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1 Introduction

Have we discovered all of the particles that acquire most of their mass from the Higgs?
Thanks to decoupling, whether we have discovered all particles that acquire any of their
mass from the Higgs is essentially unknowable with finite experimental precision. But par-
ticles acquiring a fixed fraction of their mass from the Higgs are effectively non-decoupling
as the strength of their interaction with the Higgs necessarily grows in proportion to their
mass. Among these, perhaps the most interesting are particles acquiring the majority of
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their mass from the Higgs.1 The low-energy effects of such particles must be described
by the U(1)em-symmetric Higgs EFT (HEFT) rather than the SU(2)L ×U(1)Y -symmetric
Standard Model EFT (SMEFT). The underlying reason is that the low-energy theory ob-
tained by integrating out such particles does not admit a SMEFT-like expansion around a
SU(2)L×U(1)Y -preserving point in the EFT field space that converges at our observed vac-
uum [1]. In this sense, particles acquiring most of their mass from the Higgs provide simple,
perturbative UV completions of HEFT that cannot be described using SMEFT [1–4]. Inso-
far as their masses are bounded from above by unitarity considerations to be . 4πv (where
v is the Higgs boson vacuum expectation value), these particles provide a well-defined and
entirely finite target for experimental searches.

We follow in the footsteps of Gell-Mann and refer to such particles as Loryons.2 Most
of the fundamental particles in the Standard Model are themselves Loryons, with the
exception of the photon and gluon (though the pedantic among us might argue for their
inclusion as well, inasmuch as their Higgs-independent masses are not larger than their
Higgs dependent-ones, both being zero). This classification is perhaps even more apt when
applied to mesons and baryons, whose masses arise only in part from electroweak symmetry
breaking; pions, kaons, and B mesons are Loryons, while protons and neutrons are not. Our
goal here is to explore the phenomenology of Beyond the Standard Model (BSM) Loryons,
with a particular eye towards the parameter space that could yield a future discovery.

The search for BSM Loryons has a long history. Perhaps the most notable example
is the extension of the Standard Model (SM) that includes a chiral fourth generation, the
smallest anomaly-free set of entirely chiral fermions that all carry SM charges. Famously,
this model is excluded by a combination of unitarity bounds, Higgs coupling measurements,
precision electroweak tests, and direct searches [6, 7]. But this leaves the door open for
vector-like fermions, scalars, or vectors in various representations of SU(3)C × SU(2)L ×
U(1)Y . In the case of vector-like fermions, even though their vector-like masses are allowed
by their gauge quantum numbers, it is technically natural for them to receive the majority
of their mass from electroweak symmetry breaking since these terms may still violate global
symmetries. Aspects of this scenario and its implications for the EFT of the Higgs were
recently studied in [8]. For scalars, there are (famously) fewer symmetries available to
protect possible mass terms. So while such BSM examples are still phenomenologically
interesting, justifying a small mass that is independent of electroweak symmetry is harder
from a symmetry perspective.3 In the case of vectors, gauge symmetry provides a natural

1We will sharpen the notion of “majority” in what follows; the detailed criteria varies weakly depending
on the quantum numbers of the new particles and the nature of their couplings to the Higgs, but in all
cases it roughly corresponds to particles obtaining more than half of their mass from the Higgs.

2From Finnegan’s Wake, “with Pa’s new heft. . . see Loryon the comaleon.” Note that Loryons whose
masses vanish as v → 0 were referred to as “Higgs descendents” in [5]. Such particles form a particularly
interesting subset of Loryons, as the EFT manifold obtained by integrating them out does not contain
an SU(2)L × U(1)Y -preserving fixed point. But our interest lies in the broader class of perturbative UV
completions of HEFT that cannot be described using SMEFT, for which imposing m→ 0 as v → 0 is too
strong of a requirement.

3But not impossible — for instance, a Goldstone boson whose coupling to the Higgs provides the leading
violation of its shift symmetry can naturally acquire most of its mass from electroweak symmetry breaking.
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way of controlling mass terms, but strong constraints exist for models where the Higgs is
directly charged under the new gauge group so that it can be primarily responsible for
generating the associated gauge boson masses. A more viable option is for the non-zero
Higgs vacuum expectation value to induce spontaneous symmetry breaking of the BSM
local symmetry via another scalar, in which case the vector bosons can acquire most of
their mass from the Higgs without coupling to it via renormalizable operators. Such indirect
scenarios were highlighted in [5]. For simplicity, in what follows we will focus on scalar and
fermionic Loryons obtaining the majority of their mass from a direct coupling to the Higgs.
As we will see, there is no shortage of such candidates, but it would also be interesting to
further explore the space of Loryon candidates indirectly acquiring the majority of their
mass from the Higgs.

To the extent that they remain viable, BSM Loryons provide compelling motivation
to use HEFT to parameterize possible deviations in Higgs coupling measurements. Of
course, it is reasonable to ask whether one should use an EFT to describe the low-energy
effects of Loryons in the first place given that their masses are necessarily bounded to
lie below ∼ 4πv. Here it bears emphasizing that the vast majority of collisions at the
LHC involve partonic energies below 1TeV, and in particular the events most relevant to
precision Higgs measurements involve partonic energies much closer to the weak scale. In
this regime, EFTs truncated at lower orders in their derivative expansion (as is the case
in the practical application of HEFT and SMEFT) are appropriate. While it is possible
that some Loryons may be discovered (or excluded) predominantly by direct searches, as
we will see, Higgs couplings and other Standard Model precision measurements provide a
complementary (and perhaps even the best) probe of Loryon parameter space. Signals in
these channels are generally well-described by an EFT, and the first signs of a deviation are
likely to be presented in an EFT framework. As such, the existence of Loryons consistent
with current data provides a strong motivation to use HEFT as the BSM parameterization
when performing future searches for Higgs coupling deviations.

This paper is organized as follows: in section 2, we enumerate scalar and fermionic Lo-
ryons obtaining the majority of their mass from direct coupling to the Higgs. For simplicity,
and to minimize constraints from precision electroweak measurements, we only study can-
didates that can be expressed as multiplets of the approximate SU(2)L×SU(2)R custodial
symmetry of the SM. We allow for all custodially symmetric renormalizable couplings to
the Higgs that respect a Z2 symmetry acting on the Loryons. Imposing the Z2 symmetry
allows us to highlight the irreducible loop-level signatures of Loryons; tree-level signatures
in the absence of this symmetry typically lead to stronger constraints but are not inherent
to the definition of Loryons. We present a sharp criterion for determining when the local
EFT obtained by integrating out these custodial irreducible representations (irreps) must
be HEFT (in that it cannot be written in terms of a convergent SMEFT at our vacuum)
and use this to define the parameter space of interest for Loryons. In these cases, the
mass scale of weakly-coupled Loryons is bounded from above by perturbative unitarity
considerations. While it is certainly possible for Loryon couplings to exceed these bounds,
we use them to determine the regime in which our perturbative calculations remain under
control. In section 3, we consider constraints on the Loryon candidates coming from Higgs
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coupling measurements, most notably LHC bounds on h→ γγ, h→ gg, h→ invisible, and
h → untagged. We then turn to consider precision electroweak limits in section 4, which
largely stem from bounds on the S parameter given our imposition of custodial symmetry.
In section 5, we determine the current state of direct limits on the Loryon candidates that
remain viable after imposing perturbative unitarity bounds, Higgs couplings, and precision
electroweak measurements are taken into account. We summarize the surviving parameter
space of Loryons in section 6, finding a number of compelling candidates that are consistent
with all known data, thereby providing a sharp target for future searches. We briefly sketch
the future prospects for the HL-LHC in section 7, focusing on projected improvements in
Higgs coupling measurements; both h→ Zγ and h pair production are expected to provide
qualitatively new sensitivity. We present our conclusions in section 8. The calculation of
the mass spectrum and one-loop contribution to the Higgs wave function renormalization
is relegated to the appendix.

2 Loryon catalog

Our starting point is to enumerate the BSM Loryons that have a possibility of being
phenomenologically viable. Our first goal will be to specify their SM quantum numbers
and to understand the implications for the allowed mass terms and couplings to the Higgs
field in subsection 2.1. We will then discuss the connection to HEFT in subsection 2.2
by specifying the conditions under which integrating out a Loryon requires matching the
resulting theory onto HEFT. In these cases, the mass of the Loryons are bounded from
above by perturbative unitarity considerations, which we will explore in subsection 2.3.

2.1 Representations and mass spectrum

New physics that badly violates the approximate SU(2)L × SU(2)R custodial symmetry
of the SM is strongly constrained by precision electroweak measurements.4 In order to
focus on the candidates that are most compatible with current data, we will restrict our
attention to Loryons that preserve custodial symmetry. There are, of course, viable Loryon
candidates that violate custodial symmetry, albeit with parameter spaces more tightly
constrained by precision electroweak data; we leave the study of this broader class of
candidates to future work.

Given this assumption, we will refer to the representation of the BSM Loryons in
two ways, depending on the context. One useful approach is to denote the representation
under the SM gauge groups; this will be written using the notation (C,L)Y for the charges
under SU(3)C , SU(2)L, and U(1)Y . The other notation is to specify the representation
under custodial symmetry; this will be written as [L,R]Y , where we suppress the color
information, and use the integers L/R to denote the dimensions of the representations
under SU(2)L/R. In this notation, Y denotes the hypercharge of the states on top of the
eigenvalues of the SU(2)R generator T 3

R, so the custodial representation [L,R]Y contains
4In fact, the lack of evidence for additional custodial symmetry violation is often taken as a reason for

preferring to interpret experimental results using SMEFT over HEFT. We caution that this is not a valid
argument since both EFT frameworks admit custodially symmetric limits.
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SM fields (C,L)−(R−1)/2+Y to (C,L)(R−1)/2+Y in steps of unit hypercharge. We require a
priori that all BSM Loryons satisfy the following three conditions:

• The color singlets have integer electromagnetic charges.

• Those possessing electromagnetic charges can promptly decay.

• Fermionic Loryons are introduced in pairs such that one can write a custodial singlet
Yukawa term.

The prompt decay constraint is taken to be cτ . 1 mm. A rough calculation taking a
benchmark suppression scale Λ & 5TeV gives a conservative bound dim ≤ 9 for the decay
operator, which is only logarithmically sensitive to the chosen value of Λ. This constrains
the allowed color, electroweak, and hypercharge representations of BSM Loryons. In table 1
and table 2, we enumerate the custodial irreps considered, list their maximum allowed
hypercharge, and give the labeling of the SM representations following the conventions
of [9]. We do not explicitly enumerate the possible color representations; virtually all of
these will be easily ruled out by constraints on the Higgs coupling to gluons parameterized
by κg (see subsection 3.3).

Scalars. We start with the case of scalar Loryons, listing their SM and custodial repre-
sentations in table 1. For each custodial irrep [L,R]Y , we define a L × R matrix field Φ
that transforms as Φ → ULΦU †R under the chosen irrep UL/R of SU(2)L/R. The custodial
irrep is real iff L+R is even and Y = 0. We can write an explicit mass term for Φ

L ⊃ −m
2
ex

2ρ tr
(
Φ†Φ

)
, (2.1)

where ρ = 0 (1) for a complex (real) representation.
Arranging the components of the Higgs doublet (φ+, φ0)T into the [2, 2]0 custodial

representation

H =

 φ∗0 φ+

−φ− φ0

 unitary gauge−−−−−−−−−→ v + h√
2

1 0
0 1

 , (2.2)

we can also write down a Higgs portal interaction

L ⊃ −λhΦ
2ρ tr

(
Φ†Φ

) 1
2 tr

(
H†H

)
, (2.3)

which provides a contribution λhΦv
2/2 to the mass for all the components of Φ. We will

be interested in the Loryon parameter space where the BSM state gets the majority of
its mass from electroweak symmetry breaking. To this end, it is convenient to define
the dimensionless quantity λex ≡ 2m2

ex/v
2. Thus the explicit mass term gives a mass-

squared λexv
2/2 to each component of Φ (though we emphasize that the explicit masses

are independent of the Higgs vev).
Additionally, for the representations that are charged under both SU(2)L and SU(2)R,

there is another contraction for the quartic term:

L ⊃ −λ
′
hΦ
2ρ 2 tr

(
Φ†T aLΦT ȧR

)
2 tr

(
H†T a2HT

ȧ
2
)
, (2.4)
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Scalars

SM Reps (1, 1)Y (1, 2)Y (1, 3)Y (1, 4)Y (1, L)Y (3, 1)Y (3, 2)Y

Field SY Φ2Y ΞY Θ2Y XL,Y ω|3Y | Π|6Y |

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 3 5
2 2 3

2 1 1
2 0 ×

2 7
2 4 7

2 4 9
2 5 11

2 5

3 3 7
2 4 9

2 4 9
2 5 11

2

4 7
2 3 7

2 4 9
2 5 11

2 5

5 3 7
2 4 7

2 4 9
2 5 11

2

6 5
2 3 7

2 4 9
2 5 9

2 4

7 3 7
2 3 5

2 2 3
2 1 1

2

8 3
2 1 1

2 0 × × × ×

Table 1. The representations and corresponding fields for the scalar BSM Loryons considered in
this work. We express “SM charges” as (C,L)Y and “custodial charges” as [L,R]Y ; the custodial
representation [L,R]Y contains SM fields (C,L)−(R−1)/2+Y to (C,L)(R−1)/2+Y in steps of unit
hypercharge. Hypercharges Y are restricted so that any new charged particles can promptly decay.

involving Hermitian SU(2) generators T adim(irrep), indexed by a, ȧ = 1, 2, 3. In our notation,
these generators are canonically normalized

tr
(
T adimT

b
dim

)
= δab

1
3 dim C2(dim) , (2.5)

with the Casimir (note that dim = 2j + 1)

C2(dim) = j(j + 1) = 1
4(dim +1)(dim−1) . (2.6)

After electroweak symmetry breaking, the interaction in eq. (2.4) leads to a mass splitting
among the components of Φ. The remaining degeneracies in the mass spectrum arrange
into irreps of the unbroken diagonal subgroup SU(2)V ⊂ SU(2)L × SU(2)R. Explicitly,
one can collect the L×R components of the matrix Φ into a direct sum of V -dimensional
vectors φV that are SU(2)V representations:

Φ→ ⊕
V ∈V

φV , (2.7)

with
V =

{
L+R− 1 , L+R− 3 , · · · , |L−R|+ 1

}
. (2.8)
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As a concrete example to illustrate eq. (2.7), we consider the complex custodial irrep
Φ ∼ [2, 3]−1/2. It has six components and decomposes into a quadruplet and a doublet
under SU(2)V :

Φ =

Φ11 Φ12 Φ13

Φ21 Φ22 Φ23

→ φ4 ⊕ φ2 . (2.9)

Working with the T 3
R-spin basis, namely each column of the matrix Φ above has a definite

T 3
R-spin of SU(2)R (or equivalently of SU(2)V ), respectively −1, 0, 1 in order, we can write

out each SU(2)V irrep φV from the Φ elements using the Clebsch-Gordan coefficients

φ4 =



Φ13

1√
3

(
−
√

2 Φ12 + Φ23
)

1√
3

(
Φ11 −

√
2 Φ22

)
Φ21


, φ2 =

 1√
3

(
Φ12 +

√
2 Φ23

)
1√
3

(
−
√

2 Φ11 − Φ22
)
 . (2.10)

Then the interaction in eq. (2.4) reads (in the unitary gauge)

L ⊃ −λ′hΦ 2 tr
(
Φ†T aLΦT aR

) 1
2(v + h)2 = −1

2λ
′
hΦ(v + h)2

(
−φ†4φ4 + 2φ†2φ2

)
. (2.11)

General cases are worked out systematically in appendix A. In the end, we obtain the
decomposition of eq. (2.4) as

L ⊃ − 1
2ρ

1
2λ
′
hΦ(v + h)2 ∑

V ∈V
φ†V

[
C2(L) + C2(R)− C2(V )

]
φV . (2.12)

This leads us to a convenient form of the quadratic piece of the Lagrangian for an [L,R]Y
scalar Loryon:

Lquad = − 1
2ρ
∑
V ∈V

φ†V

[
D2 + 1

2λexv
2 + 1

2λV (v + h)2
]
φV , (2.13)

where we have introduced the notation

λV ≡ λhΦ + λ′hΦ

[
C2(L) + C2(R)− C2(V )

]
. (2.14)

Note in particular that the mass spectrum of the scalar Loryon is

m2
V = m2

ex + 1
2λV v

2 = 1
2v

2 (λex + λV ) , ∀ V ∈ V . (2.15)

Here and henceforth we assume λex, λex + λV ≥ 0 in order to ensure stability of the Φ = 0
vacuum for any background value of the Higgs.

We will find it useful to scale the mass splitting by the mass common to all the
components. To this end, we define

rsplit ≡
λ′hΦ

λex + λhΦ
. (2.16)
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In principle, some scalar BSM Loryons could also couple linearly to various powers
of H, leading to Higgs-Loryon mixing after electroweak symmetry breaking. We assume
these couplings are small, consistent with an approximate discrete symmetry acting on the
BSM scalars. We further assume that the Higgs-independent potential for the new scalars
is such that they are stabilized at the origin. Under these assumptions, mixing between
new scalars and components of the Higgs is a subleading effect on low-energy physics.

Fermions. For fermionic Loryons, we consider vector-like fermions whose SM and cus-
todial representations are summarized in table 2. As in the scalar case, for each custodial
irrep [L,R]Y , we define an L×R matrix field Ψ that transforms as Ψ→ ULΨU †R. Each ele-
ment in Ψ is a Dirac field that contains both a left-handed Weyl fermion and a right-handed
Weyl fermion. We can then write down an explicit mass term:

L ⊃ −Mex tr
(

ΨΨ
)
. (2.17)

As before, it is convenient to define yex ≡
√

2Mex/v. This facilitates the comparison
between the fraction of the fermions’ masses that is independent of electroweak symmetry
breaking and the fraction that arises from electroweak symmetry breaking. The latter
comes from the Yukawa interactions that can be schematically written as

L ⊃ −y12 Ψ1 ·H ·Ψ2 + h.c. . (2.18)

The representations [L1, R1]Y and [L2, R2]Y (of Ψ1 and Ψ2 respectively) are chosen such
that contracting their indices with the [2, 2]0 Higgs representation (as schematically denoted
by the dot products above) can yield a custodial singlet. This enforces the equality of the
hypercharges of two representations and means that L1 = L2 ± 1 and R1 = R2 ± 1.
Henceforth we refer to such a pairing as [L1, R1]Y ⊕ [L2, R2]Y .

Upon electroweak symmetry breaking, the Yukawa interaction in eq. (2.18) leads to
mass splitting among the components of Ψ1 and Ψ2. To keep track of this, we decompose
each of them into their respective irreps under the diagonal subgroup SU(2)V ⊂ SU(2)L ×
SU(2)R, similar to the scalar case in eq. (2.7):

Ψ1 → ⊕
V1∈V1

ψ1,V1 , Ψ2 → ⊕
V2∈V2

ψ2,V2 , (2.19)

with

V1 =
{
L1 +R1 − 1 , L1 +R1 − 3 , · · · , |L1 −R1|+ 1

}
, (2.20a)

V2 =
{
L2 +R2 − 1 , L2 +R2 − 3 , · · · , |L2 −R2|+ 1

}
. (2.20b)

In the overlap of these two sets V = V1 = V2, the two fermions ψ1,V1 and ψ2,V2 get mass
mixings through the interaction in eq. (2.18).

As a concrete example to illustrate this mass mixing, we consider the pair of custodial
irreps Ψ1 ∼ [2, 3]−1/2 and Ψ2 ∼ [1, 2]−1/2. The contraction of indices in eq. (2.18) can be
written out as

L ⊃ −y12 Ψ1,αȧHαα̇
1√
2
σȧγ̇α̇εγ̇β̇ Ψ2,1β̇ + h.c. , (2.21)
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Vector-like Fermions

SM Reps (1, 1)Y (1, 2)Y (1, 3)Y (1, L)Y (3, 1)Y

Field EY ∆2Y ΣY KL,Y P|3Y |

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 3 5
2 2 3

2 1 1
2 0 ×

2 7
2 3 7

2 4 9
2 5 11

2 5

3 3 7
2 3 7

2 4 9
2 5 11

2

4 5
2 3 7

2 4 7
2 4 9

2 5

5 3 5
2 3 7

2 4 9
2 5 9

2

6 5
2 3 7

2 3 5
2 2 3

2 1

7 2 3
2 1 1

2 0 × × ×

8 × × × × × × × ×

Table 2. The representations and corresponding fields for the vector-like fermionic BSM Loryons
considered in this work. We express “SM charges” as (C,L)Y and “custodial charges” as [L,R]Y ; the
custodial representation [L,R]Y contains SM fields (C,L)−(R−1)/2+Y to (C,L)(R−1)/2+Y in steps of
unit hypercharge. Hypercharges Y are restricted so that any new charged particles can promptly
decay and so that the Yukawa terms with the Higgs are gauge singlets.

where undotted (dotted) indices are for SU(2)L (SU(2)R) and Greek (Latin) indices are used
to denote fundamental (adjoint) representations. Upon electroweak symmetry breaking,
we have Hαα̇ = 1√

2(v + h)δαα̇ and hence (dropping dots on indices)

L ⊃ −1
2 y12 Ψ1,αa σ

a
γαεγβ Ψ2,1β̇ + h.c. = − 1√

2

√
3
2 y12(v + h)ψ1,2 ψ2,2 + h.c. , (2.22)

from which we can make the identification

(ψ1,2)β = 1√
3
σaαβΨ1,αa , (ψ2,2)β = εβαΨ2,1α . (2.23)

As expected from eq. (2.20), Ψ2 in this example has a single SU(2)V irrep with V2 ∈ {2}.
On the other hand, Ψ1 has two SU(2)V irreps with V1 ∈ {4, 2}. The interaction in eq. (2.18)
gives a mass mixing between the components in the overlap of the two sets V1 = V2 = 2.5

5The expression for ψ1,2 in eq. (2.23) appears to be different from its scalar counterpart (namely φ2 in
eq. (2.10)). This is because in eq. (2.21) we used the adjoint basis for the columns of Ψ1, as opposed to the
T 3
R-spin basis used for Φ in eq. (2.9). Carrying out the basis change, one can verify that they are the same

linear combination.
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The general cases of a pair of custodial irreps [L1, R1]Y⊕[L2, R2]Y have been worked out
systematically in appendix A. This leads us to the following general form of the Lagrangian
that is quadratic in the fermions

Lquad =
∑

V ∈V1−V2

ψ1,V
(
i /D −M1

)
ψ1,V +

∑
V ∈V2−V1

ψ2,V
(
i /D −M2

)
ψ2,V

+
∑

V ∈V1∩V2

(
ψ1,V ψ2,V

)i /D −
 M1

1√
2yV (v + h)

1√
2y
∗
V (v + h) M2

ψ1,V

ψ2,V

 , (2.24)

with

yV = (−1)j1+r1+l2+ 1
2 y12 ×

√
L1R1 ×

r2 l2 j1

l1 r1
1
2

 , (2.25)

where 2li + 1 = Li, 2ri + 1 = Ri, 2j1 + 1 = V , and the quantity in brackets is a Wigner 6j
symbol. In the analysis that follows, we will take the vector-like masses of the two custodial
irreps to be equal M1 = M2 = Mex for simplicity; we have checked that this assumption
has a minimal impact on our conclusions. Under this choice, the mass spectrum of the
fermionic Loryon is

MV = Mex = v√
2
yex , V ∈ V1 − V2 or V2 − V1 , (2.26a)

M±V = Mex ±
v√
2
|yV | =

v√
2

(yex ± |yV |) , V ∈ V1 ∩ V2 . (2.26b)

Note that for each rep in the second line, V ∈ V1 ∩ V2, the fermion masses come in pairs.
When |yV | > yex, one of the eigenvalues become negative. For this eigenstate of the
Dirac fermion, one could flip the relative sign between its two chiral components to absorb
the negative sign, so the physical mass of the particle is still positive (at the expense of
introducing additional signs into the interactions).

2.2 Criteria for HEFT

Given our finite list of BSM Loryons, this section will delineate the regions of Loryon
parameter space that require HEFT as the EFT description that emerges at low energies.
In principle, the Loryons can give tree- and loop-level effects. The loop-level effects are
an irreducible consequence of coupling to the Higgs. Although the tree-level effects would
give more striking signatures, to highlight the irreducible effects we assume there is an
approximate Z2 symmetry acting on the BSM Loryon fields, which is respected by all their
interactions with the Higgs discussed above; see eqs. (2.4), (2.3) and (2.1) for scalars and
eqs. (2.17) and (2.18) for fermions. Close to the perturbative unitarity bound on the Z2
symmetric couplings, we expect the loop-level effects to be appreciable within the regime of
validity of the EFT. As we will see, indirect constraints from Higgs properties are relevant
in the parameter space of interest.

Relaxing the assumption of an approximate Z2 symmetry acting on the BSM Loryons
(due to either explicit or spontaneous breaking) would give rise to a variety of additional
signatures that are interesting but not inherent to the definition of Loryons. In the absence
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of this symmetry, Loryons can couple linearly to Standard Model operators with appre-
ciable strength. This leads to large tree-level effects on Standard Model observables at
low energies, as well as resonant or associated production of single Loryons at colliders.
Direct and indirect constraints on Loryons are correspondingly stronger in this case. The
signatures associated with large spontaneous or explicit breaking of the Z2 symmetry may
lead to additional experimental opportunities for discovering BSM Loryons, which we leave
to future work.

In order to compute the leading matching contributions, we utilize functional methods
(see [1]) to derive the effective (scalar sector) Lagrangian that results if the UV theory
includes a scalar Loryon (including all orders in the Higgs field H):

Leff ⊃
1

2ρ(4π)2

∑
V ∈V

V

{
m4
V (H)
2

[
ln µ2

m2
V (H) + 3

2

]
+ λ2

V

6m2
V (H)

[
∂|H|2

]2
2 +O

(
∂4)} , (2.27)

for an arbitrary custodial irrep Φ; this result is derived in the appendix, see eq. (A.11). The
appendix also includes the analogous calculation for fermions, see eqs. (A.21) and (A.22).

Noting that the (non-derivative) dependence on H in eq. (2.27) is captured by the
effective mass

m2
V (H) = 1

2λexv
2 + λV |H|2 , (2.28)

we can then obtain a SMEFT description of eq. (2.27) by expanding about H = 0 in powers
of λV |H|2/

(
1
2λexv

2
)
. However, the SMEFT description is only useful for predictions of low

energy observables if it converges when evaluated about the electroweak breaking vacuum,
|H| = 1√

2v. This requires that
6

λV < λex , ∀ V ∈ V . (2.29)

If this condition is not satisfied, then one is forced to use the HEFT description; see [1].
We will find later that it is useful to introduce a parameter fV :

fV ≡
λV

λex + λV
, (2.30)

which corresponds to the fraction of a scalar Loryon’s physical mass-squared that results
from its interactions with the Higgs (see eq. (2.15)). Note that this parameter will generi-
cally differ among the states φV within a given custodial representation. The criterion for
necessarily matching onto HEFT then becomes

fmax ≥
1
2 , (2.31)

where we have defined fmax ≡ maxV ∈V fV as a shorthand for the fV value of the heaviest
scalar state.

6Eq. (2.27) shows a non-analyticity whenever m2
V (H) = 0, which corresponds to a non-analyticity in the

complex plane of |H| at Im |H| = ±λex
λV

v√
2 that limits the radius of convergence of the SMEFT expansion,

see [10, 11].
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A similar story holds for fermionic Loryons. In this case, the all-orders-in-H effective
Lagrangian is given in eq. (A.21). Its terms are simple functions of the (signed) Higgs-
dependent masses of the states

M±V (H) = Mex ± |yV ||H| , (2.32)

and some of them become non-analytic when M±V (H) = 0.7 Then the SMEFT expansion
of the effective Lagrangian converges at our vacuum if

|yV | < yex , ∀ V ∈ V1 ∩ V2 . (2.33)

Therefore, in terms of the fraction of mass that fermionic Loryons get from interacting
with the Higgs (see eq. (2.26))

f±V ≡
± |yV |

yex ± |yV |
, (2.34)

the criterion for necessarily matching onto HEFT is

fmax ≥
1
2 , (2.35)

where we have defined the shorthand fmax ≡ maxV ∈V1∩V2 f+V .

2.3 Mass bounds from unitarity

For particles getting some fixed fraction of their mass from electroweak symmetry breaking,
the coupling to the Higgs increases with the mass. Since scattering into Higgses or via
Higgs exchange will violate unitarity if this coupling is too large, requiring that the theory
be under perturbative control places an upper bound on the mass of the BSM Loryons.
To account for these bounds, we impose partial wave unitarity on scattering processes
involving Loryons and Higgses. We emphasize that partial wave unitarity does not provide
an invariant bound on the Loryon parameter space, and the detailed bound is sensitive
to conventions. However, it does provide a useful indication of the region of parameter
space in which perturbation theory remains valid. If Loryons exist outside of the region
delineated by unitarity, their properties are likely to be poorly described by the treatment
presented here. For instance, the formation of bound states is likely to be interesting and
merits further study.

Of course, there are other theoretical bounds that may be placed on the couplings of
new particles to the Higgs. Chief among these is the vacuum (in)stability of the Higgs:
new particles interacting strongly with the Higgs may cause the Higgs self-coupling to
run negative at lower scales than in the Standard Model, leading to a prohibitively short
lifetime of the metastable vacuum or an outright instability. However, these concerns may
be mitigated by additional UV physics (whether in the form of additional particles — not
necessarily Loryons — or irrelevant operators contributing to the Higgs potential). As
such, in what follows we focus on bounds from perturbative unitarity, but considerations
involving Higgs vacuum stability would be an interesting target for further exploration.

7Despite appearances the effective Lagrangian is well behaved when M+V = M−V .
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Figure 1. Tree-level 2-to-2 scattering processes considered for placing an upper bound on Loryon
masses from perturbative unitarity: (upper) Loryon pair scattering to a Higgs pair, and (lower)
Loryon pair scattering to a Loryon pair. Dashed lines denote physical Higgs boson h and solid lines
are for Loryons. Crossed channels are not explicitly drawn. The last diagram in each row is only
available for scalar Loryons assuming renormalizable interactions. For each process, the t-channel
exchange diagram dominates the contribution.

We focus on 2-to-2 scattering processes at the tree level for simplicity. The strongest
bounds on the Loryon masses come from the scattering of a Loryon pair into a Higgs pair,
or a Loryon pair into a Loryon pair, as depicted in figure 1. For technical simplicity, only
contributions from the exchange of scalars and fermions are considered. Diagrams with
SM vector boson exchange give subdominant effects.

For a general 2-to-2 scattering process taking an initial state i to a final state f , one
can project onto the spin-0 partial wave component by averaging over the scattering angle
with normalization appropriate for arbitrary values of s:8

a0
(√
s
)

=

√
4 |~pi| |~pf |
2δi+δf s

1
32π

∫ 1

−1
d(cos θ) M(i→ f) , (2.36)

where δi/δf is 1 if the initial/final state particles are identical and 0 otherwise. Unitarity
of the S matrix then imposes the bound

|Re(a0)| ≤ 1
2 . (2.37)

Of particular note is that the bound applies for all values of the center-of-mass energy
√
s,

not just in the high energy limit [13]. For example, in the 2-to-2 scattering of heavy Loryons
via t-channel exchange of a Higgs (bottom-left diagram in figure 1), the maximal value of
|Re (a0)| occurs not in the high energy limit but close to the threshold, as illustrated in
figure 2. This channel typically gives the strongest upper bound on the Loryon masses.

For scalars, the limit we derive on its mass depends on the quartic self-coupling of
the new field. An upper bound on the quartic self-coupling can be obtained from the

8When fermions are involved in the initial or final states, in principle one also needs to project the spinor
part onto states with definite helicities using the Wigner d-matrix [12], although when projecting into an
overall spin 0 state the formula eq. (2.36) remains valid for the collision of two spinning particles of equal
helicity.
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Figure 2. An example of the behavior of the zeroth partial wave coefficients a0 (
√
s). The

plot is for a neutral singlet scalar Loryon S0 getting all of its mass m = 525GeV from the
Higgs. The two curves correspond to the two eigenvalues of the 2 by 2 scattering matrix(
S0S0, hh

)T
→
(
S0S0, hh

)T
.

high energy limit; we then report the weakest bound after marginalizing over the allowed
self-couplings. The final result depends on the representation of the Loryon as well as the
fraction of mass that it gets from electroweak symmetry breaking. For a singlet Loryon, the
upper bound varies smoothly from 530 to 810GeV as fmax goes from 1 to 1/2. For larger
representations, the bounds are stronger by up to O(50 GeV), depending on the precise
representation chosen and amount of mass splitting. For fermions, the upper bound on
the heaviest mass varies smoothly from about 470 to 780GeV as fmax goes from 1 to 1/2
for all possibilities not ruled out by electroweak precision measurements (see section 4).

In addition to constraints on elastic scattering, there are unitarity constraints on the
cross-quartic couplings λ(′)

hΦ, or Yukawa squared y2
12, arising from the inelastic process hh→

LoryonLoryon, for which ∑states |a0|2 . 1. They provide a constraint on λ(′)
hΦ or y2

12 that
scales as N− 1

2 in the number of states N . This is inconsequential for the smaller individual
viable custodial irreps plotted below, but is to be borne in mind for larger solutions, par-
ticularly when considering their effect on Higgs wavefunction normalization (see section 7).

3 Higgs coupling constraints

Having defined the landscape of Loryons, we now turn to consider the constraints from
current experimental data. We begin with Higgs coupling measurements, which are par-
ticularly impactful given the non-decoupling nature of Loryons. By assumption, our BSM
Loryons have an approximate Z2 symmetry and therefore would only correct Higgs cou-
plings starting from one-loop order. This makes the following measurements potentially
important:

hγγ coupling , hgg coupling , h→ invisible or untagged width . (3.1)

Although Loryons modifying the couplings hγγ and hgg generically also modify other
Higgs couplings, these latter effects are loop-level corrections to tree-level Standard Model
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couplings and hence not as significant. The constraints from current hZγ coupling mea-
surement is also typically subdominant compared to that from hγγ, but could potentially
play an important role at HL-LHC in future; we briefly discuss this in section 7, where
we will also comment on the potential impact of Higgs wavefunction and self coupling
corrections.

3.1 General formalism

The leading contribution to the hγγ (hgg) coupling in the SM occurs via loops of charged
(colored) particles that have tree-level couplings to the Higgs. As has long been appreciated,
any new charged (colored) particles can run in the loop and modify these couplings [14].
These modifications can be captured by the parameter κγ (κg), which simply rescales the
hγγ (hgg) vertex, with κγ = κg = 1 for the SM.

For a scalar Loryon φ or a fermionic Loryon ψ discussed in section 2, we can read off
the tree-level Higgs-Loryon-Loryon coupling from eqs. (2.13) and (2.24), facilitated by our
definitions in eqs. (2.30) and (2.34):

L ⊃ − 1
2ρ fφ

2m2
φ

v
hφ† φ− fψ

mψ

v
hψ ψ , (3.2)

where fi is fV for the ith particle. Generally, particles coupled to the Higgs in this form
contribute to κγ and κg as [15]

κγ ∝
∑
i

fiQ
2
i Asi(τi) , (3.3a)

κg ∝
∑
i

fiCiAsi(τi) . (3.3b)

The sum runs over all contributing complex scalars, Dirac fermions, or vector bosons. For
each contributing particle i, Qi denotes its electromagnetic charge; Ci is the Dynkin index
of its SU(3)C representation, namely tr

(
tAi t

B
i

)
= Ciδ

AB with tAi denoting the SU(3)C
generators; τi = 4m2

i /m
2
h parameterizes the mass; si denotes the spin; and the spin-

dependent form factors Asi(τ) are given by

A0(τ) = τ
[
1− τF (τ)

]
, (3.4a)

A1/2(τ) = −2τ
[
1 + (1− τ)F (τ)

]
, (3.4b)

A1(τ) = 2 + 3τ
[
1 + (2− τ)F (τ)

]
, (3.4c)

with

F (τ) =

 arcsin2 (1/
√
τ) τ ≥ 1

−1
4

[
log 1+

√
1−τ

1−
√

1−τ − iπ
]2

τ < 1
. (3.5)

When the particles running in the loop are asymptotically heavy, namely τi → ∞, these
form factors asymptote to constants:

A0 → −1/3 , A1/2 → −4/3 , A1 → 7 . (3.6)

In practice, this is a good approximation (. 10% error) for particles heavier than the Higgs,
which is the case for most BSM Loryons of interest.
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Figure 3. The contribution to |κγ | from the addition of a new charge-1 complex scalar or Dirac
fermion getting all of its mass from electroweak symmetry breaking as a function of the mass of the
new particle. Limits on |κγ | from the ATLAS [16] and CMS [17] collaborations are shaded.

3.2 hγγ coupling

To compute κγ for a particular BSM model, we can simply use (see eq. (3.3))

κγ = 1 +
∑

BSM fiQ
2
i Asi(τi)∑

SM fiQ2
i Asi(τi)

. (3.7)

In the SM sum, we include the W± bosons, the top, bottom, charm quarks, and the tau
lepton. Contributions from other charged SM particles are negligible due to their tiny form
factors.

For the experimental constraints on κγ , we use the most recent ATLAS and CMS
measurements. In particular, we use each collaboration’s joint fit to κγ , which holds in
the absence of deviations to tree-level Higgs couplings and untagged/invisible Higgs decay
width. Upon neglecting these small effects, the 2σ allowed region from ATLAS is |κγ | ∈
(0.877, 1.15) [16], while CMS finds |κγ | ∈ (0.949, 1.23) [17]. In figure 3, we show these
bounds against contributions from a typical scalar or fermion Loryon. Note in particular
that for a BSM Loryon heavier than the Higgs, the relevant asymptote in eq. (3.6) is
already effective. Nevertheless, a larger deviation of |κγ | happens near the threshold mass
mi = mh/2.

Current bounds on |κγ | constrain the sum of the contributions from BSM Loryons∑
BSM

fiQ
2
i Asi(τi) → −1

3
∑
BSM

ηi fiQ
2
i , (3.8)

with ηi = 1 (4) for scalars (fermions). One way to satisfy the experimental constraints is
of course to ensure that the contribution in eq. (3.8) sufficiently small. However, there is
a second way to satisfy the constraint. Note that the SM contribution to κγ is dominated
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Figure 4. The contribution to |κγ | from new particles heavier than ∼ 500GeV as a function of
their fraction fi of mass from EWSB and their electric charge Qi; ηi = 1 (4) for complex scalars
(fermions). Large values of

∑
i ηifiQ

2
i are sufficient to flip the sign of κγ while maintaining the

same magnitude. ATLAS and CMS limits are shaded.

Field [1, 1]1 [2, 2]0 [3, 3]0 [2, 3]−1/2 [2, 1]1/2 ⊕ [1, 2]1/2 [1, 3]0 ⊕ [2, 2]0∑
ηiQ

2
i 1 1 6 7 8 16

Table 3. Values of
∑
ηiQ

2
i for some possible BSM Loryons with fmax = 1. The first four entries

are scalars; the last two are fermions.

by W± bosons; contributions from BSM scalar and fermionic Loryons (if heavier than half
the Higgs mass) would come with an opposite sign compared to this dominant piece in the
SM sum. Therefore, there is also a viable window where the magnitude of the second term
in eq. (3.7) becomes big enough to flip the sign of (the real part of) κγ , while keeping the
magnitude close to the SM-only result. This is illustrated in figure 4.

To summarize, requiring BSM Loryons to satisfy both the ATLAS and CMS bounds
on the hγγ coupling measurements, we find the constraints∑

i

ηi fiQ
2
i < 0.995 or

∑
i

ηi fiQ
2
i ∈ (38.4, 42.4) , (3.9)

for asymptotically heavy BSM Loryons, with ηi = 1 (4) for complex scalars (fermions). If
the BSM Loryons are not asymptotically heavy, they will contribute more. Therefore, for
lighter Loryons, the first limit would become stronger while the second would shift to a
window with lower values (see figure 8).

Values of∑i ηiQ
2
i for select Loryons are listed in table 3. The impact of the constraints

in eq. (3.9) on scalar and fermionic Loryons in various custodial irreps is indicated by the
“scorecards” of table 4 and table 5, respectively. (In what follows, these scorecards will be
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Scalar Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 1,∼3 1
2 ,∼

5
2 0,∼2 ∼ 3

2 ∼1 ∼ 1
2 ∼0 ×

2 1
2 ,∼

7
2 1,∼4 3

2 ,∼
7
2 1,∼3 1

2 ,∼
3
2 1 1

2 0

3 0,∼3 3
2 ,∼

7
2 1,∼2 1

2 ,∼
3
2 0,∼1 1

2 0 ×

4 ∼ 7
2 1,∼3 1

2 ,∼
3
2 ∼1 ∼ 1

2 ∼0 × ×

5 ∼3 1
2 ,∼

3
2 0,∼1 ∼ 1

2 ∼0 × × ×

6 ∼ 5
2 1 1

2 ∼0 × × × ×

7 ∼2 1
2 0 × × × × ×

8 ∼ 3
2 0 × × × × × ×

Table 4. The representations of scalar BSM Loryons still viable after considering constraints on
κγ . A ∼ means the representation requires flipping the sign of κγ .

Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 0,∼2 ∼ 3
2 ∼1 × × × × ×

2 ∼ 3
2 0,∼2 ∼ 3

2 ∼1 × × × ×

3 ∼1 ∼ 3
2 ∼0 × × × × ×

4 × ∼1 × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 5. The representations and corresponding fields for the vector-like fermionic BSM Loryons
still viable after considering constraints on κγ . A ∼ means the representation requires flipping the
sign of κγ .
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Field ω|3Y | Π|6Y | P|3Y |∑
ηiCi 1/2 1 2∑
ηiQ

2
i 3Y 2 6Y 2 + 3/2 12Y 2

Table 6. Values of
∑
ηiQ

2
i and

∑
ηi Ci for some possible new SM representations.

<latexit sha1_base64="zrabJr28SsRFBFExuxab7h6aRMY=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIDKhKqgoYK1gYW4k+pCZEjuu0Vm0nsh2kKurCr7AwgBArn8HG3+C0GaDlSPfq6Jx7Zd8TJowq7Tjf1srq2vrGZmmrvL2zu7dvHxx2VJxKTNo4ZrHshUgRRgVpa6oZ6SWSIB4y0g3Ht7nffSRS0Vjc60lCfI6GgkYUI22kwD72VMqhRzQKqHcR5a0V0IdaYFecqjMDXCZuQSqgQDOwv7xBjFNOhMYMKdV3nUT7GZKaYkamZS9VJEF4jIakb6hAnCg/mx0whWdGGcAolqaEhjP190aGuFITHppJjvRILXq5+J/XT3V07WdUJKkmAs8filIGdQzzNOCASoI1mxiCsKTmrxCPkERYm8zKJgR38eRl0qlV3ctqvVWvNG6KOErgBJyCc+CCK9AAd6AJ2gCDKXgGr+DNerJerHfrYz66YhU7R+APrM8feGeVsA==</latexit>X
⌘i fi Q

2
i

<latexit sha1_base64="IGZpVAJ7k3P+9gWSKitgpThzFe0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2IRPEhJpKjHYi8eK1hbaErYbDft0s0m7E6EEgr+FS8eFPHq7/Dmv3HT5qCtD2Z4vDfDzr4gEVyD43xbpZXVtfWN8mZla3tnd8/eP3jQcaooa9NYxKobEM0El6wNHATrJoqRKBCsE4ybud95ZErzWN7DJGH9iAwlDzklYCTfPvJ0GmGPAfG5dx7mrelz3646NWcGvEzcglRRgZZvf3mDmKYRk0AF0brnOgn0M6KAU8GmFS/VLCF0TIasZ6gkEdP9bHb+FJ8aZYDDWJmSgGfq742MRFpPosBMRgRGetHLxf+8XgrhdT/jMkmBSTp/KEwFhhjnWeABV4yCmBhCqOLmVkxHRBEKJrGKCcFd/PIyebiouZe1+l292rgp4iijY3SCzpCLrlAD3aIWaiOKMvSMXtGb9WS9WO/Wx3y0ZBU7h+gPrM8fLwKU/g==</latexit>X
⌘i fi Ci
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Figure 5. The allowed electric charge Qi as a function of the color charges Ci of new fields due to
κγ −κg constraints. ATLAS constraints [16] are shaded blue, CMS constraints [17] are shaded red.

updated as successive constraints are taken into account.) If the new Loryons receive all
or almost all of their mass from their coupling to the Higgs, the first limit in eq. (3.9) can
be satisfied by adding at most one charge-1 scalar (and possibly some neutral particles).
It can also be satisfied by adding a scalar representation with a large mass splitting. Since
the largest representation of the unbroken SU(2)V receives a mass shift opposite in sign to
the others, a large mass splitting will drive the value of fV towards 0 for the particles in
the largest representation, thereby satisfying the limit on κγ . Other possibilities, including
larger electroweak representations, representations with larger hypercharge, and fermionic
representations, make a large enough contribution to eq. (3.8) that flipping the sign of κγ
is required. Among other things, this implies that the only way for fermionic Loryons to
satisfy constraints on κγ is to flip the sign, as indicated in table 5.

3.3 hgg coupling

As with κγ , we can compute κg for a particular BSM model simply using (see eq. (3.3))

κg = 1 +
∑

BSM fiCiAsi(τi)∑
SM fiCiAsi(τi)

. (3.10)
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In the SM sum, we include the top, bottom, and charm quarks; contributions from other
quarks are negligible due to their tiny form factors. For κg, BSM scalar and fermionic
Loryons (if heavier than half the Higgs mass) contribute with the same sign as the dominant
piece (from the top quark) in the SM sum, so there is no flipping sign option and the sum of
the BSM Loryon contributions must not be too large. We constrain these contributions at
the 2σ level using the results from ATLAS and CMS expressed in the κγ vs κg plane [16, 17],
again neglecting deviations to tree-level Higgs couplings and new untagged or invisible
Higgs decay width. The bounds are translated into the constraints on the ∑ ηifiQ

2
i vs∑

ηifiCi plane in figure 5. We find that these constraints essentially exclude all colored
Loryons, except for scalar Loryons of the SM representations (3, 1)Y with |Y | ≤ 1, as
summarized in table 6.

3.4 h → invisible or untagged

Loryons lighter than half the Higgs mass will also make new channels for the Higgs to
directly decay at the tree level. For each scalar Loryon φ or Dirac fermion Loryon ψ, the
partial width is

Γh→φφ(†) = f2
φ

GF mhm
2
φ

2ρ · 8
√

2π
4m2

φ

m2
h

(
1−

4m2
φ

m2
h

)1/2

, (3.11a)

Γh→ψψ̄ = f2
ψ

GF mhm
2
ψ

4
√

2π

(
1−

4m2
ψ

m2
h

)3/2

. (3.11b)

Constraints on new Higgs decay channels depend on the properties and fate of the
new particles. If the particle is neutral and detector stable, or if it decays promptly
into neutral and detector-stable final states, it would contribute to the Higgs invisible
decay width. If it decays promptly into visible final states, it generally contributes to the
Higgs “untagged” decay width, which is less constrained than the invisible width (though
sufficiently distinctive final states can lead to stronger constraints). There are more exotic
possibilities, such as long-lived decays, but these are typically more strongly constrained
than invisible or untagged decays. For the purposes of the current discussion, we assume
that Loryons which are lighter than half the Higgs mass contribute to the “untagged” decay
width of the Higgs. In this case, the branching ratio to the new decay channels must be
less than 0.47 [17], which constrains the size of the BSM Loryon contribution to the Higgs
partial widths in eq. (3.11). For fixed values of f2

i , the mass of the Loryon has to be either
small enough or close enough to the kinematic threshold, such that the partial width is not
too big. Allowed regions for scalar and fermionic Loryon are shown in figure 6.

4 Precision electroweak constraints

Extending the SM with new particles that carry electroweak quantum numbers could po-
tentially be subject to strong constraints from electroweak precision measurements. In the
case of the BSM Loryon models studied here, the oblique framework [18, 19] is a good
approximation since they interact with SM primarily through the Higgs and gauge bosons.
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Figure 6. Allowed region (unshaded) in the mass vs
∑
f2
i

(∑
21−ρf2

i

)
plane for new Dirac fermion

(scalar) particles whose mass is less than half the Higgs mass, arising from the upper limit on the
Higgs branching ratio to ‘untagged’. The plot assumes all new particles have the same mass.

The leading order (one-loop) corrections therefore modify the electroweak gauge boson
self-energies, which up to O(p4) can be parameterized by the seven (extended) electroweak
parameters S, T, U, V,W,X, Y [20–23]. Among these seven parameters, S, T,W, Y arguably
capture the most important effects as they are the leading ones in their respective sym-
metry classes [23]. Since we are considering custodially symmetric BSM Loryon models,
the correction to T (and also its higher O(p2) analog U) vanishes at one loop order. This
leaves us to focus on the parameters S, W , and Y :

S = −4 cos θW sin θW
α

Π′3B(p2 = 0) , (4.1a)

W = −1
2 m

2
W Π′′33(p2 = 0) , (4.1b)

Y = −1
2 m

2
W Π′′BB(p2 = 0) , (4.1c)

where the Πs are the gauge boson self energies, primes denoting differentiation with respect
to p2.

For a scalar Loryon of the custodial irrep [L,R]Y , we find its contributions given by

∆S = 2
π

n∑
i,j=1

T 3
ij Yji Π′S (mi,mj) , (4.2a)

∆W = m2
W

g2
2

16π2

n∑
i,j=1

T 3
ij T

3
ji Π′′S (mi,mj) , (4.2b)

∆Y = m2
W

g2
1

16π2

n∑
i,j=1

Yij Yji Π′′S (mi,mj) , (4.2c)

where n = LR denotes the total number of components of the Loryon, and the scalar form
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factors are

Π′S (mi,mj) = 1
2ρi

∫ 1

0
dx
[
x(1− x) log µ2

xm2
i + (1− x)m2

j

]
, (4.3a)

Π′′S (mi,mj) = 1
2ρi

∫ 1

0
dx x2(1− x)2

xm2
i + (1− x)m2

j

. (4.3b)

Note that T 3
ij and Yij are (elements of) the SM generators in the mass basis of the Loryon

representation, which are generically not diagonal due to the mass mixings among different
gauge eigenstates.

We see that ∆S is only nonzero due to the mass splitting among the Loryon compo-
nents, namely that Π′S (mi,mj) is not the same for all i, j; terms that are independent of i, j
(such as the RG scale µ dependence) will drop upon the sum, as they yield tr

(
T 3 Y

)
= 0.

On the other hand, ∆W and ∆Y do not depend on the mass splitting, and can in principle
constrain any custodial irrep of Loryons. However, their values are typically more than one
order of magnitude smaller than ∆S, due to a combination of the extra mass suppression
factor m2

W /m
2
i , and the smallness of the form factor in eq. (4.3b). This makes the current

constraints from W and Y parameters [24] numerically unimportant for the Loryon mass
range of our interest.

Moving on to the fermionic cases, we focus on the S parameter. We find that a pair
of fermionic Loryons of the custodial irreps [L1, R1]Y and [L2, R2]Y contribute to S as

∆S = 4
π

n∑
i,j=1

T 3
ij Yji

[
ξΣ Π′F,Σ (mi,mj) + ξ∆ Π′F,∆ (mi,mj)

]
, (4.4)

with n = L1R1 + L2R2 denoting the total number of Dirac fermions and the form factors

Π′F,Σ (mi,mj) =
∫ 1

0
dx
[
2 log µ2

xm2
i + (1− x)m2

j

− 1
]
x(1− x) , (4.5a)

Π′F,∆ (mi,mj) =
∫ 1

0
dx mimj

xm2
i + (1− x)m2

j

x(1− x) . (4.5b)

Here our notation in eq. (4.4) allows for a generic coupling between a Dirac fermion ψ and
a gauge boson V :

L ⊃ g ψ̄ γµ
(
ξV − ξAγ5

)
ta ψ V a

µ , (4.6)

and ξΣ (ξ∆) tracks the contributions from vertex insertions with the same (opposite) chi-
ralities:

ξΣ = ξ1,V ξ2,V + ξ1,Aξ2,A , ξ∆ = ξ1,V ξ2,V − ξ1,Aξ2,A . (4.7)

Applying it to our case of vector-like fermions, we can aggregate the contributions from
all the chiral component insertions which all share the same form of the generator; this
effectively leads us to plugging in ξΣ = ξ∆ = 1.

We take the current 2σ bound on S to be 0.14 [25]. Note that this corresponds to the
projection of the combined S, T fit onto the S axis, rather than the 2σ bound on S with
T = 0, which would lead to a tighter bound. Although we focus on custodial multiplets
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Rep [2, 2]0 [3, 3]0 [4, 4]0 [2, 4]0 [2, 3]−1/2

Allowed rsplit (−.67, 1.98) (−.25, .28) (−.05, .05) (−.36, .44) (−.46, .58)

Table 7. Examples of the magnitude of allowed mass-splitting eq. (2.16) if a particular scalar
representation is the only new field contributing to S parameter.

Rep [2,1], [1,2]1/2 [2,2], [1,1]0 [3,1], [2,2]0 [1,3], [2,2]0 [2,3], [1,2]1/2 [3,2], [2,3]1/2

Allowed fmax (.66,1) ∅ (.71,1) (.71,1) (.51, .58) (.68, .81)∑
ηifiQ

2
i (11,8) ∅ (19,16) (19,16) (207,17) (109,61)

Table 8. Examples of the allowed fmax for new fermionic fields if they are the only new contribution
to the S parameter. Also shown is the range of values of

∑
ηifiQ

2
i for the given range of fmax. The

vector-like mass is taken to be the same for both fermions involved in the Yukawa interaction; this
gives a weaker bound than allowing two different vector-like masses.

to minimize contributions to T , small amounts of soft custodial symmetry breaking in the
explicit mass terms allow most of the positive region of the S, T ellipse to be explored.
For each choice of representation, we consider the limits placed by requiring that the
contribution to S from the Loryons obey this bound.9

For scalars, the contribution to S is only non-zero if there is a mass splitting among
the Loryon states. We therefore report the magnitudes of allowed mass splitting among
scalar Loryons in table 7. This is expressed in terms of the parameter rsplit, a rescaling of
λ′hΦ defined in subsection 2.1. Table 9 shows the scalar Loryons which remain viable after
applying the constraint from the S parameter.

For fermions, the situation is more complicated. The Yukawa interaction couples two
different representations, so even if there is no vector-like mass and no mass splitting, there
can be a significant contribution to S. It is straightforward to interpret the constraints
in terms of fmax, and this is presented in table 8. There are generally a number of large
individual contributions to S which manage to cancel each other. These possibilities can
then be ruled out by other constraints. If the lightest mass eigenvalue coupled to the Higgs
is less than half the Higgs mass, the scenario is ruled out by Higgs decay constraints. If
the lightest mass eigenvalue is greater than half the Higgs mass, the constraint comes from
κγ . This motivates also presenting the results in terms of ∑ ηfQ2, to make the interplay
with constraints on κγ clear.10 Some examples of the range of allowed fmax for fermionic
Loryons are summarized in table 8, and the scorecard showing those fermionic Loryons
which remain viable is presented in table 10.

9We emphasize that it is possible to go beyond our minimal models to include multiple Loryons that are
in various representations. In particular, a representation can yield a negative contribution to S, and so it
is possible to exceed the limits in table 7 and table 8 with judicious choice of representations.

10Note that this is in fact an underestimate of the contribution to κγ , since the constraint on
∑

ηfQ2

is for asymptotically heavy particles and lighter particles give a larger contribution than asymptotically
heavy ones. Properly considering the effect of particles which are not asymptotically heavy on κγ does not
meaningfully extend the bound past the region excluded by Higgs decays.
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Scalar Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = 1,∼3 1
2 ,∼

5
2 0,∼2 ∼ 3

2 ∼1 ∼ 1
2 ∼0 ×

2 1
2 ,∼

7
2 1,∼4 1

2 ,∼
7
2 0,∼3 ∼ 3

2 ∼1 ∼ 1
2 ∼0

3 0,∼3 1
2 ,∼

7
2 0,∼2 ∼ 3

2 ∼1 ∼ 1
2 ∼0 ×

4 ∼ 7
2 0,∼3 ∼ 3

2 ∼1 ∼ 1
2 ∼0 × ×

5 ∼3 ∼ 3
2 ∼1 ∼ 1

2 ∼0 × × ×

6 ∼ 5
2 ∼1 ∼ 1

2 ∼0 × × × ×

7 ∼2 ∼ 1
2 ∼0 × × × × ×

8 ∼ 3
2 ∼0 × × × × × ×

Table 9. The representations of scalar BSM Loryons still viable after considering constraints on
S. A ∼ means the representation is not viable on its own but can be added together with other
BSM representations to flip the sign of κγ .

Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = × ∼ 3
2 ∼1 × × × × ×

2 ∼ 3
2 ∼1 ∼ 1

2 × × × × ×

3 ∼1 ∼ 1
2 × × × × × ×

4 × × × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 10. The representations and corresponding fields for the vector-like fermion BSM Loryons
still viable after considering constraints on S. A ∼ means the representation is not viable on its
own but can be added together with other BSM representations to flip the sign of κγ .
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5 Direct search constraints

We now turn to consider constraints from direct searches on the Loryon candidates that
remain viable when confronted by the indirect constraints studied above. In contrast to
indirect bounds, direct bounds are strongly sensitive to Loryon couplings to SM particles
other than the Higgs as these interactions typically govern the final state that would be
observed at colliders. Our aim here is not to consider all possible direct limits on all possible
spectra and couplings but rather to understand the qualitative parameter space allowed by
direct searches under generic assumptions.

As noted in section 2, we have restricted our attention to Loryon candidates whose
hypercharge assignments allow all BSM charged particles to decay into SM final states
through either marginal or irrelevant interactions. This is because heavy stable charged
particles (HSCPs) are strongly constrained by LHC searches for anomalous ionization en-
ergy loss and time of flight, with current bounds above the TeV scale for HSCPs carrying
a range of quantum numbers [26–28]. Although bounds are somewhat weaker on scalars
carrying only hypercharge (around 430GeV per [28]), these limits are still considerably
stronger than the corresponding limits on their promptly-decaying counterparts.

For Loryons neutral under SU(2)L, we identify the lowest-dimensional operators that
would allow such decays and assume that (1) all allowed decay operators of the lowest
nontrivial dimension are present, and (2) Loryon decays are dominated by the combination
of these operators giving the weakest bound. We do not require the decay couplings to
respect custodial symmetry as these couplings may be numerically quite small — consistent
with bounds on custodial symmetry violation — while still allowing for prompt decays. In
the same spirit, we assume the decay couplings are small enough that they do not provide
significant new production modes. In many cases, the leading operators carry SM flavor
indices; we assume the flavor structure is such that strong flavor-dependent constraints
(from e.g. flavor-changing neutral currents or proton decay) are avoided. In many cases,
the bound on a given Loryon candidate depends on the flavor composition of the final state;
in quoting a limit we highlight the flavor structure that results in the weakest limit.

For Loryons charged under SU(2)L, there are typically one or more electrically neutral
particles in the multiplet that may be the lightest mass eigenstate. In this case, the charged
components of the multiplet can decay into the neutral component and SM bosons without
assuming any additional couplings. This leads to a missing energy signature whose strength
depends sensitively on the mass spectrum of the new particles, with large splittings leading
to correspondingly larger (and better-constrained) missing energy signals. In such cases,
the bounds on SU(2)L-charged Loryons are typically weakest if no additional interactions
are assumed beyond the irreducible couplings to the Higgs.

For scalar Loryons, the bounds from precision electroweak constraints can be avoided
by minimizing the mass splitting within a given electroweak multiplet, in which case gauge
eigenstates are also approximate mass eigenstates. As such, in determining the state of
direct limits on scalar Loryons, it suffices to consider searches for distinct SU(3)c×SU(2)L×
U(1)Y representations. An approximate direct limit on scalar Loryons in a given custodial
representation can then be found by stacking the limits on the SU(3)c × SU(2)L × U(1)Y
representations that compose the custodial multiplet.
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For fermionic Loryons, electroweak symmetry breaking mixes components of different
gauge eigenstates, so that gauge eigenstates are no longer approximate mass eigenstates.
Moreover, as a custodial multiplet of fermionic Loryons necessarily contains a field charged
under SU(2)L, the strength of direct search limits depends sensitively on the mass splitting
between the lightest neutral fermion and heavier fermions, which controls the amount of
missing energy in the final state. As such, obtaining the direct limit on fermionic Loryons
in a given custodial multiplet requires reinterpreting the relevant searches in the space of
couplings for that multiplet. We first present the simpler direct limits on scalar Loryons
before treating the more complicated direct limits on fermionic Loryons.

Note that direct search limits on Loryons can be further modified in the presence of
couplings between multiple Loryon states. Such couplings can lead to cascade decays into
final states different from those we have considered here. The effect of multiple coupled
Loryons on direct search constraints depends sensitively on the states involved; cascade
decays can either weaken constraints (for example, by softening missing energy signals in
the spirit of Stealth Supersymmetry [29]) or strengthen them (by increasing the multiplicity
or distinctiveness of the final state). To the extent that these variations are not irreducible
signals of BSM Loryons, we leave their study to future work.

5.1 Scalar Loryons

The state of direct search limits on the SU(3)C ×SU(2)L×U(1)Y representations of states
that appear as components of the viable custodial multiplets of scalar Loryons is summa-
rized in table 11, subject to the above considerations.

The neutral scalar S need not possess additional couplings that would allow it to
decay, leading to a missing energy signature if it remains stable on detector length scales.
We assume that it does not couple linearly to invariants constructed purely from the Higgs
doublet H as this would lead to mass mixing with correspondingly tighter constraints. This
leaves open the possibility that S may decay through dimension-5 operators in which S

couples to dimension-4 gauge-invariant SM operators OSM
4 , excluding OSM

4 = |H|4. When
mS < mh/2, it may be produced in the decay of on-shell Higgs bosons and is subject to
the constraints on the Higgs invisible or BSM width discussed in section 3; the strength of
these constraints depends on the fraction fmax of mass-squared that S acquires from the
Higgs. As we account for these bounds in terms of Higgs coupling measurements rather
than direct searches, we omit them in table 11. For mS ≥ mh/2, S is produced via off-shell
Higgs bosons with a modest rate that remains essentially unconstrained by missing energy
searches [30]. The low production rate is such that prompt decays through a variety of
SM operators OSM

4 are likewise unconstrained. The HL-LHC with 3/ab is not expected to
attain sensitivity to off-shell production for 0.5 ≤ fmax ≤ 1.

The hypercharged scalar S1 admits a marginal coupling to two lepton doublets, which
is antisymmetric in flavor space due to the antisymmetry of the SU(2)L contraction. The
quoted bound on S1 in table 11 is obtained in [31] from the reinterpretation of LHC slepton
searches, most notably a

√
s = 13TeV ATLAS analysis with 139/fb of data [38]. The

detailed mass reach depends on the relative branching ratios into different lepton flavors; it
is maximized at m ∼ 325 GeV when BR(S1 → e+ν) = 0.5(0),BR(S1 → µ+ν) = 0(0.5) and
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Field Charge Decay Couplings Limit Ref.

S (1, 1)0 — or S ×OSM
4 — [30]

S1 (1, 1)1 S†1L̄iiσ2L
c
j ∼ 325GeV [31]

ω1 (3, 1)−1/3 ω†1

(
Q̄iσ2Q

c + d̄uc
)

∼ 520GeV [32]

ω2 (3, 1)+2/3 ω†2d̄d
c ∼ 520GeV [32]

Φ1 (1, 2)1/2 − (if inert) ∼ 70GeV [33]

Ξ0 (1, 3)0 Mixing via ΞaH†σaH ∼ 230GeV [34]

− (if inert) ∼ 275GeV [35]

Φ3 (1, 2)3/2 (Φ†3)Hd̄u ∼ 80GeV [36]

Ξ1 (1, 3)1 ΞI1[σIε]αβH†αH
†
β ∼ 350GeV [37]

Θ1 (1, 4)1/2 (Θ†1)(abc)H
aHbH̃c & 350GeV [37]

Θ3 (1, 4)3/2 (Θ†3)(abc)H
aHbHc & 350GeV [37]

Table 11. Assumed decay couplings and direct search limits on scalar Loryons organized by SM
representation.

minimized at m ∼ 200 GeV when BR(S1 → e+ν) = BR(S1 → µ+ν) = 0.25 using only the
same-flavor bins (note that the sum of branching ratios into electrons and muons can never
be less than 50%). However, we note that the ATLAS search also includes different-flavor
bins, although these are not used in the single-slepton interpretation. These bins have
comparable sensitivity to the same-flavor bins, and so we expect the limit from opposite-
flavor final states to be comparable to those from same-flavor final states. We thus take
the limit to be m ∼ 325 GeV regardless of the relative branching ratios into electrons and
muons. The projected HL-LHC bound with 3/ab is expected to reach m ∼ 400 GeV under
the same assumptions [31].

The colored and hypercharged scalars ω1 and ω2 admit marginal couplings allowing
them to decay. The ω1 has the quantum numbers of a leptoquark and can couple to
SM fermion bilinears involving one lepton and one quark, as well as SM fermion bilinears
consisting solely of quarks. Given the relatively stronger bounds on leptonic decays of
colored particles, we assume that the branching ratios into quarks dominate. In contrast,
the ω2 only admits a marginal coupling to pairs of down-type quarks. Assuming that
decays into quarks dominate, the quoted bound on ω1 and ω2 in table 11 comes from a√
s = 13TeV CMS search with 36/fb for pair-produced resonances decaying to pairs of

quarks [32], which excludes stops decaying into light-flavor quarks up to m ∼ 520GeV. We
are currently unaware of projections for the performance of this search at the HL-LHC.
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The electroweak doublet scalar Φ1 extends the Higgs sector to a two Higgs doublet
model, with a range of signatures and constraints depending on the parameters of the
potential and couplings to fermions. However, a simple irreducible limit may be obtained
by treating Φ1 as inert, forbidding renormalizable couplings to fermions by imposing the
discrete symmetry Φ1 ↔ −Φ1 and assuming the potential is such that Φ1 does not acquire
a vev. Although Φ1 admits a range of marginal couplings that would allow it to decay,
these may be forbidden by the discrete symmetry. The lightest mass eigenstate is typically
a neutral scalar, which can be stable on detector length scales. The charged components of
Φ1 are split from the lightest neutral component by both tree-level and one-loop effects; the
former effects are bounded by perturbativity constraints, while the latter lead to splittings
on the order of ∼ 350MeV. This leads to an experimentally challenging scenario in which
the charged-neutral mass splitting is too small to produce distinctive decay products and
significant missing energy, but too large to generate a long disappearing track. We take
the inferred LEP bound of mH± > 70GeV appearing in [33].

The electroweak triplet, hypercharge-neutral scalar Ξ0 admits a marginal coupling
Ξa0H†σaH that allows it to decay via mixing with the Higgs after electroweak symmetry
breaking; this mixing can be sufficiently small to allow for prompt decays without running
afoul of indirect constraints. In this case, [34] obtained a limit of m ∼ 230GeV by the
reinterpretation of

√
s = 13TeV ATLAS [39] and CMS [40] multi-lepton searches with

36/fb, noting that a naive extrapolation to results of the full Run 2 data set were expected
to improve the bound to m ∼ 330GeV. Alternately, mixing may be forbidden by imposing
the discrete symmetry Ξ0 ↔ −Ξ0, rendering it inert and the neutral component stable. In
this case, the ∼ 160MeV radiative splitting between the charged and neutral components
gives rise to a disappearing track signature, leading [35] to obtain a bound of m ∼ 275GeV
by reinterpreting a

√
s = 13TeV ATLAS search with 36/fb [41]. An HL-LHC bound of

∼ 520GeV was projected by [35].
The electroweak doublet, hypercharge-3/2 scalar Φ3 does not admit marginal couplings

that would allow its doubly-charged or singly-charged components to decay. Rather, they
may decay via operators coupling Φ3 to a Higgs boson and two fermions [42]. If the domi-
nant decay coupling involves leptons, strong constraints from same-sign dilepton searches
imply m & 700 − 900GeV depending on the flavor composition of the leptonic branching
ratios [43]. If the dominant decay coupling involves quarks, however, the electroweak pro-
duction cross section is too small to be meaningfully constrained by the CMS paired dijet
resonance search [32]. Instead, the leading bound arises from LEP searches for hadronically
decaying singly-charged Higgses, of order m ∼ 80GeV [36].

The electroweak triplet, hypercharge-1 scalar Ξ1 admits marginal couplings to either
two same-sign leptons or two Higgs bosons. The former leads to a strong bound of m &
700− 900GeV from same-sign dilepton searches [43], while the latter leads to a somewhat
weaker constraint ∼ 350GeV from same-sign WW signals in multi-lepton searches [37].
The situation is similar for the electroweak quartet, hypercharge-1/2 or 3/2 scalars Θ1 and
Θ3. Both admit renormalizable couplings to three Higgs bosons that lead to same-sign
WW production similarly constrained by multi-lepton searches [37]. Note that the higher-
dimensional SU(2)L representations have correspondingly larger cross sections, which we
do not account for here; this has a modest effect on the mass limit.
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5.2 Fermionic Loryons

As noted above, the significant mass mixing among different gauge eigenstates of fermionic
Loryons in a given custodial multiplet requires a more detailed treatment of direct search
limits. For each of the fermionic Loryon candidates that remains viable after imposing
indirect bounds, mass mixing leads to a split mass spectrum and qualitatively similar
collider signatures: heavy mass eigenstates are pair produced via Drell-Yan before decaying
into light mass eigenstates via the emission of W,Z, and Higgs bosons. The light mass
eigenstates typically include both charged and neutral fermions that are degenerate at
tree-level in the limit of exact custodial symmetry, but one-loop corrections induce small
splittings that allow the light charged fermions to decay into their neutral counterparts plus
soft SM particles. If the splittings are sufficiently small, the light charged fermions give rise
to a distinctive disappearing track signature. If the splittings are somewhat larger, above
about 400MeV, the disappearing tracks are too short to be picked up in existing searches.
For fermionic Loryons in larger custodial representations, the spectrum includes additional
mass eigenstates intermediate between the light and heavy states. These can lead to two-
step cascade decays with higher multiplicities of SM vector bosons in the final state.

To determine limits on fermionic Loryons coming from the decay of heavy mass eigen-
states into lighter ones via W,Z, and h, we reinterpret a series of ATLAS and CMS elec-
troweakino searches at

√
s = 13TeV, namely the CMS search for two oppositely charged

same-flavor leptons and missing transverse momentum [44] and the ATLAS search for three
leptons from on-shell W,Z bosons plus missing transverse momentum [45], both of which
are sensitive to pair production events in which one heavy eigenstate decays via a W boson
and the other via a Z boson; the ATLAS [46] and CMS [47] searches for final states with
one lepton, missing transverse momentum, and a Higgs decaying to bb̄, are sensitive to pair
production events in which one heavy eigenstate decays via a W boson and the other via a
Higgs boson; and the ATLAS search for two leptons and missing transverse momentum [38]
is sensitive to pair production events in which both heavy eigenstates decay via a W boson.
For each of these searches, the collaborations present excluded cross sections for an exclusive
channel as a function of the heavy and light fermion masses, allowing for straightforward
reinterpretation. Although both collaborations also pursue searches sensitive to pair pro-
duction events with hh, ZZ, or hZ plus missing transverse momentum, these limits are pre-
sented as a function of the heavy mass assuming a (small) fixed value of the light mass, so we
are unable to reinterpret these constraints in the full parameter space of interest. The reach
of these searches is comparable to the corresponding limits of the searches we reinterpret.
For larger custodial representations with additional mass eigenstates intermediate between
the light and heavy states, we have estimated the sensitivity of ATLAS and CMS multi-
lepton searches [48, 49] to the resulting multi-boson final states; we find that they do not sig-
nificantly improve the limits set by searches for single-step decays into di-boson final states.

In addition, we must consider possible limits on the light mass eigenstates coming
from disappearing track searches, which are controlled by the splitting between the light-
est charged and neutral fermions. If the splitting is sufficiently small, the light charged
fermions become long-lived, and the resulting disappearing track signature may provide
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an even stronger constraint on the parameter space. For the custodial multiplets under
consideration, the splitting between the charged and neutral fermions depends on possible
soft breaking of custodial symmetry at tree level, as well as two different types of one-loop
corrections. At tree level, it is possible to softly break custodial symmetry by introducing
different vector-like mass terms for the Standard Model representations within a given cus-
todial multiplet. For example, in the [2, 1]1/2⊕ [1, 2]1/2 model, differences in the vector-like
masses of the E0 and E1 fields comprising the [1, 2]1/2 custodial irrep will split the masses
of the lightest charged and neutral fermions. In principle, a small soft breaking of cus-
todial symmetry can always be introduced to generate a sufficiently large charged-neutral
mass splitting to avoid constraints from disappearing track searches without significantly
worsening precision electroweak constraints.

However, it is perhaps more compelling to assume exact custodial symmetry at tree
level and consider the two types of irreducible splitting due to radiative corrections. The
first of these is the familiar finite radiative correction due to the Coulomb energy stored
in the charged fields [50, 51]. The second is the logarithmically divergent radiative correc-
tion due to the breaking of custodial symmetry by hypercharge. The latter effect can be
straightforwardly computed from e.g. the renormalization group evolution of the Loryons’
vector-like masses and Yukawa couplings proportional to the hypercharge gauge coupling.
For the [2, 1]1/2⊕[1, 2]1/2 and [1, 3]0⊕[2, 2]0 models, the resulting one loop splitting between
the lightest charged and neutral mass eigenvalues m±1 ,m0

1 at leading logarithmic order is
given by

m±1 −m
0
1 '

3g′2
16π2 m

0
1 log Λ

µ
, (5.1)

where Λ is a UV scale at which custodial symmetry is presumed to be exact and µ is the
renormalization scale. The logarithmic enhancement of this effect causes it to dominate
over the finite correction and for Λ &TeV yields a mass splitting large enough to evade
current limits from disappearing track searches [52]. As such, the direct search limits on
fermionic Loryons remain dominated by the decays of heavy mass eigenstates into light
ones, even before including possible tree-level soft breaking of custodial symmetry.

In order to determine the bound on fermionic Loryons in a given custodial multi-
plet from these searches, we compute the leading-order production cross sections and
branching ratios for the heavy mass eigenstates in a given multiplet using FeynRules [53],
FeynArts [54], and FormCalc [55, 56] and compare the relevant production cross sections
times branching ratios to the excluded cross section in each search. In doing so, we include
decays into both charged and neutral fermions among the light mass eigenstates as the
charged mass eigenstates subsequently decay into the neutral mass eigenstates plus addi-
tional soft particles that should not significantly impact the acceptance of the searches in
question. We further include the combined LEP bound on charged fermions [57], taking
the limit to be m± & 90GeV in light of the possible variations in the charged-neutral mass
splitting [58]. The results are summarized in figure 7.

The parametric behavior of the limits in figure 7 can be most clearly understood for the
[2, 1]1/2⊕[1, 2]1/2 model shown in the first panel. The LHC searches are most sensitive when
the splitting between heavy and light mass eigenstates is large, for this leads to the largest
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Figure 7. Exclusions on fermionic Loryons from LHC searches for missing energy plus WZ (blue,
solid) or WW (green, dashed) bosons, along with the LEP II bound (orange, dotted) on charged
fermions, as a function of the mass of the heaviest fermions and the fraction fmax of their mass
which is Higgs-dependent. Only combinations of custodial representations that remained viable
after imposing the constraints in previous sections are shown.

amount of missing energy. In the parameter space of figure 7, this corresponds to smaller
values of fmax, for which mass splittings are induced by competition between EWSB-
dependent and -independent contributions. At lower values of the heavy mass, the available
phase space for producing electroweak bosons begins to close off, while at higher values
of the heavy mass, the production cross section falls off. The shape of the LEP exclusion
in this parameter space is set by the mass of the light mass eigenstates, which include a
charged Dirac fermion; at lower values of fmax the large mass splitting drives the light mass
eigenstates below the LEP bound, and less splitting is required to reach the LEP bound as
the heavy mass decreases. The shape of the limits for larger custodial representations in the
remaining panels of figure 7 is governed by the same logic but no longer takes a simple form
in the plane of fmax and the heavy mass. This is because the higher-dimensional custodial
representations lead to more than two clusters of mass eigenstates, so direct search limits
are most sensitive to the splitting between intermediate and light mass eigenstates. The
precise values of these splittings and the electromagnetic charges of the light eigenstates
varies from multiplet to multiplet, leading to the observed pattern of exclusion regions.
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Vector-like Fermion Scorecard

R = 1 2 3 4 5 6 7 8

L = 1 |Ymax| = × ∼ 1
2 ∼0 × × × × ×

2 ∼ 1
2 ∼0 × × × × × ×

3 × × × × × × × ×

4 × × × × × × × ×

5 × × × × × × × ×

6 × × × × × × × ×

7 × × × × × × × ×

8 × × × × × × × ×

Table 12. The representations for the vector-like fermionic BSM Loryons still viable after consid-
ering direct search constraints. A ∼ means the representation is not viable on its own but can be
added together with other BSM representations to flip the sign of κγ .

6 Viable Loryons

Putting everything together, we may now address the animating question of this work:
does current data allow for Loryons beyond the Standard Model? Surprisingly, a number
of Loryon candidates remain viable in light of direct and indirect limits, although the
situation is far more optimistic for scalar Loryons relative to their fermionic counterparts.

The current status of scalar Loryons is summarized in figure 8 and figure 9. The
parameter space has particularly large regions of viability for the custodial representations
[1, 1]0, [2, 2]0, [1, 3]0, and [3, 1]0 since the current direct search bounds on the SM singlet S0,
the charged singlet S1, the bi-doublet Φ1, and the hypercharge-neutral triplet Ξ0 vary from
essentially nonexistent to ∼ 325GeV, while the indirect bounds from Higgs coupling mea-
surements are modest. Among the scalar Loryons, constraints from κγ permit a charge-1
scalar Loryon without flipping the sign of κγ , but they narrowly exclude charged Loryons
acquiring all of their mass from the Higgs. The custodial symmetry representations [1, 1]0,
[2, 2]0, [3, 1]0, and [1, 3]0 each include a single charge-1 particle. For the [1, 1]Y represen-
tation, constraints on κg leave open the possibility for the Loryon to be a color triplet. In
addition, scalars in larger custodial representations can remain viable if sufficient mass split-
ting is introduced so that only a single charge-1 state has a significant coupling to the Higgs;
this can be done for the representations [3, 3]0, [2, 4]0, and [4, 2]0 (see figure 9). Another av-
enue by which larger custodial representations can survive the bounds is to give them larger
hypercharges; this yields enough charged particles to flip the sign of κγ . Direct searches
place lower bounds on the masses ranging from ∼ one hundred to several hundred GeV,
while perturbative unitarity places upper bounds on their mass to be at most ∼ 800GeV.

– 32 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
9

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1.0

Figure 8. Regions of parameter space for scalar Loryons which are ruled out by one of the
constraints described earlier. The orange, dotted region is ruled out by constraints on κγ or κg;
the blue, solid region is ruled out by unitarity bounds; the green, dashed region is ruled out by
constraints on Higgs decay; and the purple, dot-dashed region is ruled out by direct search bounds.
All plots assume no mass splitting between the components of the Loryon multiplet, which is a
non-trivial assumption for [2, 2]0. Note that the bottom middle and right plots are indicated by
their SM gauge quantum numbers.

The current status of fermionic Loryons is summarized in figure 10. In contrast with
the scalar case, the viable parameter space is much more tightly constrained. As noted
above, fermionic Loryons are only viable if the model results in flipping the sign of κγ .
While any individual custodial multiplet is insufficient to achieve this, flipping the sign of
κγ can occur if there are multiple copies of a given multiplet. However, these additional
copies increase the contribution to the S-parameter such that the constraints of κγ and S
cannot be simultaneously satisfied by multiple copies of a given multiplet. We conclude that
fermionic Loryons, in isolation, are excluded by current data. In principle, it is possible to
satisfy the constraints from κγ and S by adding a set of additional states to flip the sign
of κγ without running afoul of precision electroweak measurements.

Assuming the κγ constraints are satisfied in this way (and assuming these other states
do not impact the Loryon phenomenology), there are two combinations of custodial rep-
resentations which still have viable regions of parameter space: [2, 1]1/2 ⊕ [1, 2]1/2 and
[1, 3]0⊕ [2, 2]0. For fermionic Loryons transforming in the [2, 1]1/2⊕ [1, 2]1/2 representation,
direct search bounds and precision electroweak constraints both exclude regions where the
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Figure 9. Regions of parameter space for scalar Loryons which are ruled out by one of the
constraints described earlier. The orange, dotted region is ruled out by the electroweak precision
parameter S; the purple, dot-dashed region is ruled out by constraints on κγ ; the blue, solid region
is ruled out by unitarity bounds; the green, dashed region is ruled out by direct search bounds. The
first row has fixed fmax = .5; the second row has fixed the heaviest mass eigenvalue at 800GeV.

Higgs-independent contributions to fermion masses are comparable in size to the Higgs-
dependent contributions. In this limit, there is large splitting among the mass eigenstates,
which both increases the contribution to the S-parameter and increases the sensitivity of
direct searches that require large missing energy. LEP limits place a lower bound on the
overall mass scale, while perturbative unitarity places an upper bound. In the remain-
ing viable region for the [2, 1]1/2 ⊕ [1, 2]1/2 model, the heavy mass eigenstate is between
∼ 100− 600GeV, and the Higgs-independent contributions to fermion masses are no more
than about one-third the size of the Higgs-dependent contributions.

Constraints are tighter still for the [1, 3]0 ⊕ [2, 2]0 model; it is likely that the viable
parameter space could be entirely closed by a proper statistical combination of all limits,
an exercise beyond the scope of this work. As with the [2, 1]1/2 ⊕ [1, 2]1/2 model, preci-
sion electroweak measurements exclude regions where the Higgs-independent contributions
to fermion masses are comparable in size to the Higgs-dependent contributions. How-
ever, direct searches exclude disjoint regions where the Higgs-independent contributions to
fermion masses are either comparable in size to, or much smaller than, the Higgs-dependent
contributions, on account of how these contributions translate into the spectrum of mass
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Figure 10. Regions of parameter space for fermionic Loryons which are ruled out by one of the
constraints described earlier. The blue, solid region is ruled out by unitarity bounds; the green,
dashed region is ruled out by precision electroweak measurements; the orange, dotted region is ruled
out by direct search constraints. Note that we do not include constraints from Higgs couplings,
which nominally rule out all fermionic Loryon candidates in combination with precision electroweak
measurements; constraints from κγ may only be satisfied by including some additional number of
scalar Loryons or non-Loryons coupling to the Higgs.

eigenstates. In conjunction with LEP and perturbative unitarity bounds, this essentially
closes the parameter space for the [1, 3]0⊕[2, 2]0, with the exception of a very small window,
see figure 10.

7 Future prospects

Given the viable parameter space for scalar and fermionic Loryons in light of current data, it
is natural to wonder what the prospects might be for discovering or excluding Loryons at the
HL-LHC. In particular, we anticipate that the HL-LHC will significantly improve the preci-
sion with which Higgs couplings are determined. This improved sensitivity will either lead
to increased coverage of the Loryon parameter space or point the way towards a discovery.

For the most part, we use the HL-LHC Higgs coupling projections in [59]. We begin
with the channels that already provide nontrivial constraints with current data. Using the
projected improvement for κγ and κg in [59], we find that color triplet scalar Loryons could
be entirely ruled out. None of the color singlet cases would be ruled out by the improvement
in κγ alone since the constraint is not expected to tighten enough to eliminate a single
charge 1 scalar; the increased precision narrows the open parameter space that survives by
flipping the sign of κγ .

The HL-LHC is also projected to make a fairly precise determination of κZγ . While the
overall magnitude of the resulting constraint is expected to be much weaker than the ones
derived using κγ , the interplay of κZγ and κγ is quite powerful. In particular, the expected
constraint on κZγ would probe scenarios that currently remain viable by flipping the sign
of κγ since the relevant parameter space generally also yields a significant contribution to
κZγ . The contribution of viable Loryons to κZγ relative to their contribution to κγ is shown
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Rep [1,1]1 [3,1]0 [1,3]0 [2,2]0 [3,3]0 [4,2]0 [2,4]0 [2,3]−1/2 [2,1]1/2⊕ [1,2]1/2 [1,3]0⊕ [2,2]0∑
ηiC

Zγ
i∑

ηiQ
2
i

−.12 .38 −.12 .13 .13 .30 −.032 −.008 −.019 −.019

Table 13. The contribution of viable Loryons to κZγ as a ratio to the contribution to κγ .
To maintain κZγ within 20 percent of the SM value while flipping the sign of κγ requires
|
∑
ηiC

Zγ
i /

∑
ηiQ

2
i | < .074.

in table 13. Weak singlet scalars and the viable fermions contribute to κZγ with opposite
sign relative to the SM, while the other viable new scalar Loryons contribute to κZγ with
the same sign as the SM. The contribution to κZγ is too small to flip the sign of κZγ and
κγ simultaneously. In more complicated models, a combination of some new singlets and
fermions and/or some new non-singlet scalars could conspire to have their contributions to
κZγ cancel while flipping the sign of κγ .

Higgs cross section measurements at the LHC are sensitive to the wavefunction renor-
malization of the physical Higgs scalar h, which is expected to become relevant in the
HL-LHC era. For Loryons carrying SM quantum numbers, this constraint is typically
weaker than the bounds from κγ and κZγ . However, for the SM singlet S0, this will even-
tually provide a non-trivial constraint on the parameter space that is complementary to
the existing bounds from exotic Higgs decays or partial wave unitarity. To determine the
projected HL-LHC sensitivity to this effect, we use the single-operator bound on

OH ≡
CH
Λ2

1
2
(
∂µ|H|2

)2
. (7.1)

The HEPFit collaboration projects a 95% CL bound of Λ/
√
|CH | = 1.4 TeV [59]. Two

comments are in order. First, although the bound is quoted on the Wilson coefficient of a
SMEFT operator (which is never the appropriate EFT description for the low-energy effects
of Loryons), the fit simply reflects a bound on a common shift to single-Higgs production
processes. As such, it may be equivalently interpreted as a limit on the parameter κh
defined via

L ⊃ κh ×
1
2(∂h)2 , (7.2)

which uniformly shifts single-Higgs production rates when h is canonically normalized.
With this interpretation, the projected 95% CL HL-LHC limit on Λ/

√
|CH | translates to

κh ∈ [0.97, 1.03] . (7.3)

Second, although integrating out any heavy state typically generates multiple EFT oper-
ators and lead to bounds weaker than those expected from single-operator projections, in
the case of the SM singlet S0 the only low-energy effects at the LHC are the common shift
in production rates noted above and a shift in the di-Higgs rate from radiative corrections
to the Higgs potential. As the anticipated bounds on κh are much stronger than those
expected from di-Higgs measurement, the projected single-operator bound on OH pro-
vides a reasonable approximation of the expected sensitivity of a global fit to the specific
low-energy effects of S0.
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Unfortunately, the expected HL-LHC precision lies parallel to, and is somewhat weaker
than, the bound from perturbative unitarity, so the HL-LHC is unlikely to significantly
improve constraints on an individual singlet scalar Loryon in this channel within the regime
of perturbative validity. That being said, if there are some number N of singlet scalar
Loryons, the HL-LHC bound on κh scales with N , while the leading contribution to the
perturbative unitarity bound is unaffected. Subleading contributions to the perturbative
unitarity bound scale with N ; further study is required to understand if HL-LHC sensitivity
may play an interesting role.

A more promising observable at the HL-LHC is the Higgs self-coupling. Although the
anticipated sensitivity of the HL-LHC to deviations in the Higgs self-coupling is significantly
less than its sensitivity to wavefunction renormalization effects, the Loryon contribution
to the Higgs cubic coupling is enhanced relative to wavefunction renormalization when
the Higgs-Loryon coupling is large. Near the perturbative unitarity bound, the correction
becomes a O(1) effect. The leading effect of Loryons on di-Higgs production in the large-
coupling limit comes from the direct shift in the coefficient of h3, while subleading effects
at large coupling include the above-mentioned shift due to wavefunction renormalization as
well as new momentum-dependent contact interactions between h and longitudinal vectors.
For simplicity, we consider only the leading effect. As shown in figure 11, the 95% CL
constraint 0.1 < κλ < 2.3 [59] on modifications to the Higgs self-interaction — as projected
for the HL-LHC — would provide sensitivity to regions of parameter space otherwise
allowed by the perturbative unitarity bound. As the unitarity bound is fixed, more precise
measurements of the Higgs self-interaction (such as that expected from the ILC) will have
a significant effect on the viable parameter space for new Loryons.

There is also scope for improvement in direct searches for Loryon resonances. Of the
scalars with large amounts of viable parameter space remaining in figure 8, [1, 1]0 and [2, 2]0
are assumed inert and are difficult to see directly. However, the neutral triplet [3, 1]0, if
inert, has a projected HL-LHC bound from displaced vertices that rules out most of the
viable parameter space — see section 5 and [35]. If, on the other hand, the neutral triplet
has a small mixing with the Higgs, there are many potential dedicated searches for the pair
production of (charged or neutral) heavy Higgses, decaying to e.g. WW,WZ, tb, that could
fill in the gap [34]. For the [1, 1]1, a dedicated interpretation of the opposite-flavor bins
in the existing ATLAS dilepton analysis [38] and future analyses would be valuable. For
the fermion models, there would be immediate gains from an analysis of neutral diboson
signals (hh, hZ,ZZ) in the plane of heavy and light fermion masses, analogous to those
provided for charged diboson final states that were reinterpreted in section 5.2.

8 Conclusions

Our goal in this work was to classify non-decoupling new particles (“Loryons”) that are
still experimentally viable. By non-decoupling, we mean that the Loryons acquire at least
half of their mass from the Higgs vacuum expectation value; this implies that the low
energy effective theory obtained by integrating out the Loryons must be described using
HEFT. Taking a mild set of phenomenologically reasonable assumptions, including impos-
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Figure 11. Expected sensitivity of the HL-LHC to Loryons based on the Higgs coupling projections
in [59]. The orange, dotted region is projected to be ruled out by improved constraints on κγ or
κg; the green, dashed region can be ruled out by the HL-LHC measurement of the Higgs cubic; the
blue, solid region is ruled out by unitarity bounds; and the purple, dot-dashed region is ruled out
by current direct search bounds.

ing approximate custodial symmetry, approximate Z2 symmetry, and prompt decays of
electromagnetically charged particles, the list of possible new states is finite. We deter-
mined the allowed parameter space by imposing partial wave unitarity, along with a set
of indirect and direct experimental constraints. The available parameter space for scalar
Loryons remains large, while the fermionic cases are essentially ruled out.

Loryons provide a set of concrete targets for future searches. One can either search
for the Loryons directly, or indirectly by interpreting constraints on the HEFT parameter
space. In both cases, the HL-LHC stands to significantly improve on existing bounds. Such
improvement is strongly motivated as the persistence of Loryons demonstrates that HEFT
remains a viable framework for the interpretation of current Higgs data. The exclusion of
Loryons would represent significant progress towards verifying that electroweak symmetry
can be linearly realized by the known particles. On the other hand, evidence for a Loryon
— above and beyond the thrill of discovery — would imply that electroweak symmetry is
not linearly realized by Standard Model particles on their own.

The viability of many Loryon models adds further motivation to the study of the
correlated effects of individual SMEFT operators over different final states at the HL-
LHC. For example, [60] details pairs of processes (with different Higgs multiplicities) that
could yield comparable HL-LHC sensitivity to the same SMEFT operator. Notably, these
pairs include κγ/κZγ with vector boson scattering, and Higgs trilinear measurements with
rates in W±W±jjh. As future measurements of κγ , κZγ , and the Higgs self coupling can
give a signal in the presence of Loryons (see section 7), it is likely that these accompanying
measurements would exhibit decorrelated deviations that would tension a combined fit to
dimension 6 operators in the SMEFT. Along similar lines, [11] shows how single and di-
Higgs measurements can be measureably decorrelated from the SMEFT expectation in the
presence of a scalar multiplet that gets an extra electroweak symmetry breaking vev —
another class of UV models whose low energy effects require a HEFT description.

– 38 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
9

There are many future directions to explore. In principle, now that the viable Lo-
ryon parameter space is known, it is possible to design new LHC searches to target
these interesting regions either directly or indirectly. We discussed many potential new
searches/reinterpretations in section 7, but there is considerable room for further develop-
ment. The complete Loryon parameter space is unlikely to be fully probed at the LHC, and
so a dedicated study determining the reach of future colliders is warranted. It would also
be interesting to relax some of the assumptions shaping our definition of the Loryon param-
eter space, which would lead to new signatures. For example, one of the phenomenological
requirements made here was that the Loryon decays are all prompt; relaxing this assump-
tion leads to signals in a variety of long-lived particle searches that would open up new
pathways to discovery. We have also assumed that Loryon contributions to flavor- or CP-
violating observables are minimized; exploring a wider flavor structure and/or allowing for
CP violating couplings would yield many interesting complementary probes of these non-
decoupling new particles. Finally, we have assumed a Z2 symmetry acting on the Loryons
to highlight their irreducible loop-level signatures, but relaxing this assumption would lead
to additional experimental opportunities (and constraints) from tree-level signatures.

There are also implications for cosmology. Many of the multiplets include an elec-
trically neutral lightest state, which is an obvious candidate for dark matter. Some of
the Loryons have been studied as dark matter, e.g. the singlet extension of the Standard
Model [61–63], singlet-doublet dark matter [64], or the minimal dark matter program [51],
but others have not been as widely explored. In general, the relic density of Loryon dark
matter candidates is expected to be a rich subject since there are a number of non-trivial
allowed couplings between Loryons and the electroweak/Higgs bosons. Imposing a relic
density requirement could be used to further motivate regions of viable Loryon parameter
space. The Loryons are also expected to have an impact on the stability of the Higgs po-
tential, and in fact, one might need to add some additional new physics to (meta-)stabilize
the Higgs potential to make these models viable. Finally, it would be interesting to study
the impact of the Loryons on the electroweak phase transition. We leave the exploration
of these connections to cosmology and their impact on the viable Loryon parameter space
for future work.

It is remarkable that new particles obtaining most of their mass from electroweak
symmetry breaking could still be lurking under our noses. This paper serves to highlight
the fact. Our hope is that this provides a new set of concrete targets to both motivate new
searches at current experiments and augment the case for future colliders.
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A Effective Lagrangian from Loryons

In this appendix, we calculate the mass spectra of scalar and fermionic Loryons in arbi-
trary custodial representations, as well as their one-loop corrections to the Higgs effective
Lagrangian.

A.1 Scalars

In unitary gauge, eq. (2.2), tr
[
T a2HT

ȧ
2H
†
]

= 1
4(v + h)2δaȧ. The part of the Lagrangian

that is quadratic order in Φ can be written11

Lquad = − 1
2ρ tr

[
Φ†
(
D2 + 1

2λexv
2 + 1

2λhΦ(v + h)2
)

Φ + λ′hΦ(v + h)2 Φ†T aLΦT aR
]
, (A.1)

where Dµ is the covariant derivative.
To elucidate the mass spectrum, we decompose the matrix representation Φ of the

custodial group SU(2)L×SU(2)R into irreps φV of its diagonal subgroup SU(2)V . Here φV
are V -dimensional vectors built out of linear combinations of the matrix elements Φαα̇:

tr
(
U iΦ

)
=
[
⊕
V
φV

]i
, (A.2)

with
V ∈ V =

{
L+R− 1 , L+R− 3 , · · · , |L−R|+ 1

}
. (A.3)

The explicit coefficients U iα̇α are given by the appropriate Clebsch-Gordan coefficients. U
satisfies the resolution of the identity(

U i
β̇β

)∗
U iα̇α = δαβδα̇β̇ , (A.4)

and U is also covariant under arbitrary transformations under the diagonal subgroup:

tr
[
UΦ′

]
= ⊕

V
φ′V ⇒ tr

[
U exp(iεaT aL) Φ exp

(
−iεbT bR

)]
= ⊕

V
exp(iεaT aV )φV , (A.5)

for εa arbitrary. Finding the second order variation of eq. (A.5) with respect to εa yields

tr
[
UT

(a
L T

b)
L Φ + UΦT (a

R T
b)
R − 2UT (a

L ΦT b)R
]

= ⊕
V
T

(a
V T

b)
V φV ; (A.6)

contracting with δab, and using the fact that T aLT aL = C2(L)1L in any irrep L then gives

tr [UT aLΦT aR] = ⊕
V

1
2
[
C2(L) + C2(R)− C2(V )

]
φV . (A.7)

Now inserting a resolution of the identity in eq. (A.4), we get

tr
(
Φ†T aLΦT aR

)
= [tr (UΦ)]∗ tr (UT aLΦT aR) ,

=
∑
V

φ†V
1
2
[
C2(L) + C2(R)− C2(V )

]
φV . (A.8)

11This is built from pieces eqs. (2.1), (2.3) and (2.4), plus a canonically normalized kinetic term.
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Therefore, the Lagrangian in eq. (A.1) decomposes into the sum

Lquad = − 1
2ρ
∑
V

φ†V

(
D2 + 1

2λexv
2 + 1

2λV (v + h)2
)
φV , (A.9)

where we have defined

λV = λhΦ + λ′hΦ

[
C2(L) + C2(R)− C2(V )

]
. (A.10)

Note that we only retain the strong and electromagnetic interactions in the covariant
derivative D in eq. (A.9); weak interactions generically couple different irreps of V.

Eq. (A.9) generates one-loop corrections to the Higgs Lagrangian, which we calculate
up to two derivative order using (D.21) of [1].

Leff = 1
2ρ(4π)2

∑
V

V

{
1
2

[1
2λexv

2 + 1
2λV (v + h)2

]2
[
ln 2µ2

λexv2 + λV (v + h)2 + 3
2

]

+ 1
24

λ2
V

λexv2 + λV (v + h)2

[
∂(v + h)2

]2
+O(∂4)

}
,

→ 1
2ρ(4π)2

∑
V

V

{
1
2

(1
2λexv

2 + λV |H|2
)2
(

ln 2µ2

λexv2 + 2λV |H|2
+ 3

2

)

+ 1
3

λ2
V

λexv2 + 2λV |H|2

[
∂|H|2

]2
2

}
+O(∂4) , (A.11)

where we return to a general gauge by the substitution (v + h)2 → 2|H|2.

A.2 Fermions

The most general quadratic Lagrangian for a pair of Dirac fermions Ψ1,Ψ2, transforming
under [L1, R1] ≡ [2l1 + 1, 2r1 + 1] and [L2, R2] ≡ [2l2 + 1, 2r2 + 1] respectively, is

Lquad = tr
[
Ψ1(i /D −M1)Ψ1

]
+ tr

[
Ψ2(i /D −M2)Ψ2

]
− (LYuk + h.c.) . (A.12)

We assume w.l.o.g. that M1,M2 > 0. In the Yukawa term, one needs to contract the
indices of fields properly to yield a custodial singlet

LYuk = y12Ψ1αα̇Hββ̇Ψ2γγ̇

〈1
2β; l2γ

∣∣∣∣l1α〉〈r1α̇

∣∣∣∣12 β̇; r2γ̇

〉
. (A.13)

Here we have shifted all the indices such that α runs in [−l1, l1] (instead of [1, 2l1 + 1])
and so on. This way we can identify the proper contraction coefficients as the standard
Clebsch-Gordan coefficients, written in bra-ket notation.

As in the scalar case, we decompose fermionic matrix fields Ψ1,Ψ2 into their respective
irreps under the diagonal subgroup SU(2)V ⊂ SU(2)L × SU(2)R:

Ψ1 → ⊕
V1
ψ1,V1 , Ψ2 → ⊕

V2
ψ2,V2 , (A.14)
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where ψ1,V1(ψ2,V2) are V1(V2)-dimensional vectors, whose components are explicitly given
by

Ψ1µµ̇ =
√
V1
L1
〈l1µ|j1m1; r1µ̇〉ψm1

1,V1
, (A.15a)

Ψ2νν̇ =
√
V2
L2
〈l2ν|j2m2; r2ν̇〉ψm2

2,V2
. (A.15b)

In eq. (A.15), the sums over the diagonal subgroup indices are

2j1 + 1 = V1 ∈ V1 =
{
L1 +R1 − 1 , L1 +R1 − 3 , · · · , |L1 −R1|+ 1

}
,

with − j1 ≤ m1 ≤ j1 , (A.16a)

2j2 + 1 = V2 ∈ V2 =
{
L2 +R2 − 1 , L2 +R2 − 3 , · · · , |L2 −R2|+ 1

}
,

with − j2 ≤ m2 ≤ j2 . (A.16b)

Using eq. (A.15), we write the Yukawa piece of the Lagrangian eq. (A.13) in terms of
ψ1,V1 and ψ2,V2 , in unitary gauge (Hββ̇ = 1√

2(v + h)δββ̇):

LYuk = y12
1√
2

(v + h)ψm1
1,V1ψ

m2
2,V2
×
√
V1
L1

√
V2
L2

× 〈l1α|j1m1; r1α̇〉 〈j2m2; r2γ̇|l2γ〉
〈1

2β; l2γ
∣∣∣∣l1α〉〈r1α̇

∣∣∣∣12β; r2γ̇

〉
. (A.17)

Summing over the Greek indices, the product of Clebsch-Gordan coefficients evaluates to
a Wigner 6j symbol [65, section 12.1.4]√

V1
L1

√
V2
L2
× 〈l1α|j1m1; r1α̇〉 〈j2m2; r2γ̇|l2γ〉

〈1
2β; l2γ

∣∣∣∣l1α〉〈r1α̇

∣∣∣∣12β; r2γ̇

〉

= (−1)j1+r1+l2+ 1
2 ×

√
L1R1 × δj1,j2δm1,m2 ×

r2 l2 j1

l1 r1
1
2

 (A.18)

so the Lagrangian eq. (A.12) decomposes as

Lquad =
∑

V ∈V1−V2

ψ1,V
(
i /D −M1

)
ψ1,V +

∑
V ∈V2−V1

ψ2,V
(
i /D −M2

)
ψ2,V

+
∑

V ∈V1∩V2

(
ψ1,V ψ2,V

)i /D −
 M1

1√
2yV (v + h)

1√
2y
∗
V (v + h) M2

ψ1,V

ψ2,V

 , (A.19)

where

yV = (−1)j1+r1+l2+ 1
2 y12 ×

√
L1R1 ×

r2 l2 j1

l1 r1
1
2

 . (A.20)

– 42 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
9

To integrate out the above quadratic piece, we use the machinery from section 6.3
of [1]. Up to two derivative order

Leff = − 1
16π2

 ∑
V ∈V1−V2

VM4
1

(
ln µ2

M2
1

+ 3
2

)
+

∑
V ∈V2−V1

VM4
2

(
ln µ2

M2
2

+ 3
2

)
− 1

16π2

∑
V ∈V1∩V2

V

{ ∑
M=M±

(
M4 + 1

2 |yV |
2(∂h)2

)(
ln µ2

M2 + 3
2

)

+ 4|yV |4(v + h)2(∂h)2

3(M+ −M−)2

+M+M−

[ (M2
+ +M2

−)
(M2

+ −M2
−)2 −

2M2
+M

2
−

(M2
+ −M2

−)3 ln M
2
+

M2
−

]

×
[
|yV |2(∂h)2 − 4|yV |4(v + h)2(∂h)2

(M+ −M−)2

]}
, (A.21)

where
M± = 1

2(M1 +M2)± 1
2

√
(M1 −M2)2 + 2|yV |2(v + h)2 . (A.22)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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