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1 Introduction

One of the universal consequences of the future successful combination of quantum theory
and theory of gravity is believed to be a fundamental change in the notion of space-
time [1]. One particular way to realize this idea is to introduce noncommutative spaces [2].
Their appeal is in the fact that they retain at least some of the continuous symmetries
of the standard, commutative, space and the fundamental distance provides a natural UV
regulator [3]. They appear also as effective description of phenomena in string theory [4, 5]
and condensed matter physics [6] and compact versions of noncommutative spaces, the
fuzzy spaces, arise as solutions in various matrix formulations of string theories [7, 8].

The hallmark of the field theories on noncommutative spaces is the existence of a new
phase in the phase diagram, the striped or non-uniform order phase. In this phase, the
field does not oscillate around a single value in the whole space but rather forms stripes of
oscillations around different minima of the potential. This phase exists together with the
two standard, commutative phases — the disorder phase, in which the field oscillates around

– 1 –



J
H
E
P
0
2
(
2
0
2
2
)
0
6
5

the zero value of the potential, and the uniform order phase, where the field oscillates
around one of the minima of the potential. The existence of the two commutative phases
has been established in [9] and the transition line has been obtained numerically, most
recently in [10]. The existence of the new phase in noncommutative theories has been
shown in [11] and has been since observed numerically in many different works for the
fuzzy sphere [12, 13, 16], and other spaces [17–19].

The non-uniform order phase spontaneously breaks the translation symmetry of the
space. This is possible even in the two-dimensional case, due to the fundamental nonlocality
of the theory. Moreover, the phase does survive the commutative limit of the theory and
is thus related to the phenomenon of UV/IR mixing [20, 21].

It has been understood for quite some time now that the best analytical tool to study
the properties of field theories on noncommutative spaces are matrix models [22, 23]. Es-
pecially for fuzzy spaces, where the finite volume of the space ensures that the theory has
only a finite number of degrees of freedom. Real scalar fields on fuzzy spaces are hermi-
tian matrices and the field theory defined through functional integral correlation functions
is a specific random matrix model. Calculations in this matrix model are however more
complicated than the standard cases since the kinetic term of the field theory depends on
the angular variables of the matrix. The numerical analysis of these models led to most of
the results for the phase structure of the fuzzy field theories. Moreover, recent simulations
of the matrix model describing a version of noncommutative field theory that is free of
the UV/IR mixing showed signs of retreat of the non-uniform order phase [24, 25], further
confirming the connection between the existence of this phase and the UV/IR mixing.

Our main goal in this paper is to reproduce the results of the most recent numerical
investigation of the theory on the fuzzy sphere [16]. In [26] we have presented an analysis
of a multi-trace matrix model which includes a particular function of the second moment
of the eigenvalue distribution and approximates the theory [28]. It was shown that certain
qualitative features of the phase diagram in the vicinity of the origin of the parameter space
are recovered by the model: most importantly the existence of the three phases, transition
lines between them, and the existence of the triple point where the three transition lines
meet. It was however shown that the phase transition line between the two ordered phases
behaves differently in this model for larger values of the parameters. Also, the location of
the triple point did not match the predicted location exactly.

To improve on these shortcomings of the model, we include higher moments into the
multi-trace part of the probability distribution. In section 2 we give a short overview
of the fuzzy field theories and their description in terms of various matrix models. In
section 3 we give the necessary details about the calculation of the multi-trace part of the
probability distribution in the matrix model stemming from the kinetic term of the field
theory. In section 4 we give the outline of our main approach in this paper, a perturbative
large parameter solution of the matrix model, and completion of these results using Pade
approximants, with more technical details postponed to the appendix A. In section 5 we
show how the approach works for a naive matrix model, which takes the kinetic as a
perturbation to the potential part of the action, and what are the flaws of this model.
Finally, in section 6 we show that when one considers a different behavior of the multi-
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trace part of the action in small and large moments regime, some of the above goals can be
met. We add, by hand, a term proportional to the logarithm of the fourth moment, which
leads to a model with a better behaved transition line between the symmetric two-cut and
asymmetric one-cut phases and preserves the existence of a triple point. Finally, we discuss
some of the more complicated modifications one can make in the large moment behavior
of the kinetic term effective action.

2 Matrix models of fuzzy field theories

Noncommutative spaces can be defined by the commutation relations of their coordinate
functions

[xi, xj ] = iθij , (2.1)

with anti-symmetric θij uniquely specifying the space.
In this paper, we will consider only the case of fuzzy sphere [29], which is one of

the simplest examples of the noncommutative geometry. The fuzzy sphere is a compact
noncommutative space with the following commutation relation among its coordinates

[xi, xj ] = iθεijkxk . (2.2)

The algebra of functions on the fuzzy sphere can therefore be identified with the matrix
algebra spanned by three generators Li of su(2) in the N dimensional representation. By
defining

xi = 2R√
N2 − 1

Li , (2.3)

where N is the dimension of the matrices and constant R is equal to the radius of the
sphere

3∑
i=1

xixi = R2 ,

we satisfy the commutation relations (2.2), with

θ = 2R√
N2 − 1

. (2.4)

Taking N →∞ thus recovers the “ordinary” commutative sphere. We will take the sphere
of a unit radius R = 1 from now on.

The euclidean scalar field theory on the fuzzy sphere can be stated in terms of the
correlation functions

〈O(M)〉 = 1
Z

∫
dMe−N

2S[M ]O[M ] (2.5)

with the integration over all the possible configurations of the hermitian matrix M . There-
fore, it is equivalent to a random matrix model with the probability measure given by the
action of the theory.

The theory of our interest is given by the action [30]

S[M ] = 1
N

Tr
(1

2rM
2 + gM4 + 1

2MKM
)

(2.6)
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Figure 1. A generic diagram of a noncommutative scalar field theory obtained in various numerical
studies. The three transition lines meet at the black triple point. Commutative field theories lack
the non-uniform order phase and the green transition line, standard matrix models without the
kinetic term lack the uniform order phase and the blue transition line.

with the kinetic term equal to the quadratic Casimir invariant of su(2)

KM = [Li, [Li,M ]] . (2.7)

This model has been extensively studied by the numerical simulations, showing very dif-
ferent properties than the field theory on the commutative sphere, even as one takes the
commutative limit of the underlying space.

As we described in the introduction, the scalar field theory on the commutative sphere
has two types of solutions. A symmetric one, when the field oscillates around zero, and an
asymmetric one, when the field oscillates around one of the minima of the quartic potential.
Which solution is realized depends on the values of the parameters r and g in the action.

On the other hand, it was shown that the scalar field theory on the fuzzy sphere has yet
another solution besides the two aforementioned cases. In this solution, the field does not
oscillate around one value on the whole sphere. Instead, it oscillates around the different
potential minima in the distinct sections of the space.

This is a direct consequence of the so-called UV/IR mixing. As the coordinates on the
fuzzy space do not commute, the uncertainty principle does not allow us to measure the
position with arbitrary precision. The more precisely we determine one coordinate, the less
certain we are in estimating the others. The small scales, therefore, blend with the large
ones, hence UV/IR mixing.

To treat the integrals (2.5) analytically, the standard procedure [31] is to diagonalize
the matrix M

M = UΛU † , Λ = diag(λ1, λ2, . . . , λN ) , U ∈ U(N) (2.8)

and rewrite the integral in these new variables. For a function O[M ] which depends only
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on the eigenvalues λi, we get1

〈O[Λ]〉 = 1
Z

∫ ( N∏
i=1

λi

)
O[Λ]e−N

2
[

1
2 r

1
N

∑
i
λ2
i+g

1
N

∑
i
λ4
i−

2
N2
∑

i<j
log |λi−λj |

]
×
∫
dUe−NTr

[
1
2UΛU†K(UΛU†)

]
. (2.9)

The logarithmic term in the action comes from the Jacobian determinant due to the change
of the variables. Notice that the kinetic term is not invariant under the unitary transfor-
mations, which leads to a non-trivial angular integration∫

dUe−NTr
[

1
2UΛU†K(UΛU†)

]
(2.10)

that has not yet been performed analytically. Thus, the integral (2.10) presents the key
difficulty in obtaining the analytical solution of the model, as we are unable to get the full
analytical solution and are left only with the possibility of approximate results.

3 Angular integral as a multi-trace matrix model

In this section, we review the approximations of the kinetic term (2.10) that have been
studied in recent years, as well as the solutions of such approximative models.

Let us denote
e−N

2Seff =
∫
dUe−NTr

[
1
2UΛU†K(UΛU†)

]
, (3.1)

we will, therefore, look into the possible approximate formulas for the effective action Seff .

3.1 Perturbative expansion

The most straightforward approximation is to consider a perturbative expansion of the
angular integral (2.10) in a small ε parameter [32–35]∫

dUe−εTr
[

1
2UΛU†K(UΛU†)

]
= 1− ε

2

∫
dUTr

[
UΛU †K(UΛU †)

]
+

+ ε2

8

∫
dU

(
Tr
[
UΛU †K(UΛU †)

])2
+ . . . . (3.2)

The integrals in the perturbative series are still technically demanding, and the compu-
tational difficulty significantly increases with the series order. Nevertheless, the first four
orders were obtained [34], leading to the following expression for the effective action

Seff = 1
2

(1
2 t2 −

1
24 t

2
2 + 1

2880 t
4
2

)
− 1

432 t
2
3 −

1
3456(t4 − 2t22)2 + . . . , (3.3)

1We will assume that the eigenvalues λ and the parameters r and g are scaled in such a way that all the
terms in the probability distribution contribute and are of the order N2. This is dictated by the logarithmic
Vandermonde term, which does not change with any scaling. Since there are three other terms and three
parameters to scale, such scaling is possible.
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where tn are symmetrized moments2

tn = 1
N

Tr
(
M − 1

1
N

TrM
)n

. (3.4)

Note that this is a multi-trace expression. The kinetic term in the action, therefore, effec-
tively contributes with the multi-trace terms and, as such, leads to a multi-trace matrix
model.

However, such a perturbative model does not capture the key features of the theory,
known from the numerical simulations, as is discussed in section 5.

3.2 Second moment model

In this section, we describe the approximation that has so far been the most successful in
capturing the main properties of the scalar field theory. This approximation is based on
the fact that the free theory (i.e., theory with g = 0) is analytically fully solvable, and in
such case, the kinetic term in the action effectively rescales the solution [22, 23].

Thus, one can divide the effective action Seff into two parts

Seff = 1
2F +R ,

where F corresponds to the changes the kinetic term causes in the case of the free theory,
and R does not contribute in such case [28]. The function F was determined to be

F(t2) = log
(

t2
1− e−t2

)
(3.5)

and the remainder term R being a function of tn’s, vanishing for a semicircle distribution.
Note that this structure is consistent with the perturbative result (3.3).

The approximation of the kinetic term with only the function F(t2) captures some of
the key features of the full model, namely the existence and rough location of the triple
point. While the value gc of the critical point obtained by the perturbative solution of this
approximation agrees with the value obtained by the most recent numerical simulation,
the parameter rc was greater than the numerical result by approximately a factor of 10.

The reason why the approximation (3.5) is so much more successful than the small
expansion of the kinetic term (3.3) discussed in the previous section lies in the behavior
of the approximation for the large moments. The polynomial terms in (3.3) introduce,
according to their sign, attraction or repulsion between the matrix eigenvalues that is just
too strong to give reasonable results for the small values of g, see section 5. The function
F(t2), however, behaves logarithmically for large moment t2, which seems to generate just
the right amount of attraction among the eigenvalues.

Nevertheless, as we have already mentioned in the introduction, the approximation
fails to correctly reproduce all the properties of the full model for larger values of the
interaction parameter g. Namely, the character of the transition line between the symmetric

2We discuss relationship between the standard moments cn = Tr (Mn) /N and the symmetrized moments
tn in the appendix A.
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disorder phase and the asymmetric uniform-ordered phase. In the approximate model, this
transition line approaches a finite value of the parameter g as |r| increases to the infinity
to the contrary with the numerical simulations, which suggest a linear transition.

3.3 Higher moments model

We shall consider a generalized model, with the kinetic term effective action as follows

Seff = F
[
c1, t2, t3, t4 − 2t22

]
, (3.6)

where F [y1, y2, y3, y4] is a well behaved function of four variables. We will denote3

f1 = ∂F

∂y1
, f2 = 2 ∂F

∂y2
, f3 = ∂F

∂y3
, f4 = ∂F

∂y4
. (3.7)

Note the extra factor of 2 in the definition of f2, which removes confusing factors of 2 in
the expressions for the effective mass parameter in the rest of the text.

This form is a generalization of the perturbative result (3.3). The complete effective
action is a function of all the symmetrized moments and considering such an expression
only up to the fourth moment is our main approximation. It is the next natural step to
take after the analysis [26] has shown that considering only the second moment does not
yield results that are sufficient and need improvement.

We will now investigate the phase structure of the multi-trace matrix model (3.6),
focusing on the region of parameter space, where the asymmetric one-cut solution is the
preferred one.

4 Large r solution of fourth moment fuzzy-field-theory-like matrix mod-
els

In this section, we will present the general approach to the solution of the fourth-order
multi-trace model given by the effective action (3.6). We will first set up the basic formulae
for the three types of the relevant solutions — symmetric one-cut, symmetric two-cut,
and asymmetric one-cut. Then we will outline the general approach to solving the phase
transition conditions and finding the phase diagram of the model.

4.1 Setup

As with any other multi-trace model, the idea of the analysis of the model (3.6) is to
convert it to an effective single-trace model with additional self-consistency conditions on
the moments of the distribution, for more details see for example [36] and for a different
approach see [27].

The technical details are postponed to the appendix A and here we present only the
final conditions on the relevant solutions of the model.

3The function F for the matrix models describing the fuzzy field theories will not depend explicitly on the
first moment c1 and will only include this variable through combinations of tn’s. But since the approach we
describe is more general, we leave this possibility even though in all the cases discussed in this paper f1 = 0.
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Symmetric regime. The symmetric one-cut solution supported on the interval
(−
√
δ,
√
δ) is determined by the following two conditions for δ and ge

4
δ
− δ(2g + ge) + 1

2δ
3ge(ge − g) = r + f2

[
0, δ4 + δ3ge

16 , 0,−δ
4ge(2 + δ2ge)

128

]
, (4.1)

ge = g + f4

[
0, δ4 + δ3ge

16 , 0,−δ
4ge(2 + δ2ge)

128

]
. (4.2)

The free energy of such solution is

F = Fe + −32 + 8δ2(g + ge) + 3δ4ge(g + ge) + 8δr + 2δ3ger

64 +

Fe + F

[
0, δ4 + δ3ge

16 , 0,−δ
4ge(2 + δ2ge)

128

]
, (4.3)

Fe = 3
8 −

1
2 log

(
δ

4

)
+ 4− 3δ2ge

384
(
36 + 3δ2ge

)
. (4.4)

The symmetric two-cut solution supported on
(−
√
D + δ,−

√
D − δ) ∪ (

√
D − δ,

√
D + δ) is determined by two conditions on D

and δ

1
δ2 = g + f4

[
0, D, 0, δ

2

4 −D
2
]
, (4.5)

4D
δ2 = r + 8Dg + f2

[
0, D, 0, δ

2

4 −D
2
]
. (4.6)

The free energy is

F = Fe + 1
4

(
2Dr + gδ2 − 1 + 4D2

( 1
δ2 + g

))
+ F

[
0, D, 0, δ

2

4 −D
2
]

(4.7)

Fe = 3
8 + 1

4 log
( 4
δ2

)
− D2

δ2 . (4.8)

The symmetric phase transition between these two solutions can be further sim-
plified. The transition is given by the condition re = −4√ge and the expressions for the
two-cut solution (A.17) lead to

ge = g + f4

[
0, 1
√
ge
, 0,− 3

4ge

]
, (4.9)

r = −8g − 4ge√
ge

− f2

[
0, 1
√
ge
, 0,− 3

4ge

]
. (4.10)

The first equation is to be solved for ge, which is then to be used in the second equation.
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Asymmetric regime. The asymmetric one-cut solution supported on the interval
(D −

√
δ,D +

√
δ) is determined by the following four conditions

f1 = 3
16Dδ

3gge(4 + 3δ2ge − 18D2δ3g2
e)− 4c3

1g−

− c1

(
3δg + 3

4δ
3gge −

27
4 D

2δ4gg2
e + r

)
, (4.11)

f2 = 4
δ

+ 18D2δ2g2
e + 1

2δ
3ge(ge − g) +

(9
4D

2δ4g2
e − δ

)
(2g + ge)− 12c2

1g − r , (4.12)

f3 = Dge(4 + 3δ2ge)− 4c1g , (4.13)
f4 = ge − g . (4.14)

for the first moment c1 = 1
NTr (M) and for δ,D and ge. Here, one needs to use the explicit

form of the moments of the distribution (A.13)–(A.16) given in the appendix A.
The free energy of such solution is

F = Fe + 1
256δ

(
864c1D

3δ7gg3
e − 48c1Dδ

4gge(4 + 3δ2ge)− 3D4δge(256 + 81δ8gg3
e)+

+ 2D2(256 + 576δ2ge + 384δ4g2
e − 36δ6gg2

e + 27δ8gg3
e − 36δ5g2

e(12c2
1g + r)

)
+

+ 4δ
(
− 32 + 64c4

1g + 8δ2(g + ge) + 3δ4ge(g + ge) + 8δr + 2δ3ger+

Fe + 8c2
1(12δg + 3δ3gge + 4r)

))
+ F

[
c1, t2, t3, t4 − 2t22

]
(4.15)

Fe = 3
4 −

2D2

δ
+ 3D4ge −

9
2D

2δge −
1
4δ

2ge −
3
2D

2δ3g2
e −

3
128δ

4g2
e −

1
2 log

(
δ

4

)
(4.16)

Let us note that there technically are also asymmetric two-cut solutions. However,
since such solutions were not observed in numerical simulations, we expect that they always
have higher free energy than the asymmetric one-cut solution. This was the case for the
second-moment model [37] and we will not consider this possibility any further.

4.2 General approach to solving the model

We have collected all the necessary conditions and the expressions for the free energies.
Our goal now is to investigate the space of the parameters of the original model, which
we remind the reader are r and g. We want to find the regions of existence of the three
different solutions and see which solution is the preferred one where these regions overlap.

To do so, we will solve the equations as a series in the powers of −1/r, i.e. in the limit
of large and negative r. This approach was successfully employed in the analysis of a less
complicated second-moment model in [26]. The basic idea of the process is to solve the
equations to sufficiently high order and then complete the perturbative series using the
Pade approximation method.

Note that this perturbative approach is very different from the perturbative approach
of sections 3.1 and 5. There the kinetic term of the effective action (3.1) is calculated as a
perturbative series in powers of the kinetic term contributions. This perturbative expansion
reflects our limited knowledge about the kinetic term effective action (3.1). Here we solve
the defining equations for the phases of the model as a series in powers of −r, due to our
limited ability to solve the equations of the previous section analytically.
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The idea of this approach is that the moments of the distribution become either very
large or very small in this limit. The potential wells become very deep and very far apart,
thus the asymmetric one-cut solution will be very narrow and the symmetrized moments
will be very small, while the two parts of the two-cut solution will be very separated
and yield large symmetrized moments. The situation is a little more problematic for the
symmetric one-cut solution and we will discuss this issue in the section 6.

Note that it was important that the multi-trace selfinteraction was small compared to
the force due to the potential. As we will see shortly, if this is not the case, one can not use
this approach and one needs to solve the equations numerically. However, as we will also
see, matrix models where the selfinteraction is large do not yield results consistent with
noncommutative field theories.

5 Solutions of the perturbative model on the fuzzy sphere

We first solve the fuzzy sphere model (3.3)

Seff = 1
4 t2 −

1
48 t

2
2 + 1

5760 t
4
2 −

1
432 t

2
3 −

1
3456

(
t4 − 2t22

)2
, (5.1)

where the kinetic part of the field theory action has been taken as a perturbation up to
the eight order in the eigenvalues of the matrix. Solution of this model will illustrate the
method we will employ throughout the rest of the paper and also highlight some of the
main problems we will need to address.

A simpler version of this multi-trace model, which considered the asymmetric term
Tr (M)Tr

(
M3), has been analyzed both numerically and analytically in [14, 15, 27]. These

works have identified the phase diagram in a general agreement with the expectation given
in the figure 1. As mentioned in the introduction, our goal is to improve on results such as
these by inclusion of the rest of the multitrace terms, including the fourth moment of the
eigenvalue distribution, into the effective action.4

Without much elaboration, let us comment briefly on the form of the above action.
The multi-trace terms add interaction among the eigenvalues. Looking directly at the
action (5.1) we see that, for example, configurations with a large symmetrized moment
t3 have a lower value of the action and thus also lower free energy. This makes them
energetically favorable and thus such a term with a negative sign in the action tends to
favor configurations with larger t3 — it pushes eigenvalues further from the center of the
distribution and acts as a repulsive force. Similarly terms with a positive sign act as an
attractive interaction, even though this interaction is not of the standard pairwise form.
Obtaining very large moments t3 and t4− 2t22 lowers the free energy under any bound and
tends to destabilize the whole model in the process. But the details of this are far from
clear since we deal with symmetrized moments tn, rather than actual moments cn, which
further come in peculiar combinations.

4In [35], authors analyze a multitrace matrix model which is more complicated than Tr (M)Tr
(
M3)

related to the theory on the fuzzy disc. However even this model does not include multitraces of the fourth
moment Tr

(
M4).
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We will thus, in a feynmanian spirit, proceed to solutions of the model. We first analyze
the symmetric phase transition which does not require calculation of any solution. Then
we analyze the asymmetric one-cut solution, followed by the symmetric two-cut solution.
This is where we stop, for reasons that will become clear shortly.

Symmetric phase transition. For the effective action (5.1), the conditions for the
symmetric phase transition (4.9), (4.10) can be solved analytically and yield an expression
which we present for the sake of completeness and the readers’ amusement

rc,sym =

−11520g2 + 10
√

576g2 + 1− 5
√

3
√

(576g2 + 1)
(√

576g2 + 1 + 24g
)
+

+2− 120g
(

4
√

576g2 + 1 +
√

3
√√

576g2 + 1 + 24g − 2
)


10
√

3
(√

576g2 + 1 + 24g
)3/2 .

(5.2)
The interesting aspects of the above formula are the large g and the small g expansion.
The large parameter expansion is

rc,sym = −4√g − 1
2 + 1

12
1
√
g

+ 7
5760

1
g3/2 + . . . , (5.3)

i.e. a modification of the usual matrix phase transition r = −4√g, while the small g
behaviour is

rc,sym = 0.193 − 38.8g + . . . . (5.4)

However, as we will shortly see, the interpretation of this result close to the origin of the
parameter space is rather complicated. But first, let us deal with the asymmetric solution.

Asymmetric one-cut solution. The relevant equations (4.13)–(4.14) for the effective
action (5.1) are just a set of polynomial equations. Following the outlined method, we look
for the solution as a power series in −1/r, and up to the fourth-order we obtain5

D =
√
−r

2√g − 3√g 1
(−r)3/2 + 1 + 1296g

1152√g(−r)5/2 −
1 + 6480g + 746496g2

13824√g(−r)7/2 + . . . , (5.5)

δ = −2
r
− 1

2r2 + 1 + 180g
6r3 − 1 + 432g

16r4 + . . . , (5.6)

ge = g − g

864r4 + . . . , (5.7)

c1 =
√
−r

2√g −
3√g

2(−r)3/2 +
3√g

8(−r)5/2 −
√
g + 144g3/2

8(−r)7/2 + . . . (5.8)

with the free energy given by

Fas1c = − r2

16g+
[3

4+1
2 log(−2r)

]
− 1

8r−
1 + 120g

48r2 −1 + 276
192r3 −

225g2

8 + 35g
48 + 1

640
r4 +. . . . (5.9)

5The order of calculation is in principle limited just by our patience and computing power. One can go
quite further without too much trouble, the explicit formulae are however not very illuminating.
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We observe that since r is negative all these are alternating series. This suggests there is
a reasonable all order solution, which can be approximated for example by Pade approxi-
mation. The model (5.1) thus has a well-behaved asymmetric one-cut solution for negative
values of r, as expected from a matrix model aspiring to describe the fuzzy field theory.

This can be traced to the fact that the large r solution of the equations for the asym-
metric one-cut solution (4.13)–(4.14) requires the small moment expansion of the func-
tion (3.6), which is precisely what we work with here. Things are however not this nice in
the symmetric regime, where one needs large moment behavior of (3.6), for which (5.1) fails.

Symmetric two-cut solution. The situation for the symmetric two-cut solution is more
tricky. The conditions (4.5), (4.6) for the action (5.1) do not admit large −r solutions and
our approach is not applicable in this case.

To study the two-cut solution, we need to investigate the equations (4.5), (4.6) numer-
ically. We scan the parameter space and for given numerical values of r and g try to find a
solution to the set of equations defining each of the three phases. If we find a solution, we
compute its free energy and move to a different set of values. At the end of the process,
we compare the free energies in regions, where more than one solution exists. There are
even values of parameters where two solutions of the same kind, e.g. two two-cut solutions,
compete. The resulting phase diagram is given in the figure 2.

One finds out that the two-cut solution ceases to exist in the region of parameter space
below the blue line in this figure. This means that if we lower r for a fixed value of g, the
eigenvalue distribution widens and the repulsive selfinteraction due to the multi-trace terms
renders the two-cut solution impossible. This is illustrated in the figure 3.

The particular properties of the repulsive self-interaction are however a consequence
of the numerical values of the coefficients in (5.1). Namely the coefficient 1/5760 of the
t42 term and the coefficient −1/3456 of the (t4 − 2t22)2 term. Models, where the former
coefficient is greater than the absolute value of the latter do not have this problem. But it
is still not clear, where and whether at all the asymmetric solution is preferred and such
models require further investigation. Since our goal is the analysis of the field theory on
the fuzzy sphere, we will not go along this way any further.

Phase diagram. The two-cut solution abruptly ceases to exist along a specific line in the
parameter space and the asymmetric one-cut solution takes over, illustrated in the figure 2.
In the shaded region in the left image of this figure, both the asymmetric one cut and
symmetric two-cut solutions exist, but the two-cut solution has lower free energy and is thus
the preferred solution. However at the bottom of the shaded region, along the blue line, the
system abruptly shifts from the symmetric two-cut to the asymmetric one-cut regime, with
a discontinuous jump in the free energy, as illustrated in the figure 4. This is a very different
behavior than the one expected from a matrix model describing fuzzy field theory, where
the phase transition between the two solutions has been observed to be much milder [16].

There is a different problem with the phase diagram of the model (5.1) in the vicinity
of the origin of the parameter space, shown in the right image of the figure 2. The three
lines do not meet at one point and there is no triple point. Moreover, there is a region
of the parameter space — the shaded region in the right image — where no solution to
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Figure 2. The phase diagram of the multirace matrix model (5.1), with the right image zooming
in on the vicinity of the origin of the parameter space. The three lines are boundaries of existence
of the three types of solutions. The symmetric one-cut solution exists only above the green line,
the symmetric two-cut solution exists only above the blue line and the asymmetric one-cut solution
exists only below the red line. For the left image, in the region above the blue and below the red
lines, where both two-cut and asymmetric one-cut solutions exist, the free energy of the two-cut
solution is always smaller and thus this solution is preferred. See the text for the discussion of the
situation in the right image. All lines in these images have been obtained numerically. The dashed
blue line and the part of the green line to the right of the intersection with blue line agrees with (5.2).

Figure 3. Plots of the eigenvalue distributions of the pure potential matrix model (black and
dashed) and the multi-trace matrix model (5.1) for values of r = {−20,−27,−34} and g = 0.5. In
all the cases we can see that the interaction spreads the eigenvalues further apart. The wider the
dashed distribution, the stronger the repulsive interaction spreading the multi-trace distribution.

the model (5.1) exists. This is again in contradiction to what we expect from the model
describing the scalar field theory on the fuzzy sphere. Before wrapping this section up, let us
comment on two other features of the phase diagram close to the origin. First is a patch of
parameter space, shown by the gray line, where an asymmetric solution to the model exists
that is not described by the solution (5.5). This solution was however observed by numerical
solution of the defining equations (4.13)–(4.14) and slightly overlaps with the shaded region
along the green line, but still leaves a large part of the parameter space without any solution
at all. The second feature is that the line (5.2) is not a phase transition line close to the
origin. Two different symmetric one-cut solutions exist in the region between the dashed
blue line and the green line.6 Moreover, symmetric one-cut solution exists for negative

6The reason for this is rather technical and diverts from the main line of our discussion. The second
power of the fourth moment of the distribution creates a complicated relation between the true coupling g
and the coupling of the effective single trace model ge. As a result, the sheet of the free energy dependence
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Figure 4. Free energies of the three phases for a fixed value g = 0.4. The color code is the same as
in the previous figure: green line is the symmetric one-cut free energy, red line is the asymmetric
one-cut free energy and the blue dots are free energies of the two different types of two-cut solution.
As we can see, for certain value of r the regime shifts from the two-cut phase to the asymmetric
one-cut phase with a discontinuous jump in the free energy. Note that there are two different two-
cut solutions for given values of parameters, only the solution with lower free energy is relevant for
our discussion.

values of r all the way to g = 0. This is however also in contradiction to the exact solution
of the complete model (2.5) in the case of g = 0 in [22, 23], where it has been shown that
the kinetic term only rescales the radius of the symmetric one-cut distribution but does
not introduce any new solutions.

To summarize, the model (5.1) has no chance of describing the numerically observed
phase diagram of the scalar field theory on the fuzzy sphere. The asymmetric one-cut
solution of the model, which represents the uniform order phase of the field theory, exists in
the expected region of the parameter space. However, the two-cut solution does not exist in
the expected region of the parameter space and the transition between the symmetric two-
cut and the asymmetric one-cut solution is way too abrupt. The free energy discontinuously
jumps from one regime to another, opposing to a continuous change seen in the numerical
simulation. The model (5.1) does not have a triple point and for some values of the
parameters does not have any solution at all.

We need an approximation of the kinetic term effective action (3.1) that is not pertur-
bative in the eigenvalues of the matrix and would consider the different behavior of this
action for large values of the moments, as is the case in the nonperturbative second-moment
approximation (3.5). The two-cut solution would have a chance to exist for arbitrarily large
−r and the phase transition to asymmetric one cut solution could be less abrupt.

of the effective single trace model gets folded and what used to be a transition line in the original effective
model now occurs above other solutions with lower free energy, and thus does not get realized.
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6 Extended models for the fuzzy sphere

6.1 General idea

We now understand quite well where the issues with the model (5.1) are. The large moment
behavior of the effective action renders the model unstable. We also understand the origin
of the problem. The expression (5.1) is a small moment series of a more complicated
expression cut off after the eight order in eigenvalues, the first nontrivial order in which t3
and t4− 2t22 appear. But we also understand the possible solution to this issue in the form
of the complete t2 dependence of the effective action [26, 36]. The higher terms tame its
behavior when viewed as a self-interaction and stabilize the solution.

Our approach will thus be to extend the perturbative, small moment behavior (5.1)
with some form of large moment behavior which is much less divergent similarly to the large
t2 behavior of (3.5). Unfortunately no analytical results for the forms of the integral (2.10)
in this regime are available at the moment, so we will try several possible forms by hand
and investigate if it is possible to extend the effective action in a way that would lead to a
reasonable phase diagram of the model and reasonable location of the triple point.

6.2 Simple logarithm approximation

We have seen that the perturbative approximation of the effective action does not overall
lead to a phase diagram expected from the fuzzy field theory. We want to include the
higher moments into the effective action in such a way that does not spoil the aspects that
the second-moment approximation got right but at the same time targets the shortcomings
of this nonperturbative approximation. We have seen that in order to do so, we need to
go beyond the perturbative expression for the effective action and consider also its large
moment behavior. As a first attempt, we get inspiration from the large moment behavior
of the second-moment approximation (3.5) and try the same also for the higher moments.

We thus consider the model given by

Seff = 1
2 log

(
t2

1− e−t2

)
+ F3(t3) + F4(t4 − 2t22) (6.1)

with the functions F3, F4 not needed exactly, as we require only the small and the large
parameter expansions in our approach to solution of the model.

As the first attempt, we follow large expansion of (3.5) and consider the large expansion
of F4 given only by the logarithmic term

F4(y4) = α0 log y4 , (6.2)

without any further terms. The function F3 is relevant only for the asymmetric solution,
where the small expansion of the effective action is used. Therefore we do not need to
know its large expansion.

The small expansion of the effective action will be given by the perturbative series (5.1)

F3(y3) = − 1
432y

2
3 , F4(y4) = − 1

3456y
2
4 . (6.3)
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As in the section 5, we will first compute the symmetric phase transition, followed
by the formulae for the symmetric two-cut and asymmetric one-cut solutions, which yield
the second phase transition line. The symmetric one-cut solution together with the final
transition line require more technical work. Finally, we present the phase diagram and its
dependence on the value of the coefficient α0.

Symmetric one-cut to symmetric two-cut phase transition. The symmetric tran-
sition line is given by (4.9), (4.10). Using the large moment expansions of the functions,
which are in this case equivalent to the small g series expansions, we get

ge = g − 4α0
3 ge , r = −8g − 4ge√

ge
−√ge , (6.4)

which can be combined to
r = − 15 + 32α0√

9 + 12α0

√
g . (6.5)

Note that we have neglected the exponentially suppressed terms in the large expansion of
the second moment function (3.5). W expect this transition to be in the positive g, negative
r quadrant of the parameter space, which requires α0 > −15

32 . For the values α0 < −15
32 , the

repulsion introduced between eigenvalues is strong enough that the one-cut solution ceases
to exist even for some positive values of r. For α0 < −3

4 , the repulsion is too strong for
the one-cut solution to exist altogether, which can be checked by looking for the solution
of the defining equations numerically.

The further terms of the order 1
y4

and higher in the large expansion of F4(y4) do not
significantly alter the transition line near the origin of the parameter space. Such higher
terms introduce only a correction of the order g3/2, however, the leading term remains
unchanged. We discuss this more thoroughly in section 6.3.

Symmetric two-cut to asymmetric one-cut phase transition. The transition is
obtained from the condition

Fas1c −Fs2c = 0 . (6.6)

We obtain the corresponding free energies by solving the equations for the symmetric two-
cut (4.5), (4.6) and the asymmetric phase (4.13)–(4.14) as a series expansions in 1/r.

For the two-cut phase, the large parameter expansions of the moment functions are
relevant, and we get

D=− r

4g + 1+4α0
r

+ 4(1+12α0 +16α2
0)g

r3 + . . . , (6.7)

δ= 1
√
g

+
8α0
√
g

r2 + 32(3α0 +11α2
0)g3/2

r4 + . . . , (6.8)

Fs2c =− r2

16g +
(3

8 + 1+4α0
2 log(−r)− 1+8α0

4 log(4g)
)
− (1+12α0 +16α2

0)g
r2 + . . . . (6.9)

For the asymmetric phase, the small parameter expansions of the functions are relevant,
and we obtain the same results (5.5)–(5.9) as in the section 5, since we are working with
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the same form of the action. We solve the condition (6.6) perturbatively as well, leading
to the following expression for the phase transition in the leading order

g = 1
4e
−(3+log 16)
2(1+8α0) (−r)

8α0
1+8α0 . (6.10)

This expression is valid only for α0 > −1/8. Else, the exponent of |r| is greater than 1
and the higher orders of the perturbative solution of (6.6) are not progressively smaller.
However, the numerical solution of the corresponding equations suggests that below this
value, not only our perturbative approach fails, but the phase transition ceases to exist
altogether, as the asymmetric phase has always higher free energy than the two-cut phase.
This can be interpreted that for α0 < −1/8, the repulsion introduced between eigenvalues
becomes strong enough for the two-cut solution to be always preferred over the asymmetric
one-cut solution.

Note that for α0 = 0, we get g equal to a constant, which is the large |r| asymptotic
behavior of the transition line in the pure second-moment model discussed in the section 3.2.
For the negative α0, the asymmetric phase region shrinks with the increasing |r|, as seen in
the first diagram in the figure 5. For the positive values of α0, the contrary is true. For the
transition to behave linearly, as is suggested by the numerical simulation, one would need
to take α0 →∞. However, the exponent in (6.10) reaches quite soon values that would be
very difficult to distinguish from the linear behavior in numerical results.

The following general expression for the higher orders of the phase transition (6.10)
can be obtained in case of α0 > 0:

g = 1
4e
−3−log 16
2+16α0 (−r)

8α0
1+8α0 − 1

8(8α0 + 1)e
−3−log 16
2+16α0 (−r)

8α0
1+8α0

−1−

+ 3− 24α0 − 32α2
0

8(8α0 + 1) e
−3−log 16

1+8α0 (−r)2( 8α0
1+8α0

−1) + . . . . (6.11)

As the exponent in the leading order is not necessarily an integer number, the higher orders
contain the terms with the exponent decreasing by one as well as all the multiples of such ex-
ponents. We Padé approximate the transition (6.11) to treat the divergent behavior of the
series at the origin, analogous to what was done for the second-moment model in [26]. How-
ever, in the case of non-zero α0, we deal with the various rational exponents in the series.
Therefore, we are generally able to obtain the Padé approximation only of a very low order.

Symmetric one-cut to asymmetric one-cut phase transition. This transition line
is acquired from the condition

Fas1c −Fs1c = 0 . (6.12)

As the symmetric one-cut phase does not exist in the region of the large |r| for some
constant g, one needs to slightly modify the perturbative approach to obtain this solution
and the phase transition [26].

We expand the equations for the symmetric one-cut phase (4.1), (4.2) around the
symmetric phase transition (6.5) using the large expansion of the effective action Seff and
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obtain the following solution

δ = 2
√

3 + 4α0√
3g + 27− 24α0 − 80α2

0
(−81 + 132α0 + 128α2

0)g

(
r +

(15 + 32α0)√g√
9 + 12α0

)
+ . . . , (6.13)

ge = 3g
3 + 4α0

+ 90α0
√

3g√
3 + 4α0(−81 + 132α0 + 128α2

0)

(
r +

(15 + 32α0)√g√
9 + 12α0

)
+ . . . , (6.14)

Fs1c = α0 log
(3 + 4α0

g

)
+ log(16)(3− 8α0)− 27− 88α0

24 +

+
√

3 + 4α0
2
√

3g

(
r +

(15 + 32α0)√g√
9 + 12α0

)
+ . . . . (6.15)

Note that the symmetric one-cut to asymmetric one-cut phase transition ends in the triple
point of the theory. It, therefore, lies in the region g < gc, |r| < |rc|. The critical point in
the second-moment model (i.e. α0 = 0) lies very near the origin of the parameter space and
this fact justifies the use of the large series expansions of the moment functions, as for small
values of g the moments are large. This also holds for the small values of |α0|. However, as
we will discuss in more detail later, for the larger positive values of α0 the triple point moves
significantly further from the origin, making our perturbative approach no longer valid.

To obtain the symmetric one-cut to asymmetric one-cut phase transition from the
condition (6.12) we first need to adjust the expression for Fas1c (5.9) as it is the expan-
sion around different region of the parameter space. We Padé approximate the O(1/r)
part of the Fas1c series expansion and then re-expand the obtained expression around the
symmetric transition (6.5) [26].

The phase transition is then obtained using final few technical tricks. First, we replace

g = gc
(1 + x)2 ,

with the triple point value gc calculated numerically as the intersection of Padé approxi-
mated (6.12) with (6.5). We then solve the condition (6.12) order by order, obtaining the
transition line in the form

r(x) = r0 + r1x+ r2x
2 + r3x

3 + . . . . (6.16)

Note that ri also depends on the order of the calculation. The coefficients change with the
order of calculation and this change needs to be less and less significant with the increasing
order for the series to converge.

We then Padé approximate this expansion in x taking into account that we expect the
transition goes through the origin of the parameter space.

In this manner, we obtain a reasonable phase transition for the small values of α0.

Phase diagram and triple point. The phase diagrams for the different values of α0 are
pictured in the figures 5–8. The asymmetric one-cut to the symmetric one-cut transition
line was calculated up to the eighth order in √g, and then Padé approximated. In the case
of the asymmetric one-cut to the symmetric one-cut phase transition, we were generally
able to obtain only the second-order Padé approximation. Therefore, the behavior of this
transition near the origin is less accurate.
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Figure 5. The phase diagram in case of α0 = −1/48. The blue line corresponds to the asymmetric
one-cut to the symmetric two-cut transition, the red line to the asymmetric one-cut to the symmetric
one-cut transition and the green line to the phase transition between the symmetric phases. The
asymmetric one-cut to the symmetric two-cut phase transition on the left image is plotted in the
dashed style as this transition is less accurate near the origin of the parameter phase due to the
order of the Padé approximation. The triple point was obtained at gc = 0.0016.

Figure 6. The phase diagram in case of α0 = 0. The blue line corresponds to the asymmetric one-
cut to the symmetric two-cut transition, the red line to the asymmetric one-cut to the symmetric
one-cut transition and the green line to the phase transition between the symmetric phases. The
triple point was obtained at gc = 0.0048.

The triple point was obtained numerically as the intersection of the symmetric phase
transition (6.5) with the asymmetric one-cut to the symmetric one-cut phase transi-
tion (6.16). For the larger positive values of α0 when the asymmetric one-cut to the
symmetric one-cut transition line was not obtainable, the triple point was determined as
the intersection of the symmetric transition and the Padé approximated asymmetric one-
cut to the symmetric two-cut transition (6.11).

We can observe the general trend of moving the triple point further from the origin
with increasing α0. The explicit calculation of the intersection between the symmetric
phase transition (6.5) and the lowest order of the asymmetric one-cut to symmetric two-
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Figure 7. The phase diagram in case of α0 = 1/48. The blue line corresponds to the asymmetric
one-cut to the symmetric two-cut transition, the red line to the asymmetric one-cut to the symmetric
one-cut transition and the green line to the phase transition between the symmetric phases. The
asymmetric one-cut to the symmetric two-cut phase transition on the left image is plotted in the
dashed style as this transition is less accurate near the origin of the parameter phase due to the
order of the Padé approximation. The triple point was obtained at gc = 0.0096.

Figure 8. The phase diagrams for the value α0 = 1/8 (left) and α0 = 1 (right). The blue line
corresponds to the asymmetric one-cut to the symmetric two-cut transition and the green line to
the transition between the symmetric phases. The triple points were determined at gc = 0.054 and
gc = 1.43 respectively.

cut transition (6.10) gives

gc = 1
16

[ 1
e3/2

( 1
81

)α0(15 + 32α0√
3 + 4α0

)8α0] 1
1+4α0

, (6.17)

rc = − 15 + 32α0
4
√

9 + 12α0

[ 1
e3/2

( 1
81

)α0(15 + 32α0√
3 + 4α0

)8α0] 1
2+8α0

. (6.18)

Although the higher orders adjust these values quite significantly, the general trend of
increasing gc, |rc| with the raising of α0 remains the same. Note that this is in contrast
with the numerical simulations, with the value of rc significantly closer to the origin than in
the second-moment approximation. This would indicate that if we had only (6.2), we would
need a negative value of α0 to bring the triple point closer to the numerically observed value.

The large moment behavior (6.2) of the effective action did lead to a phase diagram
similar to the one expected for the fuzzy field theory for positive α0. It solved the most
important problem of the previous second-moment models and leads to a very reasonable
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asymmetric one-cut to symmetric two-cut phase transition line. But such α0 takes the
triple point even further away from the numerically observed location. We thus need to
consider a more complicated behavior of the kinetic term effective action.

6.3 Other possible extensions

To conclude this report, we would like to investigate the consequences of some different
and more elaborate extensions.

Beyond pure logarithm. We consider the higher order terms in the large expansion of
the function F4(y4)

F4(y4) = α0 log(y4) + α1 + α2
y4

+ α3
y2

4
+ . . . . (6.19)

Such a model can be treated in the same way as we described in the previous section
with little modification. The asymmetric one-cut to the symmetric two-cut phase transition
can be obtained following the same procedure stated in the previous section. We obtain
the leading order of the form

g = e
− 3+log 16−8α1

2+16α0 (−r)
8α0

1+8α0 . (6.20)

We can see that besides the parameter α0, only the constant term α1 appears in the
leading order. However, only α0 affects the exponent of r. Therefore, the higher-order
terms in (6.19) do not alter the character of the phase transition for large values of |r|, as
this depends only on the exponent value. The constant term α1 is added to the free energy
of the two-cut solution. Therefore, it extends or shrinks the region of this phase according
to its sign.

In the case of the symmetric phase transition, we are no longer able to obtain this line
in the large regime exactly. Instead, we get the perturbative expression in √g:

r = − 15 + 32α0√
9 + 12α0

√
g − 8α2(33 + 32α0)√

3(3 + 4α0)5/2 g
3/2+

+
32
(
(183 + 160α0)α2

2 + 2(99 + 228α0 + 128α2
0)α3

)
√

3(3 + 4α0)9/2 g5/2 + . . . .

We can see that the constant term α1 does not affect this transition at all, as we use only
the derivative of F4 in the calculation. This is understandable as we are adding the same
constant to both free energies.

To obtain the third transition line, asymmetric one-cut to symmetric one-cut phase
transition, we need to expand the corresponding equations around the symmetric transition.
However, since we now know the symmetric transition only perturbatively, the coefficients
in the expansions equivalent to (6.13)–(6.15) will be also known only perturbatively in the
small g.

As we mentioned, the constant terms α1 adds this value to the free energy of the
symmetric solutions and can therefore significantly alter the location of the triple point.
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However, the triple point still must be located on the symmetric transition, which is unaf-
fected by α1.

Thus, to set the triple point to any desired location, e.g. to the location obtained in the
most recent numerical simulations, we first need the symmetric transition to pass through
this point. However, we can alter the symmetric line with the higher order terms only to
a limited degree. If we were to obtain the exact solution of the equation (4.9), which is in
general possible only up to the α4 order, we would see that this equation does not always
have a solution for the larger values of g. For which particular value of g the solution ceases
to exist depends on the specific choice of αi.

Therefore, we cannot force the symmetric transition to pass through an arbitrary point.
For example, if we look at gc = 0.0048 and set α0 ≥ 0, we cannot bend the transition line
enough to pass through as small values of |r| as obtained in the numerical simulation
because the solution ceases to exist.

Logarithm-less modifications. To conclude this report, we discuss the large y4 behav-
ior of the functions F4 different from log y4. The question is what kinds of behaviors lead
to a reasonable phase transition between the two-cut and the asymmetric one cut solu-
tions. From the free energies of the two solutions (6.9) and (5.9) we see that the leading
change to the two-cut free energy needs to be at log(−r) or r2 terms. Anything else leads
to ill behaved models with at best very abrupt phase transitions, as the one discussed in
section 5, or no phase transitions at all.

This can be explicitly seen in the model (6.19) with α0 = 0. Without the freedom in
the α0 parameter, we cannot alter the large |r| behavior of the asymmetric one-cut to the
symmetric two-cut phase transition. Therefore, we are unable to address the discrepancy
between the numerical results and the second-moment models (3.5) at all within the scope
of this model.

We can, however, alter the location of the triple point. The value gc of the second-
moment model corresponds with the value obtained in the numerical simulations. The |rc|
value is approximately ten times larger than the value from the numerical simulations. By
suitable choice of the higher-order parameters, we can alter the rc value, moving it closer
to the origin. However, as was also the case in the previous section, we are not able to
set it small enough to agree with the numerical data. The smallest value obtainable by
the higher-order terms in the large expansion is still about 2.5 times larger than the value
suggested numerically.

Finally, what about the models where F4 grows faster than logarithm? The calculations
in this case are very similar to what has been done in section 5, with an important difference
in the large t2 behavior of the second-moment part of the effective action. And it can be
shown that for any effective action of the for7 F4 = β|t4− 2t22|n, for n > 1 there is no large
−r solution to equations (4.5)–(4.6). The self interaction is either too repulsive or two
attractive to support a stable two-cut solution. For n = 1 the solution does exist, but its
free energy is always larger or smaller, depending on sign of β, and we are thus left with
no phase transition.

7The absolute value is used, since t4 − 2t22 is negative in the two-cut regime.
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For the case 0 < n < 1, we do obtain a stable two-cut solution, and for attractive force
β > 0 even a phase transition given by, in the leading order,

g = 2
3

2n−2
(

βn

W
(
8(48)nβn(−r)2n)

) 1
2n

(−r) , (6.21)

where W (z) is the product logarithm or the Lambert W function. This behavior can,
for particular values of n and β, be similar enough to linear behavior and is thus not
inconsistent with the available numerical data. For the symmetric phase transition, the
large parameter expansion of the effective action is relevant close to the origin of the
parameter space and as we will shortly see, this behavior will not be needed.

Due to the form of the leading order contribution (6.21) it is not possible to compute
further 1/r contributions to the asymmetric phase transition line even for the simplest case
of n = 1/2. It is however possible to investigate the solution of the equations from sec-
tion 4.1, including the free energies and the transition lines between them, numerically. For
this square root effective action we find out that the transition line is very well described
by the leading order contribution and we can locate the triple point as an intersection
of (6.21) and (5.2). Even for a small value β = 10−3 we obtain a location, that is signifi-
cantly further away from the value observed in the numerical simulations than the result
for the second-moment model.

For different values of n the numerical computation shows that the triple point moves
towards the origin as n approaches zero. However to obtain a value that is reasonably
close to the value observed in numerical simulations, we would need an unreasonably small
n. We thus conclude that effective actions of other than logarithmic behaviour for large
t4 − 2t22 introduce an interaction that is too strong and does not lead to a phase diagram
consistent with numerical simulations.

7 Conclusions

We have analyzed the fourth-moment fuzzy-field-theory-like matrix models and their phase
structure. We have shown that combining a perturbative term proportional to the sym-
metrized third and fourth moments of the eigenvalue distribution of the matrix with a log-
arithmic fourth-moment term in the large moment regime, which we added by hand, leads
to a phase diagram consistent with the most recent numerical simulations. It fixes the most
important shortcoming of the previous second-moment models and can lead to a roughly
straight transition line between the asymmetric one-cut and the symmetric two-cut phases.

Our analysis confirms that looking at the small moments expansion of the kinetic term
effective action is not sufficient and the large moment behavior is crucial for the analysis of
the phase structure, most importantly to explain the region of stability of the asymmetric
phase and existence of the triple point.

We were however unable to match the location of the triple point of the studied model
to the results of the numerical simulations. Even after the addition of subleading terms,
there is no choice of the coefficients — the free parameters in the studied models — that
would lead to a location of the triple point consistent with the numerically observed value.
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This means that fourth-moment models are not sufficient to explain quantitatively the
phase structure of the fuzzy field theories completely and to do so, one needs to go even
further.

It would be very interesting to calculate the large moment behavior of the kinetic
term effective action directly, to verify the leading logarithmic behavior, and to see what
the value of the coefficients is. This calculation could also shed some more light on the
properties and structure of the dependence of the effective action on the eigenvalues of the
matrix. Perhaps there is a better way to express this dependence in the large eigenvalue
regime than the symmetrized moments expansion used in the small moment regime.

Finally, there are several results for the fuzzy field theories that go beyond the phase
structure of the model. Most notably the properties of the correlation functions [39–41]
and the entanglement entropy [42–45] have been investigated. A very natural next step
would be to analyze these also using the above methods of the multi-trace matrix models.

Acknowledgments

We would like to thank Samuel Kováčik and Peter Prešnajder for many helpful discussions.
This work was supported by the Alumni FMFI foundation as a part of the Návrat

teoretikov project and by VEGA 1/0703/20 grant Quantum structure of spacetime.

A Technical details for the perturbative calculations

This appendix contains the technical details involved in the derivation of the conditions on
the distributions given in the section 4.1.

We deal with the matrix model

S = 1
2rc2 + gc4 + F

[
c1, t2, t3, t4 − 2t22

]
, (A.1)

where the moments of the eigenvalue distributions are

cn =
∫
dxxnρ(x) = 1

N
Tr (Mn) (A.2)

and the symmetrized moments are

tn = 1
N

Tr
(
M − 1

1
N

TrM
)n

, (A.3)

t2 = c2 − c2
1 , t3 = c3 − 3c1c2 + 2c3

1 , t4 = c4 − 4c1c3 + 6c2c
2
1 − 3c4

1 . (A.4)

As before we denote

f1 = ∂F

∂y1
, f2 = 2 ∂F

∂y2
, f3 = ∂F

∂y3
, f4 = ∂F

∂y4
. (A.5)

The variation of the action (A.1) is
∂S

∂xi
= rxi + 4gx3

i + f1 + f2(xi − c1) + f3(3x2
i − 6c1xi − 3c2 + 6c2

1)−

+ f4
((

4x3
i − 4(3x2

i c1 + c3) + 6(2xic2
1 + 2c2c1)− 12c3

1

)
− 4(c2 − c2

1)2(x1 − c1)
)
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We write this as a variation of an action8

Seff = aec1 + 1
2 rec2 + bec3 + gec4 (A.6)

and we read of

ae = f1 − f2c1 − 3f3(c2 − 2c2
1)− 4f4(c3 − 5c1c2 + 5c3

1) , (A.7)
re = r + f2 − 6f3c1 − 4f4(2c2 − 5c2

1) , (A.8)
be = f3 − 4f4c1 , (A.9)
ge = g + f4 . (A.10)

The plan of attack is now the following. Model (A.6) can be solved using the standard
methods [31, 38] and the distribution, and thus also the moments cn, obtained in terms of
ae, re, ge. These however depend on the moments cn through the conditions (A.7)–(A.10).
These then supplement the conditions on the parameters of the distribution in the solution
of the model (A.6) in defining the solution to the model (A.1).

We will give the explicit formulae for the cases of symmetric one-cut and two-cut
solutions and an asymmetric one-cut solution, which were shown and used in section 4.

One-cut solutions. A one-cut solution, symmetric or asymmetric, is supported on the
interval (D −

√
δ,D +

√
δ) determined by the conditions

0 = 1
2ae + 3beD2

2 + 3beδ
4 + 2D3ge + 3Dδge + 1

2Dre ,

1 = 3beDδ
2 + 3D2δge + 3

4δ
2ge + 1

4δre .

These can be solved to give ae and re in terms of the rest of the parameters D, δ, be, ge

ae = 3D2be −
3
2δbe −

4D
δ

+ 8D3ge − 3Dδge , (A.11)

re = −6Dbe + 4
δ
− 12D2ge − 3δge . (A.12)

This turns the logic of the equations around but proves to be very useful later. The
expressions for the moments simplify to

c1 = 3
16δ

2be +D + 3
4Dδ

2ge , (A.13)

c2 = 3
8Dδ

2be +D2 + 1
4δ + 3

2D
2δ2ge + 1

16δ
3ge , (A.14)

c3 = 9
16beD

2δ2 + 3
32δ

3be +D3 + 3
4Dδ + 9

4D
3δ2ge + 9

16Dδ
3ge , (A.15)

c4 = 3
4beD

3δ2 + 3
8beDδ

3 +D4 + 3
2D

2δ + 1
8δ

2+

+ 3D4δ2ge + 15
8 D

2δ3ge + 3
64δ

4ge . (A.16)

8A different approach would be to shift the eigenvalues by a constant x → x − x0 to cancel the cubic
term x3 in the effective model action. One would not need to compute a more complicated formula for the
effective action of an asymmetric quartic matrix model with a cubic term, but the moments of the effective
model would be different from the moments of the true model. We chose to prefer this simplicity and did
the general calculation of the free energy.
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So at the end of the day, we are left with just four equations for four unknowns —
D, δ, be, ge or D, δ, c1, ge. These are (A.7)–(A.10), with the use of (A.11), (A.12) and the
above expressions for cn’s. Explicit form of these equations is given in the main text in
the section 4.1. As mentioned before, f1, f2, f3, f4 are functions of c1, c2, c3, c4 and before
proceeding to solution of these equations, one needs to use (A.13)–(A.16). In the case of
the symmetric solution these simplify considerably to (4.1), (4.2).

Two-cut solution. We will consider only the case of a symmetric two-cut solution,
since we will not encounter such solutions and there is very little one can do analyti-
cally for the asymmetric two-cut case. The distribution is supported on the intervals
(−
√
D + δ,−

√
D − δ) ∪ (

√
D − δ,

√
D + δ) determined by

re = −4Dge , δ = 1
√
ge
, (A.17)

with moments
c2 = D , c4 = D2 + 1

4ge
. (A.18)

using this in the expressions (A.7)–(A.10) yields the final conditions

1
δ2 = g + f4 , (A.19)

4D
δ2 = r + 8Dg + f2 . (A.20)

If f2 does not involve t4, i.e. if y2 and y4 do not couple in F , the second equation can be
solved for δ and one needs to solve only one equation (for D) and δ is given explicitly.

Free energies. The free energy of any distribution ρ(x) is

F = S[ρ(x)]−Vandermonde term =

= F
[
c1, t2, t3, t4 − 2t22

]
+ 1

2rc2 + gc4 −
∫
dx dy ρ(x)ρ(y) log |x− y| . (A.21)

The double integral could be problematic, but fortunately it has been done for us long ago
in the computation of the free energy of the effective model (A.6)

Fe = aec1 + 1
2 rec2 + bec3 + gec4 −

∫
dx dy ρ(x)ρ(y) log |x− y| . (A.22)

We obtain

F = Fe + F
[
c1, t2, t3, t4 − 2t22

]
+ 1

2 (r − re) c2 + (g − ge) c4 − aec1 − bec3 . (A.23)

With expressions for the effective free energies and the moments, we get the formulae for
the free energies (4.3), (4.7) and (4.15).
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