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1 Introduction and summary

The theory space of quantum field theories (QFT) is immensely rich and diverse. It encom-
passes a wide range of quantum dynamics, including renormalization group (RG) flows,
phase transitions and critical phenomena, that take place in a large and elaborate zoo of
quantum systems. An enduring challenge is to identify and understand non-perturbative
structures in the geometry of the theory space.

A particularly well-posed and important problem is the monotonicity of RG flows.
This is intuitively clear since the RG procedure involves coarse-graining over short-distance
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physics and therefore leads to a reduction in the effective degrees of freedom. In space-
time dimension d = 2, this intuitive picture was rigorously justified by the celebrated
c-theorem [1], where a height function, known as the c-function, was constructed over the
theory space, which decreases monotonically under RG flows. A particular feature of the
2d c-function is that it coincides with the conformal anomalies at the critical fixed points
of the RG flows, described by conformal field theories (CFT). Such conformal anomalies
are expected to “count” the degrees of freedom in the CFTs, thus it is natural to study
conformal anomalies in higher dimensions in an effort to extend the 2d c-theorem.

The conformal anomalies of CFTs are present for even d and important physical ob-
servables that govern the CFT dynamics (e.g. through correlation functions of the stress-
tensor). They are also known as the trace anomalies, since the symmetric, conserved, and
traceless stress-tensor Tµν in a CFT T can develop an anomalous nonzero trace when the
theory is placed on a spacetime manifold with nontrivial metric (M, g) [2],1

AW
T ≡ 〈Tµµ 〉 = 1

(4π)
d
2

(
− (−1)

d
2 aEd +

∑
i

ciWi

)
, (1.1)

that solves the Wess-Zumino consistency conditions [3, 4]. Equivalently, the conformal
anomalies contribute to the anomalous variation of the path integral, under the Weyl
transformation gµν → e2σ(x)gµν ,

δσ logZ[g] = i

∫
M
ddx

√
|g|σAW

T . (1.2)

Here Ed is the Euler density in d dimensions, which is related to the Euler characteristic by
χ(M) = 1

2(4π)d/2
∫
MEd where χ(Sd) = 2 for an even dimensional sphere, and Wi are Weyl

invariants of the Riemann curvature (that are not total derivatives) of scaling dimension
d.2 The c-anomaly in d = 2 is proportional to the a-coefficient in (1.1) and (1.2). It is
thus natural to expect the a-anomaly to play the role of the 2d c-anomaly for general even
spacetime dimensions and the monotonicity of RG flows to be governed by an a-theorem [5].

Decades after the work of [1], the a-theorem was finally proven in d = 4 [6–8]. A
key insight of [6, 7] is a conformal version of the conventional spurion analysis for global
symmetries. Upon introducing a background dilaton field suitably coupled to the theory
of interest, one can restore conformal symmetry along the RG flow. Anomaly matching
then suggests that the difference between the UV and IR conformal anomalies must be
reproduced by the Weyl transformation of the spurious dilaton. The d = 4 a-theorem then
follows from unitarity constraints on the dilaton effective action. Subsequent efforts to
generalize the argument of [6, 7] to higher dimensions were made in d = 6 [9–12]. Here we
focus on a different extension, namely the a-theorem for conformal defects of dimension
p = 4 in d > 4 dimensional CFTs. Closely related is the proof of b-theorem for surface
defects (i.e. p = 2) in [13] (see also [14]).

Defects are an integral part of modern understanding of QFT. Familiar examples in-
clude boundary conditions and quantum impurities (e.g. Wilson line of a probe particle in

1We only include the contributions that cannot be removed by adjusting local counter-terms.
2There are no such Weyl invariants for d = 2, one for d = 4 and three for d = 6.
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a gauge theory). More generally defects define extended operators over submanifolds of the
spacetime, which enrich the algebra of local operators. On the one hand, they participate
actively in the bulk field theory dynamics, providing elegant formulations of (generalized)
symmetries and behaving as non-local order parameters for bulk phase transitions [15]. On
the other hand, they give rise to new phase transitions and critical phenomena localized
on the p-dimensional defect worldvolume. The incorporation of defects is clearly essential
for a proper understanding of the theory space of QFTs.

Similar to how CFTs correspond to bulk universality classes in the theory space, con-
formal defects describe universality classes of defect RG flows. The coupled bulk-defect
critical phase is also commonly referred to as the defect CFT (DCFT) (see [16] for a recent
review). A p-dimensional conformal defect D in a d-dimensional CFT shares many kine-
matic features of a standalone p-dimensional CFT, for the obvious reason that they are
both invariant under the SO(p, 2) conformal symmetry. However a crucial difference of a
defect D from a standalone CFT in p-dimensions is the generic absence a locally conserved
p-dimensional stress-tensor. Instead, the defect symmetry is inherited from the ambient
CFT. From now on we focus on the case p = 4, namely the conformal defect D corresponds
to a boundary (interface) in a 5d CFT or a higher codimension defect in d > 5 CFTs.

The conformal anomalies of usual CFTs (1.1) generalize to these DCFTs in a straight-
forward fashion [17–19]. The bulk stress-tensor receives, in addition to its usual trace
anomaly AW

T in the absence of defects (1.1), anomalous trace contributions AW
D localized

on the defect worldvolume Σ ⊂M,

〈Tµµ (x)〉D = AW
T + δ(Σ)AW

D , AW
D = 1

(4π)2 (−aE4 + cW ) + Iext(C(d),K) . (1.3)

As before, the same anomalies are captured by the anomalous variation of the DCFT
partition after coupling to background geometry,

δσ logZD[g,X] = i

∫
M
ddx

√
|g|σAW

T + i

∫
Σ
d4z

√
|h|σAW

D , (1.4)

under a Weyl transformation of the ambient metric gµν(x) → e2σ(x)gµν(x). Here za are
coordinates on the submanifold Σ ⊂ M which is specified by the embedding functions
Xµ(za).3 The induced metric on Σ is hab = ∂aX

µ∂bX
νgµν which transforms as hab(z) →

e2σ(X(z))hab(z) under the Weyl transformation.
A few remarks are in order. In (1.3) and (1.4), E4 andW are the intrinsic Euler density

and quadratic Weyl invariant of Σ which also appear in the trace anomaly of a standalone
4d CFT, and we refer to them as the intrinsic conformal anomalies of the defect D. They
are given explicitly by the following combinations of Riemann curvatures on Σ,

E4 =RabcdR
abcd − 4RabRab +R2 = 1

4ε
abcdεefghR

ef
abR

gh
cd ,

W =RabcdR
abcd − 2RabRab + 1

3R
2 = CabcdC

abcd .
(1.5)

3We assume that the normal bundle of Σ is topologically trivial, which is obviously the case for the
conformal defect in flat space.
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We will continue to use a and c to denote the corresponding conformal anomaly coefficients
of the DCFT. Note that these anomalies are present and universal regardless of bulk
spacetime dimension (e.g. d can be odd). The full structure of conformal anomalies for the
DCFT is however much richer then that in a standalone 4d CFT, with extra contributions
corresponding to extrinsic conformal anomalies of the defect D, given by the last term
Iext(C(d),K) in (1.3).4 It contains additional diffeomorphism invariants that depend on
the embedding Σ ⊂ M subject to the Wess-Zumino consistency condition [3, 4], and in
particular includes Weyl invariants constructed from the (traceless) extrinsic curvature Kµ

ab

and bulk Weyl curvatures C(d)
µνρσ pulled back to Σ. The independent extrinsic conformal

anomalies for a p = 4-dimensional defect have not been completely classified (see [21] for a
partial list in the d = 5 case5) but their explicit forms will not be important for this work.6

A main question of interest here is whether the defect a-anomaly in (1.3) decreases
monotonically under defect RG flows. In section 2, we find an affirmative answer by
extending the work of [6, 7] and invoking Lorentzian unitarity constraints on the defect
dilaton effective action, thus establishing the defect a-theorem. We also describe explicitly
the defect dilaton effective action for the simple RG flow between conformal Neumann and
Dirichlet boundary conditions in the d = 5 free scalar theory.

If we know the defect a-anomaly of a UV DCFT or an IR DCFT at either ends of
a defect RG flow, the defect a-theorem produces non-perturbative constraints on the RG
trajectory. However such conformal anomalies are notoriously difficult to access, already
in standalone CFTs. For p = 4 DCFTs, our knowledge is even more limited: the defect
a-anomalies were only known for the free scalar theory [25–27]7 and for the free fermion
in d = 5 [25], and so far no results for the defect c-anomalies have been obtained. We will
address these issues in this work. For d = 4 CFTs with N = 1 supersymmetry (SUSY), an
elegant non-perturbative method was developed to solve for the a- and c-anomalies, known
as a-maximization [28]. The N = 1 SUSY relates in a simple way the conformal a- and c-
anomalies to the ’t Hooft anomalies involving the U(1)R symmetry of the CFT [29]. The ’t
Hooft anomalies are much easier to compute thanks to their robustness under deformations
(which can break conformal but preserve Poincaré and U(1)R symmetries and possibly
other flavor symmetries). The only subtlety is to identify the U(1)R symmetry, which
can mix with other U(1) flavor symmetries. This is accomplished by the a-maximization
principle [28, 30, 31].8

For the p = 4 conformal defects preserving the minimal N = 1 SUSY, in section 3 we
show that the same relations between conformal anomalies and ’t Hooft anomalies in 4d

4See [20] for general discussions of geometric invariants for submanifolds and their relations through
Gauss-Codazzi type identities.

5We thank Sergey Solodukhin for correspondence on this point.
6Related works on conformal invariants of p = 4 submanifolds include the Willmore energy in [22, 23]

which generalizes the extrinsic Graham-Witten conformal anomaly for surface defects in [17]. See also [24]
for a partial classification of submanifold conformal invariants for general p and d in [24].

7We thank Yoshiki Sato for correspondence on this point.
8In [32], another way to identify the superconformal U(1)R symmetry was introduced, known as τRR-

minimization, by minimizing the R-current two-point function. The τRR-minimization and a-maximization
are equivalent at the fixed point, but in practice the latter is more powerful since the ’t Hooft anomalies
are well-defined away from the CFT.
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SCFTs [29] continue to hold for the DCFTs. The U(1)R superconformal R-symmetry in
the DCFT descends from the (larger) R-symmetry and transverse rotation symmetry of
the ambient SCFT. The relevant ’t Hooft anomalies amount to a modification of the Ward
identity of the d-dimensional U(1)R current J on the defect worldvolume Σ,

〈∇µJµ〉D ⊃
δ(Σ)

2(2π)2 ?Σ

(
−1

3kRRRF ∧ F + 1
24kR trR∧R

)
, (1.6)

where F = dA is the background U(1)R field strength and R is the Riemann curva-
ture two-form. The anomaly coefficients above are simply related to the defect conformal
anomalies by

a = 9kRRR − 3kR
32 , c = 9kRRR − 5kR

32 , (1.7)

as in the standalone SCFT [29]. Furthermore in the presence of 4d conserved currents on
the defect, we prove a defect version of the a-maximization principle [28] (see also [32]) that
identifies the superconformal U(1)R symmetry as a linear combination that may involve
these 4d currents. As a by-product, this defect a-maximization principle also leads to an
alternative non-perturbative proof of the defect a-theorem for certain supersymmetric RG
flows, extending the results of [30, 33].

In section 4, to illustrate our methods, we apply the defect a-maximization principle
to selected examples of 4d N = 1 DCFTs in 5d and 6d SCFTs, and determine their defect
conformal anomalies. For free theories, our results are consistent with the previous answers
on defect a-anomalies [25–27] obtained from the heat kernel method [34] and produce new
constraints on their defect c-anomalies. For interacting theories in 5d, we discuss boundary
conditions of 5d SCFTs, including a boundary version of the familiar 4d N = 1 SQCD and
its boundary conformal anomalies. In 6d, we give a reinterpretation of the known results
of the “conformal anomalies of punctures” in (generalized) class S constructions [35–37]
as the conformal anomalies of codimension-two defects as defined in (1.3). We end with a
brief discussion of future directions in section 5.

2 Defect a-theorem

In this section, we will prove the following defect a-theorem that constrains RG flows
between conformal defects of dimension p = 4.

Theorem 1 (Defect a-theorem) For a unitary defect RG flow between two unitary con-
formal defects DUV and DIR of dimension p = 4, the corresponding defect a-anomalies
satisfy

a(DUV) > a(DIR) . (2.1)

In analogy to the different versions of a-theorems for 4d QFTs, the above would be the
weak version of the defect a-theorem. A stronger version of the a-theorem requires an a-
function defined on the entire theory space which has the desired monotonicity properties
and coincides with the conformal a-anomalies at the fixed points. The strongest a-theorem
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further demands the RG flows to be gradient flows with respect to the a-function. Although
the stronger (and strongest) a-theorem has not been completely proven, there is ample
evidence for its validity (see e.g. [33, 38–41]). Similarly one can formulate a stronger
version of the defect a-theorem below (analogously for the strongest version), but a proof
is beyond the scope of this work. Closely related is the question whether scale invariance
implies conformal invariance for p = 4 defects. Substantial progress has been made in
proving their equivalence in unitary interacting 4d QFTs [42–49], which should also have
natural extensions to defects.

Conjecture 1 Given a unitary CFT T of dimension d > 4, there exists a height func-
tion (a-function) a(λi) on the space of p = 4 unitary Poincaré invariant defects in T ,
parametrized by couplings {λi}, such that under a defect RG flow parametrized by scale µ,

µ
d

dµ
a(λi) = βj(λi)

∂

∂λj
a(λi) ≥ 0 . (2.2)

Moreover the inequality is saturated at the fixed points λi = λ̂i with βj(λ̂i) = 0, where the
value of a coincides with the defect conformal a-anomaly of the fixed point DCFT

a(λ̂i) = a(D) . (2.3)

We emphasize that the a-function here is subject to the local condition, i.e. the µ depen-
dence of a(λi) comes entirely from the running couplings λi.

2.1 Monotonicity theorem from dilaton effective action

Here we prove the defect a-theorem (theorem 1) by extending the method of [6, 7] (see
also [42]). We will see that apart from a few novelties due to the difference between a
defect and a standalone CFT (e.g. the extra extrinsic anomalies in (1.3)), the arguments
in [6, 7, 42] essentially carry through (which we explain to make it self-contained), and the
theorem is established by a defect version of the optical theorem.

We start by considering a defect RG flow from a UV conformal defect DUV to an IR
conformal defect DIR. The defect conformal symmetry is explicitly broken in the defect
field theory (DFT) at an immediate scale but we can restore it by coupling to a non-
dynamical dilaton field τ(z) on the defect worldvolume Σ which transforms as τ → τ + σ

under a local Weyl rescaling of the ambient metric gµν → e2σgµν .9

Denoting the UV DCFT action abstractly by SDUV , the DFT is generally described by
a relevant deformation on the defect worldvolume Σ,

SDFT = SDUV +
∫

Σ
d4z

√
|h|

∑
OUV∈DUV

λOUVOUV(z) . (2.4)

After coupling to background dilaton, we have

SDFT[τ ] = SDUV +
∫

Σ
d4z

√
|h|

∑
OUV∈DUV

Ω4−∆OUVλOUVOUV(z) , (2.5)

9As usual, one can think of conformal symmetry as the subgroup of Diff×Weyl that leaves the flat space
metric invariant.
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with
Ω ≡ e−τ , (2.6)

and the Weyl invariance becomes manifest. To linearized order, the coupling takes the
form

SDFT[τ ] ≡ SDFT +
∫

Σ
d4z

√
|h|T (z)τ(z) +O(τ2) , (2.7)

where T (z) is an operator coming from the trace of the bulk stress-tensor Tµµ (x) =
δ(Σ)T (z), which is nontrivial away from the defect fixed points.10

Having reinstated the Weyl symmetry with a compensator field τ , the anomalous
Weyl variation of the partition function ZDFT[τ ] must be constant along the RG flow as
a consequence of the Wess-Zumino consistency condition and thus completely determined
by the conformal anomalies of the UV DCFT DUV. Consequently, near the IR end of the
defect RG flow, the same Weyl variation must be reproduced by the effective action, which
takes the following form

Seff = SDIR + Sdilaton[τ ] +
∫

Σ
d4z

√
|h|

∑
OIR∈DIR

Ω4−∆OIRλOIROIR(z) . (2.8)

Here SDIR describes abstractly the IR DCFT and Sdilaton[τ ] is the dilaton effective action
coming from integrating out massive modes along the flow. The coupling between DIR and
the dilaton τ is contained in the last term above, which is controlled by irrelevant defect
operators OIR(z) in the IR DCFT.

Comparing UV and IR asymptotics of the RG flow, the anomaly matching condition
boils down to

δσ logZDUV = δσ logZDIR + iδσSdilaton[τ ] , (2.9)

which requires
δσSdilaton[τ ] =

∫
Σ
d4x

√
|h|σ∆AW , (2.10)

with

∆AW ≡ AW
DUV −A

W
DIR = 1

(4π)2 (−∆aE4 + ∆cW ) + ∆Iext(C(d),K) , (2.11)

from (1.3), placing strong constraints on the dilaton effective action.
The solutions for Sdilaton[τ ] can be found similar to the analysis in [6]. In general it

takes the form
Sdilaton[τ ] = SWZ[τ ] + Sinv[τ ] . (2.12)

The first term on the r.h.s. is a cohomologically nontrivial solution to the Wess-Zumino
consistency condition and commonly referred to as the Wess-Zumino (WZ) term, which
can be obtained from integrating the anomaly [3]

SWZ =−
∫ 1

0
dt

∫
d4z

√
|h|e−4tτ(z)τ∆AW(e−2tτ(z)h) . (2.13)

10Near the UV fixed point, T (z) is dominated by the relevant (or marginally relevant) operator OUV with
the largest scaling dimension ∆OUV ≤ 4.
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We will be interested in the dilaton effective action for a flat defect on flat space, in which
case we set gµν = ηµν and split the spacetime coordinates into tangential and orthogonal
coordinates to the defect as xµ = (za, yi).

For the intrinsic defect conformal anomalies in (2.11), the integral was performed in [50]
which gives

Sint
WZ[τ ] =

∫
Σ
d4z

√
|h|
(
− ∆a

(4π)2

(
τE4 + 4

(
Rab − 1

2h
abR

)
∂aτ∂bτ

− 4(∂τ)2 �τ + 2(∂τ)4
)

+ ∆c
(4π)2 τW

)
,

(2.14)

and reduces to the following simple form in flat space

Sint
WZ[τ ] flat= ∆a

8π2

∫
Σ
d4z

(
2(∂τ)2 �τ − (∂τ)4

)
. (2.15)

The extrinsic anomalies on the other hand do not contribute to SWZ on flat space. Under
a Weyl transformation, the bulk Weyl curvature and the extrinsic curvature transform as

C(d)
µνρσ → C(d)

µνρσe
−2σ , Kµ

ab → Kµ
ab + habN

µν∂νσ . (2.16)

Here Nν
µ is the projector to the normal directions of Σ defined by

gµν = Nµν + Pµν , Pµν ≡ ∂aXµ∂bX
νhab , (2.17)

and Pµν is the projector to the tangential directions of Σ. In the flat space with σ = tτ(z)
in (2.16), we see clearly ∆Iext(C(d),K) does not contribute to a WZ term.

The dilaton effective action may also contain terms that are Weyl invariant, corre-
sponding to homogeneous solutions of (2.10). They are captured by the second term Sinv[τ ]
in (2.12). These terms can be constructed from the Weyl invariant worldvolume metric

ĥab ≡ e−2τhab , (2.18)

using the corresponding curvature invariants as in [6, 7]. Such invariants again separate
into intrinsic and extrinsic types. For similar reasons as explained above for the WZ term,
the extrinsic Weyl invariants do not play a role for the flat defect in flat space. With this
understanding, we focus on the intrinsic invariants given by11

Sinv[τ ] =
∫
d4z

√
|ĥ|

(
β0 + β1R̂+ β2R̂

2 + β3Ê4 + β4ĈabcdĈ
abcd +O(∂6)

)
. (2.19)

In the flat space limit, it gives the following interactions for τ up to the fourth deriva-
tive order,

Sinv[τ ] flat=
∫
d4z

(
β0Ω4 + 6β1(∂Ω)2 + 36β2

(
�τ − (∂τ)2

)2
+O(∂6)

)
. (2.20)

11Weyl invariant couplings between relevant operators in the IR DCFT and the dilaton of the form∫
d4z

√
|ĥ|Ω−∆OIROIR,

∫
d4z

√
|ĥ|Ω−∆OIR R̂OIR ,

with ∆IR < 4 and ∆IR < 2 respectively must be tuned away otherwise it contradicts with the assumption
of the flow into the IR DCFT [42].
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Putting everything together, from (2.15) and (2.20), we have the full defect dilaton effective
action on flat space up to fourth derivative order which takes the identical form as in [6, 7].
After a redefinition [7],

Ψ ≡ 1− Ω = 1− e−τ , (2.21)

we have
Sdilaton[τ ] flat=

∫
d4z

(
β0(1−Ψ)4 + 6β1(∂Ψ)2 + 36β2

(�Ψ)2

(1−Ψ)2

− ∆a
8π2

(
2(∂Ψ)2 �Ψ
(1−Ψ)4 + (∂Ψ)4

(1−Ψ)4

)
+O(∂6)

)
.

(2.22)

To prove the defect a-theorem, we would like explore unitarity constraints on the dilaton
interaction proportional to ∆a. This can be achieved by studying the four-point amplitude
A4(s, t, u) of the probe dilaton Ψ(p1)Ψ(p2)→ Ψ(−p3)Ψ(−p4) with external defect momenta
pi and s = −(p1+p2)2, t = −(p1+p3)2, u = −(p1+p4)2 are the usual Mandelstam variables.
To isolate the contribution from ∆a, we work with the special kinematics such that the
background dilaton is “on-shell”

�Ψ = 0 . (2.23)

In this case, the dilaton interactions in (2.22) simplify drastically. In particular the dilaton
amplitude A4(s, t) at the fourth derivative order is completely determined by the interaction

Sdilaton[τ ] ⊃ −∆a
8π2

∫
d4z(∂Ψ)4 ⇒ A4(s, t) ⊃ ∆a

4π2 (s2 + t2 + u2) . (2.24)

Furthermore we focus on the forward limit p1 + p3 = p2 + p4 = 0, in which case the
amplitude is a function of s only and has the following small s expansion,

A4(s) = const + ∆a
2π2 s

2 +O(s∆OIR−2) . (2.25)

The corrections coming from the coupling between the IR defect DIR and defect dilaton τ
though the irrelevant operator OIR in (2.8) are suppressed by s∆OIR−2.

We expect the amplitude A4(s) to satisfy the Mandelstam analyticity of four-
dimensional amplitudes, namely it is analytic on the upper half plane (from causality)
and has branch cuts along the real axis due to the massless states in the IR DCFT that
are being exchanged. The positivity of ∆a comes from a contour argument and standard
dispersion relations for amplitudes.

We start by considering the integral over a contour Γ in the upper-half complex s-plane
as in figure 1,

0 = −πi
∮

Γ
ds
∂sA4(s)
s2 = IΓ1 + IΓ2 + IΓ3 (2.26)

which vanishes by analyticity. The contour Γ consists of three parts Γ1,Γ2,Γ3 and the
integral splits accordingly as above. The part over the small semi-circle Γ1 gives,

IΓ1 = −∆a . (2.27)

The integral over Γ2 above the branch cuts yields,

IΓ2 = 2π
∫ ∞
ε

ds
∂sImA4(s)

s2 , (2.28)
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Re(s)

Im(s)

×−ε ε R−R

Γ2 Γ2

Γ1

Γ3

Γ = Γ1 ∪ Γ2 ∪ Γ3

Figure 1. The integration contour Γ = Γ1 ∪ Γ2 ∪ Γ3 for the dispersion argument. Here the limits
ε→ 0 and R→∞ are implicit.

where we have used crossing symmetry A(s) = A(−s) since u = −s in the forward limit,
and the reality property of S-matrix A4(s?) = (A4(s))? to combine the integrals over the
two segments of Γ2. Finally the integral over the large semi-circle Γ3 at infinity vanishes

IΓ3 = 0 , (2.29)

since the large s behavior of A4(s) is dominated by the least relevant UV perturbation
in (2.5) which gives s∆OUV−2 for ∆OUV < 4.12

Therefore we arrive at the formula

∆a = 2π
∫ ∞
ε

ds
∂sImA4(s)

s2 = 4π
∫ ∞
ε

ds
ImA4(s)

s3 , (2.30)

where the second equality comes from an integration-by-parts, which is possible thanks to
the convergence properties of A4(s) (and thus its imaginary part) in the IR (ImA4(s) ∼ s>2)
and UV (ImA4(s) ∼ s<2) asymptotics. These properties also ensure that the last integral
in (2.30) is manifestly convergent.

Applying the optical theorem to the forward scattering Ψ(p1)Ψ(p2)→ Ψ(p1)Ψ(p2) on
the defect,13

∆a = 4π
∫ ∞
ε

ds
sσ(s)
s3 , (2.31)

where σ(s) is the total cross-section for the scattering Ψ(p1)Ψ(p2) → DIR which involve
DCFT states both on the defect and in the bulk. Unitarity of the defect field theory
requires the above integrand to be positive. Since the integral is convergent, we arrive at
the desired inequality

∆a > 0 , (2.32)

that establishes theorem 1.
12A more careful argument shows that the same is true for marginally relevant deformations [42].
13See [51, 52] for recent discussions of the optical theorem for boundary field theories (and more general

nonlocal field theories).
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2.2 Explicit boundary RG flow in the free scalar theory

Here we discuss an explicit defect RG flow, between the Neumann and Dirichlet boundary
conditions of the d = 5 free scalar theory. In particular we will derive the nontrivial four-
derivative interaction for the defect dilaton (2.24) which captures the change ∆a in the
defect conformal a-anomalies.

The free scalar action on half space R4,1
+ reads

S = 1
2

∫
y≥0

d5x∂µΦ∂µΦ , (2.33)

with a boundary Σ at y = 0. We start with the Neumann boundary condition

∂yΦ|Σ = 0 , (2.34)

which admits a relevant deformation (boundary mass term) of the form

SΣ = −1
2

∫
d4z mΦ2 . (2.35)

By varying the full action S + SΣ with respect to Φ, we see the boundary condition gets
deformed to

∂yΦ−mΦ|Σ = 0 . (2.36)

which flows to the Dirichlet boundary condition Φ|Σ = 0 as m→∞.
As explained in the last section, we introduce the defect dilaton τ to restore the defect

conformal symmetry,

Stot[τ ] = 1
2

∫
y≥0

d5x∂µΦ∂µΦ− 1
2

∫
Σ
d4z mΦ2 + 1

2

∫
Σ
d4z mΨΦ2 , (2.37)

with Ψ defined as in (2.21). By integrating out Φ, we obtain the effective action for Ψ.
Treating the last term in (2.37) as a perturbation, the propagator for Φ subjected to the
boundary condition (2.36) can be found straightforwardly. We define the propagator after
a Fourier transformation in the defect coordinates za as

Ĝ(p,−p, y, y′) ≡ 〈Φ(p, y)Φ(−p, y′)〉 , (2.38)

then the boundary condition (2.36) requires

(∂y −m)Ĝ(p,−p, y, y′)
∣∣∣
y→0+

= 0 . (2.39)

We will work in the Euclidean signature and Wick rotate back to Minkowski signature later.
The solution to the equation of motion and consistent with the boundary condition is

Ĝ(p,−p, y, y′) = e−p|y−y
′|

2p + |p| −m
|p|+m

e−p(y+y′)

2|p| . (2.40)

When the Φ’s are restricted to boundary (which is what we need for computing the defect
dilaton effective action), the propagator is simply

Ĝ(p,−p, 0, 0) = 1
|p|+m

. (2.41)
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To extract the four-point interaction of Ψ in the IR effective action, we need to evaluate
the following boundary one-loop Feynman diagrams in the large m limit,

F4(p1, p2, p3, p4) ≡
∫ 4∏

i=1

(
d4~zie

i~pi·~zi
)
〈Φ2(z1, 0)Φ2(z2, 0)Φ2(z3, 0)Φ2(z4, 0)〉c

= δ4(p1 + p2 + p3 + p4)(I1234 + I1342 + I1423) ,
(2.42)

with

I1234 ≡
∫

d4k

(2π)4
1

(|k|+m)(|k + p1|+m)(|k + p1 + p2|+m)(|k − p4|+m) ,
(2.43)

and its cyclic permutations I1342 and I1423. In appendix A, we perform the integral explic-
itly and obtain

F4(p1, p2, p3, p4)|p2
i=0 = δ4(p1 + p2 + p3 + p4)

(
17

92160π2
s2 + t2 + u2

m4 +O
(
s4

m8 ,
t4

m8

))
,

(2.44)
which corresponds to a dilaton interface of the form

Sdilaton ⊃ −
2

(4π)2
17

23040

∫
d4z(∂Ψ)4 . (2.45)

Compared to (2.22), we find that for the boundary RG flow in the free scalar theory

∆a = 17
23040 .

(2.46)

The boundary a-anomalies for the free scalar were also computed from heat kernel meth-
ods [25, 53] (see also [34] for a review on these methods)14

aDir = − 17
46080 , aNeu = 17

46080 ,
(2.47)

in agreement with what we found above. In section 4.1.2, we will give a simple rederivation
of the above.

3 Defect anomalies and a-maximization

Conformal anomalies are important observables in CFTs but are generally hard to access
in interacting theories of dimension d > 2. This is partly because unlike in two dimensions
where the conformal anomaly is simply determined by the two-point function of stress-
tensor Tµν , the conformal anomalies in higher dimensions d ≥ 4 are generally hidden in more
complicated three- and higher-point functions of Tµν . Alternatively one can in principle
determine the conformal anomaly of a CFT by computing its partition functions on curved
backgrounds. However this is not feasible in practice for a general CFT. For conformal
defects (or DCFTs), we face an even harder challenge, as we have little understanding for
either of the two perspectives.

14The defect conformal a-anomaly defined here is related to that in [25] by athere = −2ahere.
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In superconformal theories (SCFT), both obstacles can be overcome thanks to the
preserved supersymmetry (SUSY). On the one hand, SUSY relates stress-tensor correlation
functions to the simpler correlators that involve the conserved currents for R-symmetries,
and consequently the conformal anomalies to the (mixed) R-symmetry ’t Hooft anomalies.
The latter are much easier to determine owing to their topological nature. On the other
hand, the localization method allows one to determine the partition function exactly when
sufficient supercharges are preserved (see [54] for a review). These methods made possible
the determination of conformal anomalies for a variety of SCFTs in d = 2, 4, 6 [11, 12, 28, 29,
55–58] and have recently been extended to superconformal surface defects [14, 59, 60]. Here
we will carry out the analogous analysis for p = 4-dimensional defects, providing a non-
perturbative tool to access the defect conformal a- and c-anomalies for defects preserving
the minimal supersymmetry.

These are defects invariant under an N = 1 superconformal subalgebra of the full
superconformal symmetry of the bulk SCFT,15

su(2, 2|1) ⊃ so(4, 2)× u(1)R , (3.1)

which contains four Poincaré supercharges and four conformal supercharges. The bosonic
subalgebra generates the conformal subgroup longitudinal to the defect and the U(1)R
symmetry that generally comes from a combination of the R-symmetry in the ambient
SCFT and the transverse rotation symmetry (in d = 6 only). In this section, we will derive
the following universal relations between the defect conformal anomalies a and c, and the
defect ’t Hooft anomalies kRRR and kR that involve the defect U(1)R symmetry (see (3.5)).

Theorem 2 The conformal a- and c-anomalies of a four-dimensional N = 1 supercon-
formal defect is completely determined by the coefficients kRRR and kR for the U(1)R and
mixed U(1)R-gravity ’t Hooft anomalies,

a = 9kRRR − 3kR
32 , c = 9kRRR − 5kR

32 . (3.2)

These relations are identical to those satisfied by standalone 4d N = 1 SCFTs [29], even
though the nature and origin of the anomalies are very different. Furthermore, we will
prove a defect version of the a-maximization principle [28] that identifies the supercon-
formal U(1)R symmetry through a simple algebraic procedure. Together, they provide
a powerful non-perturbative tool to extract the defect conformal anomalies in strongly
coupled systems.

3.1 Defect ’t Hooft anomalies

We start by describing the defect ’t Hooft anomalies associated to the defect U(1)R sym-
metry. In contrast with the case of a local 4d CFT, the Noether current Jµ for the defect
U(1)R symmetry is a d-dimensional conserved current, which satisfies the operator equation

∂µJ
µ(x) = 0 , (3.3)

15The detailed subalgebra embeddings can be found in [61].
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in flat space, everywhere including at the defect along Σ, but away from other operator
insertions. This ensures that the U(1)R charge, defined by an integral of the current flux
through a codimension-one submanifold S,

Q ≡
∫
S
?J , (3.4)

remains topological when S intersects with the defect Σ (so that the charge Q acts on the
defect modes).

In the presence of other operator insertions, the current conservation law can be modi-
fied by contact-terms representing a (mixed) anomaly for the U(1)R symmetry. While this
modification can occur both as contact terms in the bulk (for even d) and on the defect
volume, here we will focus on the defect contributions. Upon coupling the bulk-defect
system to background metric gµν , U(1)R gauge field Aµ and gauge fields Bi

a for additional
abelian global symmetries U(1)i generated by locally conserved currents J ia on the defect,
the anomalous Ward identity for the U(1)R current can take the following general form16

〈∇µJµ〉D ⊃
δ(Σ)

2(2π)2 ?Σ

(
−1

3kRRRF ∧ F + 1
24kR trR∧R− kRijFi ∧ Fj − kRRiF ∧ Fi

)
,

(3.5)
with F ≡ dA and Fi ≡ dBi. The sums over the repeated i, j indices are implicit. Equiv-
alently, the partition function of the defect field theory develops the following anomalous
variations under a gauge transformation A→ A+ dλ,

δλ logZD = 1
2(2π)2

∫
Σ
d4z λ

(
− 1

3kRRRF ∧ F + 1
24kR trR∧R

− kRijFi ∧ Fj − kRRiF ∧ Fi
)
,

(3.6)

which is captured by the Stora-Zumino anomaly descent procedure [62–64] from the fol-
lowing degree six anomaly polynomial

I6 =− kR
24 c1(F )p1(T ) + kRRR

6 c1(F )3 + kRij
2 c1(F )c1(Fi)c1(Fj) + kRRi

2 c1(F )2c1(Fi)

− ki
24c1(Fi)p1(T ) + kijk

6 c1(Fi)c1(Fj)c1(Fk) ,
(3.7)

where we have also included general anomaly terms involving the flavor symmetry. Here
the characteristic classes are defined as usual,

c1(F ) = i

2πF, p1(T ) = − 1
2(2π)2 tr(R∧R) . (3.8)

The same anomaly polynomial (3.7) implies that the p-dimensional defect flavor symmetry
currents J ia receives an anomalous divergence

〈∇aJai (z)〉D ⊃
1

2(2π)2 ?Σ

(
−kRijF ∧ Fj − kRRiF ∧ F + 1

24ki trR∧R+ 1
3kijkFj ∧ Fk

)
,

(3.9)
16The abelian gauge fields A and Bi are anti-Hermitian in this paper, which differs by a factor of i from

those in [28].
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and the partition function varies accordingly under a gauge transformation Bi → Ai + dωi

on Σ

δωi logZD = 1
2(2π)2

∫
Σ
d4z ωi

(
− kRijF ∧ Fj − kRRiF ∧ F

+ 1
24ki trR∧R+ 1

3kijkFj ∧ Fk
)
.

(3.10)

3.2 The supersymmetric anomaly multiplets

Supersymmetry generally leads to constraints on the anomalies admissible in a given super-
symmetric (defect) field theory. In particular, for a superconformal defect D in an ambient
SCFT, since the stress-tensor Tµν and the preserved R-symmetry current Jµ are related
by acting with the preserved supercharges Q, one naturally expects relations between the
trace anomaly Tµµ and the ’t Hooft anomaly for the R-symmetry current, which define
supersymmetric anomaly multiplets. In the following we will establish the relations (3.2)
for p = 4-dimensional N = 1 superconformal defects.

We will look for the supersymmetric completion of the anomalous Ward iden-
tity (3.5) and

〈Tµµ 〉D ⊃
1

(4π)2 (−aE4 + cW ) , (3.11)

or equivalently that of the anomalous variation (3.6) and

δσ logZD ⊃
i

(4π)2

∫
d4z

√
|h|σ (−aE4 + cW ) . (3.12)

We focus on the terms involving background metric and U(1)R gauge field.17 The SUSY
completion of (3.6) and (3.12) can be obtained by coupling to off-shell N = 1 supergrav-
ity on the defect worldvolume Σ and imposing the Wess-Zumino consistency conditions
involving the supersymmetry, U(1)R and Weyl transformation generators (and their com-
mutators) acting on logZD. Because all these variations δ(·) logZD are local expressions
on Σ, this problem is identical to the one solved in [65, 66] for standalone 4d theories, and
gives rise to the super-Weyl anomaly for the DCFT. Here we follow the conventions of [67]
which was also used [50] except that our abelian gauge fields are anti-Hermitian.18 The
solution takes a simple form in the N = 1 superspace with chiral and anti-chiral Grass-
mann coordinates θα, θ̄β̇ . The metric and R-symmetry gauge field are bosonic components
of the supergravity superfield Ha(z, θ, θ̄), and the imaginary R-symmetry gauge param-
eter λ combines with the real Weyl transformation parameter σ into a chiral superfield
δΩ(z, θ) satisfying

δΩ|θ=0 = σ + 2
3λ .

(3.13)

17The part of the anomaly that depends on the background flavor symmetry gauge fields has a separate
supersymmetric completion.

18The conventions of [67] differ from those of [68] used in [29] which employs a different set of torsion
constraints.
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The most general super-Weyl anomaly solving the Wess-Zumino consistency conditions is
given by a chiral superspace integral together with its anti-chiral conjugate,

δΩ logZD[Ha] = 1
2(4π)2

∫
Σ
d4zd2θEδΩASW

D + (c.c.) , (3.14)

where E is the chiral superspace measure satisfying E|θ=0 =
√
|h|. The chiral anomaly

density ASW
D is built from curvature superfieldsWαβγ , Ga, R obtained from covariant super-

derivatives Dα, D̄α̇ acting on Ha, which contain the Weyl curvature, Ricci curvature and
Ricci scalar respectively. Moreover Ga|θ=θ̄=0 = 4

3 iAa is identified with the U(1)R gauge
field. The general solution (up to terms that are variations of diffeomorphism invariant
local counter-terms),

ASW
D = κ1W

αβγWαβγ + κ2Ξ (3.15)

is a combination of the super-Weyl density WαβγWαβγ and the super-Euler density Ξ,
which takes the following form in the old minimal supergravity19

Ξ ≡WαβγWαβγ −
1
4(D̄2 − 4R)(GaGa + 2RR̄) . (3.16)

To compare with the bosonic variations (3.6) and (3.12), we need the F-term components
of these composite chiral superfields (see [67] and [50])20

WαβγW
αβγ

∣∣∣
θ2
→W − 8

3FabF
ab + 2i ?

(
trR∧R− 8

3F ∧ F
)
,

Ξ|θ2 →E4 + 2i ?
(

trR∧R− 40
9 F ∧ F

)
,

(3.17)

where we have dropped terms involving other supergravity fields on the r.h.s. .
Thus we have from (3.15) and (3.12)

c = −κ1 , a = κ2 , (3.18)

and from (3.15) and (3.12)

kRRR = 16
9 (3κ1 + 5κ2) , kR = −16(κ1 + κ2) . (3.19)

Together we arrive at (3.2) as desired.
19Unlike the super-Weyl density WαβγWαβγ , the form of the super-Euler density Ξ in terms of the

superfields depends nontrivially on the chosen supergravity formulation (which is correlated with a choice
of the supercurrent multiplet in the 4d field theory [69, 70]). See [71, 72] for realizations of Ξ in new minimal
and non-minimal N = 1 supergravities.

20For example the first equality in (3.17) comes from

DδWαβγ = D(αWβγδ) + 3
4 εδ(αD

λWβγ)λ = D(αWβγδ) + 3
4 εδ(αD

λWβγ)λ ,

and the following relations (only keeping terms dependent on metric and U(1)R gauge field)

D(αWβγδ)|θ=0 = (σab)αβ(σcd)γδCabcd + . . . , DλWαβλ|θ=0 = iD(α
α̇Gβ)α̇|θ=0 = 4

3(σab)αβFab + . . . ,

from solving the torsion constraints and Bianchi identities (see section 5.5.3 and 5.8.3 in [67]).
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Next let us consider the SUSY completion of the ’t Hooft anomaly (3.10) involving the
4d flavor symmetry current J ia. The gauge transformation parameter ωi is promoted to a
chiral superfield δΛi with ωi = iIm δΛi|θ=0 . Focusing on the anomalous variations that
depend only on δΛi and supergravity superfields, we have the SUSY completion21

δΛi logZD = κ

4(2π)2

∫
Σ
d4zd2θEδΛiWαβγWαβγ + (c.c.) . (3.20)

Using (3.17) and comparing with (3.10), we arrive at the following relation between the
mixed U(1)i-U(1)R and U(1)i-gravity anomalies,

9kRRi = ki = 24κ . (3.21)

3.3 Defect a-maximization

Given a p = 4-dimensional N = 1 superconformal defect D, the defect U(1)R symmetry is
generally generated by a d-dimensional conserved current of the following form,

J tµ ≡ Ĵµ + tiδ(Σ)δaµJ ia . (3.22)

Here Ĵµ is a bulk current satisfying (3.3) and (almost) determined by the embedding of
the defect superconformal symmetry su(2, 2|1) in the bulk superconformal algebra. In
particular, it is normalized such that the supercharges Q preserved by the defect D carries
charges ±1.22 The ambiguities come from locally conserved currents J ia on the defect
worldvolume Σ with mixing coefficients ti, whose symmetry charges commute with Q.

Following [28], we define the trial conformal anomalies, in terms of the (mixed) ’t Hooft
anomalies involving the U(1)Rt symmetry generated by J tµ,

a(t) ≡ 9kRtRtRt − 3kRt
32 , c(t) ≡ 9kRtRtRt − 5kRt

32 , (3.23)

which coincide with (3.2) for the genuine superconformal U(1)R symmetry at ti = t?i . Below
we derive the defect version of the a-maximization principle that determines t?i .

Theorem 3 (Defect a-maximization) The superconformal defect U(1)R symmetry

Jµ = Ĵµ + t?i δ(Σ)δaµJ ia (3.24)

is determined by a local maximum ti = t?i of the trial defect a-anomaly a(t),

∂ia(t)|ti=t?i = 0 , ∂i∂ja(t)|ti=t?i < 0 . (3.25)

Moreover the defect conformal anomalies are given by

a = a(t?) , c = c(t?) . (3.26)
21Note that an anomaly of the form

∫
d4zd2θEδΛiΞ + (c.c.) is forbidden by the Wess-Zumino consis-

tency condition [δσ, δωi ] logZD = 0 since we require the Weyl anomaly to be invariant under U(1)i gauge
transformations.

22The sign (and normalization) of Ĵµ is fixed by requiring its charge defined by R̂ ≡
∫
Sd−1 ?Ĵ to appear in

the anti-commutator of the supercharge Q and its Hermitian conjugate in radial quantization as {Q,Q†} ∝
∆− 3

2 R̂+ . . . where ∆ is the usual dilatation operator.
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The first condition in (3.25) simply follows from the anomaly multiplet relations for ’t
Hooft anomalies involving the U(1)i flavor symmetry (3.21). To derive the second condition
in (3.25), we note that

∂i∂ja(t)|ti=t?i = 27
16kRij .

(3.27)

In the following we will show that kRij is negative definite as a consequence of unitarity
and supersymmetry on the defect D.

To explore possible constraints on the ’t Hooft anomaly coefficient kRij , we turn on
flavor symmetry background gauge fields Bi

a and look for the SUSY completion of the
corresponding anomaly terms in (3.6)

δλ logZD ⊃ −
kRij

2(2π)2

∫
Σ
d4z λFi ∧ Fj . (3.28)

Promoting Bi
a to a background vector superfield on Σ with field strength chiral superfield

W i
α, we have

δΩ logZD ⊃
κij

(4π)2

∫
Σ
d4zd2θEδΩW i

αW
αj + (c.c.)

= 1
(4π)2

∫
Σ
d4z

√
|h|σ

(
ReκijF iabF jab − ImκijεabcdF iabF

j
cd

)
+ λ

(
ImκijF iabF jab + ReκijεabcdF iabF

j
cd

)
+ . . . .

(3.29)

Comparing with (3.28), we find23

Imκij = 0, Reκij = −2kRij , (3.30)

which implies a flavor contribution to the trace anomaly,

〈Tµµ 〉D ⊃ −2δ(Σ)kRijF iabF jab . (3.31)

Now recall the two-point functions of the conserved currents J ia are fixed by conformal
symmetry to take the form

〈J ia(z1)J jb (z2)〉D = τ ij(∂2δab − ∂a∂b)
1
|z12|4

, (3.32)

with positive definite coefficient τ ij from unitarity. The r.h.s. suffers from a short distance
singularity which can be regularized using [74]

R
( 1
z4

)
= −1

4 �
log(µ2z2)

z2 , (3.33)

23Here we have assumed the absence of an exotic parity-even anomaly of the type

∇µJµ ∼ δ(Σ)CijF iabF jab ,

for the DCFT. This would be a defect analog of the impossible anomaly discussed in [73].
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and the conformal anomaly arises from the dependence of the regularization scheme on the
scale parameter µ as in

µ
∂

∂µ
R
( 1
z4

)
= 2π2δ4(z) . (3.34)

Therefore we have

µ
∂

∂µ
〈J ia(z1)J jb (z2)〉D = 2π2τ ij(∂2δab − ∂a∂b)δ4(z1 − z2) . (3.35)

On the other hand,

µ
∂

∂µ
〈J ia(z1)J jb (z2)〉D = 〈

∫
M
d5xTµµ (x)J ia(z1)J jb (z2)〉D

= − 2kRij(∂2δab − ∂a∂b)δ4(z1 − z2) ,
(3.36)

where the last equality follows from (3.31). Thus we conclude that

kRij = −π2τij , (3.37)

which is negative definite as desired.
Before ending this section, let us make a few comments on the a-maximization pro-

cedure and its relation to the defect a-theorem. The a-maximization holds with respect
to all U(1) flavor symmetry currents on the defect worldvolume Σ. In practice, we often
do not directly deal with the strongly coupled fixed point. Instead we infer the set of
the U(1) symmetries from a nearby (Lagrangian) description, which we use to determine
the relevant ’t Hooft anomalies and obtain the trial a-function before maximizing. It can
happen that there are accidental symmetries that are missed in this way, which may lead
to nonsensical answers for the U(1)R symmetry and conformal anomalies (e.g. a naive vio-
lation of the unitarity bound for certain defect operators). In such cases, we have to adjust
the ansatz for the candidate U(1)R symmetry by including the accidental symmetries (e.g.
from operators that hit the unitarity bound) and redo the a-maximization (see [30] for
relevant discussions in 4d SCFTs).

As explained in [28], the a-maximization principle almost implies the a-theorem for
supersymmetric RG flows triggered by (marginally) relevant perturbations, since the max-
imization procedure is performed over a larger space of U(1) symmetries in the UV than
in the IR. This was later made more precise in [30, 33] by constructing explicitly an a-
function along the supersymmetric RG flow with the desired properties as in the strongest
version of the a-theorem. A direct generalization of their construction leads to the defect
a-theorem for supersymmetric RG flows from (marginally) relevant defect perturbations.
Once again, cases with accidental symmetries must be treated with care [33].

4 Defect a-anomalies in SCFTs

N = 1 superconformal defects of dimension p = 4 exist in 5d and 6d SCFTs.24 These SCFTs
are generally strongly coupled and do not have conventional perturbative Lagrangian de-

24See [61, 75] for a general classification of unitary superconformal defects based on the preserved (and
broken) symmetries.
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scriptions, which makes it especially challenging to study the defects thereof. In the follow-
ing, we will apply our non-perturbative methods developed in the last section to a number
of examples and determine their defect conformal anomalies exactly.

4.1 Boundaries for 5d N = 1 SCFTs

In 5d N = 1 SCFTs, the p = 4-dimensional superconformal defects appear either as half-
BPS boundaries or interfaces. The defect U(1)R symmetry is identified with the Cartan
generator of the bulk SU(2)R symmetry,

R = R5d , (4.1)

up to mixing with flavor symmetry currents on the defect. A half-BPS interface between
two 5d SCFTs T1 and T2 is related by the folding trick to a half-BPS boundary for the
doubled theory T1 ⊗ T̄2 (where the second factor undergoes an orientation flip). For this
reason, we will focus on superconformal boundaries in 5d SCFTs.

4.1.1 Boundary ’t Hooft anomalies from bulk fermions

To determine the boundary conformal anomalies using our method requires the knowledge
of the boundary ’t Hooft anomalies involving the superconformal U(1)R symmetry. If the
relevant DCFT admits a U(1)R preserving deformation to a free theory, one can hope to
determine the ’t Hooft anomalies from those of the free fields. In d = 5, such boundary
anomalies can come from bulk Dirac fermions (and complex two-forms).25

Let us consider a 5d Dirac fermion ΨDirac on half space R4,1
+ with a timelike boundary

Σ at y = 0, and suppose it has charge q under a U(1) global symmetry ΨDirac → eiqθΨDirac
and also transform in an irreducible representation ρ for an nonabelian global symmetry
G. The standard U(1) × G-preserving boundary conditions for ΨDirac on Σ at y = 0
correspond to

P±ΨDirac|Σ = 0 , (4.2)

where P± ≡ 1
2(14±Γy) is a (anti)chiral projector on the boundary.26 The boundary (mixed)

’t Hooft anomalies involving the U(1) symmetry are as summarized in table 1.
One way to see this is by turning on a U(1) × G preserving mass deformation in

the bulk27

SDirac =
∫
R4,1

+

d5x Ψ̄Dirac(ΓµDµ −m)ΨDirac + 1
2

∫
Σ

Ψ̄DiracΓyΨDirac , (4.3)

where Ψ̄Dirac ≡ Ψ†DiraciΓ0 as usual and the boundary term is necessary for the reality of the
action. Integrating out the massive Dirac fermion in the bulk generates a 5d Chern-Simons

25See earlier works [76, 77] for discussions of anomaly inflow to the boundary from bulk massless fermions,
in the context of the E8 end-of-the-world brane in 11d supergravity.

26Here Γy = iΓ0Γ1Γ2Γ3 coincides with the standard 4d chirality matrix (see appendix B for the spinor
conventions).

27See [78] for similar discussions of a 3d Dirac fermion on half space R3
+.
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Fields Anomaly I6

4d
ψ

dρ
6 q

3c1(F )3 − dρ
24 qp1(T )c1(F )− Tρqc1(F )c2(FG) + aρ

6 c3(FG)

ψ̄ −dρ6 q
3c1(F )3 + dρ

24 qp1(T )c1(F ) + Tρqc1(F )c2(FG)− aρ
6 c3(FG)

5d
P+ΨDirac|Σ = 0 −dρ12 q

3c1(F )3 + dρ
48 qp1(T )c1(F ) + Tρ

2 qc1(F )c2(FG)− aρ
12 c3(FG)

P−ΨDirac|Σ = 0 dρ
12 q

3c1(F )3 − dρ
48 qp1(T )c1(F )− Tρ

2 qc1(F )c2(FG) + aρ
12 c3(FG)

Table 1. The ’t Hooft anomalies contributed by a 4d Weyl fermion ψ and its conjugate ψ̄, and
a 5d Dirac fermion ΨDirac with different boundary conditions. Both ψ and ΨDirac carry charge q
under the U(1) symmetry and transform in an irreducible representation ρ for the nonabelian G

symmetry. The dimension, Dynkin index and cubic Casimir eigenvalue for ρ are denoted by dρ, Tρ
and aρ respectively. The background gauge connections for U(1)×G are A and AG respectively.

term for the background U(1)×G gauge fields A and AG, and Riemann curvature 2-form
R in the effective action [79, 80],28

− sign(m)
2

∫
R4,1

+

(
dρq

3

24π2A ∧ F ∧ F + dρq

192π2A ∧ tr(R∧R)

− Tρq

8π2A ∧ Tr (FG ∧ FG) + aρ
6 CS5(AG)

)
,

(4.4)

where the last term is the usual non-abelian Chern-Simons 5-form defined by dCS5(AG) =
−2πc3(FG) and the Chern-Simons level depends on the sign of m. In the above, dρ is
dimension of the representation ρ, Tρ is the Dynkin index and aρ denotes the cubic Casimir
eigenvalue. For G = SU(N) and ρ = � (the fundamental representation), dρ = N , Tρ = 1

2
and aρ = 1.

The Chern-Simons action (4.4) clearly contributes to the boundary ’t Hooft anomalies
through the inflow [83], but we also need to remember there maybe residual massless
boundary modes from the massive 5d fermion. Indeed, the equation of motion

(Γy∂y +m+ Γa∂a)ΨDirac = 0 , (4.5)

implies that a normalizable boundary massless mode ΨDirac(y) ∼ e−|m|y is possible if

ΓyΨDirac|Σ = sign(m)ΨDirac|Σ , (4.6)

whose contribution to the boundary ’t Hooft anomaly comes from the inflow of

sign(m)
∫
R4,1

+

(
dρq

3

24π2A ∧ F ∧ F + dρq

192π2A ∧ tr(R∧R)

− Tρq

8π2A ∧ Tr (FG ∧ FG) + aρ
6 CS5(AG)

)
,

(4.7)

28One may be cautious about the unquantized Chern-Simons level here as it would not be gauge invariant
under large gauge transformations. Here we emphasize that the relevant physical information is just con-
tained in the infinitesimal gauge variation of (4.4) which is well defined, and can be verified, for example,
by a direct calculation of the divergence of the 5d U(1) current using Feynman diagrams for the fermions
satisfying the boundary conditions (4.2). Towards the end of this section, we will also provide other argu-
ments that lead to the same conclusions for these boundary anomalies. Nonetheless it is certainly desirable
to understand these anomalies for general bulk-defect coupled systems, from the modern perspective (see
e.g. [81, 82]) using invertible field theories in one higher dimension, with suitable generalizations.
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as sign(m) coincides with the chirality of the boundary massless fermion according to (4.6).
It is now straightforward to verify the entries in table 1 based on the above. For example,
with the boundary condition P+ΨDirac|Σ = 0, the full boundary anomaly is just given
by (4.4) with the overall coefficient −1

2 since for m > 0 this is the only contribution. For
m < 0, a boundary massless chiral fermion is admissible by (4.6) and the total contribution
from (4.4) and (4.7) is identical as before.

One can also understand the relation between the boundary anomaly from a bulk
fermion satisfying P−ΨDirac|Σ = 0 and that of a 4d boundary chiral fermion ψ as follows.
Let us put the 5d Dirac fermion on a slab Σ × [0, L] with identical boundary conditions
P−ΨDirac = 0 at the two ends y = 0 and y = L. For small L and in the low energy limit,
this is the same as a chiral fermion on Σ. Thus the anomaly for a single boundary is half of
that of a chiral fermion. Alternatively, starting with a boundary satisfying P+ΨDirac|Σ = 0,
we can couple the bulk fermion to a boundary chiral fermion ψ by

∫
Σ d

4z Ψ̄DiracP+ψ +
(c.c.). Integrating out ψ, this flips the boundary condition of the bulk Dirac fermion to
P−ΨDirac|Σ = 0. Since the boundary conditions P±ΨDirac|Σ = 0 have opposite anomalies
by parity, we again reach the same conclusion.

4.1.2 Boundary conditions for free hypermultiplets

We start by considering the simplest 5d SCFT defined by a free hypermultiplet which
consists of four real scalars ΦiA and a symplectic-Majorana fermion ΨA.29 The theory has
an SU(2)R × SU(2)F symmetry and i = 1, 2 and A = 1, 2 are the corresponding doublet
indices. We place the theory on half space R4,1

+ and consider superconformal boundary
conditions on Σ at y = 0.

With regard to the boundary N = 1 superconformal symmetry, the hypermultiplet
splits into two chiral multiplets (X,ψX) and (Y, ψY ) on Σ,

X = q11 , ψX = P+Ψ1 , Y = q12 , ψY = P+Ψ2 . (4.8)

The boundary superconformal U(1)R symmetry is identified the Cartan of SU(2)R symme-
try as in (4.1), under which the complex scalars (X,Y ) carry charge +1 but the fermions
(ψX , ψY ) are uncharged.

The simplest supersymmetric boundary conditions come from putting together the
Neumann and Dirichlet boundary conditions for the scalars, and the standard U(1)R sym-
metric boundary conditions for the fermions (4.2) [84],30

BX [Φ] : Y |Σ = ψY |Σ = ∂yX̄|Σ = 0 ,
BY [Φ] : X|Σ = ψX |Σ = ∂yȲ |Σ = 0 ,

(4.9)

29The symplectic-Majorana condition is

(ΨA
α )∗ = CαβεABΨB

β

where α, β = 1, 2, 3, 4 are the spinor indices and Cαβ is the anti-symmetric 5d charge conjugation matrix.
Consequently it captures the same independent degrees of freedom as a Dirac fermion ΨDirac ≡ Ψ1.

30Note that in terms of the Dirac fermion Ψ1 we have ψY = (P−Ψ1)∗. See appendix B for further details.
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which amounts to setting one of the two chiral multiplets to zero identically. The cor-
responding boundary conformal anomalies are determined by the ’t Hooft anomalies as
in (3.2). The latter can receive inflow contributions from charged fermions in the bulk
as explained in the last section. Here the boundary ’t Hooft anomalies vanish since the
fermions are uncharged under U(1)R. Consequently, the defect conformal anomalies all
vanish, as in table 2.

In fact, the boundary conditions BX,Y [Φ] are special points on a CP1 conformal man-
ifold of superconformal boundaries for a free 5d hypermultiplet, with the same vanishing
defect conformal anomalies. This boundary conformal manifold comes about from the bulk
SU(2)f flavor symmetry acting on the boundary conditions (4.9) which preserves a U(1)f
subgroup.31 Close to the BX [Φ] point, the SU(2)f rotation induces a marginal perturbation

δSBX [Φ] = ζ

∫
Σ
d4zd2θX2 + (c.c.) . (4.10)

More general superconformal boundaries for the 5d hypermultiplet can be obtained by
coupling BX [Φ] to a 4d N = 1 SCFT T4d on Σ through a superpotential,

BX [Φ]⊕ T4d with
∫

Σ
d4zd2θXO4d + (c.c.)→ Bgen[Φ] , (4.11)

where O4d is a scalar chiral primary operator in T4d of U(1)R charge R(O4d) ≤ 1 and
scaling dimension ∆(O4d) = 3

2R(O4d) ≤ 3
2 .

If R(O4d) = 1, the coupling in (4.11) is exactly marginal32 and the total boundary
conformal anomalies simply coincide with the anomalies of the 4d SCFT T4d,

a(Bgen[Φ]) = a(T4d) , c(Bgen[Φ]) = c(T4d) . (4.12)

We emphasize that these are generally strongly coupled boundary conditions for the free
hypermultiplet. In particular this includes the example of an E7-invariant boundary condi-
tion for 28 free hypermultiplets, obtained by an exactly marginal coupling to the 4d N = 1
SU(2) SQCD with Nf = 4 on the boundary [84].

If instead R(O4d) < 1, the coupling between the boundary condition BX [Φ] and the
SCFT T4d is relevant and should flow to the new superconformal boundary Bgen[Φ]. In
the simplest scenario, T4d is a free chiral multiplet φ of R-charge 2

3 and we can take
O4d = φ. Then the superpotential deformation

∫
Σ d

4zd2θφX simply imposes Dirichlet
boundary condition on X while lifting the Dirichlet boundary condition on Y (by Y = φ)
and thus we have a boundary RG flow [84]

BX [Φ]⊕ φ with
∫

Σ
d4zd2θXφ+ (c.c.)→ BY [Φ] , (4.13)

31In general, flavor symmetry currents broken by a conformal defect give rise to exactly marginal couplings
for the defect [75, 84].

32This is because scalar chiral primary operators in 4d N = 1 SCFTs are absolutely protected if R < 2
and thus cannot develop anomalous dimensions [85].
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which is trivially consistent with the boundary a-theorem. We leave the investigation
of more general boundary conditions for the free hypermultiplet that arise this way to
future work.33

From the above discussion, it should be clear that the zoo of interacting superconformal
boundary conditions for the free hypermultiplets is rather rich, and it would be interesting
to classify them from the bootstrap approach along the lines of [86].

Finally let us comment on our results in relation to the free field defect conformal
anomalies obtained in [25] from heat kernel computations [34]. The results for boundary
a-anomalies are tabulated in table 2 and they are consistent with our findings. The fact
that the Dirichlet and Neumann boundary conditions for a scalar Φ contribute opposite
defect conformal anomalies is easy to understand. We take two scalars Φ1 and Φ2 on
R4,1

+ satisfying conformal Dirichlet and Neumann boundary conditions respectively, and
then turn on an exactly marginal coupling given by

∫
Σ d

4zΦ2∂yΦ1. After unfolding, this
coupling identifies the two scalars Φ1 and Φ2 living on R4,1

+ and R4,1
− respectively at Σ, and

the original boundary corresponds to a transparent interface. Since the defect a-anomaly
does not depend on marginal couplings on the defect due to the Wess-Zumino consistency
conditions [3, 4], the original boundary must have vanishing total a-anomaly. Together
with the difference aNeu − aDir computed in (2.46), this gives a re-derivation of the results
for aNeu and aDir in [25].

Following a similar argument for two fermions Ψ1 and Ψ2 with boundary conditions
P+Ψ1|Σ = P−Ψ2|Σ = 0 and boundary marginal coupling

∫
Σ d

4zΨ̄1ΓyP+Ψ2, we conclude
that the total a-anomaly again vanishes. Here the chiral and anti-chiral boundary condi-
tions are further related by a parity-reversal along Σ which does not affect the boundary
a- or c-anomalies which are parity-even. Therefore the individual boundary a-anomalies
for Ψ1 and Ψ2 must vanish, again consistent with the explicit computations in [25].

The situation is less clear for the boundary conformal c-anomalies. The free field
boundary c-anomalies have not been computed to the author’s knowledge. Nonetheless
the fermion cases are restricted by the parity symmetry as in table 2, and the vanishing
c-anomaly for the supersymmetric boundary BX [Φ] requires

cDir + cNeu + 2cΨ = 0 . (4.14)

The precise values of the individual c-anomalies above should be accessible from the bulk
stress-tensor two-point function in the presence of the boundary (see related discussions in
lower dimensions in [87]).

4.1.3 Boundaries of En SCFTs

Let us now discuss superconformal boundaries of interacting 5d N = 1 SCFTs. A par-
ticularly well-studied set of examples known as the En SCFTs for 0 ≤ n ≤ 8 originated
from [88–90] and was generalized in [91]. For n ≥ 1, the En SCFT, upon a supersymmetric
mass deformation, is described by an N = 1 SU(2) super-Yang-Mills theory coupled to

33Note that for the relevant coupling in (4.11) to preserve a manifest U(1)R symmetry, the SCFT T4d

should have a U(1) flavor symmetry under which the operator O4d is charged.
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Fields a c

4d

real scalar 1
360

1
120

Weyl fermion 11
720

1
40

photon 31
180

1
10

chiral 1
48

1
24

vector 3
16

1
8

5d

∂yΦ|Σ = 0 17
46080 cNeu

Φ|Σ = 0 − 17
46080 cDir

P+Ψ|Σ = 0 0 cΨ

P−Ψ|Σ = 0 0 cΨ

BX,Y [Φ] 0 0

Table 2. The conformal anomalies of 4d free fields and N = 1 supermultiplets, and the boundary
conformal anomalies of 5d free fields and their supersymmetric completions.

n− 1 hypermultiplets transforming in the fundamental representation. The 5d gauge the-
ories are non-renormalizable and the En SCFTs are expected to be their UV completions.
The manifest global symmetry in the IR gauge theory is U(1)I × SO(2n − 2) where the
first factor comes from the topological instanton current and the second factor is due to
the fundamental matter. This is enhanced to En in the SCFT [88–90] (see also [92–97] for
further evidences).34

The 5d N = 1 IR gauge theories have standard half-BPS boundary conditions preserv-
ing the 4d N = 1 supersymmetry (see appendix B for details). The hypermultiplet splits
into two N = 1 chiral multiplets on Σ, and setting either to zero leads to the boundary
conditions BX [Φ] and BY [Φ] defined in the last section. Similarly the 5d vector multiplet
V which contains a real scalar σ, a gauge field Aµ and a gaugino λiα, decomposes into
one 4d N = 1 vector multiplet v and one chiral multiplet φ of zero U(1)R charge. The
supersymmetric Neumann and Dirichlet boundary conditions correspond to setting either
v or φ to zero

BN [V ] :φ|Σ = 0→ Fya|Σ = P+λ
2|Σ = σ + iAy|Σ = 0 ,

BD[V ] :v|Σ = 0→ Aa|Σ = P−λ
2|Σ = Dyσ|Σ = 0 .

(4.15)

Here we study the maximally symmetric boundary conditions for the IR gauge theories of
the En SCFTs coming from assigning BD[V ] or BN [V ] to the 5d SU(2) vector multiplet,
and assigning BX [Φ] to all n − 1 fundamental hypermultiplets.35 We expect them to be
described by certain strongly coupled superconformal boundary conditions for the SCFT,

34Here En for n = 1, 2, . . . , 5 denotes SU(2), SU(2)×U(1), SU(3)×SU(2), SU(5), SO(10) global symmetries
respectively.

35More general boundary conditions and interfaces for 5d N = 1 gauge theories were considered in [98],
including a duality interface that maps one boundary to another while preserving the boundary ’t Hooft
anomalies. At the fixed point, such a duality interface should correspond to a superconformal interface in
the 5d SCFT with vanishing a and c anomalies.
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which we will define as BN [En] and BD[En] respectively.36 In the IR gauge theory, these
boundary conditions preserve the U(1)I ×U(n− 1) ⊂ U(1)I × SO(2n− 2) subgroup of the
bulk symmetry. It would be interesting to understand the symmetry enhancement in the
presence of boundaries.

The boundary ’t Hooft anomalies for BN [En] and BD[En] are matched by those of the
gaugino λ in the IR gauge theory. Since λ2 has U(1)R charge −1 and transforms in the
adjoint representation of the SU(2) gauge group, from table 1, we find

I6(BN [V ]) = 1
4c1(F )3 − 1

16p1(T )c1(F ) + c1(F )c2(FG) ,

I6(BD[V ]) = − 1
4c1(F )3 + 1

16p1(T )c1(F )− c1(F )c2(FG) .
(4.16)

Note the mixed anomaly between U(1)R and the G = SU(2) gauge symmetry.
For the Dirichlet boundary condition BD[En], the bulk gauge symmetry SU(2) becomes

an emergent global symmetry on the boundary, but it cannot mix with the U(1)R due to
its nonabelian nature. Consequently the ’t Hooft anomalies for the superconformal U(1)R
can be read off from (4.16),

kRRR = kR = −3
2 ,

(4.17)

and the boundary conformal anomalies follow from (3.2),

a(BD[En]) = − 9
32 , c(BD[En]) = − 3

16 .
(4.18)

In the case of the Neumann boundary condition BN [En], since the SU(2) gauge fields
are dynamical on the boundary Σ, a mixed U(1)R-SU(2) anomaly would break the U(1)R
symmetry explicitly. We can remedy this by introducing local degrees of freedom on the
boundary. For example, we can couple the bare Neumann boundary condition BN [En]
to 2Nf 4d chiral multiplets QI that transform as doublets (with indices I = 1, 2) under
the SU(2) gauge group, and denote the modified boundary condition as BNfN [En].37 These
chiral multiplets provide an additional U(2Nf ) flavor symmetry from locally conserved
currents on Σ and the U(1) factor can mix with the U(1)R symmetry of the boundary. The
superconformal U(1)R symmetry of BNfN [En] is the unique combination that is free from a
U(1)R-SU(2) anomaly (see table 1), which requires assigning the following R-charge to the
chiral multiplets,

R(QI) = 1− 1
Nf

. (4.19)

Correspondingly the U(1)R ’t Hooft anomalies are

kRRR = 3
2 −

2
N2
f

, kR = 3
2 − 2 , (4.20)

36This is strongly supported by a nontrivial superconformal index on S1 ×HS4 which counts boundary
local operators in protected representations of the boundary superconformal symmetry su(2, 2|1) [98].

37The number of boundary fundamental chiral multiplets is chosen to be even to avoid the global Witten
anomaly [99]. Relatedly the SU(2) gauge theory in 5d has a discrete theta angle θ = 0, 1 due to π4(SU(2)) =
Z2. Here this theta angle is trivial θ = 0 for the En theories. If θ = 1, there is a nontrivial inflow of the
Witten anomaly to the boundary which must be cancelled for a Neumann type boundary condition (e.g.
by introducing one more fundamental chiral multiplet on the boundary).
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and the defect conformal anomalies are

a(BNfN [En]) = 15
32 −

9
162
f

, c(BNfN [En]) = 1
2 −

9
16N2

f

. (4.21)

Note that in the above we have assumed the absence of accidental U(1) symmetries that can
also mix with the U(1)R symmetry. One way to detect such phenomena is to check whether
unitarity bounds are obeyed by operators with the putative R-symmetry (4.19) [100, 101].
Here the meson operator M = εIJQIQJ is a gauge invariant scalar chiral primary operator
on the boundary whose conformal dimension is fixed by its R-charge,

∆(M) = 3
2R(M) = 3R(Q) = 3− 3

Nf
. (4.22)

This is consistent with the 4d unitarity boundary ∆ ≥ 1 for Nf ≥ 2, which is a necessary
condition for our results (4.21) to be physically meaningful.

Instead of adding fundamental 4d chiral multiplets on the boundary, one can also
introduce other matter (or more generally a 4d N = 1 SCFT with U(1) global symmetries)
to cancel the mixed U(1)R -SU(2) anomaly. In the presence of multiple U(1) symmetries
free from this mixed anomaly, the boundary a-maximization procedure will be needed to
pick out the superconformal U(1)R symmetry (see the next section for a simple example).
We leave this exercise to the interested readers.

4.1.4 Boundary SQCD

The N = 1 supersymmetric QCD (SQCD) is described by an N = 1 SU(N) super-Yang-
Mills theory coupled to Nf pairs of chiral multiplets (QI , Q̃I) with I = 1, 2, . . . , N trans-
forming in the fundamental and anti-fundamental representations of SU(N). When the
number of flavors lie in the conformal window 3

2N ≤ Nf ≤ 3N , the SQCD is expected to
flow to a 4d N = 1 SCFT [100, 101]. Here we shall describe a boundary analog of the
SQCD theories where the dynamical gauge field propagates in a 5d bulk, which provides
candidates of superconformal boundary conditions for the bulk SCFT in the UV.

The relevant bulk theory is described by a 5d N = 1 SU(N)κ gauge theory with
N ≥ 3 and Chern-Simons level κ. For 0 ≤ κ ≤ N , the UV completion is expected to
be a 5d SCFT TN,κ with U(1)I global symmetry and the IR gauge theory arises from a
symmetric mass deformation coupled to the U(1)I current multiplet [91].38 The U(1)I
symmetry is realized by the instanton current in the IR. Let us consider a supersymmetric
boundary condition for TN,κ by assigning Neumann boundary condition BN [V ] (see (4.15))
to the 5d SU(N) vector multiplet (which emerge in the IR gauge theory description). The
5d gaugino contributes the following boundary anomalies (from table 1)

I6(BN [V ]) =N2 − 1
12 c1(F )3 − N2 − 1

48 p1(T )c1(F ) + N

2 c1(F )c2(FSU(N)) + κ

6 c3(FSU(N)) .
(4.23)

38For special Chern-Simons level κ = N , the SCFT TN,κ develops an enhanced SU(2) flavor symmetry
from instanton operators charged under U(1)I [95, 102].
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Since the gauge fields are dynamical on the boundary Σ, we need to add additional 4d
matter to cancel the SU(N) gauge anomalies as well as the mixed U(1)R-SU(N) anomalies.
One way to achieve this is to couple BN [V ] to Nf chiral multiplets QI and Nf + κ chiral
multiplets Q̃I transforming in the fundamental and anti-fundamental representations of
SU(N) respectively. Note that a novelty compared to the 4d SQCD is unequal number of
“quarks” and “anti-quarks” here, where the offset is due to the anomaly inflow from the
5d SU(N)κ Chern-Simons coupling. We refer to this boundary field theory as boundary
SQCD and assume that it descends from a superconformal boundary condition BNfN [TN,k]
for the 5d SCFT TN,k upon the supersymmetric U(1)I mass deformation. Below we will
study the boundary conformal anomalies for BNfN [TN,k].

The boundary matter has U(Nf ) × U(Nf + κ) global symmetry. In particular, it
contains U(1)A axial and U(1)B baryon symmetries, familiar in the study of 4d SQCDs [100,
101]. We will denote their generators by RA and RB respectively. The chiral multiplets
have charges

RA(Q) = RA(Q̃) = 1 , RB(Q) = −RB(Q̃) = 1 . (4.24)

The U(1)R symmetry relevant for the superconformal boundary BNfN [TN,k], is generally a
combination with parameters tA and tB,

Rt = R5d + tARA + tBRB (4.25)

where R5d is the R-symmetry inherited from the 5d bulk under which Q and Q̃ are
uncharged.

In order for the corresponding R-current to be conserved in the presence of dynamical
SU(N) gauge fields, we demand a vanishing mixed U(1)R-SU(N) anomaly,

N

2 + Nf

2 (−1 + tA + tB) + Nf + κ

2 (−1− tA + tB) = 0 . (4.26)

The ’t Hooft anomalies for the candidate U(1)R-symmetry follow from (4.23) and the
boundary matter content,

kRtRtRt = N2 − 1
2 +Nf (−1 + tA + tB)3 + (Nf + κ)(−1− tA + tB)3 ,

kRt = N2 − 1
2 +Nf (−1 + tA + tB) + (Nf + κ)(−1− tA + tB) = N2 − 2N − 1

2 .

(4.27)
Carrying out the boundary a-maximization subject to the constraint (4.26), we find that
the trial anomaly a(t) is maximized at

tB = 0, tA = 1− N

κ+ 2Nf
, (4.28)

and the boundary conformal anomalies are

a(BNfN [TN,k]) =3(N2 +N − 1)
32 − 9N3

32(κ+ 2Nf )2 ,

c(BNfN [TN,k]) =2N2 + 5N − 2
32 − 9N3

32(κ+ 2Nf )2 .

(4.29)
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Once again, unitarity bound on the boundary meson operator M = QIQ̃
I requires

∆(M) = 3− 3N
κ+ 2Nf

≥ 1 , (4.30)

thus we should choose Nf such that

2Nf ≥
3N
2 − κ .

(4.31)

It would be interesting to understand the fate of the boundary SQCD beyond this range.
We leave this to future investigation.

4.2 Codimension-two defects in 6d SCFTs

Let us now discuss p = 4-dimensional superconformal defects in 6d SCFTs. In 6d N =
(1, 0) SCFTs, they correspond to half-BPS codimension-two defects preserving N = 1
superconformal symmetry. For 6d N = (2, 0) SCFTs, both half-BPS and quarter-BPS
codimension-two defects are present, preserving 4d N = 2 and N = 1 superconformal
symmetries respectively. They play important roles in the class S construction of N = 2
SCFTs in four dimensions [35, 37] as well as the N = 1 generalizations [103–105].

Up to mixing with U(1) symmetries localized on the defect volume Σ, the U(1)R
symmetry of the codimension-two defect is identified with the following combination of
symmetry generators in the 6d N = (1, 0) superconformal algebra osp(6∗|2),

R = 2
3(2R6d −M⊥) , (4.32)

where R6d is the Cartan element of the 6d SU(2)R symmetry normalized to have integer
eigenvalues, and M⊥ is the rotation generator in the transverse plane with eigenvalues ±1

2
when acting on spacetime spinors.

4.2.1 Codimension-two defects in free theories

In the free 6d SCFT described by a free N = (1, 0) hypermultiplet Φ with holomorphic
scalars (X,Y ) of scaling dimension ∆ = 2, a half-BPS superconformal codimension-two
defect can be defined by a scale invariant singularity of the form39

X(xa, w) ∼ αX
w2 , Y (xa, w) ∼ αY

w2 , (4.33)

where w is the complex coordinate for the transverse directions to the defect. The singu-
larity is clearly invariant under the U(1)R symmetry (4.32). Similar defects can be defined
in the free N = (2, 0) SCFT using the hypermultiplet within the N = (2, 0) tensor multi-
plet. We note that the singularity (4.33) implies the existence of a dimension zero operator
on the defect worldvolume Σ that carries nontrivial spin under the transverse rotation.
This is somewhat unconventional and indicates that the naive cluster decomposition fails
on Σ [107].

39This is an obvious generalization of the construction for 3d N = 4 hypermultiplet in [106] to higher
dimensions.
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More generally, codimension-two defects in free theories can be classified by studying
boundary conditions for the conformally coupled free fields on AdS5 × S1 with metric

ds2 = R2du
2 + dz2

a

u2 +R2dθ2 , (4.34)

which is related to flat space by a Weyl transformation. For free scalar fields this analysis
was done in [26, 27] and the conformal a-anomalies for the Dirichlet and Neumann bound-
ary conditions were computed using the heat kernel method. Nontrivial superconformal
codimension-two defects in the free 6d SCFTs correspond to supersymmetric completions
of these boundary conditions on AdS5×S1. In these cases, the conformal anomalies follow
from the ’t Hooft anomalies as in (3.2), which can be determined by inflow from the Kaluza-
Klein tower of fermions and two-forms (from the 6d tensor multiplet) upon reduction on
S1. This setup can also be extended to interacting 6d SCFTs (see for example [108]). We
leave the study of such supersymmetric boundary conditions on AdS5×S1 to future work.

4.2.2 Punctures in interacting SCFTs

More interesting defects arise in interacting 6d SCFTs. Despite the lack of perturbative
Lagrangians for such theories, the existence of various defects can be inferred by numer-
ous constructions in string/M/F-theory, and by compactifying the 6d theory on compact
manifolds and reducing to lower dimensional theories where a Lagrangian can become
available. The most well-studied examples are half-BPS codimension-two defects in the
6d (2, 0) SCFTs labelled by an ADE Lie algebra g [35, 37, 109]. The defects are charac-
terized by homomorphisms ϕ : su(2) → g, and so we will refer to them as Dϕ[g]. When
the 6d SCFT is compactified on a Riemann surface C with suitable twisting to preserve an
su(2, 2|2) subalgebra (which contains (3.1)). These codimension-two defects can be added
without further breaking the symmetry. They introduce punctures on the Riemann surface
C and contribute intimately to various aspects of the resulting 4d theory. In particular, the
codimension-two defects are crucial to determining the ’t Hooft and conformal anomalies
of the 4d SCFTs (see [109] for an extensive review). However a proper characterization of
the conformal anomalies for defects was missing in these works, and the relations between
the defect conformal and ’t Hooft anomalies (3.2) were assumed. Furthermore the defect
’t Hooft anomalies were mostly inferred from consistency checks within the class S con-
struction, and a direct derivation for the defect ’t Hooft anomalies was not available until
recently [110–113].

From the discussions in the previous sections, we now understand precisely what such
defect anomalies mean in terms of the DCFT data (e.g. in (1.3)). They are physically
different from the anomalies of standalone CFTs. For example the classes of anomalies
are much richer and conventional unitarity constraints on the anomalies no longer hold
(a and c can be negative in unitary DCFTs).40 Yet the defect anomalies still share many

40The codimension-two defect also hosts nontrivial extrinsic conformal anomalies in addition to the a-
and c-anomalies that depend on the extrinsic curvature. The conventional class S setup involves a direct
product geometry M6 = M4 × C for the 6d theory and consequently such extrinsic anomalies do not
contribute. They will be important if we were to generalize the class S setup by including a nontrivial
warp factor.
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features that we are familiar with in the case of standalone CFTs, such as a monotonicity
a-theorem which we have proved in section 2. Furthermore we have also established firmly
the anomaly multiplet relation (3.2) and the a-maximization principle (see theorem 3) for
these selected defect anomalies with superconformal symmetry.

In the following we will simply collect the recent results for defect ’t Hooft anoma-
lies from [113], and restate the results, which follow from (3.2), as the defect conformal
anomalies defined in (1.3).

We will focus on the case g = AN−1 for which the work of [113] applies. Here ρ is
equivalent to a partition [ni] of N with N = n1 + · · ·+ nk and ni ≥ ni+1 > 0. The defect
D[ni][AN−1] can be engineered by a single M5 brane intersecting N parallel M5 branes in
a particular coincident limit. Alternatively, the same defect is described by N M5 branes
probing a Taub-NUT space TNk with k-centers that collide in a singular limit [35, 37, 114].
Upon compactifying the 6d (2, 0) SCFT on T 2 which gives rise to the 4d N = 4 super-
Yang-Mills theory, this defect becomes a Gukov-Witten surface operator which has explicit
Lagrangian descriptions [115].

The authors of [113] determined the defect ’t Hooft anomalies of D[ni][AN−1] from
inflow in M-theory using the second description of the defect above. The results were given
in a different parametrization of the anomaly polynomial I6 with

kRRR = 2
27(nv − nh) + 8

9nv , kR = 2
3(nv − nh) , (4.35)

and for the defect D[ni][AN−1],41

(nv − nh)([ni]) = 1
2

(
N −

n1∑
i=1

s2
i

)
,

nv([ni]) = 1
6N(N + 1)(4N − 1)−

n1∑
i=1

(
N2 −

(
i∑

j=1
si

)2)
.

(4.36)

Here [si] with 1 ≤ i ≤ n1 is the dual (transpose) partition of [ni]. The defect a- and
c-anomalies follow from (3.2), and coincide with their expected contributions to the 4d
N = 2 SCFT in the class S construction [109].42

The formula (4.36) has a natural generalization for general half-BPS codimension-two
defects of the type Dϕ[g] given in [109], leading to the following expressions for the defect
conformal anomalies,

a(Dϕ[g]) = 2ρg · ρg − ρg · h+ 5
48dim g1 + 1

48(rank g− dim g0) ,

c(Dϕ[g]) = 2ρg · ρg − ρg · h+ 1
12dim g1 + 1

24(rank g− dim g0) .
(4.37)

Here ρg is the Weyl vector for g, h = ϕ(σ3), and g is decomposed with respect to the
eigenvalues of [h, ·] as

g =
⊕
j∈Z

gj . (4.38)

41This comes from taking the difference between the “inflow” contribution and the “non-puncture” con-
tribution from equations (6.2) in [113] and simplifying as explained therein.

42Note that with the enhanced N = 2 superconformal symmetry on the defect, a-maximization is trivial.
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To prove the formulas (4.37) for codimension-two defects in general (2, 0) SCFTs requires
a derivation of the corresponding defect ’t Hooft anomalies, by extending the work of [113]
to cases with an M-theory orientifold (for g = Dn), and by studying inflow in IIB string
theory with ADE singularities [116].

Before ending this section, we note that beyond the family of the Dϕ[g] defects which
define regular (tame) punctures in the class S setup, the 6d (2, 0) SCFTs admit a much
larger zoo of superconformal codimension-two defects that give rise to irregular (wild)
punctures where the superconformal symmetry is emergent in the IR [37, 117–122], as
well as the twisted defects (punctures) which are attached to codimension-one topological
defects generating the outer-automorphism symmetry of certain (2, 0) theories [109, 123–
129]. More recently, codimension-two defects in 6d N = (1, 0) SCFTs including the E-
string theory have also been analyzed [130–135]. The results about their contributions to
the conformal anomalies of the 4d SCFT in a generalized class S setup should again be
interpreted as defect conformal anomalies in the sense explained here.

In complementary to the rich landscape of examples we have for codimension-two
defects in 6d SCFTs, it would be interesting to understand and identify universal bounds
on their physical data, much like what we have done in the case of standalone 4d SCFTs,
using the conformal bootstrap approach (see [136] for a review). For example, one may
wonder if there is notion of minimal defect that minimizes certain ’t Hooft or conformal
anomalies in a given bulk SCFT. Since such defects can be used to engineer 4d SCFTs
upon compactification, this information will also be relevant for the search of minimal 4d
SCFTs that have been explored in [137–141].

5 Discussions

In this paper, we have analyzed the anomalies of conformal defects (or DCFTs) of dimension
p = 4 in d-dimensional CFTs. We proved a defect analog of the 4d a-theorem which
states that the defect conformal a-anomaly must decrease along unitary defect RG flows
connecting UV and IR DCFTs. For conformal defects that preserve the minimal amount of
supersymmetry, we established the anomaly multiplet relations between defect conformal a-
and c-anomalies, and the ’t Hooft anomalies involving the superconformal U(1)R symmetry.
The general ’t Hooft anomalies are determined by inflow from the bulk CFT, and the U(1)R
symmetry is identified by the defect a-maximization principle which we have also derived.
Together they provide a non-perturbative pathway to the conformal anomalies of strongly
coupled defects. To illustrate our methods, we examined a number of examples of defects
in 5d and 6d SCFTs. Here we conclude by discussing a few future directions beyond those
mentioned in the main text.

Defect correlation functions and defect chiral algebras. Conformal symmetry
places stringent constraints on the correlation functions of local operators. In conven-
tional CFTs in dimension d ≥ 4, the two- and three-point functions of the stress-tensor Tab
is completely fixed by conformal symmetry and Ward identities, up to three constants [74],

〈Tab(z)Tcd(0)〉 = c〈〈Tab(z)Tcd(0)〉〉 ,
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〈Tab(z1)Tcd(z2)Tef (0)〉 = c〈〈Tab(z1)Tcd(z2)Tef (0)〉〉c + a〈〈Tab(z1)Tcd(z2)Tef (0)〉〉a

+ b〈〈Tab(z1)Tcd(z2)Tef (0)〉〉b . (5.1)

Here 〈〈·〉〉 denotes theory independent conformal structures. For d = 4, the coefficients a
and c are nothing but the conformal anomalies defined in (1.1) for a 4d CFT.

In the presence of a p-dimensional conformal defect D, the correlators of the bulk stress-
tensor Tµν are constrained by the SO(p, 2) conformal symmetry and the d-dimensional
Ward identities. Following the logic of [74], we expect for p = 4, the defect c-anomaly
to be determined by the defect two-point function 〈Tµν(x1)Tρσ(x2)〉D, and the defect a-
anomaly by the three-point function 〈Tµν(x1)Tρσ(x2)Tλζ(x3)〉D. However because of the
extra transverse directions, there are now additional conformally invariant tensor struc-
tures and furthermore their coefficients are general functions of invariant cross-ratios. The
structure of the defect two-point function 〈Tµν(x1)Tρσ(x2)〉D has been worked in [142–145].
If D is a conformal boundary (i.e. d = p+ 1), this is determined by a single function f(ξ)
of the invariant cross-ratio ξ,

ξ ≡ (x1 − x2)2

y1y2
. (5.2)

For p = 4, the conformal c-anomaly should be determined by (a limit of) f(ξ) but the
explicit relation is still to be derived.43 For defects of higher codimensions, there is one
more independent cross-ratio

ξ′ ≡ y1 · y2
|y1||y2|

, (5.3)

and the number of independent tensor structures is two for d = p + 2 and seven for
d − p > 2 [145]. The defect three-point function 〈Tµν(x1)Tρσ(x2)Tλζ(x3)〉D is much more
complicated, with six cross-ratios in general and many tensor structures [147].

Supersymmetry are known to produce new (differential) constraints on these tensor
structures. It would be interesting to explore the structure of stress-tensor multiplet corre-
lation functions for superconformal defects. Furthermore, when sufficient supersymmetry
is preserved, it is possible to define a simpler but nontrivial subsector of the full operator
algebra in the DCFT that is closed under OPE. In particular, in the case of a half-BPS
codimension-two superconformal defect in the 6d (2, 0) SCFT, the chiral algebra defined
in [148] has a natural extension to defect operators with respect to the su(2, 2|2) defect
superconformal symmetry. The resulting chiral algebras will be of a different nature. For
example the absence of a local stress-tensor multiplet on the defect implies that the cor-
responding chiral algebra no longer contains a Virasoro subalgebra. Furthermore the bulk
operators in the 6d (2, 0) SCFT also contain a chiral algebra subsector defined with re-
spect to a different D(2, 2) subalgebra of the 6d superconformal algebra osp(8∗|4) [149].
The interplay between these protected subsectors of bulk and defect operators will provide
a wealth of information in the N = 2 supersymmetric DCFTs. We hope to report on this
in the future.

Bounds on defect conformal anomalies. As we have emphasized in the main text,
despite sharing many features of the conformal anomalies of standalone CFTs, the defect

43One such relation was proposed in [87] but a counter-example appeared in [146].
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conformal anomalies are physically distinct. In particular, in a unitary DCFT, both the
a- and c-anomalies can be negative, and no lower bounds have been identified. In light
of these observations, perhaps we should look for bounds on the ratio a

c of the defect
conformal anomalies.

For conventional CFTs, such bounds arise naturally in studying positivity constraints
of the energy correlators in a normalized state created by local operators, and are known
as the conformal collider bounds [150] (see also [151]). For general unitary CFTs, the
conformal anomalies are constrained by

31
18 ≥

a

c
≥ 1

3 .
(5.4)

If the CFT is superconformal, a stronger bound is achieved, depending on the amount of
supersymmetry preserved,

N = 1 : 3
2 ≥

a

c
≥ 1

2 , N = 2 : 5
4 ≥

a

c
≥ 1

2 .
(5.5)

In all cases, the upper and lower bounds are saturated by free vector and scalar theories
respectively, with appropriate supersymmetric completions. It would be very interesting to
explore a generalization of the collider bounds in [150] to cases with conformal boundaries
or more general conformal defects, by studying positivity constraints on energy correla-
tors in the presence of defect excitations. We emphasize that the simplest superconformal
boundary condition for a 5d hypermultiplet has a vanishing defect c-anomaly (see sec-
tion 4.1.2). Therefore in order for such bounds to exist in d = 5, extra restrictions on the
defect (boundary) need to be imposed. We have not observed similar issues in d = 6.
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A Boundary four-point amplitude in free scalar theory

Here we study the large m expansion of the one-loop Feynman diagram that computes the
four-point function of Φ2(z, 0) on the Neumann boundary of a free scalar field in d = 5,

I1234 =
∫

d4k

(2π)4
1

(|k|+m)(|k + p1|+m)(|k + p1 + p2|+m)(|k − p4|+m) .
(A.1)

We start by introducing Schwinger parameters for the propagators,

I1234 =
∫

d4k

(2π)4

∫ 4∏
i=1

dsie
−m
∑

i
sie−(s1|k|+s2|k+p1|+s3|k+p1+p2|+s4|k−p4|) . (A.2)
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Next we use the Laplace transform

∫ ∞
0

dt

2
√
π

se−
s2
4t e−tk

2

t3/2
= e−s|k| , (A.3)

and obtain

I1234 =
∫

d4k

(2π)4

∫ 4∏
i=1

dsie
−m
∑

i
si

×
∫ 4∏

i=1

dti
2
√
π
e−(t1k2+t2|k+p1|2+t3|k+p1+p2|2+t4|k−p4|2)

4∏
i=1

sie
−
s2
i

4ti

t
3/2
i

.

(A.4)

Performing the k integral, this gives

I1234 = 1
28π6

∫ 4∏
i=1

dsie
−m
∑

i
si

∫ 4∏
i=1

dti

4∏
i=1

sie
−
s2
i

4ti

t
3/2
i

π2

(
∑
i ti)2 e

t1t3s+t2t4t∑
i
ti , (A.5)

after Wick rotating to Minkowski signature and imposing the “on-shell” condition p2
i = 0.

Let us now expand I1234 in the large m limit. We are particularly interested in the
four-derivative term which takes the following form as is clear from the symmetry of (A.5),

I1234 ⊃
α1(s2 + t2) + α2st

m4 . (A.6)

Expanding the last exponential factor in (A.5), we obtain

α1 = 1
2(4π)4

∫ 4∏
i=1

dsie
−
∑

i
si

∫ 4∏
i=1

dti

4∏
i=1

sie
−
s2
i

4ti

t
3/2
i

(t1t3)2

(
∑
i ti)4 .

(A.7)

Performing a change of variables si → tisi, this becomes

α1 = 1
2(4π)4

∫ ∞
0

4∏
i=1

dsisi

∫ ∞
0

4∏
i=1

dti

4∏
i=1

e−
ti
4 (s2i+4si)t

1
2
i

(t1t3)2

(
∑
i ti)4 . (A.8)

The ti integral can be simplified using the following integration identity, from 4.638 in [152]
(we have corrected a typo there),

∫ ∞
0

n∏
i=1

dtie
−
∑

i
qiti

∏
i t
pi−1
i

(
∑
i ti)r

=
∏
i Γ(pi)
Γ(r)

∫ ∞
0

dx
xr−1∏

i(x+ qi)pi
, (A.9)

with qi, pi, r > 0 and
∑
i pi > r.

Applying (A.9) to (A.8), we find

α1 = 1
2(4π)4

∫ ∞
0

4∏
i=1

dsisi

∫ ∞
0
dx

Γ
(

7
2

)2
Γ
(

3
2

)2

Γ(4)
x3∏2

i=1(1
4s

2
i + si + x)

7
2
∏4
i=3(1

4s
2
i + si + x)

3
2
.

(A.10)
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This last integral can be evaluated in Mathematica by first integrating si and then x, giving

α1 = 61
645120π2 . (A.11)

A similar computation also determines α2,

α2 = 1
107520π2 . (A.12)

Combining with the contributions from the other two one-loop diagrams I1342 and I1423,
we find that the full four-point amplitude at the fourth derivative order is given by

I1234 + I1342 + I1423 ⊃
17

92160π2
s2 + t2 + u2

m4 . (A.13)

B Supersymmetric boundaries for 5d N = 1 gauge theories

B.1 5d spinor conventions

The 5d Gamma matrices Γµ satisfy the Clifford algebra

(Γµ)αγ(Γν)γβ + (Γν)αγ(Γµ)γβ = 2ηµνδαβ , (B.1)

where α, β = 1, 2, 3, 4 are the 5d Dirac spinor indices. Their transpose Γtµ and conjugate
Γ∗µ obey the same algebra and are related to Γµ by

Γtµ = CγµC
−1 , −Γ∗µ = BΓµB−1 . (B.2)

Here C and B are charge conjugation matrices related by C = BΓ0 and satisfy

Cαβ = −Cβα , (C−1)αβ = −(C∗)αβ ≡ Cαβ . (B.3)

The symplectic-Majorana (SM) condition on a 5d spinor reads

(Ψα
A)∗ = εABCαβΨβ

B , (B.4)

with the convention ε12 = ε21 = 1.

B.2 Hypermultiplet

A 5d N = 1 hypermultiplet consists of four real scalars ΦiA, a SM fermion ΨA and four
auxiliary real scalars F iA. Here i = 1, 2 and A = 1, 2 are the SU(2)R and SU(2)F dou-
blet indices respectively. These indices are lowered and raised by the invariant tensors
εij , ε

ij , εAB, ε
AB satisfying εijεjk = δik and εABεBC = δAC . The fields are subject to the

reality conditions

(ΦiA)∗ = εABεIJΦjB , (ΨA
α )∗ = εABC

αβΨB
β , (F iA)∗ = εABεIJF

jB . (B.5)

The on-shell supersymmetry transformations are

δξΦiA = −2iξiΨA, δξΨA = Γµξi∂µΦiA , (B.6)

where ξiα is a SM spinor corresponding to the eight supercharges.
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We identity the 4d N = 1 superalgebra by the following projection

ξ = P+ξ
1 , (B.7)

where P± ≡ 1
2(1 ± Γy). Then it’s clear from (B.6) that the hypermultiplet splits into two

chiral multiplets closed under δξ separately,

X = (Φ11, P+Ψ1, ∂yΦ21), Y = (Φ12, P+Ψ2, ∂yΦ22) . (B.8)

Note that ∂yΦ21 and ∂yΦ22 coincide with the on-shell auxiliary field F 21 and F 22 re-
spectively. This comes from the effective 4d superpotential

∫
dy
∫
d2θX∂yY from the 5d

Lagrangian of a hypermultiplet on R4,1
+ [84].

The consistent boundary conditions preserving boundary N = 1 supersymmetry
amounts to setting a linear combination of X and Y to zero identically. They define
the BX [Φ] and BY [Φ] boundary conditions (and their rotated versions) in section 4.1.2.

B.3 Vector multiplet

A 5d N = 1 vector multiplet V contains a real scalar σ, a SM fermion λiα, a gauge field
Aµ and three auxiliary scalars Dij with i, j indices symmetrized and satisfying

(Dij)∗ = Dij = εikεjlDkl . (B.9)

The supercharges act on the vector multiplet fields as

δξAµ = iξiγµλ
i ,

δξσ = iξiλ
i ,

δξλ
i = − 1

2ΓµνξiFµν + ΓµξiDµσ + ξiD
ij ,

δξD
ij = − 2iξ(i /Dλj) + 2[σ, ξ(iλj)] .

(B.10)

Under the 4d N = 1 subalgebra generated by δξ from (B.7), the vector multiplet splits
into a chiral multiplet and a vector multiplet

v = (Aa, P−λ2, D12), φ = (σ + iA5, P+λ
2, D11, D22) . (B.11)

The consistent boundary conditions preserving boundary N = 1 supersymmetry corre-
spond to setting either v or φ to zero, which defines the supersymmetric Dirichlet and
Neumann boundary conditions of the 5d N = 1 vector multiplet V ,

BN [V ] : Fay = σ + iAy = P+λ
2 = 0 ,

BD[V ] : Aa = Dyφ = P−λ
2 = 0 .

(B.12)
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