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ABSTRACT: In this paper, we analyze the constraints imposed by unitarity and crossing
symmetry on conformal theories in large dimensions. In particular, we show that in a
unitary conformal theory in large dimension D, the four-point function of identical scalar
operators ¢ with scaling dimension Ay such that Ay,/D < 3/4, is necessarily that of the
generalized free field theory. This result follows only from crossing symmetry and unitarity.
In particular, we do not impose the existence of a conserved spin two operator (stress tensor).
We also present an argument to extend the applicability of this result to a larger range
of conformal dimensions, namely to Ag/D < 1. This extension requires some reasonable
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there is a non-trivial conformal theory in large dimensions, not necessarily having a stress
tensor, then its relevant operators must be exponentially weakly coupled with the rest.
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1 Motivation

It is usually believed that there are no non-trivial conformal field theories (CFTs) in greater
than six dimensions. This belief stems from thinking of CFTs as infrared fixed points of RG
flows that initiate at the free theory. The RG flow is triggered by a relevant or marginally
relevant operator about the free theory. The number of relevant and marginal operators
decreases with the dimensionality of space-time. In dimensions greater than six free theories
do not have any relevant or marginal operators. This leads to the commonly held belief.!

With the discovery of a plethora of the so-called non-Lagrangian superconformal field
theories (SCFTs) in the supersymmetric context, one can debate whether a conformal field
theory can always be thought of as an endpoint of the RG flow emanating from a free theory.
These non-Lagrangian SCF'Ts do not provide counterexamples in dimension greater than six

!The usual quartic coupling of scalars (¢;¢;)? is irrelevant in D > 4 dimensions, nevertheless for those
dimensions, one can try to find the associated UV fixed point. In [1], authors identified this fixed point as a
theory of ¢; and o interacting with ¢;¢;0 + o> potential. Unfortunately, the dimension of operator ¢;;
goes below the unitary bound for D > 6.



because SCFTs do not exist in dimensions greater than six. However the reason for this is
strictly a kinematical one: non-existence of superconformal algebra (such that supercharges
transform in the spinor representation of the Lorentz group) [2, 3]. Hence the space of
SCFTs is a poor diagnostic of the space of CFTs in large dimensions. The question of the
existence of CFTs in large dimensions is only meaningful for non-supersymmetric CFTs.
Nevertheless, SCFTs yield examples that are perhaps truly non-perturbative in nature. This
means we need to analyze the space of CF'Ts in large dimensions using non-perturbative
methods. In this paper, we do so using conformal bootstrap. This approach that started
with the work of [4] has turned out to be very effective in putting numerical constraints
on the CFT data, for example, on the critical exponents in 3d Ising model [5] as well as
obtaining analytical results about the spectrum at large spin [6, 7]. See [8] for a review of
the subject and a comprehensive list of references.

If CFTs do exist in large dimensions then using AdS/CFT correspondence they define
non-perturbative quantum gravity in large dimensions. If all quantum theories of gravity
come from string theory, then this suggests that string theory, albeit strongly coupled,
admits large dimensional AdS vacua. Thus the question of the existence of CFTs in large
dimensions is an important one also from the point of view of string theory/quantum gravity.

Let us now briefly discuss what we mean by a non-trivial CFT. First, note that theories
of free massless scalars and free massless fermions are unitary conformal field theories and
they exist in arbitrary integer dimension. The theory of massless (D — 2)/2 forms in D
dimension (for even D) is also a unitary conformal field theory. There are no other free
theories that are conformal. Free scalars, free fermions and free (D — 2)/2 forms all have
stress tensor and hence admit a local coupling to gravity. If we relax the condition of
existence of stress tensor then a family of “generalized free field theories” (GFFTs) can
be easily constructed. In GFFT a higher point correlation function is defined as the sum
of products of two-point function (which is fixed by conformal symmetry) i.e. as a Wick
contraction. Although GFFT can be defined for fields transforming in any representation
of the Lorentz group, only the case of scalars is relevant for this paper. For us, GFFTs
(including the genuine free theories that have the stress tensor) are trivial conformal theories.

As we search for non-trivial theories we may either want to impose a) unitarity and b)
existence of stress tensor or not. The physical expectation of having no non-trivial CFTs
above a critical dimension is when one imposes both the conditions.? If we relax either of the
two then the existence of a non-trivial theory is plausible. Families of non-trivial conformal
field theories have been constructed and studied in [10-16] that exist in high dimensions
but are non-unitary. On the other hand examples of unitary theories but without stress
tensor can potentially be constructed by coupling two GFFTs with a relevant operator
and flowing down the renormalization group.®* Hence, one would like to conjecture that
there are no non-trivial unitary conformal field theories with a stress tensor in sufficiently

?In [9] authors construct AdSs solution of string theory which would be dual a unitary conformal field
theory in 7d. This would contradict the standard belief that the critical dimension is 6.

3Examples of such flow include the double trace deformations studied in [17, 18]. The endpoint of the
flow is dual to a change of boundary conditions in the bulk.

4We thank David Simmons-Duffin for pointing out this possibility to us.



large dimensions. However, we can constrain the space of conformal theories with certain
properties even without requiring a stress tensor. In particular, we will show that the
unitarity and crossing symmetry constrain the four-point function of scalar operators with
scaling dimension Ay/D < 1 to be that of the GFFT in a particular Lorentzian diamond.

The use of space-time dimension D as an approximation parameter is not new. In
the past, it has been used to study quantum gravity in large dimensions [19]. In recent
years, the large D limit has also been applied to general relativity obtaining a dramatic
simplification in the black-hole dynamics e.g. see [20, 21].

1.1 Structure of the argument

In this subsection we give a quick overview of the paper, highlighting the structure of our
argument. In large D limit, unitarity forces A also be O(D). We define A = §D and
also spin as £ = wD. With this scaling, the correlator which is expressed as the sum over
conformal blocks can be approximated by an integral over conformal blocks multiplied
by OPE coefficient “density”. We argue that this integral is of Laplace type and can be
performed by saddle point approximation. The positivity of the OPE coefficient density can
be exploited to argue that the real saddle points must lie in the unitary domain. Remarkably
it turns out that this condition is incompatible with unitarity for d4 < 3/4 (for d4 < 1 if one
assumes sparseness of the low lying spectrum) except for the saddle point that corresponds
to the GFFT.

Outline. In section 2 we motivate the scalings and compute the conformal block in the
large D scaling limit. Here the large D solution of [22] plays an important role. We
independently check that our solution satisfies the conformal Casimir equation. In section 3
we approximate the conformal block expansion by an integral and find the region in the
cross-ratio space where the conformal blocks are positive and both s-channel and t-channel
OPE are convergent. The consequence of crossing symmetry and unitarity are then analyzed
in section 4 leading to the main conclusion. In section 5, we summarize our conclusions
with outlook. The paper is supplemented with three appendices. Appendix A gives explicit
formulas for conformal blocks in our large D scaling limit. Appendix B illustrates some
features of saddle point integrals that are relevant to the discussion in the paper. In
appendix C we present a detailed analysis of the constraints of unitarity and crossing.

2 Conformal blocks at large D

In this paper we will be concerned with unitary CF'Ts. The conformal dimension of local
operators in bounded from below by unitarity

Az%—l, for £ =0,
A>0+D -2, for ¢ £ 0. (2.1)

In any large D limit, a unitary conformal field theory has local operators with dimensions that
scale linearly with D. We take A = § D with ¢ fixed. The eigenvalue of the conformal Casimir



for the conformal multiplet with primary of dimension A and spin £ is A(A—D)+I(l+D—2)).
In order for the spin to contribute to conformal block we also take spin to scale linearly
with D, ¢ = wD with w fixed. Conformal blocks with finite spin can be obtained by setting
w to be O(D~1).

The conformal blocks satisfy the conformal Casimir equation. In the large D limit, this
equation can be separated and solved. This was done in [22]. We have reproduced their
result below

2A+f u
Fae(u,v) = \/ﬁAA(?H)Al—Z(y—) where yi = 7(1 o)
— x/2 z—1 E _ 2 . >
Ay (y) =y 2F1< g ). (2.2)

Here (u,v) are the standard conformal cross-ratios defined as u = z%,7%,/x?;23, and
v = 22,23, /x3;322,. Above approximation is valid for y, —y_ > 1/D or equivalently
v > 1/D?. To compute the blocks in the scaling limit A = 6D and £ = wD we need to
approximate the hypergeometric function at large values of parameters. This can be done
by expressing the hypergeometric function in the Euler integral form and performing the
integral using the saddle point. The result is of the form

Fosulv) 225 Nsuw0) (140 (1))

Ns.w(u,v) = (fg(u, v)eDg5(“’”)) (fw(u, v)eDg“(“’”)) (2.3)

where fs, fo and gs, g, are complicated functions of the arguments and labels. We do not
give their explicit form here as it does not offer much insight. It is given in appendix A.
Although we have not checked explicitly, we believe the perturbative corrections in 1/D

D corrections

to ./\/-570, form a convergent series and the non-perturbative corrections i.e. e
are absent. This means a given block contributes a specific cross-ratio dependent exponential
piece e (95(uv)+9.(wv)) 6 the correlator. If the two blocks have either 6 or w that is O(1)
different then their exponential contributions are distinct. However, if one considers blocks
for (¢',w') and (6,w) such that &' =6 + O(3) and w’ = w + O(F) then their exponential

contribution can not be distinguished. This is because,
P95 wr (u) — o0 (U, v)eP9se (), for some  ¢5.,(u,v) ~ O(1). (2.4)

These considerations are important as our arguments will essentially involve matching
distinct exponential contributions of blocks.

The expression for the block simplifies if we look at the dependence in a small
neighborhood of size 1/D around a certain point. We do this by substituting (u,v) —
(a2e?/P v? e™/P) and focusing on the dependence on (o, 7).

fDS,Dw(ua U) D_)—oo> Né,w(a27b2) Bé,w;a,b(aa T) (25)

Bswas(o,7) = F+@0:0) ((1+)o=7) k- (a,=b,14w) (1) —7)

where ki(a,b,z) = 4((1b4(_1b_;2b_) =) (1 + \/1 +4x(x —1) (1 - (1—7—1)2)) .




This is the large D approximation to the conformal blocks that we will work with in the
rest of the paper. When the block is thought of as a function of (o, 7), Nj,, is interpreted
as the “normalization”. The (o, 7) dependence is the imprint of the function gs,,(u,v) in
an O(1/D) neighborhood. Hence matching of exponential contributions is tantamount
to matching the (o, 7) dependence in the exponent. This is what we will do in imposing
crossing symmetry.

The (o, 7) dependence of the conformal block in the large D limit can be verified by
checking that it satisfies the conformal Casimir equation in the scaling limit described above.
Recall that the conformal Casimir equation is

(Ly + L2))*Faye = CapFa (2.6)

The eigenvalue Cpy = A(A — D) +£({ + D —2). In terms of the conformal cross-ratios
(u,v) this reduces to the following coupled second-order differential equation.

( — (1 = 0)? = u(l 4+ v))9pv0y — (1 — u + v)udyud,

Cay
2

+2(1 + u — vV)uvdy 0y + Dud, + )]-'A’g(u, v) = 0. (2.7)

After substituting A = D§,¢ = Dw and (u,v) = (a?e?/P,b? /D) and taking the large D
limit we get,

(_((1—b2)2—a2(1+b2))

b2 2

63—(1—a2+b2)6§+2(1+a2—b2)8067+80+1c(;,w> F=0,
(2.8)
where ¢5,, = (6(0 — 1) + w(w + 1)). The variables (a,b) are simply constants. It is
straightforward to check that the large D block (2.5) satisfies this equation.
To see why the conformal block is dominated by a monomial of (e"/ D er/D ), it is
instructive to consider the series expansion of a scalar conformal block that is known in

arbitrary dimension.

0o 2 2 w2t (1 — )™

In our large D scaling limit the sum over descendants becomes a saddle point integral. This
is performed in appendix A. At a given value of (a,b), a single descendent with dimension
k+(a,b,0)(1 + £)D dominates sum and hence the (o, 7) dependence of the conformal block
takes the simple form (2.5).

3 Conformal block expansion at large D

In this paper we will be concerned with four point function of identical scalar operators
of dimension Ag = Dd,. The stripped correlation function i.e. (¢(x1)... ¢(z4))(x392%,) ¢



Figure 1. Unitary domain in (§,w) plane. We have shown the two pieces, D; and Ds.

is only a function of cross-ratios, G(u,v). It is expanded in terms of s-channel conformal
blocks as follows

G(’LL,U) =1+ Z éA,O‘FA,O(uﬂ))—’_Z Z (1+(_1)€>C~A,Z‘FA,@(U7U)' (31)
¥§A<D72 {>0A>D—2+¢

The range of the sum is controlled by unitarity. We have divided the sum into two parts,
the first part is supported on the range of A for scalar operators (D —2)/2 < A< D —2
and the second part is the range (D —2) < A — ¢ for all ¢. This is the unitary domain. The
first part of the sum is supported over what we call the D; domain and the second part,
over the Dy domain. The factor of 14 (—1)¢ picks only the contribution of the even spins
as desired.

For now, let’s replace the factor 14 (—1)¢ by 1 in taking the large D limit. We will
account for this error in section 3.3. In the large D limit, A = D¢ and ¢ = Dw, it is
convenient to replace the sums over A and £ to integrals over § and w and replace the
OPE coefficients by OPE coefficient density Cs,, = C ps,Dw- The OPE density consists of a
collection of Dirac delta functions at (d,w) of all operators appearing in the OPE with then
strength given by the OPE coefficient. At leading order,

G(a%e”/P 02 /P) =14 D | d6 (Cs0Nso(a®,b%)) Bspan(0,7)
D1

+ D? | dbde (CoNow(@®,0?)) Bsuwan(o, 7). (3.2)
2
The explicit expression for B is given in equation (2.5). We have grouped the terms
independent of (o, 7) in the brackets. In the large D limit, the domains of integration are
D) ={(0,w):w=0,1/2<§ <1} and Dy = {(§,w) : w > 0,0 > w + 1}. In terms of (J,w)
coordinates we have graphically presented the unitary domain in figure 1.

Consider the unlikely situation where the Dirac delta functions in the OPE density are
O(1) spaced either in 0 or in w. Then as argued below equation (2.3), each operator in the
block expansion yields a distinct exponential cross-ratio dependence to the correlator. Of
course, more likely the OPE density consists of closely spaced i.e. O(1/D) spaced Dirac
delta functions. This motivates the definition of a “smeared OPE density” C§ . We define



it to be the OPE density Cj,, averaged over squares of size e ~ O(1/D) in (6, w) space. We
will pick € to be the smallest such that log(C§ ) is smooth to leading order in D at the
scale of 1/D in (4,w) space. This means log(Cj,) is piecewise smooth at scale of O(1) in
(6,w) to leading order in D. Note that the unitarity condition that the OPE coefficient C~A75
is positive implies that log(C§ ) to leading order in D is real.

The reason we demand the smoothness for logarithm and not the OPE density itself
will become clear soon. Note that our condition is weaker than the smoothness for the
function itself. Let us replace the very jagged function Cs,, with the function with piecewise
smooth logarithm Cf . We will quantify the error associated with this replacement shortly.

Now we are in the position to see why the analysis of (3.2) is viable. The key property is
the exponential dependence in D in (2.3). This makes the integral in (3.2) in each piecewise
smooth region of Laplace type. The feature of such integrals is that they are dominated by
discrete points. These points could either be the saddle points of the integrand or be points
on the boundary of the region. We call all such points “locally dominant points”. We direct
the interested reader to appendix B for more discussion of the generalities of such integrals.

In addition to the conformal block N, having el dependence, we will now argue
that generically the smeared OPE coefficient density C§ , also has el dependence. If the

OPE coefficients go as eP“

where a > 1 then the saddle point will be determined only
by the OPE coefficient and the large D correlator will simply be a single conformal block
evaluated at that saddle point (d,ws) of Cg’w. On the other hand, if o < 1 then the saddle
point will be determined completely kinematically by the e” factor in the conformal block
N, Most general saddle points are obtained if OPE coefficient density also goes as el
In the rest of the paper, we assume that to be the case.® All in all, the position of the
saddle point depends on the factor inside the bracket. This is precisely the part that is
independent of (o,7). That is what makes the correlator simpler to compute in a small
neighborhood of (a2, b?) of size 1/D.

The position of the saddle point, more generally of the point that dominates the
integral, is inside the integration range, in particular in the unitary domain Dy U Da, if the

D.. where ... stand

integrand does not have a rapidly oscillating phase i.e. of the type €
for a function of (§,w). The rapid oscillations are precisely what we dropped when we
replaced Cjs,, — C§7w. The contribution from such rapid oscillations is a subleading saddle
point that will lie in the complex domain of (§,w). Hence, the error associated with this
replacement is an exponentially subdominant one. We ignore this error as we are interested
in constraining only the exponentially dominant part of the correlator.

The conformal block N, (a?,b?) could also be rapidly oscillating. This would give rise
to locally dominant points that are outside the integration range. To avoid such possibility
then we need to consider only that region of cross-ratio space where all conformal blocks

are real and non-negative® with no rapid oscillations.” In such a region, the integral (3.2) is

SThis is indeed the case for GFFT. See section 4.2.

5Strictly speaking, a region where conformal blocks have a constant phase will also do but it turns out to
be simpler to find the region where they are non-negative.

"Otherwise these rapid oscillations could interfere constructively with the rapid oscillations of the OPE
density that we averaged over to give exponentially dominant contributions.



dominated by discrete points which lie in the integration range i.e. the unitary domain D;UDs.
Moreover, each locally dominant point yields a distinct exponential cross-ratio dependence.
As we move in the cross-ratio space, these points move in a continuous way. If a saddle point
moves to the boundary of the smooth region, it dominates the integral as a boundary point.
This seemingly unremarkable constraint on the location and movement of the dominant
points will turn out to be extraordinarily powerful when paired with crossing symmetry.
In the next two subsections, we will look for such region in the cross-ratio space where all
s-channel, as well as all t-channel conformal blocks, are positive. Needless to say that we
will also demand that the s-channel and t-channel expansions be convergent in this region.

3.1 Positivity of conformal blocks

It is known that all the unitary conformal blocks have positive coefficients when expanded
in terms of variables (z, Z), where u = 2z and v = (1 — 2)(1 — 2). This was first shown in [7]
and then in [23], in both by essentially using positivity of the norm of certain descendent
states. Because, a,,, > 0 where

‘D
i
~
|
‘[>
o]
~
2
3
3
N
3
N
U3

Fa(u,v) =z (3.3)

the conformal block is positive for real z,z > 0. In our analysis of the crossing equation,
we would also like to demand the t-channel conformal block to be positive. This forces
1—2z,1—Zz>0. To summarize, both the s-channel and the t-channel conformal blocks are
positive in the diamond 0 < z,z < 1 with real (z, z). The conformal blocks are explicitly
computed in appendix A and indeed they are positive and with no rapid oscillations.

3.2 Convergence of the OPE

In addition to having positive s-channel and t-channel conformal blocks, we are also
interested in having a convergent OPE expansion both in s-channel and in t-channel. The
positivity of the blocks discussed in the above subsection also helps determine the regions of
convergence of the OPE. In fact, both in [7] and in [23], the positivity of the blocks was used
to do precisely that. From state operator correspondence it follows that the s-channel OPE
is convergent over the entire range of cross-ratios in the Euclidean regime except for the half-
line z = z > 1. Similarly, the t-channel OPE is convergent in the Euclidean regime except for
the half-line z = z < 0. In particular, the s-channel and the t-channel OPE are convergent
for 0 < z = z < 1. From here, the positivity of the conformal block expansion coefficients
in z, z helps us deduce that both the s-channel and t-channel OPEs are convergent in the
diamond of interest 0 < z,z < 1. This is as follows, let z < z in the diamond,

Fpnu(z,2) < Fayu(z, %) (34)

This is because of the coefficients a,, , appearing in the expansion (3.3) are positive. This
means,

Y CavFau(z,2) <D CarFaulz,2). (3.5)
av Iy,



Again, this is because the OPE coefficients C A, are positive. The right-hand side is simply the
s-channel expansion in the range 0 < z = z < 1 which makes the sum convergent, implying
that the left-hand side is also convergent. The same argument can be repeated if z > Z.
Even the convergence of the OPE in the t-channel in the region 0 < z, z < 1 follows from this
argument in the same way. Hence, from now on we will totally confine ourselves in the region
0 < z,z < 1, or the diamond for short. In terms of (a,b), the diamond is a,b > 0,a+b < 1.

3.3 u-symmetry

In this section we account for the error that we made near equation (3.2) of summing over
all spins rather than summing over only even spins.

Yo > CauFap(uv)= > CarFarlu,v)+ D Y (=1 CarFaylu,v) (3.6

£>0,even A £>0,all A £>0,all A

Let us call the first and second term on the right hand side t; and ts respectively. As the
OPE coefficients are positive and the conformal blocks are positive in the diamond, it is
clear that t; > t9 in the diamond.

Also note that the conformal blocks are u-symmetric in the following way,

(—1) Fae(u,v) = Fay (u, 1> : (3.7)

This makes to the u-symmetric image of t1. Written as a sum of t; and ts, the correlator
is manifestly u-invariant. When we take the large D limit, both t; and to are saddle point
integrals. The t; integral is the one in equation (3.2). The to is the same integral except for
an additional insertion of €™ In the diamond, the saddle point of the t; integral lies in
the unitarity domain D; U Dy but the saddle point for to will generically be elsewhere in the
complexified (§,w) plane. Due to rapid phase oscillations in w, to is exponentially smaller
than t;. This is the same reason why rapid oscillations in § give rise to exponentially
smaller contributions. In the absence of u-symmetry, we will not be able to say anything
about the location of this saddle point. However, we know that the t5 saddle point is the
u-symmetric image of the t; saddle point.

4 Solving crossing symmetry

The crossing equation is,

14+ > ( )CAN:A@(U v) = (Z) (1+ > ( )CAN:A@(U u))' (4.1)

D1UDo D1UDo

In the large D limit, the sum over conformal blocks is approximated as integrals,®

1+ / d6des (1 -+ L) (05, Noo(22, %)) Branl(o.7) (4.2)
D1UDsy

6o D
— (22) ’ 6(077-)6‘1’ (1 + iU, dddw (1 + eiﬂ-WD) (CE’WNS,w(b27 32)) Bé,w;b,a(Ta U)) :

8We have suppressed the factors of D outside the integrals for compactness of the expression.



We have naturally defined Ay = d4D. The explicit expression for B is given in equation (2.5).
As discussed in section 3.3, the integrals on both sides are split into two terms t; and to.
The term t; comes from the 1 and the term to comes from e™? in (1 + ™D respectively.

Every correlator of identical operators has a universal contribution, namely the con-
tribution from the identity operator. As the contribution of the universal saddle must be
crossing dual to identity operator, it is perhaps not surprising that the universal saddle fixes
the OPE density and its contribution to the correlator to be that of the GFFT. We show
this explicitly in section 4.2. For now let us assume that there exists a pair of points (8%, w)
and (67, wy) in the s-channel and t-channel expansion respectively that dominate over this
universal part for some (a,b). If we find that the existence of such a saddle is inconsistent
with unitarity and crossing symmetry then we must conclude that the correlator is given by
1 and its universal dual saddle i.e. by that of the GFFT. For 64 < 1, we will show that it is
indeed the case.

*
S

Let’s proceed to a proof by contradiction. Let the points (§¥,w?) and (0;f,w;) in
the s-channel and t-channel expansion respectively be globally dominant points at (a,b).
Both these contributions must necessarily come from t; part of the integral (because t; is
exponentially dominant over t2) and hence lie in the unitary domain D; U Dy. Focusing

only on the (o,7) dependent part in exponent on both sides,
35;« ,w;‘;a,b(o—y T) = # €(U_T)6¢Béz ,w;‘ ;b,a(Ta 0)7 (43)

where # is some constant that is independent of (o, 7) (but does depend on (a,b)). Matching
the coefficients of ¢ and 7 in the exponent, we get

a—1 1

ke = T(ks—i_ —ks—) — §(ks+ + ko — 5¢>)7 (4.4)
—a—1 1

B = = (ke — ko) = ket +he —0y),  where

ksy = ki(a,b,0y), ks— =k_(a,—b,1 +w}), kiy = k4 (b,a,0;), k- = k_(b,—a,1 + wy).

This equation expresses the dominant point in the t-channel (6;,w;) in terms of the dominant
point in the s-channel (6%, w?). As we move around the cross-ratio space, then these points
may cease to be globally dominant but continue to be locally dominant and will continue to
exist in their respective unitary domain. We ask if this is possible i.e. we ask if a pair of the
s-channel and t-channel points that satisfies equation (4.4) exists such that both of them lie
in the unitary domain D; U Ds. In other words, we ask if the image of the unitary domain
D} U D} for the t-channel locally dominant point overlaps with the unitary domain D5 U D3
for the s-channel locally dominant point under the crossing map (4.4). Cartoons of overlaps
of the s-channel and t-channel unitary domains are given in figure 2. They serve to set
terminology for possible types of overlaps. Understanding these types helps us understand
the nature of the solution space. It is also important for the analysis in section 4.1. For
actual overlap diagrams,” for various values of (a,b) and 4, see appendix C.

Tt turns out to be convenient to analyze this problem in (ks—, ks+) space instead of (6%, w}) space. That
is what we have done in appendix C.

~10 -
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Figure 2. In these figures we have denoted the unitary domain in the s-channel in the (07,w7)
plane by blue color and have superimposed the image of the unitary domain in the t-channel under
the map (4.4) in red. In (a) we do not have any overlap. In such a scenario there are no solution
to the crossing equation compatible with unitarity. In subfigures (b), (c), (d), (e) we have shown
possible elementary overlaps of D; and Ds parts of the unitary domain in the s and t channel. Of
course, combinations of such overlaps is also a possibility. For example in (f), overlaps types II, III
and IV occur.

Now that we have defined the types of overlaps that can occur, we are ready to
summarize the result. In figure 3, we have colored the regions in the diamond with the kind
of overlaps that are allowed by unitary and crossing as a function of d4. Remarkably we
find that for d4, < 3/4, there are regions of the diamond, however small, where the crossing
symmetry constraint (4.4) does not have a solution in the unitary domain. This is explained
in detail in appendix C. Lack of unitary solution to the crossing equation (4.4) means that,
to leading order in large D, the correlator of identical scalar fields with 64 < 3/4 is identical
to that of the GFFT!

It turns out that this argument can be extended to make this result applicable to a
wider range of external conformal dimension, d4 < 1 with some reasonable assumptions
about the OPE density. This is as follows.

4.1 Extension to d4 < 1

In what follows we will assume that log(C§ ,) in non-differentiable at (6,w) = (1,0) i.e.
at the point where D; connects with D,. This includes the case where there are isolated
operators i.e. operators spaced by O(1) from the point § = 1. This assumption can be
thought of as an assumption of sparseness for low lying operators.

For 3/4 < 4 < 1, there is no light-pink region in the diamond where any type of
overlap doesn’t exist. However, we note that the diamond does have regions where type IV

- 11 -



0.8 0.8 0.8

0.6 06 0.6

0.6 0.8 1.0 . . . X K 0. 02 0.4 0.6 . 1.0
a a a

(a) 65 =0.60 (b) 64 = 0.65 (c) 65 =0.71

0.8

0.6

o 8.0 0.2 04 06 08 1.0 0’8.0 02 04 06 . K . 0.2 04 06
a a a

(d) 54) =0.75 (e) (5¢ = 0.82 (f) (5¢> = 0.95

Figure 3. The plots show regions of (a,b) for different values of d4. The color coding is as follows.
Light-pink: no solution, gray: type I, light-green: type II, light-blue: type III, green: type I + II,
blue:type I + III, light-yellow: type IT + III, yellow: type I 4+ II 4 III, orange: type II 4+ IV, brown:
type III + IV, red: type II 4 III 4+ IV. Note that the light-pink region is present for d, < 3/4.

overlap doesn’t exist. These regions are light-green and light-blue regions in figure 3. In
light-green region the only overlap is of type II i.e. D§ N D} while in the light-blue region
the overlap is of type III i.e. D§ N D4. If a solution to crossing equation (4.4) were to exist
for 3/4 < 04 < 1 then it must go from being of type II in the light-green region to being of
type III in the light-blue region.

Let us first consider the light-green region. The locally dominant point in the t-channel
(6f,w;) must lie in D}. Due to the discontinuities in log(C§ ), as we move in the cross-ratio
space, this point moves but at most to the boundary of the smooth region and as this
smooth region lies inside Dy, the locally dominant point (df,w;) continues to lie inside Dj.
This is true even as we transit to the light-blue region. There, a sub-leading saddle point
in D} may become leading in order to give rise to the type III overlap, the original locally
dominant point in DY, albeit sub-leading in the light-blue region, must remain in D} due to
the sparseness assumption. This is inconsistent with lack of overlaps involving D! in the
light-blue region. All in all, this means even for 3/4 < §4 < 1, we do not find a pair of
locally dominant points that is consistent with crossing and unitarity.
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4.2 The universal saddle

Now that we have ruled out all possible pairs s-channel and t-channel locally dominant
points that live in their respective unitary domains for 4 < 1, let us turn our attention to
the unique physical saddle, say in s-channel, that can exist. This is dual to the contribution
of the identity operator in the t-channel. The dual of the t-channel identity contribution is
(u/v)®¢. This must come from the integration over OPE density in the s-channel.

a\20sD
(2) " el = / d8dw (CsuNs(a%, %)) Byuap(e,7). (4.5)
b D1UDo

Here we have focused only on the t; terms as that gives the leading contribution. As
mentioned earlier, the to term will give its u-symmetric image namely a?'¢Pe?% . Let
us assume that the integral on the right hand side is dominated by the saddle (6}, w}).

Matching the coefficients of (o, 7) in the exponent yields,

1 1 1 1
I T (i B2 48242 24 & _ 245242
(67, w7) = <2+2b \/(204(1+b) —b)2— 46222, st o \/(204(1-b)+b)2—452a > . (4.6)
This could also be obtained directly by using the crossing equation (4.4) with (67, w;) = (0,0)
as expected. It is not difficult to see that this saddle belongs to the unitary region for
ds > 1/2 when (a,b) are in the diamond i.e. a,b > 0,a + b < 1. Matching the two sides
after doing the saddle point integral and after setting (o, 7) = (0,0) gives,

2

D) (4.7)

a 25¢D r D Ggs«  x 2 2
(B)77 = (Foruwne® 9553 Ny o (a2,52))

Here we have made manifest the eP dependence of the OPE density by taking Csw =
f5.,eP 9. The notation det(g”) is a shorthand for the Hessian (the determinant of the
matrix of second order partial derivatives) of (g5 + g + Gs) at (07, w?). The quantity
multiplying D in the exponent in the conformal block is g5 + g.,. The functions gs and g,
are given explicitly in appendix A. Inverting the relation (4.6) to express (a,b) in terms of
(6%, w¥) and matching the function in the exponent multiplying D, we get the exponential

dependence in the OPE density.

i ( 4200705(0)s(w+3)s (6_w+225¢_2) s <5+“’+2254’_1)

g&,wzlog o o
5(w)5(204)5(205—1)s(5— §)s (T2t ) 5 (222

, s(x)=x" (4.8)
)

This is an analytic function of (§,w) in the unitary domain. We have plotted it in figure 4.
Thus the knowledge of the saddle point as a function of (a,b) has allowed us to fix the
OPE density completely at large D. After determining g5, we can match the O(1) function
that multiplies e terms on both sides. This allows us to compute fg,w. Simplifying this
function to a closed-form turns out to be difficult. We have computed it numerically.
As the universal saddle point is dual to identity operator, we expect the OPE density
fePd obtained above to be the large D limit of the OPE density of GFFT. The GFFT
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P

Figure 4. Plot of €7 in the (1 = § — w,w) plane.

OPE coefficients are known in closed form in arbitrary dimensions [24]. We reproduce them
below for reference.

Cr 14+ (=1)"](Ag = D/2 4+ 1)2(Ag)7 1
AT+ D/2)n(28g +n— D+ 1),(204 + 2n+ € — 1)4(28y +n+ { — D/2),
1+ (0P [((8 - 3) D+ 1) ] (06D) sl
((w+3)D)  (@25+a-1)D+1),,
(PjwD + 1)T'[aD + 1))~ !
X
(205 +2a+w) D 1), (265 + @ +w—}) D)

(4.9)

aD

In the second line we have separated all the D dependence used to take the scaling limit.
The large D limit is taken using Stirling’s approximation for the Gamma function,

T(z) 2% \/?(Z) (1 +0 (i)) . (4.10)

In the large D limit the GFFT OPE density takes the form fgppreP9GFFT . The function
gerrr is precisely gs,., given in (4.8). Also,

fé,w—ﬂlD(53)(25_1)(5+W)(6_w_1)<5+25¢_w_2)(5_25¢+w+1)>;7 )

- (204 —1)26%w (0 — 264 —w) (64205 +w— 1) (14 2w)

and it agrees with f(;,w computed numerically using crossing symmetry.

Ag

The u-symmetric contribution u~¢ is subleading in the diamond and comes from a

saddle point that lies in the complex (d,w) space. One can indeed check by taking the OPE
density (4.8), (4.11) that the ty saddle precisely gives this contribution.

5 Discussion and outlook

In this paper, we have argued that, at large D, the four-point function of identical scalar
operators with d4 < 1 is the same as that in the GFFT to leading order. First, we note that
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it is unreasonable to expect this result to extend beyond 64 < 1. This is for the following
reason. Consider a tensor product of GFFT of N fields x; such that they have the same
conformal dimension A, = Ag/2. This theory has SO(NN) global symmetry. Importantly,
as 04 > 1, this GFFT is unitary. Consider the four-point function of flavor singlet operator
XiXi- We define this to be the operator ¢ whose four-point function we consider. By
construction, the conformal dimension of ¢ is Ag. This four-point function of the composite
operator is computed by all the Wick contractions. The stripped four-point function is

u\2s 1 u\Bo/2  uPe
G(u,v) =1+ (5) + e 4 N (uA¢/2 + (;) + 1)A<25/2> ) (5.1)

Here we have normalized the two-point function of ¢ to be 1. First three terms come from
the disconnected diagrams. This is the same as what would appear in the GFFT of ¢
itself. The next three terms come from connected diagrams and can have a relative factor
compared to the disconnected piece.

At large D, the disconnected piece comes from the identity operator and the two saddle
point that are discussed in section 4.2 while the connected terms come from three new

saddle points. Among the three terms, (u/v)*¢/2

is leading in the diamond. Interestingly, it
is self-dual under crossing symmetry. Substituting (u,v) = (a%e” /D p2em/D ) and matching
coefficients of o and 7 in the exponent with the form (2.5), we see that the saddle point is

at (ks—, kst) = (ki—, kt+) = (64/4,04/4). In terms of (§,w) this means,

(67, wy) = (05, w;)
(0%, w?) = <1+1\/(5¢(1+b)—b)2—53)a2,—;+;t)\/(5¢(1—b)+b)2—53)a2) C52)

2 2v

Interestingly this saddle point lies in the unitary domain for §, > 1 and when (a,b) are
in the diamond i.e. for a,b > 0,2 4+ b < 1. This is consistent with our analysis because
precisely for 64 > 1, crossing and unitarity allow other solutions apart from the universal
one and (5.2) is one of them.

However, one may wonder whether this is the only other solutions to the crossing
equation (4.4) for 65 > 1 (and d, < 3/2).'% This would mean that for d; > 1, the GFFT
of ¢ and GFFT of x (where ¢ is the composite operator x?) are the only two solutions
at large D. This is an interesting possibility but one about which we can’t say anything
currently. Of course, it is entirely possible that for d4 > 1, things may not be as simple as
that. Note that we are asking this question without imposing the existence of stress tensor.
Having a stress tensor could provide additional constraints, more severely constraining the
solutions at large D.

In this paper, we have constrained the unitary solutions to the crossing for 64 < 1 only
to leading order at large D. At sub-leading order, the solution may receive perturbative
1/D corrections in addition to the non-perturbative ones. The non-perturbative corrections
correspond to subleading saddle points. As discussed below equation (3.2), we already know

For 64 > 3/2, in addition to the unitary GFFT of x such that x> = ¢, one could consider unitary GFFT
of yet another operator u such that x> = ¢ and so on.
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of a mechanism by which these could appear, namely, from the rapidly oscillating part of
the OPE density (which we have chosen to smear over). We believe that these corrections
would be very difficult to control. However, the perturbative corrections can be accounted
for relatively straightforwardly. They come from 1/D corrections to the conformal blocks
as well as 1/D corrections to the smeared OPE density. The corrections to the conformal
blocks can be computed from the conformal Casimir equation. The question of computing
1/D corrections to the correlator then is actually the question of controlling the 1/D
corrections to the smeared OPE density. As the contribution of the saddle point that is
dual to the identity operator is completely fixed to all orders in 1/D, the 1/D corrections
to the smeared OPE coefficient density must also be fixed. It would be interesting to
compute these corrections explicitly and match them with the GFFT OPE coefficients in
1/D expansion.

Our arguments in the paper have uniquely fixed the leading order correlator only in the
Lorentzian diamond. Elsewhere in the cross-ratio space, the conformal blocks could rapidly
oscillate in phase and hence the dominating saddle could be anywhere in the complex
(0,w) space. That is why it would seem difficult to extend the results outside the diamond.
However, in addition to fixing the correlator in the diamond, we are also able to fix the leading
order OPE density (see section 4.2). This strongly suggests that the theory of operator ¢
is perhaps GFFT itself which would make ¢ decoupled from the rest of the theory. Phrased
another way, our results suggest that OPE coeflicients of relevant operators in a non-trivial
conformal theory!! in large dimensions must be exponentially suppressed at large D.

Even though we are considering D a formal parameter in solving conformal bootstrap
equations, there are indications that the unitary solution space to crossing is drastically
different for non-integer D compared to integer D, see [25, 26]. In our analysis, we have
not made any assumptions about integrality of D and the large D limit could as well be
taken with D an integer. It would be useful to understand how the nature of the solution
space changes as we make D fractional in our approach.

It would also be interesting to apply the tools developed in this paper, to CF'Ts in finitely
many dimensions in 1/D expansion. The results of this paper show that for a given region
of the cross-ratio space, there exists a minimum value of D above which, the correlation
function for operators with 4 < 1 is dominated by the GFFT correlation function. For
quantitative estimate of this value of D, it is important to control the contribution of the
sub-leading saddle point. This is beyond the scope of the current paper.

We would also like to point out the paper [27] where authors show that the number
of subtractions to write a dispersion relation goes to infinity as D goes to infinity. This is
perhaps an indication that such theories prefer to be free [28].

In this paper, the object that played an important role is the smeared OPE density.
A more rigorous analysis of the constraints on the smeared OPE density may be possible
using the so-called “Tauberian theorems”. These techniques have recently been applied
to conformal field theories to essentially estimate the errors associated with such a smear-
ing [29-32]. It would be nice to put our treatment on a more solid footing with the use of

1Not necessarily having a stress tensor.
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similar techniques. Finally, it would be interesting to approach the problem of CFTs in
large dimensions in other ways, for example using the Lorentzian inversion formula [33] or
using the method of extremal functionals which has provided optimal analytic bounds on
OPE coefficients in the large A limit [34].

Acknowledgments

We would like to thank Thomas Dumitrescu, Subham Duttachowdhury, Indranil Halder,
Ashoke Sen, David Simmons-Duffin, Aninda Sinha and Balt van Rees for useful discussions.
We would also like to thank Subham Duttachowdhury for comments on the manuscript.
We are especially thankful to Shiraz Minwalla for inspiring discussions and also for useful
comments on the manuscript. The work of both the authors was supported by the Infosys
Endowment for the study of the Quantum Structure of Spacetime. The work of A.G. is also
supported by the SERB Ramanujan fellowship. A.G. would like to acknowledge that part
of this work was performed at the Aspen Center for Physics, which is supported by the
National Science Foundation grant PHY-1607611. We would all also like to acknowledge
our debt to the people of India for their steady support to the study of the basic sciences.

A Explicit blocks in large D

The conformal blocks have been computed in the large D limit as

2A+l U
FA,I(“?”) - mAA(y‘F)Al—l(y—)? y:l: - (1 :|: \/6)2
x r—1 x D
=3 - T4 Al
Am(y) Z/22F1< 2 ,2,.’13 2 + 7Z/> ( )

We want to scale the conformal dimension and spin with D as A — 6D and | — wD,
as explained in the main text.

The conformal dimension part of the block, A (y+) is estimated using the Euler integral
representation of the conformal block.

2Fi(a,b,¢;2) = 1“(b)11:((cc)—b) /01 dtt* M1 — )1 — at) (A.2)

In our large D limit and for Hypergeometric function in Aa(y4) the integral reduces to a
saddle point integral. The saddle point is at

(A.3)
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Now, t, = tj is chosen because it lies between (0,1) when ¢ > 1/2. Thus, at leading order
in1/D,

Fs=2%Ap <1) —- I [D(5—§)1+1} m

1 sp|r[(Fp+1] s
6 -1 s\D | 2
X (2ui0)20-15)T (-yety)2) [ =
2 ) -1 )
where ﬁ:({inog[tZ(l—t)2(l—ert)_z]\t_t(S (A4)

2¢D, b2eD) implies y, = ﬁ(l + %ﬁ(u:b)a — 1)+ O[1/D]). Using

Putting (u,v) = (a

2 2 e~ [1 + O(2)], the conformal dimension

dependent part of block Fs at leading order in 1/D reduces to,

Sterling approximation for I'[z]

Fs=fs 6D95€k+(a,b,5)((1+%)077) (AE))
where,
4 \/ 206-1)%9, 2(26—1)2(A—26+1)(A—25+2(6— 1)z +1) \ /2
96 =108 1\ 26— 1) (A—20+2(6—D)gs +1) (1—A)5(6—1)%54

= (6—1)"3(A-1)36(26—-1)(A—25+2(6—1)g++1)?
0 2(166(6—1)2(A—6)§2 +165(6—1)(A—6)(A—26+1)§4 +(A—20+1)2 (4A5+(A—1)2—452))

with, A= /T +4(1 — 93)0(6 — 1) and §4 = ~2ry

(1+b)2 -
Similar steps can be done to find the spin dependent part of the block at y+ = (uiiezzm?
in leading order in 1/D as:
2 Dy (b, 14w)((1-H)r—7)
Fo = A1 (y-) = fo, e?dwel-BmiTw »/97T (A.6)
Y- — Y+
where,
4 2w+1)%g- (2w+1)2(B—2w—1)(B—2wt2(w+1)g-—1)\ /2
G =108 |\ 21 1) (B—20 12wt 17— 1) —Sw(1+B)(w+1)24—
£ = —(49-) " 9= —9+) M w+1) TP (B+1)2(2w+1)*(B—2w—1)(B—2w+2(w+1)j- —1)3
@V 16w(w+1)2(B—w)§? +16w(w+1)(B—w)(B—2w—1)j— +(B—2w—1)2 (4Bw+(B+1)2 —4w?)

with, B = /1 +4(1 — ¢ )w(w + 1) and g+ = ﬁ

Thus, the overall conformal block is: Fps po, = Fs Fo.

A.1 Scalar block

00 2 2 u%+n _ o)™
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We will scale the conformal dimension A, n and m with D as A — 6D, n — aD and
m — BD respectively. With this scaling the sum over n, m becomes integral over «, 8 which
can be performed using saddle point integration. Substituting (u,v) = (a2e%,b26%) and
again using Sterling approximation for I'(z I_wo 2 pTe® 14 (9(%)], we get the saddle
point (a*, 5*) as:

0

<1 + >k+(a 0,0~ (A.8)

g = (1;1’2) k. (a,b, 5) (A.9)

which on substituting back gives the required o, 7 dependence as well as the normalization
part of the scalar block as mentioned in the main text.

B Generalities of the saddle point

Consider the following integral in the large D limit,

7= / eP @), (B.1)

This is known as the integral of the Laplace type. As D is large, if g(x) is a real function in
the integration range [a,b] € R, the integral is dominated by the point where g(z) takes
maximum value. This point could be in the interior of the integration domain or on the
boundary. In both cases, integral gets dominant contribution from the neighborhood of
that point. At leading order in large D,

o when g(x) is maximum in the interior

2 % Dg($*)
I —Dg”(x*) f(.CE ) € ’ (B2)
e when g(z) is maximum outside'?
7 ~ max ( Fla)ePs@ L1 eD9<b>> . (B.3)
Dg'(a) "Dg'(b)

The integral of the first type is called the saddle point integral. Of course, the integral could
have other local maxima and the integral receives similar but subdominant contribution
from those. If the function g(z) is piecewise continuous, we divide the integration range in
these pieces and the above discussion applies to the locally dominant point from each piece.

We want to highlight the non-analytic behavior of the integral as the dominant point
transits across the integration range. To that end, consider a Laplace type integral with a
parameter A.

= / dg e~ PE=2)? (B.4)

12This formula blows up when the maximum is exactly on the boundary i.e. when either g'(a) =0 or
g'(b) = 0 but this is outside the validity of this formula. The formula is applicable for g'(a), g’(b) > O(1/D).
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For A > 0, the integral is computed using the formula (B.2). This gives I(\) = \/w. While for
A < 0, the integral is computed using the formula (B.3). This gives I(\) = e~P* /(2D|)).
It is clear that I(\) is non-analytic at A = 0 i.e. at the point where the saddle point
enters the integration range. In fact the integral increases in magnitude as the maximum
transitions inside the integration range.

On the other hand, if g(z) has a varying imaginary part in the integration range then the
integrand has a rapidly oscillating phase. Naturally such an integral is difficult to estimate
by staying on the real line as the oscillating phase is expected to cancel huge numbers to
give tiny remainders. The way out is to use the analyticity of the integrand to deform the
contour into the complex plane such that the new contour of integration is on the path of
stationary phase i.e. the path of constant Im[g(z)]. This is also the path of steepest descent
for Re[g(z)]. Here we want the reader to note that as a result of contour deformation, the
saddle point could be outside the integration range, even in the complex plane.

C Solving the crossing equation

As discussed in the main text unitarity and crossing implies both the saddles (8%, w?) and
(67, wy), related to each other by equation (4.4), must exist in D; U Dy. Let us see what
these constraints mean for (ks_, ks ). Inverting the map (2.5) (6*,w*) — (k—, k1), we get

(0%, w*) = (¢(ky,a,b), =C(k—,a, D)) (C.1)
where ((z,a,b) = % + %\/(4%(1 +0b) —b)? — (4za)?.

Using this equation as well as (4.4), we map the regions D$, D5, D, D} in (ksy, ks—) space.

( s—>a, b) < ks+ < Q(Ss(ksf7a7b)}

S+>ab)
,a, b) k5+>Q6 ( 5— 7ab)}
a,b),

);

DY = {ks— = Qu,(k
DQ = {ks— > Qws(
D} = {ks— = Qu,(k

(k

D2 = {ks— > Qu,

s+
s+ Q5t( 5— 7ab)>k8+>g5t( 5— 7a7b)}
s+,a,b), ksp < Qs,(ks—,a,b)}. (C.2)

The Q functions appearing above are,

Qws (k3+, a, b) =0
—b dy+ (1+a-+b)k
(1+a—")

b(1+Db) + /y(ks—)

th (k$+7 a7 b) =

s—,a,b) =
Qés (k a ) 4((1 +b)2 _ a2)
) (205 — 1)a® = 205(b + 1) + b+ 1+ /1 k2_ +m ke + 10
Q. (ks 2,b) = 4(a—b—1)(a+b+1)
- b
Qs,(ks—,a,b) = m
- 2k, ((1 —Db)? —a?) +2b(1 —b)dy — ab
Q5t(ks—,a7b) = (( ) 2 ) * ( ra ) ¢ 2 (Cg)

2(1-(a—p)?)
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where,

A(ks—) = 62(145)~8b(1-b) ((1+1)” ~a”) s+ 16((b+1)>~a2) ((1-b)* ~a?) 2

no = (204—1)%a" ~2(25,—1)a? (205 (b2 +1) —b—1) + (24, (>~ 1) +b+1)2
m=-8((a=b=1)(a+b+1) (205~ 1)a>~26,(b—1)*~b+1))

ng::16<a4—2a2(b2+4)—+(b2—1)2>

Conditions (C.2) are used to find regions in the diamond where overlaps of various
types occur. These are then used to get figure 3. We have illustrated some examples
of overlap diagrams in (ks_,ks4+) space and the corresponding regions in the diamond
in figures 5, 6, 7 and 8. We have taken d4 = 0.63 in all of these plots. The blue and
the red regions (in the part(a) of each figure) are the unitarity domains of s-channel and
t-channel saddle points respectively. The dashed blue and blue curves correspond to the
s-channel constraints ks— = Q, (kst,a,b) and kst = Qj,(ks—,a,b) respectively. The
dashed red and red curves correspond to the t-channel constraints ks— = Q,, (ks+,a,b) and
ksy = Qs,(ks—,a,b) respectively. The endpoint of the dashed blue and dashed red curve
are marked with Purple and Orange points. They correspond to ksy = Q(;S(/{:s,, a,b) and
kst = Qgt(ks,, a,b) respectively. It is convenient to label the intersections of these curves
also. The Blue, Red and Green points are the intersection of curves (blue N dashed blue),
(red N dashed red) and (dashed blue N dashed red) respectively. The coordinates of these
points are

b
ki_ k)= 0)
(kas Ko ) "4(1 —a+Db)

(

(k2_,Kk9,) = <5¢ _atb+l 45¢_1>
(
(

2 8(1+a-b) 8

BB\ b(1 +b)
(ke boy) = 0’2((1+b)2—a2))

(k:R k:R) 57(1,7 a+1 5&7 a+1 >

s st 2 4(14a-Db)’ 2 4(14+a+b)

G G\ _ b5¢ )

(kg ko) = (0, TTass) (C4)

Part (b) of each figure shows the region of existence of corresponding type of overlap in the
Lorentzian diamond (i.e. 0 < a,b,a+a < 1). This is the part below the diagonal black line.

Existence of type-IV overlap. It is clear from the figure 5(a) that overlap of type-IV
exists when either the red point lies inside two-dimensional blue region or the blue point lies
inside two-dimensional red region. The first condition implies kY > Q,, (k¥ ,a,b) N kY, >
Qs,(k}_,a,b) while the second implies k_ > Q,, (k. ,a,b) N kZ, < Qs,(kE_,a,b).

In (a,b) plane it is easy to check that this translates to (b < 25%;1(21 +1)Nna <

205~ 1)U (a < 25" (b+ 1) Nb < 25, — 1) or equivalently, a < 24, — 1Mb < 20, — 1. This

region is shown in figure 5(b).
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Figure 5. Plot (a) shows the overlap of type-IV (also of type-II, IIT). Red point is inside the
two-dimensional blue region and blue point is inside the two-dimensional red region. These are two
possible conditions for type-IV overlap to exist. Plot (b) shows the red region in (a,b) plane where
type-IV overlap can exist. The vertical and horizontal red lines are a = 204 — 1 and b = 24 — 1
respectively. The dashed orange and dashed brown lines are b = 252%;1 (a+1)and a= 252%;1 (b+1)
respectively. These four lines intersect at (a,b) = (204 — 1,25, — 1). Part (a) is plotted for the black

point (a =0.1,b=0.1).
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Figure 6. Plot (a) shows the overlap of type-III. Purple point is inside the two-dimensional

red region as required. Plot (b) shows the light-blue region in (a,b) plane where type-III overlap
can exist. The blue and dashed blue lines are b = ngi)a —land b= 2(%)(4(54, —a-—1)

respectively. The dashed orange line is same as defined in figure 5(b). All the three lines intersect at
a point. The black point is (a = 0.45,b = 0.25) for which part (a) is plotted.

Existence of type-111 overlap. Overlap of type-III occurs when the purple point lies in-
side the red region as in figure 6(a). This implies (kf_ <kE_ N kE_>Q,, (kK2 ,a,p)) U (KE_ >

S
KE_ N ki < Qs (ki_,a,b) ). In (a,b) plane this translates to (b< 262%;1 (a+1) N b>

) 0p— 0p— )
(525)a—1)U( b2 25— (a+1)Nb < 2(33¢=7) (4d,—a—1) ) or equally, b> (325)a—1n

b< 2(421?2:})(46(1,—&—1), as shown in figure 6(b).
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Figure 7. Plot (a) shows the overlap of type-II. Orange point is inside the two-dimensional blue
region as required. Plot (b) shows the light-green region in (a,b) plane where type-II overlap can

exist. The green and dashed green lines are a = (

455+1
25,—1

)b—1and a = 2(3257) (40, —b — 1)

respectively. The black point is (a = 0.25,b = 0.45) for which part (a) is plotted.
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Figure 8. Plot (a) shows the overlap of type-I. Blue and red one dimensional regions intersect each
other at green point as required. Plot (b) shows the gray region in (a,b) plane where type-I overlap
can exist. The blue, green, dashed orange and dashed brown lines are the same ones as shown in
the previous figures. The black point is (a = 0.45,b = 0.45) for which part (a) is plotted.

Existence of type-1I overlap. Type Il is the dual of type III under crossing. It occurs
when the orange point lies inside two-dimensional blue region as in the figure 7(a). This
implies k2_ > Q,, (k2 ,a,b) N k2, > Qs (k2_,a,b). In (a,b) plane this translates to
464+1 26451 .

a> (ﬁ)b —1na< 2(4627_1)(4% — b — 1), as shown in figure 7(b).

Existence of type-I overlap. The overlap of type-I is simply the intersection of one-
dimensional blue and one-dimensional red regions as shown in figure 8(a). In other words,
it is the intersection of the curves ks— = Q. (kst,a,b) and ks— = Q,, (kst,a,b) with

8% < 1,6¢ < 1. This implies (K&, < kB, NkS, > kB, )N(kS, > k&, Nk, <k%,). In (a,b)
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Figure 9. Plot (a) shows the case-1 for no overlap. Blue and red one dimensional regions do not
intersect each other. Plot (b) shows the light pink region in (a,b) plane where the case-1 for no
overlap exists. The dashed blue and green lines are the same ones as shown in the previous figures.
The black point is (a = 0.1,b = 0.7) for which part (a) is plotted.

45¢,+1

plane this translates to (b > (25)a—1Na> (25‘25 1)(b—l—l)) N (a> (jg‘i’ﬂ)b I1Nb>
(2% 1

55, )(a+ 1)), as shown in ﬁgure 8(Db).

No overlap. In order to find the no-overlap region in cross ratio space, we need to

consider following two cases.

Case-1. . In this case “no
overlap” occurs when the purple point lies above the solid red line as in the figure 9(a).
>k N kL, > Qs (K ab).

b—lﬁb>22§‘25 1 464 —a — 1), as shown in figure 9(b).
¢

If purple point lies on the right of orange point, i.e. k% > k2

This implies kF_ In (a,b) plane this translates to a <
(46¢+1

464

Case-2. < k2 . In this case
“no overlap” occurs when the purple point lies on the left of the dashed red line and the

This implies kF_ <

If purple point lies on the left of orange point, i.e. k°_

orange point lies below the solid blue line as in the figure 10(a).

K. N ki_ < Qu (kP ,a,b) N kY, < Qs (k)_,a,b). In (a,b) plane this translates to
a> (4%%) —1nb< (4%1) —1na> 2(2 o 1)(46¢> — 1), as shown in figure 10(b).

Because of s-t symmetry, the no overlap region must be symmetric under reflection about
a = b line. One can easily check that for the unitarity range of d4 (d4 > 0.5) and in the
Lorentzian diamond (i.e. aand bisa > 0Nb > 0Na+b < 1), the first inequality will always
be satisfied as long as the remaining two are satisfied. Thus effectively the no overlap region
6‘7’+i)a— 1Nna>2(% 5¢ 1)(46(,5 b—1). As it can
be seen clearly, this makes “no overlap” regions for case-1 and case 2 to be s-t symmetric to

in (a,b) plane for case-2 becomes b < (

each other (i.e. case-1<>case-2 as a <> b).

region is the union of case 1 and 2 and is equal to
B25)a—10a > 2(3257) (45, —b—1)).

Thus the total “no overlap”
(2 < (55557)p—10b > 2(35=7) (45y—a—1)) U (b < (

— 24 —
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Figure 10. Plot (a) shows the case-2 for no overlap. Blue and red one dimensional regions do not
intersect each other. Plot (b) shows the light pink region in (a,b) plane where the case-2 for no
overlap exists. The blue, green and dashed green lines are the same ones as shown in the previous
figures. The black point is (a = 0.7,b = 0.1) for which part (a) is plotted.

No overlap region exists only for §4 < 0.75. Because “no overlap” regions for case-1
and case-2 are related to each other by s-t symmetry (i.e. a <+ b), this implies one needs
to show the existence of “no overlap” region for 4 < 0.75 for one of the cases only. We
will show this for case-1. As mentioned above, a and b lies in the Lorentzian diamond i.e.
a>0Nb>0Na+b < 1. The no overlap region in case-1 is in general a quadilateral formed
bya>0Na+b<1Na< (45"’“) —1Nb > 2(26¢ 1)(4(5¢, —a—1), as shown in figure 9(b).

Line a = (j?’“)b 1 intersects lines a = 0 and a+b = 1 at {0, ig‘ﬁ:} and {%, %;1},

respectively. Line b = 2(26¢ 1)(454) —a — 1) intersects lines a = 0 and a+b = 1 at
{0,2(264 — 1)} and {1 — (25¢ —1)2,4(2645 — 1)?}, respectively. Now the “no overlap” region
exists as long as b coordinates of all these above four points is strictly less that 1,'3 (see
figure 9(b)).

45¢—|—1
1: 0g > 0.
45¢—1< ; W ¢_05

4651
1; Y 4 > 0.5

2(205 — 1)< 1; VY 0.5<d,<0.75
4265 —1)* <1; VY 0.5<4,<0.75

Thus, we have shown that the “no overlap” region for case-1 and hence for case-2 exists
for 0.5 < 94 < 0.75 and it vanishes for d4 > 0.75.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

3Lines a = 0 and a + b = 1 intersect each other at {0,1}.
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