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1 Introduction

Spin structures on (pseudo-)Riemannian manifolds have a wide range of applications in
theoretical physics, most importantly in the study of any QFT containing spinors. In par-
ticular, the spin structure determines the periodicity of spinors around non-trivial loops
in the geometry. For this reason, a careful choice of the spin bundle constitutes a funda-
mental part of the defining data of any QFT. For instance, in 2d CFTs the choice of spin
structure distinguishes between the Neveu-Schwarz and Ramond sectors, while in string
theory, summing over the spin structures amounts to performing the GSO projection [1].
Similarly, in three-dimensional spin TQFTs, the partition function depends on the choice
of spin structure, hence a careful treatment of the various spin structures is essential in the
study of topological phases of matter, see for example [2–5].

Spin structures play an important role also in supergravity. For example, as discussed
in [6], the choice of spin structure for the KK vacuum R1,3 × S1 determines its non-
perturbative instability if there are elementary fermions in the gravitational theory. This
suggests that in the context of AdS/CFT the choice of spin structure can have significant
implications for the dual field theory. Our goal here is to discuss a particular situation in
supergravity where the choice of spin structure has important implications in the context
of AdS4/CFT3 holography.
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The setup we consider is the well-known AdS4 × S7 solution of 11d supergravity,
supported by N units of flux. This background can be obtained as the near horizon limit
of the supergravity solution describing N coincident M2-branes in C4. This solution is
maximally supersymmetric and is holographically dual to the ABJM theory, which is a 3d
N = 8 SCFT describing a U(N)× U(N) gauge theory with Chern-Simons level k = 1 [7].
This setup admits a simple generalization in which the M2-branes probe the space C4/Zk
where the orbifold action acts with an equal phase e2πi/k on all four complex coordinates
of C4, where k is a positive integer. The near horizon limit of the backreacted solution in
this case is of the form AdS4×S7/Zk and since the orbifold action is free the supergravity
solution is smooth. As discussed in [8], and summarized below in section 2 for odd values
of k > 1 there is only one choice of spin structure on S7/Zk. The spin structure is
compatible with the 6 out of the 8 Killing spinors on S7 and we therefore conclude that the
AdS4×S7/Zk 11d supergravity background is dual to a 3d SCFT with N = 6. Indeed, this
is the well known U(N)×U(N) ABJM theory at level k which is known to preserve N = 6
supersymmetry for odd k > 1. The situation is more interesting for even values of k. In
this case there are two distinct spin structures on S7/Zk which we refer to as periodic and
antiperiodic, depending on the periodicity of the fermions along the non-trivial loop in the
geometry. For all even values of k > 4 the periodic spin structure preserves 6 out of the 8
Killing spinors on S7 and the dual SCFT is the N = 6 U(N)×U(N) ABJM theory at level
k. For even k > 4 the antiperiodic spin structure does not preserve any Killing spinors and
therefore these AdS4 × S7/Zk backgrounds should be dual to non-supersymmetric CFTs.
In the absence of supersymmetry, and in view of the conjecture in [9], it is unclear whether
this supergravity background is stable. We therefore do not discuss this situation further.
For k = 2 or k = 4 both spin structures preserve some number of the Killing spinors on S7.
When k = 2, we have S7/Z2 = RP7 for which both spin structures preserve the maximal
number of Killing spinors [10]. In this case we expect that the AdS4× S7/Z2 supergravity
solution for both choices of spin structure is dual to the U(N) × U(N) ABJM theory at
level k = 2 which is known to exhibit supersymmetry enhancement to N = 8 due to the
presence of light monopole operators [11]. The case k = 4 is more subtle. On S7/Z4
the periodic spin structure preserves 6 invariant Killing spinors while the antiperiodic one
preserves 2. Put differently, the lens space S7/Z4 preserves 8 invariant Killing spinors,
but 2 of them live in a different spin bundle from the other 6. This discussion therefore
suggests that the AdS4 × S7/Z4 supergravity solution is dual to the N = 6 U(N)×U(N)
ABJM theory at CS level k = 4 when we choose the periodic spin structure and is dual to
some other N = 2 SCFT when we choose the antiperiodic one.

The fact that there are two distinct SCFTs dual to the same AdS4×S7/Z4 solution of
11d supergravity appears somewhat exotic and deserves further scrutiny. To understand
the properties of these two SCFTs better we study the spectrum of masses for the KK
modes on AdS4 × S7/Z4 for both choices of spin structure. The holographic dictionary
dictates that these modes should be dual to single trace operators in the dual SCFT which
should organize in superconformal multiplets. To find the explicit KK spectrum we utilize
the well known result for the spectrum of 11d supergravity excitations around AdS4 × S7,
see [12, 13], and then use the Z4 action to project onto the invariant modes. The bosonic
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modes that survive this projection are the same for both choices of spin structures. The
fermionic modes are however different. For the positive spin structure we show that all
the bosonic and fermionic modes organize into N = 6 superconformal multiplets and lead
to the expected spectrum of single trace operators for the N = 6 U(N) × U(N) ABJM
theory at CS level k = 4. For the antiperiodic spin structure we find that all KK modes
organize into N = 2 superconformal multiplets and furthermore find that the multiplets
fall into representations of an SU(4) flavor symmetry. This is compatible with the fact that
the Z4 orbifold action preserves an SU(4) subgroup of SO(8) which furthermore leaves the
two Killing spinors of the antiperiodic spin structure invariant. Notably, we find that the
spectrum of operators corresponding to the KK modes in this N = 2 SCFT contains both
short and long multiplets. This analysis suggests that the new N = 2 SCFT is very closely
related to the N = 6 U(N)×U(N) ABJM theory at level k, at least when it comes to the
spectrum of operators dual to the supergravity KK modes. The two theories share identical
spectrum of bosonic operators but they have different fermionic operators which is ulti-
mately responsible for the different amount of supersymmetry preserved by the two models.

There are many possible orbifolds of AdS4 × S7 and it is natural to wonder if the
dichotomy of spin structures we discussed above is present also in other examples. Indeed,
as discussed in [8, 14–16] there are numerous other situations in which orbifolds of S7 allow
for two spin structures, each of which preserves some of the Killing spinors on S7. We
illustrate the rich structure of these orbifolds by studying some examples of AdS4×S7/Zk
smooth orbifolds, i.e. lens spaces, where the Zk action differs from the one above and
preserves only a SU(2) × SU(2) × U(1)2 subgroup of SO(8). For specific choices of the
orbifold action one again finds that there are two possible spin structures. One of them
leads to an AdS4×S7/Zk supergravity solution dual to a 3d N = 4 SCFT while the other
should be dual to a 3d N = 2 theory. We describe some of these examples in detail and
show that the KK spectrum of 11d supergravity is indeed compatible with the existence of
such pairs of SCFTs with identical bosonic spectra but different amount of supersymmetry.1

In the remainder of this paper we study the S7/Z4 example in more detail and also
discuss some generalizations to other lens spaces. In section 2 we start with a brief intro-
duction to spin structures and in particular describe the possible spin structures of S7/Zk.
We proceed in section 3 with a discussion of the KK spectrum of these 11d supergravity
backgrounds and organize it in superconformal multiplets for both choices of spin structure
that preserve some amount of supersymmetry. In section 4 we discuss some aspects of the
dual SCFT and several interesting questions for future work. In the three appendices we
collect our conventions together with some additional group theory and superconformal
representation theory details and examples.

1We note that the choice of spin structure of these 11d supergravity background examples should be
considered as a fixed “boundary condition” in the AdS/CFT context. In particular, we believe that there
is no necessity to sum over spin structures.
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2 Spin structures and supersymmetry

An orientable n-dimensional manifoldM is spin whenever its second Stiefel-Whitney class
w2 ∈ H2(M; Z2) vanishes. In this case one can lift the SO(n) bundle to a Spin(n) bundle
and, in particular, different lifts differ by an element in H1(M; Z2).2 Intuitively, this means
that the number of spin structures equals the number of non-trivial 1-cycles in M. For
example, a genus g Riemann surface with n punctures has 22g+n distinct spin structures.
Given a spin structure on a manifoldM, one can ask if there are invariant Killing spinors.
Such Killing spinors are solutions to the Killing equation,

∇Xψ = −αX · ψ , (2.1)

where X is a tangent vector and · represents Clifford multiplication. The constant α is
determined in terms of the Ricci scalar of the manifold. If it is Ricci flat, α = 0 and the
Killing spinor is often called a parallel spinor. More generally, for α 6= 0 such spinors are
called conformal Killing spinors [17].

In this work we study a class of AdS4 ×M7 backgrounds of eleven-dimensional su-
pergravity. In particular, we are interested in manifolds M7 which have multiple spin
structures preserving some number of invariant Killing spinors. The importance of speci-
fying the spin structure as defining data for the supergravity background was highlighted
in [8]. We review the parts of their discussion that we find relevant in the context of the
holographic applications of interest here. Since AdS4 is maximally symmetric and admits
invariant spinors, the supersymmetry preserved by the supergravity background — or,
equivalently, by the dual field theory — is determined by the number of Killing spinors
on the transverse space, S7/Zk. Our focus here is on orbifolds where the action by Zk
is isometric and free so that the quotient is smooth and locally isometric to S7; in other
words, the 7d manifoldM7 is a lens space.

The spin structures on S7/Zk are given by the possible lifts of the action Zk ⊂ SO(8)
to the spin bundle. Such lifts exist if and only if there is a subgroup Γ̂ ⊂ Spin(8) which is
mapped isometrically to Zk under the covering map. Having specified a specific lift of Zk
we can investigate whether S7/Zk admits Killing spinors. By Bär’s cone construction [17],
Killing spinors on S7/Zk are in one-to-one correspondence with parallel spinors on C4/Zk.
In other words, we can identify S7/Zk with the unit sphere in C4/Zk with the orbifold
action induced from a linear representation of Zk on C4. To be concrete let us denote the
generator of Zk by a, such that ak = 1 and its action on C4, parameterized by the complex
variables z1,2,3,4, is given by3

a : C4 → C4 : (z1, z2, z3, z4) 7→
(
e2πi/kz1, e2πin1/kz2, e2πin2/kz3, e2πin3/kz4

)
, (2.2)

where ni ∈ N and, in order to ensure the smoothness of the quotient we impose that all ni
are coprime to k, i.e.

gcd(ni, k) = 1 . (2.3)
2Elements of the cohomology H1(M; Z2) act freely and transitively on the spin structures of M and

hence it classify them.
3Here and in the following we slightly abuse notation by identifying the group element a with its action

as a linear representation on C4.
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Without loss of generality we choose 1 ≤ n1 ≤ n2 ≤ n3 < k. One can now show that the
most general lift of a to Spin(8) ∈ Cliff(8) is given by

â = ε exp
[
π

k
(γ12 + n1γ34 + n2γ56 + n3γ78)

]
, (2.4)

where in order to obey âk = εk(−1)1+n1+n2+n31 we have to impose ε = ±1.
When k is even, n1, n2 and n3 are odd, and hence 1 + n1 + n2 + n3 is even. In this

case we have that âk = 1 for both ε = ±1 and therefore there are two inequivalent spin
structures. On the other hand, for odd k we have to choose ε = (−1)1+n1+n2+n3 in order to
satisfy âk = 1 and thus there is a unique spin structure for the quotient manifold. Indeed,
this observation is in line with the fact that for odd k we have H1(S7/Zk,Z2) = 0, while
for even k H1(S7/Zk,Z2) = Z2.4

Once we have chosen a particular spin structure, we need to ask how many Killing
spinors are preserved on S7/Zk. The round seven-sphere has a single spin structure and
has the maximal number of 8 Killing spinors. To determine the number of Killing spinors
on the lens spaces of interest we have to select the spinors invariant under the Zk action.
Since γ2

i = −1, its eigenvalues are ±i and therefore the eigenvalues of â are given by

ε exp
[
iπ

k
(σ0 + n1σ1 + n2σ2 + n3σ3)

]
, (2.5)

with signs σi = ±1. Depending on the value of ε this is equal to unity if and only if

σ0 + n1σ1 + n2σ2 + n3σ3 = 0 ,±2k , for ε = 1 , (2.6)
σ0 + n1σ1 + n2σ2 + n3σ3 = ±k , for ε = −1 . (2.7)

The main example we study below is given by the orbifold with the action determined
by the integers n1 = n2 = n3 = 1. The resulting supergravity background is very well
known. Upon choosing the periodic spin structure, i.e. ε = 1, the dual field theory is given
by the U(N)k × U(N)−k N = 6 ABJM SCFT [18]. This is indeed in agreement with the
analysis above, as in this case (2.6) always has at least six solutions by choosing two of
the σi positive and two negative. When k = 2 there are two additional solutions given by
all σ’s either positive or negative. For k = 1 we have simply the round S7 which has 8
Killing spinors. Again, this matches perfectly with the expectation from the ABJM theory
which has N = 6 supersymmetry for k > 2, which is enhanced to N = 8 supersymmetry
for k = 1, 2 due to the presence of low-dimension monopole operators [11].

For the antiperiodic spin structure, i.e. ε = −1, we find that the condition on the
eigenvalues (2.7) is much more restrictive. In fact for generic k there are no solutions
to (2.7) and thus no invariant Killing spinors. Two special cases are given by k = 2 and
k = 4. For k = 2, we can find again 8 solutions corresponding to one σ positive/negative
and the three others having the opposite sign. In this case the resulting geometry is given

4These cohomology groups can be easily computed using the universal coefficient theorem which
states that H1(M,Z2) = Hom(π1(M),Z2) which in our case simply implies H1(S7/G,Z2) =
Hom(π1(S7/G),Z2) = Hom(G,Z2).
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by S7/Z2 = RP7 which indeed is the unique lens space with the maximal number of
invariant Killing spinors for both spin structures [10]. In this case both spin structures
should give rise to the same holographically dual SCFT, i.e. the ABJM theory at level
k = 2. The case k = 4 is more interesting since for the antiperiodic spin structure there are
only 2 solutions to (2.7) corresponding to all σ’s either positive or negative. We thus find
that S7/Z4 preserves a total of 8 invariant Killing spinors, 6 for the periodic spin structure
and 2 for the antiperiodic one. This result suggests that for k = 4 and n1,2,3 = 1 the
antiperiodic spin structure leads to an AdS4×S7/Z4 solution of 11d supergravity which is
holographically dual to a new 3d N = 2 SCFT, distinct from the k = 4 ABJM theory with
N = 6 supersymmetry. In section 3 we support this claim by studying the KK spectrum
of 11d supergravity on S7/Z4.

The existence of two different supersymmetry preserving spin structures can also be
deduced from the geometry of the AdS4 × S7/Z4 solution of 11d supergravity. Consider a
Freund-Rubin solution in 11d of the form

ds2
11 = R2

(1
4ds2

AdS4 + ds2
KE + (dξ +AKE)2

)
,

G4 = 3R3

8 volAdS4 .

(2.8)

where ds2
KE is a smooth Kähler-Einstein manifold of real dimension 6 and dAKE is its

Kähler form. The 7d internal space is then a regular Sasaki-Einstein manifold provided
that the coordinate ξ has period π/2.5 Sasaki-Einstein manifolds admit two Killing spinors
that have equal and opposite charges under the Reeb vector ∂ξ, see [19] for a review. If
one takes the period of ξ to be smaller than π/2 then the Killing spinors are not globally
well-defined and supersymmetry is broken. Therefore, any Zq orbifold (for q > 1) of a
general Sasaki-Einstein manifold along the Reeb vector is not supersymmetric. In some
cases however ξ can have a period larger than π/2. This is precisely what happens when the
Kähler-Einstein space is CP3. Then if the period ξ is 2π one finds the metric on the round
unit volume S7 written as a Hopf fibration. In this case there are of course 8 Killing spinors
on the internal manifold and the background in (2.8) is maximally supersymmetric. The
Zk orbifold of S7 in (2.2) with n1,2,3 = 1 acts precisely on the coordinate ξ. We therefore
conclude that for general k > 1 only 6 of the 8 Killing spinors on S7 are preserved. The
cases k = 2 and k = 4 are however special. For k = 2 we have S7/Z2 = RP7 which
admits 8 Killing spinors. For k = 4, on the other hand, ξ has period 2π/4 = π/2. This is
precisely the correct period for the 7d metric in (2.8) to have the form of a regular Sasaki-
Einstein metric with 2 Killing spinors. We therefore conclude that the AdS4 × S7/Z4 11d
supergravity solution has the 6 “standard” Killing spinors that exists for all Zk orbifolds
of S7 along ξ, together with 2 “extra” Killing spinors. Importantly however, as discussed
above, these two sets of spinors are not compatible with the same spin structure, i.e. they
belong to different spin bundles. A more detailed discussion on this point of view on the
two spin structures on S7/Z4 can be found in [20].

5We use the normalization 4dAKE = RKE where RKE is the Ricci two-form for the Kähler-Einstein
metric ds2

T .
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2.1 Generalizations

In addition to the main example discussed in detail above one can also consider other
smooth orbifold actions of the type defined in (2.2). As emphasized in [8], for any k = 4p
with p ∈ N there are two choices of spin structure preserving some amount of invariant
Killing spinors for particular choices of n1,2,3. Indeed, choosing the orbifold action defined
by any of the following parameters

(n1, n2, n3) = (1, 2p− 1, 2p− 1) , (2.9)
(n1, n2, n3) = (1, 2p+ 1, 2p+ 1) , (2.10)
(n1, n2, n3) = (1, 2p− 1, 2p+ 1) , (2.11)
(n1, n2, n3) = (2p− 1, 2p+ 1, 4p− 1) , (2.12)

one can show that the resulting lens spaces have two different spin structures with invariant
Killing spinors. For the periodic spin structure in (2.6) one finds 4 invariant Killing spinors
while for the antiperiodic spin structure (2.6) there are 2 invariant spinors. The holographic
interpretation of this is that the corresponding AdS4×S7/Zk supergravity solution is dual
to an N = 4 SCFT for the periodic spin structure and an N = 2 SCFT for the antiperiodic
one.6 We provide more evidence for this expectation by studying the KK spectrum of 11d
supergravity on such internal manifolds for both choices of spin structure in section 3.3.

3 KK spectrum of 11d supergravity on AdS4 × S7/Zk

The different choices of spin structures on S7/Zk suggest the existence of different 3d SCFTs
with varying amount of supersymmetry. To better understand their properties we study the
KK spectrum of 11d supergravity on AdS4 × S7/Zk by paying particular attention to the
effects of the different spin structures. Since the dual QFT is conformal and supersymmetric
the KK modes should be dual to operators that organize into superconformal multiplets.
We show below that depending on the value of k and the choice of spin structure the
spectrum of operators is different and organizes into N = 8, N = 6, N = 4, or N = 2
superconformal multiplets. To illustrate our results in more detail we focus on S7/Z4 and
show that the KK spectrum for the two spin structures organizes into either N = 6 or
N = 2 superconformal multiplets.

To construct the KK spectrum on the lens space S7/Z4 we start from the KK spectrum
on the round seven sphere and carefully determine which modes are invariant under the
orbifold action. The field theory dual to AdS4×S7 is the k = 1 U(N)×U(N) ABJM theory
which preserves N = 8 supersymmetry. The spectrum of N = 8 multiplets obtained after
the KK reduction on the round S7 was worked out in [12, 13], see also [22] for a review in
the holographic context, and this is the starting point of our analysis.

The 3d N = 8 superconformal algebra is osp(8|4) and contains an so(8) R-symmetry.
We label R-symmetry representations by their Dynkin labels (α1, α2, α3, α4). Our conven-
tions for the Dynkin labels and SO(8) triality frame are presented in appendix A. Here we

6The N = 4 SCFTs for some of these orbifold action were studied in [21].
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j Field SO(8) irrep SO(8) Dynkin labels ∆
4 e

(0)
µ

a 1 (0, 0, 0, 0) 3
3 ψ

(0)
µ

I 8s (0, 0, 0, 1) 5
2

2 A
(0)
µ

IJ 28 (0, 1, 0, 0) 2
1 χ(0)IJK 56s (1, 0, 1, 0) 3

2

0+ S(0)[IJKL]+ 35v (2, 0, 0, 0) 1
0− P (0)[IJKL]− 35c (0, 0, 2, 0) 2

Table 1. The massless N = 8 supermultiplet B1[0](2,0,0,0)
1 . We have indicated the supergravity

modes that comprise the multiplet, their SO(8) representation, as well as the conformal dimension
∆ of the operator in the dual SCFT.

simply note that the 16 Poincaré supercharges transform in the SO(8) representation7

Qα ∈ [1](0,0,0,1)
1
2

, (3.1)

which for our choice of triality frame corresponds to the 8s representation.
The N = 8 superconformal multiplets arising from the KK modes on the round sphere

have maximal spin 2, or equivalently j = 4, and the KK levels are labeled by a single inte-
ger n. At each level, the fluctuations fall into representations of the N = 8 superconformal
group and moreover all superconformal multiplets are short. Level n = 0 corresponds to the
massless N = 8 supergravity multiplet and forms the B1[0](2,0,0,0)

1 N = 8 superconformal
multiplet which contains the energy momentum tensor and the SO(8) R-symmetry current.
The higher levels n > 0 correspond to massive multiplets and level by level organize into
the B1[0](n+2,0,0,0)

n
2 +1 superconformal multiplet. The supergravity modes comprising the su-

permultiplets from level n = 0 and n ≥ 1 are presented in table 1 and table 2, respectively.
Now that we have described the full KK spectrum of the round seven-sphere, we have

to determine which part of the spectrum remains invariant under the orbifold action (2.2)
with a given spin structure. We again resort to our main example of S7/Z4 to illustrate this
but will comment on its various generalizations at the end of this section. For S7/Z4 the
orbifold action is defined by the three integers n1,2,3 = 1 in (2.2) and manifestly preserves
an SU(4)×U(1) ⊂ SO(8) isometry.

As discussed above, upon choosing the periodic spin structure this orbifold corresponds
to the N = 6 ABJM theory at level k = 4. Choosing the antiperiodic spin structure on the
other hand should result in a different N = 2 SCFT. In the former case the R-symmetry
is given by SU(4) while the U(1) is a flavor symmetry. In the latter case on the other
hand the U(1) is the superconformal R-symmetry of the N = 2 theory while the SU(4)
symmetry is a flavor symmetry. In order for these two possibilities to coexist, the KK
spectrum of S7/Z4, with the above orbifold action, should organize in multiplets of both

7We use the notation introduced in [23] to label superconformal multiplets. [j](r)
∆ labels the representation

with Lorentz su(2) Dynkin label j, R-symmetry representation (r) and conformal dimension ∆. More details
on our notation and conventions are given in appendix A.
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j Field SO(8) Dynkin labels ∆
4 e

(n)
µ

a (n, 0, 0, 0)n≥0
n
2 + 3

3 ψ
(n)
µ

I
(n, 0, 0, 1)n≥0

n
2 + 5

2

(n− 1, 0, 1, 0)n≥1
n
2 + 7

2

2 A
(n)
µ

IJ

(n, 1, 0, 0)n≥0
n
2 + 2

(n− 1, 0, 1, 1)n≥1
n
2 + 3

(n− 2, 1, 0, 0)n≥2
n
2 + 4

1 χ(n)IJK

(n+ 1, 0, 1, 0)n≥0
n
2 + 3

2

(n− 1, 1, 1, 0)n≥1
n
2 + 5

2

(n− 2, 1, 0, 1)n≥2
n
2 + 7

2

(n− 2, 0, 0, 1)n≥2
n
2 + 9

2

0 S(n)[IJKL]+

(n+ 2, 0, 0, 0)n≥0
n
2 + 1

(n− 2, 2, 0, 0)n≥2
n
2 + 3

(n− 2, 0, 0, 0)n≥2
n
2 + 5

0 P (n)[IJKL]− (n, 0, 2, 0)n≥0
n
2 + 2

(n− 2, 0, 0, 2)n≥2
n
2 + 4

Table 2. The massive N = 8 supermultiplets B1[0](n+2,0,0,0)
n
2 +1 at KK level n. The notation is the

same as in table 1.

the N = 6 superalgebra osp(6|4) and the N = 2 superalgebra osp(2|4). This is non-trivial
and we show how it is realized in detail below.

To find the KK spectrum on S7/Zk we proceed in two steps. First, we decompose the
spectrum under the branching

SO(8)→ SU(4)×U(1) . (3.2)

In the resulting expressions we normalize the U(1) charges such that

8v → 4 1
4
⊕ 4̄− 1

4
, (3.3)

8s → 60 ⊕ 1 1
2
⊕ 1− 1

2
. (3.4)

This choice is such that the SU(4) singlets in (3.4) have the canonical U(1) charges to
become a U(1) R-symmetry. Next, we have to select those states that are invariant under
the Zk orbifold action (2.2). For the bosonic sector the answer is straightforward as we can
simply select the KK modes that are stable under the orbifold action. In our normalization
this corresponds to the ones with U(1) charge divisible by k/4.

It is somewhat more subtle to select the correct fermionic modes invariant under the
orbifold action. The choice of spin structure determines the periodicity of spinors around
non-trivial 1-cycles in the geometry. Indeed, unlike S7, for even k, S7/Zk is no longer simply
connected and one has to choose the periodicity of the fermions around the non-contractible
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cycle. Writing the sphere as a Hopf fibration S1 ↪→ S7 → CP3 the orbifold acts on the
Hopf fiber and the choice of spin structure determines the periodicity of spinors along this
fiber. The spin structure with positive sign ε = 1 in (2.4) corresponds to periodic fermions
while the sign for ε = −1 corresponds to antiperiodic spinors. For this reason we find that
for the periodic spin structure we can follow the same rule as for the bosonic spectrum
and select fermionic modes with U(1) charge divisible by k/4. For the antiperiodic spin
structure on the other hand the invariant fermionic spectrum is obtained by a different rule
and we have to retain the fermionic modes with U(1) charges equal to q = k

8 + mk
4 , m ∈ Z.

Inspecting the branching rule (3.4), we see that for the periodic spin structure we
always preserve the supercharges transforming in the 60 while for the antiperiodic spin
structure for generic k we do not preserve any of the supercharges. Only for k = 4 the
additional two supercharges have the compatible U(1) charges and hence in this case we
preserve the supercharges transforming in the representations 1 1

2
⊕ 1− 1

2
. The discussion

above leads to the following simple rule to find the spectrum on S7/Z4

The Z4 rule. If we choose the periodic spin structure the Z4 invariant KK modes, both
bosons and fermions, are those with integer U(1) charge. For the antiperiodic spin struc-
ture, the invariant KK modes are the ones with integer U(1) charge for the bosons and
half-integer charge for the fermions.

With this rule at hand, the task of finding the KK spectrum on S7/Z4 for both choices
of spin structure becomes a straightforward group theory exercise.

3.1 Periodic spin structure

When we choose the periodic spin structure, the corresponding 3d SCFT preserves N = 6
superconformal symmetry. The superconformal algebra is given by osp(6|4), hence the R-
symmetry is SO(6)R ' SU(4)R and the 12 Poincaré supercharges transform in the so(6) vec-
tor representation of the R-symmetry. In order for the KK spectrum to correspond to this
N = 6 theory it should organize into N = 6 supermultiplets. Such multiplets can be either
long or short, depending on whether there are any null states in the multiplet. As in [23] we
indicate this information by using L for the long multiplets and A1,2 or B1,2 for the various
shortening conditions. In addition, all the fields in a supermultiplet should transform iden-
tically under the U(1) flavor symmetry in (3.2) and thus should have the same U(1) charge.

To illustrate this let us first consider the Z4 invariant part of the KK spectrum of S7.
At each KK level the spectrum organizes into N = 6 multiplets so we can consider them
level by level. The invariant modes at the lowest level n = 0 are given in table 3. Note
that all the modes are neutral under the U(1) flavor symmetry. These modes are precisely
the ones that are dual to the operators in the N = 6 energy momentum tensor multiplet
B1[0](1,0,1)

1 . We can proceed similarly for the higher KK levels. In particular, at level n = 1
we find that there are no Z4 invariant KK modes and as shown in appendix B, this continues
to hold for all odd KK levels. The next interesting level is therefore n = 2 whose invariant
spectrum is given in table 9 in appendix C. In this case the we find representations of U(1)
flavor charge 0 and ±1. The charge ±1 representations organize into a pair of B1[0](4,0,0)

2
and B1[0](0,0,4)

2 multiplets while the U(1) neutral part forms a B1[0](2,0,2)
2 multiplet. The
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Field SU(4)×U(1) irrep Lorentz su(2) Dynkin label j ∆
e

(0)
µ

a 10 4 3
ψ

(0)
µ 60 3 5

2

A
(0)
µ 150 + 10 2 2

χ(0) 100 + 100 + 60 1 3
2

S(0) 150 0 1
P (0) 150 0 2

Table 3. The KK spectrum for the level n = 0 of 11d supergravity on AdS4 × S7/Z4 with the
periodic spin structure. The modes organize into the N = 6 energy momentum tensor multiplet of
the dual SCFT.

higher even levels, n > 2, organize in a similar way into N = 6 multiplets, see [24] for a
recent discussion. In particular, each N = 8 supermultiplet can be decomposed into a set
of N = 6 multiplets as follows,

B1[0](n+2,0,0,0)
n
2 +1 →

(
−n+ 2

4

)
B1[0](0,0,n+2)

n
2 +1 +

(
n+ 2

4

)
B1[0](n+2,0,0)

n
2 +1

+
n∑
r=0

(2r − n
4

)
B1[0](1+r,0,n+1−r)

n
2 +1 .

(3.5)

In this equation, the coefficient in front of each supermultiplet indicates the U(1) flavor
charge and to obtain the correct Z4 invariant spectrum we should only select terms on the
right hand side that have integer U(1) flavor charge.

It is also instructive to rewrite the N = 6 multiplets described above in N = 2
language. This can be done by further breaking the R-symmetry as SU(4) → SU(2) ×
SU(2)×U(1)N=6. The U(1)N=6 factor plays the role of the N = 2 R-symmetry while the
SU(2)× SU(2) symmetry is an additional flavor symmetry from the N = 2 point of view.
To illustrate the decomposition into N = 2 multiplets consider the level n = 0 KK modes.
After breaking the symmetries we can reorganize them into the following N = 2 multiplets:

B1[0](2,0,0,0)
1 → (1,1)0

(
A2A2[0](0)

1 +A1A1[2](0)
2

)
+ ((3,1)0 + (1,3)0)A2A2[0](0)

1

+ (2,2)0

(
LB1[0](1)

1 +B1L[0](−1)
1 +A1A1[1](0)

3
2

)
.

(3.6)

The representations in front of each multiplet indicate the transformation properties under
the SU(2)×SU(2) flavor symmetry and the charge under the U(1) in (3.2). We recognize the
appearance of the N = 2 energy momentum tensor multiplet A1A1[2](0)

2 , a flavor current
multiplet A2A2[0](0)

1 corresponding to the U(1) in (3.2), as well as flavor current multiplets
for the SU(2) × SU(2) symmetry. Importantly, we also have the supersymmetry current
multiplet A1A1[1](0)

3
2

indicating that this theory contains a larger supersymmetry algebra.

3.2 Anti-periodic spin structure

After discussing the periodic spin structure we now turn our attention to the more intriguing
case of the antiperiodic spin structure. For this choice of spin structure on S7/Z4 the
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Field SU(4)×U(1) irrep Lorentz su(2) Dynkin label j ∆
e

(0)
µ

a 10 4 3
ψ

(0)
µ 1 1

2
+ 1− 1

2
3 5

2

A
(0)
µ 150 + 10 2 2

χ(0) 15 1
2

+ 15− 1
2

1 3
2

S(0) 150 0 1
P (0) 150 0 2

Table 4. The KK spectrum for the level n = 0 of 11d supergravity on AdS4 × S7/Z4 with the
antiperiodic spin structure.

holographic dual 3d SCFT preserves the N = 2 superconformal algebra osp(2|4), which
has R-symmetry U(1)R. In our conventions the two supercharges have R-charge ±1

2 and
can be identified with the two SU(4) singlets in (3.4). Choosing the antiperiodic spin
structure does not break any of the continuous global symmetries in the problem and in
particular the SU(4) symmetry in this case becomes a flavor symmetry. The KK spectrum
on AdS×S7/Z4 organizes into supermultiplets but this time with respect to the N = 2
algebra. All operators in a given superconformal multiplet transform identically under the
SU(4) flavor symmetry.

The spectrum of bosonic operators is identical to the one for the periodic spin structure,
but the fermionic spectrum differs and includes only half integer U(1) charges. Indeed, this
is crucial in order to be able to arrange the KK spectrum into N = 2 representations. Again,
before discussing the general case, we illustrate how this works for the low-lying KK levels
n = 0, 2. Following the Z4 rule, we find the Z4 invariant spectrum at level n = 0 as tabu-
lated in table 4. Similarly, the spectrum at level n = 2 is given in table 10 in appendix C.

As expected, the spectrum nicely organizes into N = 2 multiplets and it does so
level by level. At level n = 0 the fields in the SU(4) singlet representation, 1, form the
N = 2 stress tensor multiplet A1A1[2](0)

2 which also contains the U(1) R-symmetry current.
The modes transforming in the 15 representation form an SU(4) flavor current multiplet
A2A2[0](0)

1 . Note that in this case there is no additional SUSY current multiplet since we
have an honest N = 2 SCFT, distinct from the usual N = 6 ABJM theory. At level
n = 2 the resulting supermultiplets are given in table 5 where notably in addition to short
multiplets we also find a number of long multiplets.

We can repeat the same exercise for higher KK levels as is illustrated in appendix C
where we explicitly organize the modes in the first four KK levels into N = 2 multiplets.
One can furthermore show in general that, level by level, the KK modes organize into
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SU(4) Dynkin label SU(4) irrep N = 2 multiplet
(0, 0, 0) 1 LL[0](0)

4

(1, 0, 1) 15 LL[2](0)
3

(0, 2, 0) 20′ LL[0](0)
3

(4, 0, 0) 35 LB1[0](1)
2

(0, 0, 4) 35 B1L[0](−1)
2

(2, 1, 0) 45 LA1[1](
1
2 )

5
2

(0, 1, 2) 45 A1L[1](−
1
2 )

5
2

(2, 0, 2) 84 LL[0](0)
2

Table 5. The N = 2 multiplets from KK level n = 2 for the antiperiodic spin structure.

N = 2 superconformal multiplets where for level n ≥ 2 the result is given by

B1[0](n+2,0,0,0)
n
2 +1 →

bn+2
4 c∑

l=−bn+2
4 c

2∑
i=0

(
n

2 − 1 + i+ 2l, 0, n2 − 1 + i− 2l
)
XY [(2i) mod 4](l)n

2−i+3

+
bn−2

4 c∑
l=−bn+2

4 c

1∑
i=0

(
n

2 + i+ 2l, 1, n2 − 2 + i− 2l
)
XY [1](l+

1
2)

n
2−i+

5
2

(3.7)

+
bn−2

4 c∑
l=−bn−2

4 c

(
n

2 − 1 + 2l, 2, n2 − 1− 2l
)
LL[0](l)n

2 +2 .

A few comments about this formula are in order. The three numbers in the parenthesis
(·, ·, ·) indicate the Dynkin labels of the SU(4) flavor group representation for a given su-
perconformal multiplet. Terms in the sum with negative values for any of the Dynkin label
should be excluded. The labels XY indicate the type of superconformal multiplet with
the prescribed quantum numbers for the Lorentz spin, conformal dimension, and U(1) R-
charge. X and Y can either be L for long or A1,2 or B1,2 indicating which shortening condi-
tion applies [23]. For n ≥ 2 the structure of short multiplets appearing in the sums is as fol-
lows. The last line of (3.7) always contains exclusively long multiplets. When n ≡ 0 mod 4
the sum on the first line of (3.7) contributes two short multiplets (plus their conjugate ones),

(n, 0, 0)LA1[2](
n
4 )

n
2 +2 + c.c. , (n+ 1, 0, 1)LA2[0](

n
4 )

n
2 +1 + c.c. , (3.8)

while the sum on the second line in (3.7) for these values of n contains only long multiplets.
When n ≡ 2 mod 4 on the other hand, the sum on the first line of in (3.7) contributes one
(complex) short multiplet

(n+ 2, 0, 0)LB1[0](
n
4 + 1

2 )
n
2 +1 + c.c. , (3.9)
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and the sum on the second line of (3.7) contributes another (complex) short multiplet,

(n, 1, 0)LA1[1](
n
4 )

n
2 + 3

2
+ c.c. . (3.10)

All other multiplets not specifically specified above are long. Thus at every even KK level
n we get four short multiplets organized as two complex conjugate pairs.

Summarizing, we find that depending on the spin structure the KK spectrum of 11d
supergravity on AdS4×S7/Z4 organizes into N = 6 or N = 2 supermultiplets and crucially,
for the antiperiodic spin structure the spectrum does not contain additional supersymmetry
current multiplets. From this we can conclude that the AdS4 × S7/Z4 background of 11d
supergravity with the antiperiodic spin structure should be dual to a new N = 2 SCFT.
In section 4 we further discuss some of the properties of this SCFT. We now turn our
attention to a generalization of the analysis above for the KK spectrum of 11d supergravity
on AdS4 × S7/Zk for the class of lens spaces presented in section 2.1.

3.3 Generalizations

So far, we considered smooth orbifolds of S7 with the orbifold action induced from C4

given as in (2.2) with n1,2,3 = 1. For general (even) k > 4, the resulting manifold does not
preserve any invariant Killing spinors for the antiperiodic spin structure and hence this gen-
eralization does not result in additional new SCFTs. However, as discussed in section 2.1,
an interesting generalization is found by specifying to k = 4p with p ∈ N and the orbifold
action as determined in (2.9)–(2.12). The resulting AdS4× S7/Zk background preserves 1

2
of the maximal number of Killing spinors for the periodic spin structure while it preserves
1
4 of the maximal number of Killing spinors for the antiperiodic spin structure. In the dual
SCFT, this corresponds to four pairs of SCFTs for every k = 4p. One member of the pair,
corresponding to the periodic spin structure, preserving N = 4 superconformal symmetry,
while the other, corresponding to the antiperiodic spin structure, preserves N = 2.

To provide further evidence for the existence of these SCFTs we can again study the KK
spectrum of 11d supergravity and show that it organizes into superconformal multiplets for
N = 4 or N = 2 supersymmetry depending on the spin structure. In this section we take
the first step in this direction by explicitly working out the branching and reorganization
into superconformal multiplets for the first two KK levels. To keep the discussion concrete
and the notation as simple as possible we focus our attention on the first orbifold action
in (2.9) for every choice of k = 4p. The other three cases in (2.10)–(2.12) can be studied
analogously.

We start by presenting the breaking pattern for the SO(8) isometry of the round S7

induced by the orbifold action in (2.9)

SO(8)→ SU(4)×U(1)→ SU(2)1 × SU(2)2 ×U(1)SU(4) ×U(1) . (3.11)

Under this breaking the supercharges decompose as follows,

8s → 60 ⊕ 1 1
2
⊕ 1− 1

2

→ (1,1) 1
2 ,0
⊕ (1,1)− 1

2 ,0
⊕ (2,2)0,0 ⊕ (1,1)0, 12

⊕ (1,1)0,− 1
2
.

(3.12)
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Field SU(2)1 × SU(2)2 ×U(1)SU(4) ×U(1) irrep j ∆
e

(0)
µ

a (1,1)0,0 4 3
ψ

(0)
µ (2,2)0,0 3 5

2

A
(0)
µ 2 (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 2 2

χ(0) 3 (2,2)0,0 1 3
2

S(0) (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 0 1
P (0) (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 0 2

Table 6. The KK spectrum for the level n = 0 of 11d supergravity on AdS4 × S7/Z4p with the
orbifold action in (2.9) and the periodic spin structure.

When we consider the periodic spin structure the dual SCFT preserves N = 4 super-
symmetry and hence the SU(2)1× SU(2)2 symmetry represents the R-symmetry while the
U(1)SU(4) × U(1) is a flavor symmetry. We can now formulate a generalization of the Z4
rule introduced above for the orbifold induced by the action (2.9)

A Z4p rule. For both spin structures, the charge under U(1)SU(4) for both the bosonic and
fermionic modes invariant under the orbifold action has to be a multiple of p/2. For the
periodic spin structure all bosonic and fermionic KK modes invariant under the orbifold
action have integer U(1) charge. For the antiperiodic spin structure instead, the bosonic
modes should have integer U(1) charge, while the U(1) charges of the fermionic modes
should be half integer.

Equipped with this rule we are now left with a group theory exercise to organize
the KK modes into N = 4 and N = 2 superconformal multiplets. We can immediately
note that this selection rule selects exactly the preserved supercharges transforming in the
(2,2)0,0 representation in (3.12) for the periodic spin structure while for the antiperiodic
spin structure only the last two supercharges in (3.12), (1,1)0,± 1

2
are preserved. This

is precisely the expected structure for an SCFT with N = 4 or N = 2 superconformal
symmetry, respectively.

Let us start with the periodic spin structure. At level n = 0, the part of the spec-
trum invariant under the orbifold action simply consists of those multiplets neutral under
U(1)SU(4)×U(1). The invariant part of the KK spectrum is given in table 6 from which we
can build the corresponding N = 4 multiplets. They are given by A2[0](0,0)

1 , B1[0](0,2)
1 , and

B1[0](2,0)
1 , i.e. the N = 4 stress tensor multiplet together with two U(1) flavor multiplets.

In the special case when k = 4, i.e. p = 1 the orbifold action reduces to the one discussed in
section 3.1. Indeed, we find that in this case an additional pair of SUSY current multiplets
B1[0](0,0)

1 appears, in line with the fact that for k = 4 and the periodic spin structure we
have N = 6 supersymmetry.

When we consider the antiperiodic spin structure the spectrum should organize into
N = 2 multiplets. In this case we should have an SU(2)1 × SU(2)2 × U(1)SU(4) flavor
symmetry while the second U(1) in (3.11) represents the N = 2 R-symmetry. To obtain
the invariant KK modes under the orbifold action we keep the same bosonic modes as for
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Field SU(2)1 × SU(2)2 ×U(1)SU(4) ×U(1) irrep j ∆
e

(0)
µ

a (1,1)0,0 4 3
ψ

(0)
µ (1,1)0,± 1

2
3 5

2

A
(0)
µ 2 (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 2 2

χ(0) (1,1)0,± 1
2
⊕ (1,3)0,± 1

2
⊕ (3,1)0,± 1

2
1 3

2

S(0) (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 0 1
P (0) (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 0 2

Table 7. The KK spectrum for the level n = 0 of 11d supergravity on AdS4 × S7/Z4p with the
orbifold action in (2.9) and the antiperiodic spin structure.

the periodic spin structure above but we change the fermionic spectrum by keeping only
those representations for which the second U(1) charge is a half integer. The result of
this selection procedure for the lowest KK level n = 0 is given in table 7. We find that
indeed the KK modes can be organized into N = 2 superconformal multiplets where all
constituents of a multiplet transform in the same way under the SU(2)×SU(2)×U(1)SU(4)
flavor symmetry. The resulting spectrum is given by the N = 2 stress tensor multiplet
A1A1[2]02, transforming in the (1,1)0 representation of the flavor symmetry, accompanied
by a set of flavor current multiplets A1A1[0]01 transforming in the adjoint representation of
the flavor symmetry, i.e. (1,1)0 ⊕ (1,3)0 ⊕ (3,1)0.

One can repeat the same exercise for the higher KK levels and again find that the
spectrum nicely organizes into either N = 4 or N = 2 multiplets depending on the spin
structure. For level n = 2 the result is presented explicitly in appendix C. In this case we
find that the spectrum contains both short and long superconformal multiplets.

4 Discussion

The discussion above points to the existence of two different SCFTs that are holographically
dual to the AdS4×S7/Z4 solution of 11d supergravity. One of these, corresponding to the
periodic spin structure is the N = 6 U(N)×U(N) ABJM SCFT at level k = 4.8 The SCFT
corresponding to the antiperiodic spin structure should preserve N = 2 supersymmetry and
to the best of our knowledge has not been studied in the literature. While we cannot offer
a complete description of this N = 2 SCFT here we discuss some of its properties that are
suggested by the supergravity dual.

The natural way to mimic the supergravity construction in the dual 3d SCFT is to start
with the ABJM theory at level k = 1 with N = 8 supersymmetry and SO(8) R-symmetry.
When written in N = 2 superspace language the theory has a manifest SU(4) × U(1)b
symmetry and we can “mod out” by a Zk subgroup of U(1)b to arrive at the a theory with
N = 6 supersymmetry, SU(4) R-symmetry, and a U(1)b flavor symmetry. This process can

8The holographic description for the N = 6 ABJM SCFTs with gauge groups SU(N)k × SU(N)−k,
(U(N)k × U(N)−k)/ZN , and (U(N)k × U(N)−k)/Zk is based on the same supergravity solution with
modified boundary conditions and was discussed in [25].
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be viewed as a gauging of the Zk symmetry which leads to preserving only gauge invariant
operators of the k = 1 ABJM theory invariant under the Zk action. This gauging of a dis-
crete subgroup of the flavor group leads to a Zk 1-form symmetry, see [26, 27], which is the
1-form symmetry for the U(N)k ×U(N)−k ABJM theory [25]. The procedure we describe
is somewhat formal and applies to the “standard”, i.e. periodic, choice of spin structure on
S7/Zk. For k = 4 the supergravity discussion above suggests that there is a different way to
gauge the Z4 which essentially amounts to implementing the “Z4 rule” we used in section 3
to deduce the 11d supergravity KK spectrum. This is a simple procedure to implement if
the full solution of the k = 1 N = 8 ABJM SCFT is under control, however we are not sure
how to justify it at the level of the Lagrangian of the ABJM theory. In particular it is not
clear to us how these two different ways to perform the Z4 gauging will affect the spectrum
of unprotected operators, structure constants, and non-local operators in the theory.

In the absence of a more direct field theory description of the k = 4 N = 2 SCFT
corresponding to the antiperiodic spin structure we make a few observations based on its
supergravity dual. First we note that the all SCFT operators dual to the bosonic KK modes
of 11d supergravity have the same spectrum as for the bosonic operators in the k = 4 N = 6
ABJM theory. The fermionic spectrum however is different. This suggests that the super-
symmetric partition functions of the two theories are also distinct in general. For instance
the S1×S2 superconformal index that counts certain BPS operators should be different for
the two theories and it will be very interesting to compute this index along the lines of [28].
An interesting consequence of the different spectrum is that the N = 2 and N = 6 SCFTs
have different dimensions of their conformal manifolds. The LB1[0](2)

2 and B1L[0](−2)
2 su-

permultiplets in table 11 are in the 35 and 35 of the SU(4) flavor symmetry and contain
scalar operators with ∆ = 3 that are candidate marginal operators. Taking into account
the SU(4) flavor symmetry and using the results of [29] we conclude that there are 20 (com-
plex) exactly marginal operators in this theory. This is in contrast to the k = 4 N = 6
ABJM theory which, as summarized recently in [30], has only 3 exactly marginal operators.
Other interesting observable in the two theories are the S3 free energy and the topologically
twisted index. To leading order in the large N limit both of these quantities can be compute
by supersymmetric localization for the k = 4 N = 6 ABJM theory and they agree with the
two-derivative supergravity result, see [31, 32] and [33, 34]. Since the supergravity calcula-
tion of these observables depends only on the volume of S7/Zk we conclude that both for the
ABJM theory at k = 4 and for the new N = 2 SCFT we should have the same expressions
for the topologically twisted index and the S3 free energy to leading order at large N

FS3 = 2π
√

2
3 N3/2 , logZS1×Σg

= 2π
√

2
3 (g− 1)N3/2 . (4.1)

It will be very interesting to understand how to derive this results directly from the field
theory for the new k = 4 N = 2 SCFT.9 The supergravity AdS4×S7/Zk solution can also

9We note in passing that for k = 4 one of the two N1/2 corrections to the squashed S3 free energy of
the N = 6 ABJM theory vanishes. This corresponds to a vanishing contribution from one of the higher
derivative corrections to 4d minimal supergravity [35, 36]. We do not know whether this curious fact has
any relation to the existence of two different spin structure compatible with supersymmetry for k = 4.
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be used to deduce the one-loop contribution to the S3 free energy along the lines of [24],
and it will be interesting to perform this calculation for the antiperiodic spin structure.

A curious feature of the new k = 4 N = 2 SCFT is that, at least at large N , the
spectrum of local operators contains many long superconformal multiplets with operators
of integer and half-integer conformal dimensions.10 It will be very interesting to understand
what are the 1/N corrections to these operator dimensions.

It is well-known that there is an interesting generalization of the ABJM theory an
U(M)k × U(N)−k N = 6 SCFT [37]. These theories correspond to |M − N | fractional
M2-branes fixed at the C4/Zk singularity. This construction leads to a unitary N = 6
SCFT for |M − N | ≤ k, where the integer |M − N | corresponds to the “torsion flux” in
M-theory. It will be interesting to understand whether for k = 4 there is an N = 2 “cousin”
of this ABJ theory that corresponds to the antiperiodic spin structure.

Another well-known simple way to modify a Freund-Rubin AdS4 × M7 solution of
11d supergravity is to reverse the orientation of the internal manifold M7. These “skew-
whiffed” AdS4 solutions are constructed by changing the orientation of the internal space
which in turn changes the sign of the four-form flux G4, as well as the chirality of the
Killing spinors on M7 [38], see also [39, 40] for a holographic discussion. For the lens
spaces S7/Zk of interest here when we choose the periodic structure and general values of
k all invariant spinors have positive chirality [8]. We thus conclude that “skew-whiffed”
AdS4 solutions for these lens spaces break all supersymmetry. On the round S7 both
the “skew-whiffed” and the standard solutions preserve the maximal supersymmetry. For
k = 2, the manifold RP7 is special in the sense that it preserves the maximal amount
of supersymmetry for both spin structures. Moreover, the invariant Killing spinors have
opposite chirality for the two spin structures. Therefore both the standard and the “skew-
whiffed” Freund Rubin solutions preserve the maximal number of invariant Killing spinors,
however, these spinors live in different spin bundles. For k = 4, however the spinors for
both spin structures have the same chirality and hence in this case skew-whiffing again
breaks all supersymmetry. Similarly for the generalizations we discussed in section 2.1, the
spinors in both spin bundles have the same chirality and therefore only one orientation of
the internal manifold preserves supersymmetry.

In this work we discussed smooth orbifolds S7/G where G is restricted to be a cyclic
group. However, there is a richer story to be explored for more general finite subgroups
G ⊂ SO(8). In [16] such orbifolds preserving at least N = 4 supersymmetry were discussed
in detail. This could be a starting point for further exploration in the context of AdS/CFT.
However, the question about the influence of the choice of spin structure on the supersym-
metry of the dual field theory goes far beyond orbifolds of spheres and it could be studied
for any internal spin manifold with H1(M,Z2) 6= 0. This applies for internal manifolds of
any dimension and for various choices of the type of supergravity theory. It would be very
interesting to explore this subject further in the context of holography and map out the
full range of possibilities and the implications for the dual CFTs. We end our discussion by
pointing out that the choice of spin structure is also important when studying non-trivial

10For the N = 6 ABJM theory it is expected that there are no such accidents.
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solutions of a supergravity theory that break the isometries of AdS. This was emphasized
in [20], see also [41], where fillings of Euclidean AdS4 with different topology were discussed
and it was found that not all of them can be uplifted to 11d supergravity for all choices
of spin structure and orbifold action on S7. This further highlights the importance of the
choice of spin structures in holography in setups with broken conformal invariance.
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A Conventions

In this work we interchangeably denote representations by their dimension or Dynkin la-
bel. In order to prevent confusion here we present our notation and conventions for the
dictionary to translate between the two notations.

The Dynkin label for a finite irreducible representation of a group G of rank rG is
given by a set of rG non-negative integers αi such that the highest weight vector α can be
written in terms of the fundamental weights ωi as

α =
rG∑
i=1

αi ωi . (A.1)

In this work we encounter representations of SO(8), SU(4), and SU(2) which have rank
rSO(8) = 4 , rSU(4) = 3 and rSU(2) = 1.11 In our conventions the triality automorphism of
SO(8) permutes the Dynkin labels α1, α3 and α4 and the three eight-dimensional repre-
sentations are given by

8s = (0, 0, 0, 1) , 8v = (1, 0, 0, 0) , 8c = (0, 0, 1, 0) . (A.2)

To relate the Dynkin label to the dimension of the representation one can use the Weyl
dimension formula which for an SO(8) representation λ = (α1, α2, α3, α4), SU(4) represen-

11By the well-known exceptional isomorphism we have SO(6) ' SU(4). In our conventions, the SO(6)
and SU(4) Dynkin labels are related by a permutation of the first two entries.
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tation µ = (α1, α2, α3), and SU(2) representation ν = (α1) is given by

dim(λ) = 1
4320(1 + α1)(1 + α2)(1 + α3)(1 + α4)(2 + α1 + α2)(2 + α2 + α3)(2 + α2 + α4)

× (3 + α1 + α2 + α3)(3 + α1 + α2 + α4)(3 + α2 + α3 + α4) (A.3)
× (4 + α1 + α2 + α3 + α4)(5 + α1 + 2α2 + α3 + α4) ,

dim(µ) = 1
12(1 + α1)(1 + α2)(1 + α3) (A.4)

× (2 + α1 + α2)(2 + α2 + α3)(3 + α1 + α2 + α3) ,
dim(ν) = α1 + 1 . (A.5)

To denote superconformal multiplets we use the notation of [23] and refer to that paper
for more details on the various shortening conditions. The notation is as follows, X[j](r)∆ ,
where X specifies the shortening condition, j is the Lorentz SU(2) Dynkin label,12 ∆ is the
conformal dimension, and (r) denotes the Dynkin label for the R-symmetry. All quantum
numbers and representations refer to the top component of the multiplet. Note however
that for the N = 2 multiplets we normalize the R-symmetry with a factor of 1

2 with respect

to [23], i.e. for us the N = 2 supercharges are denoted as Q ∈ [1](−
1
2)

1
2

instead of [1](−1)
1
2

.

B Branching rules

In this appendix we consider the branching rules for SO(8)→ SU(4)×U(1). As discussed
in the main text we normalize the U(1) charge such that,

8s → 60 + 1− 1
2

+ 1 1
2
. (B.1)

The KK spectrum of 11d supergravity on S7 was originally obtained in [12, 13] and the
branching rules for the relevant SO(8) representations were derived in [24, 42]. The resulting
SU(4)×U(1) representations are given in table 8, where we use the shortened notation,

[a, b, c; d] =
N∑
l=0

(n− l + a, b, l + c) n−2l+d
4

. (B.2)

In this equation, (n−l+a, b, l+c) is the Dynkin label for an irreducible SU(4) representations
and n−2l+d

4 is the corresponding U(1) charge. The integer N is defined as the highest entry
of the relevant SO(8) Dynkin label.

To determine the spectrum on S7/Zk we have to select those representations that
remain invariant under the Zk orbifolds introduced in the main text. For the bosonic
modes this simply amounts to selecting those representations with U(1) charges a multiple
of k/4. For the fermionic modes on the other hand, the selection rules depend crucially on
the spin structure. In particular, for the periodic spin structure we keep the same selection
rule as for the bosons while for the antiperiodic spin structure we retain those fermions
with U(1) charges q = 1

2k + mk
4 . However, as explained in the main text, only for level

12Note that the SU(2) Dynkin label equals twice the spin of the top component of the multiplet.
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Spin SO(8) irrep SU(4)×U(1) irrep ∆
2+ (n, 0, 0, 0), n ≥ 0 [0, 0, 0; 0] n

2 + 3
3
2

(1) (n, 0, 0, 1), n ≥ 0 [0, 1, 0; 0] + [0, 0, 0;−2] + [0, 0, 0; 2] n
2 + 5

2
3
2

(2) (n− 1, 0, 1, 0), n ≥ 1 [0, 0, 0;−2] + [−1, 1,−1; 0] + [−1, 0, 1; 0] n
2 + 7

2

1−(1) (n, 1, 0, 0), n ≥ 0 [0, 0, 0; 0] + [1, 0, 1; 0] + [0, 1, 0;−2] + [0, 1, 0; 2] n
2 + 2

1+ (n− 1, 0, 1, 1), n ≥ 1 [0, 0, 0; 0] + [−1, 0, 1;−2] + [0, 1, 0;−2]
+ [−1, 1, 1; 0] + [−1, 1,−1;−2] + [−2, 1, 0; 0]
+ [−1, 2,−1; 0] + [0, 0, 0;−4] + [−1, 0, 1; 2]

n
2 + 3

1−(2) (n− 2, 1, 0, 0), n ≥ 2 [−2, 0, 0;−2] + [−1, 0, 1;−2] + [−2, 1, 0;−4]
+ [−2, 1, 0; 0]

n
2 + 4

1
2

(1) (n+ 1, 0, 1, 0), n ≥ 0 [2, 0, 0; 0] + [1, 1,−1; 2] + [1, 0, 1; 2] n
2 + 3

2
1
2

(2) (n− 1, 1, 1, 0), n ≥ 1 [0, 0, 0;−2] + [−1, 1,−1; 0] + [−1, 0, 1; 0]
+ [1, 0, 1;−2] + [0, 0, 2; 0] + [0, 1, 0; 0]
+ [−1, 1, 1;−2] + [0, 1, 0;−4] + [−1, 1, 1; 2]
+ [−2, 2, 0;−4] + [−1, 2,−1; 2]

n
2 + 5

2

1
2

(2) (n− 2, 1, 0, 1), n ≥ 2 [−1, 0, 1; 0] + [−1, 0, 1;−4] + [−2, 0, 0;−4]
+ [−2, 0, 0; 0] + [−1, 1, 1;−2] + [−2, 1, 0;−2]
+ [−2, 1, 0;−2] + [−2, 1, 0; 2] + [−2, 1, 0;−6]
+ [−2, 2, 0; 0] + [−2, 2, 0;−4]

n
2 + 7

2

1
2

(4) (n− 2, 0, 0, 1), n ≥ 2 [−2, 1, 0;−2] + [−2, 0, 0;−4] + [−2, 0, 0; 0] n
2 + 9

2

0+(1) (n+ 2, 0, 0, 0), n ≥ 0 [2, 0, 0; 2] n
2 + 1

0−(1) (n, 0, 2, 0), n ≥ 0 [1, 0, 1; 0] + [2, 0, 0;−2] + [0, 0, 2; 2]
+ [−1, 2,−1; 0] + [1, 1,−1; 0] + [−1, 1, 1; 0]

n
2 + 2

0+(2) (n− 2, 2, 0, 0), n ≥ 2 [−1, 1, 1; 0] + [−1, 1, 1;−4] + [−2, 2, 0;−6]
+ [−2,−2, 0; 2] + [−1, 0, 1;−2] + [−2, 2, 0;−2]
+ [−2, 1, 0;−4] + [−2, 1, 0; 0] + [−2, 0, 0;−2]
+ [0, 0, 2;−2]

n
2 + 3

0−(2) (n− 2, 0, 0, 2), n ≥ 2 [−2, 0, 0;−2] + [−2, 0, 0;−6] + [−2, 0, 0; 2]
+ [−2, 2, 0;−2] + [−2, 1, 0;−4] + [−2, 1, 0; 0]

n
2 + 4

0+(3) (n− 2, 0, 0, 0), n ≥ 2 [−2, 0, 0;−2] n
2 + 5

Table 8. Branching rules for SO(8) → SU(4) × U(1) for the representations of interest in this
paper.
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k = 2 or k = 4 does this result in a set of two supersymmetric spectra. For k = 4, the
resulting spectrum is explicitly given for level n = 0 in table 3 and table 4 while for the
next few even levels the result is given appendix C.

Specifying to k = 4, we can make the following observation for the odd levels. Inspect-
ing all the representations that appear in table 8, we see that all of them have d even, in
the notation introduced in (B.2). For this reason it immediately follows that for any even
KK level, the U(1) charge can only be integer or half integer. For odd levels on the other
hand, the U(1) charges are always of the form q = 1

4 + p
2 where p ∈ Z and hence they are

never integer or half integer. We therefore conclude that the selection rule for both spin
structures will never retain any representations from the odd KK levels and hence they
play no role in most of this work.

C More examples

In the main text we presented a rule to select the invariant part of the KK spectrum
under a smooth orbifold action. For both the Z4 as well as its generalizations to Z4p we
illustrated how the resulting spectrum organizes into superconformal multiplets for low
levels. In particular, in the main text we explicitly gave the spectrum for KK level n = 0
as well as a general formula for the Z4 case. In this appendix we collect some additional
examples to further illustrate this reorganization into superconformal multiplets.

C.1 Higher levels for the Z4 orbifold

Analogous to the examples in the main text we can continue to higher levels and using
the Z4 rule explicitly write down the KK spectrum for both spin structures on S7/Z4. To
illustrate this in some more detail we present the KK spectrum at level n = 2 for S7/Zk
in tables 9 and table 10 for the periodic and antiperiodic spin structure respectively.
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Field SU(4)×U(1) irreps ∆
e

(2)
µ

a 150 4

ψ
(2)
µ

640 + 101 + 100 + 100 + 10−1
7
2

100 + 100 + 60
9
2

A
(2)
µ

840 + 451 + 450 + 450 + 45−1 + 150 3
450 + 450 + 20′0 + 151 + 2 · 150 + 15−1 + 10 4

150 + 10 5

χ(2)

701 + 700 + 700 + 70−1 + 640
5
2

700 + 700 + 641 + 2 · 640 + 64−1 + 100 + 100 + 60
7
2

640 + 2 · 60 + 61 + 6−1
9
2

60
11
2

S(2)
351 + 840 + 35−1 2

840 + 20′1 + 20′0 + 20′−1 + 150 + 10 4
10 6

P (2) 350 + 841 + 840 + 84−1 + 450 + 450 + 350 + 20′0 3
20′0 + 1−1 + 10 + 11 5

Table 9. The KK spectrum for level n = 2 of 11d supergravity on AdS4×S7/Z4 with the periodic
spin structure.
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Field SU(4)×U(1) irreps ∆
e

(2)
µ

a 150 4

ψ
(2)
µ

45 1
2

+ 45− 1
2

+ 15 1
2

+ 15− 1
2

7
2

15− 1
2

+ 15 1
2

9
2

A
(2)
µ

840 + 451 + 450 + 450 + 45−1 + 150 3
450 + 450 + 20′0 + 151 + 2 · 150 + 15−1 4

150 + 10 5

χ(2)

35 1
2

+ 84 1
2

+ 84− 1
2

+ 45 1
2

+ 35− 1
2

+ 45− 1
2

5
2

84 1
2

+ 84− 1
2

+ 45 1
2

+ 45− 1
2

+ 45 1
2

+ 45− 1
2

+ 20′1
2

+ 20′− 1
2

+ 15− 1
2

+ 15− 1
2

7
2

20′1
2

+ 20′− 1
2

+ 15 1
2

+ 15− 1
2

+ 1 1
2

+ 1− 1
2

9
2

1 1
2

+ 1− 1
2

11
2

S(2)
351 + 840 + 35−1 2

840 + 20′1 + 20′0 + 20′−1 + 150 + 10 4
10 6

P (2) 350 + 841 + 840 + 84−1 + 450 + 450 + 350 + 20′0 3
20′0 + 1−1 + 10 + 11 5

Table 10. The KK spectrum for level n = 2 of 11d supergravity on AdS4 × S7/Z4 with the
antiperiodic spin structure.
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After having found the KK spectrum we can reorganize it into superconformal multi-
plets. For the periodic spin structure the result was derived in [24, 42] and the resulting
spectrum is given in equation (3.5). In this work we are more interested in the antiperi-
odic spin structure for which the fermionic spectrum is different and the full KK spectrum
organizes into N = 2 multiplets. In equation (3.7) we presented the general result for any
even KK level n. In tables 11–14 we illustrate this general result by explicitly listing the
N = 2 superconformal multiplets, along with their SU(4) flavor symmetry representations,
that arise from the first four even KK levels n = 2, 4, 6, 8.

1 LL[0](0)
4

15 LL[2](0)
3

20′ LL[0](0)
3

35 LB1[0](2)
2

35 B1L[0](−2)
2

45 LA1[1](1)
5
2

45 A1L[1](−1)
5
2

84 LL[0](0)
2

Table 11. The N = 2 multiplets from level
n = 2.

15 LL[0](0)
5 84 LL[2](0)

4

175 LL[0](0)
4 300′ LL[0](0)

3

35 LA1[2](2)
4 35 A1L[2](−2)

4

45 LL[1](1)
9
2

45 LL[1](−1)
9
2

189 LA2[0](2)
3 189 A2L[0](−2)

3

256 LL[1](1)
7
2

256 LL[1](−1)
7
2

Table 12. The N = 2 multiplets from level
n = 4.

35 LL[0](2)
6 35 LL[0](−2)

6

165 LB1[0](4)
4 165′ B1L[0](−4)

4

189 LL[2](2)
5 189 LL[2](−2)

5

256 LL[1](1)
9
2

256 LL[1](−1)
9
2

84 LL[0](0)
6 300′ LL[2](0)

5

315 LA1[1](3)
9
2

315 A1L[1](−3)
9
2

360′ LL[0](2)
5 360′ LL[0](−2)

5

616 LL[0](2)
4 616 LL[0](−2)

4

729 LL[0](0)
5 825 LL[0](0)

4

875 LL[1](1)
9
2

875 LL[1](−1)
9
2

Table 13. The N = 2 multiplets from level
n = 6.

165 LA1[2](4)
6 165 A1L[2](−4)

6

189 LL[0](2)
7 189 LL[0](−2)

7

315 LL[1](3)
13
2

315 LL[1](−3)
13
2

616 LL[2](2)
6 616 LL[2](−2)

6

715 LA2[0](4)
5 715 A2L[0](−4)

5

875 LL[1](1)
13
2

875 LL[1](−1)
13
2

1280′′ LL[1](3)
11
2

1280′′ LL[1](−3)
11
2

1485 LL[0](2)
6 1485 LL[0](−2)

6

1560 LL[0](2)
5 1560 LL[0](−2)

5

2304 LL[1](1)
11
2

2304 LL[1](−1)
11
2

300′ LL[0](0)
7 825 LL[2](0)

6

1911 LL[0](0)
5 2156 LL[0](0)

6

Table 14. The N = 2 multiplets from level
n = 8.
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C.2 Higher levels for the generalizations

In section 2.1 and 3.3 we introduced a class of generalizations to Z4p orbifolds and formu-
lated a rule for selecting the invariant spectrum for both spin structures for the orbifold
defined by the action (2.9). In the main text we illustrated this rule by explicitly showing
the resulting spectrum at KK level n = 0 and showed that it reorganizes into N = 4 or
N = 2 superconformal multiplets, depending on the chosen spin structure.

Here we give further evidence for this rule and give the explicit KK spectrum at
level n = 2 for the orbifold with action (2.9). The branching rules of the relevant SO(8)
representations under SU(2)1 × SU(2)2 × U(1)SU(4) × U(1) are rather lengthy so we first
present the invariant spectrum for the bosons which is identical for both spin structures
and next discuss the fermionic spectrum separately. In addition, we take k ≥ 12 in which
case we only select the neutral part of the spectrum at level n. For k = 8 and k = 4 there
are a few additional representations appearing which are charged under the U(1) flavor
symmetry. At level n = 0 we saw the same thing happening where for k = 4 an additional
pair of SUSY current multiplets appeared.

The relevant representations for level n = 2 are given in table 2. The branching rules
for the bosonic modes are given by:

(2, 0, 0, 0)→ (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 , (C.1)

(2, 1, 0, 0)→ 2 (1,1)0,0 ⊕ 4 (1,3)0,0 ⊕ 4 (3,1)0,0

⊕ 3 (3,3)0,0 ⊕ (1,5)0,0 ⊕ (5,1)0,0 (C.2)

⊕ (1,3)0,±1 ⊕ (3,1)0,±1 ⊕ (3,3)0,±1 ,

(1, 0, 1, 1)→ 3 (1,1)0,0 ⊕ (1,1)0,±1

⊕ 4 (1,3)0,0 ⊕ 4 (3,1)0,0 ⊕ 3 (3,3)0,0 (C.3)

⊕ (1,3)0,±1 ⊕ (3,1)0,±1 ,

(0, 1, 0, 0)→ 2 (1,1)0,0 ⊕ (1,3)0,0 ⊕ (3,1)0,0 , (C.4)

(4, 0, 0, 0)→ (1,1)0,0 ⊕ (3,3)0,±1

⊕ (1,3)0,0 ⊕ (3,1)0,0 ⊕ (3,3)0,0 (C.5)

⊕ (1,5)0,0 ⊕ (5,1)0,0 ,

(0, 2, 0, 0)→ 4 (1,1)0,0 ⊕ 2 (1,3)0,0 ⊕ 2 (3,1)0,0

⊕ 2 (3,3)0,0 ⊕ (1,5)0,0 ⊕ (5,1)0,0 (C.6)

⊕ (1,1)0,±1 ⊕ (3,3)0,±1 ,

(0, 0, 0, 0)→ (1,1)0,0 , (C.7)

(2, 0, 2, 0)→ 2 (1,1)0,0 ⊕ 3 (1,3)0,0 ⊕ 3 (3,1)0,0

⊕ 6 (3,3)0,0 ⊕ (1,5)0,0 ⊕ (5,1)0,0 (C.8)

⊕ (1,1)0,±1 ⊕ (1,3)0,±1 ⊕ (3,1)0,±1

⊕ (3,3)0,±1 ⊕ (1,5)0,±1 ⊕ (5,1)0,±1 ,

(0, 0, 0, 2)→ 2 (1,1)0,0 ⊕ (1,1)0,±1 ⊕ (3,3)0,0 . (C.9)
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U(1)SU(4)×U(1) N = 4 supermultiplets
(0,0) B1[0](3,3)

2 , B1[0](1,5)
2 , B1[0](5,1)

2 , A2[0](0,2)
2 , A2[0](2,0)

2 , L[0](1,1)
2

(0,1) B1[0](3,3)
2

(0,−1) B1[0](3,3)
2

Table 15. The N = 4 multiplets from the KK spectrum at level n = 2 for the periodic spin
structure. The U(1)SU(4)×U(1) charges are presented in the left column while the SU(2)1×SU(2)2
representations are indicated on each multiplet.

Moving on to the fermionic part of the spectrum, we find that the modes invariant under
the orbifold action for the periodic spin structure are given as follows:

(2, 0, 0, 1)→ 4 (2,2)0,0 ⊕ (2,2)0,±1 ⊕ (2,4)0,0 ⊕ (4,2)0,0 , (C.10)

(1, 0, 1, 0)→ 3 (2,2)0,0 , (C.11)

(3, 0, 1, 0)→ 4 (2,2)0,0 ⊕ 3 (2,4)0,0 ⊕ 3 (4,2)0,0 (C.12)

⊕ (2,2)0,±1 ⊕ (2,4)0,±1 ⊕ (4,2)0,±1 ,

(1, 1, 1, 0)→ 9 (2,2)0,0 ⊕ 4 (2,4)0,0 ⊕ 4 (4,2)0,0 (C.13)

⊕ 2 (2,2)0,±1 ⊕ (2,4)0,±1 ⊕ (4,2)0,±1 ,

(0, 1, 0, 1)→ (2,2)0,±1 ⊕ 4 (2,2)0,0 ⊕ (2,4)0,0 ⊕ (4,2)0,0 ,

(0, 0, 0, 1)→ (2,2)0,0 . (C.14)

For the antiperiodic spin structure on the other hand we find the following invariant modes:

(2, 0, 0, 1)→ (1,1)0,± 1
2
⊕ 2 (1,3)0,± 1

2
⊕ 2 (3,1)0,± 1

2
⊕ (3,3)0,± 1

2
, (C.15)

(1, 0, 1, 0)→ (1,1)0,± 1
2
⊕ (1,3)0,± 1

2
⊕ (3,1)0,± 1

2
, (C.16)

(3, 0, 1, 0)→ 3 (3,3)0,± 1
2
⊕ 2 (1,3)0,± 1

2
⊕ 2 (3,1)0,± 1

2
(C.17)

⊕ (1,1)0,± 1
2
⊕ (1,5)0,± 1

2
⊕ (5,1)0,± 1

2
,

(1, 1, 1, 0)→ 3 (1,1)0,± 1
2
⊕ 4 (1,3)0,± 1

2
⊕ 4 (3,1)0,± 1

2
⊕ 4 (3,3)0,± 1

2
(C.18)

⊕ (1,5)0,± 1
2
⊕ (5,1)0,± 1

2
,

(0, 1, 0, 1)→ 3 (1,1)0,± 1
2
⊕ (1,3)0,± 1

2
⊕ (3,1)0,± 1

2
⊕ (3,3)0,± 1

2
, (C.19)

(0, 0, 0, 1)→ (1,1)0,± 1
2
. (C.20)

We can again organize these modes in superconformal multiplets and find that, as expected,
for the periodic spin structure they organize into N = 4 multiplets, with all components
having the same U(1) charges, while for the antiperiodic spin structure they organize
into N = 2 multiplets. In table 15 we give the resulting N = 4 multiplets for each
combination of U(1)2 flavor charges. Similarly, for the antiperiodic spin structure the
bosonic and fermionic modes organize into N = 2 multiplets where all components of the
superconformal multiplet have the same SU(2)1 × SU(2)2 ×U(1)SU(4) charges. In table 16
we give the resulting N = 2 multiplets for each SU(2)1×SU(2)2×U(1)SU(4) representation.
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Flavor representation N = 2 supermultiplets
(1,1)0 LL[2](0)

3 , LL[0](0)
2 , LL[0](0)

3 , LL[0](0)
4

(1,3)0 LL[2](0)
3 , LL[0](0)

2 , A1L[1](
1
5 )

5
2
, LA1[1](−

1
2 )

5
2

(3,1)0 LL[2](0)
3 , LL[0](0)

2 , A1L[1](
1
5 )

5
2
, LA1[1](−

1
2 )

5
2

(3,3)0
LL[0](0)

2 , LL[0](0)
3 , B1L[0](1)

2 ,

LB1[0](−1)
2 , A1L[1](

1
5 )

5
2
, LA1[1](−

1
2 )

5
2

(1,5)0 LL[0](0)
2

(5,1)0 LL[0](0)
2

Table 16. The N = 2 multiplets from the KK spectrum at level n = 2 for the antiperiodic spin
structure. The SU(2)1 × SU(2)2 × U(1)SU(4) flavor symmetry representations are indicated in the
left column.
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