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1 Introduction

Euclidean wormholes comprise exotic types of gravitational solutions, that still challenge

our physical intuition and understanding of gravitational theories. The main unsettled

issue is determining their precise role in the gravitational path integral and therefore the

physical consequences of their presence both from a theoretical as well as a phenomenolog-

ical perspective.1

In the context of holography, their existence gives rise to further paradoxes the most

notable being the factorisation paradox [1]. Simply put, while the presence of distinct

asymptotic AdS boundaries on the one hand, indicates a collection of decoupled QFT’s2

with factorised generating source functionals Z1(J1)Z2(J2), on the other hand computations

of correlation functions and other observables using the connected bulk geometry indicates

a form of cross-coupling between the two QFT’s.

A further conceptual issue stems from the existence of (naively) different asymptotic

global symmetries and conserved currents on the two boundaries, that are nevertheless

related by the presence of common bulk gauge fields and associated constraints (such as

the Gauss’ law) [2]. Finally it has been argued that wormholes are at clash with the

principle of cluster decomposition [5], but this problem is related to the α-parameter and

baby universe interpretation of microscopic wormholes á la Coleman [3, 4],3 and not with

the type of macroscopic Euclidean multi-boundary saddles,4 whose physics we would like

to reproduce and understand from a dual field theory point of view.

There have been various proposals in the literature so far, regarding the correct holo-

graphic interpretation of such geometries and the resolution of these puzzles. They roughly

fall into the following categories:

• A possibility that has recently attracted a lot of attention [15–20] is that the quan-

tum gravity path integral is dual to an appropriate average over theories (or over

states [21]). This can be shown to be possible in some simple two-dimensional mod-

els such as JT gravity or minimal models (and some rather exotic examples in 3d,

1Although the issue of stability is an important one raised long time ago, and recently revisited in [7–9],

we do expect a subset of solutions to be perturbatively stable as shown in [8], so one cannot dismiss their

role altogether.
2It should be stressed that there is a distinction between Euclidean and Lorentzian wormholes, such as

the Einstein-Rosen bridge, the latter known to arise when a pair of QFT’s is entangled [11].
3An important earlier paper pinpointing various inconsistencies of the α-parameter description of Eu-

clidean asymptotically AdS wormholes is [6]. We analyse further these issues in a forthcoming work [10].
4Or approximate saddles such as constrained wormholes [14].
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see [22] and refs.). It has a merit in that it also conforms with expectations based on

the eigenstate thermalization hypothesis (ETH), quantum ergodicity and the com-

plicated/chaotic nature of gravity [23–26]. It brings however a certain tension with

the extremely well-studied paradigms of AdS/CFT, involving single partner duals

(such as N = 4 SYM), as well as with the principle of unitarity, and therefore seems

to make sense in an approximate statistical sense (it is perhaps better to call such

wormholes as statistical wormholes).

One can also formulate additional arguments in support of an inherent difference

between higher-dimensional theories and these lower-dimensional examples, based

on the Weak Gravity and Swampland conjectures [27] and the fact that the two-

dimensional theories can also be interpreted as models of 2d quantum gravity on the

world-sheet of a string — the matrices triangulate the 2d geometry (fat-graphs) and

one cannot describe strings propagating on target space wormhole geometries with

these models [16].

• Another possibility is that once all possible topologies and geometries are included in

the quantum gravity path integral (perhaps with the inclusion of semi-wormholes [28,

29] or other non-perturbative states), the partition functions do factorise [1] and the

paradox is hence an artifact of an incomplete effective semi-classical description in

the bulk. This is very hard to actually check, and in simple models of two-dimensional

quantum gravity where this computation can be performed exactly (such as in the

c = 1 model [16]) it does not seem to be the case, unless picking special members of

the ensemble as argued in [30]. Although Berry’s “diagonal approximation” is used

as an argument in favor of this idea [15, 30], there is no comprehensive theory of

periodic orbits for QFT’s and, in addition, it is not even clear whether the diagonal

terms have a geometric interpretation as wormhole saddles of gravitational equations

in higher dimensions.

• It has also been argued that an inherently string theoretic description automatically

includes such geometries (large stringy corrections around a factorised saddle might

have an interpretation as a non factorised background). In a sense, the geometric

connection could be effectively arising from a condensate of strings [31]. Again,

it is not clear if the specialised discussion about the symmetric product orbifold

CFT’s generalises in more realistic examples, having a simple semi-classical low-

energy gravitational description, with a small α′/L2
AdS ratio.5 As discussed in the

second bullet point above, in more general setups one expects the presence of various

kinds of non-perturbative effects and objects being important in the resolution of the

factorisation paradox.

5Moreover, in the example of the symmetric product orbifold, it is natural not to fix N but a quan-

tity similar to a dual chemical potential µ for the number of strings. Nevertheless, something analogous

could make sense in M-theory or in the free fermion grand-canonical description of ABJM [32], which also

incorporates non-perturbative effects.
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• A conceptually straightforward resolution is that Euclidean wormhole saddles, can be

found in models of appropriately interacting QFTs as first suggested in [2]. A generic

feature of wormhole geometries, uncovered in [2], is that they generically confine, via

the usual Wilson loop criterion. This suggests that (cross) — confinement (and the

possible formation of an IR gap) must be an integral part of the dual quantum system,

fusing together the colored states of the two boundary QFTs (see also [12, 13]). This

leads to very tight constraints and special properties that correlators of such an

interacting pair should satisfy.

A first difficulty with this proposal, is that the constraints for the correlators found

in [2] seem to be impossible to realise, if one couples the two d-dimensional QFT’s

with local interactions. These constraints thus indicate an inherent difference with

analogous constructions of Lorentzian traversable wormholes [33–35], that rely on

such direct local cross couplings. Another difficulty, is that one would wish to be

able to describe both the factorised geometries and the non-factorised geometries

with a single field theoretic construction, and not change the definition of the model

depending on the background geometry (if the different backgrounds are solutions of

the same bulk theory).

In this work we shall improve this last proposal [2] and address these issues. We

shall base our analysis on an observation by Raamsdonk [12, 13], that coupled pairs of

d-dimensional QFT’s via an intermediate d + 1 “messenger” theory can potentially exhibit

the desired features of cross correlators for the pairs of the d-dimensional QFT’s [2], once

the messenger theory is integrated out in the path integral.6 We shall henceforth define

the system of the pair of QFT’s and the messenger theory as the tripartite system. As for

the second difficulty raised above, our proposed resolution is that the dual QFT tripartite

system should exhibit different leading saddles at large-N , depending on the parameters

and sources turned on, some of which correspond to dual wormhole backgrounds and others

to factorised geometries. In fact this is something that has already been observed in the

literature (from a gravitational perspective), for example in [8].7

In addition, we shall prove that in cases where the intermediate theory has a topological

nature without any local (d + 1)-dimensional propagating degrees of freedom, the partition

function of the combined system acquires a special form, whose relevance for a holographic

description of two-boundary Euclidean wormhole geometries first appeared in the work by

Maldacena and Maoz [1]. More precisely we find that the general form for the Schwinger

source functional of such systems is expressed as a weighted average over individual source

6Wormholes can be expected to appear once cmessenger ≪ cQF T , so that the bulk geometry effectively

remains d + 1 dimensional. We should also mention that this system also belongs to the general category

of systems having coupled “sectors” via messenger fields, analysed in [36].
7From the examples studied in that work, there even exist cases where the connected solutions are

perturbatively stable and can dominate the disconnected ones. One the other hand, when such solutions

could be embeddable in UV complete settings, it was found that they do suffer from non-perturbative brane

nucleation instabilities, implying the existence of an additional branch of solutions with lower action (that

has not been constructed yet).
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functionals

Z(J1, J2) =
∑

S

ew(S)Z1
S(J1)Z2

S(J2) , (1.1)

where S labels some appropriate “sector” of the system,8 and w(S) introduces a weighting

in the space of “sectors” (the authors of [1] had not introduced a weighting factor).

It is interesting to note that if the messenger theory were classical, then unique bound-

ary conditions for the messenger fields would lead to a unique saddle for the system. We

are precisely in that case as our messenger theory is topological. In this case the sum given

by eq. (1.1) resembles the sum over instanton/superselection sectors. However, even if the

messenger theory has more than one saddle points, one may of may not obtain a sum like

the one we obtained. Whether this happens or not, depends on whether the saddle points

correlate with quantum aspects of the two boundary theories. For example a possible gen-

eralisation of eq. (1.1), would involve an additional summation or integration for each fixed

individual sector S.

In (1.1), such a decomposition of the source functional also guarantees that there are

no short distance divergences for the two-point cross correlators (as expected from the

gravitational computations [2]). In particular one finds that

〈O1(x1) O2(x2)〉c =
1

Z2

∑

S

ew(S)〈O1(x1)〉1
S〈O2(x2)〉2

S . (1.2)

It is therefore impossible for short distance singularities as x1 → x2 to develop, if the

individual one-point functions are well defined. In addition, depending on whether the

states of the “sector” S preserve translational invariance, the one-point functions and the

two-point cross correlator might simply be constants.

This structure persists to higher-point functions, since singularities can only develop

when the operators whose points collide belong to the same d-dimensional theory/part of

the tripartite model, as expected from the holographically dual computation on a two-sided

Euclidean wormhole geometry. Some other appealing features of our construction in terms

of a (d+1)-dimensional (quasi)-topological theory coupled to d-dimensional QFT’s, is that

it can also be naturally generalised in the case of multiple asymptotic boundaries. It is also

possible to interpret the “gluing” of the two boundary partition functions as arising from

a form of topological entanglement [37, 38].9 We briefly touch upon the resulting form of

the multi-boundary partition function, that replaces eq. (1.1) in the conclusions 5.

The example we analyse in great detail in section 2.1, is a model of two matrix quantum

mechanics (MQM’s) coupled via a 2d theory of the BF-type. For this model, we shall

explicitly describe what the sector S in eq. (1.1) means. In particular, one has to sum

over different U(N) representations for the two MQM models, that are found to be “tied”

by common selection rules (and not by a direct interaction term in their Hamiltonian that

would inevitably lead to short distance singularities in the cross correlators). This provides

the softest possible “cross communication” between the two MQM models. The Hilbert

8Notice that this property is reminiscent to the holomorphic factorisation property of WZW models [83].
9To avoid confusion, we should again emphasize that in our case, the (d + 1)-dimensional topological

theory is part of the boundary and not the gravitational bulk description.
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space of the system is found to take the form of a direct sum of tensor products Hs =
∑

R H1
R ⊗ H2

R, with R a U(N) representation. We believe that this is an important aspect

that distinguishing the duals of Euclidean wormholes with those of the well understood

Lorentzian black holes (Einstein-Rosen bridge), which can be described by the simple

tensor product Hilbert space of the two boundary CFT’s (and whose Euclidean continuation

factorises into the product of two cigar geometries).

In addition, in a large representation limit that we describe in sections 2.3 and 2.4, one

can show the presence of competing saddles, some of which could correspond to connected

and others to disconnected bulk geometries (each individual singlet MQM with an inverted

oscillator potential is known to describe c = 1-Liouville string theory on a linear dilaton

background).10 Unfortunately, not much is known about the geometric interpretation of the

non-singlet sector of MQM (see though [46–49] for some preliminary steps in this direction)

and hence we cannot completely settle this question in the affirmative at the moment. In

section 2.5 we analyse some simple two- and four-point cross-correlators and demonstrate

their expected properties.

In section 3 we describe how such tripartite models can be naturally generalised in

higher dimensions and describe in some detail the specific case where two BCFT’s are cross

coupled through a higher-dimensional Chern-Simons “messenger” theory. The sectors in

this case correspond to labels of the associated Chern-Simons wavefunctions, that are also

related to group characters and representations.

In section 4 we analyse an additional class of weakly cross-coupled models, whose cor-

relators again exhibit the desired features, in terms of a free (d + 1)-dimensional messenger

theory coupled with two d-dimensional theories at the endpoints of an interval. The cou-

plings are simple, such as: Tr φ1Φm + Tr φ2Φm with φ1,2 (matrix) fields of the boundary

theories and Φm a (matrix) field of the messenger theory. We find that the Euclidean

system is perfectly well-defined, but its two natural analytic continuations in Lorentzian

signature (along the additional messenger or boundary dimensions), sometimes lead to the

existence of a non-positive spectral weight and/or the presence of tachyonic instabilities. In

the case of analytic continuation along the messenger dimension, the two boundary QFT’s

remain Euclidean (but cross-interacting), a setup that provides an interesting twist to the

dS/CFT proposal [39–43].

It is natural then to ponder whether the peculiarities of the Lorentzian tripartite

systems we study are in correspondence with the physical properties of gravitational back-

grounds such as Big-bang/Big-crunch type of universes, or Lorentzian traversable worm-

holes, which as gravitational solutions demand a violation of the bulk energy conditions.11

We are still missing a crisp — UV complete higher dimensional example, where we thor-

oughly understand the gravitational dual of such tripartite systems, but we initiate an

analysis of self-interacting tripartite models (that could perhaps be rendered UV complete

with some adjustments), in sections 4.3 and 4.4.

10It might also be interesting to analyse the case of the usual oscillator potential describing 1/2-BPS

states in N = 4 SYM and the corresponding LLM geometries [50–52].
11This is in contrast with Euclidean signature wormholes, for which negative “energy” can be easily

obtained in the presence of additional non-trivial bulk fields and fluxes [2].
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We also provide several appendices with further examples and details on our calcula-

tions. Most importantly appendix A contains various novel examples of 0d − 1d models,

where two matrix models are coupled via a messenger MQM. In addition in appendix A.3,

we show that the seemingly unrelated microscopic model of MQM on the S1/Z2 orb-

ifold, studied in [44] as a model of a two-dimensional bang-crunch universe, can also be

rewritten as a model of the general type studied in this paper. This is an additional

example, that might give further credence to the idea that Euclidean wormholes and

Lorentzian bang-crunch types of geometries are intimately related and can arise in our

setup [1, 2, 12, 13, 44, 45].

Finally in section 5, we summarise and conclude with the main lessons of this work,

as well as list some interesting avenues for future investigations.

2 Matrix models

We may consider various systems of cross-coupled matrix models or matrix field theories.

The lowest-dimensional cases of 0d matrix models coupled to 1d matrix quantum mechan-

ics (MQM), are discussed and analysed in appendix A. Even though we find that such

models are interesting on their own right, we would like to have a less trivial example

with a non-trivial space-time dependence. Therefore, in the main text we shall focus on

a concrete case of cross coupled 1d matrix quantum mechanics through an intermediary

two-dimensional theory of the Yang-Mills or BF type (quasi-topological).12 Such a model

has the advantage of being both amenable to a detailed analysis, as well as presenting

interesting characteristics that are shared by higher-dimensional examples such as those

we discuss in section 3.

2.1 MQM coupled to generalised YM (D0/D1 system)

We shall now analyse a tripartite system of two one-dimensional MQM models coupled via

a generalised YM-theory (gYM). The simplest possibility is that this gYM theory is only

indirectly coupled to the MQM’s through the asymptotic value of the gauge field A. Using

a form notation, the gYM part of the action is [65, 88] (A is the one form gauge field,

F = dA + A ∧ A = dAA and dµ is the volume form)

SgY M =
1

g2
Y M

∫

Σ
Tr BF +

θ

g2
Y M

∫

Σ
Tr B dµ − 1

2g2
Y M

∫

Σ
Tr Φ(B) dµ . (2.1)

In this action B is an auxiliary zero form, and Φ(B) is a potential that specifies the gYM

theory we are considering.13 We have also explicitly indicated the possibility of introducing

a θ-angle via the second term. Considering a concrete example, if we set Φ(B) = B2 and

use its equations of motion, we recover the usual 2d YM theory. Another special potential

is Φ(B) = 0, that results in a purely topological theory (pure BF model). An additional

12In section 3 we shall generalise the idea of having a “messenger” intermediate (quasi)-topological theory

to higher dimensions.
13Unitarity imposes that this potential should be bounded from below.
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possibility is that the field B is a compact field, in which case one finds a q-deformed

version of the gYM theory.

The equations of motion of (2.1) are (⋆ is the Hodge dual)

dAB = dB + A ∧ B = 0 , ⋆F =
δΦ(B)

δB
− θ . (2.2)

The variational principle yields also a boundary term that is

δS∂Σ =
1

g2
Y M

∫

∂Σ
Tr BδA . (2.3)

This variational principle is well defined in the case of Dirichlet boundary conditions for

which δA = 0 at the boundary/ies. It is also possible to add a boundary term

− 1

g2
Y M

∫

∂Σ
Tr BA = S∂Σ , (2.4)

if we wish to fix δB = 0 at the boundaries (“electric” vs. “magnetic” type of boundary

conditions).

In the rest, when using explicit indices instead of abstract forms, we shall denote the

two dimensions by (0, 1) = (τ, z). We introduce two boundaries at z = ±L and identify

Aτ (τ, z = L) = A1
τ (τ) , Aτ (τ, z = −L) = A2

τ (τ)

as the two asymptotic gauge fields living along the one-dimensional boundaries. From now

on we set Φ(B) = B2 and focus on 2d YM for concreteness. It is a simple exercise to

generalise the discussion to any of the gYM theories.

We now enrich further the dynamics of the system by introducing additional one-

dimensional dynamical fields on each boundary. In particular, one can introduce a U(N)-

gauged matrix quantum mechanics (MQM) model of (Euclidean) time dependent Hermitian

matrices M1,2(τ) on each boundary, through the action

SMQM1,2 =

∫

dτ Tr

(

1

2
(Dτ M1,2)2 − V (M1,2)

)

, Dτ M1,2 = ∂τ M1,2 + i[A1,2
τ , M1,2] . (2.5)

An important point here is that both MQM’s transform under the same U(N) group due

to their coupling to the asymptotic values of a common two dimensional gauge field. We

can relax this condition, by introducing other types of (bi-fundamental) matter fields and

such an extended example will be analysed in the next section 2.2.

For each boundary MQM we can diagonalise the matrix with time dependent rotations

M1,2 = U1,2Λ1,2U1,2
† , JMQM1,2 =

δSMQM1,2

δA1,2
τ

= U1,2K1,2U1,2
† . (2.6)

Dropping the 1, 2 boundary superscripts for compactness, the Hamiltonian for the eigen-

values of each MQM, is expressed as

ĤMQM =



−1

2

∑

i

(

∂2

∂λ2
i

+ V (λi)

)

+
1

2

∑

i<j

KR
ij KR

ij

(λi − λj)2



 , (2.7)
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and acts on wave-functions Ψ(λ) =
∏

i<j(λi − λj)Ψ̃(λ) transforming in the U(N) represen-

tation14 R. For a single gauged MQM model on an infinite domain τ , the non-dynamical

gauge field Aτ can be set to zero, but one has to impose its equations of motion as a

(Gauss’s law) constraint i.e.

JMQM = K = 0 . (2.8)

This would project each individual MQM into the singlet sector, but now the two MQM

models are coupled through the gauge field of the 2d YM theory, so that we expect non-

trivial representations to contribute.

In order to understand in more detail the induced cross correlations between the two

MQM’s, one can integrate out the 2d YM for an effective action coupling the two MQM’s

and we would like to understand the precise form of the induced coupling. We shall treat

the cases of compact and non-compact τ independently, the second case corresponding

to the partition function of the system of MQM’s (cylinder topology), where Aτ has non

trivial winding modes.

2.1.1 Non compact τ

In the case that τ is of infinite extend, there exist two possible interpretations of the path

integral, and quantisations of the 2d Yang-Mills theory. In the first case one can interpret

τ as the Euclidean “time”, that is also shared by the two boundary MQM’s. The other

option is to interpret z as the Euclidean “time”, the path integral now being a transition

amplitude for the 2d Yang-Mills , where the two boundary states at z = ±L are coupled to

the two MQM’s. If we pass to a Hamiltonian formulation of the Yang-Mills theory, we find

that A0 (that can be either Aτ or Az respectively) acts as a Lagrange multiplier enforcing

the Gauss-law constraint. This means that we can set Aτ = 0 or Az = 0 (no winding

modes), but we should then impose the corresponding equation as a constraint acting on

all the physical states. Both gauges preserve the boundary symmetries and make manifest

different physical aspects of the system.

Let us first consider the gauge Az = 0. In this case one finds Fτz = −∂zAτ , as the

only non-vanishing component of the field strength. The equations of motion read

1

g2
Y M

∂zF zτ = δ(z − L)Jτ
MQM1

(τ) + δ(z + L)Jτ
MQM2

(τ) , ∂τ F τz + i[Aτ , F τz] = 0 , (2.9)

with the MQM currents on the boundaries

J
MQM1,2
τ =

δSMQM1,2

δA1,2
τ

= i[M1,2, Dτ M1,2] , (2.10)

playing the role of sources that are defined only on the boundary surfaces z = −L, L where

the two MQM models reside. The second equation of (2.9) is the constraint equation and

14More precisely, one actually needs to consider SU(N) representations, since the trace of the gauge field

does not appear in the action. On top of that, one has to project to representations admitting zero weight

states (see [60–62] and appendix E), since the diagonal part of the gauge field matrix (Cartan generators)

does not couple to the eigenvalues λi. The complete U(N) can become relevant if we introduce a 1d

“Chern-Simons” term k
∫

dτ Tr Aτ [48]. We shall explain when this is possible in the next section 2.2.

– 8 –
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can also be written as

∂τ ∂zAτ + i[Aτ , ∂zAτ ] = 0 . (2.11)

The homogeneous part of the first equation of (2.9) is readily solved

∂2
z Aτ = 0 ⇒ Aτ (τ, z) = f(τ) + zg(τ) , (2.12)

with f, g Hermitean matrices. Setting z = ±L, we can identify 2f(τ) = A1
τ (τ) + A2

τ (τ) and

2Lg(τ) = A1
τ (τ) − A2

τ (τ). At this point we should mention that the axial-gauge is not a

complete gauge and there is further residual gauge invariance [58]. In particular one can

perform further gauge transformations that depend only on τ , to set f(τ) = 0 ⇒ A1
τ (τ) =

−A2
τ (τ). On the other hand as shown in appendix C the ghosts do decouple from the path

integral in such axial gauge choices.

To complete the classical analysis, one needs to solve a Green’s function problem with

the two boundary current sources.15 In particular, we demand continuity at z = ±L and

that the derivative jumps with a jump proportional to the sources JMQM1,2(τ). With these

conditions, one finds16

∂zAτ = g(τ) + g2
Y M Θ(z − L + ǫ)JMQM1(τ) + g2

Y M Θ(z + L − ǫ)JMQM2(τ) , z ∈ [−L, L] ,

(2.13)

with Θ(x) the step function. This solution for the gauge field has the correct behaviour,

being continuous and the normal jump of its derivative inducing the boundary current

sources. We then analyse the constraint equation (2.11), in the three regions defined by

the split z ∈ [−L, −L + ǫ) ∪ (−L + ǫ, L − ǫ) ∪ (L − ǫ, L] to find

∂τ g = 0 , ∂τ JMQM1,2 ± iL[g, JMQM1,2 ] = D1,2
τ JMQM1,2 = 0 . (2.14)

In the last equation the + sign is for JMQM1 and the − sign is for JMQM2 and the result is

simply the covariant conservation law of the two MQM currents. The solution of eqs. (2.14)

is

g = C , JMQM1,2(τ) = e±iτLCJ1,2(0)e∓iτLC , (2.15)

in terms of an arbitrary constant matrix C.

We conclude that the complete set of EOM’s in the axial gauge leads to

f = 0 ⇒ A1
τ = −A2

τ = LC , (2.16)

so that the conservation laws for the two MQM’s contain the same constant gauge field, C,

(up to a sign). Since τ is non-compact, there is no classical finite (YM) action configuration

with a classical constant non-zero gauge field [58], due to the divergence

SY M ∼
∫

dτ Tr C2 . (2.17)

15It is actually more similar to a propagator in the presence of two branes at z = ±L.
16We can introduce an infinitesimal regulator ǫ in order to define two additional small regions near the

boundaries.
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Similar to the case of a single gauged MQM, one can then set the zero mode C = 0,

but needs to impose as a constraint δStotal/δC = 0. This gives the condition Jtotal =

JMQM1 −JMQM2 = 0, or in other words a constraint between the allowed representations for

the two MQM models.17 If we wish to derive this result using the path integral formalism,

we can compute the gauge fixed path integral for the 2d YM coupled to sources (up to an

overall normalisation)

Z ∼
∫

dC e
− 1

4g2
Y M

Lτ Tr C2+LLτ Tr C(J1(0)−J2(0))
. (2.18)

In order to regulate this expression, we assumed that the τ direction has a finite extend

Lτ . Upon performing the integral, we find

Z ∼ e−g2
Y M

L2Lτ Tr(J1−J2)2
(πLτ )N2/2 . (2.19)

Taking the limit Lτ → ∞ we recover a matrix version of the delta function as expected

lim
Lτ →∞

Z ∼ δN2
(J1 − J2) . (2.20)

This is in contrast with the case where the 2d theory would have dynamical degrees of free-

dom, in which we generally expect an induced direct cross interaction of the Tr(J1J2) type.

One can also find a complementary (but more technically involved) analysis of the

model in the Aτ = 0 gauge in appendix D. The upshot is equation (D.9)

1

2g2
Y M L

Jτ
Y M =

1

2g2
Y M L

[W −1, ∂τ W ] = Jτ
MQM1

− Jτ
MQM2

, W = P exp

(

∫ L

−L
dzAz

)

,

(2.21)

that holds non-perturbatively as a constraint and generalises the condition JMQM1 −
JMQM2 = 0, beyond the analysis of the Az = 0 gauge. In this formula, by W we de-

note an open Wilson line, with end-points at z = ±L. In this case there is a non-trivial

YM current Jτ
Y M , related to the two MQM currents/charges by the constraint. Again

this results in selection rules for the allowed representations, and the Hilbert space of the

system, in the presence of open Wilson lines stretching across the two boundaries.

We shall now move forward to the case when τ is compact (an S1), so that physical

zero modes of Aτ become relevant.

2.1.2 Compact τ (circle)

In this case, we can only work in the Az = 0 gauge, since Aτ has physical zero modes. We

consider a compact τ direction with size β, (τ ∼ τ + β), so that fields are periodic and the

gauge field has a zero mode. One can now gauge fix in eq. (2.12) f = Cf to be a constant

matrix. Equations (2.14) and (2.15) are now replaced by

g = Cg , ∂τ JMQM1,2 + i[Cf ± LCg, JMQM1,2 ] = 0 .

JMQM1,2(τ) = eiτ(Cf ±LCg)C1,2e−iτ(Cf ±LCg) . (2.22)

17Including 1d C.S. terms on the boundaries k1,2

∫

dτ Tr A1,2, would lead to Jtotal = (k1 − k2)I with I

the identity matrix and k1,2 the C.S. levels. The theory is non anomalous only when k1 = k2, since the

MQM currents (2.10) are traceless.
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This analysis makes clear that one does not have a unique common zero mode since Aτ =

Cf + zCg, hence there are two independent holonomies/zero modes at the ends of the

cylinder (z = ±L). A further discussion of Wilson loops and the Hamiltonian ĤY M
z of 2d

YM in the case of compact τ can be found in appendix D.1.

2.1.3 The partition function

If we wish to study the thermal partition function of the combined system, then τ is

compactified into an S1, so that the 2d geometry is a cylinder (in this section we take

the two boundary S1’s to have equal size β, in section 2.3 we lift this restriction). In

this case, we have a τ -periodic gauge field with two independent non-trivial holonomies

(winding modes) on the boundary S1’s. The path integral for 2d YM on the cylinder with

area A = βL is expressed in terms of the two boundary holonomies as a sum over U(N)

representations (denoted by R) [66]

ZY M
cyl (U1, U2) =

∑

R

χR(U1)χR(U2)e−L
g2

Y M
N

C
(2)
R

+iθC
(1)
R . (2.23)

In this formula L is the cylinder length and χR(U) are U(N) characters. The result for the

path integral depends on the holonomy/zero modes of the gauge fields on the boundaries

which can be expressed as

U1,2 = exp iβAτ (z = ±L) = exp iβA1,2
τ , (2.24)

and is also interpreted as a propagator/heat kernel (along z), with the quadratic Casimir

C
(2)
R playing the role of the Hamiltonian and boundary states defined by the representation

characters. For more details on this interpretation, see appendix D.1. One should then

couple this expression to the two MQM thermal partition functions through the boundary

holonomies. In particular the matrices of MQM are periodic up to a twist

M1,2(β) = U1,2M1,2(0)U †
1,2 (2.25)

dictated by the gauge field zero mode on each boundary. If the MQM model is Gaussian

(as for c = 1 MQM), one can integrate M1,2 out and derive an explicit result for the twisted

thermal partition function that is [44, 48, 62]

ZMQM
1,2 (U1,2) =

∫

DM1,2 〈M1,2(0)|U1,2M1,2(0)U †
1,2〉 = (2.26)

= det
1

q
−1/2
1,2 U1,2 ⊗ I − q

1
2
1,2I ⊗ U1,2

,

with

q1,2 = e−ω1,2β (2.27)

In these formulae, one should set ω = i for the inverted oscillator relevant for the c = 1

MQM dual to Liouville theory and

〈M1,2(0)|U1,2M1,2(0)U †
1,2〉 (2.28)

is then the transition amplitude of each inverted oscillator with the twisted periodic bc’s.18

18It is also possible to pass to an eigenvalue basis where Uij = eiθi δij , see eq. (G.2).
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The total partition function of the system is

Z(β) =
∑

R

∫

DU1

∫

DU2 χR(U1)ZMQM
1 (U1)χR(U2)ZMQM

2 (U2)e−L
g2

Y M
N

C
(2)
R

+iθC
(1)
R

=
∑

R

e−L
g2

Y M
N

C
(2)
R

+iθC
(1)
R Z1

R(β)Z2
R(β) . (2.29)

In this expression ZMQM
1,2 (U) corresponds to the twisted MQM thermal partition for each

matrix model, and

Z1,2
R (β) =

∫

DUχR(U)ZMQM
1,2 (U) , (2.30)

corresponds to the finite temperature MQM partition function in the U(N) representation

R. In particular one can also write it as a trace over the fixed R-representation Hilbert

space ZR(β) = TrR e−βĤR with the Hamiltonian given by eq. (2.7). It admits an explicit

description in terms of the highest weights of the representation R, see eq. (F.1) of ap-

pendix F. The result for the partition function implicitly depends on N , since the reps

contributing to the sum are U(N) reps, whose highest weights correspond to Young dia-

grams having a maximum number of N non-empty rows. To be more precice, as described

below eq. (2.7) and in [60–62], actually only zero weight states of SU(N) reps contribute

to the expression 2.29, unless one introduces one-dimensional Chern-Simons terms, see

section 2.2 for this possibility.

We therefore find that the two MQM partition functions are coupled by having common

representations appearing, that are additionally weighted by the Casimirs of U(N). For

the 2d YM model this is the quadratic Casimir C
(2)
R , while for gYM theories one also

finds higher Casimirs [58]. As mentioned in the introduction, this form for the partition

function is expected to be relevant in the path integral description of systems dual to

Euclidean wormholes [1] and has recently being discussed in [12, 13].19

The physical interpretation is the following: we have two MQMs in arbitrary reps

without explicit local cross-interaction terms in their Hamiltonians. Nevertheless, they are

effectively coupled by “weighted selection rules” in their allowed states due to a constraint

eq. (2.21), arising from the “messenger” quasi-topological 2d YM theory. This is affecting

the combined partition function, so that it does not factorise. On the other hand, there is

factorisation for each individual representation R reminiscent to the holomorphic factorisa-

tion property of WZW models [83]. The effective cross-interaction is therefore as indirect

as possible, without the presence of an explicit local interaction term in the Hamiltonian

of the combined system. Additionally, the role of the Casimirs C
(n)
R of U(N), is to provide

a weighting in the averaging procedure over different representations.20 It is clear that one

could also define similar models in higher dimensions, and we shall describe some examples

in section 3.

The next step is to try to find out what is the leading representation appearing in the

partition function (saddle point). This can be achieved by considering the large-N limit, and

19This structure of the model is also reminiscent of [112].
20This is reminiscent to the idea of wormholes being related to averaged systems, but is now implemented

in a unitary quantum mechanical setup.
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discussing large representations (continuous limit of the tableaux). We expect the different

leading saddles to dictate the form of the dual geometric background. In particular for a

single MQM, this is the singlet representation dual to the linear dilaton background of c = 1

Liouville theory.21 Non singlets are related to long-strings and different backgrounds such

as black holes [46–49], but unfortunately there exist several missing gaps in this extended

dictionary. A straightforward analysis of the large representation limit using fusion of

U(N) characters and Littlewood-Richardson coefficients is presented in appendix F. Due

to mathematical difficulties in interpreting the large-N limit of the Littlewood-Richardson

coefficients, in section 2.3 of the main text, we provide an analysis using Hall-Littlewood

polynomials, that proved to be more tractable.

2.2 Liberating messenger and MQM ranks via bi-fundamental fields

We could also consider the case of coupling the two gauged MQM theories to the 2d gauge

field using bi-fundamental fields, so that the (quasi) topological messenger and MQM gauge

groups are independent. The motivation for studying this more elaborate construction is

that one has at hand an additional tunable parameter (the ratio of ranks) that proved to

be useful in the models of [12, 13, 75]. We shall then take the two sets of bi-fundamental

fields to be charged both under the messenger U(n) gauge group, and the U(N1,2) gauge

groups of each MQM. The simplest case to analyse is when the bifundamentals only couple

to the associated gauge fields and not to M1,2 (it offers also the least direct interaction

between the two MQM theories). Another posibility is that the bifundamentals live on the

full 2d geometry, as in models of 2d QCD [63, 64] coupled to two MQMs, where the flavor

group is gauged with respect to the boundary MQM gauge field. Since this situation is

more complicated to analyse and introduces further propagating degrees of freedom, we

shall focus on the simplest case.

The action on the first boundary is comprised out of a U(N1) gauged MQM action as

in eq. (2.5) together with the bifundamental field action

S1
bif. =

n
∑

α=1

N1
∑

i=1

∫

dτψ†
αi

(

δijδαβ(∂τ + m1) − iqBAgY M
αβ (z = L)δij − iqbd1Abd1

ij δαβ

)

ψβj .

(2.31)

In this equation i, j are U(N1) indices, while α, β are U(n) indices. We also introduce

a similar action for the second boundary and the BF-type action eq. (2.1) with the U(n)

gauge field AgY M
αβ (z, τ) living in the 2d geometry. Notice that Latin indices shall be reserved

for the U(N1,2) gauge groups of the two MQM’s, while Greek indices for the U(n) gauge

group and fields. The bifundamental fields can be either bosonic or fermionic.22 In the rest

we set unit charges in order not to carry many parameters in the expressions that follow.

The last type of terms we shall consider are the 1d Chern-Simons terms of the form

SC.S. = k1,2
∫

dτ Tr Abd1,2 . By tuning them, one can enrich the class of admissible repre-

sentations for the combined model, beyond those that admit states with zero weight. In

21Higher representations exhibit a logarithmically large gap in the string coupling with respect to the

singlet [60]. A single gauged MQM model also has all the non-singlet representations projected out of its

spectrum by construction.
22In one dimension it is possible to have a first derivative action for a bosonic field.
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order to make this more explicit, we have now three constraints analogous to eq. (2.21),

associated to the three different gauge groups

1

2g2
Y M L

(Jτ
Y M )αβ =

N1
∑

i=1

ψ
† (1)
αi ψ

(1)
βi −

N2
∑

j=1

ψ
† (2)
αj ψ

(2)
βj

(Jτ
MQM1

)ij = k1δij −
n

∑

α=1

ψ
† (1)
αi ψ

(1)
αj ,

(Jτ
MQM2

)ij = k2δij −
n

∑

α=1

ψ
† (2)
αi ψ

(2)
αj . (2.32)

In these expressions the first is the U(n) constraint, while the other two correspond to the

U(N1,2) constraints. Taking the trace of the expressions in (2.32), we find the consistency

conditions (see also [48] for normal ordering the quantum version of such expressions)

n
∑

α=1

N1
∑

i=1

ψ
† (1)
αi ψ

(1)
βi = k1N1 =

n
∑

α=1

N2
∑

j=1

ψ
† (2)
αj ψ

(2)
βj = k2N2 . (2.33)

The condition k1N1 = k2N2 shall be reproduced through properties of the Kostka polyno-

mials appearing in the analysis of the partition function in section 2.3.

We shall now describe the thermal partition function of the combined system including

the bi-fundamentals using a direct character expansion (setting k1,2 = 0 momentarily).

For a compact τ , one needs to consider the zero modes of the various gauge fields. In

particular we set Ω1,2 = eiβAgY M (z=±L) and U1,2 = eiβA1,2
bd as the unitary matrices arising

from exponentiation of the zero modes of each gauge field at the boundaries z = ±L. If

we integrate out the bi-fundamentals, they give a partition function [48] (m is their mass)

Z1
b (U1, Ω) =

∑

R1

e
−βm1C

(1)
R1 χR1(U1)χR1(Ω†

1) , (2.34)

and similarly for the second boundary (the representations R1 run over those of the smallest

group). The MQM matter fields can be integrated as before. Using the orthogonality

relation for characters
∫

DΩ χR(Ω) χR′(Ω†) = δRR′ , (2.35)

we arrive at the following expression for the combined partition function

Z =
∑

R,R1,R2

∫

DU1

∫

DU2 χR1(U1)ZMQM
1 (U1)χR2(U2)ZMQM

2 (U2)

×e
−βm1C

(1)
R1

−βm2C
(1)
R2 δRR1δRR2 e−L

g2
Y M
N

C
(2)
R

+iθC
(1)
R =

=
∑

R

ZMQM1

R ZMQM2

R e−β(m1+m2)C
(1)
R e−L

g2
Y M
N

C
(2)
R

+iθC
(1)
R . (2.36)

This might look qualitatively similar to the expression encountered in eq. (2.29), but the

difference lies in the fact that R is now a U(n) representation with n-rows (we assume from
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now on n ≤ N1,2). Using the formula (F.1) of appendix F, one can also write this expression

in terms of integers labelling the highest weights of three representations (see appendix E

for details on partitions and highest weights), and two Littlewood Richardson coefficients

C
R1,2

RR1,2
, where R is a U(n) representation and R1,2 is a U(N1,2) representation respectively.

The Littlewood Richardson coefficients capture the multiplicity that R1,2 appears in the

irrep decomposition of the tensor product R ⊗ R1,2.

It is clear that even in the case of a very small rank for the messenger theory n ≪ N1,2,

the exact partition function does not factorise, but is expressed as a factorised sum over

various “sectors”. Of course in this case, in the large N1,2 limit, the leading saddle is

expected to be determined solely from each individual MQM and if there is any connec-

tion between the two almost factorised dual geometries it is extremely weak (“microscopic

quantum wormhole”) and not a semi-classical saddle.23 If we wish to find a leading worm-

hole saddle, one should therefore perform a more thorough analysis of the limit of large

representations. Since it is not easy to analyse the large representation asymptotics of

the Littlewood-Richardson coefficients C
R1,2

RR1,2
, we shall resort to using the technique of

appropriate orthogonal polynomials, that bypasses this problem.

2.3 The partition function via Hall-Littlewood polynomials

In order to analyse in detail the partition functions we found in the previous sections, it is

convenient to use the formalism of Hall-Littlewood and Schur symmetric polynomials [72],

that was applied in similar models in [48, 73, 74]. In particular we shall exploit the

relation between representations R of U(n) and partitions λ : (λ1, . . . λn), in terms of

Young diagrams with λi boxes on the i’th row and with length ℓ(λ) = n (number of rows).

The order of the partition is the number of boxes
∑ℓ

i=1 λi = |λ|. See appendix E for details

on partitions and figure E.2 for a simple example.

In the rest we shall also denote by sλ(Z) the Schur polynomials, Kλµ(q) the Kostka

polynomials and by Pλ(Z; q), Qλ(Z; q) the Hall-Littlewood/Milne polynomials. The defi-

nitions of these polynomials as well as various technical details and formulae can be found

in appendix G and the book [72]. Additional details regarding algebras, representations

and branching functions that we shall later use, can be found in appendix H.

Putting into use the formalism of appendix G, it is possible to integrate over the U1,2

gauge group zero modes with eigenvalues z
(1,2)
i = eiθ

(1,2)
i . The part of the partition function

from the first gauge group contains a contribution from the MQM and the bifundamental

field on the first boundary, depends also on the U(n) holonomy Ω1 with eigenvalues ω
(1)
α ,

23Such extremely weak links and microscopic wormholes are relevant for the α parameter story [10].
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and reads24

Zk1
N1

(Ω1) =
q

N2
1 /2

1

N1!





N1
∏

i=1

1

2πi

∮

dzi

zk1
i





∏

i6=j(zi − zj)
∏

i,j(zi − q1zj)

n
∏

a=1

N1
∏

i=1

1

(1 − e−βm1ω
(1)
α zi)

=
q

N2
1 /2

1

(1 − q1)N1

∑

λ : ℓ(λ)≤min{n,N1}
e−βm1|λ|Q′

λ(Ω1; q1)〈Pλ , P
(k

N1
1 )

〉q1

=
q

N2
1 /2

1

φN1(q1)

∑

λ : ℓ(λ)≤n

e−βm1|λ|K
λ,(k

N1
1 )

(q1)sλ(Ω1) , q1 = e−ω1β1 . (2.37)

We should note at this point that λ is a partition corresponding to the highest weights of the

U(n) representation (see appendix H) and (kN1
1 ) is the partition with N1 rows each having

k1 boxes. The definition of the Hall inner-product 〈Pλ , P
(k

N1
1 )

〉q1 is given in eq. (G.2) of

the appendix and the function φN1(q1) =
∏N1

j=1(1−qj
1). We have assumed that n ≤ N1 and

hence the representations have maximum length ℓ(λ) = n. For fermionic bifundamentals,

one can use the dual Cauchy identity eq. (G.9), and follow similar steps to find (T denotes

the transpose partition, reflecting along the diagonal, see E)

Zk1
N1

=
∑

λ

q
N2

1 /2
1 e−βm1|λ|

(1 − q1)N1
PλT (Ω1; q1)〈Pλ , P

(k
N1
1 )

〉q1 =
q

N2
1 /2

1

φN1(q1)
e−βm1|(kN1

1 )|P
(N

k1
1 )

(Ω1; q1) .

(2.38)

Similar formulae hold for the second boundary as well. The final step is to combine the

pieces from the boundary contributions together with that of the 2d YM

ZY M
cyl (Ω1, Ω2) =

∑

ν : ℓ(ν)≤n

sν(Ω1)sν(Ω2)e−L
g2

Y M
n

C
(2)
ν +iθ|ν| , (2.39)

where the quadratic and linear Casimirs are expressed in terms of the partition ν as

C(2)
ν =

n
∑

i=1

νi(νi − 2i + n + 1) , |ν| = C(1)
ν =

n
∑

i=1

νi , (2.40)

and integrate over the zero modes of the U(n) gauge field holonomies (Ω1,2) at the two

boundaries. Using the simple orthogonality relation of Schur polynomials, we find in the

case of bosons

Z =
q

N2
1 /2

1 q
N2

2 /2
2

φN1(q1)φN2(q2)

∑

ν : ℓ(ν)≤n

e−β(m1+m2)|ν|K
ν,(k

N1
1 )

(q1)K
ν,(k

N2
2 )

(q2)e−L
g2

Y M
n

C
(2)
ν +iθ|ν| ,

(2.41)

with a similar expression in the case of fermions involving the transpose representations.

This is the main general form of the partition function as a sum over Kostka polynomials

Kµ,ν(q). We readily observe that the prefactor describes a factorised singlet partition

24For MQM this part of the partition function for Ω1 = I was analysed in [48] and in [73] for the matrix

model related to the Quantum-Hall effect.
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function for the two MQM models corresponding to the canonical partition function of

N1,2 free fermions in the oscillator potential

Zsinglet = Z
(1)
singletZ

(2)
singlet =

q
N2

1 /2
1 q

N2
2 /2

2

φN1(q1)φN2(q2)
. (2.42)

The complete partition function does not factorise and one has to find the leading saddle

governing the dual geometry.

The next thing to notice is a consistency condition k1N1 = k2N2 for the C.S. levels

and the gauge groups, due to the properties of the Kostka polynomials that are non-zero

only for |ν| = |kN1
1 | = k1N1 = k2N2 = |kN2

2 |, matching eq. (2.33).25 The model of common

YM and MQM groups of section 2.1.3 is simply obtained by specialising N1 = N2 = n (and

m1,2 = 0) that leads to k1 = k2 = k. We also observe that had we picked k1 = k2 = 0,

the only states that would contribute would be zero-weight states (inside a highest weight

module) as was first noticed in [60–62] and described in section 2.1.3 and appendix H.

For the normal oscillator, the lowest energy state for each MQM is determined as one

sends |q| ≪ 1 and derived from properties of the Kostka polynomials [73]. This corresponds

to a representation consisting of two rectangular boxes (we parametrize N1 = nL1 + C1)

νground =
(

(L1 + 1)C1 , Ln−C1
1

)

, (2.43)

This determines the ground state representation in the case of the normal oscillator. On

the other hand, for the inverted oscillator q = eiβ (a pure phase). Therefore, this limit is

not enough to determine the leading saddle of the system. What one should do instead is

to take the limit of large representations in an appropriate manner.

This limit depends on how we scale N1, N2, n. A case that has been discussed in [48, 73]

is the limit when

N1 = L1n + C1 , N2 = L2n + C2 , with L1,2 → ∞ , n finite . (2.44)

For the present model, this is the limit in which the intermediate gauge group has relatively

small rank, and is analogous to the analysis of models related to “wormbranes”, where one

considers a quiver gauge theory with two sets of nodes with large rank connected via a

node with small rank [75].

To actually perform this limit, we shall use two important facts. First the Kostka

polynomial Kλ(kN )(q) is non zero only when |λ| = kN = kLn + kC in the above decom-

position. Second given such a partition λ with length ℓ(λ) = n there is a unique partition

λ̃ , ℓ(λ̃) < n with |λ̃| = kC mod n such that [73]

λ = λ̃ + (Qn) , λi = λ̃i + Q , Q = max

{

0, kL − |λ̃| − kC

n

}

, (2.45)

with (Q)n the representation of Q boxes in each of the n rows. This provides a way to relate

representations of U(n) ≃ SU(n) × U(1) to those of SU(n) (tilde’s). We then consider the

25This is analogous to an anomaly matching condition.
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irreps of the complexified sln (An−1) Lie-algebra as well as those of the affine ŝln (Ân−1)

Lie-algebra (at level k). For notation and conventions see appendix H. We denote with

Λ = Λ(λ) the dominant integral weights that dictate the sln (An−1) irrep and with RΛ the

Cartan subalgebra generators in the Chevalley basis and with similar hatted symbols those

of the affine ŝln (Ân−1) Lie-algebra. In [98, 99] it is shown that the large N — fixed n limit

as described in (2.44), each of the Kostka polynomials appearing in eq. (2.41), simplifies

into an appropriate branching function26

Kλ(Λ),(kN )(q)
∣

∣

L→∞ = qE0bΛ̂
Λ(q) = qE0 Tr

M Λ̂
Λ

qR
Λ̂

(L0) ,

with Λ̂ = kΛ(C) , E0 =
nkL(L − 1)

2
+ kLC . (2.46)

In this formula, hats denote objects in the affine-Lie algebra and the coefficients bΛ̂
Λ(q)

are also known as the branching functions for the embedding of An−1 into Ân−1 or the

coset Ân−1/An−1 Virasoro submodule M Λ̂
Λ . The trace is therefore over Ân−1 modules, but

restricted to M Λ̂
Λ , which is the integrable highest weight Ân−1 — module with respect to

the global generators belonging to Λ. The parameter k corresponds to the level of the

associated Ân−1 affine Lie algebra [48, 73]. These works also make intuitively clear the

appearance of the Kac-Moody algebra in the limit (2.44), by constructing “(quasi) current

algebra” operators in a Schwinger-Wigner representation that involves bi-linears of the

bifundamental fields ψαi of the action (2.31), together with powers of the MQM matrix

creation/annihilation operators Aij , A†
ij . In the limit (2.44), one finds that the algebra

indeed closes, a central extension term appears, and the states are then organised according

to the affine current algebra. For the expression (2.46), the relevant representation that

has the lowest energy (lowest L0 eigenvalue — primary states) is the k-fold symmetrization

of the Cth antisymmetric power of the fundamental representation. This representation

has congruence class kC mod n and all the rest of the dominant integral weights fall into

the same congruence class. Additional details of this restricted module and the associated

branching functions are presented in appendix H. In particular, they can also be expressed

in terms of q-independent branching coefficients/multiplicities as

bΛ̂
Λ(q) ≡

∞
∑

m=0

dim M Λ̂
Λ−mδ qm , (2.47)

with δ the additional imaginary root of the affine Lie algebra.

An important property of the multiplicities dim M Λ̂
Λ−mδ in (2.47), is that they exhibit

a fast universal Cardy-like growth for high excitation number m → ∞, for fixed highest

weights Λ. In particular, for Ân−1 [118]

dim M Λ̂
Λ−mδ →m→∞ (c/6)n/4bm−(n+2)/4eπ

√
2cm/3 , (2.48)

with c the central charge of the affine algebra Ân−1 at level k and b a numerical coefficient

that can also be computed explicitly depending on the specific algebra and the level k.

26With Λ ≡ Λ(λ) we denote the highest weight Dynkin labels that are in 1 − 1 correspondence with the

partition λ, see appendix H.
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This Cardy type of growth is also present in the simpler non-singlet MQM model of [48],

proposed to describe a two-dimensional black hole. We provide some further comments

for the connection between the present model, Euclidean wormholes and black holes in the

conclusions 5.

Using the simplification of the Kostka polynomials in terms of branching functions,

one then finds that the partition function for the combined system (2.41) is expressed as

(Λ̂1,2 = k1,2Λ(C1,2) with k1C1 = k2C2)

Z = q
E

(1)
0

1 q
E

(2)
0

2

N1
∏

j=1

1

1 − qj
1

N2
∏

j=1

1

1 − qj
2

∑

Λ(λ)

bΛ̂1
Λ (q1)bΛ̂2

Λ (q2)e−L
g2

Y M
n

C
(2)
Λ

+iθ|Λ| . (2.49)

One could make this expression more concrete for small algebras such as Â1, using the

formulae in appendix H. The qualitative properties are transparent though, without such a

detailed analysis. The piece that does not factorise, is not dependent on N1,2. This means

that strictly speaking in the limit (2.44) of the canonical partition, the leading saddle is

factorised and of order O(N2
1,2) while the non-factorised contributions are subleading O(1)

corrections (only “quantum microscopic wormholes” are possible). We therefore find that in

contrast to the analogous model of wormbranes where two quivers are coupled with a small

rank node [75],27 our cross coupling between the two MQM theories via the topological

messenger theory is much weaker when N1,2 → ∞ with n-finite.28

Nevertheless, even in the case when n is finite, there do exist U(n) representations

with O(N) boxes. In other words, even if the length of the partition ℓ(λ) = n ≪ N , there

do exist partitions such that |λ| ∼ O(N), the quadratic Casimir for these representations

being of order O(N2). These correspond to very elongated thin Young diagrams and are

the leading configurations at large-N that induce a weak cross communication between the

otherwise decoupled MQM’s. As we discussed in the introduction, in c = 1 Liouville string

theory non-trivial representations with few boxes are related to the presence of long string

excitations on the linear dilaton background (whose free energy without the long strings is

captured by the singlet prefactor). At finite temperature these long strings correspond to

winding modes that modify the free energy of the system [46, 48]. Now at large N finite

n, we have two such linear dilaton geometric saddles at finite temperature (described by

the factorised part of the partition function) and in addition the presence of very large

and thin Tableaux describing the collection of such long strings/winding modes that are

correlated. For a example with a single row we have a totally symmetric object with

bosonic permutation statistics. Intuitively one could expect that the condensation of these

modes, would at least mildly deform the background, creating a (weak and subleading in

this case) connection between the two originally decoupled linear dilaton backgrounds.29

We shall now turn our attention to some specific values of the levels k1,2, for which

one can obtain more explicit results for the partition function, and then analyse a limit

27The model of wormbranes has a single asymptotic boundary.
28It might be worthwhile to consider also the limit where both N1,2, n → ∞ with N1,2 ≫ n.
29It would be interesting if one could find a subleading or perhaps complex saddle in the dual Liouville

theory similar to the double cone of [76].
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where all N1,2, n are sent to infinity (limit of continuous Young diagrams). In this case,

even the leading saddle of the path integral is directly affected by the non-factorised piece

of the partition function.

2.4 The non-factorised large N, n limit

If we wish to study the limit where both N1,2, n are large, it is possible to analyse further the

partition function (2.41), if we specialise the Chern-Simons parameters k1,2 of the model.

In this case one can use explicit exact formulae for the Kostka polynomials Kλ,(k)N (q).

The first case that can be analysed is the case when k1,2 = 0 so that N1 = N2 =

N . This corresponds to our original model analysed in section 2.1.3, where only states

with zero weights (belonging to each highest weight module) contribute to the partition

function (2.41). The Kostka polynomial Kλ,0(q) is then a generating series for generalised

exponents [92, 93], generalising the dimension of the zero weight submodule of a highest

weight module/partition Λ(λ), see also appendix H. Fixing the total weight |λ| =
∑

i λi =

m, one can exactly map the zero weight sub-modules to permutation group Sm modules [93,

96]. Using this correspondence, we can use an explicit formula by Kirillov [94] (see also [97]

for a related quantum mechanical model) that reads

Kλ,0(q) =
∏

x∈λ

qf(x)

(1 − qh(x))
, h(x) = λi + λT

j − i − j + 1 , i ∈ [1, ℓ(λ)] , (2.50)

in terms of the hook length30 h(x) corresponding to the box x = (i, j) ∈ λ, and the foot/leg

length of the hook f(x) = λT
j − j defined as the sum of lower vertical cells when projecting

the hook to the vertical axis. The sum of leg lengths over all cells is31

n(λ) =
∑

x∈λ

f(x) =

ℓ(λ)
∑

i≥1

(i − 1)λi =

ℓ(λ)
∑

i≥1

(

λT
i

2

)

. (2.51)

Another useful formula for the product over hook lengths is

∏

x∈λ

(1 − qh(x)) =

∏ℓ(λ)
i≥1

∏λi

j=1(1 − qj)
∏ℓ(λ)

i<j (1 − qλi−λj )
. (2.52)

Finally there is the relation
∑

x∈λ h(x) = n(λT )+n(λ)+ |λ| to transition between the sums

over lengths of a partition and its transpose.

Using these formulae, we find the following explicit form for the complete partition

function as a sum of partitions labelled by the integers νi

Z =
q

N2/2
1 q

N2/2
2

φN (q1)φN (q2)

∑

νi∈ν : ℓ(ν)≤n

e−β(m1+m2)|ν| ×

×(q1q2)

∑n

i≥1

(

νT

i

2

)

∏

i<j(1 − q
νi−νj

1 )(1 − q
νi−νj

2 )
∏n

i≥1

∏νi

j=1(1 − qj
1)(1 − qj

2)
e−L

g2
Y M
n

C
(2)
ν +iθ|ν| , (2.53)

30This is the sum of horizontal cells right from x and lower vertical cells including x.
31For more details and definitions, see [72].
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with q1,2 = e−ω1,2β1,2 , T the transpose partition and the quadratic and linear Casimirs

given by equation (2.40).

Another example we can analyse in detail is the case k1 = k2 = 1 (so that N1 = N2 =

N). One can then use the following explicit formula for the Kostka polynomials [72]

Kλ ,(1N )(q) =
qn(λT )φN (q)

∏

x∈λ(1 − qh(x))
, h(x) = λi + λT

j − i − j + 1 (2.54)

in terms of the hook length h(x) and where φN (q) =
∏N

i=1(1−qi). In this case the complete

partition function is

Z = q
N2/2
1 q

N2/2
2

∑

νi∈ν : ℓ(ν)≤n

e−β(m1+m2)|ν| ×

×(q1q2)

∑n

i≥1

(

νi

2

)

∏n
i<j(1 − q

νi−νj

1 )(1 − q
νi−νj

2 )
∏n

i≥1

∏νi

j=1(1 − qj
1)(1 − qj

2)
e−L

g2
Y M
n

C
(2)
ν +iθ|ν| . (2.55)

In both cases, the form of the exact partition function resembles that of q-deformed32 YM

theories and partition functions appearing in the context of topological strings.

Large N, n limit. Since the exact formulae (2.53) and (2.55) are now expressed only in

terms of the partition integers νi, one can directly study the large n-limit (so that both N, n

are scaled to infinity and N ∼ n) using the continuous variables described in appendix F.

This is a limit in which both sides of the tableaux become large, so that it acquires a

continuous shape if we scale it properly [59]. In particular one finds the leading saddle to be

determined by the following effective action (from now on we set q1 = q2 = q for simplicity)

Z = Z
(1)
singletZ

(2)
singlet

∫

Dh e−n2Seff(h) ,

Seff(h) = Lg2
Y M

∫ 1

0
dxh2(x) + (β(m1 + m2) − iθ)

∫ 1

0
dxh(x)

−
∫ 1

0
dx

∫ 1

0
dy log

(

1 − q|h(x)−h(y)|
)

+ 2

∫ 1

0
dx

∫ h(x)

0
dy log(1 − q−y) (2.56)

Introducing the normalised density of boxes ρ(h), the saddle point is determined by

ωβ

∫

dh′ρ(h′) coth

(

ωβ(h − h′)
2

)

= 2 log(1−q−h)+2Lg2
Y M h+(β(m1 + m2) − iθ) . (2.57)

It is useful to redefine variables U = qh (q = e−ωβ) and the new density of boxes

ρ̄(U) =
1

log q
ρ

(

h =
1

log q
log U

)

,

∫

dU
ρ̄(U)

U
= 1 , (2.58)

with respect to which the saddle point equation becomes

P
∫

dV ρ̄(V )

U − V
=

1

ωβ

(

Lg2
Y M

ωβ
+ 1

)

log U − 1

ωβ
log(U − 1) − (β(m1 + m2) − iθ)

2ωβ
. (2.59)

32Now the q-deformation is related to the inverse temperature β ∼ 1/T and not to 2d YM parameters.
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This is a common form of saddle point equations33 that can be readily analysed (for real

ω). The term on the left hand side provides a mutual repulsion between the eigenvalues

while the “force” from the potential term on the righthand side tries to clump them. The

θ-term makes the action and the force complex and one needs to consider an appropriate

“instanton” expansion to analyse the model [67, 68]. In particular the form of the “force”

and the potential is such that we expect the presence of various phases. There exist two

possible different one-cut phases (with or without saturation of the eigenvalue density near

the endpoint of its support). There also exist two different two-cut phases (with one or

two saturation regions). In the low temperature limit β → 0, the saddle point equations

reduce to those of the 2d YM having two possible saddles. This is the qualitative phase

diagram for the saddles in the case of the normal oscillator (real ω).34 Unfortunately for

the inverted oscillator relevant to c = 1 Liouville string theory, the analysis is much more

intricate, since ω is imaginary.35 This means that we actually need to perform a very

careful ab-initio analysis to solve the combined saddle point equations, and not merely rely

on a simple analytic continuation in ω.

We conclude that the class of coupled MQM — 2d YM models we analysed, can

admit various possible leading semi-classical saddles that are different from the decoupled

gauged MQM singlet state (in the limit where both the gYM and MQM gauge groups

are comparably large). Moreover the leading saddle depends both on how we perform the

large N, n-limit as well as on the various other parameters such as the temperature and

Lg2
Y M , θ, leading to the possibility of obtaining a quite interesting and rich phase diagram.

While we did not find explicitly the description of the leading dual geometric saddles for

the relevant case of the inverted oscillator, we expect that some of them will correspond to

a connected geometry with two asymptotic regions, because in the Hamiltonian description

the two MQM models are not directly cross coupled via an explicit term in the action.36

Even though deriving the explicit dual geometry (bulk reconstruction) is a hard problem,

perhaps some crude properties such as the number of boundaries and the connectedness

properties of the manifold are somehow directly encoded in the density of boxes in the

Young diagram and the solution of the matrix model saddle point equations (see [53] for

a related analysis in the context of LLM geometries [51]). A logical possibility is that the

structure shall remain similar to the one of the normal oscillator, and depending on the

parameters, some saddles will correspond to a connected wormhole geometry, while others

to two-factorised geometries and/or geometries connected by microscopic wormholes. This

is an important problem for the future that should be tackled in parallel from the geometric

gravitational side (we do not yet know explicit target space wormhole solutions in the

bosonic or 0A/0B Liouville string theory).

33Similar equations appear for example in the analysis of chiral YM and q-deformed YM [69, 70].
34The usual matrix oscillator is relevant for the description of 1/2 BPS states in N = 4 SYM and the

dual LLM geometries [50–52].
35In this case one has also to work in the grand-canonical ensemble at fixed chemical potential µ, dual

to N , since 1/µ ∼ gst is the parameter most directly related to the string coupling.
36As long as the asymptotic regions are governed by the inverted oscillator potentials of λ1,2, there are

two such regions.
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2.5 Two- and four-point correlation functions

Using the technique of Hall-Littlewood polynomials, it is also possible to study some simple

two- and four-point correlation functions. In particular, at finite temperature, one finds

the following result for the Wick contractions of two Matrix operators obeying the twisted

periodicity condition M(β) = UM(0)U † [77]

M ij(τ)Mkl(0) =
1

N

∞
∑

m=−∞
Gs(τ − mβ; ω)U−m

il Um
kj ,

Gs(τ ; ω) =
1

2ω
e−ω|τ | . (2.60)

This equation holds independently for each of the two MQM theories, so there is an implicit

1, 2 index. We emphasize that there are no cross-MQM Wick contractions. Armed with this

result, we can proceed to integrate over the Gaussian MQM action to derive once more an

effective action depending on the two holonomies U1,2 as shown in eq. (2.26). The resulting

integral over the unitary matrices is hard to compute if the indices are uncontracted,

since it involves a string of unitary matrices Uij . On the other hand, for gauge invariant

expectation values with contracted indices we obtain a product of traces, that can also be

expressed using characters or Hall-Littlewood polynomials. Some simple examples are

〈Tr M2(0)〉U =
1

N

∞
∑

m=−∞
Gs(−mβ; ω)〈Tr Um Tr U−m〉U , (2.61)

〈Tr M2(τ) Tr M2(0)〉U =
2

N2

∞
∑

m,n=−∞
Gs(τ − mβ; ω)Gs(τ − nβ; ω)〈Tr Um−n Tr Un−m〉U

where with 〈A〉U we denote the unitary average that contains the part from the MQM

effective action (and any other U(N) characters that come from integrating the 2d BF the-

ory and the bifundamental messengers). The first example is the one point function, that

is found to be time independent (but non-zero) as expected from translational invariance

on the circle.

The computation of the correlators now parallels the discussion of section 2.3, where

the averages over U1,2 contain additional insertions of traces of the unitary matrices. The

most efficient manipulation is a direct expansion of power sum symmetric polynomials in

terms of Hall Littlewood polynomials [72]

pρ(Z) =
∑

λ

Xλ
ρ (q)Pλ(Z; q) , (2.62)

in terms of Green’s polynomials Xλ
ρ (q) that for q = 0 reduce to the irreducible character

χλ of Sn at elements of cycle type ρ. In the examples of eq. (2.61) that only involve traces,

the expression simplifies into

pj(Z) = Tr Zj =
∑

|λ|=j

qn(λ)
ℓ(λ)−1

∏

i=1

(1 − q−i)Pλ(Z; q) . (2.63)
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Now using the description of section 2.3 that expresses all the pieces of the integral over

unitary matrices in terms of inner products of Hall-Littlewood polynomials, the single

boundary part analogue of eq. (2.37) for the correlators is

〈TrM2
1 (0)〉1 =

2q
N2

1 /2
1

N1(1−q1)N1

∞
∑

m=1

Gs(−mβ;ω)
∑

λ

e−βm1|λ|Q′
λ(Ω1;q1) (2.64)

×
|ρ|=|µ|=m

∑

ρ,µ

q
n(µ)+n(ρ)
1

ℓ(µ)−1
∏

i=1

(1−q−i
1 )

ℓ(ρ)−1
∏

k=1

(1−q−k
1 )〈PλPρ,P

(k
N1
1 )

Pµ〉q1 ,

〈TrM2
1 (τ)TrM2

1 (0)〉1 =
4q

N2
1 /2

1

N2
1 (1−q1)N1

∞
∑

n=−∞

∞
∑

m=1

Gs(τ−(m+n)β;ω)× (2.65)

×Gs(τ−(n−m)β;ω)
∑

λ

e−βm1|λ|Q′
λ(Ω1;q1)

|ρ|=|µ|=m
∑

ρ,µ

q
n(µ)+n(ρ)
1 ×

×
ℓ(µ)−1

∏

i=1

(1−q−i
1 )

ℓ(ρ)−1
∏

k=1

(1−q−k
1 )〈PλPρ,P

(k
N1
1 )

Pµ〉q1 ,

We can further manipulate these expressions via fusion of two Hall-Littlewood functions

Pµ(Z; q)Pν(Z; q) =
∑

λ

fλ
µν(q)Pλ(Z; q) , (2.66)

with structure constants/polynomials denoted by fλ
µν(q) (obeying the condition fλ

µν(q =

0) = Cλ
µν). After the dust settles, we obtain an expression in terms of skew Kostka

polynomials Kν/ρ,λ(q) and partitions

〈TrM2
1 (0)〉1 =

∞
∑

m=1

Gs(−mβ;ω)F1, (2.67)

〈TrM2
1 (τ)TrM2

1 (0)〉1 =
∞

∑

n=−∞

∞
∑

m=1

Gs(τ−(m+n)β;ω)Gs(τ−(n−m)β;ω)
2F1

N1

F1 = F1(q1,m1,k1,N1;m;Ω1)=
2q

N2
1 /2

1

N1φN1(q1)

∑

ν,λ

e−βm1(|ν|−|ρ|)sλ(Ω1)×

×
∑

ρ,µ;|ρ|=|µ|=m

Kν/ρ,λ(q1)q
n(µ)+n(ρ)
1

ℓ(µ)−1
∏

i=1

(1−q−i)

ℓ(ρ)−1
∏

k=1

(1−q−k)fν

µ(k
N1
1 )

(q1)

One then has to couple this expression to a similar expression coming from the second

MQM model and integrate over Ω1,2 that are unitaries coupling them to the propagator of

the 2d YM theory on the cylinder eq. (2.39). This has the effect of identifying a common

representation (index λ in F1 of eq. (2.67)) that couples the two correlators forming a cross-

correlator of the general form (1, 2 sub-indices and tildes, distinguish different operators of

the two MQM’s)

〈Oi1(τi1) . . . Õi2(τi2) . . .〉 =
∑

λ :ℓ(λ)≤n

〈Oi1(τi1) . . .〉λ
1〈Õi2(τi2) . . .〉λ

2 e−L
g2

Y M
n

C
(2)
λ

+iθ|λ| . (2.68)
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This correlator generically only depends separately on the differences τi1 − τj1 and τi2 − τj2

and not on time differences that mix the 1, 2 sub-indices or normal with tilde operators.

Some concrete examples of the individual pieces inside the λ-summation are those of

eq. (2.67). The result hence is a similar (but more complicated version) of the equation

describing the partition function (2.41), now involving skew Kostka polynomials37 and

additional summations over the integer images due to the MQM thermal propagators.

This computation again shows that cross correlators remain non-trivial as long as the

leading saddle effectively couples the two MQM partition functions (through a common

representation/partition index λ). Again this cross-communication arises at a leading

saddle point level when we take both N, n → ∞, while when N → ∞, but n finite the

leading saddle is factorised and there is a subleading cross-communication from very long

thin partitions with O(N) boxes.

We conclude this section by noting once more that the two-point cross correlators

of simple traces of the matrices M1,2(τ) are simply constants (translational invariance on

the circle is preserved for any representation), and there are also no short distance effects

in higher point cross correlators for operators inserted on opposite MQM’s. It would be

interesting to analyse the OTOC limit of our four point cross correlation function using

the second equation of (2.67). Using the formalism of Hall-Littlewood polynomials, it is

also possible to compute a two-point cross correlator with non trivial time dependence,

using more complicated operators for each matrix model, such as loop operators Tr eM(τ)

(loop-loop cross correlator [2]), or bilocal operators Tr M(τ)M(0), whose importance in

reconstructing the dual space-time in the case of the SYK model was emphasised in [78].

3 Higher-dimensional examples

It is possible to generalise the construction of the previous section 2.1, in higher dimensions.

In particular we can consider a d + 1-dimensional (quasi) topological theory that plays the

role of a “messenger” coupling two systems in d-dimensions. In this section we shall list

various examples, but analyse in some detail the case where the boundary theories are in

two dimensions (coupled to the 3d Chern-Simons messenger). We leave a more thorough

quantitative study of higher-dimensional examples for the future [79].

3.1 Chern-Simons messenger

A simple example of a higher-dimensional sandwich setup that can be analysed in detail, is

in terms of two 2d gauged BCFT’s coupled through a topological field theory like Chern-

Simons theory living in 3d. The most basic example of Chern-Simons theory38 with induced

dynamics on the boundaries, has been studied quite thorougly in the literature and in

particular in physical problems related to Quantum Hall effect. In the presence of manifolds

with the topology Σ × R where Σ contains boundaries and R is interpreted as time, one

finds chiral edge modes (or a chiral WZW model) propagating on them.

37Their definitions along with their properties can be found in [95].
38Examples with two boundaries appear in constriction setups in the condensed matter literature.
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In the seminal papers [81, 82] a geometry of topology Cyl × R was studied. The

two boundaries are the edges of the finite size cylinder where a dynamical chiral boson

propagates. Naively one would expect the Hilbert space of states to factorise as H =

H1
edge ⊗ H2

edge, with Hedge = HKM ⊗ Hp, with the last two factors representing a Kac-

Moody Hilbert space and a charge Hilbert space generated by a Kac-Moody current J+ and

a charge operator ψ† creating “electrons” in the fermionic formulation (in the description

in terms of a chiral boson these are solitonic sectors). Nevertheless, the true Hilbert space

does not factorise as such, since in the particular example bulk flux can make “electrons”

to tunnel quantum mechanically through the bulk. The Hilbert space can then be shown

to be constructed from a non-chiral boson and takes the form H = H1
KM ⊗ H2

KM ⊗ Hp1p2

with Hp1p2 spanned by states |I1, I2, M〉 with I1,2 two integers and M = 0, 1 . . . l with l the

maximum flux allowed.

Similarly, for the non-abelian model, the Hilbert space corresponds to that of a full

WZW model when both left/right movers are taken into account. In this case, the par-

tition function of the system is holomorphically factorisable [83], but one can consider

even more general setups that contain indecomposable representations which do not have

holomorphically factorisable partition functions.

The relevance of the real time setup of topology Cyl × R, for Euclidean wormholes

can be understood upon analytic continuation of the real line t = −iτ , with a subsequent

periodic identification τ ∼ τ + β. The Euclidean topology then corresponds to Σ × I, with

Σ = T 2 a two-torus and I an interval (the former length of the cylinder or annulus). It

is then possible to associate two different complex structures τ1,2 on the two tori at the

endpoints of the interval. Defining q1,2 = e2πiτ1,2 the partition function takes the form of a

trace over the Hilbert space of the two boundary WZW models

ZT 2×I = TrW ZW

(

qL0
1 qL̄0

2

)

, (3.1)

that also enjoys similar modular invariance properties as the usual torus partition function

of a single WZW model [80].

We would like now to modify and generalise this setup so that we can have two general

2d gauged BCFT’s39 coupled to the 3d Chern-Simons theory as a definition of our higher-

dimensional tripartite field theory system.

The Chern-Simons (CS) action with group H is40

SCS =
kCS

4π

∫

M
d3XǫMNΛ Tr

(

AM ∂N AΛ +
2

3
AM AN AΛ

)

. (3.2)

The variation of the CS action gives

δSC.S. =
kCS

4π

∫

M
d3XǫMNΛ Tr(δAM FNΛ) +

kCS

4π

∫

M
d3XǫMNΛ∂N Tr(AM δAΛ) . (3.3)

39In principle we would like them to be holographic CFT’s, but our setup is expected to be interesting

also for non-holographic systems and condensed matter applications.
40We took this to be SU(N)k, but we can also consider U(N)k,k′ , with different CS levels for the SU(N)

and U(1) part.
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The first term gives the bulk equations of motion for a flat connection and the last boundary

term can vanish either by demanding that the variation of the gauge field at the endpoints of

the interval is zero, or by inducing an additional WZW action at level kCS at the boundary.

We shall consider an analogous construction to the model of section 2.1, where the

boundary values of the CS gauge field correspond to the gauge fields that are coupled

to the two boundary theories Aµ(r = ±L) = A1,2
µ via a usual minimal coupling/gauging

procedure for the two boundary theories. If we wish to have different CS and boundary

gauge groups, we can introduce additional bifundamental fields as in section 2.2, or consider

gauging a diagonal subgroup of the boundary symmetry group G (considering for example

a pair of diagonally gauged WZW models with H ⊂ G).

Due to the topology being Σ × I, a convenient gauge choice to analyse such models is

the radial gauge Ar = 0. This gauge choice can be obtained using gauge transformations

that kill the (matrix) scalar degree of freedom

φ(z, z̄) =

∫ L

−L
drAr . (3.4)

In this gauge, the Chern-Simons action simplifies and becomes quadratic

SCS =
kCS

4π

∫

dr

∫

Σ
d2xǫµν Tr (Aµ∂rAν) , (3.5)

the non-linearity in the non-abelian case remains due to the constraint that one needs to

impose
δSCS

δAr
= 0 ⇒ ǫµνFµν = 0 (3.6)

Since the action is linear in derivatives, the Poisson brackets are

{Aa
µ(x) , Ab

ν(y)} =
4π

k
δabǫµνδ(2)(x − y) . (3.7)

Now there exist various choices of canonical pairs one can take or in other words various

choices of polarisations leading to different quantisations. This is important especially

when we introduce the boundaries and matter fields coupled to the boundary values of the

gauge fields. For example one can choose to fix A1 and A2 to play the role of the conjugate

momentum, or to use holomorphic quantisation going to the variables Az = 1
2 (A1 − iA2)

and fix Az or Az̄. In this latter case the quantum operators obey

[Aa
z(z) , Ab

w̄(w)] =
2π

k
δabǫµνδ(2)(z − w) , (3.8)

and Aa
z can be realised as functional derivatives to wavefunctions that depend only on Az̄.

The appropriate inner product is expressed as a generalisation of the Bargmann coherent

state inner product

〈Ψ | Φ〉 =

∫

D(Az, Az̄) exp

(

− k

2π

∫

d2z Tr AzAz̄

)

Ψ(Az̄)Φ(Az̄) . (3.9)

The transition between the two bases can be performed using the overlap

〈A1 | Az〉 = C exp

(

− k

2π

∫

Σ
d2xA2

z +
k

π

∫

Σ
d2xAzA1 − k

4π

∫

Σ
d2xA2

1

)

, (3.10)

with C an overall normalisation for the vacuum amplitude.
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The object we need to study that couples the two BCFT’s, is the transition amplitude

between the two boundary states for the gauge field that can be written as

〈A
∣

∣

Σ1

∣

∣A
∣

∣

Σ2
〉 = N

∫

A(r=±L)=A
∣

∣

Σ1,2

DA e−SCS−SΣ1
−SΣ2 , (3.11)

where SΣ1,2 are appropriately chosen boundary terms that render the combined model

gauge invariant. Remarkably this amplitude does not appear to have been explicitly com-

puted in the literature.41 In radial quantisation, using the radial Hamiltonian Hr as an

evolution operator, we can also write schematically

〈A
∣

∣

Σ1

∣

∣A
∣

∣

Σ2
〉 =

∑

n

Ψn(A
∣

∣

Σ1
)Ψn(A

∣

∣

Σ2
)e−LEr

n . (3.12)

Since the Hamiltonian of a topological theory is trivial the result exhibits the expected

factorisation into sectors labelling the wave-functions (degeneracy). This is also related

to the holomorphic factorisation of the WZW model partition function (sum of squares of

conformal blocks/wavefunctions) [83].

Two comments are in order here. Since one needs to make a choice of which components

of the gauge field to fix on the two boundary surfaces, the overall normalisation N might

also depend on the complex structure. The second is that one will have to introduce

appropriate boundary terms SΣ1,2 to render the total action gauge invariant and these

terms depend on this choice. Once this transition amplitude is defined and computed

for a particular system, one can then derive an “effective action” for the 2d BCFT’s, by

integrating over the 3d gauge field in the path integral.

We would like now to sketch the main features of such models in a simple example, leav-

ing a more thorough and complete analysis for the future [79]. We shall therefore concen-

trate in the simplest case of a two torus boundary surface Σ1,2 = T2 and for an abelian CS

gauge group H = U(1). Using holomorphic quantisation on the torus one can decompose

Az̄ = ∂z̄χ + iπτ−1
2 α , (3.13)

with χ a complex function and α a complex group valued vector (in the abelian case it

is simply a U(1) compact complex function). In the Ar = 0 gauge the C.S. Lagrangian

decomposes into

LC.S. =
ikπ2

τ2
(α̇α∗ − α̇∗α) + ik

∫

T 2
d2x (∂z̄χ̇∂zχ∗ − ∂zχ̇∗∂z̄χ) . (3.14)

and the path integral measure factorises

D(∂zχ∗, ∂z̄χ)D(α, α∗)e− k
π

∫

d2z∂zχ∗∂z̄χe−kπa∗τ−1
2 α . (3.15)

Since the manifold is a two torus, there exist large gauge transformations that affect the

α’s i.e.

α → α + p + qτ , p, q ∈ Z , (3.16)

41A useful paper discussing similar amplitudes is [84].
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and the system behaves as being in the background of a magnetic field (torus magnetic

translations). The flux quantisation condition translates to 2πk being an integer. In this

case one has finite-dimensional representations of the group of magnetic translations,42 else

one would have to consider infinite-dimensional representations.

Using holomorphic quantisation, the physical wave-functions on the torus T 2 (analo-

gous to the characters in the example of the 2d gYM theory), can be explicitly expressed

in terms of ϑ-functions, [85]

Ψm(χ, α) =
e

kπ
2

ατ−1
2 α

η(τ)
e

k
2π

∫

Σ
∂z̄χ∂zχ ϑ

[

m
k

0

]

(kα, kτ) , m ∈ [0, k − 1] . (3.17)

For τ ∈ hg (the Siegel upper half plane), the ϑ-functions appearing in the wave-functions,

form a basis of the Hilbert space of Lτ quasi-periodic functions of weight k. Using the

fact that the Hamiltonian in radial quantisation is zero, the result for the M3 = T2 × I

transition amplitude in the abelian case is

〈A1
z̄|A2

z̄〉 =
e

α1
kπ

2τ
(1)
2

α1+α2
kπ

2τ
(2)
2

α2+ k
2π

(
∫

Σ1
∂z̄χ∂zχ+

∫

Σ2
∂z̄χ∂zχ)

η(τ (1))η(τ (2))
T (α1, τ1; α2, τ2)

T (α1, τ1; α2, τ2) =
k−1
∑

m=0

ϑ

[

m
k

0

]

(

kα1, kτ (1)
)

ϑ

[

m
k

0

]

(

kα2, kτ (2)
)

, (3.18)

where we used the decomposition (3.13) and the wavefunctions/conformal blocks (3.17).

This sum is reminiscent of an addition theorem for the ϑ-functions/wave-functions. It is

clear that in this example, the “sector” label S of eq. (1.1) is simply the integer m labelling

the wave-functions and that the combined source functional takes the form

Z =
k−1
∑

m=0

Z(1)
m (J1)Z(2)

m (J2) , (3.19)

Z(i)
m (Ji) =

∫

D (χi, αi) Z
(i)
BCF T (χi, αi; Ji) Ψ(i)

m (χi, αi) , (3.20)

with Z
(i)
BCF T (χi, αi; Ji) being each BCFT partition function in the presence of external

sources43 and Ψ
(i)
m (χi, αi) the Chern-Simons boundary wave-functions (3.17), both evalu-

ated on a torus. We observe that the resulting two-point cross-correlators cannot exhibit

short distance singularities being sums of products of one-point functions.

We close this section with some comments on the non-abelian version of the model.

For the non-abelian Chern-Simons theory, the wave-functions on the boundary slices are

Weyl-Kac characters χµ,k(u, τ) where µ labels the representation, k is the level of the

affine algebra and Az̄ = iuτ−1
2 [81]. These characters are analogous to the ones we used

in the study of the non-abelian matrix model of section 2.3 and the sectors are again

enriched into integrable representations/partitions of the affine Lie algebra of the group

42This case will lead to rational CFT’s with finite number of conformal blocks as the relevant wave-

functions.
43This is analogous to the twisted partition function of the MQM, eq. (2.26).
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H. The resulting sums are again reminiscent of addition theorems. The conclusions about

the general form (1.1) of the partition function and the UV softness of cross correlation

functions remain unchanged.

3.2 Other higher-dimensional examples

Moving one dimension further up, a promising setup is to consider two holographic three-

dimensional gauge theories coupled via a “messenger” four-dimensional theory of the BF-

type [86, 87] in analogy to the simple 2d BF 1d MQM model. In condensed matter physics,

such BF-theories may describe the low energy physics of topological insulators (see [90, 91]

and references within). Therefore, such two-boundary models could also be of interest for

more practical applications of bi-layered materials.

For concreteness, we consider a pair of holographic 3d field theories (for example of

ABJM type) and the 4d BF theory on a space with the topology of a manifold times an

interval M = Σ × I and symmetry group G

SBF =

∫

M
Tr F ∧ B +

1

12g
Tr B ∧ B , (3.21)

where we again define the restriction of the gauge field on the two boundaries A|Σ1,2 =

A1,2 corresponding to the two three-dimensional gauge fields.44 It is clear that the list

of examples does not stop here, but one may consider similar setups in any number of

dimensions. The next example is that of two four-dimensional theories of the YM type

(like N = 4 SYM) coupled by an intermediate five-dimensional Chern-Simons theory and

so on. For this latter case, see also section 4.4.

4 Correlators in a simple model of cross-coupled QFTs

4.1 The Euclidean theory

In this section we slightly modify our setup and consider the case of a non-self interacting

messenger theory coupled to fields that belong to the two d-dimensional boundary theories.

The difference with the previous topological messenger theories, is that now the messengers

do have physical propagating degrees of freedom.

The basic question we would like to address is regarding the form of the combined

source functional (analogue of (1.1)) and as a consequence whether the cross correlators

remain UV soft when the messenger theory has non-trivial propagating states. This theory

realizes the idea of [2] as well as the higher-dimensional messenger theory suggestion of [12,

13] in a weakly coupled context. Our motivation is to settle the issue of the source functional

and the nature of the cross correlators in an explicit example.45 We shall first analyse the

case of free d-dimensional boundary theories and relegate the discussion of self-interacting

boundary theories in section 4.3.

44This case is more intricate, since the gauge field can have non-trivial dynamics on the three dimensional

boundaries.
45We choose to study the case of the most direct cross interactions between the various sector, should

this model exhibit the desired features, then less direct interactions involving bifundamental fields etc. are

guaranteed to do so.

– 30 –



J
H
E
P
0
2
(
2
0
2
2
)
1
2
6

Consider two scalars φ1,2 propagating in d dimensions interacting with a (d + n)-

dimensional scalar Φ via bilinear interactions.46 We keep the field Φ massive to avoid any

possible issue with IR divergences. We shall denote by x a point in the d dimensions and

by y a point in the n extra dimensions. The scalar φ1 is localised at a point y1 in the

extra n transverse directions while the scalar φ2 is localised at a point y2 in the extra n

transverse directions so that their distance is |y1 − y2| = L.

The relevant action is

S = S1(φ1) + S2(φ2) + S3(Φ) + Scross−int (4.1)

with

S1,2 = −1

2

∫

ddx φ1,2(x)
(

⊔⊓d − m2
)

φ1,2(x) (4.2)

S3 = −1

2

∫

ddxdny Φ(x, y)
(

⊔⊓d+n − M2
)

Φ(x, y) (4.3)

Sint = g

∫

ddx φ1(x)Φ(x, y1) + g

∫

ddx φ2(x)Φ(x, y2) (4.4)

Passing to momentum space and integrating out the scalar Φ we obtain

S =

∫

ddp

(2π)d

[

φ1(p)(p2 +m2)φ1(−p)+φ2(p)(p2 +m2)φ2(−p)+ (4.5)

+g2
∫

dnq

(2π)n

φ1(p)φ1(−p)+φ2(p)φ2(−p)+φ1(p)φ2(−p)[eiq·(y1−y2) +cc]

p2 +q2 +M2

]

(4.6)

There are two types of terms. Those that correct each individual theory and those that

couple the two theories. The terms that correct each individual theory are finite when

n = 1 and contain UV divergences when n ≥ 2. We henceforth assume n = 1 to continue

and find

S =

∫

ddp

(2π)d

[

φ1(p)
(

p2 + m2 + g2Σ11(p)
)

φ1(−p)+ (4.7)

+φ2(p)
(

p2 + m2 + g2Σ22(p)
)

φ2(−p) + g2φ1(p)φ2(−p)Σ12(p)
]

, (4.8)

where we can use the following integrals to determine the self-energies

∫ +∞

−∞

dq

2π

1

q2 + p2 + M2
=

1

2
√

p2 + M2
≡ Σ11(p) ≡ Σ22(p) (4.9)

∫ +∞

−∞

dq

2π

[eiq·(y1−y2) + cc]

q2 + p2 + M2
=

e−L
√

p2+M2

√

p2 + M2
≡ Σ12(p) (4.10)

This is the result when y is non-compact and the d + 1-dim field Φ has an infinite y-space

to propagate.

46This model can be easily generalised in the case where the fields are matrices as we explain in the end

of this section and section 4.4.
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On the other hand, if y is a compact interval of length L, and Φ can only propagate

inside the interval47 we find instead the self-energies (these results can be also reproduced

upon analytically continuing the transition amplitude computation of appendix I into Eu-

clidean signature — eq. (I.14))

1

2L(p2 + M2)
+

1

L

∞
∑

n=1

1
(

πn
L

)2
+ p2 + M2

=
coth(L

√

p2 + M2)

2
√

p2 + M2
≡ ΣI

11(p) ≡ ΣI
22(p) (4.11)

1

2L(p2 + M2)
+

1

L

∞
∑

n=1

(−1)n

(

πn
L

)2
+ p2 + M2

=
sinh−1(L

√

p2 + M2)

2
√

p2 + M2
≡ ΣI

12(p) . (4.12)

We observe that the self-energies for the interval reduce to the ones of the infinite y-space as

L → ∞ and that their qualitative features are very similar for any value of L. Nevertheless,

there do exist important subtle differences between these two cases. We shall discuss and

analyse them in the places when they are relevant. In particular, such differences are very

important when trying to implement two possible analytic continuations into Lorentzian

signature, in section 4.2.1 and 4.2.2.

We shall now prove that this setup has all the expected properties for the correlation

functions of φ1,2. As a first step, we rediagonalize this action to cast it in the form

S =

∫

ddp

(2π)d
[φ+(p)D+(p)φ+(−p) + φ−(p)D−(p)φ−(−p)] (4.13)

with

φ± =
φ1 ± φ2√

2
, D±(p) = p2 + m2 +

g2
(

1 ± e−L
√

p2+M2
)

2
√

p2 + M2
(4.14)

We would like now to arrange that the Euclidean theory is well defined and for this we

must have that D±(p) is regular for all physical Euclidean momenta (p2 ≥ 0), and that the

position space propagators are reflection positive, see also appendix B. Here we observe

that D±(p) > 0 and regular for all values of g, L. In this case, the Euclidean propagators

D−1
± are well defined and finite everywhere. In the IR we find

D±(p) ∼ m2 +
g2

(

1 ± e−LM
)

2M
+ O(p2) , (4.15)

while in the UV

D±(p) ∼ p2 + m2 +
g2

2p
+ O(p−2) . (4.16)

This is a common asymptotic behaviour consistent with dispersion relations and indicates

that the propagators could admit a spectral representation. For more details on the relation

between the spectral representation and reflection positivity, see appendix B.

47This case can be further generalised by considering induced dynamics on the boundary “branes” for

the scalar Φ(x, y). Then one has to consider Neumann bc’s on the two boundaries.
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For the field correlators, we obtain

〈φ1φ1〉(p) ≡ G11(p) = G22(p) ≡ 〈φ2φ2〉(p) =
D−1

+ (p) + D−1
− (p)

2
= (4.17)

=
p2 + m2 + g2√

p2+M2



p2 + m2 +
g2

(

1+e−L
√

p2+M2
)

2
√

p2+M2







p2 + m2 +
g2

(

1−e−L
√

p2+M2
)

2
√

p2+M2





Therefore G11 at short distances behaves as in the original theory

G11 =
1

p2 + m2 + O(p−4)
, p → ∞ (4.18)

The same applies to large distances but the effective mass m̂2 is different

G−1
11 = Z(p2 + m̂2) + O(p4) , p → 0 (4.19)

with

Z=
(g2+2m2M)(6g2M3+4m2M4−g4)+g4

(

g2(2LM+1)+2M(M2+m2(1+LM))
)

8M3(m2M+g2)2e2LM
(4.20)

m̂2=
2M2e2LM (g2+m2M)((g2+2m2M)2−e−2LM g4)

(g2+2m2M)(6g2M3+4m2M4−g4)+g4(g2(2LM+1)+2M(M2+m2(1+LM)))
(4.21)

This is a signal of the IR-relevance of the interaction.

On the other hand, the cross correlator of the original scalar operators

〈φ1φ2〉(p) ≡ G12(p) =
D−1

+ (p) − D−1
− (p)

2
= (4.22)

= −
g2√

p2+M2
e−L

√
p2+M2



p2 + m2 +
g2

(

1+e−L
√

p2+M2
)

2
√

p2+M2







p2 + m2 +
g2

(

1−e−L
√

p2+M2
)

2
√

p2+M2





∼ e−Lp

p5

is exponentially suppressed at short distances. This implies that in real space, G12(x − y)

asymptotes to a constant as x → y. This is similar to what was found in the holographic

examples and the simple (non-local) model of [2]. In addition, we can also consider arbitrary

composite operators of the form

O1,2
m ≡: φm

1,2 : , (4.23)

and find that their mixed two-point functions

〈O1
mO2

m〉 = 〈
(

φ+ + φ−√
2

)m (

φ+ − φ−√
2

)m

〉 =
m!

2m

(

D−1
+ − D−1

−
)m

, (4.24)

are also very soft in the UV. The same applies to all similar local operators containing

a finite number of derivatives. When the messenger theory is defined on an interval, the

mixed two-point functions again exhibit the same features.
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Figure 1. The plots on the left are for g = 1, m = 1, M = 10. The plots on the right are for

g = 1, m = 1, M = 1. The upper plots depict G++(x) = D−1
+ (x) (extra dimension is an infinite

line), while the lower plots are for G++(x) = (DI
+)−1(x) (extra dimension is a finite interval).

The noise on the right side plots is in regions of large numerical error, but we can safely trust the

complementary region, where the graph is smooth. We observe a violation of reflection positivity

in the regime m ≃ M (and for values of x for which we have acceptable numerical error). This

violation is also dependent on the parameter g and increases for large g. The G
−−

(x) correlators

are found to be reflection positive in the regime of parameters that we could numerically analyse.

The results are similar to the analytic results of the non-local model [2].

What remains to be discussed are the reflection positivity properties of the various

correlators (the two possible analytic continuations into Lorentzian signature are discussed

further in section 4.2), using the spectral representation of the two-point functions B.

The operators φ1, φ2 are good primary operators of the tensor product of the two de-

coupled theories H1 × H2. After including the cross interactions, a good basis is that con-

structed out of the φ+, φ− operators and the original factorisation does not hold anymore.

In particular, the cross-correlator 〈φ1φ2〉(p) eq. (4.22), due to its exponential vanishing in

the UV, does not admit a Källen-Lehmann spectral representation as shown in appendix B,

and the propagating states after the interaction are the + and −, that could admit such a

representation, since D±(p) > 0 (no zeros) for p2 > 0, and with asymptotics (4.15), (4.16),

that are consistent with dispersion relations. On the other hand, these conditions alone

are not sufficient to guarantee reflection positivity as was exemplified in the non-local ex-

ample of [2]. This motivates a more careful study of the real space propagators in order

to actually check reflection positivity. Unfortunately, it is possible to fourier transform the

propagators only numerically. The features of the real space Euclidean propagators are

depicted in figure 1.
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We find that the D−1
− (x) and (DI

−)−1(x) propagators are indeed reflection positive,

for various choices of parameters m, M, g that we checked (these are measured in units of

L to form three independent dimensionless parameters). Remarkably there does exist a

non-trivial parameter regime (when m ≃ M) in which D+(x) and DI
+(x) are not reflection

positive,48 as can be seen in the right-hand side of figure 1. So the Euclidean theories we

consider are consistent and satisfy the O.S. axioms [100] only for a subset of the parameters

that define the model.49

It would also be very interesting if one could construct a strongly coupled system,

where one of the φ+, φ− operators gets “confined” in the IR, ceases to propagate and does

not appear in the effective IR Hilbert space. In this case one forms a bound confined state

that “liberates” at high energies (similar to a QCD-like bound state). The natural state to

“confine” in our example is φ+ in the regime where it does not admit a Kallen-Lehmann

spectral representation. One could then make it disappear from the IR correlation functions

and perhaps make sense of the parameter regime in which the free model is not reflection

positive.50

We conclude this section by noting that this class of models can be readily upgraded

into cross interacting matrix field theories by promoting the fields φ1,2 into N -dimensional

hermitian matrices. If we keep the linear couplings of (4.4), the rank of Φ is fixed to

be N as well, and hence all the quadratic terms scale in the same way.51 Higher point

interactions are then suppressed in an 1/N expansion as per usual. A richer possibility of

inequivalent ranks can be obtained by promoting the matrix model of appendix (A.12) into

a matrix field theory (equivalently by adding “messenger” bi-fundamental fields into the

action (4.1)). In the model of the appendix, the matrix M(τ, x) would then be a (d + 1)-

dimensional field, whilst the rest of the matrices (bi-fundamentals and boundary fields) are

d-dimensional fields dependent only on x. It might be interesting to analyse in more detail

this class of bi-fundamental models with propagating messengers especially in the limit

N → ∞, n-finite (the large N, n-limit has a similar behaviour to the model (4.1)). This

is useful as a comparison to the topological messenger model of section 2.3, for which non

trivial cross correlators only appear in subleading order in this limit (naive n, N counting

suggests a similar behaviour for the propagating messenger model as well).

4.2 The Lorentzian theory

As we mentioned in the introduction, one can consider two possible analytic continuations

of the Euclidean theory. One is along the boundary directions and the other is along

the extra dimension in which only the messengers can propagate. We are after two types

of behaviour, negative residues near poles of the propagator (negative spectral weight or

ghost-like “pathological” behaviour) and the presence of complex poles or “tachyonic” type

48This behaviour for the + propagator was also observed in the model of [2].
49Notice that as we increase the messenger mass M , or send g → 0 the models are always well defined,

since the cross correlation becomes increasingly weaker.
50We remind the reader that in [2] we gave calculations and generic arguments that in wormholes the

physics is always confining.
51All the two point functions can be made to be of O(1) upon rescaling the fields.
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of instabilities (which could nevertheless have positive residues). Similar comments apply

for branch-cuts that describe a continuum of states.

4.2.1 Analytic continuation along the boundary directions

In this case, we can analytically continue D±(p) and DI
±(p) from eq (4.14) to find the

Lorentzian inverse propagators by sending p0 → iω. We find (we define s = ω2 − ~p2 that

can be both positive and negative)

D±(s) = −s + m2 +
g2

(

1 ± e−L
√

−s+M2
)

2
√

−s + M2

DI
+(s) = −s + m2 + g2

(

coth(L
√

−s + M2/2)

2
√

−s + M2

)

DI
−(s) = −s + m2 + g2

(

tanh(L
√

−s + M2/2)

2
√

−s + M2

)

(4.25)

We observe that for D±(s) the point s = M2 is a branch/threshold point. Crossing the

branch cut we usually move to a different sheet of the s-plane (denoted as the “unphysical

sheet”).

Unfortunately, this branch point is transcendental, in the sense that the expansion

of the exponential yields an infinite collection of terms with branch points of all possible

orders. It is therefore impossible to determine the spectral weight using the discontinuity

formula, even in the parameter regime where we expect spectral positivity due to reflection

positivity of the Euclidean propagator. In addition, for s = ω2 − ~p2 ≥ M2, the exponential

terms become oscillatory. For masses in the range where the Euclidean model is well

defined, we find one pole in the propagator that exists in the real axis with positive residue,

validating the O.S. theorem of the possibility of analytically continuing reflection positive

theories [100]. In the regime m ≃ M , where reflection positivity fails, the poles lie on the

complex plane and have complex residues, so the theory has ghosts. We conclude that the

main trouble with the Lorentzian version of this model (for all the parameter regimes) is

the transcendental cut having no obvious Lorentzian interpretation.

On the other hand, for DI
±(s), the discontinuity due to the square root is cancelled.

Hence the interval propagator admits a Laurent series expansion in the complex s plane.

This means that we only need to understand the structure of poles/singularities of the

propagator and whether they admit positive residues. Once more, in the parameter regime

where the Euclidean theory was found to be well defined and reflection positive, the poles

are on the positive real axis and with positive residue, (the case when the Euclidean model

is not reflection positive is similarly sick). Hence we can make sense of the model on the

interval, even in Lorentzian signature due to the cancellation of the transcendental branch

cuts and the normal behaviour of poles in the propagator.

We conclude that the “sickness” of the boundary Lorentzian theory in the model on the

infinite extra dimension, has to do with the fact that there seems to be a huge continuum

of modes (that condense in a transcendental branch cut), induced on the lower-dimensional

– 36 –



J
H
E
P
0
2
(
2
0
2
2
)
1
2
6

Lorentzian theories from the messenger that can propagate on an infinite dimension.52 On

the other hand, for the theory on the finite interval there is no such issue, since the extra-

dimensional modes are bound on an interval and hence discrete, the resulting Lorentzian

theory having a propagator with healthy poles only.

Additionally, in the case of the interval, one expects the presence of a natural negative

vacuum energy due to the Casimir effect. All these properties make more probable the

construction of traversable wormholes in similar finite interval field theoretic setups, rather

than in the case where the extra dimension is of infinite extend. Some related comments

on the possibility of creating traversable wormholes by exploiting the Casimir effect in a

similar fashion can be found in [102].

4.2.2 Analytic continuation along the messenger direction

The other possibility is to analytically continue along the additional radial direction on

which only the messenger field can propagate. In this case one has to perform the con-

tinuation in the original description of the model eq. (4.6), by rotating q = iω (and using

Lorentzian/real time propagators for the messenger theory). This analytic continuation

corresponds to a Lorentzian messenger theory, coupled to two Euclidean boundary theo-

ries at two distinct points in time.

The result takes the form of a Lorentzian transition amplitude, in the presence of

Euclidean sources (the fields φ1,2) at the endpoints in time (we define ∆T = (t2 − t1)).

Of course there are various choices on how to perform this analytic continuation and

boundary choices for the messenger field Φ(x, t). The boundary theories of the fields

φ1,2(x) nevertheless do remain Euclidean, which is a quite interesting generalisation of the

ideas revolving around the dS/CFT proposal [39–43], since in our setup the two Euclidean

boundary QFT’s are cross-interacting.53

The real time free messenger transition amplitude in the presence of sources is written

as

〈Φ(tb)|Φ(ta)〉J =

∫ Φ(tb)

Φ(ta)
DΦ exp

[

i

∫ tb

ta

dt

∫

ddx

(

1

2

(

∂µΦ∂µΦ − M2Φ
)

+ JΦ

)]

. (4.26)

The details of the computation of this transition amplitude are given in appendix I. We

shall use Dirichlet boundary conditions that fix the values of the field Φ(ta), Φ(tb) at the

end-points in time, see (I.11) for the relevant Green’s function.

Once the messenger theory is integrated out, instead of eq. (4.13), one finds the diag-

onalised action

S =

∫

ddp

(2π)d
[φ+(p)D+(p)φ+(−p) + φ−(p)D−(p)φ−(−p)] (4.27)

52Though perhaps at strong coupling one can make such branch cuts to disappear.
53It is also possible to introduce further self interactions for each Euclidean QFT as shown in section 4.3.
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Figure 2. The upper plots depict G++(x) = D−1
+ (x) (extra dimension is an infinite line). The

upper left figure is for g = 1, m = 1, M = 10, showing the reflection positivity of the propagator,

while the upper right is for g = 1, m = 1, M = 1, where it is not reflection positive. The lower left

plot is for GI
++(x) = (DI

+)−1(x) (extra dimension is a finite interval), while the lower right plot is for

GI
−−

(x) = (DI
−

)−1(x) both for g = 1, m = 1, M = 10, where they used to be reflection positive in the

case of Euclidean messenger propagation. We find relatively large noise and numerical error, since

the integrand is highly oscillatory near the regions in which it diverges. We observe a clear violation

of reflection positivity for the GI
++(x) propagator, in the interval where the curve is smooth, while

in the case of the GI
−−

(x) the ratio error/value is large and we cannot safely draw a conclusion.

with

D±(p) = p2 + m2 +
g2

(

1 ± cos(∆T
√

p2 + M2)
)

2
√

p2 + M2
,

DI
+(p) = p2 + m2 + g2

(

cot(∆T
√

p2 + M2/2)

2
√

p2 + M2

)

,

DI
−(p) = p2 + m2 + g2

(

tan(∆T
√

p2 + M2/2)

2
√

p2 + M2

)

. (4.28)

One common property of these inverse propagators is that the UV and IR be-

haviour (4.15), (4.16), is only changed in subleading terms and the asymptotic conditions

for dispersion relations still hold. Nevertheless, we once more observe qualitative differ-

ences between the model with an infinite extend and finite interval. The difference that

is always present is the branch cut of the infinite extend model. Again this branch cut

does not affect the Euclidean propagators in the physical regime p2 > 0, since it still starts

at p2 = −M2. In addition in the first case of (4.27), the Euclidean propagators remain
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positive definite, but oscillatory as one varies p in the physical region p2 > 0, while in the

second finite interval case we loose this positivity property for DI
±(p) completely. This

means that the Euclidean propagators (for the interval) diverge at points belonging to the

physical regime p2 > 0. It can be checked that the divergences do not to correspond to

simple poles, indicating a pathology of the interval theory. Upon performing a numerical

fourier transform in position space, we find that the theory on the infinite line is reflection

positive for a subset of parameters, while the one on the interval is not (in particular the

(DI
+)−1(x) propagator), even in the regime where it used to be. The results are summarised

in the plot 2.

We shall close this section with a speculative comment. Contemplating the fact that

the analytic continuation of the Euclidean wormhole geometries gives rise to Bang/Crunch

type of Cosmological manifolds, for which the energy conditions cease to hold it is natural

to expect that holographic duals of such geometries would indeed suffer from some kind of

“pathology”. If the duals of such geometries are Euclidean as in the dS/CFT correspon-

dence, then it is natural to expect that these Euclidean theories would violate the usual O.S.

axioms for Euclidean QFT’s [100]. Perhaps the violation of reflection positivity we observe

in the interval model with Lorentzian messenger (whose cross correlators are sufficiently UV

soft when the messenger theory is Euclidean — consistent with holographic cross correlators

on Euclidean wormhole geometries), is an indication that this specific analytic continuation

along the messenger dimension is related to the analytic continuation in the bulk geometry.

In order to actually check this idea one would have to study a top down example of the

tripartite systems, with a known holographic dual. In the next section we shall improve

on our toy model by including the effects of self interactions for each boundary QFT.

4.3 Including self interactions

So far we assumed that both the messenger and the two boundary theories are non-self

interacting. We would like to see what happens to the cross-correlators once we turn on

self-interactions for the two boundary theories. This is especially important if we wish to

eventually construct models of strongly coupled (while weakly cross-coupled in the UV)

QFT’s with a potential semi-classical geometric dual admitting a wormhole saddle, see

section 4.4. As can be seen from eq. (4.6) and (4.8), the effects of the messenger theory, once

integrated out in the path integral, is to correct the propagators of the individual theories

and to induce a UV soft cross interaction. These actions now have to be supplemented with

additional self-interaction terms for each individual boundary theory, that introduce loop

integrals, so one has to ascertain the effects of loop corrections to the cross interaction.

Before treating this problem in full generality, we assume simple cubic vertices for φ1,2

with couplings g
(1,2)
3 . We then find the first correction to the two-point cross correlator to

be determined from a one loop diagram that evaluates to

〈φ1(p)φ2(−p)〉1 = g
(1)
3 g

(2)
3

∫

ddq

(2π)d
D−1

12 (q)D−1
12 (p − q) , (4.29)

with D−1
12 read from (4.17). We would like to understand the UV asymptotics of the cross

correlator as p → ∞. In this case we find that the integrand is exponentially suppressed
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both in the large-q and large-p regions due to the properties of the cross-propagators D−1
12 .

This means on one hand that the UV of the loop integral (large-q) does not give any

divergence, rendering the result of the integration finite (no need for renormalisation).

This means that we can simply consider the case p → ∞ inside the integrand, to find that

this particular one-loop correction to the cross-correlator is again exponentially suppressed

at large p similarly to the tree level one.

We can also make a qualitative remark to all orders. Since the cross communication is

only induced via the cross-propagator, all possible loop integrals that contribute to cross-

correlators inevitably contain a string of such cross-propagators, that vanish exponentially

in the UV. We can restrict our discussion to graphs that are 1PI with respect to the cross

propagator, else the exponential in the UV falloff is trivial and follows from the tree level

computation. If the cross propagators are part of a subgraph containing a loop integral, we

can safely obtain a finite result for this loop integral (due the exponential suppression in the

UV that swamps any power law divergences54) that depends on the external momenta.55

For consistency, the cross propagators can only appear in even pairs in loop integrals, so

there will always be at least one additional external momentum for which the subgraph

will exhibit exponential UV suppression (and due to momentum conservation this affects

at least two legs of the subgraph). For the two-point cross-correlation function, all the

subgraphs are glued together in a way that in the end only two external lines appear, each

belonging to a different boundary theory. This means that inevitably, all the internal lines

will in the end exhibit an exponential suppression in the UV, rendering the cross correlator

sufficiently soft. This argument indicates that the result we found for the specialised

interaction (4.29) generalises to all loop orders at least for the two-point cross correlator.

We shall now formally recover this result, using generating functionals. Assuming that

the messenger theory is not self interacting, we can simply integrate it out in the path

integral to obtain an effective source functional for the boundary theories of the form

Z[J1(x1), J2(x2)] =

∫

Dφ1Dφ2 e−S1−S2−Sint−
∫

1
ddx1φ1(x1)J1(x1)−

∫

2
ddx2φ2(x2)J2(x2) . (4.30)

In this case S1,2(φ1,2) corresponds to a general interacting action for the field on the

first/second boundary (with a self energy shift given by (4.9) or (4.11)). The only cross

communication is induced by the bilinear cross interaction term

Sint = g2
∫

ddp

(2π)d
φ1(p)Σ12(p)φ2(−p) , (4.31)

with Σ12(p) given by (4.10) or (4.12) (in both cases it falls exponentially in the UV). This

term can be decoupled using the Hubbard-Stratonovich trick (or delta function insertions)

to yield the following expression for the source functional

Z[J1(x1), J2(x2)] =

∫

Dζ1Dζ2 Z1[J1 + iζ1]Z2[J2 + iζ2] e
− 1

g2

∫

ddp

(2π)d
ζ1(p) Σ−1

12 (p) ζ2(−p)
, (4.32)

54Assuming no IR divergences (a non zero messenger mass ensures this).
55Subgraphs that do not contain the cross propagators will exhibit UV divergences, but we assume that

these are renormalised in the usual fashion for each individual boundary QFT.
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which is the equation that replaces the main result eq. (1.1) that holds for topological

messengers.

Any cross correlator is computed as an average of two individual pieces in the presence

of “dynamical” sources ζ1,2

〈Oi1Oj1 . . . Õi2Õj2 . . .〉 =

∫

Dζ1Dζ2 〈Oi1Oj1 . . .〉iζ1〈Õi2Õj2 . . .〉iζ2 e
− 1

g2

∫

ddp

(2π)d
ζ1(p)Σ−1

12 (p)ζ2(−p)

(4.33)

This means in particular that 〈Oi1Oj1 . . .〉iζ1 and 〈Õi2Õj2 . . .〉iζ2 , contain only external

source legs ζ1 and ζ2 respectively. These legs are fused pairwise in a 1 − 1 fashion, due

to the nature of the single term in the exponent, and always involve an exponentially

suppressed (in the UV) propagation for any momentum flow between the two theories.

The individual pieces 〈Oi1Oj1 . . .〉iζ1 and 〈Õi2Õj2 . . .〉iζ2 , contain the usual short dis-

tance singularities, since as we observe from (4.9) or (4.11), the self energies do not affect

the UV properties of the propagators on each boundary theory (but are IR relevant and

introduce an effective mass). On the other hand as we move the operator Oi1(x1) from

the first theory close to the operator Õi2(x2) of the second theory, we can instead choose

to fourier transform with respect to x1 − x2 and send the corresponding momentum p to

infinity. The cross interaction and the momentum flow inevitably involves a number of

ζ1,2 propagators which as we mentioned above are all exponentially soft in the UV. All

the loop integrals that involve these momenta are then finite (and at least one of them

involves the momentum p). Assuming that the divergences on each individual boundary

theory are regularised and renormalised, this means that the result is an expression that

falls-off exponentially in large p, rendering the cross correlator UV soft.

We conclude that arbitrary self interactions on each individual boundary theory do

not spoil the UV softness of cross correlators.

4.4 A matrix version of the model

While the model described in this section 4 does not have a simple holographic dual inter-

pretation, it can be easily generalised to incorporate two boundary (matrix) theories that

could have such a dual.56 For example, one could consider two N = 4 SYM U(N) gauge

theories in d = 4 (or any set of holographic theories with matrix field degrees of freedom)

with a matter action of the form (I = 1, . . . 6 in N = 4)

S1,2 =
1

2

∫

d4x Tr
(

DµXI
1,2DµXI

1,2 + g2
1,2[XI

1,2, XJ
1,2]2

)

, (4.34)

and couple them with a simple five-dimensional matrix messenger field57 with an action of

the form

Sm =
1

2

∫

d4xdy Tr
(

ΦI(x, y)
(

⊔⊓d+1 − M̃2
)

ΦI(x, y)
)

(4.35)

Sint = g

∫

d4x Tr
(

XI
1 (x)ΦI(x, y1)

)

+ g

∫

d4x Tr
(

XI
2 (x)ΦI(x, y2)

)

, (4.36)

56This also relies on the fact that quantum corrections on each individually interacting theory continue

to preserve the softness of the cross-correlators, see section 4.3, for a proof of this.
57Here we consider only couplings with the bosonic sector of the four-dimensional YM-theory, but this

can be easily generalised to account for the fermions.
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where the two four-dimensional theories are placed at y = y1,2. In this case the analysis

is almost equivalent to the one presented in the previous section 4, the only difference is

keeping track of factors of N due to the matrix structure and the presence of self interactions

on each boundary. In particular equation (4.33), is generalised into

〈Oi1Oj1 . . . Õi2Õj2 . . .〉 =

∫

DζI
1 DζI

2 〈Oi1Oj1 . . .〉iζ1〈Õi2Õj2 . . .〉iζ2 e−S(ζ1,2) ,

S(ζ1,2) =
1

g2

∫

ddp

(2π)d
Tr ζI

1 (p) Σ−1
12 (p) ζI

2 (−p) (4.37)

In this expression ζI
1,2 are N ×N matrix fields and Σ−1

12 (p) = (Σ−1
12 )ij,kl(p) is an appropriate

matrix inverse propagator with UV soft properties. The individual averages should be

computed in each SYM, in the presence of source terms for the elementary matrix fields

S1,2 = i
∫

d4x Tr XI
1,2(x)ζI

1,2(x). We observe that as expected, the cross interaction appears

to leading order in N , on the same footing with the other terms in the action (4.34), since

the coupling (4.36) involves gauge group indices and not products of traces. The property

of UV softness for the cross correlation functions follows according to the discussion of

section 4.3. One should also take care, since the sources do not couple to color singlets

and hence it is not possible at this stage to replace each individual expectation value with

a supergravity dual description even at the ’t Hooft limit.

We should mention a final possibility, that is to couple not only the matter fields XI
1,2(x)

with the messengers ΦI(x, y), but consider the addition of a five-dimensional Chern-Simons

term for a gauge field AM (x, y), whose boundary values at y1,2 correspond to the gauge field

of the 4d N = 4 SYM theories.58 Such an extended model blends features of the models in

this section and the topological messenger theories we considered in the first part of this

work, nevertheless it is similarly not clear if it can admit a weakly coupled holographic dual.

5 Conclusions

As discussed in the introduction 1, there are various possible avenues that one can explore

with respect to the factorisation problem and the holographic interpretation of Euclidean

wormhole solutions. It seems that there are several possible “resolutions”, depending on

the precise setup and assumptions one is imposing (number of dimensions, worldsheet

vs. target space vs. replica wormholes, microscopic holography vs. statistical/averaged

computations). Taking also into account that we do not have access to a generic non-

perturbative formulation of string theory, except indirectly through holography, we do

believe that a solution that deviates from the very sharp and well studied paradigm of

N = 4 as little as possible, and has the property of generalisability in several number of

dimensions and setups, provides the most satisfactory resolution of this paradox.

In this work, we chose the approach that requires the most minimal modifications to the

well-studied paradigm of AdS/CFT, in terms of a system of cross coupled QFT’s [2, 12, 13],

58These higher dimensional examples are more intricate to define, since the gauge field has propagating

degrees of freedom on the boundary. Since we wish to keep the boundary gauge field fluctuating and dynam-

ical, we might need to add additional boundary terms to define a Neumann boundary value problem [101].
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the coupling being mediated by a higher-dimensional theory of (quasi)-topological (or non

self interacting) character. Remarkably, we found that these types of systems satisfy two

non-trivial holographic requirements. The first is the form of the source functional of the

combined system as an average over “sectors” of individual source functionals (eq. (1.1)),

which in turn were identified with group representations in the (quasi) topological exam-

ples we studied. The second is the UV softness in the behaviour of the two-point cross

correlators, computed as averages over one-point correlators of each individual subsystem.

An interesting feature of our (quasi)-topological proposal is that while being a unitary

construction, at the same time exhibits some features analogous to those that appear when

considering averages over boundary theories. On the other hand it is also crucially differ-

ent, in the sense that the sum over representations is not (a priori) related to an average

over couplings multiplying products of gauge invariant operators, but involves the gauge

group structure and the constraints of the system.59

While we do not know if some variants of the theories we analyse in this work can admit

an explicit weakly coupled semi-classical holographic dual, with small α′/L2
AdS ratio, we do

believe that they deserve further exploration from a holographic perspective. In particular

a D-brane picture would help to search for UV complete models, with better holographic

control.

A possible D-brane construction proposed in [12, 13], involves the study of D-brane

systems of the Gaiotto-Witten type [103], where the role of the messengers is played by

a stack of D3 branes connecting two widely separated stacks of NS5 and D5 branes.

This system describes two 3d BCFT’s coupled to a 4d N = 4 messenger theory on an

interval [104] and hence falls in the general category of systems that we consider in this

work. This model is hard to study, especially in the proposed case where the widely

separated stacks of D5’s and NS5’s have opposite orientation [12, 13], so that SUSY is

broken by boundary conditions.60 On the other hand a great simplification would be, if the

low energy theory of the connecting D3’s could be replaced instead by a (quasi) topological

theory. Perhaps it is possible to achieve this using ideas like the ones in [105–107].

In this work we did not study at all the interesting setup of the “gas of microscopic

wormholes” and α-parameters. We find that in that setup and in the derivation of the

α-parameter effective action, there do exist various assumptions, whose validity should

be re-examined in detail [10]. On the other hand, in the bifundamental model 2.2, we

found that in the limit n ≪ N1,2 where the messenger rank is much smaller to that of the

boundary ranks, the two source functionals are only connected via subleading contributions

that could have a dual interpretation as “microscopic wormholes”. Nevertheless there is no

notion of α-parameters appearing.

Another remark concerns the two-dimensional quantum gravity models that have at-

tracted most of the recent attention due to their solvability. As described in [16, 27],

these models can also be thought of as string theory models, the two-dimensional geome-

59This also helps to evade issues with finding marginal couplings to average over.
60A motivation behind these boundary conditions, was that the system would flow to a confining theory

in the IR, so that the dual gravitational end of the world branes would bend and reconnect in the bulk,

forming a wormhole. We provide below some additional discussion on wormholes and confinement.
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try corresponding to the worldsheet of the string. We therefore think that it is of utmost

importance to analyse microscopic models of strings propagating on target space wormhole

geometries, so that one has a double topological expansion at hand. This was in part our

motivation for studying the model of section 2.1, with which we can possibly achieve this

feat (analysing further the grand canonical ensemble for the inverted oscillator). So far our

analysis mostly relied on the matrix model side, but we think that it is very important to

revisit the gravitational equations of motion arising from the c = 1 Liouville string, to see

if they do admit more general wormhole types of solutions. In addition at the moment we

do not know what the decompositions eq. (1.1), and the explicit (2.29) and (2.41) in terms

of representations, mean from a worldsheet point of view. Other promising worldsheet

string theory models (exept the c = 1 string), for which it is straightforward to understand

the target space geometry are WZW models (which are known to be able to incorporate

semi-wormhole solutions [108]). Such models provide an important intermediate “stepping

stone”, before tackling critical string theories.

We close with a few more important comments:

Higher dimensional messenger theories. A higher-codimesion messenger theory can

be used for our purposes.61 We would expect that the higher the dimension of the messenger

theory, the weaker the interactions between the two boundary theories. On the other hand,

we think that a messenger theory that is of the same dimension or lower than the other

two, will generate interactions that destroy the homogeneity of such boundary theories,

as the induced interactions must happen via lower-dimensional boundaries in this case.

When the messenger theory is topological, the generalization seems straightforward. For

the case of a dynamical albeit weakly-coupled messenger theory, discussed in section 4, one

can also trivially generalize to a higher-dimensional messenger theory, without important

qualitative differences.

Multiple boundaries. It is straightforward to generalise our class of models if we wish

to describe manifolds with multiple asymptotic regions. One simply defines a multi-partite

system composed out of a (quasi)-topological theory (such as BF theory or Chern-Simons

theory) on a d+1 manifold M with n-boundaries. On each such boundary one places a holo-

graphic d-dimensional gauge theory coupled to the asymptotic value of the d+1 gauge field.

This naturally leads to a generalisation for the partition function that in the simplest

examples is expected to take the form

Z =
∑

S

ew(S) Z1
S Z2

S . . . Zn
S , (5.1)

where S labels the “sectors” of each boundary theory.62 In the case of the 2d YM theory on

a sphere with n-holes coupled to n-copies of MQM, in analogy with the model of section 2.1,

61We thank the referee for raising this issue.
62This is also reminiscent to the form of the partition function in terms of averaged theories studied in

the literature, but here the average arises in a pefectly unitary single system setup (the label S corresponds

to representations and not a random Hamiltonian or disorder average). It is an interesting problem to

compare and contrast the various approaches in more detail.
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the sectors correspond to representations and one simply finds a string of characters instead

of the simple case with the insertion of only two characters (2.23). The partition function

then does take the simple form (5.1), with S → R a representation index and w(S) →
C(2)(R) the quadratic Casimir.63 Again the cross correlators do not exhibit short distance

singularities being averages of lower point correlators of each boundary theory. For more

complicated (d + 1)-dimensional topologies we expect also the form (5.1) to become more

complicated, a similar discussion in the context of Chern-Simons theory is [37, 38].

Analytic continuation and cosmologies. As first proposed in [1], a radial analytic

continuation of Euclidean wormhole geometries generically results in Cosmological space-

times of the Big-Bang/Big-Crunch type. An appealing feature of the models studied in

this paper is that it is possible that the relevant analytic continuation, does not involve

the two Euclidean boundary QFT’s, but merely the messenger theory connecting them.

The proposal then is that the d + 1 dimensional bulk Cosmology is described by a

tripartite system that involves two d-dimensional Euclidean theories connected via (the

real time) transition amplitude of a d + 1-Lorentzian, non-holographic messenger theory,

between two boundary states [12, 13]. Such systems therefore provide a generalisation of

the dS/CFT proposal [39–43]. We should also mention that a similar microscopic model of

a Bang/Crunch universe in two dimensions was proposed earlier in [44], but its relevance

to the present setup became clear to us only recently (see appendix A.3).

Wormholes and confinement. Based on symmetry arguments and computations of

expectation values of Wilson loop operators and cross-boundary loop correlators, it was

argued in [2] that two theories with a U(N) × U(N) factorised gauge symmetry in the

UV, that cross interact in a way that only the diagonal Udiag.(N) gauge symmetry remains

intact in the IR could be good dual models of Euclidean wormholes (and Cosmologies as

was exemplified in [12, 13]). This fusion of the two gauge groups into a single one would be

an avatar of a “cross confining” type of physical behaviour. Confining theories are typically

gapped in the IR and share this property with (quasi) topological theories (even though they

can generically differ in their ground state degeneracy properties). This was partly a moti-

vation behind using a higher-dimensional (quasi) topological gauge theory as a messenger

theory connecting the two boundary QFT’s and “tying” their individual gauge groups. For

example in the MQM model of section 2.1, one does have to sum over the various Udiag.(N)

representations, but prior to the introduction of the messenger gauge field one has a fac-

torised U(N) × U(N) gauge group structure (or a U(N1) × U(n) × U(N2) structure for the

more general bifundamental model of section 2.2 ). Of course one might prefer to have a

model where a “cross-confining” behaviour would arise in a more dynamical fashion and not

merely from selection and fusion rules of representation theory. Perhaps the Gaiotto-Witten

type of models proposed in [12, 13], that we mentioned above, can exhibit such a behaviour.

On the factorization of the Hilbert space. The fact that in Euclidean wormholes

there is a bulk Gauss’ law that correlates boundary global symmetries has implications for

63One also needs to insert a factor D2−2g−n

R related to the dimension of the representation and the genus

g of the surface.
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the structure of the total Hilbert space in the dual QFT. More strongly, from a boundary

field theory perspective, we believe that there is a non-factorizability of the Hilbert space

of the pair of interacting QFTs, similar to that appearing in non-abelian gauge theories.

In non-abelian gauge theories the Hilbert space does not spatially factorise into subregions

(even though one can define commutant subalgebras of local operators), see [114, 115]

and references within. Nevertheless, it is true that one can embed this non-factorising

Hilbert space into a larger factorising Hilbert space if additional edge degrees of freedom

are introduced (that transform non-trivially under the symmetry group).

The precise statement in our construction is that while as in any other gauge theory

the total state of the combined system is a “global singlet”, the subsystems on the two

boundaries transform non trivially under U(N). So one can consider the enlarged factorised

Hilbert space H =
∑

R1
HR1 ⊗ ∑

R2
HR2 , with |R1〉 ⊗ |R2〉 describing a factorised state in

representations R1,2 respectively. After imposing the gauge constraint mediated by the

topological messenger, there is a projection of the enlarged Hilbert space to the subspace

containing only the states for which R1 = R2. This is not a tensor product anymore but

takes the form of a direct sum of tensor products Hs =
∑

R H1
R⊗H2

R.64 We believe that this

is what distinguishes the duals of Euclidean wormholes with those of the well understood

Lorentzian black holes (ER bridge), which can be described by a simple tensor product

Hilbert space of the two boundary CFT’s (and whose Euclidean continuation factorises

into the product of two cigar geometries).

Connection with black holes. MQM models with non-singlet states are believed to

be relevant for the description of long string excitations and black hole geometries in c = 1

Liouville theory [46, 48, 113]. In this work we proposed that non-singlets are also relevant

for the description of target space wormholes in Liouville theory.65

While we find some similarities with the model of non singlets in [48], the partition

function eq. (2.41) to the best of our knowledge does not correspond to that of an integrable

system (it does not seem to be a τ -function of a known hierarchy). This raises the interest-

ing possibility that a variant of the model proposed here could also be relevant for the black

hole — string transition. The picture we have in mind is that, for some parameter regime,

the saddles of such models correspond to the trivial linear dilaton background (or products

of them in the case of multiple MQM copies), possibly with a long string condensate (star or

“fuzzball”) on the background, if the number of long string excitations is sufficiently large.

This could correspond to an “integrable phase” of the model, where the relevant low-energy

excitations are described by an integrable model such as the Spin-Calogero type of model

proposed in [48]. As we change parameters, the long-string condensate/star can undergo

gravitational collapse and we enter the “non-integrable phase” of the model, whose lead-

ing saddles have a geometric interpretation in terms of black holes or wormholes.66 Some

simple models with similar integrable to chaotic behaviour can be found in [116, 117].

64This could also be described via the use of intertwiners.
65Again we emphasize the difference with the minimal and c = 1 models studied in the recent literature,

where the various topologies can also be interpreted as topologies of the worldsheet of a string. In this

work we try to understand target space wormholes (MQM automatically includes worldsheet wormholes

and topologies [16]).
66This is currently under investigation.
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A Systems of interacting matrix models

In this appendix we study the simplest tripartite systems in terms of two matrix models

coupled via a matrix quantum mechanics (MQM) defined on a line segment, with the mo-

tivation to study the properties of the induced cross interaction between the two matrix

models after we integrate out the messenger MQM. Appendix A.3 is of particular impor-

tance, since it describes a possible microscopic model for a two dimensional Bang/Crunch

Cosmology [44] and its connection to the present work.

A.1 Simple linear coupling

The simplest version of the sandwich setup, is in terms of two zero-dimensional matrix

models (minimal models) coupled through a messenger one-dimensional MQM system.

The system is also a particular scaling limit of a matrix chain on an Ar graph, the end-

point nodes containing extra degrees of freedom. A analysis of multi-interacting matrix

models from a similar perspective of (multi)-verses can be found in [109, 110]

Our variables are M(τ) and Φ1,2, which are all N × N Hermitean matrices and τ is

a Euclidean time variable with values on an interval I. We shall also gauge the SU(N)

symmetry (in order to project to the singlet sector and make the model solvable) and use

a quadratic potential for MQM. The partition function then is

Z =

∫

DΦ1 DM(τ) DA(τ) DΦ2 e−V (Φ1)−V (Φ2)+Sinte−N
∫

Tr(DtM)2−V (M) (A.1)

with

Sint = c Tr (Φ1M(τ = τ1)) + c Tr (Φ2M(τ = τ2)) . (A.2)
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If we adopt the natural N -scaling of matrix theories, all of the coefficients appearing should

be O(N). For a quadratic potential, we find the MQM heat kernel/transition amplitude for

the inverted harmonic oscillator (H.O.) τ2 −τ1 = T between the states |M1, τ1〉 and |M2, τ2〉

〈M2|M1〉 =

(

ω

2π sinh ωT

)N2/2

exp

(

−Nω
[

(Tr M2
1 + Tr M2

2 ) cosh ωT − 2 Tr M1M2
]

2 sinh(ωT )

)

(A.3)

This means that the model can be written as an effective four matrix model as follows

Z =

∫

DΦ1 DM1 DM2 DΦ2 e−V (Φ1)−V (Φ2)+c Tr(Φ1M1)+c Tr(Φ2M2)〈M2|M1〉 , (A.4)

where 〈M2|M1〉 is the Heat/Mehler kernel for the matrix H.O.

It is possible to diagonalise the matrices and integrate over the angular variables. We

need four-unitary matrices M1,2 = U †
1,2µ1,2U1,2 and Φ1,2 = Ω†

1,2λ1,2Ω1,2. We then perform

the three independent Itzykson-Zuber integrals for the relative rotations in the couplings

appearing in the exponent. In the end we obtain a product of determinants in the integrand

Z = N
∫ N

∏

i=1

dλ1
i ∆(λ1) dλ2

i ∆(λ2)
N
∏

i=1

dµ1
i dµ2

i e−V (λ1)−V (λ2) det
kl

(

ecλ1
k

µ1
i 〈µ1

i |µ2
j 〉ecλ2

l
µ2

j

)

,

(A.5)

where now the propagator is that of N particles (fermions) in an oscillator potential. This

is similar to a continuous limit of a matrix chain. A difference with the matrix chain is

that now we have a solvable propagator in the middle and two arbitrary potentials at the

end-points. We can then use the identity

1

n!

∫ n
∏

i

dxi det
jk

ψj(xk) det
lm

φl(xm) = det
ij

∫

dx ψi(x)φj(x) , (A.6)

sequentially to obtain

Z = N
∫ N

∏

i=1

dλ1
i ∆(λ1) dλ2

i ∆(λ2) e−V (λ1)−V (λ2) det
kl

K(λ1
k, λ2

l ) , (A.7)

with the reduction of the 2 × N intermediate integrals to just two integrals

K(λ1
k, λ2

l ) =

∫

dµ1dµ2ecλ1
k

µ1〈µ1|µ2〉ecλ2
l
µ2

(A.8)

Since they are Gaussian we can perform them explicitly to derive an effective action for

the end-point eigenvalues

Z = N
∫ N

∏

i=1

dλ1
i ∆(λ1) dλ2

i ∆(λ2) e−V (λ1)−V (λ2)e
c2

2Nω sinh(ωT ) (
∑

i
[(λ1

i
)2+(λ2

i
)2] cosh ωT) ×

×e
c2

ωN sinh(ωT )

∑

i
λ1

i
λ2

i . (A.9)

In the last term there was a determinant that we replaced by the product of the diagonal

terms due to the anti-symmetry of the vandermonde determinants. The end result is hence
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a simple two matrix model with a linear cross-coupling. The strength of the coupling now

depends on the size of the extra distance T and as expected diverges in the limit T → 0

and vanishes as T → ∞, where the two end-point matrix models decouple.

To completely solve such 2 matrix models (2MM) at finite-N one has to use the tech-

niques of bi-orthogonal polynomials. In the double scaling limit they correspond to the

(p, q) minimal models coupled to gravity, depending on the properties of the potentials

V1(λ1), V2(λ2). After taking the double scaling limit, the genus zero information is con-

tained in the spectral curves expressed through two continuum resolvents (c̃ = c/N is the

scaling variable)

ω1,2(x) =

∫

dλ
ρ1,2(λ)

x−λ
, , ρ1,2(λ) =

1

N

∑

i

δ(λ−λ
(1,2)
i ) , (A.10)

c̃2

ω sinh(ωT )
y +

c̃2 coshωT

ω sinh(ωT )
x = V ′

1(x)+ω1(x) ,

c̃2

ω sinh(ωT )
x+

c̃2 coshωT

ω sinh(ωT )
y = V ′

2(y)+ω2(y) . (A.11)

These are spectral curves of the usual kind of (p, q)-models. The novel-thing that happens

here is that the model transitions to two decoupled (2, p)×(2, q) minimal models as T → ∞.

The relevant Riemann surface/specral curve is a Mp,q manifold with (p − 1)(q − 1)/2

singularities. The shape of the manifold depends on T and splits into two decoupled

manifolds in the limit T → ∞. In some sense one could argue that there is a “wormhole

throat” on the Riemann-surface that the saddle point equations describe, that elongates

and pinches off in the limit T → ∞. Since it is known such matrix models are also able to

describe topological strings on Calabi-Yau manifolds it might be interesting to revisit this

particular model from this perspective [54].

A.2 Matrix model with bifundamentals

A shortcoming of the model analysed in the previous section A.1, is that the messenger

MQM and boundary gauge groups have to be the same. Another matrix model in which

we can tune the relative gauge group sizes is the following model involving complex bifun-

damentals (i.e. M(τ) is N3 × N3 matrix and B1,2 are NMQM × N1,2 complex matrices)

Z =

∫

DΦ1 DB1 DM(τ) DA(τ) DΦ2 DB2 e−V (Φ1)−V (Φ2)−V (B†
1B1)−V (B†

2B2)+Sint−nSMQM

(A.12)

with

SMQM =
1

2

∫

dτ Tr(DtM)2 − V (M) ,

Sint = c Tr3

(

B1Φ1B†
1

)

+ c Tr3

(

B2Φ2B†
2

)

+

+d
(

Tr1(B†
1M(τ = τ1)B1) + Tr2(B†

2M(τ = τ2)B2)
)

. (A.13)

Without great loss of generality we can set N1 = N2 = N and NMQM = n. Now there are

two options n ≤ N or N ≤ n, which need to be treated separately. We shall begin with

the first option that is most relevant in the limit of soft cross interaction between the two

boundary theories.
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Analysis I. The rectangular complex matrices B1,2 can be diagonalised with bi-unitary

transformations as B1,2 = Ω†
1,2b1,2V1,2 in terms of positive definite diagonal matrices b1,2

(containing n eigenvalues and a N − n × N − n sized block of zeros). We find the part of

the action that interacts with MQM to take the form

Sd
int = d

(

Trn(b2
1Ω1U †

1µ1U1Ω†
1) + Trn b2

2Ω2U †
2µ2U2Ω†

2

)

. (A.14)

After performing three independent Itzykson-Zuber (IZ) integrals over the relative rotations

R1 = Ω1U †
1 , R2 = Ω2U †

2 (A.15)

and the one between the initial and final state of MQM

R12 = U1U †
2 , (A.16)

we find a similar integral as before in terms of b1,2 and µ1,2 eigenvalues. Since the MQM

eigenvalues appear quadratically, we can also integrate them as before (using all the deter-

minant tricks) to find the effective action in the b1,2 eigenvalue basis

Sd
eff =

d2

2ωN sinh(ωT )

(

n
∑

i

[

(b
(1)
i )4 + (b

(2)
i )4

]

cosh ωT

)

+

+ log det
ij

exp

[

d2

2ωN sinh(ωT )
(b

(1)
i )2(b

(2)
j )2

]

, (A.17)

where we denote the (positive definite) eigenvalues of the complex matrices B2 and B1 by

(b
(2)
i ) and (b

(1)
i ). As discussed before, the last term can be reduced to the diagonal terms

due to the bifundamental Vandermondes multiplying it.

The other two terms in the interaction action couple only to the first n-eigenvalues of

the matrices Φ1,2 = W †
1,2λ1,2W1,2 (due to the presence of the block of zeroes in b1,2) at the

endpoints

Sc
int = c TrN

(

b2
1V1W †

1 λ1W1V †
1

)

+ c TrN

(

b2
2V2W †

2 λ2W2V †
2

)

(A.18)

After performing the last two relative IZ integrals of matrices with unequal rank, we obtain

either

Sc
eff =

(

log det
n×n

(c(b1
i )2λ1

j ) + log det
n×n

(c(b2
i )2λ2

j ))

)

, (A.19)

or in the most general case of complex Φ1,2 matrices

Sc
eff =

(

log det
n×n

I0(c(b1
i )2λ1

j ) + log det
n×n

I0(c(b2
i )2λ2

j ))

)

, (A.20)

where I0(x) is the Bessel-I function. This expression has the advantage of accommodating

an arbitrary bi-fundamental potential. In full generality, it is impossible to integrate out

the bifundamentals after this step, if they have an arbitrary potential. Nevertheless, we

already see the inequivalent rank effect: some of the end-point eigenvalues are coupled,

some are not. This has the possibility of creating a “quantum or small wormhole throat”

in the scaling limit 1 < n ≪ N , certainly of smaller size than the one described in the

saddle point equations eqs. (A.10).
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Analysis II. For a Gaussian potential for the bi-fundamentals, we can instead choose to

first integrate them out completely using
∫

DB1e−b Trn

(

B1B†
1

)

+c Trn

(

B1Φ1B†
1

)

+d TrN

(

B†
1M1B1

)

=

= det
1

bIn×n ⊗ IN×N − cIn×n ⊗ Φ1 − dM1 ⊗ IN×N
(A.21)

where the determinant is in the tensor product space. It is invariant under unitary rotations

in both spaces. We can use this invariance to diagonalise the matrices appearing in the

determinant.

After diagonalising Φ1,2, M1,2, we need to perform only a single leftover MQM IZ

integral to obtain

Z = N
∫ N

∏

a,b=1

dλ1
adλ2

b

n
∏

i=1

dµ1
i dµ2

i ∆2(λ1)∆2(λ2) e−V (λ1)−V (λ2)

× ∆(µ1)
∏n

i=1

∏N
a=1(b − dµ1

i − cλ1
a)

det
kl

〈µ1
k|µ2

l 〉 ∆(µ2)
∏n

j=1

∏N
a=1(b − dµ2

j − cλ2
a)

(A.22)

Notice that the determinant in the MQM propagator after the IZ can be dropped out if

we wish, due to the Vandermondes multiplying it, that result into only the diagonal terms

contributing. We notice that the coupling between the end-point matrices is “softer” than

the direct linear cross coupling of the previous section and involves only the analogue of

one loop determinants (simple determinants here) and not terms in the exponent. These

factors can indeed be written in a determinental form, using a generalisation of the Cauchy

identity given in [55].

We find

∆(λ1)∆(µ1)
∏n

i=1

∏N
a=1(b − dµ1

i − cλ1
a)

= det











(

1
(b−dµ1

i
−cλ1

a)

)

1≤i≤n
1≤a≤N

(

(cλ1
a)N−n−p

)

1≤p≤N−n
1≤a≤N











(A.23)

The next step is to integrate out the eigenvalues µ1,2. Using determinant formulae of

unequal ranks we obtain

∫ n
∏

i=1

dµ1
i dµ2

i det











(

1
(b−dµ1

i
−cλ1

a)

)

1≤i≤n
1≤a≤N

(

(cλ1
a)N−n−p

)

1≤p≤N−n
1≤a≤N











〈µ1
i |µ2

i 〉 det











(

1
(b−dµ2

i
−cλ2

b
)

)

1≤i≤n
1≤b≤N

(

(cλ2
b)N−n−p

)

1≤p≤N−n
1≤b≤N











= det







(mab)1≤a≤N
1≤b≤N

(

(cλ1
a)N−n−p

)

1≤a≤N
1≤p≤N−n

(

(cλ2
b)N−n−p

)

1≤p≤N−n
1≤b≤N

(0)N−n×N−n






,

with

mab(λ
1, λ2) =

∫ ∞

−∞
dµ1dµ2 1

(b − dµ1 − cλ1
a)

〈µ1|µ2〉 1

(b − dµ2 − cλ2
b)

. (A.24)

Due to the zeros in the last block, some terms in the determinant do not contribute.
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One could try to compute this integral exactly, but there is a contour issue, due to

the singularities in the denominator. To understand this issue, in the paper [44] such

integrals were defined as giving the Hilbert transform of the propagator eigenfunctions:

Hermite polynomials or parabolic cylinder functions for the inverted oscillator. There are

two options then: either to take the large-N, n limit and exploit saddle point techniques,

similar to the previous section, or to pass over to the grand-canonical ensemble and find

an operator whose spectrum dictates the physics of the model, similar to what happens in

c = 1 matrix models and ABJM [32, 44]. Since the first option is analogous to our analysis

in the previous section, and the second route can in principle provide with non-perturbative

information for the spectral curve of the model, we briefly sketch this second option.

To pass to the grand canonical ensemble, we first multiply with the two Vandermonde

determinants remaining (∆(λ1) = det V 1
ab , V 1

ab = (λ1
a)b−1 etc.) to obtain

ZN,n = N
∫ N

∏

a,b=1

dλ1
adλ2

b det







((V 1mV 2)ab)1≤a≤N
1≤b≤N

(

(cVacλ
1
c)N−n−p

)

1≤a≤N
1≤p≤N−n

(

(cV 2
bcλ

2
c)N−n−p

)

1≤p≤N−n
1≤b≤N

(0)N−n×N−n







(A.25)

The grand canonical partition function is a Fredholm determinant with respect to N

∞
∑

N=0

eβµN ZN,n = det

(

I + eβµV 1MV 2 V 1C

CV 2 0

)

(A.26)

Studying the spectrum of the operator appearing in the Fredholm determinant, could be

the starting point for a further analysis of this class of matrix models.

A.3 MQM on S1/Z2

Matrix quantum mechanics on the orbifold S1/Z2 [44] (once Z2 is embedded into the gauge

group) conjectured to describe a big-bang big-crunch universe, has also a similar structure

to the model of the previous section A.2. This model could provide an interesting arena for

clarifying the expected relation between Euclidean wormholes and bang-crunch universes

upon analytic continuation [1].

In particular, the partition function computed in [44], is found to be that of two MQM

models on line segments coupled via Vandermondes

Z =

∫ N
∏

i=1

n
∏

a=1

dxi dx′
a dyi dy′

a

∆(x)∆(x′)
∆(x, x′)

〈xi|yi〉〈x′
a|y′

a〉∆(y)∆(y′)
∆(y, y′)

, (A.27)

where we symbolise with ∆’s the Vandermonde determinants (∆(x, x′) =
∏

i,a(xi − x′
a) is

the cross coupling Vandermonde determinant), and with 〈xi|yi〉 the oscillator transition

amplitude for the corresponding matrix eigenvalues. In this expression, we have also sim-

plified the determinants appearing in the matrix oscillator propagators, using once more

the antisymmetry of the Vandermondes multiplying them.

One important aspect of this expression is that it can also be thought of as arising from

two MQM models (with gauge group ranks N, n respectively) on two Euclidean time inter-

vals coupled by bifundamental fields at the endpoints of Euclidean time (“bifundamental
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instantons”) that once integrated out bring the two determinants in the denominator as in

eq. (A.21).67 The model can therefore be thought to arise from an action

Stot = SMQM1 + SMQM2 + Sint

Sint = Trn

(

BM1(τ = 0)B†
)

+ TrN

(

B†M2(τ = 0)B
)

+

+ Trn

(

CM1(τ = L)C†
)

+ TrN

(

C†M2(τ = L)C
)

, (A.28)

where B, C are n × N bifundamental matrices and M1,2(τ) are the two MQM fields of size

n × n and N × N respectively. We therefore find that it is remarkably a slightly modified

instance of the class of models proposed by [12, 13] and studied in this paper as duals to

Euclidean wormholes. In this case, one has actually two complementary pictures, either the

MQM’s as messengers and the bifundamentals as boundary theories or the bifundamentals

as lower-dimensional messengers coupling the two MQM’s.

B On reflection positivity and spectral representation

The formal definition of reflection positivity of an operator Ĝ is that

〈f |Θ̂Ĝ|f〉 ≥ 0 , (B.1)

where f ∈ S+(Rd
+) is a test function belonging in the (Schwartz) space with support x0 ≥ 0

and Θ̂ inducing reflections along the transverse hyperplane i.e. x0 → −x0.

For the two-point function this means that

〈f |Θ̂Ĝ|f〉 =

∫

ddx

∫

ddyf †(−x0, ~x)G(x − y)f(y0, ~y) ≥ 0 . (B.2)

It is a standard exercise to show that the propagator of a free massive scalar with real

mass µ, results in a reflection positive two-point function 〈f |Θ̂Ĝµ2 |f〉 ≥ 0. Assuming then

a Källen-Lehmann spectral representation for the general two-point function we find

GK.L.(x − y) =

∫ ∞

0
dµ2

∫

ddp

(2π)d

ρ(µ2)

p2 + µ2
eip(x−y) , (B.3)

so that

〈f |Θ̂ĜK.L.|f〉 =

∫ ∞

0
dµ2

∫

ddp

(2π)d

∫

ddxeipxf †(−x0, ~x)

∫

ddye−ipyf(y0, ~y)
ρ(µ2)

p2 + µ2
=

=

∫ ∞

0
dµ2ρ(µ2) 〈f |Θ̂Ĝµ2 |f〉 . (B.4)

This means that a theory admitting a Källen-Lehmann spectral representation with positive

weight ρ(µ2) ≥ 0, satisfies reflection positivity.

One can reconstruct the spectral weight from the knowledge of the imaginary part of

the correlator in momentum space (that is always well-defined)

ρ(µ2) =
1

π
ℑ G(p) |p2=−µ2 =

1

2πi

(

G(p2 = −µ2 − iǫ) − G(p2 = −µ2 + iǫ)
)

,

G(p) =

∫ ∞

0
dµ2 ρ(µ2)

p2 + µ2
. (B.5)

67This aspect of the model was briefly discussed in [44].
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Equations (B.5) form the dispersion relations for the two-point function (valid up to a

possible finite number of subtractions). As an example for a CFT G(p) ∼ p2∆−d one finds

the scaling behaviour

ρ(µ2) ∼ µ2∆−d−2 (B.6)

On the other hand, for an exponentially decaying propagator p2ae−Lp (as p → ∞ — UV

in momentum space) we obtain that

ρ(µ2) ∼ µ2a−2 cos(Lµ) . (B.7)

This is clearly not a positive definite spectral weight and this explains why the cross

correlator G12(p) in (4.22) does not admit a positive definite spectral representation. The

failure of the dispersion relation in this case stems from the fact that there are regions in

the complex p-plane (negative half plane) for which the correlator is exponentially growing.

For the dispersion relations to hold, one actually demands that the correlator is vanishing

faster than 1/p in the upper or lower half complex plane in order to close the contour. A

finite number of subtractions is also not able to remedy the exponential divergence in the

negative half plane.

C A note on ghost decoupling

When using axial gauge, one finds that the ghosts decouple from the action. In order to

show this, we reintroduce gauge indices and denote the U(N) gauge field by Aa
µ. The gauge

fixing condition68

F a = nµAa
µ = 0 (C.1)

under a gauge transformation with parameter ωa

δωAa
µ = ∂µωa + gY M fa

bcA
b
µωc , (C.2)

transforms as

δωF a = nµ∂µωa + gY M nµfa
bcA

b
µωc , ⇒ δF a

δωb
= δabnµ∂µ . (C.3)

The last matrix is the one appearing in the Faddeev-Popov determinant and hence the

ghosts decouple from the gauge field and only contribute in the overall normalisation of

the path integral. The gauge field propagator nevertheless does exhibit singularities for

momenta nµkµ = 0, but these are remnants of the incomplete gauge fixing. In our two-

dimensional example in section 2.1.1 we shall perform a further gauge transformation into

a complete gauge and no such subtleties will arise (no remaining dynamical kinetic term

for the gauge field).

68There do exist subtleties when n2 = 0, but are of no importance for the Euclidean examples we are

interested in.
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D Aτ = 0 gauge

For the model of section 2.1, another gauge that can be used in the case where τ is non-

compact is the gauge Aτ = 0. Euclidean “time” evolution in this gauge is defined along

the τ direction which coincides with the evolution for the boundary MQM. In this case

Fτz = ∂τ Az and the relevant equations of motion are

∂τ F τz = 0 , ⇒ Az = f(z) + τg(z) ,

∂zF zτ + i[Az, F zτ ] = δ(z − L)g2
Y M Jτ

MQM1
(τ) + δ(z + L)g2

Y M Jτ
MQM2

(τ) (D.1)

The second equation of (D.1) is the constraint equation. It can also be written as

− ∂z∂τ Az − i[Az, ∂τ Az] = δ(z − L)g2
Y M Jτ

MQM1
(τ) + δ(z + L)g2

Y M Jτ
MQM2

(τ) . (D.2)

An analogous equation has appeared in a similar problem in [56]. To solve this equation

we introduce the path ordered exponential (Wilson line) and the dressing operator as

W b
a = Pei

∫ b

a
dzAz , D(z; a, b) = W z

a ∂τ AzW b
z , ∂τ W b

a = i

∫ b

a
dzD(z; a, b) . (D.3)

We can then split the interval into three regions as

z ∈ [−L, −L + ǫ) ∪ [−L + ǫ, L − ǫ] ∪ (L − ǫ, L] . (D.4)

Using this split eq. (D.2) is regulated and can be written as

− ∂zD(z; −L, L)

g2
Y M

= δ(z−L+ǫ)W L−ǫ
−L Jτ

MQM1
(τ)W L

L−ǫ+δ(z+L−ǫ)W −L+ǫ
−L Jτ

MQM2
(τ)W L

−L+ǫ .

(D.5)

The reason for the split and small regulator ǫ, is that D(z) is a piecewise constant, jumping

by the appropriate source factor once it reaches z = ±L

D(L − ǫ) = D(L) + g2
Y M WJτ

MQM1
, D(−L + ǫ) = D(−L) + g2

Y M Jτ
MQM2

W , (D.6)

with W = W L
−L. We further assume that the space terminates at z = ±L.

This also means that picking any reference point z ∈ [−L, L]

[W, ∂τ Az] = g2
Y M WJτ

MQM1
− g2

Y M Jτ
MQM2

W , (D.7)

and since

∂τ W = i

∫ L

−L
dzW z

−L∂τ AzW L
z = i

∫ L

−L
dzD(z; −L, L) , (D.8)

we also find

iJτ
Y M = [W −1, ∂τ W ] = ig2

Y M 2LJτ
MQM1

− ig2
Y M 2LJτ

MQM2
. (D.9)

This equation has the interpretation of a constraint on the total current/charge of the

system, that is also a constraint on the admissible representations. This constraint holds

non-perturbatively and without using the dynamical equation of motion (first equation
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of (D.1)). In physical terms W ≡ W L
−L corresponds to an open Wilson line that extends

across the two boundaries and couples to the boundary charges. Evolution in this gauge

is along the τ direction which coincides with the evolution of the boundary MQM.

In this gauge one can also find the 2d YM Hamiltonian (evolving along τ) that corre-

sponds to that for a particle on the group manifold [56]

Ĥτ
A =

1

g2
Y M

∫ L

−L
dz Tr(∂τ Az)2 = − 1

4g2
Y M L

Tr
(

W −1∂τ W
)2

. (D.10)

Now this Hamiltonian has two separate left/right chiral symmetries under SU(N)L ×
SU(N)R with matrix generators [57]

JR = −iW −1 ∂τ W , JL = i∂τ W W −1 , JY M = JR + JL . (D.11)

It is then natural to interpret the constraint of (D.9) as relating the left/right chiral currents

and the two MQM currents on the two boundaries, so that JR = JMQM1 and JL = JMQM2 .

This is also physically motivated since the matter fields on the boundaries have a charge

that sources the endpoints of the Wilson line stretching between them. The Hamiltonian

itself is written as

ĤA = − 1

4g2
Y M L

Tr J2
L = − 1

4g2
Y M L

Tr J2
R . (D.12)

The eigenstates of the Hamiltonian are representation matrices Rab(W ) = 〈W |R, ab〉 (a, b =

1 . . . , dR), that transform under the right action in the rep R of U(N) and under the left

action in the conjugate rep R̄ of U(N). For each rep R there are d2
R energetically degenerate

states with eigenvalue equal to the quadratic Casimir C
(2)
R . Since we are using functions on

an interval and not a circle, the Hilbert space is built out of all the |R, ab〉 states (the states

are not required to be class functions and carry uncontracted group indices). An equivalent

description of the Hilbert space is in terms of open strings with Chan-Paton factors at their

endpoints, the representation basis reorganises the n open string Hilbert space in terms of

irreducible representations of the permutation group Sn [71, 111], exchanging the strings.

D.1 Wilson lines and compact τ

In the case that τ is an S1 there exist non-trivial winding modes and hence one can only

work in the gauge Az = 0.

In analogy with section D, we define the Wilson lines and dressing operator along τ as

W b
a = Pei

∫ b

a
dτAτ , D(τ, a, b; z) = W τ

a ∂zAτ W b
τ , ∂zW b

a = i

∫ b

a
dτD(τ, a, b; z) . (D.13)

Using the equation (2.11) one finds

∂τ D(τ, a, b; z) = 0 , D(τ, a, b; z) = c(z) , ⇒ [W b
a , ∂zAτ ] = 0 , (D.14)

the last equation arising from the independence on τ . We then notice that due to (2.13),

D(τ, a, b; z) suffers a discontinuity at z = ±L, since Aτ is defined piecewise. In particular

the discontinuity causes ∂zAτ to jump by JMQM1,2 in all the formulae.
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In order to obtain the Hamiltonian evolving along the z direction of the cylinder, we

can define W β
0 = W as the Polyakov loop around the thermal circle. Since

∂zW = i

∫ β

0
dτW τ

0 ∂zAτ W β
τ = i

∫ β

0
dτD(τ, 0, β; z) , (D.15)

we also observe that due to constancy of D(τ) and the periodicity of Aτ in τ

∂zW = iβW∂zAτ = iβ∂zAτ W , ⇒ [∂zW, W −1] = 0 . (D.16)

The 2d YM Hamiltonian evolving along z can then be written as (it corresponds to a

particle on the group manifold [56])

Ĥz
A =

1

g2
Y M

∫ β

0
dτ(∂zAτ )2 = − 1

4g2
Y M β

Tr(W −1∂zW )2 (D.17)

All the representation matrices Rab(W ), W ∈ U(N) are eigenstates of the Hamiltonian.

The d2
R states are energetically degenerate and have eigenvalue equal to the quadratic

Casimir C
(2)
R . Since the base space is a circle, the gauge invariant eigenstates forming a basis

of the physical Hilbert space are square integrable class functions, the characters χR(W ) =

〈W |R〉. For the generalised YM theories the Hamiltonian involves higher Casimirs and the

θ term can be expressed in terms of the first Casimir [58].

E Partitions

In this appendix we provide some terminology and simple examples of partitions.

• A partition λ is a sequence of non-increasing integers such that

λ1 ≥ λ2 . . . .λℓ(λ)+1 = 0 (E.1)

The number of non-zero elements ℓ(λ) is called the length of the partition. The sum

of all the elements |λ| =
∑

i≥1 λi is called the weight of the partition.

• The multiplicity mj(λ) of the positive integer j is how many times the number j

appears in the partition λ (such that λi = j).

• The partitions are labelled graphically using Young diagrams. They are an array of

boxes where the i’th row contains λi boxes. This means that the number of rows

is the length of the partition ℓ(λ) and the number of columns is just λ1. The total

number of boxes is then equal to the total weight |λ|.

• The conjugate or transpose of a partition λ′ or λT is obtained by either reflecting the

Young diagram along the diagonal exchanging rows and columns. As an example one

obtains λ′
1 = ℓ(λ).
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As a simple example to have in mind the partition (7, 5, 32, 12) corresponds to the following

Young tableaux

(E.2)

The irreducible representations of the symmetric group Sn are in one-to-one correspondence

with the Young-diagrams λ. The rows are symmetrizers of the elements while the columns

anti-symmetrizers. Furthermore the Young diagrams also parametrise the irreps of GL(N),

where the λi are related to the highest weights Λi and the diagram has at most N non-

empty rows (this just means that the length of the partition is ℓ(λ) = N). For the group

SL(N) the diagram has instead at most N − 1 non-empty rows. For the relation between

highest weights Λi and λi, see equation (H.8) and appendix H.

Once the irrep/Young-diagram is specified one can introduce further information to it

by filling its boxes with letters from an alphabet belonging to a totally ordered set. We

then call the diagram a Young-Tableaux. These Tableaux can be used to enumerate the

various states belonging to the GL(N) or SL(N) irrep modules, see appendix H. There

exist two basic options. One can either have a standard Tableaux, when both the rows

and columns have increasing elements from top to bottom and left to right. The other

option is that of a semistandard Tableaux, or column strict, when the elements are weakly

increasing along each row and strictly increasing along the columns. The Tableaux is

then specified by two collections of elements λ, µ. The first one dictates its shape and the

second its content weight. The content weight µ counts the occurences of each element

of the alphabet in the tableaux (usually a collection of integers 1, . . . N). For example if

λ = (3, 2) and µ = (1, 1, 2, 1), then we get a Tableaux of the shape

and we fill it with the numbers 1, 2, 3, 4. The number 1,2,4 need to occur a single time,

while the number 3 has to occur exactly two times. It is easy to see graphically that there

exist three possible semi-standard Tableaux of shape λ and weight µ. These are

1 2 3
3 4 ,

1 3 3
2 4 ,

1 2 4
3 3 (E.3)

These possibilities/multiplicities are counted by the Kostka numbers Kλ,µ and in this

specific example Kλ,µ = 3. The Kostka polynomials described in appendix G and in the

main text 2.3, are q analogues of these multiplicities, see also appendix H for the description

of related branching functions.

Finally we shall present an example of zero weight states that are relevant for the

MQM model of section 2.1 (and the case when k1 = k2 = 0 of section 2.3). Let us consider
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SU(3). In this case we have two roots and the fundamental representation contains three

states with associated weights

1 ↔ (0, 1) , 2 ↔ (−1, 1) , 3 ↔ (0, −1) . (E.4)

The fundamental does not contain any zero weight state and is therefore projected out.

Following the rules above one finds 8 semistandard Tableaux for the adjoint out of which

1 3
2 ,

1 2
3 , (E.5)

have a weight (0, 0) (the weight is computed by summing the individual weights of each

box). So the adjoint is a representation/highest weight module that contains a zero weight

submodule. All the SU(N) representations that do admit the presence of zero weights are

described in [61].

F Representations and their continuum limit

In this appendix we analyse directly the limit of large representations for the original form

of the partition function (2.29). The most useful formulae are (F.4)–(F.9), showing how

the limit of continuous representations can be performed.

Labelling the representations in terms of a collection of integers (a partition) R ≡ λ :

(λ1, . . . λn), parametrising the number of boxes in each row of a Young diagram having n

rows in total (see also section 2.3 and appendix E), one finds the partition function for the

first MQM [62]

Z1
R(β) =

∑

R1

CR1
R R1

q

∑N1
k=1

(

ℓ
(1)
k

+ 1
2

)

, ℓ
(1)
k = λ

(1)
k + N1 − k , (F.1)

where λ
(1)
k are related to the highest weights of R1 (that is a U(N1) representation) and the

specific Littlewood-Richardson coefficients CR1
R R1

capture the multiplicity that R1 appears

in the irrep decomposition of the tensor product R ⊗ R1. One can also describe them

through an expression involving the integral of three characters

CR3
R1R2

=

∫

DU χR1(U) χR2(U) χR3
(U) . (F.2)

In the specialised case where two of the reps appearing are the same, there is a bound on

them CR1
R R1

≤ D
(0)
R (with D

(0)
R the dimension of the zero weight submodule of the highest

weight module R, see H). These R1 representations give the leading contribution to the

partition function. In addition for high temperatures β → 0, one finds

Z1
R(β → 0) ∼ D

(0)
R (ωβ)−N1 , (F.3)

so that the total partition function saddle is governed by the saddle point equations of 2d

YM, as in [59].
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For more general temperatures, in order to study the limit of continuous representa-

tions, we define continuous variables for all the highest weights appearing

λ(x) =
λi

N
, x =

i

N
, λ(x) ≥ λ(y) , if x ≤ y (F.4)

and then we go to strictly decreasing adapted coordinates

h(x) = λ(x) − x +
1

2
,

dh

dx
≤ −1 (F.5)

and define a density of boxes ρ(h) via

ρ(h) = −dx(h)

dh
≤ 1 . (F.6)

The complete partition function takes the form

Z(β) =

∫

DhDh1Dh2 e−N2Seff(h,h1,h2) . (F.7)

To find the effective action, one needs to exponentiate all the terms and replace them with

their continuous version. In particular the Casimirs become in the large-N limit

1

N
C(2) → N2

∫ 1

0
dx h2(x) , C(1) → N2

∫ 1

0
dx h(x) (F.8)

The dimension is bounded by

log D
(0)
R ≤ log DR → N2

2

∫ 1

0
dx

∫ 1

0
dy log |h(x) − h(y)| (F.9)

Unfortunately the large-N asymptotics of CR1
RR1

log CR1
RR1

→ ??? . (F.10)

do not seem to be known in the literature, and we can only bound them from below using

the formula for the dimension.

The support of the eigenvalues should be then determined dynamically, solving the

resulting saddle point equations. A complementary analysis of the model in terms of

Hall-Littlewood polynomials is presented in section 2.3. In particular it allows for a more

precise derivation and analysis of the relevant saddle point equations, that are found to be

described by eq. (2.59).

G Hall Littlewood and symmetric functions

Here we shall list some properties of symmetric functions and Hall-Littlewood polynomials

relevant for our analysis in section 2.3. Many additional formulae can be found in the

references [48, 73, 74] and most importantly in the book [72].

Using the relation between representations R of U(n) and partitions λ : (λ1, . . . λn)

with length ℓ(λ) = n (number of rows),69 we can express the characters in terms of Schur

69See appendix E for more details on partitions.
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polynomials χR(Z) → sλ(Z). The Schur polynomials have the concrete expression (zi are

the eigenvalues of Z)

sλ(Z) =
det1≤i,j≤n

(

z
λj+n−j
i

)

det1≤i,j≤n

(

zn−j
i

) . (G.1)

We then define the q-Hall inner product70 for two symmetric functions f(Z), g(Z)

〈f , g〉q =
1

N !

(

N
∏

i=1

1

2πi

∮

dzi

zi

)
∏

i6=j(zi − zj)
∏

i6=j(zi − qzj)
f(Z)g(Z−1) . (G.2)

This inner product is useful because its kernel is essentially equivalent to the twisted

MQM partition function (2.26), where zi = eiθi are the eigenvalues of the unitary matrix

parametrising the holonomy of the gauge field around the thermal circle.

The orthogonal polynomials with respect to this measure are the Hall-Littlewood poly-

nomials

Pλ(Z; q) =
1

Nλ

∑

σ∈SN

σ



zλ1
1 . . . zλN

N

∏

i<j

zi − qzj

zi − zj



 , (G.3)

where λ ∈ P denotes the partition and the normalization is

Nλ =
φN−ℓ(λ)

∏

j≥1 φmj(λ)

(1 − q)N
, φm =

m
∏

j=1

(1 − qj) , (G.4)

with mj(λ) the multiplicity of the positive integer j in the partition λ and m0 = N −
ℓ(λ) ≥ 0. One also defines the Q-Hall polynomials as Qλ(X; q) = bλ(q)Pλ(X; q) with

bλ(q) = 〈Pλ, Pλ〉−1
q =

∏

j≥1 φmj(λ). The orthogonality relation can then be written as

〈Pµ , Pλ〉q =
1

Nµ
δµ,λ . (G.5)

The Schur polynomials defined through eq. (G.1), are also a limit of the Hall-Littlewood

polynomials for q = 0 and orthonormal under the inner product G.2 upon setting q = 0.

There is also a relation

sλ(Z) =
∑

µ

Kλ,µ(q)Pµ(Z; q) (G.6)

with Kλ,µ(q) the Kostka-Foulkes polynomials. The inverse relation defines the Modified

Hall-Littlewood (or Milne) polynomials

Q′
µ(Z; q) =

∑

λ

Kλ,µ(q)sλ(Z) , 〈Pλ , Q′
µ〉q=0 = δλ,µ (G.7)

There is also a relation between the Modified Hall and the Q-Hall polynomials that reads

Q′
λ(Z; q) = Qλ

(

Z

1 − q
; q

)

(G.8)

We note some useful properties of the Kostka polynomials

70To avoid confusion, notice that in the mathematical literature t is the most common symbol associated

to Hall-Littlewood polynomials and q is usually an additional parameter of the more general (q, t) Macdonald

polynomials. Here q = e−ωβ .
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• Kλ,µ(q) = 0 unless λ ≥ µ. All the non-zero coefficients of the polynomial are positive.

• They reduce to Kostka numbers for q = 1, ∀λ, µ.

• Kλ,µ(0) = δλ,µ.

We can also use the following identities ((kN ) is the partition with N -non zero parts equal

to k.)

N
∏

j=1

1

zk
j

= P(kN )(Z
−1; q)

∑

λ

sλ(Ω)sλ(Z) =
∑

λ,ρ

sλ(Ω)Kλ,ρ(q)Pρ(Z; q) =
∑

ρ

Q′
ρ(Ω; q)Pρ(Z; q)

=
n

∏

α=1

N
∏

j=1

(1 − ωαzj)−1 ,

∑

λ

sλT (Ω)sλ(Z) =
∑

λ

QλT (Ω)Qλ(Z) =
∑

λ

PλT (Ω)Pλ(Z) =
n

∏

α=1

N
∏

j=1

(1 + ωαzj) ,

∑

λ

Pλ(X; q)Qλ(Y ; q) =
n

∏

α,β≥1

1 − qxαyβ

1 − xαyβ
, (G.9)

with λT the transpose partition to λ. These should be thought of as completeness relations

with respect to the inner product G.2, the first two for q = 0 and the last for non-zero q.

The summands vanish unless ℓ(λ) ≤ min{N, n}.

H Algebras and branching functions

In this appendix we collect various useful definitions and formulae regarding (affine) Lie

algebras and branching functions, relevant for the discussion in section 2.3 of the main

text.

Algebras and weights. For the affine algebra Ân−1 we have the following set of com-

mutation relations in the Chevalley generator basis {hi, ei, f i; i = 0, . . . n − 1}

[hi, hj ] = 0 , [hi, ej ] = Âjie
j , [hi, f j ] = −Âjif

j , [ei, f j ] = δijhi , (H.1)

with Âij being the Cartan matrix. The basis elements with i > 0 generate the An−1

subalgebra. We shall denote the roots of An−1 by α (the co-roots are denoted by α∨),

those of Ân−1 are simply given by α̂ = α + mδ, with δ the imaginary root of the affine

algebra and m ∈ Z. More explicitly they are given by αij = ei − ej , i 6= j > 0 in the non-

affine case. We can also define positive roots by the stricter restriction i < j and simple

roots that are the basic building blocks of the root system by αi = ei − ei+1. The Weyl

group W describes the reflection symmetries of the root system. Using positive roots, we

also define the Weyl vector as a sum

ρ =
1

2

∑

α

α , α > 0 . (H.2)
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In our semi-simple setting we can also take ρ to be the sum of fundamental (dominant)

positive weights that are defined by Ωi =
∑i

j=1 ej for An−1. The fundamental weights of

Ân−1 can be expressed in terms of fundamental weights of the An−1 sub-algebra as

Ω̂i = Ω̂0 + Ωi , i > 0 , (H.3)

where Ω̂0 is called the basic fundamental weight of the affine Lie algebra.

The general weights of an integrable representation are expanded in terms of funda-

mental weights as

Ψ̂ =
n−1
∑

i=0

ψ̂iΩ̂i + mδ , Ψ =
n−1
∑

i>0

ψiΩi , (H.4)

with ψ̂i, ψi, m integers (m is related to the grading) and δ the additional imaginary root in

the affine case. The coefficients ψi are called Dynkin labels.71 For the affine algebras Ân−1

the marks and comarks72 are equal to one, so the sum of all the Dynkin labels k =
∑

i ψ̂i

is an integer denoted as the level of the affine Lie algebra. It is also clear that different

weights can have different levels.

The Dynkin labels are also the eigenvalues of the Chevalley generators of the Cartan

subalgebra

hi|Ψ〉 = ψi(h)|Ψ〉 , i > 0 , (H.5)

the affine algebra version of which is similar, with the addition of an extra equation

− L0|Ψ〉 = m|Ψ〉 . (H.6)

This last operator is also called the grading operator.

Every finite-dimensional representation has a unique highest weight state |Λ〉 on which

hi|Λ〉 = Λi(h)|Λ〉 . (H.7)

The eigenvalues Λi(h) are highest weight Dynkin labels and are positive (they belong

to the positive root Weyl chamber P+). An An−1 highest weight with Dynkin labels

Λ(h) = Λ1(h), . . . Λn−1(h) can also be mapped to a partition

λ = {λ1, . . . λn−1} , λi = Λi(h) + Λi+1(h) + . . . Λn−1(h) . (H.8)

where λi label the boxes in each row of the Young diagram (i corresponds to the row).

While the highest weights belong to the positive chamber Λ ∈ P+ the weights in general

belong to the space P (Λ) that can be obtained by repeated action with elements of the

Weyl group W . This has as a consequence that partitions can only be assigned to highest

weights. If we wish to describe all the states in a representation, we take the tableaux

of shape λ and fill it with integers according to rules consistent with the Freudenthal

multiplicity formula (H.14). We then construct a semistandard Tableaux that describes

71There is also the notion of conjugate representations for which the weights are the negatives of the

original one.
72These are the coefficients in the expansion of the highest root θ in roots and co-roots.
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a state in the module M(Λ). A description of partitions and semistandard Tableaux can

be found in appendix E. In some of these modules there exists a submodule that contains

only states having zero weights, in the sense that the associated Dynkin labels are zero

ψi = 0. This submodule is relevant for the discussion in appendix F and in the main

text. A description of this submodule in terms of Gel’fand-Zetlin patterns is presented in

appendix A. of [62]. An example in terms of the more canonical labelling of semistandard

Young-Tableaux is presented in appendix E, see eq. (E.5).

Characters. We shall also need the definition of characters. In the Chevalley basis the

affine character is defined as

χ
Λ̂

(ζ; τ) = Tr
M(Λ̂)

e2πiτL0e
−2πi

∑

j=1
ζj ĥj

, (H.9)

with M(Λ̂) the affine module, hj the Chevalley (Cartan) generators and L0 the grading

operator. Using the notation of the main text we shall also denote this as χ
Λ̂

(ζ; τ) ≡
χ

Λ̂
(Z; q). The non-affine character involves a similar expression with only the presence of

the Cartans hi.

Branching rules. Consider the highest weights belonging to the positive root Weyl

chamber Λ ∈ P+ of the Lie algebra g. We can then decompose the Lie algebra g mod-

ules into subalgebra h modules as Mg(Λ) = ⊕Λ′ dim M(Λ)Λ′ ⊗ Mh(Λ′) with the relevant

restricted subspaces being defined by

M(Λ)Λ′ = {|v〉 ∈ M(Λ) : h|v〉 = Λ′(h)|v〉 , ∀h ∈ h } . (H.10)

The coefficients of the decomposition dim M(Λ)Λ′ are called branching coefficients and

correspond to the dimension of the restricted subspace M(Λ)Λ′ . We can equivalently write

the decomposition in terms of partitions as λ 7→ ⊕µ∈P+bλ
µ µ. When applied to characters,

this decomposition is generalised to an expansion in terms of branching functions that

depend on the character parameter q. In the case where the Lie algebra ĝ is affine, there is

an additional subtlety. The existence of the imaginary root δ means that there exist weights

that are indistinguishable from the point of view of the subalgebra (Λ − mδ)(h) = Λ(h)

with m an integer. This will be important for the examples we shall consider.

The specific branching functions we are interested in the main text, that describe the

Ân−1/An−1 coset submodule involve only the grading operator and are expressed as [73] (we

denote Λ ≡ Λ(λ) since it belongs to P+ and is in 1−1 correspondence with the partition λ)

bΛ̂
Λ(λ)(q) = Tr

M Λ̂
Λ(λ)

q−L0 . (H.11)

They also admit an explicit expansion in terms of branching coefficients [99]

bΛ̂
Λ(λ)(q) ≡

∞
∑

m=0

dim M Λ̂
Λ(λ)−mδ qm , (H.12)
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where dim M Λ̂
Λ(λ)−mδ is the dimension of the branching coefficients/multiplicity of the

particular embedding73

M Λ̂
Λ(λ)−mδ = {|v〉 ∈ M(Λ̂) : hi|v〉 = Λi|v〉 , ei|v〉 = 0 (i 6= 0) , |v〉 = |Λ(λ) − mδ〉} (H.13)

and where Λ̂ = kΛ(C) are the specific highest weights as described in the main text.

A formula giving the multiplicities (Freudenthal) is the following

dim MΛ1
Λ2

=
2

N
∑

α>0

∞
∑

k=1

MΛ1
Λ2+kα(Λ2 + kα, α) ,

N = ((Λ1 + ρ, Λ1 + ρ) − (Λ2 + ρ, Λ2 + ρ)) , (H.14)

where with (x, y) we symbolise the Killing Cartan bilinear form and ρ the Weyl root. This

gives a recursion relation to determine the multiplicities starting from MΛ1
Λ1

= 1.

There is also another formula due to Konstant that gives the multiplicities/branching

coefficients using a summation over the Weyl group elements [118]

dim MΛ1
Λ2

=
∑

w∈W

ǫ(w)K ((Λ2 + ρ) − w(Λ1 + ρ)) (H.15)

In this formula ρ the Weyl vector and ǫ(w) = (−1)ℓ(w) the determinant (i.e. ±1) of the

Weyl group element w, that can also be expressed in terms of ℓ(w): the length of the Weyl

group element. K is Konstant’s partition function. Using this expression, one can derive

an interesting asymptotic formula of the restricted module that shows exponential growth

(Cardy growth). In particular for An−1 [118]

dim M Λ̂
Λ(λ)−mδ →m→∞ (c/6)n/4bm−(n+2)/4eπ

√
2cm/3 , (H.16)

with c the central charge and b a coefficient that can be computed explicitly depending on

the specific algebra and the level k. In this limit we have kept Λ fixed.

For completeness we also present the description of the string functions

cΛ1
Λ2

(q) = qmΛ1
(Λ2)

∞
∑

m=0

dim MΛ1
Λ2−mδqm (H.17)

The difference with the previous branching coefficients is that Λ2 is more generally in P

and not only in the space of (dominant) positive weights P+. mΛ1
(Λ2) is called the modular

anomaly given by

mΛ1
(Λ2) = mΛ1

− |Λ2|2
2k

, mΛ =
|Λ + ρ|2
2(k + g)

− |ρ|2
2g

. (H.18)

73Notice that this restricted module is reminiscent to the one appearing in the string functions, the

difference being that we consider only Λ ∈ P+ in our case.
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Some results for A1. We now specialise to the case of A1 (SU(2)) and its affine version.

In Chevalley basis we have

[e, f ] = h , [h, e] = 2e , [h, f ] = −2f . (H.19)

We have a single root α1 and fundamental weight Ω1. We therefore have a single highest

weight Λ1 to consider (usually denoted as the spin j of the representation).

The simple roots of Â1 are

α0 = δ − α1 , α1 , (H.20)

The complete set of roots is spanned by

∆̂ = {n0α0 + n1α1 : |n0 − n1| ≤ 1 , n0, n1 ∈ Z} . (H.21)

One can also restrict these numbers so that one describes only P+ (positive roots) as follows

∆̂+ = {n0α0 + n1α1 : |n0 − n1| ≤ 1 , n0, n1 ∈ Z+ ∪ 0 , (n0, n1) 6= (0, 0)} . (H.22)

We also note that the restriction to P+ becomes less important as we increase the level

k → ∞ (the “cone” of P+ inside P opens up).

Konstant’s partition function (H.15) for the Lie algebra Â1 simplifies into [118]

K(n0α0 + n1α1) =
∞

∑

r=0

(−1)rp(3)
(

(r + 1)n0 − rn1 − 1

2
r(r + 1)

)

, (H.23)

where n0 and n1 are as in (H.22). The function p(3)(n) is defined via

χÛ(1)r = φ−r(q) =
∑

n∈Z

p(r)(n)qn , |q| < 1 . (H.24)

with φ(q) the Euler function. This character is also the character of an r-fold module of a

Heisenberg algebra. In addition one also finds the identity

∞
∑

j=0

K(n0α0 + n1α1 + jδ)qj =

=
∞

∑

j=0

∞
∑

r=0

(−1)rp(3)
(

(r + 1)n0 − rn1 − 1

2
r(r + 1) + j

)

qj =

= φ−3(q)
∞

∑

r=0

(−1)rq−(r+1)n0+rn1+r(r+1)/2 . (H.25)

Using this form of the Konstant partition function, one finds that eq. (H.16) takes the

form [118]

dim M Λ̂
Λ̃=Λ−mδ

−→m→∞
sin π N+1

k+2

2m(k + 2)
e

π

√

2km
k+2 . (H.26)

As a simpler example for k = 1 one has Λ̂ = Λ0 so that

dim MΛ0

Λ̃=Λ0−mδ
= p(j) ∼ 1

4
√

3m
eπ

√
2m/3 . (H.27)
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Another procedure to derive the branching functions is the following: for A1 the char-

acters are

χj(z) =
zj+1 − z−j−1

z − z−1
= zj + . . . z−j , z = e2πiζ . (H.28)

For the affine Â1 we find the characters expressed in terms of theta functions

χ
(k)
λ1

=
Θ

(k+2)
λ1+1 − Θ

(k+2)
−λ1+1

Θ
(2)
1 − Θ

(2)
−1

, (H.29)

with the theta function (z = e2πiζ , q = e2πiτ )

Θ
(k)
λ1

(z; q; t) ≡ Θ
(k)
λ1

(ζ; τ ; t) = e−2πikt
∑

n∈Z+λ1/2k

e2πikτn2
e−2πiknζ ,

= e−2πikt
∑

n∈Z

e2πi(kτn2+λ2
1τ/4k) e−2πi(knζ−λ1nτ+ 1

2
λ1ζ) . (H.30)

A useful expansion (in terms of Û(1)k characters) involves the use of string functions

cj
m(q) = cj

−m(q)

χ
(k)
j (z; q) =

k
∑

m=−k+1

cj
m(q)Θ(k)

m (z; q) =
k

∑

m=−k+1

∑

n∈Z

cj
m(q)zkn+m/2qk(n+m/2k)2

, (H.31)

that describe the branching functions of the coset ŜU(2)k/Û(1)k.

The normalised Û(1)k characters are

χ
(k)
j (q) =

1

η(q)
Θ

(k)
j (z = 0; q) =

1

η(q)

∑

n∈Z

qk(n+j/2k)2
(H.32)

We would like to similarly express the affine in terms of the non-affine SU(2) characters.

In order to do so, we need to invert (H.28) and feed the result into (H.31). The best we

can do is to solve

zj + z−j = χj(z) − χj−1(z) . (H.33)

We then find

χ
(k)
j (z; q) =

k−1
∑

m=0

∑

r= m
2

mod k

cj
m(q) (χr(z) − χr−1(z)) qr2/k =

=
k−1
∑

m=0

∑

r= m
2

mod k

cj
m(q)

(

qr2/k − q(r+1)2/k
)

χr(z) . (H.34)

I The free field transition amplitude coupled to sources

In this appendix we study the real time transition amplitude of a (messenger) free field

theory coupled to external sources. We also consider the case where the sources correspond

to fields of two Euclidean theories at the endpoints in time. When these field theories
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are integrated out in the path integral, they define appropriate boundary states for the

messenger free field.

The free field transition amplitude (4.26) can be written as

〈Φ(tb)|Φ(ta)〉J =

∫ Φ(tb)

Φ(ta)
DΦ exp

[

i(Scl + SJ
cl + SJ

fl)
]

, (I.1)

where it is convenient to split the field into a classical piece and a fluctuating piece Φ =

Φcl + δΦ, that is to be integrated over in the path integral (it is actually easy to obtain the

Euclidean transition amplitude results by a simple continuation (tb − ta) = −iL).

The classical solution can be found solving

∂2
t Φ + k2Φ + M2Φ = 0 , ω2

k = k2 + M2 , (I.2)

that yields

Φcl(t, k) =
Φb(k) sin ωk(t − ta) + Φa(k) sin ωk(tb − t)

sin ωk(tb − ta)
, (I.3)

so that

Scl =

∫

ddk

(2π)d

ωk [(Φb(k)Φb(−k) + Φa(k)Φa(−k)) cos ωk(tb − ta) − 2Φb(k)Φa(−k)]

2 sin ωk(tb − ta)
, (I.4)

SJ,cl =

∫ tb

ta

dt

∫

ddk [Φa(k) sin ωk(tb − t) + Φb(k) sin ωk(t − ta)]

(2π)d sin ωk(tb − ta)
J(t, −k) , (I.5)

the two classical pieces. These are to be supplemented with the fluctuating piece depending

on the Green’s function

Gωk
(t, t′) = Dωk

(t, t′)−1 = (−∂2
t − ω2

k)−1δ(t − t′) , t, t′ ∈ (ta, tb) . (I.6)

All the ambiguity of the result is hidden in the boundary conditions one imposes for the

Green’s function.

In particular the fluctuating piece can be written as

SJ
fl =

∫ tb

ta

dt dt′
∫

ddk

(2π)d

[

1

2
δΦ̃(t, k)Dωk

(t, t′)δΦ̃(t′, −k) − 1

2
J(t, k)Gωk

(t, t′)J(t′, −k)

]

,

(I.7)

where we defined

δΦ̃(t, k) = δΦ(t, k) +

∫ tb

ta

dt′
∫

ddk

(2π)d
Gωk

(t, t′)J(t′, k) . (I.8)

We can readily perform the path integral over the shifted fluctuations to obtain

〈Φ(tb)|Φ(ta)〉J =
∏

k

√

ωk

sin ωk(tb − ta)
eiScl+iSJ

cl
+iAJ

fl (I.9)

where

AJ
fl =

∫ tb

ta

dt dt′
∫

ddk

(2π)d

[

−1

2
J(t, k)Gωk

(t, t′)J(t′, −k)

]

(I.10)
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One choice for the Green’s function is that of Dirichlet boundary conditions (we use <, >

symbols to keep track of the ordering between t, t′)

GD(t, t′) =
1

ωk sin ωk(tb − ta)
sin ωk(tb − t>) sin ωk(t< − ta) ,

GD(t, t′)|t=tb
= GD(t, t′)|t′=ta

= 0 , (I.11)

another choice being the Neumann one

GN (t, t′) = − 1

ωk sin ωk(tb − ta)
cos ωk(tb − t>) cos ωk(t< − ta) ,

∂tG
N (t, t′)|t=tb

= ∂t′GN (t, t′)|t′=ta
= 0 . (I.12)

A simplification in our case comes from the fact that the sources are only defined at

the interval endpoints, that is

J(t, k) = gδ(t − ta)φ1(k) + gδ(t − tb)φ2(k) . (I.13)

One then finds that the classical piece eq. (I.5), simply reduces to the classical coupling

action of the main text eq. (4.4) as expected. The fluctuating piece in the case of Dirich-

let boundary conditions simply vanishes. Upon integrating over the boundary values

Φa(k), Φb(k) one finds the induced effective action for φ1,2(k) (with this method we can

also obtain the field independent prefactor/vacuum energy)

Seff = g2
∫

ddk

(2π)d

[φ1(k)φ1(−k) + φ2(k)φ2(−k)] cos ωk(tb − ta) + 2φ1(k)φ2(−k)

2ωk sin ωk(tb − ta)
. (I.14)

that matches the computation performed in the main text eq. (4.11) and (4.12).

We would like now to perform a computation of a messenger correlation function in

the presence of the two boundary theories, which we should therefore integrate out in

the path integral. These boundary theories define then a certain pair of in/out boundary

states |B(ta)〉, 〈B(tb)|, and the transition amplitude is between these two boundary states.

This computation is relevant if we wish to understand if there is any relation between

the notion of messenger boundary time and that of bulk time (in the case where the dual

geometry would be that of a Bang/Crunch type of universe we should similarly observe

some peculiarities in the boundary theory correlation functions as we reach the end of

time). We therefore need to add to the term (I.13) an additional arbitrary source term,

so that we can measure correlators at arbitrary times t by taking functional derivatives.

Integrating out the boundary fields φ1,2 we find the boundary states (from now on we do

not keep track of the overall normalisation, since it is irrelevant for the correlators)74

〈Φa|B(ta)〉 = N exp

(

−g2
∫

ddk

(2π)d

Φa(k)Φa(−k)

k2 + m2

)

,

〈B(tb)|Φb〉 = N exp

(

−g2
∫

ddk

(2π)d

Φb(k)Φb(−k)

k2 + m2

)

. (I.15)

74In case the boundary fields φ1,2 are interacting, they would also introduce non-linearities in these

boundary states.
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Any correlator should then be computed as an expectation value between these two bound-

ary states. In particular it can be written in terms of the source transition amplitude of

the free field Φ (I.1) and (I.9), as

〈B(tb)|eiSJ |B(ta)〉 =

∫

DΦaDΦb 〈B(tb)|Φb〉 〈Φb|Φa〉J 〈Φa|B(ta)〉 =

= N ′
∫

DΦaDΦb e

(

−g2
∫

ddk

(2π)d

Φb(k)Φb(−k)

k2+m2

)

eiScl+iSJ
cl

+iAJ
fl e

(

−g2
∫

ddk

(2π)d

Φa(k)Φa(−k)

k2+m2

)

=

= N ′
∫

∏

i=a,b

DΦi exp

(

iAJ
fl + i

∫

ddk

(2π)d

1
2Φi(k)MijΦj(−k) + Φi(k)Ji(−k)

sin ωk(tb − ta)

)

, (I.16)

with AJ
fl given by (I.10) and where we defined

Ji=b(−k) = −
∫ tb

ta

dtsinωk(t− tb)J(t,−k) , Ji=a(−k) =

∫ tb

ta

dtsinωk(t− ta)J(t,−k) ,

Mij =





ωk cosωk(tb − ta)+ g2sinωk(tb−ta)
k2+m2 −ωk

−ωk ωk cosωk(tb − ta)+ g2sinωk(tb−ta)
k2+m2



 . (I.17)

Performing the integral over Φa, Φb we find a correction to the Green’s functions due to

boundary effects captured by the inverse matrix M−1.

In particular we get for the two point function

〈B(tb)|Φ(t, k)Φ(t′, −k)|B(ta)〉 = GD(t, t′; k) −

− 2GD(t, t′; k)ω2
k

(

ω2
k − g4

(k2+m2)2

)

sin2 ωk(tb − ta) − 2 g2ωk

k2+m2 sin ωk(tb − ta) cos ωk(tb − ta)
−

−1

2

(sin2 ωk(t′ − tb) + sin2 ωk(t − ta) + t ↔ t′)
(

g2

k2+m2 + ωk cot ωk(tb − ta)
)

(

ω2
k − g4

(k2+m2)2

)

sin2 ωk(tb − ta) − 2 g2ωk

k2+m2 sin ωk(tb − ta) cos ωk(tb − ta)
(I.18)

The first thing to notice is that this correlator does not depend only on t − t′ (due to finite

size boundary effects). The second is that as we approach one operator on the endpoint,

we find that while GD vanishes, the two point function does not vanish, but approaches

〈B(tb)|Φ(tb, k)Φ(t′, −k)|B(ta)〉 = (I.19)

= −1

2

(sin2 ωk(t′ − tb) + sin2 ωk(tb − ta) + sin2 ωk(t′ − ta))
(

g2

k2+m2 + ωk cot ωk(tb − ta)
)

(

ω2
k − g4

(k2+m2)2

)

sin2 ωk(tb − ta) − 2 g2ωk

k2+m2 sin ωk(tb − ta) cos ωk(tb − ta)

Finally we observe the presence of a remnant piece even if we set t′ = tb, which is equivalent

to that of setting t′ = ta. Upon fourier transforming k → x this will give a position space

correlation when the two points are at the end of time as well as a correlation between the

past and future endpoints. In some sense one can argue that the first correlation arises

because the boundary state has a built in correlation.
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