the other hand, if the chemical potential is considered for a system of Boltzmann
equations, the complexities discussed above for the non-perturbative particle production
will not appear. In this sense, arguments of the chemical potential have to be discriminated
between non-perturbative particle production and a system of Boltzmann equations. See
also the recent arguments on the Higgs relaxation in refs. [10–12].

In this paper, we analyze cosmological particle production by a time-dependent inter-
action. We analytically explain the reason and the requirements of asymmetric particle
production in typical situations. To avoid confusion, here we note that normally such
“asymmetric particle production” is explained by two stages; (symmetric) production of
heavy particles and asymmetric decay of the heavy particles, where the asymmetry is usu-
ally due to the interference. In this sense, our strategy is not common, as we are considering
direct asymmetry production from the time-dependent scalar field. Although not very com-
mon, direct asymmetry production has a long history. Dolgov et al. [14, 15] calculated the
baryon asymmetry created by the decay of a pseudo-Nambu-Goldstone boson (PNGB),
whose interactions violate baryon number conservation of fermions. Their calculation of
ref. [15] considers the Bogoliubov transformation after perturbative expansion. We are
considering their calculation as a reference model. Compared with their calculation, our
calculation is rather technical. Differences will be clearly described in this paper.

1The “constant” chemical potential just affects the phase rotation of αh.g and βh,g, and thus it does not
appear in the physical quantity. Indeed, one can easily find that the equation of motion for |βh,g|2 does not
depend on µχ.
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For scalar fields, Funakubo et al. [16] and Rangarajan and Nanopoulos [17] calcu-
lated asymmetric particle production. See also recent developments in this direction in
refs. [8, 9, 18–21].

The original scenario of spontaneous baryogenesis uses the rather moderate motion of
a background field to source the effective chemical potential in the thermal background.
On the other hand, our focus in this paper is rapid motion, which (itself) can cause effi-
cient particle production. In this direction, the most famous scenario in cosmology would
be the preheating scenario, which discusses non-perturbative particle production before
reheating [22, 23]. Besides the preheating scenario, there are many papers considering
the famous Schwinger mechanisms in cosmology. The Schwinger mechanism [24], which is
named after Schwinger who first derived the exponential formula for the pair production,
is still an active research target [25–27]. We also suppose phase transition or decay of
unstable domain wall networks for our scenario, which is also expected to cause similar
particle production. Since the configuration of scalar fields during the evolution of the
Universe may develop domain wall structure and such configuration has to decay before
nucleosynthesis, it would be interesting if decaying domain walls can generate baryon num-
bers.2 Since the conventional Zn-domain wall is interpolating between vacua with different
phases, the phase of the field becomes the primary time-dependent parameter in such a
scenario. Besides the particle production, the scattering of fermions by the walls could be
asymmetric [30, 31]. This idea has been used for baryogenesis at the electroweak scale [30].

Although there are many scenarios of cosmology in which asymmetric particle produc-
tion could be important, we will not discuss details of the phenomenological aspects and
focus on the technical aspects of asymmetry production.

To avoid confusion, we first explain the crucial difference between the conventional pre-
heating scenarios and our approach. Since the “symmetry violating interaction” inevitably
requires multiple fields, our original equations have to be multicomponent differential equa-
tions. Although the typical single-field equation of the conventional preheating scenario
can be solved using the special function, it is impossible to obtain such a solution in gen-
eral. Therefore, we need to develop mathematical methods to get an analytical estimation
of the asymmetry generated from the equations. This includes sensible approximations
and methods of calculating transfer matrix between asymptotic solutions when the exact
solutions are not written by the special function. To avoid this problem, previous ap-
proaches [16, 17, 22] sometimes use perturbative expansion before the non-perturbative
analysis, where the special function can be used for the unperturbed solution. However,
such expansion may drastically change the structure of the Stokes lines of the original the-
ory. To avoid the problem, one has to understand the Stokes lines of the original theory
first. Some concrete examples will be shown in this paper.

In this paper, we consider the Landau-Zener model and the Exact WKB analysis
(EWKB) for understanding the Stokes phenomena of the particle creation.3 As we will

2A natural mechanism of generating safe(unstable) domain walls in supersymmetric theory has been
advocated in ref. [28]. See also ref. [29] for matter-antimatter asymmetry and safe domain walls.

3In ref. [32], we have applied the EWKB to cosmological particle production (without asymmetry). See
refs. [27, 32–34] for more references.
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show in this paper, the combination of these methods is very useful in understanding
the origin of the asymmetry. Theoretically, the extension of the EWKB calculation to a
higher Landau-Zener model is straightforward [35, 36], but because of the complexity of
the analytical result (it contains solutions of higher-order equation), we are reducing the
equations to the conventional two-component model. For multiple Dirac fermions, we are
taking the relativistic and the non-relativistic limits.

For fermions, our equations can be regarded as a generalized Landau-Zener model [37].
This analogy is sometimes very useful for understanding the origin of the asymmetry. Al-
though the original Landau-Zener model mainly considers time-dependent diagonal ele-
ments, our focus is the rotational motion of the off-diagonal elements. We consider such
models since the off-diagonal elements are supposed to be coming from the required in-
teraction (i.e, symmetry violation) of asymmetry production. Mathematically, the time-
dependence of the off-diagonal elements can be moved into the diagonal elements using
some transformation.

To explain the basic ideas of our strategy, we start with the solution of the original
Landau-Zener model in the next section, in which transition between states is calculated
when diagonal elements are time-dependent. Since the “adiabatic states” are diagonalizing
the Hamiltonian, particle production can be calculated from the Landau-Zener transition,
which is very convenient. In the next section, it will be clear why the transition matrix
of the Landau-Zener model explains the Bogoliubov transformation of the cosmological
particle production.

See appendix A and B for more technical details of the EWKB and Landau-Zener
transformation applied to cosmological particle production.

1.1 The Landau-Zener model and particle creation in cosmology

First, we review the original Landau-Zener model and explain how it can be related to
cosmological particle production. Here, the “velocity” is v > 0, and the off-diagonal element
∆ is supposed to be real. The Landau-Zener model uses a couple of ordinary differential
equations given by

i~
d

dt

(
ψ1
ψ2

)
=
(
−v

2 t ∆
∆ +v

2 t

)(
ψ1
ψ2

)
, (1.18)

which can be decoupled to give[
~2 d

2

dt2
+
(

∆2 − i~v2

)
+ 1

4v
2t2
]
ψ1 = 0 (1.19)[

~2 d
2

dt2
+
(

∆2 + i~
v

2

)
+ 1

4v
2t2
]
ψ2 = 0. (1.20)

Following refs. [35, 36, 38], we are going to rewrite the equations in the standard EWKB
form. In this form, a “large” parameter η ≡ ~−1 is introduced to give the “Schrödinger
equation” [

− d2

dx2 + η2Q(x)
]
ψ(x, η) = 0, (1.21)

– 6 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
1

where

Q(x) ≡ V (x)− E (1.22)

is given by the “potential” V and the “energy” E. For the Landau-Zener model, we have

Q(x, η) =
(

∆2 − iη−1 v

2

)
+ 1

4v
2t2

=
(

∆2 + 1
4v

2t2
)

+
(
∓iη−1 v

2

)
(1.23)

Q0(x) ≡ ∆2 + 1
4v

2t2 (1.24)

Q−1(x) ≡ ∓iη−1 v

2 . (1.25)

Due to the formal structure of the EWKB [32, 35, 36], the Stokes lines are drawn using
only Q0.4 Therefore, in the EWKB formulation, ψ1 and ψ2 have the same Stokes lines.
(A careful reader will understand that this statement does not mean that solutions are
identical.) Finally, we have

V = −1
4v

2x2 (1.26)

E = ∆2 (1.27)

for the conventional quantum scattering problem with an inverted quadratic potential. See
also appendix B and ref. [32] for more details about the EWKB and the Stokes lines for
cosmological particle production.

If one wants to consider (explicitly) the exact solution instead of the Stokes lines of
the EWKB, it will be convenient to consider z = i

√
veiπ/4t (z2 = −ivt2) to find5[

d2

dt2
+
(
n+ 1

2 −
1
4z

2
)]

ψ1(z) = 0 (1.28)[
d2

dt2
+
(
n− 1

2 −
1
4z

2
)]

ψ2(z) = 0. (1.29)

Here we set

n ≡ i
∆2

v
. (1.30)

Since these equations are giving the standard form of the Weber equation, their solu-
tions are given by a couple of independent combinations of Dn(z), Dn(−z), D−n−1(iz),
D−n−1(−iz). Using the asymptotic forms of the Weber function, one can easily get the
transfer matrix given by(

ψ+
1

ψ+
2

)
=
(

e−πκ −
√

1− e−2πκ
√

1− e−2πκ e−πκ

)(
ψ−1
ψ−2

)
,

(1.31)
4See also appendix A to find the difference between the conventional WKB analysis and the EWKB.
5Here we temporarily set ~ = 1.
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where phase parameters are disregarded for simplicity. ± signs of ψ± are for t→ ±∞. We
introduced κ, which is the imaginary part of n and given by

κ ≡ ∆2

v
. (1.32)

For the EWKB, this factor appears from the integral connecting the two turning points of
the MTP [32]. (Here, “turning point” denotes solutions of Q0 = 0.) For the cosmological
particle production, κ determines the number density. Note that the above transfer matrix
is not defined for the “adiabatic states”, which represents the “adiabatic energy”

E± = ±
√

∆2 + v2t2/4. (1.33)

Since these adiabatic states are diagonalizing the Hamiltonian and identified with the
asymptotic WKB solutions, the transition matrix for these (adiabatic) states is giving Bo-
goliubov transformation of the cosmological particle production. If one writes the transfer
matrix for the “adiabatic states” Ψ1,2 instead of the original states ψ1,2, one will have(

Ψ+
1

Ψ+
2

)
=
(√

1− e−2πκ e−πκ

e−πκ −
√

1− e−2πκ

)(
Ψ−1
Ψ−2

)
, (1.34)

where we have omitted the phase parameter. Compare the transfer matrix with the one
obtained for bosonic preheating in ref. [23]. For Dirac fermions, one can find the calculation
based on the Landau-Zener model in ref. [32], which can be compared with the standard
calculation of refs. [40, 41]. The off-diagonal elements of the transfer matrix are giving
β+
k of the Bogoliubov transformation [23] if α−k = 1, β−k = 0 is considered for the initial

condition.
Comparing the original equation of the Landau-Zener model and the decoupled equa-

tions, one can see that D1 ≡ −vt,D2 ≡ +vt in the (original) diagonal elements are trans-
ferred into the “potential” −1

4v
2t2 in the decoupled equations [32]. In this paper, both

approaches (the Landau-Zener model and the EWKB Stokes lines of the decoupled equa-
tions) are used to understand the cosmological particle production and the origin of the
asymmetry.

2 Asymmetry in cosmological particle production and the decay process

First, we introduce helicity-violating interaction (mass) for the Majorana fermion and
examine asymmetry production when the mass is time-dependent. Because of the facility
of the equations, our idea of asymmetric particle production will be examined first for the
helicity asymmetry of the Majorana fermions. The result can be regarded as asymmetric
decay of the θ(t) field (PNGB), where the asymmetry is determined by the sign of θ̇. Unlike
the usual scenario of asymmetric decay, interference is not playing important role in our
scenario.

Although perturbative expansion before the non-perturbative analysis could be very
useful, perturbative expansion may drastically change the structure of the EWKB Stokes
lines of the model. Therefore, perturbative expansion before the non-perturbative analysis
is sometimes very dangerous. Some useful examples will be shown.
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2.1 Majorana fermion with time-dependent mass (basic calculation)

For the Majorana fermion, we consider Ψt
R≡(ψR, ψ†R) and write the Majorana mass term as

Lm = Ψ̄R

(
0 mR

m∗R 0

)
ΨR. (2.1)

The Lagrangian density becomes

L = ψ̄Riσ̄
µ∂µψR −

1
2
(
mRψ

2
R +m∗Rψ

†2
R

)
, (2.2)

which gives the equation of motion

(iσ̄0∂t + iσ̄i∂i)ψR = −m∗Rψ
†
R. (2.3)

We consider the expansion

(ψR)α =
∫

d3k

(2π)3 e
ik·x ∑

s=±
(esk)α

[
usk(t)ask + vs∗k (t) · e−iθkas†−k

]
, (2.4)

where esk denotes the helicity eigenstate and we have

− kiσ̄iesk = s|k|σ̄0esk (s = ±) (2.5)

and the orthogonalities

es†k σ̄
0es

′
k = δss

′
, eske

s′
−k = seiθkδss

′
, (2.6)

and a phase by the momentum direction

eiθk ≡ k1 + ik2√
(k1)2 + (k2)2 . (2.7)

From the above expansion and the equation of motion, one will find

(i∂t + s|k|)usk = sm∗Rv
s
k,

(i∂t + s|k|)vs∗k = −sm∗Rus∗k . (2.8)

One can write these equations using a matrix as

i
d

dt
Ψ = HΨ,(

H11 H12
H21 H21

)
=
(
−s|k| sm∗R(t)
smR(t) s|k|

)
, (2.9)

where Ψt ≡ (vsk, usk).
Note that this formalism introduces “time-dependent off-diagonal elements” to the

theory. This is what we need for asymmetry production in this paper.

– 9 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
1

We are going to write the above equations in a versatile form. Introducing D(t) = −s|k|
and ∆(t) = smR(t), we have

i~
d

dt

(
X

Y

)
=
(
D(t) ∆(t)∗
∆(t) −D(t)

)(
X

Y

)
, (2.10)

where we recovered ~ for later arguments. Decoupling the equations, one will have the
equations given by

Ẍ − ∆̇∗
∆∗ Ẋ +

(
− iD∆̇∗

~∆∗ + iḊ

~
+ |∆|

2 +D2

~2

)
X = 0. (2.11)

Ÿ − ∆̇
∆ Ẏ +

(
iD∆̇
~∆ − iḊ

~
+ |∆|

2 +D2

~2

)
Y = 0. (2.12)

To obtain the standard form of the EWKB, one has to introduce a new P̂ and Q̂ defined by

X̂ = exp
(
−1

2

∫ x ∆̇∗
∆∗dx

)
X

Ŷ = exp
(
−1

2

∫ x ∆̇
∆dx

)
Y (2.13)

Alternatively, one can introduce P̂ (and Q̂) to the original equation (before the decou-
pling) to remove the time-dependence of the off-diagonal elements in (2.10). In that case,
one will have

Ψ = UΨ̂, (2.14)
Ĥ = U−1HU − iU−1U̇ , (2.15)

where U defines the transformation given in eq. (2.13). Of course, after decoupling the
equations, one will have identical results.

For the decoupled equations, the equations can be written in the standard EWKB form

¨̂
X +

(
−iD∆̇∗
~∆∗ + iḊ

~
+ |∆|

2 +D2

~2 + ∆̈∗
2∆∗ −

3(∆̇∗)2

4(∆∗)2

)
X̂ = 0 (2.16)

¨̂
Y +

(
iD∆̇
~∆ − iḊ

~
+ |∆|

2 +D2

~2 + ∆̈
2∆ −

3(∆̇)2

4(∆)2

)
Ŷ = 0. (2.17)

Seeing the ~-dependence, the EWKB Stokes lines of the above equation coincides with
the trivial equation

¨̂
X + |∆|

2 +D2

~2 X̂ = 0, (2.18)

which cannot generate asymmetry. Mathematically, this result is true if no extra ~ is
appearing from ∆̇∗. We are going to examine this model further to understand the source
of the asymmetry.

– 10 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
1

2.2 Majorana fermion with time-dependent mass (constant rotation)

We start with the typical example of quantum mechanics. In cosmology, trapping of
an oscillating field [42, 43] or the Affleck-Dine baryogenesis [44, 45] can generate similar
rotation, which can be seen in a local domain [46, 47].

Here we consider the equation given by6

i
d

dt
Ψ = (H(0) +H(1))Ψ,

H(0) =
(
D 0
0 −D

)
(2.19)

H(1) =
(

0 ∆∗(t)
∆1(t) 0

)
, (2.20)

where D = ω0. Then we have the solution given by

Ψ(t) = c1(t)e−iω0t

(
1
0

)
+ c2(t)eiω0t

(
0
1

)
. (2.21)

To find the time-dependent coefficients c1(t) and c2(t), we substitute Ψ(t) to find

i
dc1
dt

= ∆∗e2iω0tc2(t) (2.22)

i
dc2
dt

= ∆e−2iω0tc1(t). (2.23)

It is very difficult to solve this equation exactly for general ∆(t), but one can use a numerical
calculation to understand the transition. For ∆(t) ≡ Aeiωt = Ae2iω0t, one can easily find
the exact solution, which gives c1,2(t) ∼ sin(At + θ0). Here A (= |∆|) determines the
rapidity of the transition and the maximum transition is possible for any A, although
it takes a long time for small A. Away from the resonance frequency at ω = 2ω0, the
transition amplitude decreases.

Here, what is important for our discussion about asymmetry is inverse rotation. If the
off-diagonal element is replaced by ∆(t) = Ae−2iω0t, the equations become

i
dc1
dt

= Ae4iω0tc2(t) (2.24)

i
dc2
dt

= Ae−4iω0tc1(t), (2.25)

which ruins the resonance.
The situation becomes very clear if one introduces the transformation of eq. (2.13).

For ∆(t) = Ae2iω0t, the two states are shifted together to make a pair of degenerated
states (D̂ = 0) in Ĥ. If this transition corresponds to the Bogoliubov transformation,
particle production is possible in this case. On the other hand, for the inverse rotation
∆(t)=Ae−2iω0t, two states are “shifted away” to give D̂=2ω0. Then the particle production

6Just for simplicity, we temporarily set ~ = 1.

– 11 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
1

Figure 1. Top: rotation of the off-diagonal elements. Middle: new states of Ĥ. Bottom: the
original states of H. In this case, the resonance is possible only for the anti-clockwise rotation.

is suppressed. Although the diagonal elements of Ĥ coincide, the “adiabatic” energy splits
because of the remaining off-diagonal elements (i.e, the radial part |∆(t)|), which affects
the rapidity of the transition. The situation is shown in figure 1.

Although this model is very useful for understanding the origin of the asymmetry, there
is a problem in defining the number density. In this model, there is no non-perturbative
transition (i.e, the Stokes phenomena) between the “adiabatic states”. On the other hand,
the adiabatic states cannot keep diagonalizing the Hamiltonian, which causes oscillation
of the number density. To avoid such problem, one has to define the creation and the
annihilation operators for the asymptotic states, but in this model the asymptotic states
are not defined.7 To introduce a non-adiabatic transition, we have to extend the model.

2.3 Majorana fermion with linear time-dependence (∆ = sg(ε+ ivt), D = −s|k|)

For the cosmological preheating scenario, particle production near the enhanced symmetry
point(ESP) with φ(t) = ε+ ivt is very important. Using the generation of the asymmetry,
we also explain the crucial discrepancy between the conventional WKB expansion and
the EWKB.

7In reality, the period of the periodic function nk depends on k. Therefore, the total number density
after k-intergation is not simple. Since the particles could decay during the process, it could be possible to
claim that asymmetric particle production is possible in this model.
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Figure 2. Stokes lines for ε = 0.1, v = 1, k = 1, ~ = 0.1, g = 1, s = ±1 are given for Q0 + Q1, not
for Q0. One can see four turning points (circle) and a double pole (triangle) near the origin, which
are asymmetric, but they disappear in the EWKB.

We start with the decoupled equation

¨̂
X +

[
g2 (ε2 + v2t2

)
+ |k|2

~2 + s|k|v
~(ε− ivt) + 3v2

4(ε− ivt)2

]
X̂ = 0. (2.26)

Naively for the EWKB, this equation gives

Q0(t) = −g2
(
ε2 + v2t2

)
− |k|2 (2.27)

and the asymmetry seems to disappear from the non-perturbative calculation. This result
agrees with our numerical calculation. However, seeing the trajectory, one will find that
this model has a rotational motion around the origin (i.e, the ESP). Is it true that the
rotational asymmetry considered in section 2.2 disappears in this model? If the asymmetry
disappears, what is the crucial condition?8

To understand more about the situation, we show the naive Stokes lines9 in figure 2,
which have a double pole at t = −iε/v and four turning points.10 Seeing the Stokes lines,
one can understand the situation. The EWKB stokes lines appear after gluing the double
pole and two turning points together at the origin. In this limit (i.e, ~ → 0), the stokes
lines give the simple “scattering problem with an inverted quadratic potential” [32].

Alternatively, using the numerical calculation explained in appendix C, we find that
the net number n+

k −n
−
k cannot evolve in the straight motion m̈R = 0 as long as the initial

8In ref. [22], by considering perturbation, the asymmetry is related to the interference between terms.
We are arguing this topic from another viewpoint.

9The stokes lines are called “naive”, since careful people will not use these stokes lines for their calcula-
tion, even if they are considering the conventional WKB expansion. The problems of O(~) terms and their
poles are widely known [48] for the conventional WKB expansion.

10Note that the Stokes lines in figure 2 are obtained from Q itself, not from Q0. Therefore the stokes
lines in figure 2 are not representing the true stokes lines.
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state begins with the zero particle state. In reality, however, the backreaction is important
since the particle production is significant in this model, and its backreaction can bend the
trajectory to give m̈R 6= 0.11

Therefore, without considering the backreaction, this model cannot generate asymme-
try, but the particle production always introduces the backreaction, which is required for
the asymmetry. Therefore, in reality, the asymmetry production cannot be neglected in
this model.

Below, we mainly consider only the rotational motion of the off-diagonal elements,
which depends only on the phase θ(t). In such models, the Landau-Zener transition is very
useful. We are using the EWKB to support the analysis.

2.4 Majorana fermion with time-dependent mass (perturbative expansion)

We consider perturbative expansion of the model considered in section 2.2, which is given by

∆ = Aeiθ ' A(1 + iθ + . . .), (2.28)

where θ(t) = ωt is the simplest example. The expansion12 is valid only for θ � 1. Alter-
natively, one can choose θ(t) = A cosωt with A� 1.

Reflecting on the calculation above, the above perturbative expansion might have
changed the mechanism of the non-perturbative process. The significant discrepancy ap-
pears when θ = ωt. Indeed, the original theory does not allow non-adiabatic transition,
while in the perturbed theory the transition is solved as the quantum scattering by a po-
tential (after decoupling the equations). Therefore, in this example, one has to conclude
that the essential mechanism of the transition has been changed by taking the perturba-
tive expansion. In the light of the EWKB, this is because the structure of the Stokes lines,
which determines the transfer matrix, is changed by the perturbation. Therefore, to avoid
such discrepancy, one has to consider the expansion that does not change the essential
property of the Stokes lines. We show some typical examples in appendix B.

If the particle production is the Landau-Zener type, one has to check first the global
structure of the Stokes lines of the EWKB, and the local (linear) expansion has to be taken
around the points where the Stokes lines cross the real-time axis. Indeed, the original
Landau-Zener model considers local expansion around the state-crossing point, where the
global structure of the Stokes lines has the separable form of the MTP(Merged pair of
simple Turning Points). In this paper, we often consider similar expansion. Note however
that the particle production is not always explained by the Landau-Zener type transition.

We sometimes compare the Landau-Zener type calculation with the EWKB Stokes
lines. In our analysis, the Landau-Zener type transition is very useful for understanding
the asymmetry.

11In the most significant case, the oscillating field can be “trapped” near the ESP [42], which may happen
also for higher-dimensional interaction suppressed by the Planck scale [43].

12The EWKB is an expansion, but it takes the Borel sum to get the non-perturbative result.
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2.5 Majorana fermion with time-dependent mass (the EWKB for ∆(t) = m0e
iθ,

θ(t) ≡ A cos(ωat/~))

In this section, we consider

θ(t) ≡ A cos(ωat/~)
∆(t) = m0e

−iθ (2.29)

and draw the Stokes lines of eq. (2.16). Note that

∆̇∗
∆∗ = iθ̇ (2.30)

= iωa
~

sin
(
ωat

~

)
∼ O(~−1) (2.31)

is important for the EWKB calculation.13

What is important for the asymmetry is the term proportional to s. Terms proportional
to Ḋ will disappear since D is constant. Therefore, the s-dependence comes from the factor

−iD ∆̇∗
~∆∗ = − i(−s|k|)

~
iωa
~

sin
(
ωat

~

)
= −s|k|ωa

~2 sin
(
ωat

~

)
. (2.32)

This term is suppressed in the non-relativistic limit (|k| → 0). Therefore, the asymmetry
is not significant in the non-relativistic limit. This result may not be consistent with the
intuition, since in the non-relativistic limit, violation of the helicity could be significant.
We will explain the reason later in this section.

To understand more about the origin of the asymmetry, we have calculated the Stokes
lines for typical Q0, which is shown in figure 3 together with their “potentials”. We have
excluded the imaginary part for simplicity. See appendix B for more details. Seeing
figure 3 and the solutions of Q0 = 0, one can understand that the basic structures of the
MTPs14 are completely the same but their positions are shifted by changing the sign of
s. Therefore, for an eternal oscillation, the production becomes symmetric on average,
but for a damped oscillation, the asymmetry appears because the particle production is
not simultaneous for different s = ±1. The time-dependent amplitude of the oscillation
generates different number densities at each MTP. The asymmetry is therefore determined
by the time-dependence of the amplitude. Particle production is exclusive at each MTP.15

13In the EWKB, analytic evaluation of the integral is usually very difficult, despite the transparency of
the qualitative analysis based on the Stokes lines. In this paper, we are using the EWKB for qualitative
analysis.

14In terms of the EWKB, each MTP gives the transfer matrix similar to the scattering by an independent
inverted quadratic potential, which is calculable [27, 32–34]. In this sense, each MTP is separable. See also
appendix B for more details.

15When s = 1 is generated, the other (s = −1) is not generated. Simultaneous production is possible
only when k = 0, where the asymmetry vanishes. Of course, particle production is not instant in reality.
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Figure 3. The Stokes lines and the potential are shown for Q(t) = −1.5 − s0.8 sin(2t) − sin2(2t)
and V (t) = −s0.8 sin(2t)− sin2(2t). The upper is for s = +1 and the lower is for s = −1.

Figure 4. After using eq. (2.13), the time-dependence appears only in the diagonal elements. Left:
as far as |k| 6= 0, one can discriminate s = 1 and s = −1. Right: for |k| = 0, particle production
cannot discriminate the helicity.

One thing that has to be clarified is the vanishing asymmetry in the limit of |k| → 0.
This phenomenon can be understood easily by considering the original equation (Landau-
Zener type). In figure 4, we show the motion of the two states for Ĥ. In the left, s =
±1 states are distinguishable when |k| 6= 0, while in the right, s = ±1 states are not
distinguishable when |k| = 0. Simultaneous particle production is possible only when
k = 0, which corresponds to vanishing asymmetry.

One can compare the above result with the earlier calculation given in refs. [15, 20]. In
ref. [15], perturbative expansion has been used to expand eiθ to calculate non-perturbative
particle production, where the asymmetry appears from the interference between terms.
In our analysis, the asymmetry appears because the particle production is exclusive.16

16Note however that the asymmetry depends on k. One can see from figure 4 that states are symmetric
for k ' 0. Therefore, total number density after k integration may not be utterly exclusive due to the
symmetric particle production near k ∼ 0.
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Figure 5. θ(t) and θ̇(t) for θ(t) = A/(1 + e−at/~).

In ref. [20], it has been shown for a single Dirac fermion that crucial cancellation
disturbs asymmetry production. The reason is very simple. For a single Dirac fermion, the
complex mass has to be introduced as

mDψLψR +m∗DψRψL, (2.33)

which flips the rotational direction by the exchange L ↔ R. More precisely, since the
exchange L ↔ R inverses the rotational motion of the complex Dirac mass, “matter pro-
duction” of the left-handed fermion occurs simultaneously with “antimatter production” of
the right-handed fermion, and vice versa. To avoid this cancellation, one has to introduce
more than two Dirac fermions, whose off-diagonal elements (interaction) is given by[

m∆(ψLjψRi + ψRjψLi) + h.c.
]

(2.34)

or [
m∆ψLjψRi + h.c.

]
. (2.35)

We will go back to this topic in section 3.

2.6 Majorana fermion with time-dependent mass (θ(t) = A/(1 + e−at/~))

In this section, we consider the simple rotational motion of the phase. As we will see
later in this section, the model clearly describes the origin of the asymmetry in particle
production. We consider

θ(t) = A

1 + e−at/~
, (2.36)

which gives transition of the phase from θi = 0 to θe = A around t = 0. We showed the
motion of θ(t) and θ̇(t) in figure 5. We take

mR(t) = gϕ(t) ≡ gϕ0e
iθ(t)

θ(t) ≡ A

1 + e−at/~
, (2.37)
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where ϕ0 is real. Again, one can remove the time-dependence of the off-diagonal elements
using the translation17

Ψ̂ ≡ U−1
T Ψ,

UT ≡
(
eiθ(t)/2 0

0 e−iθ(t)/2

)
. (2.38)

The Hamiltonian after the transformation becomes

Ĥ ≡ U−1
T HUT − iU−1

T U̇T

=
(
−s|k| − 1

2~θ̇ sgϕ0
sg∗ϕ0 s|k|+ 1

2~θ̇

)
. (2.39)

Note that the new terms in the diagonal elements do not have “s” in their coefficients.
The new Hamiltonian is quite useful for our discussion. One can see in figure 6 that

the new term (∝ θ̇) makes a bump around t = 0 and the intersection (in the sense of the
original Landau-Zener model) appears only for s = −1, because of the signs in front of θ̇.
This means that for a certain range of k, only s = −1 particles can experience the Landau-
Zener type transition. The particle production seems exclusive in this case, at least for
the Landau-Zener type particle production.18 In this model, one can see state crossing of
s = −1 for k < k∗ ≡ aA

8 . Since A defines the amplitude of θ(t), we found n ∝ k3
∗ ∝ A3 in

this model, which supports the claim given in ref. [15].19

Considering the original Landau-Zener model, the probability of the transition (i.e,
the magnitude of the particle production) is determined by the velocity at each crossing
point (t1,2), which is

|gϕ0|2

v(ti)
< 1 (2.40)

v(ti) ≡ ˙̂
D(ti) ≡ ~

θ̈(ti)
2 . (2.41)

Note that in this formulation, k-dependence is appearing in ti.
In this argument, the radius of the Fermi sphere is important for estimating the number

density. For large k, the top of the two bumps meet at

k∗ ≡
aA

8 , (2.42)

where the velocity of the state becomes θ̈ ' 0. See the figure 7. Here the conventional
Landau-Zener model, which uses the linear expansion at the state-crossing point, does not
give the correct answer. The transition of this kind has already been calculated in ref. [32],

17See eq. (2.13). This transformation was originally introduced to get the standard form of the EWKB
formulation from the decoupled equations. At the same time, it removes the time dependence of the
off-diagonal elements.

18In appendix B, we argue the possibility of particle production without crossing (not the Landau-Zener
type).

19The required condition for the state crossing is calculated from the maximum of θ̇ (i.e, the height of
the bumps). For |k| > ~Max[θ̇]/2 = |~θ̇(0)|/2 = aA/8, states are always apart.
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Figure 6. Upper: time-dependence of the diagonal elements of Ĥ for s = +1 and k 6= 0, in which
one can see no crossing. Lower: time-dependence of the diagonal elements of Ĥ for s = −1 and
k 6= 0, in which each state crossing causes Landau-Zener transition.

Figure 7. The upper and the lower states start to fall apart for larger |k|, and the crossing
disappears near k ∼ k∗. At this moment θ̈ disappears and higher calculation becomes important [32].

in which the scattering problem with an inverted quartic potential has been considered.
Near the top of the bumps, we considered in ref. [32] the equation given by

i~
d

dt

(
ψ1
ψ2

)
=
(
−(at2 + ε) ∆

∆ at2 + ε

)(
ψ1
ψ2

)
, (2.43)
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which gives after decoupling the following equation[
~2 d

2

dt2
+
(
∆2 − i(2at)~

)
+
(
at2 + ε

)2
]
ψ1 = 0. (2.44)

In terms of the EWKB, Q0 of the equation is

Q0 = −∆2 −
(
at2 + ε

)2
, (2.45)

where the “potential” is

V (t) = −a2t4 − 2aεt2 < 0 (2.46)

and the “energy” is E = ∆2 + ε2 > 0. We thus find

Q0(t) = −∆2 − ε2 − a2t4 − 2aεt2. (2.47)

For the model considered in this section, we have

θ̇(t) ' 2k∗ + 1
2
...
θ (0)t2 + . . . (2.48)

...
θ (0) ≡ −4a2, (2.49)

which gives the Hamiltonian for s = −1

Ĥ =
(

∆k + a2t
2 −gϕ0

−g∗ϕ0 −∆k − a2t
2

)
, (2.50)

where we introduced ∆k ≡ |k|−k∗. There is no state crossing for |k| > k∗(∆k > 0), but to
solve the scattering problem of the quartic potential, one can see that the transition can
be significant yet [32]. Transforming the above equation into Q(x) = −κ4 − x4, one can
easily find that κ4 in the equation gives the bound κ4 . 1, which determines the radius of
the Fermi sphere.

Although rather crude, one can see that when the tops of the bumps coincide at
∆k = 0, the Fermi sphere can be larger than k∗ if a ≥ (g2ϕ2

0 + ∆k)1/2A1/3 is satisfied.
Here, A represents the variation (amplitude) of θ(t) and a determines the speed of the
transition (or the width of the domain wall). The above condition is showing that particle
production is more efficient when the variation of θ is larger and the speed of the transition
is higher. This result coincides with intuition.

For A ∼ O(1), a ∼ gϕ0 gives the Fermi sphere kF = k∗ ' gϕ0/8. Variation from this
point will change the Fermi sphere from the naive estimation kF ∼ k∗.

We show our numerical results20 in figure 8, which depict the shapes of the distributions
(upper panel) and the time evolution of the number density for each state (lower panel).
One can see clearly that s = +1 production is suppressed compared with s = −1. (Note
that in the lower panel the number densities are given for the log scale.)

20In our numerical calculation, the wave functions usk and vsk appeared in (2.4) are solved numerically, and
they are interpreted into the distribution function. In appendix C we show how to calculate the distribution
function by the wave functions.
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Figure 8. The results of numerical calculation with the parameters |mR| = a = 1.0, A = π/3.
Upper: shapes of the distributions for each helicity state after the production (t = 20). Lower:
time evolution of the number densities (log scale).

In this model, the MTP structure always appears twice during particle production.
When one calculates the Fermi sphere of particle production, this double MTP structure
causes a less trivial modification of the distribution, as far as the particles do not decay
between the two MTPs. The typical distributions are shown in figure 9 for κ(∆) ∝ ∆2.
Let us explain why this distribution is very important for our scenario. Since the off-
diagonal elements are representing the symmetry-violating interaction, asymmetry in the
gϕ0 → 0 limit is very important. For the Majorana fermion, since the off-diagonal elements
are representing the Majorana mass, small |∆| seems to be making the particle production
easier. This speculation is true for a single MTP scenario, but for our double MTP scenario,
one has to consider figure 9 for the distribution. In the gϕ0 → 0 limit, the particle
production vanishes as one can see from figure 9. Therefore, a tiny interaction suppresses
particle production (and asymmetry).

From the above results, one can see that static motion (always θ̈ = 0) gives no state
crossing in this model.

Although very crude, one can estimate the particle production when cosmological
domain walls decay. For the typical cosmological domain wall of tension σ ∼ Λ3 and width
δw ∼ Λ−1 decaying at the density ρ ∼ σ2/M2

p , the number density of the produced particle
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Figure 9. Typical distribution functions for κ(∆) are shown for the single and the double MTP
models.

can be estimated as kF ∼ 0.1Λ for fast-moving wall. However, since efficient particle
production causes friction to the domain wall motion, the maximum number density should
be estimated as n . ρ/Λ ∼ Λ5/M2

p when the temperature of the Universe is TD ∼
√
σ/Mp.

We conclude that asymmetric particle production can be efficient for typical cosmological
domain walls.

3 Dirac fermions

As we have mentioned previously, asymmetry will be canceled for a single Dirac fermion.
Let us see more details of the cancellation mechanism. For a single Dirac fermion, one may
find complex mass terms as [

m∆ψLψR +m∗∆ψRψL
]

(3.1)

Following the strategies we have considered in this paper, one can explicitly calculate par-
ticle production for four species; left(right)-handed matter(antimatter). Our observation is
very simple. Since the L↔ R exchange flips the rotational direction, one can immediately
find that L and R productions are exclusive. Since the matter-antimatter is also exclusive,
L-matter production and R-antimatter production are simultaneous. Regarding this parti-
cle production as the decay process, one can say that depending on the sign of θ̇, the field
θ “selectively” decays into L-matter and R-antimatter (or L-antimatter and R-matter for
the opposite sign). Therefore, for a single Dirac fermion, direct asymmetry production is
impossible in total.

Although a single Dirac fermion is excluded for the (direct) baryogenesis, there is hope
in multiple Dirac fermions. To show an example, let us consider a fictitious “lepton” ψl
and a “quark” ψq for the calculation and suppose that each fermion is massless (i.e, we are
considering a naive relativistic limit) but they have the Yukawa interaction

gφψlψq + h.c. = gφ(ψlRψ
q
L + ψlLψ

q
R) + h.c. (3.2)

Since in this case, the L ↔ R exchange does not flip the rotational direction, ψqL-matter
production and ψqR-matter production simultaneously occur, and they are exclusive to ψqL-
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antimatter and ψqR-antimatter production. We thus find the net baryon number from the
cosmological particle production.

On the other hand, considering the l↔ q exchange, ψqL,R-matter production is exclusive
to ψlL,R-matter production. We thus find that the negative lepton number has to be
generated simultaneously with the positive baryon number, and vice versa. This result is
consistent with effective charge conservation.

The trick of this baryogenesis scenario is very simple in the massless limit. If one
rearranges the pairs as ψ1 = (ψ1L, ψ1R) ≡ (ψqL, ψlR) and ψ2 = (ψ2L, ψ2R) ≡ (ψlL, ψ

q
R), the

Yukawa interaction can be written as[
gφψlRψ

q
L + h.c.

]
+
[
gφψlLψ

q
R + h.c.

]
=
[
gφψ1Rψ1L + h.c.

]
+
[
g∗φ∗ψ2Rψ2L + h.c.

]
, (3.3)

which represents the complex Dirac mass terms for two independent Dirac fermions ψ1,2.
In the original ψq and ψl, the “exclusive pairs” are rearranged to avoid the cancellation of
the net B and L numbers.

Remember that in the previous (Majorana) models, asymmetry vanishes for k → 0.
Therefore, we are going to discuss the non-relativistic limit, where the original mass terms

mqψqψ
q −mlψlψ

l (3.4)

are not negligible but k ' 0 is negligible for both fermions. Here, the minus sign in front
of ml is for later convenience. We also assume mq ' ml for simplicity.

First, consider the conventional decomposition

ψ =
∫

d3k

(2π)3 e
−ik·x∑

s

[
usk(t)ask + vsk(t)bs†−k

]
(3.5)

and the single-field Dirac equation

(i/∂ −mD)ψ = 0. (3.6)

Carefully following the formalism given in ref. [41], one will find

u̇± = iku∓ ∓ imDu±, (3.7)

which can be written in the matrix as

i
d

dt

(
u+
u−

)
=
(
mD −k
−k −mD

)(
u+
u−

)
. (3.8)

Diagonalizing this equation for constant matrix elements, one will find the adiabatic
states (the WKB solutions) as

i
d

dt

(
ũ+
ũ−

)
=

√m2
D + k2 0
0 −

√
m2
D + k2

( ũ+
ũ−

)
.

(3.9)

The original u± and ũ± coincides at k ∼ 0.
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Let us introduce the interaction given in eq. (3.2) and take k → 0. Assuming mq and
ml are constant, we find

i
d

dt

(
uq+
ul+

)
=
(
mq m∗∆
m∆ −ml

)(
uq+
ul+

)
. (3.10)

and

i
d

dt

(
uq−
ul−

)
=
(
−mq −m∗∆
−m∆ +ml

)(
uq−
ul−

)
. (3.11)

At this moment, the cancellation could not be clear from the above equations.
Decoupling the equations, we find

üq+ +
[
−ṁ

∗
∆

m∗∆
+ i(mq −ml)

]
u̇q+ +

[
|m∆|2 +mqml − i

ṁ∗∆
m∗∆

mq

]
uq+ = 0 (3.12)

Redefining the interaction as m∆ = m0e
iθ(t), we have

ṁ∗∆
m∗∆

= −iθ̇. (3.13)

Also defining δM ≡ mq −ml ≥ 0, the equation becomes

üq+ + i
[
θ̇ + δM

]
u̇1+ +

[
|m∆|2 +mqml − θ̇mq

]
uq+ = 0 (3.14)

The standard form of the EWKB will be obtained using

ûq+ ≡ exp
(
i

2

∫ t [
θ̇ + δM

]
dt

)
uq+. (3.15)

This also removes the time-dependence of the off-diagonal elements of the Landau-Zener
formalism. Finally, we have

¨̂uq+ +
[
− i2 θ̈ + 3(θ̇ + δM)2

4 +m2
0 +mlmq − θ̇mq

]
uq+ = 0. (3.16)

It seems difficult to understand the situation from the decoupled equations. Therefore, we
are going back to the original matrix form.

If eq. (3.15) has been applied to eq. (3.10), one will find

i
d

dt

(
ûq+
ûl+

)
=

 M1/2−θ̇
2 m0

m0 −M1/2−θ̇
2

( ûq+
ûl+

)
, (3.17)

and

i
d

dt

(
ûq−
ûl−

)
=

−M1/2+θ̇
2 −m0

−m0
M1/2+θ̇

2

( ûq−
ûl−

)
, (3.18)

where M1/2 ≡ (mq + ml)/2. This form is very familiar in this paper. From the above
equations, we found that the situation is quite similar to the single Dirac fermion, and

– 24 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
1

the matter-antimatter asymmetry is indeed canceled (i.e, net baryon and lepton numbers
vanish) in the non-relativistic limit.

For completeness, let us consider a generalization of the scenario. Since the left-handed
and the right-handed fermions are independent particles, one can also consider the Yukawa
interactions written as[

m∆ijψLjψRi + h.c.
]

+
[
m∆jiψLiψRj + h.c.

]
, (3.19)

where m∆ij 6= m∆ji is possible.

4 Conclusions and discussions

As we have seen explicitly, the origin of the asymmetry in the particle production from the
rotational motion is essentially the exclusive particle production. This property has been
found by using the Landau-Zener model and the EWKB Stokes lines for the decoupled
equations. We also pointed out that the perturbative expansion may sometimes change
the Stokes lines. To avoid such discrepancy, one has to draw the Stokes lines of the original
theory first and consider perturbation at the points where the Stokes lines cross the real-
time axis. For the Dirac fermion, because of the left and right-handed components, the
total asymmetry cancels for the single-field model. For the multiple Dirac fermions, we have
seen that cancellation can be avoided in the relativistic limit. In all cases, the asymmetry
vanishes for k → 0.

Perturbative expansion is sometimes used before non-perturbative calculation. Our
concern was that such simplification may change the structure of the Stokes lines of the
original theory and the theory after perturbative expansion cannot reproduce the physics
of the original theory. For physics, the two theories could not always be needed to be
identical, but the difference has to be under control. To avoid the problem, one has to
draw first the Stokes line of the original theory to find a separable structure of the Stokes
lines, where local expansion is applicable. Indeed, the idea described in Zener’s original
paper [37] follows this regulation. This strategy is crucial for a damped oscillation, as is
shown in figure 3.

We started with the simplest example (i.e, simple rotation ∆(t) = Aeiω0t), and carefully
examined the essential mechanism of the asymmetry production for typical situations,
comparing the structure of the Stokes lines and the original equations.
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A A short introduction to the EWKB and the Borel resummation

As we have mentioned in the introduction of this paper and in our previous paper [32], there
has been many papers in which the Stokes phenomena is used to study particle production.
However, we feel that the crucial difference between the conventional WKB approximation
and the exact WKB is not well understood widely.

First, the conventional WKB approximation generically gives a divergent power series,
while the EWKB considers the Borel resummation to control the WKB expansion.

Second, the following misinterpretation could arise. Since the above situation is dras-
tically improved by taking the Borel resummation, one might naively think that the con-
ventional WKB is certificated by the EWKB, and there is no crucial diference at the end.
This speculation is sometimes very dangerous.

The discrepancy will be obvious when Q(x) of the “Schrödinger equation”[
− d2

dx2 + η2Q(x)
]
ψ(x, η) = 0, (A.1)

is replaced by Q(x, η). In this case, the discussion of the stokes phenomena becomes quite
vague (or at most very complicated) for the conventional WKB [48].

Now remember the model discussed in section 2.3. Although both our numerical
calculation and the perturbative calculation of ref. [15] are giving the correct answer, it
would be difficult for the conventional WKB to explain why the asymmetry of the Stokes
lines disappears for finite ~. Using the EWKB, one can easily understand that the Stokes
lines have to be calculated for S−1, where S−1 is the coefficient of η of the WKB expansion.
For the conventional WKB, the asymmetry of the Stokes lines seems to disappear only in
the limit ~ → 0, and something other than the conventional WKB is required to explain
the situation.

In the followings, we show explicitly what determines the Stokes phenomena in the
EWKB and why the Borel resummation is crucial for the calculation.

A.1 What is the Borel resummation?

Let us solve the very simple Ordinary Differential Equation(ODE)

z2du

dz
= −u+ z, u(0) = 1 (A.2)

using expansion into power series

u(z) =
∞∑
n=0

unz
n. (A.3)

One can find the solution

u(z) =
∞∑
n=0

(−1)nn!zn + 1, (A.4)
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but this is a divergent power series because of the factor n!. To remedy the situation, we
note that the Laplace transformation of a function f

(Lf)(t) =
∫ ∞

0
e−tτf(τ)dτ (A.5)

gives (after partial integration)

L

[
df

dτ

]
= t(Lf)− f(0), (A.6)

which can be applied to f = τn/n! to give

L

[
τn

n!

]
= t−(n+1). (A.7)

Since the factor 1/n! arises in this formula, it would be natural to expect that after using the
inverse Laplace transformation, the factor n! of the divergent power series can be removed.
This speculation is correct.

Replacing z by t ≡ 1/z, and after executing the inverse Laplace transformation, one
will find

(L−1u)(τ) =
∞∑
n=0

(−1)nn!
(
τn

n!

)
= 1

1 + τ
. (A.8)

After the Laplace transformation, the original power series can be written by the integral

uB(z) =
∫ ∞

0
e−τ/z

( 1
1 + τ

)
dτ. (A.9)

This is the basic strategy of the Borel resummation. After defining s ≡ τ/z, U(z) is given
by a simpler form

uB(z) =
∫ ∞

0
e−s

( 1
s+ z−1

)
ds. (A.10)

If the pole at s = z−1 moves around the origin, it crosses the integration contour and picks
up a residue to give an additional contribution 2πie1/z (the Stokes phenomena).

Application of this simple idea to the WKB expansion is not so much simple but the
calculation is straight. Let us see what happens in the WKB expansion and how one can
understand the origin of the Stokes phenomena in terms of the Borel resummation.

A.2 The Borel resummation for the WKB expansion

Our starting point is the “Schrödinger equation” in quantum mechanics given by[
− d2

dx2 + η2Q(x, η)
]
ψ(x, η) = 0, (A.11)
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where

Q(x, η) = V − E (A.12)

for the potential V and the energy E. Just for simplicity, we assume that Q is given by

Q(x, η) =
∞∑
k=0

η−2kQ2k(x), (A.13)

which simplifies the calculation as is shown in eq. (A.22) later.
Assuming that the solution ψ is written by ψ(x, η) = eR(x,η), one will have

ψ = e

∫ x
x0
S(x,η)dx (A.14)

for S(x, η) ≡ ∂R/∂x. We have the condition for S given by

−
(
S2 + ∂S

∂x

)
+ η2Q = 0. (A.15)

Expanding S as S(x, η) = ∑n=∞
n=−1 η

−nSn, one will have

S = ηS−1(x) + S0(x) + η−1S1(x) + . . . , (A.16)

which gives

S2
−1 = Q0 (A.17)

and

2S−1S2j = −

 j∑
k≥0

S2kS2(j−k)−1 +
j−1∑
k≥0

S2k+1S2(j−k−1) + dS2j−1
dx

 (A.18)

2S−1S2j+1 = −

 j∑
k≥0

S2kS2(j−k) +
j−1∑
k≥0

S2k+1S2(j−k)−1 + dS2j
dx
−Q2(j+1)

 (A.19)

for j ≥ 0. Note that the sign dependence of S−1 = ±
√
Q0 reflects to the odd terms as

±S2j+1 but not to the even terms. Using this relation, one will have a simpler form

ψ = 1√
Sodd

e

∫ x
x0
Sodddx (A.20)

Sodd ≡
∑
j≥0

η1−2jS2j−1. (A.21)

Depending on the sign of the first S−1, there are two solutions ψ±, which are given by

ψ± = 1√
Sodd

exp
(
±
∫ x

x0
Sodddx

)
. (A.22)

The above WKB expansion is usually divergent.
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Figure 10. The wavy lines are the paths of integration in the Borel resummation. Since the paths
overlap when Im[s] = 0, the Stokes phenomena appears if one crosses the Stokes lines defined by
Im[s] = 0.

Let us consider the Borel resummation for the WKB expansion. Since x appears in the
coefficients of the η expansion, we consider the Borel resummation for η, not for x. Note
that this point is different from the simplest example discussed in the previous section. We
thus have

ψ± → Ψ± ≡
∫ ∞
∓s(x)

e−yηψB±(x, y)dy, (A.23)

s(x) ≡
∫ x

x0
S−1(x)dx, (A.24)

where the y-integral is parallel to the real axis. What is important here for the Stokes
phenomena is that the starting point of the integration is naturally moved from the origin
to s(x) due to S−1η and yη in the exponent. Now the starting points of the integration
paths depend explicitly on the original coordinate x. See figure 10 for more information
about the contour and the Stokes phenomena.

Therefore, one can easily expect that if one moves in the complex x space, the integra-
tion contour may cause the Stokes phenomena similar to the one discussed in the previous
section.

See also the simplest example in section 2.3, which clearly explains why EWKB is
useful.

Locally, the Stokes phenomenon around the turning points (Q = 0) can also be ex-
plained by using the Airy function (Q(x) = x). However, to generalize the discussion, the
technique of the Borel resummation seems to be inevitable.

B The exact WKB for cosmological particle production

In this appendix, we show the calculation of cosmological particle production in the light
of the Exact WKB. We show explicitly the Stokes lines for bosonic and fermionic preheat-
ing and examine the adequacy of the conventional linear approximation at the enhanced
symmetry point (ESP). After the linear approximation, which is local, the connection for-
mula at that point is identical to the scattering problem by an inverted quadratic potential
(for bosonic preheating) or the Landau-Zener transition (for fermionic preheating), whose
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Stokes lines are given by the Merged pair of simple Turning Points(MTP). If the imaginary
part of Q0 remains, the MTP is unmerged.

The Stokes lines in this appendix are drawn by using Mathematica.21

B.1 Bosonic preheating

We first review the standard calculation based on the special function and then explain
the EWKB calculation.

B.1.1 Standard calculation: exact local solution after linear approximation,
m(t)→ m(ti) + ṁ(ti)(t− ti)

Just after inflation, the motion of the inflaton field is usually a damped oscillation, whose
particle production cannot be solved exactly. However, at least near the center of the
oscillation, or very close to the ESP where particle production is likely to take place, the
linear approximation can be made with respect to t. We are going to review the local
solution obtained from the linear approximation at the ESP.

One can rewrite the inflaton motion as φ(t) = φ(ti) + φ̇(ti)(t− ti), where ti is the i-th
minimum of m2(t). Typically, the mass of a scalar field (e.g, χ) is given by

m2
χ(t) = m2

0 + g2
2φ(t)2, (B.1)

where φ(t) is the oscillating inflaton field. If we consider the Lagrangian

Lχ = 1
2∂µχ∂

µχ− 1
2m

2
0χ

2 − 1
2g

2
2φ(t)2χ2, (B.2)

the equation of motion is

d2χ

dt2
+
[
k2 +m2

χ(t)
]
χ = 0. (B.3)

If one replaces φ(t) with φ(t) ' vt, the equation is equivalent to the Schrödinger equation
with the “inverted quadratic potential”. Then the connection formula is obtained by solving
the quantum scattering problem. The “potential” is given by

V (t) = −
(
g2

2v
2
)
t2, (B.4)

where the corresponding “energy” is

E = k2 +m2
0. (B.5)

Since E > V is always true in this case, there is no classical turning point of the scattering
problem. Here we have neglected the expansion of the Universe, which can be introduced
by making redefinitions of the parameters.

Typically, the WKB expansion is used to find

χk(t) = αk(t)√
2ωk

e−i
∫ t

ωdt + βk(t)√
2ω

e+i
∫ t

ωdt, (B.6)

21A simple Stokes-line drawer for Mathematica can be downloaded from [51].
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where

ωk(t) ≡ k2 +m2
χ(t). (B.7)

We take αk = 1, βk = 0 for the initial vacuum state. The distribution of the particle in the
final state is

nχ(k) = |βk|2, (B.8)

which can be found by solving the scattering problem of the corresponding Schrödinger
equation. For the above model (i.e, scattering by the inverted quadratic potential), the
following Weber equation

y′′(z) +
(
ν + 1

2 −
1
4z

2
)
y(z) = 0 (B.9)

has the solution Dν(z), D−ν−1(iz). More specifically, one can define

z ≡ ieiπ/4
√

2g2vt (B.10)

in the original field equation to find

d2χ

dz2 +
[
ν + 1

2 −
1
4z

2
]
χ = 0. (B.11)

Here we defined

ν = k2 +m2
0

2g2v
i− 1

2 , (B.12)

and for later use we define

κ ≡ k2 +m2
0

2g2v
(B.13)

and

ν = iκ− 1
2 . (B.14)

Here, κ is later used to estimate the particle production. Comparing the asymptotic forms
of the Weber function, one will find [32]

Dν(z) ' e−i
g2v

2 t2e(iκ−
1
2 )(log(

√
2g2v|t|)−iπ4 ),

D−ν−1(iz) ' e+i g2v
2 t2e(−iκ−

1
2 )(log(

√
2g2v|t|)+iπ4 ).

(B.15)

In the limit t→ −∞, the above solutions are giving the ±WKB solutions of eq. (B.6).
Therefore, one will have in the t→ −∞ limit

χ− → Dν(z) (B.16)
χ+ → D−ν−1(iz). (B.17)
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In the opposite t→ +∞ limit, we have

Dν(z) ' e−i
g2v

2 t2e(iκ+ 1
2 )(log(

√
2g2vt)+i 3π

4 ) + i

√
2π

Γ(−ν)e
i
g2v

2 t2e−κπe(−iκ−
1
2 )(log(

√
2g2vt)+i 3π

4 ),

(B.18)

which shows that in the t = +∞ limit the asymptotic form of the exact solution Dν(z) is
the mixture of the ±WKB solutions. Thus we find the exact connection formula using the
special function.

In this case, the connection formula gives the Bogoliubov transformation of the WKB
solutions.22 Finally, we obtain the connection matrix(

α+∞
k

β+∞
k

)
=
(√

1 + e−2πκeiθ1 ie−πκ+iθ2

−ie−πκ−iθ2
√

1 + e−2πκe−iθ1

)(
α−∞k
β−∞k

)
. (B.22)

Here, all the phase parameters are put into θ1,2(k).

B.1.2 The exact WKB for bosonic preheating

First, we use the EWKB to find the connection formula of the local solution, which is the
exact local solution of the theory after linear expansion. Then we show the global structure
of the original Stokes lines and show why such a local solution is justified.

The Stokes phenomenon around the turning points can be easily understood using the
Airy function (Q(x) = x). In this case, the Stokes lines are defined by

Im[s(x)] = Im
[∫ x

0
x1/2dx

]
= Im

[2
3x

3/2
]

= 0, (B.23)

which is shown in figure 11. If Re[s(x)] > 0, ψ+ is dominant on the Stokes line, while if
Re[s(x)] < 0, ψ− is dominant.

When the integration paths of the Borel resummation overlap on the Stokes line, it
may develop additional contributions, which is called the Stokes phenomenon. We have
the following connection formulae:

• Crossing the ψ+-Dominant Stokes line with anticlockwise rotation (seen from the
turning point)

Ψ+ → Ψ+ + iΨ− (B.24)
Ψ− → Ψ− (B.25)

22One has to use

Γ(z)Γ(1− z) = π

sinπz (B.19)

Γ(z̄) = Γ(z) (B.20)

1 + ν = 1 +
(
iκ− 1

2

)
= −ν (B.21)

for the calculation of Γ(−ν) = Γ
(
−iκ+ 1

2

)
.
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Turning point

Figure 11. The Stokes lines for Q = x.

Figure 12. The Stokes lines for the inverted quadratic potential (Q = −1− t2).

• Crossing the ψ−-Dominant Stokes line with anticlockwise rotation (seen from the
turning point)

Ψ− → Ψ− + iΨ+ (B.26)
Ψ+ → Ψ+ (B.27)

• Inverse rotation gives a minus sign in front of i.

Here, we are confined to the Airy function, but generalization of this idea requires more
calculation [35, 36].

Let us use these simple formulae to solve the scattering problem by the inverted
quadratic potential (E > 0). We show the Stokes lines in figure 12, which has a typi-
cal MTP structure.

The degeneracy of the Stokes line can be solved (the MTP can be unmerged) by
introducing imaginary parameters, as is explicitly shown in figure 13. One can calculate
the connection formula 1→ 2→ 3, as is shown in ref. [32]. One thing that is not trivial is
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Figure 13. The Stokes lines of the MTP are unmerged by [Q = −1− t2]→ [Q = −(1 + 0.3i)− t2].

the relation between the normalization factor and the gap, which appears when the sign of
the imaginary part is changed (e.g, E+ iε↔ E− iε) For the normalization factor, we have

ψ± = 1√
Sodd

exp
(
±
∫ x

x0
Sodddx

)
= ψ

(∞)
± exp

(
±
∫ x

x0
(Sodd − ηS−1) dx

)
, (B.28)

ψ
(∞)
± = 1√

Sodd
exp

(
±
∫ x

x0
S−1dx

)
exp

(
±
∫ x

∞
(Sodd − ηS−1) dx

)
. (B.29)

Among them, what is not trivial is

exp
(
±
∫ x

x0
(Sodd − ηS−1) dx

)
. (B.30)

This gives for Q(x) = λ− x2

4 ,

2
∫ x

2
√
λ

(Sodd − ηS−1) dx =
∞∑
n=1

21−2n − 1
2n(2n− 1)B2n(iηλ)1−2n, (B.31)

where B2n is the Bernoulli number. Because of this, one has the gap given by

Ψ(Imλ<0)
+ =

√
1 + e−2πληΨ(Imλ>0)

+ . (B.32)

The calculation can be generalized to give the factor appearing on both sides of more
generic MTP [49, 50].

From the above results, one can understand that each separable MTP structure will
have the local connection matrix given by eq. (B.22). This idea is very useful for calculating
particle production by a damped oscillation. To understand more about the idea, we need
to draw the global structure of the Stokes lines. We assume that the mass is given by
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Figure 14. The Stokes lines for Q(t) = −1−e−0.3(t+3) cos2(2t) and a plot of Q(t). Separable MTP
structures are appearing at the minima of m2

χ.

mχ(t)2 = g2φ(t)2 = g2(e−Γt cos(at))2. From figure 14, one can easily understand that the
linear expansion at the local minimum of m2

χ (i.e, the local maximum of the “potential”)
is giving a good approximation.

As we have stated above, the MTP structure is obvious in bosonic preheating. Because
of the separable MTP structure, linear approximation at the ESP is easily justified and the
calculation becomes local. The situation is slightly complicated for fermionic preheating.

B.2 Fermionic preheating

As we have described for bosonic preheating, we start with the local solution after lin-
ear approximation, which is nothing but the Landau-Zener model. Since the fermionic
preheating with a linear φ(t) is an old idea, we carefully follow ref. [41] to avoid confusion.

We consider the Dirac fermion whose mass is

mD(t) = m0 + gφ(t), (B.33)

where mD is real. The Dirac equation is

(i/∂ −mD)ψ = 0, (B.34)

whose solution can be decomposed as

ψ =
∫

d3k

(2π)3 e
−ik·x∑

s

[
usk(t)ask + vsk(t)bs†−k

]
. (B.35)
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Following ref. [41], we choose the momentum along the third direction k = kz and introduce
u±. Then one obtains a two-component differential equation23

u̇± = iku∓ ∓ imDu±, (B.38)

which can be written as

i
d

dt

(
u+
u−

)
=
(
m0 + gφ(t) −k
−k −m0 − gφ(t)

)(
u+
u−

)
. (B.39)

Note that this equation is similar to the Landau-Zener model. For m0 + gφ(t) = vt, the
equation of motion is nothing but the original Landau-Zener model, which is solved in
ref. [37]. Decoupling the equations, one can use the EWKB.

For the bosonic preheating scenario, we have seen that the global structure of the
original Stokes lines has separable MTP at each minimum of m2

χ, which supports the
conventional local calculation of the connection formula [23].

Let us see if such structure appears in fermionic preheating. Decoupling the equations,
we find for u+;

u+ = −
(
k2 +m2

D

~2 + i
ṁD

~

)
u+. (B.40)

For mD(t) = m0 +A cosωt, we find

Q0 = −k2 − (m0 +A cosωt)2. (B.41)

We show the “potential” V (t) = −k2 − (m0 + A cosωt)2 and the Stokes lines in figure 15,
which shows the expected MTP structure at each massless point, where “the states cross”
in terms of the Landau-Zener model. We thus confirmed that the linear expansion at
the crossing point, which is used in the Landau-Zener model, is justified because of the
separable structure of the Stokes lines.

On the other hand, if one chooses m(t) = m0 +A cos(at/~), in which ~ is explicit, one
will find an additional imaginary part in

Q0 = −k2 −
(
m0 +A cos at

~

)2
− iaA sin at

~
, (B.42)

which unmerges the MTP. The Stokes lines are shown in figure 16, which have the expected
structure.

23According to [41], the representation of the gamma matrices is chosen as

γ0 =
(

1
−1

)
, γ1 =

(
−iσ2

−iσ2

)
, (B.36)

γ2 =
(

iσ1

iσ1

)
, γ3 =

(
1

−1

)
. (B.37)
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Figure 15. Left: plot of mD(t) and the Stokes lines. One can see that the MTP appears at
each massless point (when the states cross in the light of the Landau-Zener model). Right: mD

cannot be massless because of large m0. Since the local linear approximation is not valid at the
minimum of mD, the corresponding scattering problem is not for the quadratic potential, but for
the (higher) quartic potential. One can see that the Stokes lines are giving the structure of the
quartic scattering [32] at each minimum.
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Figure 16. A plot of m(t) and the Stokes lines when ~−1 is explicit in the phase of the periodic
function. One can see that the MTP is unmerged by the imaginary part.

On the other hand, if one expands this (latter) mD at the massless point (t = ti), one
will have

mD ' m0 + 1
~

[
Aa sin ati

~

]
(t− ti), (B.43)
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Figure 17. Left: plot of mD(t) and the Stokes lines when mD has mD = 0 for real t. One can
see that the MTP-like structure appears at each massless point. (The Stokes lines are infinitely
degenerated in this case.) Right: although mD cannot have mD = 0 for real t, the Stokes lines are
crossing the real t axis. This suggests that particle production may take place when the velocity
increases.

which formally ruins the WKB expansion since it contains an extra ~−1 in the “small”
part. In this sense, it would be better to define ω ≡ a/~ to control the ~ expansion before
discussing the local (linear) expansion.

Finally, let us see what happens if mD(t) has a bump;

mD(t) = m0 ±
Aeγt

(1 + eγt)2 . (B.44)

In this case, the massless points can appear only for the minus sign. We show the Stokes
lines in figure 17, which shows the expected MTP-like structure on the left. On the right,
however, the Stokes phenomena seem to be possible although state crossing (in the light of
the Landau-Zener model) does not appear. The particle production without state crossing
can be verified by numerical calculation, although the magnitude is suppressed.

Also in this case, the introduction of ~ in the exponents causes a split of the MTP-like
structure. For example, one can consider

mD(t) = m0 ±
Ae

at
~(

1 + e
at
~
)2 , (B.45)

which introduces the additional imaginary part in Q0. The Stokes lines are shown in
figure 18.

C Distribution of Majorana fermion

In this section, we show the formula of the distribution function of the Majorana fermion
described by the wave functions and its equation of evolution.
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Figure 18. Left: plot of mD(t) and the Stokes lines when mD can cross mD = 0. Right: when
mD cannot cross mD = 0. The Stokes lines split due to the imaginary part.

C.1 Distribution formula

Using the mode expansion (2.4), the Hamiltonian can be represented as

H =
∫
d3x

(
−ψ†Riσ̄

i∂iψR + 1
2mRψ

2
R + 1

2m
∗
Rψ
†2
R

)
=
∫

d3k

(2π)3

∑
s=±

1
2
[
Esk(a

s†
k a

s
k − as−ka

s†
−k) +

(
F sk · eiθkas−ka

s
k + (h.c.)

)]
(C.1)

=
∫

d3k

(2π)3

∑
s=±

1
2( as†k eiθkas−k )

(
Esk F s∗k
F sk −Esk

)(
ask

e−iθkas†−k

)
(C.2)

where

Esk ≡ −s|k|(|usk|2 − |vsk|2) + smRu
s
kv
s∗
k + sm∗Ru

s∗
k v

s
k, (C.3)

F sk ≡ −2s|k|uskvsk − smR(usk)2 + sm∗R(vsk)2. (C.4)

Note that Esk and F sk have a nontrivial relation

(Esk)2 + |F sk |2 = ω2
k, ωk ≡

√
|k|2 + |mR|2 (C.5)

because of the normalization of the wave functions |usk|2 + |vsk|2 = 1. To obtain the number
operator, we diagonalize the Hamiltonian (C.2) using the (time-dependent) Bogoliubov
transformation

ask = αsk(t)āsk(t) + βsk(t) · e−iθk ās†−k(t), (C.6)

where αsk and βsk are the Bogoliubov “coefficients” that satisfy

|αsk|2 + |βsk|2 = 1. (C.7)

Substituting (C.6) into (C.2), the Hamiltonian can be represented in terms of āsk-basis as

H =
∫

d3k

(2π)3

∑
s=±

1
2( ās†k eiθk ās−k )

(
Ēsk F̄ s∗k
F̄ sk −Ēsk

)(
āsk

e−iθk ās†−k

)
(C.8)
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where

Ēsk = (|αsk|2 − |βsk|2)Esk − αskβskF sk − αs∗k βs∗k F s∗k (C.9)
F̄ sk = 2αskβs∗k Esk + (αsk)2F sk − (βs∗k )2F s∗k . (C.10)

As F̄ sk = 0 is chosen to diagonalize Hamiltonian, one can obtain

|βsk|2 = 1
2

(
1− Esk

ωk

)
, αsk = −ωk + Esk

F sk
βs∗k . (C.11)

Hence the Hamiltonian can be diagonalized as

H =
∫

d3k

(2π)3

∑
s=±

1
2( ās†k eiθk ās−k )

(
ωk
−ωk

)(
āsk

e−iθk ās†−k

)
(C.12)

=
∫

d3k

(2π)3

∑
s=±

ωk

(
ās†k ā

s
k −

1
2

∫
d3x

)
. (C.13)

The distribution function nsk can be obtained by the time-dependent occupation operator
and the initial vacuum state defined by ask|0〉 = 0 as

nsk(t) = 〈0|ā
s†
k ā

s
k|0〉∫

d3x
(C.14)

= |βsk|2 = 1
2

(
1− Esk

ωk

)
. (C.15)

C.2 Zero particle state

Before we derive the evolution equation of the distribution function, we discuss the specific
representation of each wave function in the zero particle state. The zero particle state
nsk = 0 corresponds to Esk = ωk and F sk = 0, that are equivalent to

ωk = −s|k|(|usk|2 − |vsk|2) + smRu
s
kv
s∗
k + sm∗Ru

s∗
k v

s
k, (C.16)

0 = −2s|k|uskvsk − smR(usk)2 + sm∗R(vs∗k )2 (C.17)

from (C.3) and (C.4). Solving the above equations about the wave functions usk and vsk,
one can obtain

usk = eiα ·
√

1
2

(
1− sk

ωk

)
, (C.18)

vsk = eiα · smR

|mR|

√
1
2

(
1 + sk

ωk

)
(C.19)

where α is an arbitrary phase. Note that the above results mean not functional solutions
but just values at a time to be nsk = 0.
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C.3 Equation of evolution

In this section, we consider obtaining the equation of evolution of the distribution func-
tion (C.15). Note that the original equations of motion of the wave functions (2.8) seem
2 × 2 = 4 real degrees, but the actual degrees are 4 − 1 = 3 because there is a conserva-
tion law

|usk(t)|2 + |vsk(t)|2 = 1. (C.20)

Since the distribution nsk is described by Esk that includes |usk|2 − |vsk|2 (1 real degree) and
uskv

s∗
k (2 real degrees), it is enough to follow the evolution of these functions. The time

derivatives of these functions are given by

∂t(|usk|2 − |vsk|) = 2is(mRu
s
kv
s∗
k −m∗Rus∗k vsk), (C.21)

∂t[uskvs∗k ] = ism∗R(|usk|2 − |vsk|2) + 2iskuskvs∗k ,
(C.22)

that can be represented by a matrix form as

∂t

 |u
s
k|2 − |vsk|
uskv

s∗
k

us∗k v
s
k

 = isF

 |u
s
k|2 − |vsk|
uskv

s∗
k

us∗k v
s
k

 (C.23)

F ≡

 0 2mR −2m∗R
m∗R 2k 0
−mR 0 −2k

 . (C.24)

Eq. (C.23) indicates the equations are closed within the three functions. Because Esk is
described by the three functions |usk|2−|vsk|2, uskbs∗k , us∗k bsk, the arbitrary higher derivations
of Esk also be described by those three functions. This fact indicates that Esk, Ėsk, Ësk can
be independent, and thus the higher derivatives ∂nt Esk (n ≥ 3) can be described by a linear
combination of Esk, Ėsk, Ësk. Since the time derivatives of Esk in (C.3) are given by

Ėsk = sṁR · uskvs∗k + sṁR · us∗k vsk, (C.25)
Ësk = i(m∗RṁR − ṁ∗RmR)(|usk|2 − |vsk|2) + (sm̈R + 2ikṁR)uskvs∗k + (sm̈∗R ∗ −2ikṁ∗R)us∗k vsk,

(C.26)

one can obtain the matrix representation asE
s
k

Ėsk
Ësk

 = sG

 |u
s
k|2 − |vsk|2

uskv
s∗
k

us∗k v
s
k

 (C.27)

G ≡

 −k mR m∗R
0 ṁR ṁ∗R

is(m∗RṁR − ṁ∗RmR) m̈R + 2iskṁR m̈∗R − 2iskṁ∗R

 . (C.28)
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Hence, the evolution of a set of Esks are described by

∂t

E
s
k

Ėsk
Ësk

 = sĠ

 |u
s
k|2 − |vsk|2

uskv
s∗
k

us∗k v
s
k

+ iGF

 |u
s
k|2 − |vsk|2

uskv
s∗
k

us∗k v
s
k

 (C.29)

=
(
Ġ+ isGF

)
G−1

E
s
k

Ėsk
Ësk

 . (C.30)

In general, the components of
(
Ġ+ isGF

)
G−1 are given by

(
Ġ+ isGF

)
G−1 =

 0 1 0
0 0 1
f1 f2 f3

 (C.31)

where f1, f2, f3 are functions that consist of the time-dependent mass mR, helicity s, and
the momentum |k|.

Let us consider a special case m̈R = 0. Then one can obtain simple results:

f1 = 4Re[m∗RṁR], f2 = −4ω2
k, f3 = 0, (C.32)

that lead
...
E
s
k = f1E

s
k + f2Ė

s
k + f2Ë

s
k

= 4Re[m∗RṁR] · Esk − 4ω2
kĖ

s
k. (C.33)

Choosing the initial condition to be the zero particle state, each of the initial values is
given by E

s
k

Ėsk
Ësk

 =

 ωk
Re[m∗RṁR]/ωk

0

 (C.34)

where we used (C.18), (C.19), and (C.27). Note in this case that Esk can evolve but E+
k −E

−
k

cannot because the equation of evolution is described by

∂3
t (E+

k − E
−
k ) = 4Re[m∗RṁR] · (E+

k − E
−
k )− 4ω2

k · ∂t(E+
k − E

−
k ) (C.35)

and all the initial values of E+
k −E

−
k , ∂t(E

+
k −E

−
k ), ∂2

t (E+
k −E

−
k ) are zero. Thus, we can

conclude that the net number

n+
k − n

−
k = −E

+
k − E

−
k

2ωk
(C.36)

also never develops from the zero particle state in the case of m̈R = 0. One can also obtain
the same statement in the case of k = 0.

Open Access. This article is distributed under the terms of the Creative Commons
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