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1 Introduction

The Cabibbo-Kobayashi-Maskawa (CKM) matrix is a unitary matrix which governs the
mixing of different flavours of quarks in the Standard Model (SM). The four independent
parameters of the CKM matrix are the fundamental parameters of the SM, and hence a
precise determination of these elements is important to validate the SM, as well as to probe
physics beyond it. The study of charged current and neutral current induced processes thus
plays a crucial role in achieving the same. Charged current processes are present at tree level
while flavour changing neutral current processes are present only at the loop level in the SM.
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At the quark level, a B-meson decays to a D or π-meson via an exchange of virtual W
boson which can further decay to `-ν` pair. The strength of these semileptonic B-meson
decays is governed by the CKM elements |Vcb| and |Vub|, respectively. Their amplitude
can be factorised into the leptonic and the hadronic parts which helps in factoring out
the hadronic uncertainties coming due to our lack of understanding of strong interactions.
Hence they provide an excellent ground to measure the CKM elements |Vcb| and |Vub|
[1–9]. Alternatively, these CKM elements can also be extracted from inclusive decays,
B → Xc,u`ν` [10–19]. Other exclusive modes can also be considered but will not be the
focus of the discussion below.

On the experimental front, |Vcb| and |Vub| show discrepancy of ∼ 3σ and ∼ 3.5σ, re-
spectively between the inclusive and the exclusive determinations. These discrepancies are
popularly known as the |Vcb| and |Vub| puzzles (or ‘exclusive’ vs ‘inclusive’ puzzles) [20–23].
Whether the origin of such a discrepancy in |Vcb| and |Vub| is a hint of new physics, or simply
a consequence of the underestimation of the theoretical and/or experimental uncertainties
is still an open question [24–35]. The origin of theoretical uncertainties essentially lies in
computing non-perturbative quantities entering the respective decay modes reliably, while
at the same time applying suitable kinematical cuts.

Though theoretical uncertainties get lowered by using more precise form factors calcu-
lated using Light Cone Sum Rules (LCSRs) and lattice QCD, their complete removal seems
a nearly impossible task with our current understanding and capabilities of handling strong
interactions. Hence, one looks for observables where these hadronic uncertainties can be
removed or significantly minimised. In view of this, many lepton flavour universality (LFU)
ratios have been proposed in literature like RK(∗) , RD(∗) [36–43]. Here, RK(∗) is defined
by the ratio of the branching ratio of B → K(∗)µµ to the branching ratio of B → K(∗)ee

while RD(∗) is defined by the ratio of branching ratio of B → D(∗)τν to the branching
ratio of B → D(∗)µν. Though these ratios are less sensitive to hadronic uncertainties by
construction, but what about the soft photon QED corrections? The experimental analysis
partially includes the effect of soft photons using the PHOTOS Monte-Carlo generator [44–
46]. However, the contributions like the emission of photons depending on the structure of
hadrons, the interference between the initial and final state emissions and virtual correc-
tions are not included in PHOTOS. To have an understanding of the complete dynamics
inclusion of these contribution becomes important. It has been found that on inclusion of
these contributions, the LFU ratios are not free from soft photon QED corrections [47–53],
particularly when photon energy and/or angular cuts have to be explicitly specified. This
leads us to the quest for observables which should be less sensitive to hadronic uncertainties
as well as the QED corrections due to soft photons.

Experimental analysis has been performed for the ratio of the CKM elements, |Vub||Vcb|
using two different modes: (1) the baryonic modes (Λob → pµ−ν̄µ and Λob → Λ+

c µ
−ν̄µ)

leading to |Vub|/|Vcb| = 0.083± 0.004 [54, 55]; and (2) the mesonic modes (Bo
s → K−µ+ν̄µ

and Bo
s → D−s µ

+ν̄µ) giving |Vub|/|Vcb| = 0.095 ± 0.008 (0.061 ± 0.004) for high q2 (or low
q2) [56]. Also, it is interesting to note that, using the PDG values [21], the ratio |Vub||Vcb|
formed for exclusive determinations of |Vub| and |Vcb| is in fantastic agreement with that
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for inclusive determinations.

|Vub|
|Vcb|

∣∣∣∣high q2

excl
= 0.094± 0.005 |Vub|

|Vcb|

∣∣∣∣high q2

incl
= 0.101± 0.007 (1.1)

Intrigued, and motivated by this, we consider the ratio |Vub||Vcb| ≡ RV in the present study.
We show that this ratio gets negligible corrections from soft photons and explicitly check
that it is minimally affected by the choice of the form factors adopted for B → D and
B → π transitions.1 We therefore suggest the use of RV in phenomenological studies as it
is a cleaner observable compared to the usual LFU ratios, and can have better potential in
probing new physics.

The rest of the paper is organised as follows: in section 2, we discuss the decay width
of the non-radiative process B → Pµνµ decay where P = π or D-meson. In section 3, we
discuss the impact of soft photon QED corrections to B → Pµνµ decay due to real and
virtual photon emission at O(α). In this section, we also discuss the photon inclusive case
and the phase space structure for this radiative decay. In section 4, we discuss our results
for the effect of soft photon correction on the observable RV and sensitivity to the choice
of form factors. Finally, we conclude in section 5 and discuss the implications of the use of
RV for beyond the standard model searches.

2 Non-radiative B → P`ν` (P = D,π)

Consider the process B(pB,mB)→ P (pP ,mP )`(p`,m`)ν`(pν , 0) where, P is a pseudo-scalar
meson (D or π). If the final state massless particles are left unobserved, then the second
order differential decay rate for this process can be described fully by two independent
Lorentz invariant variables

y = 2pB.pl
m2
B

, and z = 2pB.pP
m2
B

. (2.1)

One can also choose the Mandelstam variables q2 = (pB − pP )2 ≡ m2
B +m2

P − 2pB.pP and
sB` = (pB − p`)2 ≡ m2

B + m2
` − 2pB.p` instead of y and z. The amplitude for B → P`ν`

can be factorised into the hadronic and the leptonic contributions as

M0(B → P`ν`) = GF√
2
VqbHµ(pP , pB)Lµ. (2.2)

Here |Vqb| (q = c, u) is the CKM matrix element and GF is the Fermi constant. Lµ(=
u`γ

µ(1 − γ5)vν`) and Hµ are the leptonic and the hadronic matrix elements, respectively.
Hµ can be parametrized in terms of two q2 dependent form factors, fP+ and fP0 as

Hµ(pP , pB) = (pB + pP )fP+ + (pB − pP )fP− (2.3)
1It should be borne in mind that the experimental extractions above differ in the low- and high- q2

regions due to differences in the employed form factors. This is due to the fact that currently the form
factors derived with different approaches are known with better accuracy in different q2 regions. Thus, it
is important to choose the q2 range judiciously to ensure that the observable is least affected by the choice
employed. It is in this sense we mean independent of form factor choice.
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where fP− = m2
B−m

2
P

q2 (fP0 −fP+ ). These form factors are computed via different methods like
LCSRs or lattice QCD, and often employing different parametrization. However, the choice
of form factors does not play a significant role for the determination of |Vub||Vcb| (see section 4).

For the present study, we have chosen the model independent parametrization for
B → D`ν` and z-expansion parametrization for B → π`ν`. The explicit form of these form
factors in these parametrizations are given in appendix B. It is to be noted that these form
factors for both the processes are valid for the entire q2 range.

The total decay width for the non-radiative process B → P`ν` reads

Γ0 = mB

256π3

∫
dz

∫
dy |M0|2B→P`ν` , (2.4)

where |M0|2B→P`ν` = G2
F

2 |Vqb|
2
(
(fP0 )2c1 + (fP+ )2c2 + fP0 f

P
+ c3

)
, (2.5)

with the coefficients ci (where i = 1, 2, 3) given by

c1 = −
4(m2

B−m2
P )2m2

l

(
(z−1)m2

B+m2
l−m2

P

)
(m2

P−(z−1)m2
B)2 ,

c2 = − 4m2
B

(m2
P−(z−1)m2

B)2

[
−(z−1)m4

B

(
m2
l (4y(z−2)+3z2−8z+8)+4m2

P (2y2+2y(z−2)

−3z+3)
)
+m2

B(m2
Pm

2
l (4y(z−2)+3z2−4z+4)+(z−2)2m4

l +4m4
P (y2+y(z−2)−3z+3))

+4(y−1)(z−1)2m6
B(y+z−1)−4m2

Pm
2
l +4m2

P

]
, and

c3 = 8m2
B(m2

B−m2
P )m2

l

(
(z−1)m2

B(2y+z−2)−(z−2)m2
l−m2

P (2y+z−2)
)

(m2
P−(z−1)m2

B)2 . (2.6)

We now discuss the effect of soft photon emission on this decay width.

3 Soft photon QED corrections to B → P`ν`

Here, we have two possibilities for charge assignment of the particles: first is where P is
charged and B is neutral, and second where B is charged and P is neutral. The computation
for the soft photon corrections in the two cases is analogous with minute difference in the
selection of the kinematic variables. We present the case of B− → P 0`−ν̄` here and point
out the necessary differences for the case of B0 → P+`−ν̄` wherever required.

3.1 Correction due to real photon emission

The Feynman diagrams contributing to the real photon emission are shown in figure 1.
Considering the mesons to be point-like and employing scalar QED, the amplitude for
B → P`ν`γ, with photon being soft, can be written as a sum of Low’s term [57] (IR
divergent) and an IR safe contribution [58].

MB→P`ν`γ = MIR +MNIR. (3.1)

Here, MIR = eεαM0

(
− pαB
pB.k

+ pα`
p`.k

)
(3.2)
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Figure 1. Representative diagrams for real photon emission. (a) The photon emission from one of
the external charged leg (× denotes the different possibilities for photon emission). (b) The contact
term contribution.

is the Low’s soft photon amplitude and the term in paranthesis is called as the universal
soft photon function. MNIR captures the effect of the internal structure of the mesons in
terms of form factors. It consists of the contributions coming from the so called residual
term and the contact term (CT). The explicit form ofMNIR is

MNIR = GF√
2
Vqb(Mres +MCT). (3.3)

Here,

Mres = eεα(k)
[(
ū(p`)γα

/k

2p`.k
Γµv(pν)

)
⊗Hµ(pB,pP )+(fP+ +fP− ) pαB

pB.k
ū(p`)Γµv(pν)kµ

]
,

MCT = −eεµ(k)(fP+ +fP− )ū(p`)Γµv(pν). (3.4)

CT is important to ensure gauge invariance of the amplitude and is constructed as in [53].
It is important to notice that it is proportional to the charge of the meson and not the
lepton which signifies that the leptonic contribution is gauge invariant by itself and CT is
necessary to make the hadronic contribution gauge invariant. CT can be introduced via
an effective term in the Hamiltonian at the hadronic level, given by

HCT = −ie(fP+ − fP− ) [ū(p`)Γαv(pν)]Aαφ†PφB. (3.5)

This term contributes to real as well as virtual corrections. Including the CT contribution,
the total gauge invariant amplitude for real soft photon emission reads as

MB→P`ν`γ = eεα(k)
[
M0

(
− pαB
pB.k

+ pα`
p`.k

)
+ ū(p`)

γα/k

2p`.k
Γµv(pν)Hµ

+(fP+ + fP− )ū(p`)
(
pαB
pB.k

/k − γα
)

(1− γ5)v(pν)
]
. (3.6)

From eqs. (3.2) and (3.3)

|MB→P`ν`γ |
2 = |MIR|2 + |Mres|2 + |MCT|2 + 2Re(M∗IRMres) + 2Re(M∗IRMCT)

+2Re(M∗resMCT). (3.7)

Numerically, the contributions from |Mres|2, |MCT|2, 2Re(M∗IRMCT) and
2Re(M∗resMCT) turn out to be very small (typically contribute at less than 0.1%).
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Figure 2. Dalitz plot showing the phase space boundaries for the lepton (magenta) and meson
(blue) energies for the non-radiative processes: (a) B− → D0µ−νµ and (b) B− → π0µ−νµ.

Therefore, we drop these terms and consider only the remaining terms for numerical
computations which give significant contribution to the decay width. One encounters
collinear divergences during these computations. Even though for the case of heavy
leptons (` being µ or τ) in the final, the decay rate is less sensitive to collinear divergences,
it is important to explicitly check the cancellation of these divergences. For this purpose,
it is convenient to consider the photon emission to be inclusive and choose right set of
kinematical variables.

3.1.1 Photon inclusive

Considering the photon to be inclusive, the total decay width for the process B → P`ν`γ is

Γ|B→P`ν`γ = 1
2mB

∫
d3pP

(2π)32EP

∫
d3pl

(2π)32El

∫
d3pν

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4

×δ4 (Q− pν − k) |M|2B→P`ν`γ (3.8)

where Q = (pB − pD − p`).
It is a four body process which contains B → P`ν` as a subset. Graphically, it can be

seen using the Dalitz plots as shown in figure 2. The Dalitz plot is found to be linear in
the decaying meson’s energy and quadratic in the lepton energy.

It is to be noted here that the delta function present in the eq. (3.8) imposes x ≥ 0,
where x (= Q2/m2

B) is the normalised total missing mass energy, introduces Θ(x). Θ(x)
partitions the full phase space into D3 (three body region) and D4−3 (the remaining region)
which helps us in writing the decay width as

Γ|B→P`ν`γ = m3
B

512π4

[ ∫
D3
dydz

∫ x+

0
dx+

∫
D4−3

dydz

∫ x+

x−
dx

] ∫
d3k

(2π)32Ek

∫
d3pν

(2π)32Eν
×(2π)4δ4(Q− pν − k) |M|2B→P`ν`γ . (3.9)

The real photon emission gets contribution from the three body (D3) as well as the four
body (D4−3) phase space regions. Considering the first part of equation (3.9) we have

ΓD3 |B→P`ν`γ = m3
B

512π4

∫
D3

dydz

∫ x+

0
dx

∫
d3k

(2π)32Ek
(2π)4δ(xm2

B−2Q.k)|M|2B→P`ν`γ (3.10)

with |M|2B→P`ν`γ = |MIR|2+2Re(M∗IRMres). (3.11)
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This results in the second order differential decay width (which is free from both IR and
collinear divergences once the virtual corrections are also considered) and reads as

d2ΓD3

dydz
= m3

B

256π3
α

π

[
|M0|2 I0(y, z,m2

γ) + G2
F |Vcb|

2

2

∫ x+

0
dx
∑
m,n

Cm,nIm,n(x, y, z)
]
(3.12)

with Im,n = 1
8π

∫
d3pν
Eν

∫
d3k

Ek
δ4(Q− pν − k) 1

(pB .k)m(p`.k)n , and (3.13)

I0 =
∫ x+

m2
γ/m

2
B

dx
[
2pB .p`I1,1(x, y, z)−m2

BI2,0(x, y, z)−m2
`I0,2(x, y, z)

]
. (3.14)

The integrals (I0, Im,n) and the coefficients Cm,n are listed in appendix C. For practical
purposes, it is better to consider the photon exclusive case which is discussed in the next
sub-section.

3.1.2 Photon exclusive

Now, we consider the exclusive photon case with kmax being the maximum energy carried by
the soft photon. Following the procedure developed in ref. [53], the second order differential
decay width for B → P`ν`γ (where γ is soft) reads as

d2Γreal
dydz

= d2Γ0

dydz
(2αB̃) + d2Γ′

dydz
, (3.15)

d2Γ′
dydz is IR finite. The IR divergences are contained in B̃ which can be expressed as

B̃ = −1
2π

{
ln
(
k2

maxmBm`

m2
γEBE`

)
− pB.p`

2

[∫ 1

−1

dt

p2
t

ln
(
k2

max
E2
t

)
+
∫ 1

−1

dt

p2
t

ln
(
p2
t

m2
γ

)]}
. (3.16)

The overall negative sign in the expression above appears due to charge conservation. Et
and pt are the combinations of momenta defined as a convenient parametrization to solve
the integrals and are given by: 2pt = (1 + t)pB + (1− t)p`, and 2Et = (1 + t)EB + (1− t)E`,
respectively (see appendix D for details of the integral). Also, we give photon a small mass
(mγ) which acts as the infrared (IR) regulator.

The kmax dependence of the differential decay width is explicit in this case. As the
experiments are unable to report photons of energy smaller than kmax, the theoretical rate
is expected to depend on kmax. Similar to the photon inclusive case, the decay width for the
photon exclusive case also contains a non-IR contribution which includes contribution com-
ing from terms beyond Low’s term. The terms other than the IR term and its interference
with residual term are not significant and hence are not shown explicitly. The interference
terms depend on the angle θ between the lepton and the photon. The angle between the
lepton and the neutrino is chosen to be isotropic which leads to M2

miss ∼ 2EνEγ , where
Eν = mB − ED − E` − Eγ , in the rest frame of B meson.

3.2 Virtual photon corrections

There are three types of virtual photon contributions to the process: (1) the self energy
correction, where the photon starts and ends at the same charged line (figure 3(a)); (2)
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Figure 3. Representative diagrams for virtual photon corrections: (a) the self energy correction
to lepton (a similar diagram for B-meson self energy), (b) the vertex correction, and (c) the virtual
correction due to contact term (a similar diagram where the photon starts from contact term and
ends at B-meson.)

the vertex correction, where the photon connects two different charged lines (figure 3(b));
and (3) the contact term contribution, where the photon gets emitted from the effective
vertex and ends on a charged particle (figure 3(c)). These corrections are same for both
the photon inclusive as well as the photon exclusive case. Now, we will discuss these three
contributions one by one. The contribution due to self energy of the charged lepton and
the charged meson 3(a) is given by

Ms = M0
2 (δZ` + δZB) (3.17)

where, δZ` and δZB represents the wave function renormalization of the charged lepton
and meson, respectively and are give by

δZ` = α

4π
[
2−B0(p2

` , 0,m2
` ) + 4m2

`B
′
0(p2

` ,m
2
γ ,m

2
` )
]
, and

δZB = α

4π
[
2B0(p2

B, 0,m2
` ) + 4m2

BB
′
0(p2

B,m
2
γ ,m

2
B)
]
. (3.18)

Here, B0(p2
a, 0,m2

a) and B′0(p2
a,m

2
γ ,m

2
a) (with a = `(B)) are the Passarino-Veltman [59]

functions corresponding to scalar two point integrals and their derivatives (explicit forms
are presented in appendix E). B′0(p2

a,m
2
γ ,m

2
a) contains the IR divergences which are taken

care off by providing a fictitious mass, mγ , to the photon which works as an IR regulator.
The contribution to the matrix element due to vertex correction (as shown in (c) of

figure 3) is

Mvert = α

4π ū(p`)
[(
−2m`/pB−2/pB/p`

)
C0(m2

` ,m
2
B , q

2,m2
` ,m

2
γ ,m

2
B)−

(
m`/pB+/pB/p`−2m2

B

)
×C1(m2

B , q
2,m2

` ,0,m2
B ,m

2
`)−

(
m`(/p`+m`)+2/pB/p`−4pB .p`

)
C2(m2

B , q
2,m2

` ,0,m2
B ,m

2
`)

+B0(q2,m2
B ,m

2
`)−2B0(m2

` ,0,m2
`)
]
((fp−+fp+)/p`+2fp+/pP )(1−γ5)v(pν). (3.19)

Here, Cr(m2
` ,m

2
B, q

2,m2
` ,m

2
γ ,m

2
B) (r = 0, 1, 2) are the three point Passarino-Veltman func-

tions. C0 contains the IR divergences, while the other two functions (C1 and C2) are free
from IR divergences, and hence we put m2

γ = 0 in these functions.
The virtual correction due to the CT contributes via the two diagrams: the photon

ending on the charged lepton or the charged meson leg. This contribution leads to UV
divergences and a finite part. For numerical computations, we discard the UV divergences

– 8 –



J
H
E
P
0
2
(
2
0
2
2
)
1
3
0

and incorporate only the finite term. It is found that the finite term contributes very little
to the process and hence does not affect the level of precision of the problem. Thus the
contact term can be ignored phenomenologically while considering the virtual corrections.

To O(α), the amplitude square for the process B → P`ν` includingMs andMvert is

|M|2 = |M0|2 +2Re(M∗0Ms)+2Re(M∗0Mvert)+O(α2) (3.20)
with 2Re(M∗0Ms) = |M0|2 (δZ`+δZB), and

2Re(M∗0Mvert) = α

4π

[
|M0|2

(
2B0(q2,m2

B ,m
2
`)−4B0(m2

` ,0,m2
`)−4

(
(pB .p`)+m2

B

)
×C1(m2

B , q
2,m2

` ,0,m2
B ,m

2
`)−8(pB .p`)C0(m2

` ,m
2
B , q

2,m2
` ,m

2
γ ,m

2
B)−4m2

`

×C2(m2
B , q

2,m2
` ,0,m2

B ,m
2
`)
)

+
(

(−4fp+(fp−+fp+)−2(fp−+fp+)2)(pB .p`)(p`.pν)

+4(fp+)2m2
P (pB .pν)+(pP .pν)(−4(fp−+fp+)fp+−4fp+(pB .pP ))+4fp−f

p
+(pB .pν)(p`.pP )

+(fp+ +fp−)2m2
`(pB .pν)+4(fp+)2(pB .pν)(p`.pP )

)
C2(m2

B , q
2,m2

` ,0,m2
B ,m

2
`)
]
, (3.21)

respectively. Therefore, the differential non-radiative decay width including the virtual
QED corrections reads as

d2Γvir
dydz

= d2Γ0

dydz
(1 + 2αB) + d2Γ′vir

dydz
. (3.22)

Here, d2Γ′vir
dydz is IR-finite and contains the corrections due to non-factorizable terms (com-

bination of form factors and momenta) present in eq. (3.21). The factorizable correction
factor, B, is IR divergent and reads as

B = 1
8π

[
2B0(q2,m2

B ,m
2
`)−4B0(m2

` ,0,m2
`)−4

(
(pB .p`)+m2

B

)
C1(m2

B ,q
2,m2

` ,0,m2
B ,m

2
`)

−8(pB .p`)C0(m2
` ,m

2
B ,q

2,m2
` ,m

2
γ ,m

2
B)−4m2

`C2(m2
B ,q

2,m2
` ,0,m2

B ,m
2
`)+2−B0(p2

` ,0,m2
`)

+4m2
`B
′
0(p2

` ,m
2
γ ,m

2
`)+2B0(p2

B ,0,m2
`)+4m2

BB
′
0(p2

B ,m
2
γ ,m

2
B)
]
. (3.23)

3.3 Total O(α) QED corrections

After summing d2Γreal
dydz and d2Γvir

dydz , the double differential decay width for the process B →
P`ν`, including real and virtual soft photon corrections can be written at O(α) as,

d2ΓQED
`

dydz
= d2Γ0

dydz
(1 + 2αH) + d2Γ′

dydz
+ d2Γ′vir

dydz
, (3.24)

where H = B̃ + B. Though, B̃ and B depend on IR regulator mγ , there sum, H is inde-
pendent of mγ . Hence, the IR divergences cancel in the sum. The explicit of form of H is

H = 1
2π

[
− ln

(
k2

max
EBE`

)
+ pB.p`

2

∫ 1

−1

dt

p2
t

k2
max
E2
t

+B0(q2,m2
B,m

2
` )− 2B0(m2

` , 0,m2
` )

−2
(
(pB.p`) +m2

B

)
C1(m2

B, q
2,m2

` , 0,m2
B,m

2
` )− 2m2

`C2(m2
B, q

2,m2
` , 0,m2

B,m
2
` )

−3− 1
2B0(p2

` , 0,m2
` ) +B0(p2

B, 0,m2
B)
]
. (3.25)
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We like to recall here that the terms d2Γ′
dydz and d2Γ′vir

dydz in eq. (3.24) are free from IR

divergences. Hence, d
2ΓQED
`

dydz is an IR safe quantity and can be written in the compact as

d2ΓQED
`

dydz
= d2Γ0

dydz

(
1 + ∆QED

`

)
. (3.26)

Here, ` = µ, τ and ∆QED
` is the correction factor to the decay width. It contains

corrections due to infrared and non-infrared factors up to O(k). The O(k2) term was
explicitly checked to be small and hence has been ignored in the numerical analysis.

Following eq. (2.4), the CKM element |Vqb| without inclusion of QED corrections can
be written as

|V 0
qb| =

√√√√Γexp
qb

G0
qb

. (3.27)

Here, Γexp
qb is experimental decay width, and G0

qb is defined as

G0
qb = mB

256π3
G2
F

2

∫
dy

∫
dz|M0|2 (q = u/c). (3.28)

Therefore the ratio of the CKM elements without QED corrections, defined as R0
V , will be

R0
V = |V

0
ub|
|V 0
cb|

=
√

Γ0
ubG0

cb

Γ0
cbG0

ub

. (3.29)

Taus are harder to recontruct while electrons are far more sensitive to soft photon correc-
tions. Therefore, for extracting the CKM elements and their ratio, it is advisable to choose
final states with muons. As only muons are considered in the final states, the collinear
logs ∼ ln(mµ) are the same for both B → π and B → D transitions. The QED correction
factors for Vqb and RV are defined as,

δQED
Vqb

= |Vqb|
|V 0
qb|
− 1, and (3.30)

∆RV = δQED
Vub

− δQED
Vcb

, (3.31)

respectively. Here |Vqb| is the CKM element including the QED corrections to O(α).
For completeness, We also consider the soft photon corrections to the ratio RP (i.e.

the ratio of branching fraction of τ mode to µ mode), and is given by

δRP = R0
P

(∆QED
τ

Γ0
τ

−
∆QED
µ

Γ0
µ

)
(3.32)

where, ∆QED
τ and ∆QED

µ are the correction factors in the τ and µ mode, respectively.

4 Results

The soft photon correction to the process B → P`ν` is studied. The experimental analyses
follow two approaches to study B → P`ν`(γ): (1) the photon inclusive approach, where
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Figure 4. Radiative corrections to the CKM elements |Vcb| and |Vub| (i.e. δQED
Vcb

(dashed) and δQED
Vub

(solid) for different thresholds on photon energy, kmax for (a) B0 → P+(= D+, π+)µ−νµ and (b)
B− → P 0(= D0, π0)µ−νµ.

only the charged mesons and leptons are detected while the neutrino and the photon are left
undetected; (2) The photon exclusive approach, where the experiment is sensitive to the
final state radiated photons. For the inclusive case, the observed momenta of the charged
mesons and leptons are fitted to the three body kinematics with zero or non-zero missing
mass. The full decay width turns out to be a function of the maximum and minimum of the
missing mass. In this work, we focused on the exclusive case as we are interested in the study
of the explicit effect of soft photons on the process. As the photon will now be detected,
a fraction of the four body phase space (upto kmax) will also contribute. Hence, the total
decay width gets contribution from the three-body phase space region as well as beyond it.

The real emission of the soft photon contributes to inside as well as outside of the
Dalitz region (shown in 2(a) and 2(b)). While the virtual correction contributes only to
inside of the Dalitz region. The correction factor turns out to be less sensitive to phase
space points outside the Dalitz region as the leptons at hand are heavy. But this region
is important to see the long distance effects (k → 0) and to enhance the precision. It also
helps to see the dependence of the decay width on the angle between photon and `, θ which
dictates the collinear divergences. We found that the correction factor due to soft photon
denoted by ∆QED

` (` = µ and τ) is not much sensitive to the cut on θ (denoted by θcut)
for both muons and taus because of their large mass. Had we been considering electrons in
the final state, this dependence would have been significant. Broadly, the correction factor
∆QED
` is found to be more for the muon channel (roughly 3-5 %) as compared to the tau

channel (almost negligible) for both B → D and B → π decay modes. To be explicit, (say,
at kmax = 100MeV), B− → D0 (B0 → D+) mode receives QED shift of ∼ 0.1%(∼ −1%)
for τ mode and ∼ −1.6% (∼ −3.4%) for µ mode.

Figures 4(a) and 4(b) illustrate the soft photon corrections to the CKM elements |Vcb|
and |Vub| for neutral and charged modes, respectively. The corrections to both the CKM ele-
ments when considering the charged mode are found to be almost same, as the photon is get-
ting emitted from the B-meson and the lepton in both B → π`ν` and B → D`ν`. However,
for the neutral mode, we observe some difference between the two curves as now the photon
is getting emitted from π andD instead of B, hence their mass difference plays a crucial role.
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∆(n)
τ

(with (w/o) Coulomb)

∆(n)
µ

(with (w/o) Coulomb)

Ref. [50] 1.7(−1.2) −1.2(−3.5)

Our results 1.7(−1.0) −1.1(−3.4)

Table 1. Comparison of numerical values of QED shifts (%) in the decay width (for both tau and
µ modes) at kmax = 100MeV with ref. [50] considering (not-considering) the extra Coulomb factor
from the final state charged particles (as considered in ref. [50]).
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q
b
(n
)

Figure 5. Radiative corrections to the CKM elements |Vcb| and |Vub| (i.e. δQED
Vcb

(dashed) and δQED
Vub

(solid)) for kmax = 100MeV for B0 → P+(= D+, π+)µ−νµ considering (Red) and not-considering
(Magenta) the extra Coulomb factor from the final state charged particles.

Next, we study the effect of soft photons on the ratio of these CKM elements defined
by RV = Vub

Vcb
. The correction factor to this ratio, ∆RV as a function of lepton energy is

shown in figure 6 for both the neutral as well as charged modes. It is found that the charged
mode gets almost zero correction while the neutral mode gets very minute (∼ O(10−3))
correction due to soft photons. This difference emerges as a consequence of photon emission
from π vs D in the neutral case as discussed above. We have also studied the dependence
of the correction factor on the choice of maximum energy of photon, kmax. It is found
that the correction factor decreases with an increase in kmax as the collinear and IR effects
are more and more suppressed (can be seen from figure 6), similar trends can be seen in
ref. [50]. For the neutral B mode ref. [50] has included an additional coulomb factor coming
from the final state charged particles. We have found our results to be in full agreement
with the findings of ref. [50] (see table 1 for a comparative study). The QED corrected
CKM elements |Vcb| and |Vub| for neutral B mode with and without this extra Coulomb
factor are shown in figure 5. This factor reduces the QED effects from ∼ 3% to ∼ 2%. We
would like to emphasize here that, though this factor has an impact on QED corrections
to the individual CKM elements, it has negligible effect on the proposed observable RV ,
demonstrating its robustness against all variety of QED corrections.

Next, we check the dependence or sensitivity of RV on the choice of form factors
adopted for B → π and B → D transitions. For this purpose, we chose two sets of form
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Figure 6. Radiative corrections to Vub/Vcb (i.e. ∆RV ) for different thresholds on photon energy,
kmax for (a) B0 → P+(= D+, π+)µ−νµ and (b) B− → P 0(= D0, π0)µ−νµ.

(f (I)
B→π; f (I)

B→D) (f (II)
B→π; f (I)

B→D) (f (I)
B→π; f (II)

B→D) (f (II)
B→π; f (II)

B→D)

RV 0.091 0.093 0.091 0.093

Table 2. The ratio of RV determined with the choice f (A)
B→π and f (A)

B→D for the corresponding form
factors.

factors for both B → π and B → D process: (I) the form factors considered for the present
analysis (see, appendix B for details), and (II) the form factors obtained from the lattice
analysis [22]. The sensitivity of RV on the choice of form factors is tabulated in table 2. For
all these determinations, we limit ourselves to the large q2 region such that the reliability
of the chosen form factors is not questioned and a meaningful comparison between the
different combinations formed is feasible. It can be seen from the table that there is very
little impact on the choice of form factors.

As RV turns out to be rather robust against soft photon corrections as well as choice
of form factors, it can thus be considered as a promising observable.

For completeness, we also consider the effect of soft photons on the flavour universality
ratios, RP (=D,π) (shown in figure 7). It is found that the soft photons lead to a shift of
∼ 2% for kmax = 250MeV for both the ratios.

4.1 Phenomenological application of RV

Having demonstrated the insensitivity of RV to soft photon QED corrections as well as
choice of form factors, we explore the potential of RV in probing physics beyond the SM.
To this end, and to keep the discussion simple but bring out the essence, we consider new
physics (NP) in the form of right handed currents in the quark sector given by the following
effective Hamiltonian

HNP = 4GF√
2
Vqbc

q
R(¯̀γµPLν) (q̄γµPRb) , (4.1)
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Figure 7. Radiative corrections to RP (P = D (dashed) and π(solid)) for different thresholds on
photon energy, kmax, for (a) B0 → P+(= D+, π+)`−ν` and (b) B− → P 0(= D0, π0)`−ν`.

Modes V NP
qb

Exclusive Decays

B → D`ν` V NP
cb = V

(SM)
cb

1+ccR

B → D∗`ν` V NP
cb = V

(SM)
cb

1−ccR

B → π`ν` V NP
ub = V

(SM)
ub

1+cuR

B → ρ`ν` V NP
ub = V

(SM)
ub

1−cuR

Inclusive Decay
B → Xc`ν` Vcb = Vcb(SM)

1−0.34ccR

B → Xu`ν` Vub = V
(SM)
ub (for mu ∼ 0)

Table 3. V NPqb for various exclusive and inclusive B decay modes.

where q = u, c while cqR are the Wilson coefficients. The contribution of the Hamiltonian
given in eq. (4.1) to the differential decay width for the exclusive B → P`ν̄` is given by

d2ΓB→P`ν̄`
dy

= d2ΓB→P`ν̄`
dy

∣∣∣∣
SM
|1 + cqR|

2. (4.2)

and for the inclusive case with mu/mb → 0, it is

d2ΓB→Xq`ν̄`
dy

= |1 + cqR|
2d

2ΓB→Xq`ν̄`
dy

∣∣∣∣
SM

+ cqR
d2ΓB→Xq`ν̄`

dy

∣∣∣∣
LR
. (4.3)

The explicit expressions of d2ΓB→Xq`ν̄`
dy

∣∣∣
SM,LR

can be found in [60, 61].
In the presence of this NP, we can extract Vub and Vcb from different b → u and

b→ c modes (inclusive and exclusive), and these are tabulated in table 3. Here V SM
qb is the

corresponding CKM element extracted if there were no NP. Such NP contributions have
impact on the observable RV as well. The ratio of RNPV to RSM

V using various combinations
of different channels are tabulated in table 4. As the ratio RV formed using the inclusive
and exclusive determinations are equal (as discussed in section 1), this equality can be
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B→Xu
B→Xc

B→π
B→D

B→π
B→D∗

B→ρ
B→D

B→ρ
B→D∗(

|Vub|
|Vcb|

)NP
/
(
|Vub|
|Vcb|

)
SM

1−0.34ccR 1+ccR−cuR 1−ccR−cuR 1+ccR+cuR 1−ccR+cuR

Table 4. Ratio of RV in the NP to RV in the SM for inclusive B → Xu/Xc modes and four
different combination of exclusive B → π/D/ρ/D∗ modes.

used to find constraints on new physics. On equating the ratio from the inclusive modes
(i.e. first column) to the ratio from the exclusive modes, we get the constrains on cuR to
be cuR ∈ [−1.34, 1.34]ccR. This shows the actual probing power of RV : the up-quark right
handed strength gets tightly correlated to the charm quark new physics coupling. While
this example was a simple one, it is not difficult to convince oneself that RV holds similar
power in case of other new physics modifications as well.

Usually, in a model independent approach to Vcb and Vub puzzles, the new physics
couplings in the two modes are treated independently. In specific models however, it may
not be so. The equality of RV |incl and RV |excl leads to (simple) relations between the two
couplings even when employing a model independent approach.

As a further phenomenological application, we attempt to find the constraint on
BR(Bc → τντ ) using BR(B → τντ ). The Branching ratio of B(Bc) → τντ for the
considered NP model is given by

BR(B(Bc)→ τντ ) = (1− 2cu(c)
R )BR(B(Bc)→ τντ )|SM (4.4)

where,

BR(B(Bc)→ τντ )|SM = τB(Bc)
G2
FmB(Bc)m

2
τ

8π

(
1− m2

τ

m2
B(Bc)

)
f2
B(Bc)|Vu(c)b|2 (4.5)

with fB(Bc) = 185(434)MeV being the decay constant for B(Bc) meson. BR(B →
τντ )|exp = 1.09× 10−4 [21] can be used to get the value of cuR. Using the obtained value of
cuR, the estimated branching ratio for Bc → τντ is found to be [1.9−2.4]% which is well be-
low the bound for BR(Bc → τντ ) ≤ 30% as given in [62, 63]. If instead, the BR(Bc → τντ )
branching ratio had been greater than the bound, such new physics couplings would have
been disfavoured. This would not only have strained the resolution of Vcb puzzle but also
Vub puzzle since NP in up type quarks gets intimately related to those in charm sector.

While we have explicitly checked insensitivity of RV to soft photon corrections and
form factors, similar checks for the inclusive case are beyond the scope of this work and are
left for future study. For the present purpose, we assume that RV |incl also presents similar
independence to such effects.

5 Conclusions and discussions

|Vcb| and |Vub| have consistently shown discrepancies when determined from exclusive and
inclusive determinations. Due to hadronic uncertainties involved, such discrepancies can’t
be confidently ascribed to physics beyond the SM. What about other potential sources of
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uncertainty? We begin our discussion by investigating the impact of soft photon corrections
to the determination of |Vcb| and |Vub| considering the B → P`ν` decay processes, with
P = D, π. We find that these elements get significant shift (roughly 3-4 %) due to these
QED corrections. To be more explicit (say, at kmax = 100MeV), we observe a correction
of ∼ 2.2% (∼ 3.5%) for the charged B to D (π) mode whereas for the case of neutral B,
both D and π modes receive ∼ 1.7% correction. These results are found to be in good
agreement with other studies of the similar nature. In order to calculate the decay width,
we consider the radiative corrections from inside as well as outside the Dalitz region for
both the neutral and charged decay modes. The corrections are found to be sensitive
to the maximum energy, kmax of the photon considered and very little sensitive to the
angle between the lepton and the photon. Therefore, they are almost free from collinear
divergences. The total QED correction to the muon and tau channels are found to be
∼ −3.4% and ∼ −1%, respectively for kmax = 100MeV for neutral B mode. While these
corrections are of the order of few percent corrections, such effects are still worrisome when
aiming at less than a percent precision, and need to be properly accounted for.

In order to find an observable free from the QED and the hadronic uncertainties, we
suggest the use of the ratio of these CKM element (i.e. RV = |Vub|

|Vcb| ) as a clean probe of the
SM. We found that this ratio gets negligible correction due to the soft photon QED effects.
Also, we have explicitly checked the impact of the choice of the form factors by considering
different parametrizations or choices. We found that this ratio, when evaluated in a judi-
ciously chosen q2 range, is affected very mildly by the choice of the form factors. Another
intriguing observation is the excellent agreement between the RV values determined from
exclusive and inclusive determinations. Thus, while the individual CKM elements show
puzzling behaviour and are sensitive to QED as well as hadronic effects, the ratio, RV ,
practically turns out to be insensitive to any such effects. These observations together mo-
tivate RV to be a very useful observable in our quest for physics beyond the SM. Not only
is RV a clean observable, but the near perfect agreement of inclusive and exclusive determi-
nations of RV allows one to equate the theoretically computed expressions for the inclusive
and exclusive cases. Equating these lead to simple relations between the new physics in the
b→ u and b→ c semi-leptonic modes. In the usual treatments of |Vcb| and |Vub| puzzles, the
new physics couplings in the two modes are treated independently. However, in concrete
models, the two are related in some way. The equality of RV |incl and RV |excl immediately
relates the two type of coulings even in a model independent approach. These relations
can then be checked in concrete models to identify specific models which can address these
puzzles. We are thus encouraged to propose using RV in our quest for probing the SM
itself and searching for new physics, both experimentally and phenomenologically.

A Kinematics and notations

A.1 Three body kinematics

Kinematics for the three body decay B → P`ν` can be given in terms of three Lorentz
invariant kinematic variables x, y and z or mandelstam variables s, t and u. The kinematic
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variables are
x = Q2

m2
B

, y = 2pB.pl
m2
B

, z = 2pB.pP
m2
B

(A.1)

where Q2 = (pB − pD − p`)2. Note that Q2 is zero in this process since it is the mass
of the neutrino but it plays an important role when we discuss the real photon emission
case. There it is defined as missing mass (Q2 = (pν + k)2) and yields non-zero value. The
non-radiative decay width for B → P`ν` is given by

Γ0 = mB

256π3

∫
dz

∫
dy |M|2B→P`ν` . (A.2)

One can see that the final result is independent of x and therefore require only two inde-
pendent Lorentz invariant kinematic variables y and z. The kinematic boundaries for the
variables x, y and z are: x− ≤ x ≤ x+, z− ≤ z ≤ z+, y− ≤ y ≤ y+

where, x± = 1− y − z + m2
P

m2
B

+ m2
`

m2
B

+ yz

2 ±
1
2

√
y2 − 4m

2
l

m2
B

√
z2 − 4m

2
P

m2
B

,

z± =
(2− y)

(
1 + m2

P

m2
B

+ m2
`

m2
B
− y

)
2
(

1 + m2
`

m2
B
− y

) ±

√
y2 − 4 m2

l

m2
B

(
1− m2

P

m2
B

+ m2
`

m2
B
− y

)
2
(

1 + m2
`

m2
B
− y

) ,

y− = 2√r`, and y+ = 1− m2
P

m2
B

+ m2
`

m2
B

.

A.2 Four body kinematics

The decay width for the process B → P`ν`γ is given in terms of ten Lorentz invariant
kinematic variables out of which five variables are independent and they are choosen as x,
y, z, pν and k. The four body decay region is divided into two regions: D3 and D4−3. The
decay width in these two regions is given by

ΓD3 |B→P`ν`γ = m3
B

512π4

∫
D3
dydz

∫ x+

m2
γ

m2
B

dx

∫
d3pν

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4

×δ4 (Q− pν − k) |M|2B→P`ν`γ , and (A.3)

ΓD4−3 |B→P`ν`γ = m3
B

512π4

∫
D4−3

dydz

∫ x+

x−
dx

∫
d3pν

(2π)32Eν

∫
d3k

(2π)32Ek
(2π)4

×δ4 (Q− pν − k) |M|2B→P`ν`γ , (A.4)

respectively. Here the kinematic boundaries for y and z in the region D4−3 are

z−= 2
√
m2
P

m2
B

, z+ =
(2−y)

(
1+ m2

P

m2
B

+ m2
`

m2
B
−y
)

2
(

1+ m2
`

m2
B
−y
) −

√
y2−4 m2

l

m2
B

(
1− m2

P

m2
B

+ m2
`

m2
B
−y
)

2
(

1+ m2
`

m2
B
−y
) ,

y−= 2
√
m2
`

m2
B

, and y+ = 1−m
2
P

m2
B

+
m2
`

m2
B

1−
√

m2
P

m2
B

.
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B Form factors

The form factors involved in the B → D`ν` in the model independent parametrization are
given by [8]

fD+ (q2) = 1√
r

[(1 + r)h+ − (1− r)h−] ,

fD− (q2) = 1√
r

[(1 + r)h− − (1− r)h+] , and

fD0 (q2) = fD+ (q2) + 1 + r2 − 2rw
1− r2 fD− (q2).

Here r = mD
mB

, w = pB .pD
mBmD

,

h+ = ξ

[
1 + α

π

(
CV1 + 1 + w

2 (CV2 + CV3)
)

+ (εc − εb)L1

]
, and

h− = ξ

[
α

π

1 + w

2 (CV2 − CV3) + (εc − εb)L4

]

with z = mc
mb

, L1 = 0.72(w − 1), L4 = 0.24, εc = 0.1807, εb = 0.0522, ξ =
(

2
1+w

)2
,

CV1 = 1
6z(w−wz)

[
2(w+1)

(
(3w−1)z−z2−1

)
rw+(12z(wz−w)−(z2−1) logz)+4z(w−wz)Ω

]
,

CV2 = −1
6z2(w−wz)2

[(
(4w2 +2w)z2−(2w2 +5w−1)z−(w+1)z3 +2

)
rw+z

(
2(z−1)(wz−w)

+(z2−z(4w−2)+(3−2w)) logz
)]
,

CV3 = 1
6z(w−wz)2

[(
(2w2 +5w−1)z2−(4w2 +2w)z−2z3 +w+1

)
rw

+
(

(3−2w)z2 +(2−4w)z+1
)

logz+2z(z−1)(wz−w)
]
.

with rw = log(w+)√
w2−1 , wz = 1

2

(
z + 1

2

)
and

Ω = w

2
√
w2−1

[
2Li2(1−w−z)−2Li2(1−w+z)+Li2(1−w2

+)−Li2(1−w2
−)
]
−wrw logz+1.

Here, w+ = w +
√
w2 − 1, w− = w −

√
w2 − 1.

For B → π`ν`, the form factors in z-expansion parametrization are given by, [16]:

fπ+(q2) = f+(0)π

1− q2

m2
B∗

{
1+

N−1∑
k=1

bk

(
z(q2, t0)k−z(0, t0)k−(−1)N−K k

N

[
z(q2, t0)N −z(0, t0)N

])}
, and

fπ0 (q2) = fπ0 (0)
{

1+
N∑
k=1

b0
k

(
z(q2, t0)k−z(0, t0)k

)}
.

Here, z(q2, t0) =
√

(mB +mπ)2 − q2 −
√

(mB +mπ)2 − t0√
(mB +mπ)2 − q2 +

√
(mB +mπ)2 − t0

, fπ0 (0) = fπ+(0) = 0.281, b1 =

−1.62, b01 = −3.98 and t0 = (mB +mπ)2 − 2√mBmπ

√
(mB +mπ)2 − q2.
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C Photon inclusive: computational details

Here, we list the coefficients , Cm,n and the integrals, Im,n for {m,n} ∈ {−2, 2}, encountered
in determination of the differential decay width for the inclusive photon case.

C1,1 = 2xym4
B((−3f2

−+2f−f+ +f2
+)m2

`−4f+m
2
B(f−y+f+)),

C1,−1 = 16f+m
2
B(f−−f+)(y+z), C−2,2 = 64f2

+m
2
` ,

C−1,1 = −32f+
(
f+m

2
B(x+2y+z−1)−m2

Df+−(f−−2f+)m2
`

)
,

C2,−1 = −16f+m
4
B(f−+f+)(2x+y+z−2) , C2,0 = 8xm4

B(f−+f+)
(
f+ym

2
B+(f−−f+)m2

`

)
C−1,2 = −16f+m

2
`

(
m2
B(f−(x+z−1)+f+(−x+2y+z−3))−(f−−f+)(m2

D−m2
`)
)
,

C1,0 = −4m2
B

[
−2f+m

2
B(f−(3xy+4x+4z−4)+f+x(y+4)+2f+(y+1)(y+z−2))+8f−f+m

2
D

+m2
`

(
f2
−(y+z−2)−2f−f+(y+z+2)+f2

+(y+z−2)
)]
,

C0,1 = 4
[
m2
B

(
m2
`(f2
−(x+z−1)−2f−f+(3x+2y+z−1)+f2

+(5x+z+3)
)

−4f+m
4
B(f−y(x+z−1)+f+(x(y−1)+2y(z−2)−z+1))+(f−+f+)2m2

`(m2
`−m2

D)
]
,

C0,2 = 4xm2
Bm

2
`

[
2f+m

2
B(f−y−f+(y−2))+(f−−f+)2m2

`

]
,

C0,0 = −16f+

[
m2
B(f−(x+2y+z−1)−f+(x+4y+3z−1))−(f−−f+)(−m2

D−m2
`)
]
,

I0,0 = 1
4 , I1,1 = 1

4
2

Q2(pB .p`)βB`
log
(

1+βB`
1−βB`

)
,

I2,0 = 1
m2
BQ

2 , I1,0 = 1
4(pB .Q)βBQ

log
(

1+βBQ
1−βBQ

)
,

I1,−1 = 1
4

(
pBp` :Q

(pB .Q)2β2
BQ

+ Q2(p`Q : pB)
2(pB .Q)3β2

BQ

log
(

1+βBQ
1−βBQ

))
,

I2,−1 = 1
4

(
2(p`Q : pB)

m2
B(pB .Q)2β2

BQ

+ (pBp` :Q)
(pB .Q)3β3

BQ

log
(

1+βBQ
1−βBQ

))
, and

I−2,2 = 1
4

[
Q2(pBQ : p`)2

m2
`(p`.Q)4β4

`Q

+Q2(pBQ : p`)(pBp` :Q)
(p`.Q)5β5

`Q

log
(

1+β`Q
1−β`Q

)
+ (pBp` :Q)2

(p`.Q)4β4
`Q

−
(pB .Q)2(p`.Q)2β2

BQβ
2
`Q−(pBp` :Q)2

2(p`.Q)4β4
`Q

(
2− 1

β`Q
log
(

1+β`Q
1−β`Q

))]
.

Here, βij =
√

1− m2
im

2
j

(pi.pj)2 , pipj : pk = (pi.pk)(pj .pk) − p2
k(pi.pj) and Im,n(pi, pj) =

In,m(pj , pi). The integrals Im,n are found to be consistent with [64].

D Integrals for real emission and virtual corrections

Here we list various integrals involved in the real photon emission for both photon inclusive
and photon exclusive scenarios.
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D.1 Photon inclusive case∫ x+

0
dxI1,1 = 1

4m2
B

∫ 1

−1
dt

1
p2
t

log
(
x2

+p
2
t

m2
γE

2
t

)
+ NIR,

∫ x+

0
dxI2,0 = 1

2m4
B

log
(
x2

+
m2
γ

)
+ NIR, and

∫ x+

0
dxI0,2 = 1

2m2
Bm

2
`

log
(
x2

+
m2
γ

)
+ NIR,

where NIR is contribution from finite non-IR terms.

D.2 Exclusive photon case

We have

B̃ = −1
8π2

∫ kmax

0

d3k

(k2 +m2
γ)1/2

[
m2
i

(k.pi)2 +
m2
j

(k.pj)2 −
2pi.pj

(k.pi)(k.pj)

]
. (D.1)

The various integrals involved are,∫ kmax

0

d3k

(k2 +m2
γ)1/2

1
(k.pi)2 = 2π

m2
i

ln
(
k2

maxm
2
i

E2
im

2
γ

)
, (D.2)

∫ kmax

0

d3k

(~k2 +m2
γ)1/2

1
(k.pi)(k.pj)

= 2π
2

∫ 1

−1

dt

p2
t

ln
(
k2

maxp
2
t

E2
tm

2
γ

)
+ finite term (D.3)

E Useful functions involved in virtual photon corrections

The scalar two point and three point Passarino-Veltman functions and their derivatives are
(with mγ and Λ as IR and UV regulators):

B0(m2
a,0,m2

a) = 2− ln
(
m2
a

Λ2

)
, and (E.1)

B0(q2,m2
a,m

2
b) = −

∫ 1

0
du ln−u(1−u)q2 +um2

b +(1−u)m2
a

Λ2 (E.2)

B′0(m2
i ,m

2
γ ,m

2
i ) = −1

2m2
i

(
2+ln

(
m2
γ

m2
i

))
(E.3)

C0(m2
B,m

2
` , q

2,m2
B,m

2
γ ,m

2
` ) = −1

4

∫ 1

−1
dt

1
p2
t

ln
(
m2
γ

p2
t

)
, (E.4)

C1(m2
B,m

2
` , q

2,m2
B,0,m2

` ) = 1
2m2

`β
2

[
p2
`

(
B0[m2

` ,0,m2
` ]−B0[q2,m2

` ,m
2
B]
)

(E.5)

−pB.p`
(
B0[m2

B,0,m2
B]−B0[q2,m2

` ,m
2
B]
)]
, and

C2(m2
B,m

2
` , q

2,m2
B,0,m2

` ) = 1
2m2

Bβ
2

[
−pB.p`

(
B0[m2

` ,0,m2
` ]−B0[q2,m2

` ,m
2
B]
)

(E.6)

−p2
B

(
B0[m2

B,0,m2
B]−B0[q2,m2

` ,m
2
B]
)]
,

respectively. Here, β = |p`|
E`

is the charged lepton velocity in the rest frame of decaying
particle.
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