
J
H
E
P
0
2
(
2
0
2
2
)
0
7
0

Published for SISSA by Springer

Received: January 5, 2022
Accepted: January 26, 2022
Published: February 9, 2022

Integrable domain walls in ABJM theory

Charlotte Kristjansen,a Dinh-Long Vub and Konstantin Zaremboa,b,1
aNiels Bohr Institute, Copenhagen University,
Blegdamsvej 17, 2100 Copenhagen, Denmark

bNordita, KTH Royal Institute of Technology and Stockholm University,
Hannes Alfvéns Väg 12, 114 19 Stockholm, Sweden

E-mail: kristjan@nbi.dk, dinh-long.vu@su.se, zarembo@nordita.org

Abstract: One-point functions of local operators are studied, at weak and strong coupling,
for the ABJM theory in the presence of a 1/2 BPS domain wall. In the underlying quantum
spin chain the domain wall is represented by a boundary state which we show is integrable
yielding a compact determinant formula for one-point functions of generic operators.

Keywords: AdS-CFT Correspondence, Bethe Ansatz, D-Branes

ArXiv ePrint: 2112.10438

1Also at ITEP, Moscow, Russia.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2022)070

mailto:kristjan@nbi.dk
mailto:dinh-long.vu@su.se
mailto:zarembo@nordita.org
https://arxiv.org/abs/2112.10438
https://doi.org/10.1007/JHEP02(2022)070


J
H
E
P
0
2
(
2
0
2
2
)
0
7
0

Contents

1 Introduction 1

2 The field theory set-up 2
2.1 A classical solution of the BPS equations 2
2.2 Nahm’s equations 4

3 The dual string configuration 5
3.1 Choice of metric 6
3.2 The probe brane embedding 7
3.3 Chiral operators at strong coupling 9

4 One-point functions at weak coupling 9
4.1 Boundary state overlaps 9
4.2 Selection rules 11
4.3 Chiral primary operators at weak coupling 12

5 Excited states 14
5.1 SU(4) sector 14
5.2 Full spectrum 18

5.2.1 Fermionic dualities 18
5.2.2 OSp(6|4) overlaps 19

6 One-point functions at strong coupling 21

7 Conclusion and outlook 24

1 Introduction

The study of domain wall set-ups featuring Nahm poles in N = 4 SYM has provided us with
novel examples of integrable boundary states which, owing to the integrable PSU(2, 2|4)
super spin chain underlying the AdS5/CFT4 correspondence [1], have a discrete realization
as matrix product states or valence bond states [2–4]. Overlaps between these integrable
boundary states and Bethe eigenstates encode the one-point functions of the field theory in
the presence of the domain wall. For the simplest1/2 BPS D3-D5 domain wall the overlaps
are now known in a closed form at any loop order [5–7] and at least in a certain sub-sector
non-perturbatively as well [7]. Prior to this, numerous partial results were obtained at fixed
loop order and in particular sub-sectors and served as input for the bootstrap idea leading
to the progress above [2–4, 8–10]. These results were based on the powerful machinery of
boundary integrability in quantum spin chains, and recent progress in this area [11] will
be instrumental in our analysis as well. For a more involved non-supersymmetric D3-D7
set-up the overlaps are known at the leading loop order [12].
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A fully non-perturbative analysis of the integrability of the boundary conditions would
most likely require a treatment of the overlaps by means of the quantum spectral curve [13]
the basics of which is encoded in the QQ-system for the integrable super spin chain [14].
An analysis of the overlap formulas of the D3-D5 domain wall model from the point of
view of the QQ-system revealed that these formulas were singled out by exhibiting specific
covariance properties under the fermionic duality transformations implied by the QQ-
system [15]. This raised the hope that a covariance criterion could be used to constrain or
even to fully determine yet unknown overlap formulas.

Another system where one could imagine closed overlap formulas to exist is a domain
wall version of ABJM theory. First of all the AdS4/CFT3 system has a description as an
integrable OSp(6|4) super spin chain [16, 17] and secondly integrable matrix product states
were already discovered in the study of determinant operators in ABJM theory [18] as they
were in N = 4 SYM theory [19].

In the present paper we point out that there exists a 1/2 BPS domain wall version
of ABJM theory, with a string theory dual taking the form of a D2-D4 probe brane sys-
tem with flux, which shares many characteristics with the D3-D5 domain wall version of
N = 4 SYM and for which the one-point functions can be found in closed form. The BPS
conditions can again be expressed as a set of Nahm equations and the one-point functions
can be calculated both at strong and at weak coupling (so far at the leading order). Fur-
thermore, in both cases the probe D-brane configuration without flux corresponds to an
integrable boundary condition according to an analysis carried out by Dekel and Oz [20].
We determine the overlap formula of the ABJM domain wall model in the scalar sector by
exploiting a newly derived result for overlaps in a class of bosonic spin chains [11] and use
the requirement of covariance under fermionic dualities to uniquely fix the formula for the
full ABJM theory. We also perform computations of one-point functions from the string
theory perspective.

Our paper is organized as follows. We begin by presenting the domain wall version of
ABJM theory in section 2 and in particular turning the BPS condition into Nahm equations
for certain field combinations. Then we turn to describing the dual string theory set-up in
section 3. The subsequent two sections are devoted to the calculation of one-point functions
in the field theory language addressing protected states in section 4 and excited states in
section 5. Section 6 concerns the calculation of one-point functions in the string theory
language. Finally, section 7 contains our conclusion and outlook.

2 The field theory set-up

2.1 A classical solution of the BPS equations

The ABJM model [21] is a Chern-Simons-matter theory in three dimensions with U(N)×
U(N) gauge symmetry and the Lagrangian [22]

L = k

4π tr
[
εµνλ

(
Aµ∂νAλ + 2

3 AµAνAλ − Âµ∂νÂλ −
2
3ÂµÂνÂλ

)
+DµY

†
AD

µY A + 1
12 Y

AY †AY
BY †BY

CY †C + 1
12 Y

AY †BY
BY †CY

CY †A

−1
2 Y

AY †AY
BY †CY

CY †B + 1
3 Y

AY †BY
CY †AY

BY †C + fermions
]
. (2.1)
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The scalars Y A belong to the bi-fundamental representation of the gauge group and trans-
form as 4 of the SU(4) R-symmetry: A = 1, . . . , 4. At large N and fixed ’t Hooft coupling

λ = N

k
, (2.2)

the model is dual to string theory on AdS4 × CP 3 with the dimensionless string tension
T '

√
λ/2 [21].

The domain wall (at weak coupling) is described by a classical scalar-field profile that
satisfies the equations of motions. More precisely, it must fulfill a set of simpler BPS equa-
tions, in order to preserve part of the supersymmetry. The energy of a BPS configuration
takes the smallest possible value allowed by the boundary conditions. Once the energy
density is represented as a total square plus a total derivative yielding a boundary term,
the BPS condition requires the total square to vanish. The potential energy in (2.1) is not
a total square in general, but becomes such when evaluated on a configuration with only
two fields excited. We denote those Y 1 and Y 2, or collectively Y α.

This follows from an identity

trY †αY βY †γ Y
αY †β Y

γ = 3 trY †αY βY †β Y
αY †γ Y

γ − trY †αY βY †β Y
γY †γ Y

α

− trY †αY αY †β Y
βY †γ Y

γ , (2.3)

derived by contracting εαβγεδεω = 0 with Y †αY
δY †β Y

εY †γ Y
ω, and thus is only valid for

α, β, . . . = 1, 2. One of the tensor structures in (2.1) becomes redundant and the horribly
looking energy functional collapses into a neat modulus-squared form:

E = k

4π

∫
dx tr

(
dY †α
dx
∓ 1

2Y
†
β Y

βY †α ±
1
2Y
†
αY

βY †β

)

×
(
dY α

dx
∓ 1

2Y
αY †β Y

β ± 1
2Y

βY †β Y
α
)

+ total derivative, (2.4)

where x ≡ x2 is the coordinate transverse to the domain wall. Either sign can be taken,
corresponding to BPS and anti-BPS solutions. We take the upper sign for definiteness.

The BPS equations correspond to the absolute minimum of the energy in a given
“topological sector”, when the integrand is set to zero altogether:

dY α

dx
= 1

2Y
αY †β Y

β − 1
2Y

βY †β Y
α. (2.5)

In [23] these equations were obtained by demanding the supersymmetry variation of the
fermions to vanish. The solution will consequently host fermion zero modes and will auto-
matically preserve half of the supersymmetry.

The solution found in [23] has a scale-invariant form

Y α = Sα√
x
, x > 0 (2.6)

where Sα are two rectangular matrices

S1
ij = δi,j−1

√
i, S2

ij = δij
√
q − i , i = 1, . . . , q − 1 j = 1, . . . , q. (2.7)
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Assuming q 6 N such a solution can be placed in the upper left corner of the N × N

matrix fields Y A with A = 1, 2. The resulting configuration can be checked to solve the BPS
equations. It breaks the gauge symmetry down to U(N−q+1)×U(N−q) for finite values of
x whereas asymptotically as x→ +∞ the symmetry becomes U(N)×U(N). On the other
side of the domain wall, x < 0, the gauge symmetry is taken to be U(N−q+1)×U(N−q).
Incidentally, the same matrices Sα describe the non-Abelian Coulomb branch of the mass-
deformed ABJM theory [24].

2.2 Nahm’s equations

Before proceeding, we would like to make contact with Nahm’s equations [25] that describe
supersymmetric domain walls in 4D [26, 27] and naturally arise in N = 4 super-Yang-
Mills theory with boundaries or defects [28]. Nahm’s equations have a clear geometric
interpretation in the large-N limit encapsulating the spherical shape of the brane embedded
in S5 through the fuzzy, non-commutative geometry of the solution at large but finite N .
We will argue that the BPS equation (2.5) is, in some sense, a square root of the Nahm’s
equation.

Consider, to this end, a composite field

Φα
β = Y αY †β . (2.8)

Assuming that Y α satisfy the BPS condition (2.5), we can differentiate Φα
β after x to get

a closed system of equations:

dΦα
β

dx
= Φα

γΦγ
β −

1
2
{

Φγ
γ ,Φα

β

}
. (2.9)

These equations can be further simplified by expanding the composite field in the (σ,1)
basis:

Φα
β = Φiσαi β + Φδαβ . (2.10)

For the expansion coefficients we find, after simple algebra:

dΦi

dx
= i

2 ε
ijk[Φj ,Φk], (2.11)

dΦ
dx

= ΦiΦi − Φ2. (2.12)

The first equality is the Nahm equation.
The BPS domain wall (2.6) corresponds to the simplest Nahm-pole solution:

Φi = ti

x
, (2.13)

where, in virtue of (2.11), ti must satisfy the su(2) commutation relations:

[ti, tj ] = iεijktk. (2.14)
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The (q − 1) × (q − 1) matrices ti thus form a (q − 1)-dimensional representation of su(2).
The Casimir ΦiΦi determines the singlet component Φ through eq. (2.12):

Φ = q1

2x . (2.15)

The connection to the su(2) representation theory is quite fascinating. And it fits well
with the dual supergravity description. The D4-brane representing the domain wall wraps
a CP 1 = S2 in CP 3, and a large su(2) representation can be interpreted as a fuzzy two-
sphere that becomes smooth in the large-q limit. The appearance of a fuzzy two-sphere in
connection with the BPS equations of ABJM theory was also discussed in [29, 30].

The same chain of arguments applies to the dual bi-linear:

Φ̂ β
α = Y †αY

β ≡ Φ̂iσ
i β
α + Φ̂δ β

α . (2.16)

The triplet component again satisfies Nahm’s equations and the singlet is determined by
the Casimir Φ̂iΦ̂i:

dΦ̂i

dx
= − i2 εijk[Φ̂j , Φ̂k], (2.17)

dΦ̂
dx

= −Φ̂iΦ̂i + Φ̂2. (2.18)

The Nahm-pole solution describing the domain wall is

Φ̂i = − t̂i
x
, [t̂i, t̂j ] = iεijk t̂k,

Φ̂ = (q − 1)1
2x . (2.19)

The simplest domain wall solution has q = 2. The bilinear (2.8) then is a 1× 1 matrix
(only its 11 component is non-zero), and since in the 1d representation ti are trivial the
bi-linear field takes a super-simple form:

Φα
β =

δαβ
x

(q = 2). (2.20)

The dual bilinear (2.16) is a 2× 2 matrix:

Φ̂ β
α = 1 δ β

α − σ3σiσ3 σ
i β
α

2x (q = 2). (2.21)

3 The dual string configuration

We expect the string theory configuration dual to the BPS solution of the previous section
to be a D2-D4 probe brane system in type IIA superstring theory where the probe brane has
geometry AdS3 ×CP 1 ⊂ AdS4 ×CP 3 and carries q units of world volume gauge field flux
on the CP 1. We can find such a probe brane embedding by extremizing the DBI plus WZ
action for a D4-brane in the AdS4×CP 3 background as outlined in [31]. The probe brane
embedding involving the wrapping of a CP 1 ⊂ CP 3 matches the SU(2) × SU(2) × U(1)
symmetry of the vevs of the scalar fields of the Chern Simons field theory and, as we shall
see, the additional flux accounts for the jump in the rank of the gauge group across the
domain wall.
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3.1 Choice of metric

Let us start by choosing an appropriate parametrization of S7. We follow reference [32]
and introduce four complex variables as follows

Z1 = cos (ξ) cos
(
θ1
2

)
ei(χ1+φ1)/2, Z2 = cos (ξ) sin

(
θ1
2

)
ei(χ1−φ1)/2,

Z3 = sin (ξ) cos
(
θ2
2

)
ei(χ2+φ2)/2, Z4 = sin (ξ) sin

(
θ2
2

)
ei(χ2−φ2)/2,

where ξ ∈ [0, π2 [ and θ1, θ2 ∈ [0, π]. Furthermore, φ1, φ2 ∈ [0, 2π] and χ1, χ2 ∈ [0, 4π[. With
this parametrization the metric of S7 can be written as

ds2
S7 = dξ2 + cos2 ξ

4
[
(dχ1 + cos θ1dφ1)2 + dθ2

1 + sin2 θ1dφ
2
1

]
(3.1)

+sin2 ξ

4
[
(dχ2 + cos θ2dφ2)2 + dθ2

2 + sin2 θ2 dφ
2
2

]
.

Next, we define new coordinates by

χ1 = 2y + ψ, χ2 = 2y − ψ, (3.2)

where y ∈ [0, 2π], ψ ∈ [−2π, 2π]. Then we can implement the quotient S7/Zk by making
the identification

y ∼ y + 2π
k
. (3.3)

We can now also rewrite the metric of S7 as

ds2
S7 = ds2

CP 3 + (dy +A)2, (3.4)

where
A = 1

2(cos2 ξ − sin2 ξ)dψ + 1
2 cos2 ξ cos θ1dφ1 + 1

2 sin2 ξ cos θ2dφ2, (3.5)

and

ds2
CP 3 = dξ2 + cos2 ξ sin2 ξ

(
dψ + cos θ1

2 dφ1 −
cos θ2

2 dφ2

)2
(3.6)

+1
4 cos2 ξ

(
dθ2

1 + sin2 θ1dφ
2
1

)
+ 1

4 sin2 ξ
(
dθ2

2 + sin2 θ2dφ
2
2

)
.

For AdS4 we can use the Poincaré metric

ds2
AdS4 = 1

z2dz
2 + z2(−dx2

0 + dx2
1 + dx2

2), (3.7)

where the AdS boundary is at z →∞.
The relevant 10-dimensional background of type IIA string theory is described by the

metric
ds2 = R̃2(ds2

AdS4 + 4ds2
CP 3), (3.8)

where
R̃2

α′
= π

√
2N
k
. (3.9)
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The background comes with a RR 2-form field as well as a RR 4-form field which are
given by

F (2) = k

(
− cos ξ sin ξdξ ∧ (2dψ + cos θ1dφ1 − cos θ2dφ2)

−1
2 cos2 ξ sin θ1dθ1 ∧ dφ1 −

1
2 sin2 ξ sin θ2dθ2 ∧ dφ2

)
, (3.10)

F (4) = 3R3

8 εAdS4 , (3.11)

where εAdS4 is the volume form on AdS4, and
(
R
lp

)3
= 4k

(
R̃√
α′

)2
.

3.2 The probe brane embedding

We are interested in a D4 probe with geometry AdS3 × CP 1 embedded in the IIA back-
ground. We make the ansatz that the probe brane is placed at ξ = 0 (and θ2, φ2, ψ

constant) and we take its world volume coordinates to be z, x0, x1, θ1, φ1 while the last
embedding coordinate x2 is supposed to be non-constant but to depend only on z. The
ξ = 0 condition singles out a CP 1 ⊂ CP 3 wrapped by the brane and parametrized by the
coordinates θ1, φ1. The brane likewise wraps an AdS3 ⊂ AdS4 parametrized by the coor-
dinates z, x0, x1. Furthermore, we turn on a world-volume gauge field on the CP 1 given
by the 2-form

F = R̃2Q sin θ1dθ1 ∧ dφ1. (3.12)

As we shall see, the parameter Q is related to the rank of the representation of the classical
fields in the gauge theory, q. The probe Dp-brane action in general takes the form

I = IDBI + IWZ (3.13)

= −Tp
∫
dp+1σ e−Φ

√
− det(G+ F) + Tp

∫
dp+1σ eF ∧

∑
m

P[Cm],

where G is the induced metric on the brane, F is the world volume gauge field and the Cm’s
are the various RR background gauge field potentials where we have set the Kalb-Ramond
field to zero. Furthermore P stands for the pull-back. In the present case the Cm’s are C1
and C3, related to the field strengths via F (4) = dC3 and F (2) = dC1. In our case only the
term with C3 will be non-vanishing and thus the Wess-Zumino terms reads

IWZ = T4

∫
d5σF ∧ P [C3]. (3.14)

Finding the induced metric G is straightforward and we get

− det(G+ F) = R̃10 z2
(
1 + z4 (x′2(z))2

)
sin2 θ1 (1 +Q2). (3.15)

For C3 we can take

C3 = R3

8 z3 dx0 ∧ dx1 ∧ dx2, (3.16)

and we find
IWZ = T4R̃

4 k

2

∫
d5σ

(
Q sin θ1 z

3 x′2(z)
)
. (3.17)
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We now get for the total action

IDBI+WZ = T4
k

2 R̃
4
∫ ∞
−∞

dx0
∫ ∞
−∞

dx1
∫ π

0
dθ1 sin θ1

∫ 2π

0
dφ1

∫ ∞
0

dz I

= 2π
√
α′ k T4 R̃

4 V

∫ ∞
0

dz I, (3.18)

where V =
∫
dx0dx1 and

I =
[
−z
√

(1 + z4(x′2(z))2)(1 +Q2) +Qz3x′2(z)
]
,

and where we have made use of the relation

e−Φ = k
√
α′

2R̃
. (3.19)

From this we get the following Euler Lagrange equation for x2(z)

∂

∂z

 z
√

1 +Q2√
1 + z4 (x′2(z))2

z4x′2(z)−Qz3

 = 0, (3.20)

and we see that it has the solution
x2(z) = Q

z
, (3.21)

which is the solution we expect to be relevant for our analysis. The parameter Q should
be associated with the number, q, of D2 branes ending on the D4 brane and thus the jump
in the rank of the gauge group across the defect in the field theory language. The relation
can be found by interpreting the Wess-Zumino term of the D4 brane as the coupling of a
number, q, of D2 branes to the background gauge field C3 and leads to

q = T4
T2

∫
S2
F = T4

T2
4πR̃2Q = R̃2

πα′
Q =

√
2N
k
Q, (3.22)

where we have made use of the relation

Tp = (2π)−p(α′)−(p+1)/2, (3.23)

as well as eq. (3.9). In particular we see that only if we take the parameter Q finite will the
probe brane have an angle with the AdS4 boundary which is different from π

2 . The probe
brane configuration thus suggests the following double scaling limit

λ→∞, q →∞, 2λ
q2 = Q−2 fixed. (3.24)

This situation is reminiscent of the situation in the AdS5/CFT4 correspondence where sim-
ilar Karch-Randall probe brane set-ups of D3-D5 and D3-D7 type likewise suggested the
introduction of a double scaling limit involving the ’t Hooft coupling constant in combina-
tion with a certain representation label [33, 34]. In the AdS5/CFT4 case this double scaling
parameter allowed for a successful comparison of one-point functions of chiral primaries
computed in gauge theory and in string theory to two leading orders both for a supersym-
metric D3-D5 probe brane set-up [33, 35, 36] and two non-supersymmetric D3-D7 probe
brane set-ups [34, 37, 38]. In the present case we shall see that a successful comparison is
only possible if an additional large charge limit is imposed.
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3.3 Chiral operators at strong coupling

One-point functions of chiral primary operators in the presence of a Karch-Randall probe
brane can be calculated through a fluctuation analysis of the supergravity background.
The analysis will be carried out in section 6. Only chiral primaries whose symmetries are
compatible with the SU(2) × SU(2) × U(1) symmetry of the brane embedding will have
non-vanishing one-point functions. These particular chiral primaries depend only on the
angular variable ξ and are solutions of the Laplace equation

∇2Y = 1
√
g
∂i
√
g gij∂jY = −EY, (3.25)

which reduces to
∇2Y = 1

sin3 ξ cos3 ξ
∂ξ sin3 ξ cos3 ξ ∂ξY = −EY. (3.26)

The most general solution of this equation is a linear combination of a hypergeometric
function and a Meijers G-function. In order for the solution to be non-singular at cos ξ = 0
one has to discard the Meijers G-function, and in order for the solution to be regular at
cos ξ = 1 one needs

E = 2∆(2∆ + 6), (3.27)

where we recognize ∆ as the conformal dimension of the corresponding operator. The
solution more precisely reads

Y∆(ξ) = N∆ · 2F1
[
−∆,∆ + 3, 2, cos2 ξ

]
, (3.28)

where N∆ is a normalization factor.

4 One-point functions at weak coupling

In analogy with the situation in N = 4 SYM [2, 3], tree level one-point functions in the
scalar sector of ABJM theory can be expressed as overlaps between Bethe eigenstates and
Matrix Product States. Furthermore, as the bond dimension of the Matrix Product State
becomes equal to one, the Matrix Product State becomes a valence bond state. In the
present section we expound these ideas and compute the one-point functions of protected
scalar operators. The more intricate case of excited states is treated in the subsequent
section.

4.1 Boundary state overlaps

The single-trace scalar operators of ABJM can be viewed as states in an alternating SU(4)
spin chain:

O = Ψ A2 ... A2L
A1 ... A2L−1

trY A1Y †A2
. . . Y A2L−1Y †A2L

. (4.1)

The odd and even sites are occupied intermittently by 4 and 4̄ of SU(4). The two-loop
mixing matrix of scalar operators is identified with the spin-chain Hamiltonian [16]:

H = λ2
2L∑
l=1

(
1− Pl,l+2 + 1

2 Pl,l+2Kl,l+1 + 1
2 Kl,l+1Pl,l+2

)
, (4.2)

– 9 –
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where Klm and Plm are the standard trace and permutation operators acting on sites l
and m:

PA
′B′

A B = δA
′

B δ
B′
A , KA′ A

B′B = δA
′

B′ δ
A
B. (4.3)

The permutation always acts on the same type of spins, while the trace mixes the two
representations.

Traceless and symmetric tensors (symmetric in each set of indices) define chiral primary
operators. At fixed length they belong to the same representation of su(4), the one with
Dynkin labels [L, 0, L]. All chiral primaries have zero energy and form the ground state
multiplet of the spin-chain Hamiltonian. One can declare the lowest-weight state

Ovac = tr(Y 1Y †2 )L, (4.4)

the “true” vacuum and generate all other members of the multiplet by inserting zero-
momentum, zero-energy excitations.

The domain wall induces non-zero one-point functions, which to the leading or-
der in perturbation theory can be calculated by simply substituting the classical solu-
tion (2.6), (2.7) for the scalar fields Y A in (4.1). The outcome can be expressed as an
overlap of the operator’s wavefunction with a fixed state in the spin chain’s Hilbert space,
which we call MPS, the Matrix Product State:

〈O(x)〉 = 1
xL

1
λLL

1
2

〈MPS |Ψ〉
〈Ψ |Ψ〉

1
2
. (4.5)

The prefactor accounts for the difference between the spin-chain scalar product and the
norm defined by the two-point correlation function. The Matrix Product State is built
from the matrices (2.7) defining the classical solution:

MPSA1 ... A2L−1
A2 ... A2L

= trSA1S†A2
. . . SA2L−1S†A2L

. (4.6)

The state so defined has non-zero components only when the indices Al take values 1 or 2
denoted collectively by greek letters as above.

Two convenient representations of the boundary state arise upon combining even and
odd sites of the spin chain as in (2.8) or (2.16):

MPS = traux M12 . . .M2L−1,2L,

MPS = traux M̂23 . . . M̂2L,1. (4.7)

The building blocks are matrices in the auxiliary space tensored with a quantum state of
two neighboring spins:

M = q

2 1⊗ 1 + ti ⊗ σi,

M̂ = q − 1
2 1⊗ 1− t̂i ⊗ σi. (4.8)

Here ti (or t̂i) and the first 1 act in the auxiliary space of dimension q − 1 (or q), while σi

and the second 1 represent the state in the quantum space of two neighboring sites of the
spin chain.
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When q = 2, one of the two su(2) representations is trivial: ti = 0. There is no
auxiliary space to trace over and the boundary state becomes two-site entangled:

MPS α1 ... α2L−1
2 α2 ... α2L

= δα1
α2 . . . δ

α2L−1
α2L , (4.9)

in other words it is a Valence Bond State:

〈MPS2| = 〈K|⊗L ≡ 〈VBS| , (4.10)

where K is a two-site state with components

Kα
β = δαβ . (4.11)

Degeneration of a matrix product state into a valence bond state is reminiscent to a similar
phenomenon in the su(2) sector of N = 4 SYM [39].

4.2 Selection rules

We can now determine what type of single trace operators get non-vanishing one-point
functions at tree-level. Obviously, the relevant operators must be built entirely from fields
of the type Y 1, Y 2, Y †1 , Y

†
2 . Among these is the chiral primary

O = Tr(Y 1Y †2 . . . Y
1Y †2 ), (4.12)

the vacuum of the spin chain. We find from (2.8), (2.10) and (2.13):

Y 1Y †2 = Φ1
2 = tiσ1

i 2
x

= 2t−

x
, (4.13)

meaning that Y 1Y †2 is lower triangular and the traces of all of its powers vanish. This is
in contrast to the parallel study in N = 4 SYM where the corresponding chiral primary
(vacuum of the spin chain) has a non-vanishing one-point function [2]. This fact should
be visible in a string theory analysis as well. For the other two-site combinations of fields
we find

Y 2Y †1 = 2t+

x
, (4.14)

Y 1Y †1 = q + 2t3

2x , (4.15)

Y 2Y †2 = q − 2t3

2x . (4.16)

We thus see that operators with non-vanishing tree-level vevs can contain an arbitrary
number of field combinations of the type (Y 1Y †1 ) and (Y 2Y †2 ) whereas a combination (Y 1Y †2 )
requires another term of the type (Y 2Y †1 ).

With the vacuum given by (4.12) we see that in order to get a non-vanishing one-point
function we need to have a number of excitations which is equal to half the length of the
spin chain. Among these, there is a particular symmetric set-up where we have the same
number of excitations on the odd sites of the spin chain as on the even sites. Denoting
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the length of the alternating spin chain as 2L and using the distinguished Dynkin diagram
of the underlying super Lie algebra these states are characterized by having the number
of Bethe roots (see below) on the three relevant nodes of the diagram identical and all
equal to L:

K1 = K2 = K3 = L. (4.17)

In order to evaluate the one-point functions of these operators we need to construct the
appropriate eigenstates of the alternating spin chain. This problem was analyzed in [16],
see also [18].

A state with Ki Bethe roots belongs to the su(4) representation with the Dynkin labels

[L− 2K1 +K2,K1 − 2K2 +K3, L− 2K3 +K2]. (4.18)

Consequently, (4.17) describes a singlet. This should not come as a surprise. The domain
wall (equivalently, the boundary state in the spin chain) breaks SU(4) to SU(2)× SU(2)×
U(1). An SU(4) singlet is a singlet of this smaller group and is thus allowed to have a
non-zero overlap with the boundary state. Singlets of SU(2) × SU(2) × U(1) do exist in
non-trivial representations of SU(4) and they have non-zero one-point functions, but these
states are not SU(4) primaries and if we concentrate on highest weights, as typically done
in the Bethe ansatz, then (4.17) is a necessary condition for the one-point function not
to vanish.

An example of non-singlet operator with a non-trivial one-point function is a chiral
primary

On,m = tr
(
n†AY

AmBY †B

)L
. (4.19)

The complex vectors n and m must satisfy (n† ·m) = 0. As follows from (4.5), (4.9), for
q = 2 the one-point function is

〈On,m〉 = 1
xL

1
λLL

1
2

(
ñ† · m̃

)L
(n† · n)

L
2 (m† ·m)

L
2
, (4.20)

where ñ† = (n†1, n
†
2), m̃ = (m1,m2), i.e. complex vectors with only two components.

Obviously (n† ·m) = 0 does not imply
(
ñ† · m̃

)
= 0. We now characterize SU(2)×SU(2)×

U(1)-invariant chiral primaries and their one-point functions more precisely.

4.3 Chiral primary operators at weak coupling

The chiral primary operators are in one-to-one correspondence with the spherical harmonics
on CP 3 and only those which carry the SU(2) × SU(2) × U(1) symmetry of the classical
fields will have non-vanishing one-point functions. As noticed earlier, there is only one
chiral primary with this symmetry for each even value of the length. We can read off the
relevant operators from the spherical harmonics that we determined in section 3.3. To do
so we first rewrite these as homogeneous polynomials in cos ξ and sin ξ. For the first few
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cases we get

Y1(ξ) = N1
(
− cos2 ξ + sin2 ξ

)
, (4.21)

Y2(ξ) = N2
(
cos4 ξ − 3 cos2 ξ sin2 ξ + sin4 ξ

)
,

Y3(ξ) = N3
(
− cos6 ξ + 6 cos4 ξ sin2 ξ − 6 sin4 ξ cos2 ξ + sin6 ξ

)
,

Y4(ξ) = N4
(
cos8 ξ − 10 cos6 ξ sin2 ξ + 20 cos4 ξ sin4 ξ − 10 cos2 ξ sin6 ξ + sin8 ξ

)
.

Secondly, we make the replacements cos2 ξ → Y 1Y †1 + Y 2Y †2 and sin2 ξ → Y 3Y †3 + Y 4Y †4
and symmetrize the resulting powers of fields. For Y1(ξ) we trivially get

Y1(ξ) = N1 Tr(Y 3Y †3 + Y 4Y †4 − Y
1Y †1 − Y

2Y †2 ). (4.22)

Moving on to Y2(ξ) we find

Y2(ξ) = N2C
J1J2
I1I2

TrY I1Y †J1
Y I2Y †J2

, (4.23)

with

C11
11 = C22

22 = C33
33 = C44

44 = 1,

C12
12 = C21

12 = C12
21 = C21

21 = C34
34 = C43

34 = C34
43 = C43

43 = 1
2 ,

C13
13 = C31

13 = C13
31 = C31

31 = C14
14 = C41

14 = C14
41 = C41

41 = −3
4 ,

C23
23 = C32

23 = C23
32 = C32

32 = C24
24 = C42

24 = C24
42 = C42

42 = −3
4

and thus C being a symmetric traceless tensor as required. Only the components with
indices taking values 1 or 2 will be of importance for the one-point functions but all com-
ponents play a role when it comes to normalization. Requiring the operators to be unit
normalized, i.e.

CJ1J2...JL
I1I2...IL

CI1I2...IL
J1J2...JL

= 1 (4.24)

gives the following normalization constant

NL =
(

2L+ 2
L

)−1/2

, (4.25)

and leads to the following normalization of the spherical harmonics on the string theory side

∫
S7/Zk

YL(YK)∗ = δLK2π4 (L!)2

(2L+ 3)! . (4.26)

The one point function of these chiral primaries can be found by direct computation and
reads for the first few cases (excluding the field theoretical prefactor that is reinstated
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below in eq. (4.33))

〈Y1〉 = 1
2(q2 − q), (4.27)

〈Y2〉 = 1√
15

(
q3 − 3

2q
2 + 1

2q
)
, (4.28)

〈Y3〉 = 1√
56

(q4 − 2q3 + q2), (4.29)

〈Y4〉 = 1√
210

(
q5 − 5

2q
4 + 5

3q
3 − 1

6q
)

(4.30)

〈Y5〉 = 1√
792

(
q6 − 3q5 + 5

2q
4 − 1

2q
2
)
, (4.31)

〈Y6〉 = 1√
3003

(
q7 − 7

2q
6 + 7

2q
5 − 7

6q
3 + 1

6q
)
, (4.32)

which is compatible with the following general expression.

〈YL〉 = 1
xL

1
λLL1/2 NL(L+ 1)

q−1∑
a=1

aL. (4.33)

5 Excited states

We now turn to studying one-point functions of non-protected operators starting with the
scalar sector in subsection 5.1 and moving on the full theory in subsection 5.2.

5.1 SU(4) sector

The spectrum of the SU(4) spin chain (4.2) is described by the standard group-theoretic
Bethe equations (

uaj − iqa
2

uaj + iqa
2

)L∏
bk

uaj − ubk + iMab
2

uaj − ubk − iMab
2
≡ e iχaj = (−1)

Maa
2 , (5.1)

E = λ2∑
aj

qa

u2
aj + q2

a
4

, (5.2)

specified to the SU(4) Cartan matrix and the Dynkin labels of the spin representation:

M =

 2 −1 0
−1 2 −1
0 −1 2

 , q =

1
0
1

 . (5.3)

The hallmark of boundary integrability is a Z2 symmetry acting on the Bethe roots

Ω : uaj → −uσ(a)j . (5.4)

Only invariant Bethe states have a non-zero overlap with the boundary state at hand, (4.6)
in our case. This can be regarded a defining property of a boundary state that makes it
consistent with the underlying integrability structure [39, 40].
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The boundary state is called chiral if parity acts trivially on the Dynkin diagram
(σ = id), and achiral otherwise [5, 41]. The permutation σ should anyway square to
the identity: σ2 = id and be a symmetry of the Bethe equations: Mσ(a)σ(b) = Mab and
qσ(a) = qa. The boundary state we consider is actually achiral, with parity interchanging
the momentum-carrying nodes:

σ = (13). (5.5)

The Z2 transformation represents the spacial reflection of the spin chain, or charge conju-
gation in terms of the original field-theory operators. The ABJM spin chain hosts complex
representations 4 and 4̄ at alternate sites and those get interchanged by parity. The re-
flection (5.5) is the complex conjugation acting on the Dynkin diagram and therefore must
accompany inversion of rapidities.

Parity ordains a symmetrically paired structure of the Bethe roots:
{uaj ,−uσ(a)j}. Solitary zero roots are also allowed on the nodes with σ(a) = a, being fixed
points of parity Ω. The key word here is solitary. Paired roots can accidentally take zero
values, namely it can happen that {0a, 0σ(a)}, σ(a) 6= a is part of the root configuration
consistent with the Bethe equations. These accidental zeros are not fixed points of parity
and do not require special treatment. When talking about zero roots in what follows we
specifically mean unpaired roots on the nodes invariant under parity transformation. A
parity-invariant state can thus be characterized by half of the paired roots uaj and the
nodes aα hosting solitary zero roots.1

Overlaps of integrable boundary states with Bethe eigenstates are described by a re-
markably compact formula, which is universal to a large degree albeit its detailed structure
is model-specific and is actually known on a case-by-case basis. A systematic derivation of
the overlap formulas goes back to the work of Tsuchiya [42] and has so far been restricted
to su(2) [43, 44] (see also [3, 45]). Known overlaps for higher-rank groups are based on ed-
ucated guesswork aided by symmetry consideration [8, 9, 46], while a systematic derivation
has only appeared recently for a class of SU(N) spin chains [11]. Fortunately, the SU(4)
spin chain of ABJM is precisely of the type considered in [11]. In fact, the overlap for the
simplest case of VBS (4.10), (4.11) is explicitly given in [11]:2

〈VBS |u〉
〈u |u〉

1
2

= 2−LQ2(i)
√√√√ SdetG
Q2(0)Q2

(
i
2

) . (5.6)

1In the SU(4) case solitary zero roots can only sit on the middle node. We prefer to keep the discussion
general in view of eventual generalization to the full superconformal group.

2It was conjectured in [11] that the overlap formula derived there should describe domain walls in ABJM
theory. This conjecture turns out to be correct. In fact, the overlap formula in [11] applies to a larger class
of valence-bond states that form a one-parameter family with the two-site matrix K(a) = 1+aσ1⊗σ1 which
for a = 1 is related to (4.11) by an SU(4) transformation: K = S†U†K(1)US with U = (1−iσ2)⊗(1−iσ2)/2
and S representing the (24) permutation. It would be interesting to understand if the domain-wall solution
admits a one-parameter deformation that corresponds to the boundary states with a 6= 1. The two-
site matrix K(a) is non-degenerate for a 6= ±1 and the putative domain wall solution should involve all
four scalars. The string dual is then expected to be a D8 brane wrapping the whole CP 3. Candidate
brane configurations have been considered in [47], and it would be interesting to find their field-theory
counterparts.
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The key ingredient of the overlap formula is the superdeterminant of the Gaudin matrix

Gaj,bk = ∂χaj
∂ubk

, (5.7)

where the Z2 grading of the superdeterminant is defined by the parity transformation (5.4)
acting on rows and columns of the Gaudin matrix. In the basis where parity acts diagonally
the superdeterminant becomes a ratio of ordinary determinants:

SdetG = detG+

detG− . (5.8)

The rows and columns of G− are labeled by positive Bethe roots only, while G+ includes
in addition the zero roots:

G±aj,bk =

 Lqa

u2
aj + q2

a
4

−
∑
cl

K+
aj,cl −

1
2
∑
α

K+
aj,aα0

 δabδjk +K±aj,bk,

G+
aj,α = 1√

2
K+
aj,aα0,

G+
αβ =

(
4L
qqα
−
∑
cl

K+
aα0,cl −

∑
γ

4
Maαaγ

)
δαβ + 4

Maαaβ

, (5.9)

where
K±aj,bk = Mab

(uaj − ubk)2 + M2
ab
4

±
Maσ(b)

(uaj + ubk)2 +
M2
aσ(b)
4

. (5.10)

Potentially ill-defined quantities, like 1/Mab for Mab = 0, are declared to be zero.
The Gaudin factor in the overlap formula is decorated by the Baxter polynomials:

Qa(u) =
∏

all a roots
(u− uaj) . (5.11)

To be more precise, the Q-functions in the overlap formula are regularized by omitting
eventual zero roots. Hopefully the use of the same notations for the full and regularized
Baxter polynomials will not cause any confusion.

Together with (4.5), the overlap formula (5.6) describes the tree-level expectation
values of all scalar operators.3 Before extending the overlap formula to the full set of
operators, we consider a few representative examples.

As discussed in section 4.2, primaries with non-zero overlaps must be SU(4) singlets.
There are two singlets at length two, the simplest possible case. The Bethe-ansatz descrip-
tion of one of them is singular, involving roots at ±i/2 [16]. The Gaudin matrix then has to
be regularized and redefined. The correct prescription of absorbing infinities is known [50],
but its detailed outline would create unnecessary complications and since our goals are
mostly illustrative, we concentrate on the other operator

O2 = tr
(
Y AY †AY

BY †B + Y AY †BY
BY †A

)
, (5.12)

3As it stands, the formula applies to conformal primaries. Descendants acquire an extra group-theoretic
factor [48, 49], which we do not display here.
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having energy 10λ2 and being described by regular Bethe roots [16]:

u1 =
{√

3
20 ,−

√
3
20

}
= u3, u2 =

{ 1√
5
,− 1√

5

}
. (5.13)

Taking the positive roots, one per node, to represent the state:4

uaj = {{u}, {v}, {u}},

we get for the Gaudin factors defined in (5.9):

G± =


3
2

1
1
4 +u2 + κ+ −κ± ±1

2
1

1
4 +u2

−κ± 2κ+ − 1
2

1∓1
1
4 +v2 −κ±

±1
2

1
1
4 +u2 −κ± 3

2
1

1
4 +u2 + κ+

 , (5.14)

where
κ± = 1

1
4 + (u− v)2 ±

1
1
4 + (u+ v)2 . (5.15)

Setting u =
√

3/20, v = 1/
√

5, and calculating the determinants we find:

SdetG ≡ detG+

detG− = 9
10 . (5.16)

The one-point function follows from (5.6), (4.5):

〈O2(x)〉 = 1
x2

3
2
√

5λ2 . (5.17)

Properly normalizing the operator and replacing the fields in (5.12) by the classical solution
gives, of course, the same result.

Another example is a length-three operator

O3 =
(√

10− 1
)

tr
(
Y AY †AY

BY †BY
CY †C + Y AY †CY

BY †AY
CY †B

−Y AY †BY
BY †CY

CY †A

)
+ 9 trY AY †AY

BY †CY
CY †B, (5.18)

with the anomalous dimension (8 + 2
√

10)λ2 and root content

u1 = {α,−α, 0} = u3, u2 =
{ 2α√

3
,− 2α√

3
, 0
}
, α2 =

√
2
5 −

1
4 . (5.19)

It is easy to check that the operator is an eigenstate of the Hamiltonian (4.2) and that the
root configuration solves the Bethe equations.

The zero roots on nodes 1 and 3 are accidental, they are paired with one another. On
the contrary, the zero on node 2 is solitary and does not have a pair. Because of that
the Gaudin factors have different sizes, 5 × 5 for G+ and 4 × 4 for G−, see (5.9). We can
represent pairs by {{α,−α, 0}, {2α/

√
3}, {}}, for example. Evaluating the determinants

we find:

〈O3(x)〉 = 1
x3

1
λ3

√
54 + 17

√
10

390 . (5.20)

We checked that replacement of scalar fields in the operator by the domain wall solution
gives the same result.

4We can equally well represent pairs with {{u,−u}, {v}, {}}. This does not change the result.
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(a) (b) (c) (d)

Figure 1. Dynkin diagram of osp(6|4) in different gradings.

5.2 Full spectrum

All possible operators in the ABJM theory are described by the OSp(6|4) Bethe equations.
The Dynkin diagram is shown in figure 1(a), where as usual the matrix element for a solid
link is −1, +1 for a broken link, 0 for a fermionic (crossed) node, +2 for a bosonic node
between solid links and −2 between broken links. The spin representation has non-zero
Dynkin indices on the nodes 1 and 3 as shown in the figure. Nodes 1, 2 and 3 correspond
to the scalar SU(4) subsector discussed so far. An excitation on node 4 transforms a boson
into a fermion and that on node 5 executes a spin flip.

5.2.1 Fermionic dualities

Since a Dynkin diagram for a superalgebra is not unique [51], the Bethe equations for a
super-spin chain can be written in several different forms related by fermionic dualities [52].
For an example, consider the fermionic node in the original SU(4)-friendly diagram 1(a).
The Bethe equations for the fermionic roots are

1 = Q+
5 Q
−
2

Q−5 Q
+
2

∣∣∣∣∣
u4j

. (5.21)

They can be equivalently represented as a QQ-relation between the Baxter polynomials:

Q−5 Q
+
2 −Q

+
5 Q
−
2 = i(K2 −K5)Q4Q̃4, (5.22)

where Q4 is the original Q-function and Q̃4 is its complement that absorbes the remaining
K2 +K5 −K4 − 1 roots of the polynomial of the left-hand side. Here we use the standard
notations for the argument shifts

f [q](u) = f

(
u+ iq

2

)
, f± = f [±1], f±± = f [±2]. (5.23)

While the Bethe equation (5.21) holds on the fermionic roots, the QQ-relation (5.22)
is a functional equation valid for arbitrary value of the argument in Qa(u). It is easy to
see that the roots of Q̃4, which we denote by ũ4j , satisfy the same Bethe equations as u4j .
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Moreover, the scattering phases on the adjacent nodes can be expressed through ũ4j with
the help of (5.22):

Q+
4

Q−4
= −

Q++
2,5 Q̃

−
4

Q−−2,5 Q̃
+
4

∣∣∣∣∣
u2,5j

. (5.24)

The Q±±2,5 factors neatly cancel in the Bethe equations and we arrive at a new system
associated with the Dynkin diagram in figure 1(b).

Dualizing further on node 5 we get the diagram in figure 1(c), in many respects dis-
tinguished. It is this diagram that allows for an extension to all loop orders [17].

The next step gives rise to a new feature. The QQ-relation on the central node contains
a product of three Q-functions:

Q−4 Q
+
1 Q

+
3 −Q

+
4 Q
−
1 Q
−
3 = i(K1 +K3 −K4)Q2Q̃2. (5.25)

As a consequence, the scattering phase in the Bethe equations for roots 1 and 3 contains
an extra piece:

Q+
2

Q−2
= −Q

++
1 Q++

3 Q̃−2
Q−−1 Q−−3 Q̃+

2

∣∣∣∣∣
u1,3j

. (5.26)

Substituting this into the Bethe equations for roots 1 and 3 not only cancels their self-
scattering, but induces a mutual interaction depicted as a double line in figure 1(d). The
Dynkin diagram ceases to be simply-laced.

5.2.2 OSp(6|4) overlaps

The Gaudin superdeterminant transforms under fermionic dualities in a regular way, such
that determinants constructed on the original and dual roots are related by a simple Jaco-
bian. Namely, for the duality transformation on the a-th node, the following relation holds:5∏

b: Mab 6=0
Qb(i/2) Sdet G̃ = Qa(0)Q̃a(0) SdetG, (5.27)

where the product on the left-hand side is over all nodes adjacent to a. This formula was
conjectured for An-type Dynkin diagrams and checked for a number of chiral boundary
states [15, 50]. The boundary state at hand is achiral and the Dynkin diagram is of
the D-type, but we found that the formula continues to hold without change. Although
we have no mathematical proof, we performed thorough numerical checks for all duality
transformations considered in the previous subsection.

The transformation law of the Gaudin superdeterminant can be used to transform the
overlap formula from one duality frame to another. The overlap of an integrable boundary
state is expected to have a universal form√√√√∏

a

∏
j Qa(iαaj/2)∏
kQa(iβak/2) SdetG , (5.28)

5The formula seems to apply to simply-laced Dynkin diagrams, and may need to be modified in the
non-simply-laced case, for example when dualizing on one of the nodes in figure 1(d) connected by the
double line.
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Figure 2. The SU(4) overlap formula in the graphic notations.

Figure 3. Overlap formulas in different grading.

or to be a linear combination of such terms. Ultimately, this structure is dictated by the
underlying Algebraic Bethe Ansatz of rational type [3, 11]. But we simply accept this
formula as an assumption. By itself this is not very constraining, but in conjunction with
fermionic duality this structural assumption places powerful constraints on the particular
values of the Q-functions that can appear.

We use a graphic notation introduced in [15] for the basic building block (5.28) by
placing numbers αaj , βak directly on the Dynkin diagram:

(5.29)

For example, the overlap formula (5.6) for the SU(4) sectors is represented by figure 2.
It is not hard to see that an extension to the full OSp(6|4) is actually unique as long

as it respects fermionic duality. The transformation law (5.27) leaves two possibilities
for a fermionic node, 0/ or /0, if the overlap is to retain its structure in the new frame.
Otherwise the dependence on the original fermionic roots, that are traded for their duals,
would not completely cancel. For the particular case at hand 0/ is preferable, the Jacobian
then cancels /1 on the 2nd node, and that is going to help in the subsequent steps. Since
the 5th node becomes fermionic as well, the only choice there is 0/1. The /1 is neatly
cancelled by the Jacobian leaving 0/ which can again be dualized.

Arguments of this kind reconstruct overlaps for the first three diagrams in fig-
ure 1 with the result shown in figure 3. Duality on the 4th node of the first dia-
gram replaces Q4(0) SdetG by Q2(i/2)Q5(i/2) Sdet G̃/Q̃4(0) which gives the second di-
agram. Likewise, dualizing the 5th node of the second diagram replaces Q5(0) SdetG by
Q4(i/2) Sdet G̃/Q̃5(0) yielding the third diagram.
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Figure 4. Overlap formula for a non-simply-laced form of the Dynkin diagram.

This diagram is of particular interest, because its Bethe equations can be extended to
all orders in the coupling. The explicit form of the overlap for this distinguished grading is

〈MPS2 |u〉
〈u |u〉

1
2

= Q2(i)
√

Q4(i/2)
Q2(0)Q4(0)Q5(0) SdetG . (5.30)

We expect this formula to have an all-loop generalization, but we will not attempt to derive
or guess it here.

It is also possible to dualize on the central node, albeit the outcome is somewhat
different compared to the simply-laced case. The factor of Q2(i) is not accounted for by
the Jacobian and has to be expressed through the other Q-functions,6 which is possible in
virtue of the QQ-relation (5.25):

Q̃2(i) ∝ Q4(i/2)Q1(3i/2)Q3(3i/2)
Q2(i) − Q4(3i/2)Q1(i/2)Q3(i/2)

Q2(i) . (5.31)

Standing out of the square root this factor does not compromise the general structure. The
dualized overlap becomes a difference of two terms each of the canonical form, as illustrated
in figure 4.

6 One-point functions at strong coupling

One-point functions at strong coupling can be calculated by a variant of the GKPW pre-
scription [53, 54] which entails a fluctuation analysis of the supergravity background. The
foundation for the fluctuation analysis for type IIA supergravity on AdS4 × S7 was laid
in [55–57] and employed in the study the study three-point functions involving two giant
gravitons and one tiny graviton in ABJM theory in [58, 59] as well as in the computation
of correlation functions of vortex loop operators with local operators in [60].

Hence, let us consider the variation of the Euclidean DBI and WZ action. For the
latter we have

δIWZ = T4

∫
d5σF ∧ P [δC3], (6.1)

6The duality transformation must act from the diagram in 1(d) to 1(c), so as to replace Q2(0) by 1/Q̃2(0),
and we need to express the dual Q-function through the original ones.
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where
(δC3)µ1µ2µ3 = R3

8 2εµ1µ2µ3µ4 ∇µ4s∆I(X)Y∆I(Ω), (6.2)

with the µ’s referring to coordinates on AdS4 and ε1234 = √gAdS4 = z2. The X likewise
refers to AdS4 coordinates while Ω refers to coordinates on CP 3. For the relevant pull-back
to the brane world-volume we get

P[δC3]01z = R3

8 2
(
x′2(z)ε012z z

2∂z + ε01z2
1
z2∂x2

)
s∆I(X)Y∆I(Ω) (6.3)

= R3

8 2z2
(
−Q∂z −

1
z2∂x2

)
s∆I(X)Y∆I(Ω). (6.4)

We can now combine this with F and get

δIWZ = T4R̃
4√α′ k Q

∫ ∞
0

dz z2
∫ ∞
−∞

dx0 dx1

∫ π

0
dθ1 sin θ1

∫ π

0
dφ1 (6.5)

×
(
−Q∂z −

1
z2∂x2

)
s∆I(X)Y∆I(Ω).

Moving on to the DBI action we find for the variation

δIDBI = −T4e
−Φ 1

2

∫
d5σ

√
det(G+ F) (G+ F)abδGab, (6.6)

where for the AdS part of the metric we have

δgµν = 4
∆ + 2

[
∇µ∇ν −

1
6∆(∆− 1) gµν

]
s∆I(X)Y∆I(Ω), (6.7)

whereas on CP 3

δgαβ = ∆
3 gαβ s

∆I(X)Y∆I(Ω). (6.8)

To compute the double covariant derivative we will need some Christoffel symbols for AdS4.
The relevant ones are

Γz00 = Γz11 = Γz22 = −z3, Γzzz = −1
z
, Γzz2 = Γz2z = 1

z
, (6.9)

For the calculation of the variation we also need the inverse of the induced metric. Its
non-zero relevant elements are

(G+ F)00 = (G+ F)11 = 1
z2 , (G+ F)zz =

( 1
z2 + z2(x′2(z))2

)−1
= z2

1 +Q2 ,

(G+ F)θ1θ1 = 1
1 +Q2 , (G+ F)φ1φ1 = 1

sin2 θ1(1 +Q2)
, (6.10)

where we have set cos2 ξ = 1. Of the fluctuations, only δGzz is a bit complicated involving
a non-trivial pull back. From eq. (3.15) we get√

det(G+ F) = R̃5 z sin θ1 (1 +Q2), (6.11)
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Putting everything together, we find

δIDBI = −T4R̃
4k
√
α′(1 +Q2)

∫ ∞
0

dz z

∫ ∞
−∞

dx0 dx1

∫ 2π

0
dφ1

∫ π

0
dθ1 sin θ1

×
{

1
∆ + 2

[
1
z2

(
∂2

0 + ∂2
1

)
+ 3z∂z

+ z2

1 +Q2

(
∂2
z − 2Q

z2

(
∂z∂2 −

1
z
∂2

)
+ Q2

z4 ∂
2
2

)
− 1

2∆(∆− 1)
]

+∆
6

1
1 +Q2

}
s∆I(X)Y∆I(Ω). (6.12)

We note that the term in the last line originates from the spherical part of the geometry
and the remaining terms come from the AdS part.

Implementing the GKPW prescription, i.e. differentiating after a delta-function source
on the boundary coupling to a specific chiral primary CFT operator and setting the source
to zero corresponds to picking out the term involving the corresponding spherical harmonic
and replacing the mode s∆I(X) by its bulk to boundary propagator, i.e.

〈O(x)∆〉 = −δIDBI+WZ| s→
C∆

z∆ (ρ2 + (x2 − x)2 + 1/z2)∆ , ρ2 = x2
0 + x2

1,

where (see f.inst. [60])

C∆ =
√
k

(
lp
R

)9/2
C∆, (6.13)

with
C∆ = 2∆/2−1 π

∆ + 2
∆
√

∆ + 1. (6.14)

Next step is to perform all the integrations and differentiations implied by the relations (6.6)
and (6.12). Here one can check that the term with ∂2

0 + ∂2
1 does not give any contribution

and we can rewrite
∫∞
−∞ dx0dx1 = 2π

∫∞
0 ρ dρ.

Furthermore, we notice that the common pre-factor of the two integrals can be rewrit-
ten as

T4R̃
4k
√
α′ = N

8π2 . (6.15)

From (6.6) and (6.12) we immediately see that the standard chiral primary (Y1Y
∗

2 )L has
a vanishing one-point function as its evaluation involves the integral

∫ 2π
0 dφ1 exp(iφ1) = 0.

On the other hand the chiral primaries defined by the relation (3.25) have non-vanishing
one-point functions.

Combining the factors (6.13) and (6.15) we see that in the strong coupling limit all
one-point functions will carry a pre-factor

∼
(
lp
R

)9/2√
kN ∼ k−3/2 λ−3/4√kN ∼ λ1/4, (6.16)

and since the integrals when expanded for large Q involve only integer powers of Q we
will not immediately be able to compare to a perturbative gauge theory calculation even
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in the double scaling limit (3.24). This is in contrast to the AdS5 × S5 case where the
strong coupling expansion in combination with a double scaling limit gave rise to one point
functions expandable in integer powers of λ [33, 34].

Let us now calculate the one-point functions of the chiral primaries with symmetry
SU(2)×SU(2)×U(1) given in eq. (3.28), see also (4.21). For these chiral primaries we can
trivially perform the integration over φ1 and θ1 which gives a factor of 4π. Furthermore,
our brane embedding is characterized by cos ξ = 1 so we get Y∆(ξ) = (−1)∆N∆ where we
will ignore the overall phase. Summarizing, the one-point functions of our chiral primaries
are given by

〈Y∆(x)〉 = λ1/4N∆ C∆

∫ ∞
0

dz z

∫ ∞
0

dρ ρ

{
1

∆ + 2

[ (
3 +Q2(∆ + 5)

)
z∂z

+z2
(
∂2
z − 2Q

z2∂z∂2 −
3
z3Q∂2 + Q2

z4 ∂
2
2

)
(6.17)

−1
2∆(∆− 1)(1 +Q2)

]
+ ∆

6

}
1

z∆ (ρ2 + (x2 − x)2 + 1/z2)∆ .

We can now also integrate over ρ. This gives

〈Y∆(x)〉 = λ1/4N∆ C∆
2(∆− 1)

∫ ∞
0

dz z

{
1

∆ + 2

[ (
3 +Q2(∆ + 5)

)
z∂z

+z2
(
∂2
z − 2Q

z2∂z∂2 + 3
z3Q∂2 + Q2

z4 ∂
2
2

)
(6.18)

−1
2∆(∆− 1)(1 +Q2)

]
+ ∆

6

}
1

z∆ ((x2 − x)2 + 1/z2)∆−1 ,

provided ∆ > 1. The remaining integral is not convergent for ∆ = 2. The same problem
was observed for the AdS5 × S5 set-up [33, 34]. For ∆ > 2, we find in the large-Q limit

〈Y∆(x)〉 ∼ λ1/4 Q
∆+1

x∆ ∼ λ−∆/2−1/4 q
∆+1

x∆ . (6.19)

We notice that x dependence is as expected for a defect one-point function and the leading
power of q is the same as on the gauge theory side. The powers of λ on the two sides only
agree in a large charge limit.

7 Conclusion and outlook

The D2-D4 domain wall version of ABJM theory shares many features with its D3-D5
counterpart in N = 4 super Yang Mills theory, most notably it provides us with novel
examples of integrable boundary states within AdS/CFT and associated novel examples
of exact overlap formulas. These integrable boundary states generically take the form
of matrix product states with the bond dimension encoding the jump in the rank of the
gauge group across the domain wall and degenerate to valence bond states as when the
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bond dimension becomes equal to one. Whereas the overlaps in the scalar sector of ABJM
theory between Bethe eigenstates and matrix product states of bond dimension two could
be read off from a recent result on integrable boundary states in alternating SU(N) spin
chains [11], the relation to the valence bond states made it possible to extend the formula
to the full theory by requiring covariance under fermionic duality transformations, thereby
realizing the idea put forward in [50].

An obvious open problem is the extension of the overlap formula for matrix prod-
uct states to general values of the bond dimension. For the integrable boundary states
of relevance for N = 4 SYM this could be done using representation theory of twisted
Yangians [12]. It would likewise be interesting to extend the overlap formulas to higher
perturbative orders and eventually to the non-perturbative situation as well. One could
envision a bootstrap based strategy in line with [5, 6] possibly with input from a direct
perturbative calculation. The strategy for setting up the program for perturbative calcu-
lations would follow that employed for domain wall versions of N = 4 SYM where fuzzy
spherical harmonics were used to disentangle the complicated mixing between color and
flavor components of the scalar fields introduced by the non-trivial vacuum expectations
values [36–38].

Considering the domain wall set-up in more detail from the string theory side calls
for the development of improved methods. The strategy we used for the computation of
overlaps works only for chiral primaries. As for the AdS5/CFT4 system a double scal-
ing parameter naturally appears, but in the present case it does not allow for a precise
comparison of the gauge and string theory results. One could hope that a version of super-
symmetric localization makes it possible to compute overlaps exactly for particular chiral
primaries as it was the case in N = 4 SYM [7, 61, 62]. Interestingly, the operator algebra
in the presence of the defect carries a natural integrability structure [63]. Furthermore, one
could imagine an integrability based bootstrap procedure for overlaps formulated directly
in the strong coupling language [7]. The D2-D4 probe brane set-up without flux does be-
longs to the list of integrable boundary conditions of [20] but it would be important to
check that the model, like its D3-D5 probe brane cousin, remains integrable when the flux
is introduced [64].

Ultimately, it would be interesting to arrive at a fully non-perturbative treatment of
both the D2-D4 and the D3-D5 domain wall systems with the overlap formulas being given
in terms of appropriate g-functions [65, 66].

Finally, it is possible that AdS/CFT contains even more integrable boundary states
awaiting discovery.
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