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1 Introduction

Elementary particles propagating on 4-dimensional Minkowski spacetime have been clas-
sified a long time ago by Wigner, using the unitary irreducible representations (UIRs) of
the Poincaré group ISO(3, 1) [2] (see also [3] for more details in any dimension). Accord-
ing to Wigner’s classification, massive particles are determined by representations of the
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rotation group SO(d− 1), while massless particles are divided into two classifications, the
“helicity” and “continuous spin”1 representations. Indeed, all known massless particles
(helicity particles) possessing a finite number of physical degrees of freedom per spacetime
point are characterized by representations of the Euclidean group Ed−2 = ISO(d− 2). On
the other hand, exotic massless particles, called continuous spin particles (CSPs), having
an infinite number of physical degrees of freedom per spacetime point are determined by
representations of the short little group SO(d − 3), which is the little group of Ed−2 [4].
We note that although continuous spin representations are known for many decades, cor-
responding continuous spin particles (if any) have not yet been observed in colliders with
current energy scales.

Apart from the method of induced representation, there is another method for classify-
ing UIRs of the Poincaré group by making use of the eigenvalues of the Casimir operators;
the quadratic Casimir operator C2 := P 2 (the square of the momentum Pµ), and the quartic
Casimir operator C4 := W 2 (the square of the Pauli-Lubanski vectorWµ := 1

2 ε
µνρσ Pν Jρσ).

Accordingly, massless representations, dividing into the helicity and continuous spin rep-
resentations, are characterized by the following eigenvalues:

helicity rep. ≡
{
P 2 = 0
W 2 = 0

, continuous spin rep. ≡
{
P 2 = 0
W 2 = µ2 .

We note that, in this approach, although the helicity representations have vanishing Casimir
operator eigenvalues, W 2 = 0 can be satisfied if one considers Wµ = −hPµ where h
represents a proportionality factor (operator). This factor can be then determined by
h = −W 0/P 0 = ~S · P̂ , which is nothing but the helicity operator. Therefore, the he-
licity representations are labeled by their helicity h and the helicity states do not mix
under Lorentz boosts. On the other hand, the continuous spin representations having a
non-vanishing eigenvalue are labeled by a dimensionful parameter, called continuous spin
parameter µ (a real parameter with the dimension of a mass). Notice that, unlike the
helicity states, the continuous spin states are mixed under Lorentz boosts so as the de-
gree of mixing is controlled by µ. In the “helicity limit”, i.e. µ → 0, the continuous
spin representation becomes reducible and decomposes into the direct sum of all helicity
representations.

About 75 years after Wigner’s classification, the first covariant action principles for the
bosonic [5] and the fermionic [6] continuous spin particles in 4-dimensional flat spacetime
were constructed in 2014 and 2015 respectively. The method of obtaining such actions
was explained in [7]. In the helicity limit µ → 0, these actions reproduce respectively
the bosonic [8] and the fermionic [9] higher spin actions in flat spacetime. In particular,
these two action principles [5, 6] have a simple form with no constraints on the gauge fields
and gauge parameters. In this sense, one may refer to these as unconstrained Lagrangian
formulations of the CSP theory along with the terminology used in the higher spin theory,
see references in [9, 10].

Afterwards, a constrained Lagrangian formulation à la Fronsdal was established for
both bosonic [11] and fermionic [12] continuous spin fields, in d-dimensional (A)dS space-

1Also known as “infinite spin” representation in the literature.
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Figure 1. This figure illustrates: (a) the real scalar φ, (b) the complex scalar Φ (= φ+ i φ′), (c) the
Majorana spinor ψ, and (d) the Dirac spinor Ψ (= ψ + i ψ′) continuous spin gauge fields. Remark
that each field (a)–(d) describes an “elementary massless particle”, called continuous spin particle,
with an infinite number of physical degrees of freedom per spacetime point. The figure naively
shows the continuous spin states (colored ellipses) are mixed under Lorentz boosts which µ controls
the degree of mixing. When µ vanishes, the continuous spin gauge fields (a)–(d) decompose into
the direct sum of all helicity fields.

time, where the gauge fields and gauge parameters are constrained. The detailed procedure
of obtaining these actions in d-dimensional flat spacetime can be found in [13]. In the flat
spacetime limit (Λ → 0) and then the helicity limit (µ → 0), these actions reproduce
respectively the Fronsdal [14] and the Fang-Fronsdal [15] actions.

The two above mentioned Lagrangian formulations of the continuous spin theory, i.e.
unconstrained and constrained, have recently been supersymmetrized in [1] where the al-
gebra of the supersymmetry (SUSY) transformations for the 4d N = 1 continuous spin
supermultiplet in Minkowski spacetime was closed on-shell. For a better understanding
of the supersymmetric continuous spin gauge theory, let us first look at all possible CSP
fields in 4 dimensions. From the group/field-theoretical point of view, in 4 dimensions,
there exist only two types of continuous spin representations/fields:

• bosonic continuous spin gauge field whose spectrum includes all integer (s = 0, 1, . . . ,
∞) helicities. This can be itself of two types, a real scalar or a complex scalar.

• Fermionic continuous spin gauge field whose spectrum comprises all half-integer (s =
1
2 ,

3
2 , . . . ,∞) helicities. This also might be of two kinds, a real (Majorana) spinor or

a complex (Dirac) spinor.

Therefore, there are no CSP fields of type the so-called vector, vector-spinor, and so on.
In other words, denoting the bosonic and the fermionic CSP fields as the spin-0 and the
spin-1

2 CSP fields [16], there would be no spin-s continuous spin field with s > 1 in four
dimensions. To shed light on the continuous spin supermultiplet, let us visualize each field
as shown in figure 1.

As mentioned, a CSP field has infinite number of physical degrees of freedom, hence,
the equality of the number of bosonic and fermionic degrees of freedom in a CSP super-
multiplet looks like meaningless. Therefore, in 4-dimensional flat spacetime, there would
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Figure 2. This figure illustrates, when µ vanishes, the continuous spin supermultiplet, comprising
of the complex scalar and the Dirac continuous spin gauge fields, decomposes into a direct sum of
all known helicity supermultiplets [1].

be in principle four possibilities for the N = 1 supermultiplet containing of a bosonic (real
or complex) and a fermionic (Majorana or Dirac) continuous spin fields. Among these
possibilities, we observed [1] that the only choice which is consistent with supersymmetry
expectations is the case including a complex scalar CSP and a Dirac CSP fields. This selec-
tion, in addition, can give us an important result from the helicity limit perspective, under
which all known supermultiplets should be recovered. In fact, we demonstrated that, when
µ vanishes, on-shell supersymmetry transformations of the continuous spin supermultiplet
results in those of all known supermultiplets, such as the scalar supermultiplet (0, 1/2);
all integer spin supermultiplets (s, s+ 1/2), s > 1; and all half-integer spin supermultiplets
(s− 1/2, s), s > 1. This result presented in [1] can be visualized on figure 2.

Apart from the above discussion, other supersymmetric formulations of the CSP theory
can be found in [4, 17–20]. Furthermore, a number of papers have studied other aspects of
the continuous spin gauge theory in different approaches [21]–[51]. For instance:

• it was shown the continuous spin representation can be obtained either from the
massive representations by taking a suitable limit [21] (see also [13, 23]), or from
contraction of the conformal algebra [50].

• Although the helicity and the continuous spin representations are massless, only the
helicity representation of the Poincaré algebra has a conformal extension, there is no
conformal extension to the continuous spin representation [21] (see also [52]).

• Since an interacting theory is more favored, possible interactions of continuous spin
particle with matter were investigated in [7, 35], while interactions of continuous spin
tachyon2 were studied in [43, 46].

2Also known as massive continuous spin particle.
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Supermultiplets: Continuous spin
unconstr./constr.

Continuous spin/
Higher spin Scalar (chiral) Integer

spins s > 1
Half-integer
spins s > 1

Gauge fields: complex real real real real
(bosons; fermions): (Φ,H; Ψ) (φ, φ′, h, h′;ψ,ψ′) (φ, φ′, h, h′;ψ) (φs, hs;ψs) (φ′s, h′s;ψ′s−1)
# off-shell d.o.f.: (∞,∞;∞) (∞,∞,∞,∞;∞,∞) (1, 1, 1, 1; 4) (2, 2; 4) (2, 2; 4)
# on-shell d.o.f.: (∞, 0;∞) (∞,∞, 0, 0;∞,∞) (1, 1, 0, 0; 2) (2, 0; 2) (2, 0; 2)
SUSY actions: (2.1)/(3.1) (4.2)/(5.1) (5.10) (5.13) (5.17)
SUSY trans.: (2.15)/(3.22) (4.3)/(5.4) (5.12) (5.15) (5.19)

Table 1. Off-shell 4d, N = 1 massless supermultiplets in flat space, obtained (reproduced) in this
paper.

• Although CSP fields are massless, the Dirac continuous spin field equation can not
be decoupled into two Weyl equations, as what happens in the massless Dirac spin- 1

2
field. In fact, continuous spin parameter µ plays a similar roll as mass in the massive
Dirac spin-1

2 field equation [1].

In this work we construct, for the first time, off-shell formulations of the supersym-
metric continuous spin gauge theory for the 4d N = 1 supermultiplet at the level of action
principles. We note that, at the level of Wigner’s wavefunctions, a superfield (off-shell)
description was first discussed in [20], while other formulations studied only on-shell de-
scription [1, 17–19]. To construct an off-shell Lagrangian formulation, we extend on-shell
descriptions presented in [1]. For this purpose, we introduce an auxiliary field, denoted by
H, and find that it should be a complex scalar continuous spin gauge field, which is added
into the on-shell supermultiplet, i.e.

Off-shell 4d, N = 1 continuous spin supermultiplet ⇒
(

Φ, H ; Ψ
)
.

Therefore, by taking into account the unconstrained [5, 6] and constrained [11, 12] La-
grangian formulations, we introduce appropriate auxiliary actions corresponding to each
formulation, and construct two off-shell Lagrangian formulations for the SUSY CSP theory.
We then provide two set of supersymmetry transformations leaving two related off-shell
actions invariant. It is shown the algebra of each supersymmetry transformations is closed
off-shell, i.e. no equations of motion are applied. Afterwards, by rephrasing off-shell La-
grangian formulation in terms of real continuous spin gauge fields (i.e. in terms of the real
scalar and the Majorana CSP fields, figure 1), and then by taking the helicity limit (µ→ 0),
we arrive at the so-called “off-shell supersymmetric higher spin theory”. We can then re-
cover all off-shell Lagrangian formulations of the known supermultiplets. Our results are
summarized in table 1.

This paper is organized as follows. In section 2, we will introduce an auxiliary action
to construct the off-shell supersymmetric action for unconstrained formulation. We then
provide supersymmetry transformations leaving the action invariant and check the closure
of the SUSY algebra. In section 3, we will define a related auxiliary action to establish the
off-shell supersymmetric action for constrained formulation. We then find supersymmetry
transformations and close the algebra off-shell. In section 4, we rephrase our constrained
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Lagrangian formulation in terms of real CSP fields. In section 5, we take the helicity limit
(µ → 0) and reproduce all know off-shell supermultiplet results, i.e. the scalar supermul-
tiplet and all higher spin supermultiplets. The conclusions are displayed in section 6. In
appendices; we present our conventions in the appendix A. The appendix B demonstrates
invariance of the off-shell action under SUSY transformations. Useful relations concerning
supersymmetry and so on will be presented in the appendix C.

2 Unconstrained Lagrangian formulation

On-shell supersymmetric action of the continuous spin gauge theory was given by a sum
of the bosonic and the fermionic CSP actions [1]. The bosonic part included the Schuster-
Toro action [5] (up to a partial integration), in which the scalar continuous spin gauge
field Φ was considered to be complex. The fermionic part was given by [6] in which the
fermionic continuous spin gauge field Ψ was taken to be a Dirac spinor. Now, in order
to construct an off-shell formulation for the theory, we have to add an auxiliary action to
the bosonic part of the on-shell system. Such an auxiliary action describes an auxiliary
scalar continuous spin gauge field (denoted by H) which is considered to be complex. The
auxiliary field H is non-dynamical and has infinite degrees of freedom per spacetime point.

2.1 Off-shell supersymmetric continuous spin action

In unconstrained Lagrangian formulation, we find the off-shell supersymmetric continuous
spin action as a sum of three actions

S
CSP

SUSY =
∫
d4x d4η δ′(η2− 1)

[
Φ†(x, η) B Φ(x, η) + H†(x, η) H(x, η) + Ψ(x, η) (/η− 1)F Ψ(x, η)

]
,

(2.1a)
where the bosonic B and the fermionic F operators are defined as

B := �− (η · ∂)(η̄ · ∂ + µ) + 1
2 (η2 − 1)(η̄ · ∂ + µ)2 , (2.1b)

F := /∂ − (/η + 1)(η̄ · ∂ + µ) . (2.1c)

In above action, µ is continuous spin parameter,3 ηα is a 4-dimensional auxiliary Lorentz
vector localized to the unit hyperboloid η2 = 1 of one sheet, γα are the 4-dimensional Dirac
gamma matrices, and δ′ is the derivative of the Dirac delta function with respect to its
argument, i.e. δ′(a) = d

da δ(a). Other associated quantities in the action (2.1), such as η̄ν ,
∂ν , the d’Alembertian operator �, the Dirac adjoint Ψ, and the Dirac slash notations /η,
/∂ are introduced in (A.1), (A.7), and (A.8) respectively. The action (2.1) is Hermitian,
S† = S, with respect to the Hermitian conjugation rules (A.3). In what follows, let us
describe each part of the action (2.1) separately in detail.

3 Without loss of generality, one may flip the sign of µ and define another bosonic and fermionic operators
in (2.1).
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2.1.1 Complex scalar continuous spin action

Bosonic part of the action (2.1), containing a dynamical field Φ, is given by the complex
scalar continuous spin action

S [Φ] =
∫
d4x d4η Φ†(x, η) δ′(η2 − 1)B Φ(x, η) , (2.2)

where B was defined in (2.1b). This action is indeed the Schuster-Toro action [5] (up to a
total derivative) in which the field has been complexified, and thus, an overall factor of 1

2
has been dropped.4 The action (2.2) is invariant under two gauge transformations

δΦ(x, η) =
[
η · ∂ − 1

2 (η2 − 1)(η̄ · ∂ + µ)
]
ξ1(x, η) , (2.3a)

δΦ(x, η) = (η2 − 1)2 ξ2(x, η) , (2.3b)

where ξ1, ξ2 are two arbitrary complex gauge transformation parameters. The complex
scalar continuous spin field Φ and two complex gauge transformation parameters ξi (i =
1, 2) are unconstrained and introduce respectively by the generating functions

Φ(x, η) =
∞∑
s=0

1
s! η

µ1 . . . ηµs Φµ1...µs(x) , ξi(x, η) =
∞∑
s=1

1
(s− 1)! η

µ1 . . . ηµs−1 ξi µ1...µs−1(x) ,

(2.4)
where Φµ1...µs denotes a collection of totally symmetric complex tensor fields of all integer
rank s, and ξi µ1...µs−1 stands for all totally symmetric complex tensor gauge transformation
parameters of integer rank s − 1. By varying the action (2.2) with respect to the gauge
fields Φ† and Φ, one can obtain two independent equations of motion. For the gauge field
Φ, the continuous spin equation of motion reads

δ′(η2 − 1)B Φ(x, η) = 0 , (2.5)

where the bosonic operator B was introduced in (2.1b).

2.1.2 Auxiliary complex scalar continuous spin action

To construct the off-shell supersymmetric continuous spin action (2.1), we realized that
the following auxiliary action

S [H] =
∫
d4x d4η H†(x, η) δ′(η2 − 1) H(x, η) , (2.6)

have to be added to the bosonic part, in which H is an auxiliary complex scalar continuous
spin gauge field. The action (2.6) is invariant under the gauge transformation

δH(x, η) = (η2 − 1)2 υ(x, η) , (2.7)

4Note that the presented action in [5] was written in the mostly minus signature for the metric, while
the one here (2.2) is considered in the mostly plus signature.
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where υ is an auxiliary complex gauge transformation parameter which is an arbitrary func-
tion. The auxiliary field H and gauge transformation parameter υ are both unconstrained
and introduce respectively by the generating functions

H(x, η) =
∞∑
s=0

1
s! η

µ1 . . . ηµs Hµ1...µs(x) , υ(x, η) =
∞∑
s=1

1
(s− 1)! η

µ1 . . . ηµs−1 υµ1...µs−1(x) ,

(2.8)
which have a same structure as (2.4), except that they are here auxiliary objects, i.e.
Hµ1...µs denotes a collection of totally symmetric auxiliary complex tensor fields of all
integer rank s, and υµ1...µs−1 stands for all totally symmetric auxiliary complex tensor
gauge transformation parameters of integer rank s − 1. By varying the action (2.6) with
respect to the auxiliary gauge fields H†, H, one may acquire two equations of motion. The
equation of motion for the auxiliary continuous spin gauge field H reads

δ′(η2 − 1) H(x, η) = 0 . (2.9)

As one can see, this equation of motion has no kinetic term. Thus, the auxiliary complex
scalar continuous spin gauge field H is a non-dynamical field and consequently does not
insert any physical degrees of freedom to the off-shell system. Nevertheless, it is necessary
for the full realization of supersymmetry.

2.1.3 Dirac continuous spin action
The fermionic part of the off-shell SUSY action (2.1) is given by the Dirac continuous spin
action [6]

S [Ψ] =
∫
d4x d4η Ψ(x, η) δ′(η2 − 1) (/η − 1)F Ψ(x, η) , (2.10)

where F was defined in (2.1c). The Dirac continuous spin action (2.10) is invariant under
two spinor gauge transformations

δΨ(x, η) =
[
/∂ (/η + 1)− (η2 − 1)(η̄ · ∂ + µ)

]
ζ1(x, η) , (2.11a)

δΨ(x, η) = (/η − 1) (η2 − 1) ζ2(x, η) = (/η − 1) ζ ′2(x, η) , (2.11b)

where ζ1 and ζ2 (or ζ ′2 := (η2 − 1) ζ2) are two arbitrary spinor gauge transformation
parameters. The Dirac continuous spin gauge field Ψ and two spinor gauge transformation
parameters ζi (i = 1, 2) are unconstrained and introduce respectively by the generating
functions

Ψ(x, η) =
∞∑
s=0

1
s! η

µ1 . . . ηµs Ψµ1...µs(x) , ζi(x, η) =
∞∑
s=1

1
(s− 1)! η

µ1 . . . ηµs−1 ζi µ1...µs−1(x) ,

(2.12)
where Ψµ1...µs denotes a collection of totally symmetric Dirac spinor-tensor fields of all
half-integer rank s + 1

2 , and ζi µ1...µs−1 stands for a set of totally symmetric Dirac spinor-
tensor gauge transformation parameters of all half-integer rank s − 1

2 (spinor indices are
left implicitly). By varying the action (2.10) with respect to the fermionic gauge field Ψ,
one yields the equation of motion for the Dirac continuous spin gauge field Ψ

δ′(η2 − 1) (/η − 1)F Ψ(x, η) = 0 , (2.13)

where the fermionic operator F was introduced in (2.1c).

– 8 –
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We note that in the infinite tower of bosonic (2.4), (2.8) and fermionic (2.12) spins,
every spin state interns only once, and spin states are mixed under the Lorentz boost, so as
the degree of mixing is controlled by the continuous spin parameter (see figure 1). We also
notice that in on-shell formulation of the SUSY CSP gauge theory [1], the supersymmetry
algebra was closed, by applying the equation of motion, up to a spinor gauge transformation
corresponding to (2.11a). However, we will see below, in off-shell formulation the algebra
would be closed, without using the equation of motion, up to two spinor gauge transforma-
tions corresponding to (2.11). Therefore, the second spinor gauge transformation (2.11b)
will play a crucial role on off-shell closure of the supersymmetry algebra.

2.2 Off-shell supersymmetry transformations

Now we are in a position to present off-shell SUSY transformations for unconstrained La-
grangian formulation of the CSP gauge theory in Minkowski spacetime for the 4d N = 1
supermultiplet. We realize that such an irreducible off-shell supermultiplet should be con-
sist of the complex scalar Φ, auxiliary complex scalar H, and Dirac Ψ continuous spin gauge
fields. Therefore, we find that the off-shell supersymmetric continuous spin action (2.1),
including a sum of three actions (2.2), (2.6), (2.10),

S
CSP

SUSY = S [Φ] + S [H] + S [Ψ] , (2.14)

is invariant (see appendix B) under the following supersymmetry transformations

δΦ(x, η) =
√

2 ε̄ L
(
/η + 1

)
Ψ(x, η) , (2.15a)

δH(x, η) =
√

2 ε̄ R
(
/η − 1

)
F Ψ(x, η) , (2.15b)

δΨ(x, η) =
√

2 X R ε Φ(x, η) −
√

2 L εH(x, η) . (2.15c)

where the operator F was introduced in (2.1c), while the operator X and chiral projectors
R, L are defined as

X := /∂ − 1
2
(
/η − 1

)(
η̄ · ∂ + µ

)
, (2.16)

L := 1
2 (1 + γ5) , R := 1

2 (1− γ5) . (2.17)

In the supersymmetry transformations (2.15), ε is an arbitrary constant Dirac spinor object
that parameterizes the supersymmetry transformations (see (C.1) for its property).

Let us now calculate commutator of the supersymmetry transformations (2.15) acting
on the bosonic and fermionic continuous spin gauge fields. We straightforwardly find that
the commutator on the continuous spin gauge fields yield

[δ1 , δ2] Φ(x, η) = 2 (ε̄2 /∂ ε1) Φ(x, η) , (2.18a)
[δ1 , δ2] H(x, η) = 2 (ε̄2 /∂ ε1) H(x, η) , (2.18b)
[δ1 , δ2] Ψ(x, η) = 2 (ε̄2 /∂ ε1) Ψ(x, η) + G.T.(I) + G.T.(II) , (2.18c)

– 9 –
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where G.T.(I) and G.T.(II) stand for two spinor gauge transformations corresponding re-
spectively to (2.11a) and (2.11b), in which spinor gauge transformation parameters are
field-dependent, i.e.

G.T.(I) :=
[
/∂ (/η + 1)− (η2 − 1) (η̄ · ∂ + µ)

]
ζ1(Ψ) , ζ1(Ψ) = − γνR (ε̄2 γν ε1) Ψ , (2.19)

G.T.(II) := (/η − 1) ζ ′2(Ψ) , ζ ′2(Ψ) = 1
2 γνL (ε̄2 γν ε1)FΨ .

(2.20)

As a result, we realize that using supersymmetry transformations (2.15) the supersymmetry
algebra (2.18) is closed off-shell up to two gauge transformations, that is, no equations of
motion are used in the calculations, as is expected in an off-shell description.

Remark that if one multiplies supersymmetry transformations (2.15) by δ′(η2 − 1) to
the left, then the equations of motion (2.9), (2.13) will appeare. By applying the equations
of motion, supersymmetry transformations (2.15) reduce to

δΦ =
√

2 ε̄ L
(
/η + 1

)
Ψ , δΨ =

√
2 X R ε Φ , (2.21)

where X, L, R defined in (2.16), (2.17). These are indeed on-shell SUSY transformations
presented in [1].

3 Constrained Lagrangian formulation

The 4d, N = 1 on-shell description of the SUSY CSP gauge theory was given in [1], in which
the bosonic and fermionic parts were given by Metsaev actions [11, 12] in flat spacetime.
Similar to the unconstrained formulation 2, the dynamical fields were considered to be
complex scalar Φ and Dirac Ψ CSP gauge fields, by the difference that gauge fields and
parameters were constrained. Here, in order to construct an off-shell description, we add
a non-dynamical field H to the bosonic part. In what follows, we first present the off-shell
SUSY action, describe each part of the action, and finally provide SUSY transformations.

3.1 Off-shell supersymmetric continuous spin action

In constrained Lagrangian formulation, we find the off-shell supersymmetric continuous
spin action as a sum of three actions

S
CSP

SUSY =
∫
d4x

[
Φ†(x, ω)

(
B + Bµ

)
Φ(x, ω) + H†(x, ω)

(
B0

)
H(x, ω) + Ψ(x, ω)

(
F + Fµ

)
Ψ(x, ω)

]∣∣∣∣
ω=0

,

(3.1a)
where the bosonic B, Bµ, B0 and the fermionic F, Fµ operators are given by

B :=�−(ω·∂)(ω·∂)+ 1
2 (ω·∂)2ω2+ 1

2ω
2(ω·∂)2− 1

2ω
2�ω2− 1

4ω
2(ω·∂)(ω·∂)ω2 , (3.1b)

Bµ:=µ
[(
ω·∂−ω2(ω·∂)+ 1

4ω
2(ω·∂)ω2

)
−1√

2(N+1)
+ 1√

2(N+1)

(
ω·∂−(ω·∂)ω2+ 1

4ω
2(ω·∂)ω2

)]
,

+µ2
[

1
2(N+1) +ω2 1

8(N+3)ω
2+ 1

4ω
2 1√

(N+1)(N+2)
+ 1

4
1√

(N+1)(N+2)
ω2
]
, (3.1c)
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B0 :=1− 1
4ω

2ω2 , (3.1d)

F :=−
[
/∂−/ω(ω·∂)−(ω·∂)/ω+/ω/∂ /ω+ 1

2 /ω(ω·∂)ω2+ 1
2ω

2(ω·∂)/ω− 1
4ω

2 /∂ω2
]
, (3.1e)

Fµ:=µ
[

1
N+1

(
1−/ω/ω−

1
4ω

2ω2
)

+
(
/ω−

1
2ω

2/ω

)
−1√

2(N+1)
+ 1√

2(N+1)

(
/ω− 1

2 /ωω
2
)]

. (3.1f)

As before, µ is continuous spin parameter,5 and ων is a 4-dimensional auxiliary Lorentz
vector. Other associated quantities in the action (3.1), such as ων , N , ∂ν , the d’Alembertian
operator �, the Dirac adjoint Ψ, and the Dirac slash notations /ω, /ω, /∂ are introduced
in (A.1), (A.7), and (A.8) respectively. The action (3.1) is Hermitian (i.e. S† = S) with
respect to the Hermitian conjugation rules (A.4). In what follows, we shall describe each
part of the action (3.1) separately in detail.

3.1.1 Complex scalar continuous spin action

Bosonic part of the action (3.1), including a dynamical field Φ, is given by the complex
scalar continuous spin action

S [Φ] =
∫
d4x Φ†(x, ω)

(
B + Bµ

)
Φ(x, ω)

∣∣∣
ω=0

, (3.2)

where B, Bµ were introduced in (3.1b), (3.1c). This action is indeed the Metsaev action [11]
in 4-dimensional flat space, in which the gauge field has been considered to be complex, as
a result, an overall factor of 1

2 has been removed. The operators B, Bµ, and consequently
the action (3.2), are Hermitian6 with respect to the Hermitian conjugation rules (A.4).

The action (3.2) is invariant under the gauge transformation

δΦ(x, ω) =
(
ω · ∂ − µ

1√
2(N + 1)

+ µ ω2 1
2(N + 1)

√
2(N + 2)

)
χ(x, ω) , (3.3)

where χ is a complex gauge transformation parameter. Unlike the previous section 2, here,
we deal with constrained formulation. This means that the complex scalar continuous spin
gauge field Φ and complex gauge transformation parameter χ, which are introduced by the
generating functions7

Φ(x, ω) =
∞∑
s=0

1
s! ω

µ1 . . . ωµs Φµ1...µs(x) , χ(x, ω) =
∞∑
s=1

1
(s− 1)! ω

µ1 . . . ωµs−1 χµ1...µs−1(x) ,

(3.4)
obey respectively the double-trace constraint and the trace condition

(ω 2)2 Φ(x, ω) = 0 , (ω 2)χ(x, ω) = 0 . (3.5)
5Without loss of generality, one may flip the sign of µ and define another bosonic and fermionic operators

in (3.1).
6I.e. B† = B, B†µ = Bµ, (S [Φ])† = S [Φ].
7In (3.4), Φµ1...µs denotes a collection of totally symmetric complex tensor fields of all integer rank s,

and χµ1...µs−1 stands for all totally symmetric complex tensor gauge transformation parameters of integer
rank s− 1.
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By varying the action (3.2), with respect to the field Φ†, one finds the scalar CSP
equation of motion (

B + Bµ
)

Φ(x, ω) = 0 , (3.6)

where B, Bµ were defined in (3.1b), (3.1c). This equation can be reduced to a simpler
form. Indeed, by dropping a factor of

(
1− 1

4 ω
2 ω 2

)
from the left-hand-side of (3.6), the

scalar continuous spin equation of motion may be written in the following form(
B + Bµ

)
Φ(x, ω) = 0 , (3.7)

where (the operator B is indeed the Fronsdal operator [14])

B :=�− (ω ·∂)(ω ·∂) + 1
2 (ω ·∂)2ω2 , (3.8)

Bµ :=µ
[

(ω ·∂) −1√
2(N+1)

+ 1√
2(N+1)

(ω ·∂)−ω2 1
2(N+1)

√
2(N+2)

(ω ·∂)

− (ω ·∂) 1√
2(N+2)

ω2 +ω2 (ω ·∂) 1
2(N+2)

√
2(N+1)

ω2

]

+µ2

[
1

2(N+1)−ω
2 1

4(N+1)(N+3) ω
2− ω2 1√

2(N+2)[2(N+1)]3/2
+ 1

4
√

(N+2)(N+1)
ω2

]
.

(3.9)

We note that, in comparison to the spin-two case, one can refer to (3.6) as the Einstein-like
continuous spin equation of motion, while one may refer to (3.7) as the Ricci-like continuous
spin equation of motion. In other words, using the Hermitian conjugation rules (A.4), one
can check that the bosonic operator in (3.6) is Hermitian (B + Bµ)† = B + Bµ, while the
one in (3.7) is non-Hermitian (B + Bµ)† 6= B + Bµ.

Recall that when µ = 0, an infinite sum of higher spin results should be reproduced.
As a result, at µ = 0 (where Bµ,Bµ = 0), bosonic continuous spin formalism, given by the
action (3.2) and its accompanying features (3.3)–(3.7), will reduce to a sum of the Fronsdal
formalism [14].

3.1.2 Auxiliary complex scalar continuous spin action

To build the off-shell supersymmetric continuous spin action (3.1), we found the following
auxiliary action

S [H] =
∫
d4x H†(x, ω)

(
B0

)
H(x, ω)

∣∣∣
ω=0

, (3.10)

should be added to the bosonic part, in which H is an auxiliary complex scalar continuous
spin gauge field, and B0 was introduced in (3.1d). The action (3.10) is invariant under the
gauge transformation

δH(x, ω) = 0 . (3.11)
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The auxiliary complex scalar continuous spin gauge field H is introduced by the generating
function

H(x, ω) =
∞∑
s=0

1
s! ω

µ1 . . . ωµs Hµ1...µs(x) , (3.12)

where Hµ1...µs denotes a collection of totally symmetric auxiliary complex tensor fields of
all integer rank s mixing under Lorentz boosts, so as the degree of mixing is controlled by
the continuous spin parameter µ. We note that since we are here working in constrained
formulation, the auxiliary gauge field is constrained, i.e. obeys the double-trace condition

(ω 2)2 H(x, ω) = 0 . (3.13)

If one varies the action (3.10), with respect to the gauge field H†, one finds the equation
of motion

H(x, ω) = 0 , (3.14)

demonstrating that there is no kinetic term in the equation, and thus the auxiliary gauge
field H is non-dynamical.

Let us recall that here no continuous spin parameter µ was entered in the auxiliary
continuous spin action (3.10) (and thus in the equation of motion (3.14)) to demonstrate
that we have actually a continuous spin gauge theory. Nevertheless, as stated, totally sym-
metric auxiliary complex tensor fields Hµ1...µs , packed into the generating function (3.12),
were considered to be mixed under the Lorentz boost, demonstrating that we are deal-
ing with a continuous spin gauge theory. In the helicity limit µ = 0, which higher spin
results are expected to be recovered, the form of the auxiliary action (3.10) will remain
unchanged. However, the generating function (3.12) will be interpreted as a collection of
totally symmetric auxiliary complex tensor fields Hµ1...µs of all integer rank s, which do
not mix under the Lorentz boost. We will use this interpretation later to reproduce higher
spin supermultiplets from the continuous spin one.

3.1.3 Dirac continuous spin action

The fermionic part of the off-shell SUSY action (3.1) is given by the Dirac continuous spin
action

S [Ψ] =
∫
d4x Ψ(x, ω)

(
F + Fµ

)
Ψ(x, ω)

∣∣∣
ω=0

, (3.15)

in which Ψ is the so-called “Dirac continuous spin gauge field”, and F, Fµ were defined
in (3.1e), (3.1f). This action is equivalent to the Metsaev action [12] in 4-dimensional flat
spacetime. The action (3.15) is invariant under the gauge transformation

δΨ(x, ω) =
(
ω · ∂ + µ

1√
2(N + 1)

− µ /ω
1

2(N + 1)(N + 2) − µω2 1
[2(N + 2)]3/2

)
τ(x, ω) ,

(3.16)
where τ is the spinor gauge transformation parameter. The Dirac continuous spin gauge
field Ψ and spinor gauge transformation parameter τ are respectively introduced by the
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generating functions

Ψ(x, ω) =
∞∑
s=0

1
s! ω

µ1 . . . ωµs Ψµ1...µs(x) , τ(x, ω) =
∞∑
s=1

1
(s− 1)! ω

µ1 . . . ωµs−1 τµ1...µs−1(x) ,

(3.17)
where Ψµ1...µs denotes a collection of totally symmetric Dirac spinor-tensor fields of all
half-integer rank s + 1

2 , and τµ1...µs−1 stands for a set of totally symmetric Dirac spinor-
tensor gauge transformation parameters of all half-integer rank s − 1

2 (spinor indices are
left implicitly). The formulation is constrained, that is, the spinor gauge field Ψ and the
spinor gauge transformation parameter τ obey respectively the triple gamma-trace and the
gamma-trace conditions

(/ω)3 Ψ(x, ω) = 0 , (/ω) τ(x, ω) = 0 . (3.18)

By varying the action (3.15) with respect to the fermionic gauge field Ψ, one can obtain
the equation of motion for the Dirac continuous spin gauge field Ψ(

F + Fµ
)

Ψ(x, ω) = 0 , (3.19)

where F, Fµ were introduced in (3.1e), (3.1f) respectively. If one removes a factor of(
1− 1

2 /ω /ω −
1
4 ω

2 ω 2
)
from the left-hand-side of (3.19), one can then rewrite the Dirac

CSP equation in the following form(
F + Fµ

)
Ψ(x, ω) = 0 , (3.20a)

where (the operator F is the Fang-Fronsdal operator [15])

F :=− /∂+(ω ·∂) /ω, (3.20b)

Fµ :=µ
[

1
N+1 + /ω

2
[2(N+1)]3/2 + 1

[2(N+1)]1/2 /ω+ /ω
1

2(N+1)(N+2)
/ω−ω2 1

[2(N+2)]3/2 /ω

]
.

(3.20c)

Similar to the bosonic case, using (A.4), one may check that the fermionic operator in (3.19)
satisfies (F + Fµ)† = − γ0 (F + Fµ) γ0, while the one in (3.20) reads (F +Fµ)† 6= − γ0 (F +
Fµ) γ0.

We note again that, at µ = 0 (where Fµ,Fµ = 0), fermionic continuous spin formalism,
given by the action (3.15) and its associated relations (3.16)–(3.20), will reproduce a sum
of the Fang-Fronsdal formalism [15].

3.2 Off-shell supersymmetry transformations

In this section, we discussed constrained formulation and presented the off-shell SUSY CSP
action (3.1). At this stage we are ready to provide SUSY transformations in flat spacetime
for the off-shell 4d N = 1 continuous spin supermultiplet. This supermultiplet should
be consist of the complex scalar Φ, auxiliary complex scalar H, and Dirac Ψ continuous
spin gauge fields. Therefore, we discover that the off-shell supersymmetric continuous spin
action (3.1), including a sum of three actions (3.2), (3.10), (3.15),

S
CSP

SUSY = S [Φ] + S [H] + S [Ψ] , (3.21)
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is invariant under the following supersymmetry transformations

δΦ(x, ω) =
√

2 ε̄ L T Ψ(x, ω) , (3.22a)
δH(x, ω) =

√
2 ε̄ R

[
Y + Yµ

]
Ψ(x, ω) , (3.22b)

δΨ(x, ω) =
√

2
[
X + Xµ

]
R ε Φ(x, ω) −

√
2 Z L ε H(x, ω) , (3.22c)

where ε is an arbitrary constant Dirac spinor object, L, R are chiral projectors defined
in (2.17), and the operators T, X, Xµ, Y, Yµ, Z are introduced by

T:=1+/ω
1√

2(N+1)
, (3.23)

X:=/∂−/ω 1
2(N+1) (ω·∂)+/ω/∂ 1

2(N+1)
/ω−/ω(ω·∂) 1

4(N+2)ω
2+ 1√

2(N+1)

[
(ω·∂)−/∂ /ω+ 1

2 (ω·∂)ω2
]
,

(3.24)

Xµ:=µ
[

1
2(N+1)−ω

2 1
8(N+2)(N+3)ω

2+ 1
4

1√
(N+1)(N+2)

ω2−/ω 1
[2(N+1)]3/2−/ω

1
4(N+1)

√
2(N+2)

ω2
]
,

(3.25)

Y:=−/∂+(ω·∂)/ω+/ω/∂
1√

2(N+1)
−/ω(ω·∂) 1√

2(N+2)
/ω, (3.26)

Yµ:=µ
[

1
N+1−/ω

1
2(N+2)

/ω+ 1√
2(N+1)

/ω−ω2 1
2(N+1)

√
2(N+2)

/ω−ω2 1
2(N+1)

√
(N+1)(N+2)

]
,

(3.27)

Z:=1−/ω 1
2(N+1)

/ω+ 1√
2(N+1)

/ω. (3.28)

We note that the operators T, X, Xµ were obtained in [1] for an on-shell description, while
the operators Y, Yµ, Z were found in this work to make an off-shell description.

Let us again check the closure of the supersymmetry algebra using the above super-
symmetry transformations (3.22). In comparison to unconstrained formulation, here, a
long but straightforward computation implies that the commutator of the SUSY transfor-
mations (3.22) on the CSP gauge fields yield

[δ1 , δ2] Φ(x, ω) = 2 (ε̄2 /∂ ε1) Φ(x, ω) , (3.29a)
[δ1 , δ2] H(x, ω) = 2 (ε̄2 /∂ ε1) H(x, ω) , (3.29b)
[δ1 , δ2] Ψ(x, ω) = 2 (ε̄2 /∂ ε1) Ψ(x, ω) + G.T. , (3.29c)

where G.T. denotes a field-dependent spinor gauge transformation corresponding to (3.16).
Thus, the algebra closes off-shell, up to a gauge transformation, that is, no equation of
motion has been applied.

Let us now reproduce on-shell supersymmetry transformations [1] by applying the
equations of motion on the off-shell supersymmetry transformations (3.22). For this pur-
pose, using the following identity8

[Y + Yµ ] Ψ(x, ω) =
(

1 − /ω
1

[2(N + 1)]1/2

)
(F + Fµ ) Ψ(x, ω) , (3.30)

8Due to the triple gamma-trace condition (3.18), terms containing of /ω3 and (or) /ω3 vanish at the level
of the action, so such terms do not contribute to the supersymmetry transformations (3.22).
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one may rewrite (3.22b) to emerge explicitly the Dirac continuous spin equation of mo-
tion (3.20). By this rewriting, one can then apply equations of motion (3.14), (3.20) in the
off-shell supersymmetry transformations (3.22), resulting in the on-shell supersymmetry
transformations (obtained in [1])

δΦ =
√

2 ε̄ L T Ψ , δΨ =
√

2
[
X + Xµ

]
R ε Φ , (3.31)

where L, R, T , X, Xµ were respectively introduced in (2.17), (3.23), (3.24), (3.25).

4 Reformulation in terms of real fields

In both unconstrained and constrained Lagrangian formulations 2, 3, we presented su-
persymmetry actions, and their associated supersymmetry transformations, in terms of
complex fields Φ, H, Ψ. The great advantage of this consideration is that the SUSY ac-
tions (2.1), (3.1) and transformations (2.15), (3.22) have taken a simple compact form, and
hence less calculations are required to see action invariance and check the closure of the
SUSY algebra. However, as one can see, in terms of real fields they would take a more
complicated form. Nevertheless, reformulation in terms of real fields might be beneficial
in order to reproduce higher spin results. This approach has been done in unconstrained
formulation for on-shell description with µ = 0 [10], and one can conveniently extend it
to the off-shell description with µ 6= 0. Therefore, leaving unconstrained formalism, here,
we just discuss constrained formalism 3 and reformulate it in terms of real fields. This
reformulation will be used in the next section, where we shall extract higher spin results.

4.1 Constrained formalism

Let us consider the complex scalar Φ, auxiliary complex scalar H, and Dirac Ψ CSP gauge
fields as

Φ(x, ω) = 1√
2
[
φ(x, ω) − i φ′(x, ω)

]
, (4.1a)

H(x, ω) = 1√
2
[
h(x, ω) + i h′(x, ω)

]
, (4.1b)

Ψ(x, ω) = 1√
2
[
ψ(x, ω) − i ψ′(x, ω)

]
, (4.1c)

where φ, φ′ are real scalar continuous spin gauge fields; h, h′ are auxiliary real scalar
continuous spin gauge fields;9 and ψ, ψ′ are two Majorana continuous spin gauge fields.
By this consideration, the off-shell supersymmetric continuous spin action (3.1) reads

S
CSP

SUSY
= 1

2

∫
d4x

[
φ(x, ω)

(
B + Bµ

)
φ(x, ω) + h(x, ω)

(
B0

)
h(x, ω) + ψ(x, ω)

(
F + Fµ

)
ψ(x, ω)

(4.2)

+ φ′(x, ω)
(
B + Bµ

)
φ′(x, ω) + h′(x, ω)

(
B0

)
h′(x, ω) + ψ′(x, ω)

(
F + Fµ

)
ψ′(x, ω)

]∣∣∣
ω=0

,

9One may refer to φ, φ′ (and thus h, h′) as two bosonic fields which have opposite parities.
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where B, Bµ, B0 , F, Fµ were introduced in (3.1). To avoid repetition, let us just notice
that the real continuous spin gauge fields φ, h, ψ (and φ′, h′, ψ′) have respectively similar
gauge symmetries as (3.3), (3.11), (3.16), introduced by equivalent generating functions
as (3.4), (3.12), (3.17), and satisfy analogous constraints as (3.5), (3.13), (3.18).

Therefore, we find that the off-shell supersymmetric continuous spin action (4.2) is
invariant under the following supersymmetry transformations

δφ= 1√
2
ε̄
[
Tψ − iγ5 Tψ′

]
, δφ′= 1√

2
ε̄
[
Tψ′+ iγ5 Tψ

]
, (4.3a)

δh= 1√
2
ε̄
[
(Y+Yµ)ψ + iγ5 (Y+Yµ)ψ′

]
, δh′= 1√

2
ε̄
[
−(Y+Yµ)ψ′+ iγ5 (Y+Yµ)ψ

]
,

(4.3b)

δψ= 1√
2
{

(X+Xµ)
[
φ+iγ5φ′

]
−Z
[
h+iγ5h′

]}
ε, δψ′= 1√

2
{

(X+Xµ)
[
φ′−iγ5φ

]
+Z
[
h′−iγ5h

]}
ε,

(4.3c)

where ε is now an arbitrary constant Majorana spinor, and T, X, Xµ, Y, Yµ, Z were given
in (3.23)–(3.28). As we mentioned, although reformulation in terms of real fields becomes
sophisticated, it allows us to recover higher spin results in a more convenient way.

5 Reducing to the higher spin supermultiplets

Let us recall again that when continuous spin parameter µ vanishes, the continuous spin
representation becomes reducible and decomposes into a direct sum of all helicity rep-
resentations. Therefore, in this section, we expect in the µ → 0 limit the off-shell su-
persymmetric continuous spin action (4.2) and its supersymmetry transformations (4.3)
reduce to off-shell actions and supersymmetry transformations of the scalar supermultiplet
(0 , 1/2); integer spin supermultiplets (s , s+ 1/2), s > 1; and half-integer spin supermulti-
plets (s− 1/2 , s), s > 1. Here is a step by step explanation of how to obtain these results.

5.1 Off-shell supersymmetric higher spin theory

At µ = 0, the off-shell SUSY CSP action (4.2) reduces to the so called “off-shell supersym-
metric higher spin action”

S
HS

SUSY = 1
2

∫
d4x

[
φ(x, ω)

(
B
)
φ(x, ω) + h(x, ω)

(
B0

)
h(x, ω) + ψ(x, ω)

(
F
)
ψ(x, ω)

+ φ′(x, ω)
(
B
)
φ′(x, ω) + h′(x, ω)

(
B0

)
h′(x, ω) + ψ′(x, ω)

(
F
)
ψ′(x, ω)

]∣∣∣
ω=0

,

(5.1)

where the operators B, B0 , F were given in (3.1). We note that the bosonic B and the
fermionic F operators are respectively related to the Fronsdal and Fang-Fronsdal operators.
More precisely, in the above action, the terms including of B describe a direct sum of all
Fronsdal actions [14], and the expressions containing of F characterize a direct sum of all
Fang-Fronsdal actions [15]. Since we set µ = 0, the entered real fields φ, h, ψ (and φ′,
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h′, ψ′) in the action (5.1) are now higher spin gauge fields, introduced by the generating
functions10

φ(x, ω) =
∞∑
s=0

φs(x, ω) ,

=
∞∑
s=0

1
s! ω

µ1 . . . ωµsφµ1...µs ,

h(x, ω) =
∞∑
s=0

hs(x, ω) ,

=
∞∑
s=0

1
s! ω

µ1 . . . ωµshµ1...µs ,

ψ(x, ω) =
∞∑
s=0

ψs(x, ω) ,

=
∞∑
s=0

1
s! ω

µ1 . . . ωµsψµ1...µs .

(5.2)
Here, the gauge symmetry of the real higher spin gauge fields φ, h, ψ (and similarly φ′, h′,
ψ′) read

δ φ(x, ω) = (ω · ∂)χ(x, ω) , δ h(x, ω) = 0 , δ ψ(x, ω) = (ω · ∂) τ(x, ω) , (5.3)

where φ, h are double-traceless, χ is traceless, and ψ, τ are triple gamma-traceless and
gamma-traceless.

Now, by setting µ = 0 in the SUSY transformations (4.3), one then finds that the
off-shell supersymmetric higher spin action (5.1) is invariant under the following super-
symmetry transformations

δφ = 1√
2
ε̄
[
Tψ − iγ5 Tψ′

]
, δφ′ = 1√

2
ε̄
[
Tψ′ + iγ5 Tψ

]
, (5.4a)

δh = 1√
2
ε̄
[
Yψ + iγ5 Yψ′

]
, δh′ = 1√

2
ε̄
[
−Yψ′ + iγ5 Yψ

]
, (5.4b)

δψ = 1√
2

{
X
[
φ+ iγ5φ′

]
− Z

[
h+ iγ5h′

]}
ε , δψ′ = 1√

2

{
X
[
φ′ − iγ5φ

]
+ Z

[
h′ − iγ5h

]}
ε ,

(5.4c)

where the operators T, X, Y, Z were introduced in (3.23), (3.24), (3.26), (3.28) respectively.
We recall that in the on-shell 4d, N = 1 massless higher spin supermultiplets à la Frons-

dal [53], the spin-0 field was not considered in the spectrum.11 Nevertheless, if one wants
to include the spin-0 field, one should take into account the off/on-shell supersymmetric
higher spin action and its supersymmetry transformations as (5.1), (5.4) respectively. Note
that we arrived to this result from a top-down approach (i.e. from the CSP gauge theory),
in which the spin-0 field has already existed in the spectrum. Hence, in order to separate
the spin-0 field, let us first decompose the action (5.1), and then proceed further.

Action decomposition. The off-shell SUSY higher spin action (5.1) is comprising of
the actions of the scalar supermultiplet, integer spin supermultiplets, and half-integer spin
supermultiplets which are mixed together. To determine the off-shell actions corresponding

10In the generating functions, φµ1...µs denotes a collection of totally symmetric real tensor fields of all
integer rank s, hµ1...µs stands for a collection of totally symmetric auxiliary real tensor fields of all integer
rank s, and ψµ1...µs indicates a set of totally symmetric Majorana spinor-tensor fields of all half-integer
rank s+ 1/2.

11Also in off-shell superfield description [54, 55] and its extension to AdS [56]. However, the spin-0 field
is included in 4-dimensional flat [1] and AdS spaces [10, 57].
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to each supermultiplet, by considering (5.2), let us separate the first term in the generating
functions of φ, φ′, h, h′, ψ, except ψ′. For example consider

φ(x, ω) = φ(x) +
∞∑
s=1

φs(x, ω) . (5.5)

By this separation, not applying to ψ′, we can rewrite the off-shell SUSY higher spin
action (5.1) as

S
HS

SUSY = S
(0, 1/2)

+
∞∑
s=1

S
(s, s+1/2)

+
∞∑
s=1

S
(s−1/2, s)

, (5.6a)

in which

S(0,1/2) = 1
2

∫
d4x

[
φ(x)�φ(x) +φ′(x)�φ′(x) + [h(x)]2 + [h′(x)]2−ψ(x) /∂ψ(x)

]
, (5.6b)

S(s,s+1/2) = 1
2

∫
d4x

[
φs(x,ω)

(
B
)
φs(x,ω) +hs(x,ω)

(
B0

)
hs(x,ω) +ψs(x,ω)

(
F
)
ψs(x,ω)

]∣∣∣
ω=0

,

(5.6c)

S(s−1/2,s) = 1
2

∫
d4x

[
φ′s(x,ω)

(
B
)
φ′s(x,ω) +h′s(x,ω)

(
B0

)
h′s(x,ω) +ψ′s−1(x,ω)

(
F
)
ψ′s−1(x,ω)

]∣∣∣
ω=0

,

(5.6d)

are respectively the scalar supermultiplet action, the integer spin supermultiplet action,
and the half-integer spin supermultiplet action. Concerning the scalar supermultiplet ac-
tion (5.6b), we note that the first term in the generating functions has no dependence to ω.
Therefore, in the action (5.6b), the bosonic B, B0 and the fermionic F operators acting on
these fields have been reduced to: B = �, B0 = 1, F = − /∂ (see the form of these operators
in (3.1)).

Up to now, we decomposed the off-shell SUSY higher spin action (5.1) into the well-
known supermultiplet actions (5.6). The next duty is reading supersymmetry transfor-
mations corresponding to each supermultiplet from the higher spin SUSY transforma-
tions (5.4). To this end, using (3.23), (3.24), (3.26), (3.28), we divide each entered operator
in the supersymmetry transformations (5.4) into two parts

T = T1 + T2 , X = X1 + X2 , Y = Y1 + Y2 , Z = Z1 + Z2 , (5.7)

where

T1 := 1 , (5.8a)

X1 := /∂ − /ω
1

2(N + 1)(ω · ∂) + /ω/∂
1

2(N + 1)
/ω − /ω(ω · ∂) 1

4(N + 2)ω
2 , (5.8b)

Y1 := − /∂ + (ω · ∂) /ω = F , (5.8c)

Z1 := 1 − /ω
1

2(N + 1)
/ω , (5.8d)
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and

T2 := /ω
1√

2(N + 1)
, (5.9a)

X2 := 1√
2(N + 1)

[
(ω · ∂)− /∂ /ω + 1

2(ω · ∂)ω 2
]
, (5.9b)

Y2 := /ω /∂
1√

2(N + 1)
− /ω (ω · ∂) 1√

2(N + 2)
/ω =

[
/ω

− 1√
2(N + 1)

]
F , (5.9c)

Z2 := 1√
2(N + 1)

/ω . (5.9d)

Note that the operators Y1 , Y2 are both proportional to the Fang-Fronsdal operator
F (3.20b). This decomposition was done so as operators with index 1 have no degree
of ω or ω, while operators with index 2 have a degree of ω or ω (the degree of ω is 1,
thus the degree of ω (:= ∂/∂ω) would be −1). Indeed, we will see below that each set of
operators (5.8), (5.9) will appear in a specific supermultiplet. Referring to (5.4), (5.6), let
us read related SUSY transformations of each supermultiplet in below.

5.2 Scalar (chiral) supermultiplet: (0 , 1/2)

The first part of (5.6) describes the off-shell scalar supermultiplet action (off-shell Wess-
Zumino model)

S(0, 1/2) = 1
2

∫
d4x

[
φ�φ + φ′�φ′ + h2 + h′ 2 − ψ /∂ ψ

]
, (5.10)

in which φ (or φ′) is the spin-0 field, h (or h′) is an auxiliary spin-0 field, and ψ is the
spin-1/2 field (Majorana spinor). Since the gauge field ψ′ does not contribute to this
action (5.10), one may set ψ′ = 0 in the higher spin SUSY transformations (5.4). On the
other side, gauge fields in (5.10) are the first term of the generating functions having no
dependence to ω. This demonstrates that entered operators in (5.4), acting on the gauge
fields, result in

T = T1 = 1 , X = X1 = /∂ , Y = Y1 = − /∂ , Z = Z1 = 1 . (5.11)

Therefore, (i) by throwing out the fermionic field ψ′ and considering the first term of
generating functions, (ii) applying (5.11), and (iii) redefining supersymmetry parameter
ε := ε/

√
2, the off-shell higher spin SUSY transformations (5.4) reduce to

δφ = ε̄ ψ , δh = − ε̄ /∂ ψ , δψ = /∂
[
φ+ iγ5φ′

]
ε −

[
h+ iγ5h′

]
ε , (5.12)

δφ′ = ε̄ iγ5ψ , δh′ = − ε̄ iγ5 /∂ ψ .

These are precisely SUSY transformations of the scalar supermultiplet (0 , 1/2), leaving the
action (5.10) invariant. Let us emphasize that this result was obtained from the off-shell
continuous spin supermultiplet in a limit.
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5.3 Integer spin supermultiplets: (s , s + 1/2), s > 1

The off-shell integer spin supermultiplet action can be given by (see [1] for a review on
on-shell description)

S(s, s+1/2) = 1
2

∫
d4x

[
φs(x, ω)

(
B
)
φs(x, ω) + hs(x, ω)

(
B0

)
hs(x, ω) + ψs(x, ω)

(
F
)
ψs(x, ω)

]∣∣∣
ω=0

,

(5.13)
which is the second part of the SUSY higher spin action (5.6). The gauge fields φs, hs, ψs
are given by generating functions (5.2), and operators B, B0 , F were defined in (3.1). We
notice that, the first and the last parts of the action (5.13) are precisely the Fronsdal [14]
and the Fang-Fronsdal [15] actions respectively. Since the action (5.13) does not consist
of φ′, h′, ψ′, one may thus drop these fields in the SUSY transformations (5.4). On the
other side, generating functions in the integer spin supermultiplet (φs, hs ; ψs) have equal
number of ω, thus entered operators in SUSY transformations should not have a degree
of ω or ω. In other words, entered operators in (5.4) should be considered with index
1 (5.8), i.e.

T = T1 , X = X1 , Y = Y1 , Z = Z1 . (5.14)

Therefore, (i) by dropping φ′, h′, ψ′ and keeping φs, hs, ψs, (ii) applying (5.14), and (iii)
redefining supersymmetry parameter ε := ε/2, the off-shell higher spin SUSY transforma-
tions (5.4) turn into

δ φs =
√

2 ε̄ T1 ψs , (5.15a)
δ hs =

√
2 ε̄ Y1 ψs , (5.15b)

δ ψs =
√

2 X1 ε φs −
√

2 Z1 ε hs , (5.15c)

where T1 , X1 , Y1 , Z1 introduced in (5.8). These are indeed off-shell SUSY transformations
of the integer spin supermultiplet, leaving the action (5.13) invariant. It is easy to see that
obtained SUSY transformations (5.15) recover on-shell results [53] (see [1] for more detail)

δ φs =
√

2 ε̄ T1 ψs , δ ψs =
√

2 X1 ε φs , (5.16)

if one applies the fermionic equation of motion Y1 ψs = F ψs = 0, and the auxiliary
equation hs = 0.

5.4 Half-integer spin supermultiplets: (s − 1/2 , s), s > 1

The off-shell half-integer spin supermultiplet action can be given by

S(s−1/2, s) = 1
2

∫
d4x

[
φ′s(x, ω)

(
B
)
φ′s(x, ω) + h′s(x, ω)

(
B0

)
h′s(x, ω) + ψ′s−1(x, ω)

(
F
)
ψ′s−1(x, ω)

]∣∣∣
ω=0

,

(5.17)
which is the last part of the SUSY higher spin action (5.6). The contributing fields φ′s,
h′s, ψ′s−1 are generating functions (5.2), and operators B, B0 , F were defined in (3.1).
Since the action (5.17) does not include φ, h, ψ, one may throw out these fields in the
SUSY transformations (5.4). On the other hand, generating functions in the half-integer
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spin supermultiplet (φ′s, h′s ; ψ′s−1) does not have equal number of ω for an arbitrary spin
(s > 1). Thus, entered operators in SUSY transformations should have a degree of ω or
ω to compensate this inequality. In other words, the entered operators in (5.4) should be
taken into account with index 2 (5.9), i.e.

T = T2 , X = X2 , Y = Y2 , Z = Z2 . (5.18)

Therefore, (i) by omitting φ, h, ψ and preserving φ′s, h′s, ψ′s−1, (ii) applying (5.18), and
(iii) redefining supersymmetry parameter ε := ε/2, the off-shell higher spin SUSY trans-
formations (5.4) become

δ φ′s =
√

2 ε̄ T2 ψ
′
s−1 , (5.19a)

δ h′s = −
√

2 ε̄ Y2 ψ
′
s−1 , (5.19b)

δ ψ′s−1 =
√

2 X2 ε φ
′
s +
√

2 Z2 ε h
′
s , (5.19c)

where T2 , X2 , Y2 , Z2 introduced in (5.9). These are off-shell SUSY transformations of
the half-integer spin supermultiplet, leaving the action (5.17) invariant. In particular, for
s = 2, the action (5.17) and SUSY transformations (5.19) describe the off-shell 4d N = 1
linearized supergravity multiplet in flat spacetime. Let us again bring our attention to
the fact that these results were discovered from the continuous spin supermultiplet in a
limit. The acquired SUSY transformations (5.19) will recover on-shell results [53] (see [1]
for more detail)

δ φ′s =
√

2 ε̄ T2 ψ
′
s−1 , δ ψ′s−1 =

√
2 X2 ε φ

′
s , (5.20)

if one uses the equations of motion, i.e. Y2 ψ
′
s−1 =

(
− /ω/

√
2(N + 1)

)
F ψ′s−1 =0, and h′s=0.

6 Conclusions and outlook

In this work, we extended on-shell description [1] of the supersymmetric continuous spin
gauge theory to an off-shell description. For this purpose, we first considered unconstrained
formulation of the CSP theory à la Segal, given by the bosonic [5] and the fermionic [6]
CSP actions. By introducing an auxiliary CSP field, we found an appropriate auxiliary
action to construct the off-shell SUSY CSP action (2.1). We observed that such auxiliary
(non-dynamical) field should be a complex scalar continuous spin gauge field which accom-
pany with the dynamical fields (the complex scalar and the Dirac CSP fields) constitute
the N = 1 continuous spin supermultiplet. We then provided supersymmetry transforma-
tions (2.15) leaving the off-shell SUSY CSP action invariant. It was shown that the algebra
of supersymmetry transformations can be closed without using the equations of motion,
up to some gauge transformations.

Afterwards, we took into account constrained formulation of the continuous spin gauge
theory à la Fronsdal, described by the bosonic [11] and the fermionic [12] CSP actions. In-
troducing an appropriate auxiliary action, we could construct the off-shell SUSY CSP
action (3.1). We then provided SUSY transformations (3.22) demonstrating that the su-
persymmetry algebra can be closed off-shell, up to gauge transformation.
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Figure 3. This figure illustrates, when µ vanishes, the continuous spin supermultiplet, comprising
of the complex scalar, auxiliary complex scalar, and Dirac continuous spin gauge fields, decomposes
into a direct sum of all known off-shell helicity supermultiplets. Colored dashed ellipses represent
auxiliary fields in each supermultiplet.

As one expects, by applying equations of motion, an off-shell description of the su-
persymmetry theory should recover on-shell results. Therefore, using the equations of
motion, we showed off-shell SUSY transformations, both the unconstrained (2.15) and the
constrained (3.22) ones, will reproduce the on-shell results presented in [1].

As one could see, we established both formulations (unconstrained and constrained)
in terms of complex fields (instead of real fields) under which the SUSY actions and trans-
formations found a compact form. In other words, according to complex fields, one finds
that fewer calculations are needed to illustrate action invariance and check the closure of
the SUSY algebra, while this would be a tedious task when dealing with real fields. Never-
theless, in order to reproduce higher spin results one needs to rephrase these formulations
based on real fields (see figure 1). Thus, we reformulated constrained formulation of the
SUSY CSP theory in terms of real fields. In this sense, the form of the off-shell SUSY CSP
action and its SUSY transformations were respectively presented in (4.2), (4.3).

By taking the helicity limit (µ→ 0), we derived the so-called “off-shell supersymmetric
higher spin action” à la Fronsdal (5.1), in which the spin-0 field was included in the spec-
trum. The supersymmetry transformations were presented in (5.4). Such supersymmetric
higher spin theory was obtained from a top-down method, i.e. from the SUSY continuous
spin theory in the limit µ→ 0, in which the spin-0 field already existed in the spectrum (see
e.g. (2.4) or figure 1). This is why, along with all known integer and half-integer higher spin
supermultiplets, we expected to reproduce the Wess-Zumino supermultiplet in particular.

Therefore, for the above purpose, we decomposed the off-shell SUSY higher spin
action (5.1) into three parts; each one corresponds to the Wess-Zumino supermultiplet
(0 , 1/2), integer spin supermultiplets (s , s+ 1/2), s > 1; and half-integer spin supermulti-
plets (s− 1/2 , s), s > 1. For each part, we could then read corresponding SUSY transfor-
mations from (5.4). In particular, for s = 2, we reproduced off-shell 4d N = 1 linearized
supergravity multiplet in flat spacetime. Our results can be visualized on figure 3 demon-
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strating how the off-shell continuous spin supermultiplet decomposes into the all known
off-shell 4d N = 1 supermultiplets, when µ vanishes.

Finally, let us conclude by briefly addressing some remarks and possible further studies.
There is a formulation in which infinite sets of higher spin fields appear (see [58] for a
review). Supersymmetric higher spin models constructed in hyperspace [59–62] describe
infinite-dimensional higher spin supermultiplets which are different from the conventional
higher spin supermultiplets acquired in the helicity limit of the SUSY CSP. It is interesting
to study on possible interacting SUSY CSPs either in on-shell or off-shell description. To
this end, one may need to develop cubic interaction vertices of the 4d N = 1 arbitrary spin
massless supermultiplets, see for example [63–67] and references therein.12 In this work,
we applied component approach to supersymmetrize the CSP theory off-shell. Therefore,
it would be nice to establish a superspace formulation for the continuous spin gauge theory
in which the helicity limit (µ → 0) should reproduce off-shell higher spin results [54,
55]. Finally, we note that recently an off-shell description for the 4d N = 1 massive
supermultiplets was found for half-integer supermultiplets [71].13 By constructing off-shell
massive integer supermultiplets (which is still an open problem), one can obtain a direct
sum of all 4d N = 1 massive supermultiplets. Then, if one takes the continuous spin limit
(i.e. m→ 0 , s→∞ while ms = µ = constant), it is expected to be related to our results
in this work.
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A Conventions

We work in the 4-dimensional Minkowski spacetime and use the mostly plus signature for
the metric ηαβ . We denote coordinates with xµ, auxiliary coordinates in unconstrained
formulation with ηµ, and auxiliary coordinates in constrained formulation with ωµ. As a
shorthand, we define conventions

∂ν := ∂

∂xν
, η̄ν := ∂

∂ην
, ων := ∂

∂ων
, � := ∂ν∂ν , N := ην η̄ν , N := ων ων ,

(A.1)

and14 thus the following commutation relations[
η̄ α , η β

]
= η αβ ,

[
η̄ 2 , η 2 ] = 4 (N + 2) ,

[
ω α , ω β

]
= η αβ ,

[
ω 2 , ω 2 ] = 4 (N + 2) ,

(A.2)
12In 3d flat spacetime, see for example [68–70].
13We note that on-shell description of integer and half-integer massive supermultiplets was first found

in [72].
14Note that, in unconstrained formulation, an operator say N := η · η̄ does not appear in flat space, it

will appear in (A)dS space [9].
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are used (for a full list of commutation relations see appendix D in [13]). The Hermitian
conjugation rules in η-space (unconstrained formulation 2) define as

(∂ ν)† := − ∂ ν , (η̄ ν)† := − η̄ ν , (η ν)† := η ν , (A.3)

and in ω-space (constrained formulation 3) introduce as

(∂ ν)† := − ∂ ν , (ω ν)† := ω ν , (ω ν)† := ω ν . (A.4)

For the 4-dimensional Dirac gamma-matrices we use the conventions{
γµ , γν

}
= 2 η µν , (γµ) † = γ0 γµ γ0 , (γ0) † = − γ0 , (γ0) 2 = − 1 , (A.5){

γµ , γ5 } = 0 , γ5 := i γ0 γ1 γ2 γ3 , (γ5) † = γ5 , (γ5) 2 = 1 . (A.6)

The Dirac adjoint defines as15

Ψ := Ψ† i γ0 , (A.7)

and the Dirac slash notations as

/∂ := γν ∂ν , /η := γν ην , /̄η := γν η̄ν , /ω := γν ων , /ω := γν ων , (A.8)

thus, the anti-commutation relations become{
/̄η , /η

}
= 2 (N + 2) ,

{
/ω , /ω

}
= 2 (N + 2) . (A.9)

B SUSY action invariance

This appendix is devoted to explicitly illustrate invariance of the supersymmetric ac-
tion (2.1) under supersymmetry transformations (2.15). For this purpose, using Hermitian
conjugation rules (A.3), one may calculate adjoint of supersymmetry transformations (2.15)
and conveniently arrive at

δΦ† = −
√

2 Ψ
(
/η − 1

)
R ε , (B.1a)

δH† = +
√

2 Ψ
(
γ0 F† γ0) (

/η + 1
)
L ε , (B.1b)

δΨ = −
√

2 Φ† ε̄ L
(
γ0 X† γ0) − √2 H† ε̄ R , (B.1c)

in which F,X, R, L were introduced in (2.1c), (2.16), (2.17) respectively. Then, by varying
the supersymmetric action (2.1) with respect to the fields, one gets

δ S =
∫
d4x d4η

[
δΦ† δ′(η2 − 1)B Φ + δH† δ′(η2 − 1) H + δΨ δ′(η2 − 1) (/η − 1)F Ψ

Φ† δ′(η2 − 1)B δΦ + H† δ′(η2 − 1) δH + Ψ δ′(η2 − 1) (/η − 1)F δΨ
]
.

(B.2)
15In the mostly plus signature for the metric, the Dirac adjoint usually defines with an i, while in the

mostly minus signature it defines as Ψ := Ψ†γ0.
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Now, by plugging supersymmetry transformations (2.15) and their adjoints (B.1) into (B.2),
one will arrive at

δ S = 0 . (B.3)

To obtain the latter, the following useful relations, which can be conveniently proved, may
be used

B = FX , (B.4)(
γ0 X† γ0) δ′(η2 − 1) (/η − 1)F = δ′(η2 − 1)B (/η + 1) , (B.5)(
γ0 F† γ0) δ′(η2 − 1) (/η + 1) = δ′(η2 − 1) (/η − 1)F . (B.6)

C Useful relations

The “Majorana flip relations” or the so-called “Dirac flip relations” are given by

ε̄2 (γµ1 γµ2 · · · γµp) ε1 = (−1)p ε̄1 (γµp · · · γµ2 γµ1) ε2 , (C.1)

where ε1 and ε2 can be either the Majorana spinors or Dirac spinors depending on the
problem we are dealing with (see [73], page 49, for more details).

In order to illustrate that the SUSY CSP action is invariant under supersymmetry
transformations, the following obtained relations are useful:

(ω · ∂)/ω(/ω/∂/ω) = (ω · ∂)/ω/∂ω 2− 2 /ω(ω · ∂)(ω · ∂)/ω+ 2 (ω · ∂)h /∂/ω (C.2)

(/ω/∂/ω)(/ω/∂/ω) = −ω2�ω 2 + 2 /ω�h /ω+ 2ω2 /∂(ω · ∂)/ω+ 2 /ω(ω · ∂)/∂ ω 2− 4 /ω(ω · ∂)(ω · ∂)/ω

(C.3)
1
2 /ω(ω · ∂)ω 2(/ω/∂/ω) = − /ω(ω · ∂)/∂ω 2 + 2 /ω(ω · ∂)(ω · ∂)/ω+ 1

2 ω
2(ω · ∂)/∂/ω3 (C.4)

1
2 ω

2(ω · ∂)/ω(/ω/∂/ω) = 1
2 ω

2�ω 2−ω2 /∂(ω · ∂)/ω+ω2 /∂(h+ 1)(ω · ∂)/ω (C.5)

− 1
4 ω

2 /∂ω 2(/ω/∂/ω) = 1
2 ω

2�ω 2−ω2 /∂(ω · ∂)/ω− 1
2 ω

2(ω · ∂)/∂/ω3 (C.6)

(/ω/∂/ω)(/ω/ω) = ω2 /∂ω 2− 2 /ω(ω · ∂)ω 2 + 2 /ω/∂h/ω (C.7)

(/ω/∂/ω)(ω2ω 2) = −2ω2 /∂ω 2 + 4 /ω(ω · ∂)ω 2 (C.8)
1
2 ω

2(ω · ∂)/ω(/ω/ω) = − 1
2 ω

2 /∂ω 2 +ω2(h+ 1)(ω · ∂)/ω (C.9)

1
2 ω

2(ω · ∂)/ω(ω2ω 2) = ω2 /∂ω 2 +ω2(ω · ∂)/ω3 (C.10)

− 1
4 ω

2 /∂ω 2(/ω/ω) = − 1
2 ω

2(ω · ∂)/ω3− 1
2 ω

2 /∂ω 2 (C.11)

where h := ω ·ω+ d
2 , such that d is spacetime dimension. We obtained these relations using

(anti-)commutation relations presented in appendix of D in [13] and have dropped terms of
order O(ω3) and O(ω4) which vanish by constraints ψ(x, ω) /ω3 = 0 and (ω 2)2 φ(x, ω) = 0
in the SUSY action.
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In order to close the SUSY algebra, one can use the identity

γµγνγρ = ηµνγρ + γµηνρ − ηµργν − i εαµνρ γα γ5 , (C.12)

leading to
/ω/∂ /ω = (ω · ∂) /ω + /ω(ω · ∂)−N /∂ − i εαµνρ ωµ ∂ν ωρ(γα γ5) , (C.13)

where N := ω · ω. Moreover, defining chiral projectors

L := 1
2 (1 + γ5) , R := 1

2 (1− γ5) , (C.14)

one can show

R (ε2 ε̄1 − ε1 ε̄2)L = 1
2 ε̄2 γν ε1 γ

νL , L (ε2 ε̄1 − ε1 ε̄2)R = 1
2 ε̄2 γν ε1 γ

νR , (C.15)

where the following identity has been applied

ε2 ε̄1 − ε1 ε̄2 − γ5 (ε2 ε̄1 − ε1 ε̄2) γ5 = − ε̄1 γµ ε2 γ
µ . (C.16)
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