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1 Introduction

The holographic entanglement entropy (HEE) has provided a geometric description for
the entanglement of quantum matter and thus opened a new window for understanding
the fundamental problems in quantum information theory. Originally, it is identified with
the area of the minimum surface ending on the boundary. When quantum fields in the
bulk are taken into account, their contribution to the entanglement can be evaluated by
considering the minimal area of the quantum extremal surface (QES). Specifically, given
a d dimensional asymptotically AdS spacetime and consider a region A on the boundary,
the von Neumann entropy of this region can be computed by [1–4]

S(A) = min
XA

ext
XA

[Area(XA)
4G(d) + S(ΣA)

]
, (1.1)

where G(d) is the Newton constant of gravity in d-dimensional spacetime. Area(XA) de-
notes the area of QES XA, which stretches into the bulk with A as the boundary. ΣA

is the spatial region enclosed by XA ∪ A, and throughout this paper we will call ΣA the
entanglement wedge of A. Thus S(ΣA) denotes the entropy of the quantum field within
ΣA. Finally, the entropy is identified with the minimal area of all possible QESs. Usually,
the entanglement entropy of quantum fields is difficult to compute, however, if they are
described by conformal field theory (CFT) with large central charge, then they would enjoy
the holographic duality such that we may provide a geometric description for their entan-
glement entropy by holography as well. The strategy is further embedding the considered
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d-dimensional spacetime into a d+ 1-dimensional spacetime and treating it as a dynamical
brane living in the bulk or on the boundary. This setup is also dubbed as double hologra-
phy. By virtue of this setup, both terms in equation (1.1) have a geometrical interpretation
and the formula becomes [5–7]

S(A) = min
XA

ext
XA

[
Area(XA)

4G(d)
b

+ Area(XΣA)
4G(d+1)

]
, (1.2)

where G(d+1) is the d + 1-dimensional Newton constant and G
(d)
b is the intrinsic Newton

constant on the brane. Now, thanks to the notion of HEE, XΣA is identified as the minimal
surface associated with the entanglement wedge ΣA in the (d+ 1)-dimensional bulk, which
may simply be called the Ryu-Takayanagi (RT) surface of ΣA.

When a bipartite quantum system with two subregions A and B is in a mixed state,
the above setup can be generalized to consider the entanglement between A and B by pu-
rification. It has been conjectured that the holographic entanglement of purification could
be evaluated by the area of the minimal cross-section of the entanglement wedge (EWCS),
which may be denoted as EA:B [8]. It is expected that this identification captures both
classical and quantum correlations between two disjoint subregions. Meanwhile, a similar
concept called holographic reflected entropy, which describes the entanglement involving
the canonical purification of mixed states, has also been related to the EWCS [9]. EWCS,
as a good measure of mixed state entanglement, has been widely studied in recent litera-
ture [9–21]. Similar to the holographic dual of entanglement entropy, the holographic dual
of reflected entropy with quantum fields in the bulk is proposed as [9]

SR(A : B) = min
EA:B

[Area(EA:B)
4G(d)

]
+ SR(ΣA

A∪B : ΣB
A∪B)|Emin

A:B
+O(G(d)), (1.3)

where the first term is proportional to the area of the EWCS EA:B that splits the wedge
ΣA∪B into two parts and the second term is the reflected entropy between the quantum
fields in the bipartition ΣA

A∪B : ΣB
A∪B, as illustrated in figure 1(a). In this figure, one

intuitively notices that ΣA∪B = ΣA
A∪B ∪ ΣB

A∪B and EA:B = ΣA
A∪B ∩ ΣB

A∪B. Next, for
convenience, we call the second term the bulk reflected entropy.

Similar to the arguments on the holographic entanglement entropy in [2], the holo-
graphic reflected entropy in (1.3) does not contain quantum corrections o(G(d)0). In [2], a
very elegant scheme has been proposed to include the contribution of quantum corrections
of HEE. The key point is to extend the notion of extremal surface to quantum extremal
surface, which is obtained by finding the minimal contribution of EE from both terms,
as shown in (1.1). Motivated by this point, we propose a generalization of EWCS to its
quantum version such that the holographic reflected entropy contains higher-order quan-
tum corrections as well in this paper. Specifically, in the presence of quantum fields in
the bulk, we propose that the reflected entropy between A and B on the boundary can be
evaluated by holography as

SR(A : B) = min
EA:B

[Area(EA:B)
4G(d) + SR(ΣA

A∪B : ΣB
A∪B)

]
. (1.4)

In comparison with the equation in (1.3), the key difference is that searching the minimum
is taken at the final step such that the minimal cross-section Emin

A:B is influenced by the
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entanglement between the quantum fields in the bulk regions ΣA
A∪B and ΣB

A∪B as well.
So we call it quantum entanglement wedge cross-section (QEWCS). Obviously, when the
total system A ∪ B is in a pure state, the holographic reflected entropy (1.4) recovers the
holographic entanglement entropy in (1.1) and the QEWCS recovers the QES. However, in
general mixed states, we are usually stuck by the difficulty of computing the entanglement
of quantum fields, which is the second term in (1.4). To overcome this difficulty, we
intend to investigate the reflected entropy with quantum corrections by virtue of the doubly
holographic setup.

The reflected entropy was previously studied in some doubly holographic setups, focus-
ing on the island scenario of reflected entropy [22, 23]. The EWCS of the reflected entropy
in the (d+ 1)-dimensional spacetime may end either on the (d− 1)-dimensional RT surface
in the (d+ 1)-dimensional spacetime or on the d-dimensional brane, where the holographic
reflected entropy of some regions on the d-dimensional boundary may contain the geometric
contribution of the island in the dynamical spacetime on the d-dimensional brane theory.
In contrast to the above consideration, we will utilize the double holography in a quite
different way, where both subregions A and B are located on the conformal boundary of
d-dimensional spacetime. In the doubly holographic setup, we propose that the reflected
entropy with quantum corrections in (1.4) can be evaluated by the following formula

SR(A : B) = min
EA:B

Area(EA:B)
4G(d)

b

+
Area

[
E
(
ΣA
A∪B : ΣB

A∪B

)]
4G(d+1)

 , (1.5)

where E
(
ΣA
A∪B : ΣB

A∪B

)
is the EWCS that splits the entanglement wedge of ΣA∪B, which

is denoted as Σ(ΣA∪B), into two parts in the (d+ 1)-dimensional spacetime. We illustrate
the cartoon of the EWCS in double holography in figure 1(b).

Equation (1.5) is the core formula proposed in the present paper. Next, we will present
the details for the doubly holographic setup, and then evaluate the reflected entropy with
quantum corrections for some bipartite systems in pure AdS space and black hole back-
ground, respectively.

2 The doubly-holographic setup

Consider a d-dimensional Planck brane Q living in a (d+ 1)-dimensional asymptotic AdS
space N , which is called bulk. The brane ends on the conformal boundary M of the
asymptotic AdS space and their intersection forms a (d − 1)-dimensional space P = M ∩
Q [5–7, 24]. As a result, the full boundary of the asymptotic AdS space becomes ∂N =
M ∪ Q. We consider an action of the brane, which contains a tension term and Dvali-
Gabadadze-Porrati (DGP) term [25, 26]. So the total action of the system is given as

I = 1
16πG(d+1)

[ ∫
N
dd+1x

√
−g

(
R+ d(d− 1)

L2

)
+ 2

∫
M
ddx
√
−hK + 2

∫
Q
ddx
√
−h(K − α)− 2

∫
P

√
−Σϑ

]
(2.1)

+ 1
16πG(d)

DGP

[∫
Q
ddx
√
−hRh + 2

∫
P

√
−Σk

]
,

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
0
3
7
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ΣA⋃B
A ΣA⋃B

B
EA:B

(a) (b)

Figure 1. (a) The cartoon of an EWCS EA:B in the holography of AdS3, where a bipartite system
with subregion A and B is set on the boundary. (b) The cartoon of the EWCS in double holography,
where AdS3 as a brane (plotted in blue) is embedded into a 4-dimensional spacetime. The reflected
entropy is contributed by two terms, namely the area of EA:B and the area of E

(
ΣAA∪B : ΣBA∪B

)
.

where h is the induced metric on the boundary, and Σ the induced metric on P . K is
its extrinsic curvature scalar and Rh is the intrinsic curvature scalar of h. The ϑ and k

are the intrinsic curvature scalar and extrinsic curvature scalar of P . The constant α is
proportional to the tension of the brane and for simplicity we just call it tension term. The
third line in (2.1) is DGP term where a d-dimensional Newton constant G(d)

DGP is introduced.
To determine the metric of the background, we need to solve the equations of motion.

For this purpose, we impose Dirichlet boundary condition on the conformal boundary M
and Neumann boundary condition on the brane Q

M : hij = 1
ε2
ηij , (2.2)

Q : Kij −Khij + αhij = λL

[1
2Rhhij − (Rh)ij

]
, λ = G(d+1)/(G(d)

DGPL), (2.3)

where ε is the length cutoff of the theory on the conformal boundary. We will take the semi-
classical limit Ld−1/G(d+1) → ∞ such that the background is described by the classical
solutions to the Einstein equation on N .

The above system can be viewed from the following three perspectives [5, 7]:

Bulk perspective: the pure gravity theory in the asymptotic AdS space N with the above
boundary conditions on conformal boundary M and the brane Q.

Brane perspective: the gravity near the brane Q is localized by the (d+ 1)-dimensional
negative curvature [27]. After imposing the Einstein equation in N , the theory in
the bulk is dual to the theory of induced metric on the brane Q and the CFT living
on both Q and M [28]. One may think of it as the gravity-plus-CFT theory on Q

coupled to the CFT on the flat half space M at the intersection P , where the former
is the system that we are interested in and the latter may be treated as a bath.

Boundary perspective: the geometry on the brane is also an asymptotic AdS space. The
gravity-plus-CFT theory is dual to the (d − 1)-dimensional theory without gravity
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on its boundary, namely, the intersection P [5]. With the language of boundary
conformal field theory (BCFT) [24], the intersection P is the boundary of the CFT
on M , and the theory on P forms a conformal defect [7].

The gravity-plus-CFT theory in the brane perspective exhibits the following advantages
in the study of the reflected entropy (1.4).

• The CFT has a semi-classical gravity duality characterized by large central charge
and entropy.

• The quantity in the square bracket in (1.4) can be computed by the RT formula in
(d+ 1)-dimensional bulk, with the form of that in (1.5).

• The state in the gravity-plus-CFT theory on Q is mixed, caused by its interaction
with the bath CFT.

Next, we will consider AdS space and black hole as two specific states of the bulk N
and compute the reflected entropy of a simple bipartite of region P .

3 The reflected entropy in AdS space

3.1 Background

The AdS spacetime with a brane is considered as the ground state. We first consider the
bulk N metric as AdSd+1 spacetime

ds2
N =L2

(
dρ2 + cosh2 ρ · −dt

2 + dζ2 + d~y2

ζ2

)
, −∞ < ρ < ρ0. (3.1)

with the conformal boundary M and the brane Q at

M : ρ = −∞, (3.2)
Q : ρ = ρ0. (3.3)

From (3.1), the induced metric on the brane Q is AdSd spacetime.
The Neumann boundary condition on the brane gives rise to

αL+ λ sech2 ρ0 − 2 tanh ρ0 = 0, (3.4)

which should be satisfied by the above geometry and embedding.
For later convenience, we apply the coordinate transformation

z = ζ sech ρ, x = −ζ tanh ρ (3.5)

and rewrite the metric in Poincare coordinate system (z, x, ~y, t) as

ds2
N = L2−dt2 + dz2 + dx2 + d~y2

z2 . (3.6)
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We denote the inner angle between the brane Q and the conformal boundary M as π − θ
where 0 ≤ θ ≤ π, then the location of the brane Q can be described by

z + x tan θ = 0. (3.7)

It is easy to see that θ is related to ρ0 by cot θ = sinh ρ0 or csc θ = cosh ρ0. Thus the
boundary condition in (3.4) becomes αL + λ sin2 θ − 2 cos θ = 0. In general, one can
freely choose the values of θ ∈ [0, π] and λ ∈ R, but determine αL by the above equation.
Basically, we will consider the case with 0 < θ ≤ π/2 such that the boundary entropy is
always positive [24].

3.2 RT surface

Throughout this paper, we only consider time-independent states. So we will work on a spe-
cific time slice of {N,M,Q, P} and denote them with the same notations for convenience.

Rather than considering the bipartition with finite intervals in figure 1(b), whose
entanglement wedge in general is rather complicated for numerical simulations, we will
consider the bipartition A : B where A and B are two half-infinite intervals satisfying
P = A ∪ B, as shown in figure 2. In the Poincare patch, we let n = d− 2, ~y = (y, ~w) and
~w = (w1, . . . , wd−3). The regions {P,A,B} are defined as

P = {(z, x, y)|z = x = 0, y ∈ R} ,
A = {(z, x, y)|z = x = 0, y ≤ 0} , (3.8)
B = {(z, x, y)|z = x = 0, y ≥ 0} ,

which always cover all the space along transverse directions ~w and their dependence on ~w

has been neglected due to the translational symmetry.
Our goal is to calculate the reflected entropy of A : B by finding its minimal QEWCS.

First, we need to figure out the entanglement wedge of P . Notice that P is a codimension-3
manifold. To apply the RT formula here, we may imagine that P has a finite width along
x direction on the boundary M which scales as the UV cutoff ε of the boundary theory.
Technically, we will consider a codimension-2 region p = a ∪ b ⊆ M with bipartition a : b
near the brane, which are defined as

p = {(z, x, y)|z = 0, 0 ≤ x < xb, y ∈ R} ,
a = {(z, x, y)|z = 0, 0 ≤ x < xb, y ≤ 0} , (3.9)
b = {(z, x, y)|z = 0, 0 ≤ x < xb, y ≥ 0} ,

with constant width xb. We can obtain {P,A,B} from {p, a, b} by sending xb → ε. Thanks
to the above limit process, the RT surface of P can be obtained from the RT surface of p
by taking the limit. The above setup is illustrated in figure 2. Next, we turn to consider
the entanglement in {p, a, b}.

In this subsection, we will focus on the entanglement entropy S(p) associated with the
region p, but leave the reflected entropy SR(a : b) for investigation in the next subsection.
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(a) Island phase (b) Trivial phase

Figure 2. The two candidates of the RT surface and the EWCS ending on the brane in the double
holography of AdS4, where the regions A and B are two half-infinity lines.

Now to compute S(p), it is essential to figure out the RT surface Xp and the entanglement
wedge Σp of p.

According to (1.2), the entropy S(p) is the minimum in

S̃(p) = λLArea(X̃P ) + Area(X̃p)
4G(d+1) (3.10)

with respect to the surface X̃p anchored on the line ∂p = {(x, y)|x = xb, y ∈ R} and a
line X̃P = X̃p ∩ Q on Q, where the tildes refer to quantities before minimization. The
minimization can be achieved in two steps. Firstly, given a X̃P , we find the minimal
surface Xp anchored on ∂p. Secondly, we minimize the entropy with respect to X̃P and
determine XP .

In general, there are two candidates of RT surface Xp, one of which ends on the brane
Q (XP 6= ∅) and the other does not (XP = ∅), as shown in figure 2. We call the former
island phase and the latter trivial phase. The island phase depends on the action on the
brane Q, while the trivial phase is a surface at x = xb stretching into the bulk, which is
independent from the brane. The entanglement wedge Σp is the region enclosed by the RT
surface and the brane.

We are figuring out the minimal surface Xp at the first step. We work in (z, x) co-
ordinates (3.6) and parameterize X̃p as (z(x), x) or (z, x(z)). Then the area of X̃p is
proportional to the integral

Area(X̃p)
Ln+1Vnz

−n
∗

=
∫ x̃b

x̃0
dx̃

√
1 + z̃′(x̃)2

z̃n+1 , x̃ = x

z∗
, z̃ = z

z∗
, (3.11)

where the undetermined coefficient z∗ is the value of z at the turning point z′(x) = 0.
Treating the integral as an action, we find the corresponding equation of motion derived
from the Hamiltonian is given by

1 = 1
z̃n+1

√
1 + z̃′(x̃)2 . (3.12)
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x(z) has two solutions x±(z)

x̃±(z̃) =xb/z∗ −Xn(0)±Xn(z̃), (3.13)

Xn(z̃) =− iz̃ 2F1

(1
2 ,−

1
2 + 2n ; 1− 1

2 + 2n ; z̃−2−2n
)

+
i
√
πΓ
(
−1

2+2n

)
Γ
(
−1 + n

2+2n

) .
The minimal surface Xp parameterized by (3.13) intersects with Q at X̃P . Denote the
location of X̃P as (z0, x0), which satisfies (3.7). Then the area of X̃P and Xp are given by

Area(XP ) =LnVnz
−n
0 (3.14)

Area(X̃p)
Ln+1Vnz

−n
∗

=
∫ x̃b

x̃0
dx̃

√
1 + z̃′2

z̃1+n =
(∫ 1

ε̃
+σ

∫ 1

z̃0

)
dz̃

z̃n+1
√

1− z̃2+2n
(3.15)

= In + 1
nε̃n

+ σ

∫ 1

z̃0

dz̃

z̃n+1
√

1− z̃2+2n
(3.16)

In =
∫ 1

0

dz

zn+1

( 1√
1− z2+2n

− 1
)
− 1
n
. (3.17)

where Vn =
∫
dn~y, σ = sgn(x+(z∗) − x0), ε̃ = ε/z∗ and the z̃(x̃) is the inverse function

of (3.13).
We are figuring out the location of Xp at the second step. In coordinate system

(ρ, ζ) in (3.1), the candidate surface Xp anchored at ∂p and X̃P on both ends can be
parameterized as (ρ, ζ(ρ)). As a result, the area of X̃p and XP are separately given by

Area(X̃P )
LnVn

=
(cosh ρ0
ζ(ρ0)

)n
, (3.18)

Area(X̃p)
Ln+1Vn

=
∫ ρ0

−∞
dρ

(cosh ρ
ζ

)n√
1 +

(
ζ ′(ρ) cosh ρ

ζ

)2
 . (3.19)

So, before the minimization, the dimensionless density of entropy in (3.10) is

s̃p = 4G(d+1)

Ln+1Vn
S̃(p) = λ

(cosh ρ0
ζ(ρ0)

)n
+
∫ ρ0

ρε
dρ

(cosh ρ
ζ

)n√
1 +

(
ζ ′(ρ) cosh ρ

ζ

)2
 . (3.20)

By requiring δs̃p/δζ(ρ) = 0, we obtain the boundary condition of ζ(ρ) as [7]

0 = nλ− ζ ′(ρ0) cosh2 ρ0√
ζ ′(ρ0)2 cosh2 ρ0 + ζ(ρ0)2

. (3.21)

So for the island phase, it is necessary that n|λ| ≤ csc θ. But it is not sufficient. We will
come back to this point soon.

By utilizing the coordinate relation (3.5), we can numerically find the value of z∗ so
that the surface (3.13) satisfies the boundary condition (3.21) at the intersection (3.7). So,
the dimensionless entropy density at extremum is given by

sp = 4G(d+1)

Ln+1Vn
S(p) = λ

zn0
+ In
zn∗

+ 1
nεn

+ σ

zn∗

∫ 1

z̃0

dz̃

z̃n+1
√

1− z̃2+2n
. (3.22)
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Figure 3. (a) The RT surface for λ = 0, 0.01, 0.02, . . . , 0.22 (from the bottom to the top) in AdS4.
(b) z∗, z0, ζ0 as functions of λc − λ. (c)(d) sp and sa:b as functions of λ, where (sp)tot and (sp)bulk
are renormalized by subtracting ε−n/n. The parameters are d = 3, θ = π/4, xb = 1, ε = 1, which
determine λc = 0.227.

We can numerically check that it is a local minimum. The numerical results for the RT
surfaceXp and the entanglement entropy density sp in the island phase are illustrated in fig-
ure 3. In the trivial phase, the entropy density is simply sp = 1/(nεn), which matches (3.22)
at the limit of z0, z∗ →∞ with finite λ.

Let us compare the two phases for different λ. Firstly, to avoid the induced gravity
on the brane Q becoming unstable [7], we require the lower bound nλ > −1, which is
stronger than nλ ≥ − csc θ. Secondly, when nλ is slightly above −1, the island phase is
preferred since its entropy is smaller than that of the trivial phase, as shown in figure 3.
Thirdly, when λ grows, the first term in (3.10) also grows with λ. At the same time, the
RT surface Xp in the island phase will stretch into the bulk in order to alleviate the growth
of the first term in (3.10). Fourthly, when the scale of the RT surface Xp is large enough at
some values of λ, the finite width xb will become negligible. So we can consider the limit
xb/z∗ → 0 in (3.13) and find the ratio γ = z0/z∗ ∈ [0, 1], which only vanishes at θ = 0, π/2,
as shown in figure 4. We can further calculate ζ(ρ0)/ζ ′(ρ0) and λ from (3.5) and (3.21) at
this limit. The value of λ at this limit, denoted as λc, is the upper bound on the λ for the
island phase. We plot λc as a function of θ in figure 4 and find n|λc| ≤ 1 always. At this
limit, sp → 1/(nεn) approaches the value in the trivial phase from below. Fifthly, when
λ ≥ λc, the island phase does not exist and the RT surface Xp becomes the trivial phase.
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Figure 4. γ and nλc as functions of θ for n = 1, 2, 3.

3.3 EWCS ending on the brane

After figuring out the RT surface of the region p, now it is straightforward to define the
QEWCS between the subregion a and b. Thanks to the translational invariance along y
directions, the EWCS between a and b is described by

Ea:b = {(ρ, ζ, y)| −∞ < ρ < ρ0, 0 < ζ < ζc(ρ), y = 0} , (3.23)

which intersects with the brane Q at

EA:B = {(ρ, ζ, y)|ρ = ρ0, 0 < ζ < ζc(ρ), y = 0} . (3.24)

According to the proposal, the reflected entropy SR(a : b) can be evaluated by the minimal
area of the QEWCS. Therefore, we have

SR(a : b) = λLArea(EA:B) + Area(Ea:b)
4G(d+1) . (3.25)

When λ < λc, i.e. the island pahse, the density of the reflected entropy is

sRa:b = 4G(d+1)

Ln+1Vn−1
SR(a : b)

=λ

∫ ζ0

ζε
dζ

(cosh ρ0
ζ

)n
+
∫ z0

ε
dz
x+(z) + z sinh ρ0

zn+1

+ Θ(σ)
∫ z∗

z0
dz
x+(z)− x−(z)

zn+1 (3.26)

=


xb(ε−1 − z−1

0 ) + (λ cosh ρ0 + sinh ρ0) ln(z0/ε) + f1(z0/z∗,Θ(σ)), n = 1

1
n
xb(ε−n − z−n0 ) + 1

n− 1(λ cosh ρ0 + sinh ρ0)
(
ε1−n − z1−n

0

)
+z1−n

0 fn(z0/z∗,Θ(σ)), n ≥ 2

where Θ(σ) is the step function, and fn(z0/z∗,Θ(σ)) are some complicated functions. The
cutoff is chosen as z = ε and constant ζε = ε cosh ρ0. The dependence of the reflected
entropy density sRa:b on λ is shown in figure 3. We remark that each term in the final
expression has its own geometric correspondence and we demonstrate this in figure 5. Now
we elaborate our understanding on these terms as follows.
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The first term roughly measures the entanglement of the bath CFTd between a : b and
thus exhibits area law Ld−2xbVd−3/ε

n. The second term roughly measures the entropy in
the d-dimensional gravity-plus-CFT theory between A : B and within wedge ζ ∈ [ζε, ζ0] on
the brane. It exhibits area law with Area(EA:B) = Ld−2Vd−3 cosh ρ0

∫ z0
ε dzz2−d.

Now we turn to the final target that is the reflected entropy of A : B. If we send
xb → 0, the bipartition a : b becomes A : B exactly and one would expect to obtain the
reflected entropy SR(A : B). Unfortunately, due to the scaling symmetry of AdS space,
the independent length scale of the RT surface Xp is xb. When xb → 0, all the other
length scales of the RT surface, such as {z∗, z0, x0, ζ0}, in general become vanishing as well.
This issue occurs since for pure AdS, the CFT stays in the ground state with long-range
correlation. As a consequence, the CFT on the brane Q is highly entangled with the CFT
on M . From (1.1), we notice that the QES XP tends to contain a small ΣP to resist the
high entanglement of CFT, which leads to z0 → 0 when xb → 0. To cure this issue, one
may increase the proportion of the first term in (1.1). Here we propose the following two
prescriptions: increasing the value of λ or adding a black hole. The former prescription
will be discussed immediately. The later prescription breaks the scaling symmetry and will
be considered in the next section.

After all, if we send xb → ε, the bipartition a : b effectively approaches A : B. Mean-
while, to avoid z0 ∼ ε one could further choose a large λ approaching λc from below.
According to the analysis in last subsection, the RT surface is subject to z0 = γz∗ � xb,
which stretches into the bulk and keeps away from the conformal boundary M even we
send xb → ε. This tendency has been checked numerically in figure 3.

When λ ≥ λc, i.e. in the trivial phase, the cross section Ea:b becomes the surface
{(x, y, z)|x < 0, y = 0, z > −x tan θ} and the density of the reflected entropy is

sRa:b =


(λ cosh ρ0 + sinh ρ0) ln(z0/ε)→∞ (z0 →∞), n = 1

1
n− 1(λ cosh ρ0 + sinh ρ0)ε1−n, n ≥ 2

(3.27)

which encounters IR divergence for n = 1.
Let us discuss the reflected entropy from the boundary perspective. In the island

phase, the behavior of the reflected entropy reflects the finite correlation length ξ of the
conformal defect on P . In the presence of QES at ζ0, the correlation is suppressed by
the entanglement between the conformal defect on P and the bath CFTd on M , whose
correlation length along y axis scales as ξ ∼ ζ0 [29]. In other words, the reflected entropy is
dominated by the correlation within the smaller region {(x, y)|0 ≤ x < xb,−ξ < y < ξ} in
the CFT. When d = 3, it is similar to the situation of figure 1(a), where A∪B is a subregion
of P with length scaling as ξ. So the reflected entropy scales as ln(ξ/ε) ∼ ln(z0/ε) [9] and
agrees with (3.26).

In the trivial phase, we have ζ0 → ∞ and the correlation within P is no longer
suppressed by the entanglement between the defect P and the bath CFT on M . The
reason is that the central charge cP of the defect on P is comparable to the central charge
cM of the bath CFT on M , more precisely cP /cM ∼ (1 + nλ) cscn θ [7]. If we neglect the
influence of the bath CFT, the defect on P behaves as a CFTd−1, whose reflected entropy
between its two half spaces scales as (3.27) exactly, where n = d− 2.
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Figure 5. The geometric interpretation of each term in the final expression of the reflected en-
tropy (3.26). The first term corresponds to the yellow rectangle. The second term corresponds to
the blue triangle and its bottom margin. The third term corresponds to the red region and the
subtraction with the purple region.

4 The reflected entropy in the black hole background

At finite temperature, the (d+ 1)-dimensional bulk geometry is a neutral black hole with
a brane, which bends toward the interior of the bulk due to the gravity and touches the
horizon. Unlike the case of pure AdS space, now the background is characterized by
finite parameters {θ, λ, T}, and the RT surface in the bulk would not shrink into zero
even for xb → 0. On the other side, with the increase of λ, the QES will approach
the horizon. Following the framework proposed in [5, 6, 30, 31], in this section we will
numerically construct the black hole background with a brane, and further evaluate the
reflected entropy SRA:B by the minimal cross-section EA:B. Its behavior for different λ will
be analyzed as well.

4.1 Background

To discuss the reflected entropy at finite temperature in the doubly holographic setup, the
first thing is to construct a black hole background with a brane. In particular, once the
backreaction of the brane is taken into account, one usually needs to solve the equations
of motion numerically. Such a static background in higher dimensions has previously been
investigated by virtue of Einstein-DeTurck method [5, 32, 33]. In this paper, we consider
the specific case of d = 3, and for later convenience, we introduce a coordinate system
(t, w, r, y) by the following transformation

w

1− w = x+ z cot θ, r =
√

1− z. (4.1)

In this coordinate system, the metric ansatz for a black hole background is given as

ds2 = L2

(1−r2)2

[
−r2P (r)F1dt

2 + 4F2
P (r)dr

2 + F4
(1− w)4

(
dw + 2r(1−w)2F3dr

)2
+ F5dy

2
]
,

(4.2)
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where

P (r) =2− r2 + (1− r2)2, (4.3)

and {Fi|i = 1, 2, . . . , 5} are functions of (r, w) in the domain {0 < w < 1, 0 < r < 1}.
The configuration of the background is given by the following setup. The brane Q is

located at w = 0. The infinity I far from the brane is located at w = 1. The boundary M
is located at r = 1 and the horizon H is located at r = 0.

Instead of solving the Einstein equation directly, we will solve the Einstein-DeTurck
equations [5, 32, 33]

Rµν + 3 gµν = ∇(µξν), ξµ = [Γµνσ(g)− Γµνσ(ḡ)] gνσ, (4.4)

where ξµ is the DeTurck vector and ḡ is the reference metric. The boundary conditions are
imposed as follows

r = 1 : F1 = 1, F2 = 1, F3 = cot θ, F4 = 1, F5 = 1;
r = 0 : ∂rF1 = 0, ∂rF2 = 0, ∂rF3 = 0, ∂rF4 = 0, ∂rF5 = 0;
w = 1 : F1 = 1, F2 = 1, F3 = cot θ, F4 = 1, F5 = 1;
w = 0 : nµξ

µ = 0, F3 = cot θ, eq. (2.3).

(4.5)

The reference metric ḡ should be subjected to the same boundary conditions as g on the
surfaces {I,H,M}, thus we choose it to be an AdS-Schwarzschild black hole with

F1 = 1, F2 = 1, F3 = cot θ, F4 = 1, F5 = 1. (4.6)

With the general metric ansatz (4.2), the background is obtained numerically via the
Newton-Raphson method, where we discretize (4.4) on r and w directions with Chebyshev
Pseudo-spectral method.

To take the backreaction of the brane into account, hereafter, we will fix θ = π/4
and vary λ. With different λ, the numerical solutions of the induced metric on the brane
(w = 0) are illustrated in figure 6. Note that in the original coordinates (t, x, y, z), the
component hzz is divergent on the horizon z = 1, but the apparent divergence at r = 0
vanishes in the new coordinates (t, r, w, y).

4.2 RT surface

Next, for a given bipartite system, we intend to determine the RT surface over the black
hole background. Following the scheme in [30, 31], we divide the RT surface into two
segments by the turning point, and each of which can be parameterized by

(r, w) =

(r(w), w) , 0 ≤ w < wt

(r, w(r)) , rt ≤ r ≤ 1
(4.7)

respectively. Then the entropy density is the minimum of the sum of two area terms

s̃p =λLArea(X̃P ) + Area(X̃p)
L2V1

, (4.8)
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Figure 6. In the first row, three components of the induced metric on the brane, htt, hrr and
hyy, are depicted respectively in coordinates (t, w, r, y). All the components are multiplied by a
factor (1−r2)2

L2 . While in the second row, three components of the induced metric on the brane, htt,
hzz and hyy, are depicted in different coordinates (t, z, x, y). All the components are multiplied by
a factor z2

L2 . Here L is fixed to be 1 and the curves from violet to red are plotted with different
λ = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.6, 2, 7, 14, 28.

where

(s̃p)bulk := Area(X̃p)
L2V1

(4.9)

=
∫ rε

rt

dr

(1− r2)2

√√√√F5

(
4F2
P (r) + F4 (2r(w(r)− 1)2F3 + w′(r))2

(w(r)− 1)4

)

+
∫ wt

0

dw

(r(w)2 − 1)2

×
√
F5

(4F2r′(w)2

P (r(w)) + F4

(
4F 2

3 r(w)2r′(w)2 + 4F3r(w)r′(w)
(w − 1)2 + 1

(w − 1)4

))
,

(4.10)

(s̃p)DGP := λLArea(X̃P )
L2V1

= λ
√
F5

1− r(0)2

∣∣∣
w=0

, (4.11)

with rε =
√

1− ε.
s̃p as well as the intersection r = r(0) changes with the shift of the turning point

{rt, wt}. When s̃p reaches its minimum sp, we denote the corresponding solutions as rc(w)
and wc(r) for each segment, and the intersection as r = rc(0).
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Figure 8. The entanglement entropy density sp and the contributions of each component (sp)DGP
and (sp)bulk for different λ, where the UV cut-off is ε = 0.01.

In the limit xb → 0, the region p becomes P , and the corresponding entropy Sp becomes
SP , which is the quantity we are really concerned with. The configurations of RT surfaces
for different values of λ are shown in figure 7. Since the black hole breaks the scaling
symmetry of AdS4 space, in general the RT surface no longer shrinks to the boundary of
the brane. For small λ, the RT surface is located near the boundary, and the configuration
is similar to the vacuum case; while for large λ, the configuration of the RT surface is
stretched along x direction near the horizon. Moreover, with the growth of λ, the increase
of the entanglement entropy density sP is almost contributed from the increase of (sP )DGP,
while (sP )bulk is almost a constant, as shown in figure 8.

This tendency can also be understood from the brane perspective. In the presence of
a black hole at finite temperature, the CFT3 on Q ∪M is characterized by the correlation
with finite length. When one searches for the QES of P by utilizing (1.1), the entropy
density of the CFT within the wedge ΣP is bounded by the thermal correlation length.
For a large λ, i.e. a small G(d), the entropy is dominated by the geometric term in (1.1).
Therefore, the QES approaches the horizon.
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4.3 EWCS ending on the brane

Now we consider the reflected entropy between two subsystems by evaluating the area of
the EWCS. As xb → 0, the bipartition a : b becomes A : B exactly and the reflected
entropy SR(a : b) becomes SR(A : B). The reflected entropy is contributed by the area
of the 2-dimensional cross-section Ea:b in the bulk N and the area of the 1-dimensional
cross-section EA:B on the brane Q, namely,

SR(A : B) =λLArea(EA:B) + Area(Ea:b)
L2 , (4.12)

where

[SR(A : B)]bulk := Area(Ea:b)
L2 (4.13)

=

∫ rε

rt
dr

∫ wc(r)

1−r
1−rt

wt
dw +

∫ wt

0
dw

∫ min
[
rε,1− w

wt
(1−rt)

]
rc(w)

dr


× 2

(1− r2)2(1− w)2

√
F2F4
P (r)

[SR(A : B)]DGP := λLArea(EA:B)
L2 = λ

∫ rε

rc(0)
dr

2
1− r2

√
F2
P (r) + r2F 2

3F4. (4.14)

Similarly, the cross-section Ea:b is parameterized into two parts by the line w/wt = (1 −
r)/(1− rt).

The numerical results for the reflected entropy and its behavior with the change of λ
are illustrated in figure 9. Similar to the case of entanglement entropy, with the growth of
λ, the increase of the reflected entropy SR(A : B) is mainly contributed from the increase
of [SR(A : B)]DGP, while the [SR(A : B)]bulk grows tardily.

From the brane perspective, due to the finite length of the thermal correlation on the
brane, the reflected entropy contributed by the CFT in (1.4) is bounded above. For large
λ, the geometric term becomes dominant. With the increase of λ, the geometry on the
brane changes slowly, as shown in figure 6, and so does the area of EA:B. While 1/G(d)

increases linearly for large λ. So the reflected entropy SR(A : B) increases linearly, as
shown in figure 9.

5 Conclusion and outlook

In this paper, we have investigated the reflected entropy including the entanglement of
quantum matter via the doubly holographic setup. We have proposed a notion of quantum
entanglement wedge cross-section (QEWCS), which minimizes the sum of the geometric
contribution and quantum matter contribution in (1.4), and may describe the reflected
entropy with higher-order quantum corrections. Specifically, we have considered a (d+ 1)-
dimensional gravity theory in AdS with a brane anchoring on the conformal boundary,
which is dual to the gravity-plus-CFT theory living on the brane and the bath CFT living
on the conformal boundary. Taking the tension and DGP term on the brane into account,
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Figure 9. The reflected entropy SR(A : B) and the contributions from each component [SR(A :
B)]DGP and [SR(A : B)]bulk for different λ, where the UV cut-off is rε =

√
1− ε =

√
1− 10−2.

we have obtained the reflected entropy between a bipartition of the boundary in the gravity-
plus-CFT theory by calculating the minimal area of the corresponding entanglement wedge
cross-section in the (d + 1)-dimensional space. In general, the reflected entropy consists
of two parts, one contributed by the geometry on the brane and the other contributed by
the CFT on the brane. We have computed their proportion for different Newton constants
in the DGP term and found that their behavior agrees with the analysis based on semi-
classical gravity and the correlation of CFT coupled to the bath CFT.

It is worthwhile to point out that due to the parity y → −y of the bipartition A : B cho-
sen in this paper, the configurations of the QEWCS in (1.4) and the EWCS in (1.3) happen
to be the same. Nevertheless, we intend to stress that their definitions are quite different.
It is worth further studying the QEWCS of the bipartition without parity in further, and
it is expected that the configurations of QEWCS and EWCS should be different.

The reflected entropy in double holography gives a way to compute the entanglement
contributed from quantum matter in the bulk of spacetime. Our setup may also be applied
to an eternal black hole coupled to the baths, which recently plays a key role in the
understanding of the black hole information loss paradox [5–7, 33–35].
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