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1 Introduction and summary

For centuries physics and mathematics are tied together and their mutual influence goes in
both directions. While physicists have often used known mathematical results to derive
new results in physics, physicists can also use their insights to create new mathematics,
which can be of independent interest to mathematicians.

The quiver Yangian (introduced in [1] and studied further in [2, 3]) in our opinion
is an excellent example for such a new mathematical output arising from the physics of
supersymmetric gauge theories and string theory. The quiver Yangian Y(Q,W) is an
infinite-dimensional algebra defined from a quiver @) and a superpotential W, and can be
regarded as a vast generalization of the affine Yangians for Lie superalgebras gl,,,,. The
consistency of the algebras, as well as of their representations on the statistical-mechanical
model of crystal melting, on the one hand can be checked algebraically from the definitions,
and on the other hand can be derived physically in terms of equivariant localization of
supersymmetric quantum mechanics [2, 3].

In the realm of integrable models it has long been known that Yangians lie at the
bottom of the elliptic-trigonometric-rational hierarchy of algebras underlying those models
(cf. [4]). It is therefore a natural question to ask if there exist trigonometric and elliptic
counterparts of quiver Yangians.

In this paper we answer this question positively. We define elliptic and trigonometric
counterparts E,(Q, W) and Tg(Q,W) of quiver Yangians, thus completing the elliptic-
trigonometric-rational hierarchy for quiver Yangians. (In the following we sometimes
suppress the dependence on the superpotential W and use simplified notations E;(Q) and
Ts(Q).) As in the case of quiver Yangians, our algebras can be regarded as generalizations
of elliptic algebras and quantum toroidal algebras for gl,,,, discussed previously in the
literature (see e.g. [5-11]). We hope that the study of our general elliptic and toroidal
quiver algebras and their representation theories will grow into a new exciting research area.

In physics language, these algebras are realized by 3d/2d/1d quantum field theories with
four supercharges, in which the algebras are related by dimensional reductions. Moreover
all these theories are effective field theories on the D-branes probing toric Calabi-Yau
three-folds:

ET(Q? W) dim. TIB(Q? W) dim. Y(Q7 W)

@ red. O red. . o <toric Calabi—Yau)
3-fold (L)

D8-D6-D4-D2-DO0 D7-D5-D3-D1 D6-D4-D2-D0
O4(2) 2sinh(5z/2) z
3d N =2 2d NV = (2,2) 1dN =4

Here the elliptic-trigonometric-rational hierarchy is represented by three odd functions,
namely the theta function ((z) = ©4(2) (where as we will see ¢ = exp(27it) with 7 being the
modulus of the torus) for the elliptic case, the hyperbolic sine function ((z) = 2sinh(5z/2)
(where (B determines the periodicity along the circle direction of the cylinder) for the



trigonometric case, and ((z) = z for the rational case. We will see that the physics of
supersymmetric gauge theories gives not only these algebras and their crystal-melting
representations, but also their Hopf-algebra and shuffle-algebra structures.

Somewhat surprisingly, the physics derivation from quiver gauge theories actually points
to even richer possibilities: we can consider more general Riemann surfaces (of genus greater
than one, and also possibly with punctures):

e~ (generalized cohomology theories) . (1.2)

While we leave many questions for future work, we argue in this paper that we can define
quiver BPS algebras for more general cases, associated with moduli spaces of supersymmetric
field theories and/or generalized cohomology theories (and “formal group laws”). For this
reason the possible family of quiver BPS algebras will go well beyond the traditional elliptic-
trigonometric-rational hierarchy of quiver BPS algebras (and hence the word ‘beyond’ in
the title of this paper).!

The rest of this paper is organized as follows. In section 2 we define elliptic and toroidal
quiver algebras. In section 3 we construct representations of the elliptic and toroidal quiver
algebras from the statistical model of crystal melting. In section 4 we discuss the derivations
of the quiver BPS algebras from the analysis of supersymmetric quiver gauge theories arising
from D-branes. This analysis is extended further in section 5, where we derive Hopf-algebra
structures and shuffle-algebra structures. Section 6 is about the generalization to higher
genus, and connections to generalized cohomology theories and formal group laws. We have
also included appendices on more technical materials.

This paper is intended for a mixed readership of both mathematicians and physicists.
For mathematicians interested in our algebras and their representation theories, note that
sections 2 and 3 do not require any knowledge of supersymmetric field theories, and will
serve as a self-contained guide to the algebras. Sections 4 and 5, while written partly in
the language of physics, contain more geometrical and algebraic discussions of the algebras.
For physicists, one option is to start with the definitions of the algebras in sections 2 and 3,
however those wishing to get intuitions and understand the physics contexts first might
prefer to start with section 4, where we discuss the first-principle derivations of the quiver
BPS algebras from supersymmetric quiver gauge theories.

Note added. During the final stages of this project, a preprint [15] appeared in the arXiv,
which discusses the toroidal version of our quiver algebras but only for the unshifted cases
s(@ = 0 and with the focus on the non-chiral quivers; the overlaps are within sections 2
and 3 of this paper.

'Related to this point, it is worth pointing out that the “lens-elliptic” extension of the elliptic case has
been studied in the literature [12], by replacing the theta function by the “lens-theta” functions introduced
in [13, 14].



2 Elliptic and toroidal quiver algebras

In this section we define elliptic and toroidal quiver BPS algebras E,(Q, W) and T(Q, W),
generalizing the quiver Yangian Y(Q, W) for the rational case. The quiver Yangian can be
regarded as a reduction of the toroidal quiver algebra, which in turn is a reduction of the
elliptic quiver algebra. In fact, we will see that all the three algebras can be defined in a
unified manner with essentially the same ingredients, if we keep in mind some important
differences between them.

Let us here comment on the naming conventions of the algebras. Since we have
the elliptic-trigonometric-rational hierarchy, one systematic naming scheme is to call our
algebras “elliptic/trigonometric/rational quiver BPS algebra,” or simply “elliptic/trigono-
metric/rational quiver algebra,” respectively.

While our elliptic/trigonometric algebras are in general new, the complication is that
they (as we will see in section 2.3) coincide with known algebras for Lie superalgebras gl ,,,
when the associated toric Calabi-Yau manifold has no compact four-cycles; in these cases
various names are already given to the algebras. For the rational case the algebra is called
the affine Yangian, the spherical Hecke central (SHc) algebra or the universal enveloping
algebra for the Wy -algebra [16-21], while for the trigonometric case? it is called the
quantum toroidal algebra [5, 9, 22] or Ding-Iohara-Miki (DIM) algebra [6, 7, 23] (for the
case of gl;);? the elliptic case of the DIM algebra [10, 24] is sometimes called the elliptic
DIM algebra (again for gl;), for example. In order to reflect this state-of-the-art in the
community, in this paper we call the rational quiver algebra as the quiver Yangian (as in
our previous papers), the trigonometric quiver algebra as the toroidal quiver algebra, while

we will use the terminology elliptic quiver algebra for the elliptic case.*

rational ‘ trigonometric ‘ elliptic

rational quiver algebra | trigonometric quiver algebra | elliptic quiver algebra
= quiver Yangian = toroidal quiver algebra

2.1 Quivers and equivariant parameters

As in the case of quiver Yangians [1], we start with a pair (Q, W) of a quiver @ and a
superpotential W.° While our definition applies to general quivers and superpotentials, in
practice our focus will be on quivers whose vacuum moduli spaces describe toric Calabi-Yau
three-folds (see [25, 26] and references therein). We denote the set of vertices of the quiver
by Qo and that of the arrows by Q.

We introduce an equivariant parameter h; for each arrow I € ;. We impose two
constraints on hy. One is the loop constraint, which says that we have

loop constraint: Z hr =0 (2.1)
I€loop L
2For the trigonometric case the algebra is sometimes denoted as Uy, (g“[mm) or Uw,(é\[mln).

3Strictly speaking people mean slightly different algebras by these terminologies, e.g. quantum toroidal
algebras (resp. DIM algebras) do (resp. do not) include the Serre relations.

41f we do not mind longer names, we can also use “quiver affine Yangian” for the rational case and “quiver
quantum toroidal algebra” for the trigonometric case.

®Mathematically a quiver is an oriented graph, and a superpotential is a formal linear sum (over C) of
closed paths of the quiver, where we do not specify the starting/ending point of the closed path.



for each closed loop L associated with a term in the superpotential W. Namely for each
closed path in the superpotential the weights h;’s for the arrows in the path add up to zero.
Another is the vertex constraint

vertex constraint: Z sign,(I)h; =0 (2.2)
Ica
for each vertex a, where sign, (/) is +1 if the arrow I flows towards the vertex a, —1 if the
arrow I flows outwards from the vertex a, and 0 otherwise. For quivers and superpotentials
associated with toric Calabi-Yau three-folds, we can show that we are left with two
independent parameters h; and hy when both loop and vertex constraints are imposed [1] —
the two parameters represent equivariant torus actions on the toric Calabi-Yau three-fold.
Throughout the paper we adopt the following notations:

{a — b} : the set of all arrows pointing from node a to node b ,

2.3
la — b| : the total number of arrows pointing from node a to node b . (23)

For a pair of nodes a,b € Q¢ we define their chirality parameter as:
Xab = |a — b — |b— al, (2.4)

which satisfies Xaq = Xab + Xba = 0. The quiver is called non-chiral when |a — b| = |b — a|
for any pair of nodes a,b € Qp; otherwise the quiver is called chiral. A quiver that
corresponds to a toric Calabi-Yau three-fold with (resp. without) compact 4-cycles is chiral
(resp. non-chiral).

2.2 Trigonometric and elliptic versions of quiver Yangians

In this section we summarize the definitions of the quiver Yangians and their trigonometric
and elliptic generalizations in a unified manner. Since all the algebras in this paper
incorporate the shifts, we will not distinguish between the unshifted and the shifted version,
and will omit the adjective “shifted” from the names.
From now on we use the convention that variables written in the upper case (such as
Z, W, H, C) are exponentiated versions of variables written in the lower case (such as z,
w, h, c):
Z = e, W = e, H=¢, C = e, etc. . (2.5)

The choice of § will not play a significant role in our consideration and can be re-absorbed
by a proper re-scaling of variables; we keep it to make a comparison to known algebras
easier. Throughout this paper, we use the following modified hyperbolic sine function and

g-theta function:%

@zzé_z—%
2

04(2)

Sing(z) := 2sinh ,
1 LT -1.n n
0y(2) ==~y = (27~ Z 2)1‘[1(1—2 lq )(1—Zq ).

(2.6)

®Recall that the ordinary g-theta function is defined as 04(2) := (Z;¢)o0(¢Z7; ¢) oo, where the infinite
g-Pochhammer symbol (X;q)oc := Hzozo(l — Xq") for |q| < 1.



Apart from the normalization factors that do not play a role in the later analysis, we divide
the canonical g-theta function by the factor of ZY/2 in order to convert it into an odd
function of z — this property will be important when we derive the quiver BPS algebras.

The three types of algebras: the quiver Yangians, the trigonometric quiver Yangians,
and the elliptic quiver Yangians, are generated by triplets of element (e(®(z), £(%)(2), wia ) (2))
and can then all be presented in a unified manner as

P (2) PO (w) = CXeb yO(w) YD (2) €=+,
z
z

WO fOw) = o (27 5,w)  fOL ),
e (2)e® (w) ~ (=Dl pr=b (5 w)e® (w)e@(z),

[e92), 7O} 2 ~00s (& = (2= 5 ) ~pa+ 08 (w-5)) |
(2.7)

J

where for the rational case, there is one set of 1, namely ¥ = ¢ _. These relations have a
lot of additional ingredients, let us explain an application of them all one by one.

Let us first explain the common features shared by the three classes of, namely
elliptic/trigonometric /rational, algebras in the definition (2.7). The Z, grading (i.e. the
Bose/Fermi statistics) of the e(® and f(®) generators is denoted by |a|, and is defined as

la| = (la = a| + 1) mod 2, (2.8)

while the wf )(z) generators are always even. Namely, the ¢(® and f(®) generators are
bosonic (resp. fermionic) when |a| = 0 (resp. |a| = 1) while the wr )(z) generators are
always bosonic. The notation [x,*} in (2.7) denotes the super-commutator, namely it is an
anti-commutator for two fermions and a commutator otherwise. And throughout the paper,
we define

A=z—w. (2.9)

The properties of the quiver BPS algebras are encoded in the so-called bond factor —
a function constructed from the quiver Q) according to the following rule

(_1)|1Ha|xab Hle{a—>b} C(u+hr)

a<=b .
) [repoay Clu—hy)’

@ (2.10)

where the form of the weight factor ((u) from each arrow depends on whether we are consid-
ering the rational, trigonometric, or elliptic case. Expression (2.10) is a direct generalization



of the bond factor function (see, say, [3, equation (2.9)]) from the rational case to the case
of a generic odd function ((u). Also we have introduced a supplementary sign factor, so
that the bond factor satisfies a reciprocity condition for a quiver of arbitrary chirality:

o) ¢ (—u) = 1. (2.11)

Clearly, we have a freedom in the definition (2.10) to multiply the r.h.s. expression by a
sign function (—1)fe, subject to fu, = fie (mod 2). For non-chiral quivers associated with
Calabi-Yau 3-folds without compact 4-cycles, the choice of the function f,; can be fixed by a
comparison with a canonical definition of quantum rational/trigonometric/elliptic algebras
associated with gA[mm. For algebras associated with chiral quivers, there is no other a priori
definition, hence there is no preferred choice of the sign function (—1)/a>. We propose (2.10)
as a canonical definition of the algebras while keeping in mind that, in principle, we can
simultaneously define the whole family of algebras that differ by a sign choice (—1)/e for
each arrow between quiver nodes.

Unlike the case of quiver Yangians, the bond factor (2.10) actually has to be slightly
modified before we can use it to define the algebras and study their representations, especially
for the general case of the chiral quivers. Therefore, we will call bond factor (2.10) bare.
As we will show later, to deal with chiral quivers and to study general representations (for

7

both non-chiral and chiral quivers),” we need to introduce the balanced bond factor:

P (2, w) = (ZW)%X‘” 0¥t (2 — w), (2.12)
where t is defined as
0 rational
= (2.13)
1 trig. /elliptic .

The prefactor (Z W)éx‘“’ in (2.12) is called the “balancing factor”, its key role is to balance
a Laurent expansion of (2.10) since for chiral quivers it may go over half-integer powers of
Z, and we would prefer to work with Laurent series in Z. For the rational case (i.e. the
quiver Yangian) or when the quiver is non-chiral, the balancing factor equals 1 and the
balanced bond factor reduces to the bare one. The balanced bond factor (2.12) satisfies the
reciprocity condition

a<:b(

bea(yw,2) =1, (2.14)

P (z,w)

where we have used the reciprocity for the bare bond factor (2.11) and that xqs + Xpa = 0.
The difference among the three classes of algebras are in (1) the weight factor ((u) in
the definition of the balanced bond factor ¢®<(z,w), (2) the value of the central term c,

”As shown in [3], the representations of a quiver algebra are related to the framing of the quivers, which in
general results in the shift of the algebra. The framed quiver is in general chiral, even when the corresponding
unframed quiver is non-chiral. The balanced bond factor of the framed quiver enters the description of the
representations of the algebra, see (3.13).



(3) the mode expansions of the generators (e(“)(z),w (2), f{(2)), (4) the meaning of ~
n (2.7) and (5) the definition of the propagator p(z). Let us now explain them in turn.

1. In the bare bond factor (2.10) and hence in the balanced bond factor (2.12), the weight
factor ((u) for each arrow is

U rational
C(u) := < Sing(u) trig. (2.15)
O4(u) elliptic,

where the functions Sing(u) and ©4(u) are defined in (2.6).

2. The central term reads:

(2.16)

0 rational
C =
c trig. /elliptic .

3. The three cases differ in the mode expansions for their generators. For the e(®(z) and
fla) (z) generators, for both the non-chiral and chiral quivers, we have

(a) f(a)

en n .
ZT Z Zin rational
neN neN
(@ e @ i o
el(2) = o and  f@(z) = ¢ > o rig. (2.17)
neZ nel
en(x a fﬁz) o ..
Z Z Z Z ——q" elliptic
nEZa€Z>0 HEZQEZ>0

For the 1+ generators in the case of non-chiral quivers,

Z Pl —(n+s() rational
n€l>o
@ _ ) 3 i),z (s) trig.
Vi(z) = T £ (2.18)
Sl o zF ) LN Sy 2T elliptic
nEL>o n€Z aeN

where we have used the fact that in the rational case, ¥ = 1+. Note that compared
with the known algebras for some of the non-chiral quivers in the literature, we have
introduces the additional integer s(® (called the “shift”) since it will be important when
studying the generic, in particular non-vacuum, representations of the algebras, see [3] for
the case of shifted quiver Yangians. For the ¢ generators in the case of chiral quivers,

Z lby(za)zi(nﬂ(a)) rational
nez
(a) .
$(z)={ 2 o, ¥ =) trig. (2.19)
neL
Z w an OZ:F n+s<a) + Z Z ’l/]i o aZ:ana elhptlc
ne”L neZ aeN



Note that for the chiral quivers, when we consider infinite-dimensional representations,
the information of the shift {s(®)} would be lost in the expansion of the wia ) (z) generators
and only visible in the representation; whereas for finite-dimensional representations,
the shift {s(®)} would be visible both in the representations and in the mode expansions

of 11 (2).

4. The meaning of the “~” signs are also different in the three classes. In the case of the
rational algebra relations are among Taylor series expansions around z = oo, therefore
the expansions of the L.h.s. and the r.h.s. are equivalent up to terms z"w™=% and z"=%w™.
In the trigonometric and elliptic cases we compare Laurent series in Z and W, namely,
for a relation L; ~ (P/Q)L2, where L; are two Laurent series and P/Q) is a ratio of two
hyperbolic sines or theta-functions, the “~” means that the Laurent expansions of Q)L
and PLy are equivalent.

5. Finally, the propagator p(z) is a formal delta function operator, defined differently for
the three cases:
rational

- 0(Z2) := Z z" trig. /elliptic
neZ

IS

p(z): (2.20)

where the d-function is a “formal” delta function. For details on the properties of the
formal delta function §(Z) see appendix A.

As explained in the introduction, the form of the algebras in (2.7) comes from the
natural trigonometric and elliptic generalizations of the quiver Yangians of [1], i.e. as
the uplift v — Sing(u) — O4(u), which will be confirmed later from the gauge theory
computation, see section 4. However, the trigonometric and elliptic versions have important
features that are absent in the rational case. In the algebra (2.7) these features manifest as
the appearance of ¢ and x4, as well as the fact that it is the balanced bond factor (2.12)
instead of the bare one (2.10) that enters the definition of the algebra (2.7). Note that
some of the new ingredients, such as the factor C¢'*Xeb in the first equation of the (2.7),
have been missing in most of the existing literature; this is because for the trigonometric
and elliptic versions it is often the case that only some of the non-chiral quivers have been
considered in the literature.

We perform four types of consistency checks for the algebra defined in (2.7). The
most straightforward one is to explicitly check the mutual consistency of various equations
of (2.7), in the spirit of Jacobi identities. For example, if we assume the last three equations,
i.e. the e-e, f-f, and e-f relations, in (2.7), we can derive all the remaining ones. (We leave
this computation to appendix B.)

The second consistency check is that when ¢ = 0, we can construct crystal-melting
representations, see section 3.

Thirdly, as for the three equations that we assume for mutual consistency checks, note
that since the e-e and f-f relations are both independent of ¢ — and the consistency check
for the ¢ = 0 case is taken care of by the construction of the crystal representations —



Figure 1. An example of a quiver and a Dynkin diagram associated with signature ¥ =
{+1a +17 +15 717 715 +17 71}

essentially we have only one important relation, namely the e-f relation, to justify, which
we do by comparing with the known algebras, see section 2.3.

Lastly, one can try to realize the algebra (2.7) explicitly using free fields. In applications
the so-called free field representation of the discussed algebras might become useful. As
far as we are aware, a complete free field realization is known only for algebras associated

with the root system of gA[ whereas for the subalgebra generated by wia ) (z) it can be

ns
constructed for general quivers. We discuss a free field realization for the subalgebras

generated by wia )(z) of our algebras in appendix C.

2.3 Comparison to known algebras

While our elliptic/trigonometric algebras are in general new, we can compare our results
against existing definitions in the literature, when the toric Calabi-Yau three-fold has no
compact four-cycles. Let us verify that this is indeed the case, by extending the similar
analysis for the quiver Yangians in [1].

Consider ﬁtmm. In order to specify the algebra we need to choose a Dynkin diagram.
This is determined by a signature (cf. [27, 28]):

Somnt {L2,...,m+n} — {+1, -1}, so that #(+1) = m, #(—1) =n, (2.21)
where in the following we consider indices modulo m + n.

Then the quiver and the superpotential are given by (see e.g. figure 1)

spin arrangement oioi1 =1 0iii1 = —1
Zip-parity Even Odd
Dynkin node —_— _zgz_
Ci (2.22)
quiver node L}Qéﬂ <AL—’O£1
B; Bit1 B; B
superpotential dWs|o; Tr C (Bit1Aip1 — AiBi)| =03 Tr Bis1Aip1 Ai B




Let us define the Cartan matrix and the auxiliary matrix following [28]:

b
Apj = (0i + 0iy1) 0ij — 0idijt1 — 050it1

(2.23)
M = 0ibi i1 — 05041, -
We can choose the following equivariant weights for the arrows:
]’L(Az) = 0; (—hl — h2) , h(BZ) = 0; (—hl + hg) , h(CZ) = 20;hy . (2.24)

The resulting relations for Tg(Q,,),) can then be transformed into:

VO (2) P (w) = P (w) ¥ (:)  e=+
ANz —ow |, : aMiphicz —w @
s (2) P (w) = — 9 (w) ) (2),
d i Z —ptii CW d wC’Z—p LW
(aMactez —ptaw) P (2)eD (w) = (aophactiz —w) D (wypl (2),
(dMuZ » ”W) e®(2)ed (w) = (—1)lll (dM”p iz W) @ (w)e® (), (2.25)
(50722 —p W) w () fD (w) = (a"p™ 5022 = W) Ol (2).
(a2 = p= 5w fO(z) [ () = (-0 (a¥op™52 —w) O w) 1),

[e(“)(z) ’ f(b)(w)} = —0;, (p(A —0) @Z;f (z - g) p(A+c) w(a) < ))

where
p=eM,  d=en (2.26)
On the other hand, the resulting relations for E;(Q,,,) can be transformed into:

P (2) 9 (w) = 9 (w)
Oy (2= w+c— A% hy + MZhy)

W(z)  e=4,
Oy (2= w+c+ A%y + MZhy)
0 (= -

O ()0 09 ()
9 (299 (w) = 69 @) (z),
0y (2 —w—c— AT hy + M5hy) " ] fc+AEjh1+MEjh2) i
AT M gl ME. 1
pruid i CFTe W/ Zq . _ pi LdMh o 2 Z/Wlq _ .
Moty ( ). W (2) e w) = -W i Y ). D (w) v (2),
A fcﬂW/Zlq) (ap*d™5C*i 2/ W q)
MZ AT MF X
P vid” wWW/Z|q , , . p iid hiZ /W g , ,
dMT 7 ) (1)(2) e(])(w) - _(_1)|ZHJ|W ( >oo e(])(w) e(l)(z),

apMd MW/ Z)q) (ap~*0a™52/Wlq)

—AF. —MF ~+L —AZ. ME. 1
wid i CF2 W/ Z|q ; _ wid " iCT2Z/Wlq
(v >°°w<;<z>f<f><w>:— G )

MO 7 o
(qp wid” w'CiEW/ZIq)OQ (ap*tad™s s Z/W\q>

2 (O (w) i (2),

7A§j 7MEJ‘ % MJ
aME g EZPAEJZM"Z'J‘Z; j qsoo FO(2) F9 (w) = (1)|ij|WEqp - jf\@,j ZZ;J? () £0(5).
01w} ==t (p@a 0wl (:=5) wa et (v-3)).
(2.27)

These relations can now be compared with (3.55)—(3.62) in [29].
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2.4 Serre relations

The relations given in (2.7) can in general be supplemented by further relations, often called
the Serre relations, without spoiling the consistency of the algebras. When (a maximal set
of) such relations are imposed we obtain the reduced elliptic quiver algebra E (Q, W):

E(Q,W)=E.(Q,W)/{(Serre relations)} . (2.28)

We can call the original algebra E-(Q, W) the unreduced elliptic quiver algebra when we want
to emphasize that the Serre relations are not imposed. We can similarly define the reduced
quantum-toroidal quiver algebra T4(Q, W) by imposing Serre relations on Tz(Q, W).
Serre relations are established naturally for the quivers corresponding to g[mm discussed
in section 2.3, see [28] for the quantum-toroidal cases, and [29] for the elliptic case with g,,.
For algebras associated with chiral quivers Serre relations are unknown in general since
there is no apparent bridge to a Lie superalgebra counterpart. Nevertheless we present our
proposal for relations that could play a role of the Serre relations in the cases of Calabi-Yau
three-folds with compact four-cycles in appendix D. To describe this, let us define the root
pairing by
(aula) = A7

4,30

(2.29)

and extend it over the weights by linearity. We define the weight operators following [28]:
tit; = tit;, t;eV)(2) 71 = gleileal el (z) | (2.30)
so that we can define a weight w(X) of the operator X through a relation:
t X t74 = gl x (2.31)
Finally we introduce a graded g-commutator:
[X,Y] = XY — (=)XIVlg= Wy x| (2.32)

In terms of these we can write down the following Serre relations for Tg(Q )

Sym,, ., [[e(i) (21), [{e(i)(zz),e(iﬂ)(w)M =0, AF#0. (2.33a)
Ifmn#2, m+n>2:
Sym, ., [e@ (), [0 (), [e(z2), e D ()] || =0, 4% =0. (2.33b)
If mn=2:
R TN SN S T ||
= {21 < w1, 22 & wa}, Alzl #0.
If min = 11:
Sym, . Symy,, ., He(l)(zl), [{6(2) (w1), [[8(1)(22),6(2) ('lUQ)]HH] =0. (2.33d)
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In these expressions Sym denotes the symmetrization of the expression with respect to

21,22
the exchange of z; and z5.

Here we should mention that our derivation of these relations works for an analytic
continuation of (2.7) when we treat the L.h.s. and the r.h.s. as functions rather than Laurent
series, and we use the bond factors simply as ratios of functions ((u) that are defined
in (2.15). In practice this implies that in addition to this derivation one needs to check
Serre relations for the first few generators in the mode expansion (2.17).

To derive the Serre relations for E;(Q,,,) let us introduce free field operators x;(2)

commuting with E;(Q,,) and having the following correlators:

p

A ME
.3 i Lo 7
OGN (2)) (arod ™20/ 20la) , (2.34)

=

(qp~*d 5525/ 211q) .

Using the vertex operators of x;(z) we can define new algebra generators analogous to
“dressed” generators in [30]:
EW(z) := eXiZ)el)(2) (2.35)

Then if the correlators are applied to the free fields, the new generators behave as those
of Tﬂ(QmM)

(dMEJZ —pAz%jW) <E(i)(21)E(j)(22)> -

= (—1)klll (dMEijij _ W) <E(j)(z2)E(i)(z1)> _ (2.36)

We can derive the corresponding Serre relations for the elliptic case by simply starting
with a relation for Tg(Q,,p»), substituting the generators e (z) with E®(z) and taking
correlators (x) of the whole expressions. The correlators will produce the necessary Pochham-
mer factors in the expressions. For instance, let us consider the simplest relation (2.33a).
After following the procedure described above, one obtains the following Serre relation

in ET(leTL)

(9p°Z2/21|4) o <(qplZl/W!q)oo (=" 22/ Wla) oo i)
(qp=2Z2/Z1|q0) oo \ (apZ1/Wa)sy  (apZ2/W|q)os
B 1 (@™ "W/ Zilq) (QP_IZ2/W\q)ooe(i) 26D (1)) (5
(o+r”) Wiz @l W e e 287
(gqp™'W/Z1lq) (qp’lW/Zz!q)ooe(i)
(apW/Z11q) o, (apW/Z2|q)

(w)el? (z1)e™ (22) -

(z1)€(i)(22)€(ii1)(w)> +{z1 22} =0.
We can compare this relation to (3.24) in [29] when n = 0 (or m = 0).

3 Representations from crystals

In this section we construct representations of the quiver BPS algebras in terms of the
statistical-mechanical model of crystal melting [31-37], generalizing the discussion for quiver
Yangians in [1].
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For the quiver Yangians, the (%) (z) are Cartan generators, and the crystal configura-
tions are eigenstates of 1/(?)(z). Based on a certain ansatz, one can bootstrap the entire
algebra using these crystal representations, see [1] for the unshifted quiver Yangian and [3]
for the shifted quiver Yangian.

By contrast, for the trigonometric and elliptic quiver Yangians, the 1/)3?) and 1[)@ gener-
ators do not commute for general c¢. As a consequence, the crystals are not representations
of the trigonometric and elliptic quiver Yangians, for general ¢. However, when ¢ = 0, there
are enough degeneration in the algebraic relations (2.7) so that the wﬁf) and ng’) generators
mutually commute, and the form of the algebraic relations are almost identical to those for
the rational quiver Yangian; as a result, the molten crystals that are representations of the
quiver Yangians are also representations of the trigonometric and elliptic quiver Yangians
when ¢ = 0. In this section, we will first review the crystals (see [36, 37]), then show that
they are representations of trigonometric and elliptic quiver BPS algebras when ¢ = 0.

3.1 Crystals from quivers

As we have explained, a quiver with a superpotential can encode the information of a
toric Calabi-Yau three-fold geometry. Such a quiver-superpotential pair actually has two
equivalent descriptions: as an abstract quiver graph with a superpotential (Q, W) or a
periodic quiver on a torus Q = (Qo, @1, Q2), where Q2 is the set of loops in the fundamental
domain of Q. (The equivalence between these two descriptions can be explained by brane
constructions from which the quiver description arises, see [26].) For the purpose of studying

the crystal representations, we will need the description of the quiver-superpotential pair as

a periodic quiver Q = (Qo, Q1, Q2).

To a pair (@, W) one associates a geometric object known as the quiver path algebra.
This construction goes as follows. Consider an algebra CQ of formal variables associated
to paths in a quiver. We impose a simple multiplication rule dictating that the result of
multiplication of two paths p; and po is the joint path p1ps if p1 and ps can be concatenated,
and zero otherwise. In this language the superpotential W is an element in CQ that is a
formal combination of loops in the quiver Q). It is natural to define a formal derivation of a
loop path ¢ with respect to any other path p as the sum of all possible complements of p in
loop £. Denote Zyy the two-sided ideal in CQ generated by 9;W for all I € Q1. The quiver
path algebra is then defined as:

p(Q W) = CQ/Tw . (3.1)

Each quiver arrow I € @)1 has two physical characteristics: the equivariant weight
(complex mass) and the R-charge. The former characteristic is a complex parameter hy
satisfying loop and vertex constraints discussed in section 2.1. The latter characteristic is
assigned to I in such a way that the total R-charges of all loop paths contributing to W is
+2 (instead of 0 for equivariant weights).

Consider all monomials in p(Q, W) corresponding to paths starting with one quiver
vertex v € QQp. All these monomials m can be uniquely characterized by their equivariant
weight h(m) and R-charge R(m). The set of possible values

(h(m), R(m)) € C x R (3.2)
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forms a lattice Cp in the 3d space. The R-charges can be chosen in such a way that R(I) > 0,
so that Cp is a part of a lattice filling only a convex region of the 3d space. By forgetting
the R-charge we obtain a 2d projection of Cy to the h-plane, and this projection can be
identified with a periodic quiver Q. Therefore an alternative definition of Cy is a lift of
paths in Q to 3d where the third coordinate is given by twice the number of loops around
faces the path is encircling.

The crystal Cy defines the vacuum representation of the quiver algebra, as studied
in [1, 2] for the quiver Yangians, and is named the canonical crystal in [3]. As shown in [3],
any subcrystal #C C Cy can be used to define a representation (although not every subcrystal
can give rise to an irreducible representations). Different subcrystals iC € Cy correspond
to different framings of the same quiver.® A triplet of quiver, superpotential and framing
defines a subcrystal C € Cy and thus defines a representation of a shifted quiver Yangian [3].
Here we would like to use a similar identification between crystals and representations of
T5(Q) and E-(Q).

A crystal #C is a configuration of points in 3d. We will call these points “atoms” and
denote them by [J. The atoms are “colored” by quiver vertices v € QQg. The coloring
function works as follows: when we project an atom O to a vertex in @, this vertex is a lift
of some vertex v € Q to the periodic quiver Q covering @, as a result we claim the color of
the atom [ is v and denote this as . The edges of the crystal correspond to multiplication
of corresponding monomials in p(Q, W) by I € ;. We use the notation I - [J to denote
a new atom that corresponds to a monomial in p(Q, W) that is given by multiplying the
monomial associated with [0 by I on the right.

For a crystal C we define a set of molten crystals K as a finite subset of C satisfying
the melting rule:

If 7-0Ois in K for an atom [J and for an edge I € 1,

then O itself is in K. (3.3)

Let us define the set Add(K) (resp. Rem(K)) as the set of atoms that can be added
(resp. subtracted) to (resp. from) K so that the resulting set is again a molten crystal.

An extensive selection of such crystal constructions can be found in [1, 3, 37]. Let
us mention here the simplest example of crystals associated with C3. The corresponding
unframed quiver is a trefoil quiver with a canonical superpotential, that corresponds to Q
represented by a triangular lattice:

y A . (3.4)

W TI‘B1 BQ,Bg

8 Actually in the construction of the canonical crystal Co, there is already a choice for the color of the
leading atom, which corresponds to the choice of the framed vertex f € Qo in the canonical framing.
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o @/\///\

) K b) Add(K) ¢) Rem(K)

Figure 2. Plane partition K = {{7,6,4,2},{6,5,3},{4,4,3},{3,3},{2,2},{1},{1}} and sets
Add(K) (red boxes) and Rem(K) (blue boxes).

A canonical crystal fills the first octant in a cubic lattice Z3. The molten crystals are
represented by plane partitions where atoms are depicted as boxes piling up in a corner of a
3d room (see figure 2). The corresponding set Add(K) (resp. Rem(K)) includes boxes that
can be added (resp. removed) to (resp. from) the pile such that the resulting construction
remains stable.

3.2 Representations for ¢ =0

In this subsection, we determine crystal representations of the algebra (2.7) when the central
charge is ¢ = 0.

A molten crystal representation ‘Rep is defined by a crystal !C, which is a subcrystal
of the canonical crystal Cy. (For the special case of {C = Cy, the representation ‘Rep is the
vacuum representation.) The module ‘Rep is spanned by vectors labeled by molten crystal
states |K) from #C.

Let us explain the ansatz for how the generators (e, 14, f) should act on the set of
crystal states {|K)}. The reasoning is almost identical to the one for the rational case of
the quiver Yangian, see [1, section 6.1].

1. For ¢ = 0, all the 9*(2) generators are Cartan generators.
V()P (w) = 9 (wp(2), e € =+, (3.5)

Therefore, they can have simultaneous eigenstates. Moreover, for ¢ = 0, 14 (2) and ¥_(z)
are actually indistinguishable, therefore the two have the same action:

P )K) = [ )] | 1K), (3.6)
where [x], are two expansions in the Laurent series defined in appendix A for the cases

of trigonometric and elliptic algebras. In the case of a rational algebra there is no need
to consider a Laurent expansions and both [x], coincide with the very argument x.
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2. The generator e(®(u) adds an atom to |K) and f((u) removes an atom from |K):

e(a)(u)|K): Z p(u—hg) EK—-K+Q) K+,
[aleAdd(A)

FOWK) = Y p(u—hg) FK = K-@) K@),
[ale Rem(K)

(3.7)

where p(u) captures the dependence on the spectral parameter and E(K — K + [a]) and
F(K — K+ [a) describe the coefficients for different final states. We further separate the
statistical factor 4+ from the modulus of the coefficients by defining
EK—->K+@Q) =¢K— K+@«)[K—K+@], (3.8)
FK 5 K+@) =K - K@) [K—K -], '
with
€K - K+@Q) ==+ and e(K - K—[)==+. (3.9)
(This ansatz takes exactly the same form as the one for the quiver Yangian, see [1,
egs. (6.2) and (6.3)].)
The goal now is to fix ¥(*), [K — K 4+ @], and ¢(K — K = [@). This takes five steps.

1. From the ¥ — e and ¥ — f relations, we have

W ()0 (w— hg) ~p (0 - hg) " (z,w) T (2). (3.10)
Given the form of the function p(u), taking ~ picks up the w — hg value, and we have
W (2) = 0"z, hy) U (2), (3.11)
which gives
W () = A ) TT T @ () - (3.12)
beQo [tleK

The prefactor ﬁw(()a) (u) describes the contribution from the ground state of the repre-
sentation fRep, and is determined by the shape of the crystal C. For the rational

case, it is given by [3, eq. (3.7)], and uplifting which gives its expression for the general

algebra (2.7). It is easiest to express ﬁwéa) (u) in the language of the framed quiver,” as

fs (u) = @ (u,0), (3.13)
where f denotes the framing vertex.

2. Let us define the notation
[K—-K+d—-K+@+]:=[K—=K+a&] [K+@&d—K+@+0e], (3.14)
[K—>K-@d—-K-@-]=[K—-K-U]-[K-&d—K-a-0r],
and
E(K=>K+a—>K+@+08)=eK—=K+@Q) eK+ad—K+&d+0m)),

(3.15)
E(K2K-a—->K-@d-08)=¢K—>K-M) - ¢K-—a—>K-[&—[0).

9For how to translate the shape of the crystal C to the framed quiver, see [3, section 3].
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Then from the e — e and f — f relations, we have the constraints on the coefficients
[K — K+ @] as

[K—-K+E—K+&+ L]
[K—=K+@— K+ &+ ]
[K—->K-@g—->K-g—-&
[K—-K-@—K-@-&]

= " (hg, hm)

(3.16)
a<:b (

h@,h@) ,

and
K=K+ —-K+B+@a) eK-K-8—-K-08-0a)
e(K—>K+a—-K+w+nm) eK-—-K-G—K-L-0)

= (=1)lallbl(3.17)
3. From the e — f relations, we have

DMK s K-m—>K|=[K—->K+@—K]= dim G(u— hg) ¥ U (w). (3.18)
—h[g

4. From the definition (3.14) and the constraints (3.16) and (3.18), one can determine the
solution for [K — K 4 [a] to be

[K— K+ @] = \/ lim  ¢(u—hg) ¥ (),
u—>h@

(3.19)

[[K—>K—@ﬂ—\/( Dl lim  ¢(u—hg) U (u).

u—>hlzl

For the reason behind the factor (—1)%l, see [1, section 6.5.3.3].

5. For the prescription on how to fix the statistical factors e(K — K %+ [a), see [1, section 6].
The explicit result for a specific choice of signs f,; (see the discussion below (2.14)) is
given in [2, equation (2.62)], and here we generalize it for the generic sign choice fu in
appendix E:

(K = K + @) = o5 [mywy’K] . (3.20)

In summary, the crystal representations for the rational, trigonometric, and elliptic quiver
BPS algebras (2.7) with ¢ = 0 are given by

PR = [0 ()], K),
\I/( (u) ﬁw(a H H (pacb u h@

beQo [BleK
VWK = > (K- K+m)p(u—hg)
[e]leAdd(K)
(3.21)
\/}LIL%C (u—f—h@) K + [a),
fPK) = Y K-> K-m)p(u-—hg)
[ale Rem(K)

u—0

\/( 1)lel lim ¢(u )\I/%) (U-i-h@) K — [a) .
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One can explicitly check that this representation is consistent with the algebraic rela-
tions (2.7), namely that (3.21) indeed gives a legitimate representation of the algebra (2.7)
when ¢ = 0. Further, one can check that by choosing the {(u) and p(u) to be the rational
ones in (2.15) and (2.20), respectively, the representation (3.21) reduces to the one for the
rational quiver Yangians of [1, 3].

We just saw that the [K — K =+ [a] are solved by demanding that the ansatz (3.6)
and (3.7) indeed give a representation of the algebra (2.7) when ¢ = 0. In the next section,
we will compute these coefficients directly from gauge theories. (For the rational case,
see [2, section 2]) for the unshifted quiver Yangians and [3, section 4] for the shifted quiver
Yangians.) Since they acquire an independent definition in the gauge theory, see (4.30),
we will use [K — K £ [@] to denote the coefficients that are computed directly from the
gauge theory.

The result from the gauge theory computation is that for all the rational, toroidal and
quantum elliptic quiver BPS algebras in the case ¢ = 0, the matrix elements satisfy:

—

Kt > K+a+0 =K+ =K+E - K— K+,
K — K+ &y — K+ [ + ) asb (.

KoK+ oK+ +0) (b, = bm,)

K+ @ + B —» K+ — K]
K+ +0; > K+@E - K

]
K = K +@— K| =lim ¢(t) U (¢ + hg)

— — | —

(3.22)

(ﬁM:b (h1 - h2) )

where we actually encounter a slightly modified bond factor (which satisfy the reciprocity
condition (2.14)):

, {H b}C(—Z—hI)

~a<=b _( 6a,b cia—

prete) = (1l (3.23)
Je{b—a}

and correspondingly a modified charge function

W9 (2) = ( I1 @) x [] & (= - h) - (3.24)

Ie{a—a} N [bleK

From (3.22) we can solve the coefficients [K — K + [@] to be

K- K+ =[K+E—K] = \/%i_%g'(t)\ilg) (t+ hg) - (3.25)

Using this set of coefficients, the matrix elements of generators are defined in the crystal
representation in the following way:

WK =D Y 0@ K)p(z - )

k€Z [dJe Add(K)
tXa,b
x K=K+ [[ (HgHg) * K+@),
beQo
leK
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PR =3 Y o-@K)p (- hg)

k€Z [aJ€Rem(K)
Kab
x[K=K-@ [[ (HaHm) * K-@),
beQo
[bleK
(a) - (a) > la—sbl[KO) 4K ()| Xab
1+ (2)[K) = | ¥ (2) - (1)@ [ (zHR) 1K), (3.26)
beQo
@GK 4

where ‘K(“)‘ is the total number of atoms of color a, and sign corrections read (see

appendix E):1?

7 @.K) = i allo + 80+ fa > -+ 10— a] +]a = bllb

(3.27)
o- (@,K) = oy (@, K) x [ (~1)/Pl,
[eleK

For an unprepared reader the representation (3.26) might seem more complicated
than (3.21). In fact, the difference between these two sets of formulas are concentrated
in a few factors that we introduced to incorporate the difference between our definitions
of the two bond factors, ¢ in (2.12) and ¢ in (3.23). From the algebra point of view, the
definition of ¢ seems more natural, whereas from the physics point of view ¢ emerges as
the result of the supersymmetric localization. As we have shown explicitly, they give rise to
equivalent representations.

4 Toroidal and elliptic quiver algebras from gauge theories

In this section we derive the elliptic quiver algebra E,(Q, W) from the analysis of the three-
dimensional A = 2 quiver gauge theory associated with the quiver ) and the superpotential
W. (See [26] and references therein for realizations of these theories from D-branes and
NS5-branes.) The theory is then compactified on the elliptic curve of modulus 7, along
which the theory reduces to a two-dimensional N' = (2,2) theory for the toroidal quiver
algebra and a one-dimensional N' = 4 theory for the quiver Yangian.

4.1 Vortices on elliptic curves

We consider the three-dimensional quiver gauge theory associated with a quiver @ and a
superpotential W. For a node v € Qo we have an N = 2 vector multiplet (A, X, A, 5\) (with
A a gauge field, X a scalar in the adjoint representation, and X, \ are fermions), and an
Fayet-Illiopolous (FI) parameter r:

AELUZ)O,I,Z’ X(”); r®), (4.1)

0Here we used a relation

la = b + xab|b = a| =|a = b+ |b—a|+ |a—b||b > a] mod 2.
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Here and in the following we choose the 1 and 2-directions to be along the elliptic curve,
with 0 being the residual direction. For an arrow I € @1, we have an A = 2 chiral multiplet
(¢,10,9) (¢ is a complex scalar and 1), 1) are fermions), with a flavor charge (equivariant
parameter) hy:

¢r; hr. (4.2)

In the rest of the paper we would like to work with the so-called cyclic chamber (cf. [3]):
r >0, veQ. (4.3)

The vacuum moduli space is described by a set of equations (see appendix F):

Fl(g):r(v)_ > (Z ¢1¢}— > ¢T]¢J>7U€Q07

weQo \: w—w Jivow
X1y ) = Do) X =0, T € Q1 (4.4)
0201 vsw) + 1AM D1y — 101 vsu) AL + R (1 vy = 0, 1 € Q1
Op,W(p) =0, I €Qr.

The first set of equations in (4.4) describes vortices along the elliptic curve. The second
and the third equations combine into a single set of equations if we are discussing a four-
dimensional N = 1 theory instead of its dimensional reduction, the three-dimensional A/ = 2
theory discussed here. The fourth set of equations are simply the F-term constraints for
the chiral multiplet scalars.

The space of solutions to (4.4) modulo gauge equivalence gives the moduli space

Mvortex = (44)/g ; (45)

which we call the vortex moduli space. The BPS Hilbert space is the equivariant O-
cohomology of the moduli space

HBps = Hé (MvorteX7 Q) ) (46)

where the explicit expressions for the supercharge Q can be found in appendix F.
There is a BPS bound for the Hamiltonian eigenvalues:

H>Z, (4.7)

where the central charge reads:

Z=3 / FY dx. (4.8)

v€Qo

The Bradlow limit (see e.g. [38, 39]) on the vortex number reads:

Z /TrFl(;}) P’z < (Z r(”)) x Area . (4.9)

VEQRQ VEQQ
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The Hilbert space (4.6) is naturally graded by a lattice of central charges that is a
lattice of vorticity quantum numbers. The Bradlow limit (4.9) indicates that the number of
graded components is finite in general.

The BPS Hilbert space can be calculated by usual localization techniques where wave
functions will be represented by effective Gaussian fluctuations around the classical vacua.
This procedure can be systematized in the Wilsonian renormalization approach where the
renormalization is one-loop exact. The linearized deviation modes will be organized in the
usual Kaluza-Klein (KK) towers of winding modes, whose temporal frequency is given by
the following effective expression:

w = pyn + pym + flavor charge. (4.10)

As a result of the compactification along the cycles of the elliptic curve, either p, or p,
tends to infinity so that the effective flavor charges for the corresponding higher winding
modes become greater than the renormalization cutoff. Those modes thus do not contribute

to the effective action. During this procedure the area of the elliptic curve:

472

PzPy
shrinks and does not allow vortex solutions due to (4.9).

Area = (4.11)

Therefore we assume that the elliptic and toroidal quiver BPS algebras correspond to
the zero vorticity graded component of the BPS Hilbert space.

In the next subsection we will consider the zero vorticity BPS Hilbert space and
construct the representations for E-(Q, W) and Tg(Q, W) algebras; and we will return to
the discussion on contributions of vortices later in subsection 4.3.

4.2 Zero vorticity BPS subalgebra

The energy functional is positive definite on a BPS configuration and contains a squared

£=Y /d% T |y
vEQRD
For the zero vorticity component of the BPS Hilbert space Z = 0, therefore the only

field-strength term:
2
+...=2Z. (4.12)

solutions to the differential equations (4.4) are constant field configurations, and (4.4)
reduces to a system of algebraic equations for the expectation values (and hence with the
z-derivatives dropped):

-5 (5 esl- X o) <0ve

wEQRo \:w—v J:v—w
X610 = Oy X =0, I € Q1 (4.13)
FAL (1 0r) = 101 0) AL+ h1(1 05wy = 0, T € Q1
W () =0, I € Q1.
The discussion is then essentially the same as in the case of quantum mechanics in [2], if we

disregard the periodicities along the elliptic curve. In particular the torus fixed points of
the moduli space are given by three-dimensional crystals.
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By invoking the Narasimhan-Seshadri-Hitchin-Kobayashi correspondence, we can sim-
plify the equations if we complexify the gauge transformations. This gives the moduli space
of quiver representations:

Vver, d, = dim V,

R(QW,d) = Gawswyeq € Hom(Vy, Vo) ¢ / T GL(d,,C), (4.14)
a¢aW =0 vEQo

where the FI parameters r, are now traded for the stability parameters 6,. Note that more
precisely we should rather consider isomorphism classes of quiver representations where a
homomorphism of quiver representations R and R’ is defined as a collection of linear maps:

7, € Hom(V,,,V.)), v € Qo, (4.15)

such that the following diagram commutes:

<f> a:v—w
v (av—w) V.
To / Tw (4.16)
v ¢(a:v%w) v

As in [2] we consider large values of the stability parameters 6,, and consider the
infrared effective theory where heavy degrees of freedom are integrated out. This leaves the
infrared effective meson space

chson

ERIR— @ {¢a> h } (4'17)

meson charge

as a tangent bundle in R to a fixed point defined by K modulo linearized gauge transforma-
tions, and the effective wave-function ¥ is a function on this moduli space.

Since we are interested in the BPS sectors the wave-function is annihilated by the
effective supercharge Qéeﬁ), which reads in terms of meson fields as (see (F.18) and [2]):

Q(eﬁ /d2 |:5¢ ? + L5 /5pa ( 0:0a +h d)a) ) (4'18)

where we substituted the fermion fields by suitable forms on the cotangent bundle to the
field configuration space. While this expression of the supercharge involves functional
derivatives, we can be more explicit if we decompose the fields into an orthogonal basis of
doubly-periodic functions:

,y) = D Gmae”m ), (4.19)

m,ne’

where we parameterize the elliptic curve with modulus 7 in the following way:

a ‘ a(x—i_ y)
= T
' 4.2
0 = grgre (9 — 705) . (4.20)

a 27 2ialmT
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The resulting supercharge decomposes over modes as

Nines
~(off meson _ a
Q(Qe ) o Z Z (d(bam%n + wq(m,n) La/&ba,m,n) , (4.21)
a=1 m,n€Z a¢a,m,n
where the effective frequencies w,(m,n) are given by
(myn) = =T, (4.22)
wa(m,n) = — = — a- .

Following [2] (see also [40]), we identify the effective BPS wave functions in fixed points
with the Euler classes of cotangent bundles, and a Thom representative for such an Euler
class is given by a character:

NmeSOn
Eul (Rir) ~ H H wq(m,n). (4.23)
a=1 m,neZ

Now the contribution from a single meson reads:

¢-regularization h ImT ~
I walmn) ————— o (" 7]7) ~ Clha). (4.24)
m,ne”L
where
1 > .
Y11(z|7) == —2¢* sinmz H (1—¢*% (1 —2¢%% cos 27z + q4k) , qg=¢e"T, (4.25)

k=0

is the Jacobi theta function satisfying ¥11(—z|7) = —t11(z|7). In terms of O4(2) in (2.6)
we have:

I11(2]7) = —ig7 (6% ¢*)ocOq(2) , (4.26)

provided that the map between lower case variables and upper case variables is given
by Z = 2™z,

Apparently, the Euler class we are calculating is defined by a chiral Dirac determinant
on the Riemann surface. Strictly speaking this quantity is not a periodic holomorphic
gauge-invariant scalar as the naive product formula (4.24) suggests. The (-regularization
breaks a part of symmetries. Rather a regularization is chosen in such a way that the result
is a holomorphic section of a holomorphic line bundle on the torus Jacobian [41], in this way
((z) acquires properties that will be crucial for us as we will see soon: ((z) is a holomorphic
odd function.

So far we have focused on 3d N/ = 2 quiver gauge theories on the elliptic curve. However,
it is now clear that the same discussion will go through in parallel for 2d N' = (2,2) theory
on a circle, or for 1d N/ = 4 quantum mechanics; such dimensional reductions lead to
shrinking cycles of the elliptic curve that reduce the theta function to a hyperbolic sine
function (for 2d) and a linear function (for 1d), when both or one of the cycles are contracted,
respectively. As a result we derive the sequence of reductions depicted in (1.1).
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Following this observation we propose a generic expression for a regularized Euler class
for the meson space following [2, eq. (3.29)]:

L2
Eule (Rr) := (=) Lo L TT ((ha), (4.27)
a: hq#0

where the function ( is defined for in (2.15) and it depends on the choice of the algebra
(equivalently the dimensionality of the gauge theory).

We define the generators of the BPS algebra following [2, 3] (analogously to [42, 43])
as the Hecke modification operators for bundles carried by D-branes. As a result of the
action of Hecke modifications, the quiver representations are embedded into each other:

R (Q, W, dj ; R (Qa W,d+ 1'0) 7 (4.28)

where 1, is a simple vector with a unit at position v and zeros elsewhere. By embedding
we imply that there is a homomorphism defined in (4.15) from the bigger space into the
smaller one.

For fixed points on the representation, this homomorphism is possible only if one of the
corresponding crystals is embedded into the other crystal. In other words the corresponding
crystals differ by just a single atom and we can denote them as

K and K+ 0.
We define the incidence locus in the following way:
RR(K,K+0) :={Rgr(K) cRr(EK+0O)} CcRr(K) ®Rr(K+0O). (4.29)

Defined in this way the incidence locus is a subspace of a graded meson space and,
therefore, it is a graded meson space itself. Correspondingly, the Euler class can be defined
for the incidence locus as well.

We define matrix elements in the following way:

L Eulc (S)E{IR(K))
K= K O = G (K, K+ 0)
_ Eul (X))
[K = K-0]:= Eul Rr(K - 0,K))

(4.30)

While we do not have generic combinatorial closed formulas for these expressions, we
have analyzed these expressions for a large number of rather generic configurations with
the help of Mathematica. In all the examples presented in [2, 3], which include various
Calabi-Yau three-folds (both without and with compact 4-cycles) and the various framed
quivers for them (which correspond to different representations), we find that the following
conclusion holds:

(4.30) satisfies (3.22), (4.31)
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provided that Eule is a generalized Euler class (4.27) for an arbitrary odd function (:
((=2) = =((2). (4.32)

To complete this subsection let us note that in the vacuum a complexified Wilson loop:

W = Pexp (/ Aydx! + i/AQdCUZ) (4.33)

commutes with the supercharge QQ, therefore it contributes to the BPS algebra. It is
natural to consider a generating function for these observables, and its action is diagonal in
the crystal basis:

Tep(z— W)IK) = 3 p (2 — ho) [K). (4.34)

OeK

By mixing these operators with (4.30) one can re-construct the whole crystal representa-
tion (3.26) along the lines of [3, section 4.3]. Mathematically we treat these operators as a
representation of a subalgebra generated by the elements ¢§§ )(z) (see appendix C).

4.3 On vortices and 4d crystals

The dynamics of vortices is rather rich [38, 39, 44-50] and deserves a separate discussion.
Apparently, an inclusion of non-zero-vorticity BPS states into the whole BPS dynamics will
extend the BPS algebra. As we have seen already, however, such topological configurations
are a feature of super-Yang-Mills-Higgs theory in flat 241 space-time dimensions, and
hence those states will not survive during a compactification from 3d to 1d — the Bradlow
limit (4.9) singles out states with zero vorticity. Therefore the dynamics of the vortex BPS
states seems to be irrelevant for the algebra hierarchy (1.1) and goes beyond the scope of
the present paper. In this subsection we will highlight briefly some natural perspectives for
the BPS algebra modifications and extensions with vortices included, and leave a thorough
approach to this problem for discussions elsewhere.

Let us start with simple Abrikosov-Nielsen-Olesen (ANO) Abelian vortices in a super
Yang-Mills-Higgs model with a single chiral scalar. The vortex moduli space for this
system reads:

F=D wy
Mvortex = Dzﬁb =0 /Q, (435)
X =

where wy: is the top volume form on the Riemann surface . It is well-known that this
moduli space admits a smooth induced metric and is parameterized by the zeros of the
chiral field ¢ on ¥ [44, 46, 48]. The topological charge — the vorticity number — is defined
by the first Chern character of the resulting gauge bundle and coincides with the number of
zeros of ¢:

1
n:Q/F:#ofzeros of ¢. (4.36)
T
s

At low energies the wave-functions of BPS states containing vortices localize to the
cohomologies of the vortex moduli space:

<%0BPS = H* (Mvortex) . (437)
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Singular monopole/anti-monopole operators are defined in [51-53]. The Q2 supersym-
metry preserving version of this operators has the following form:

My ~exp |+ | 27 X3 + iy — 27i / dz°D ||, (4.38)
D.s.

where 0,7 = me ¥A is the dual photon field and the last term (namely the integration
over the time-like Dirac string) is required by the supersymmetry. The choice of the sign
in (4.38) depends whether a monopole or anti-monopole operator is chosen and which part
of the original supersymmetry it preserves. The (anti-)monopole operator raises (lowers)
the vorticity number of a BPS state by 1:

<“ﬂﬂ4ih0 “’5mmil-

On a non-trivial surface the algebra of monopole operators becomes extended naturally
by mixing with zero-mode fields in the vortex background. In the simplest example of
a single vortex on a torus surface, the BPS Hilbert space is identified simply with the
cohomologies of the surface (see e.g. [50]) and has dimension 4. We therefore expect the
monopole operator to have, in fact, 4 non-trivial matrix elements pairing the vacuum with
4 vorticity-1 states.

In the IR the gauge group is broken first to its Abelian subgroup:

Gir = U(1)®KI (4.39)

where each U(1) factor is associated with an atom of a crystal, and |K] is the total number
of atoms in crystal K. Further this group is broken completely by the chiral field vacuum
expectation values (VEVs).

The fields producing VEVs in the IR can be described as “baryons”. For each given
atom [J € K consider a path gg in the crystal K connecting this atom to any root atom.
We can define baryon fields as products over matrix elements associated with arrow links 1
in the path gg:

Bo= ][] ¢:- (4.40)
Iepn
Since the VEVs of ¢ satisfy the superpotential condition (the loop constraint), the expec-
tation value (4.40) is independent of the concrete choice of the path pn. The baryon B
has an electric charge +1 with respect to the U(1)g gauge subgroup in (4.39) associated
with atom [J. This subgroup is broken by the VEV of Bg. If Bg has a k-th order zero at
point z € ¥ then this point is pinched by & units of magnetic flux of U(1)g.

In general, the dynamics of such vortices is rather involved, since we need to take into
account the F-term constraints for the expectation values. We can nevertheless calculate
easily their quantum numbers. Let us define a vector of vortex numbers associated with
the atoms of the crystal K:

Nic = {notoek, no€Zxo. (4.41)
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The numbers ng define the magnetic flux of U(1)g through ¥ and how many zeros the field
Bp has on X.

The factorization condition (4.40) imposes further restrictions on possible values of
Nk. Indeed for two atoms [ and Oy connected by an arrow link I, the baryons satisfy a
factorization relation:

Bg, = ¢1Bo;, - (4.42)

An expectation value of the chiral field ¢y is also physically observable, therefore ¢; is not
allowed to have poles on 3, only zeros. Therefore we derive a constraint for the zeros of the
baryon fields or, equivalently, the fluxes of U(1) components in (4.39):

If for a pair of atoms [J; and Oy there is

(4.43)
a link {Dl — DQ} in K no, < no, .

The constraint (4.43) has a lot in common with the melting rule for 3d crystals (3.3). If one
considers the case of plane-partition molten crystals associated with C2, then one assigns
numbers to boxes of the plane partition following the rule (4.43) with inequality ng, < ng,
substituted by ng, > ng,. The result then will be a 3d image of a 4d solid partition.

To a pair (K, A7K) satisfying (4.43) one can assign a 4d configuration of atoms in a
space parameterized by the following axes:

A* = (hy, hy, R-charge,n) CC x R x Z,

where the atoms are arranged in the following way. We start with embedding the 3d crystal
lattice in A* by simply assigning to all the atoms [J € K the fourth coordinate equal to
0, then we fill the points along the fourth axis of the lattice A* starting with 0 and going
upwards up to n’ = N — ng for some large common number N (for example as N we can
accept the Bradlow limit (4.9)). All such configurations represent molten 4d crystals in
the lattice A* where the lattice is generated by the quiver maps @1 all having the fourth
coordinate n equal to zero and a new monopole map M, having coordinates (0,0,0,1).

We should stress that the appearance of 4d crystals is not surprising. Vortices are quasi-
particles in the super-Yang-Mills-Higgs theory associated to a system of D8/D6/D4/D2/D0
branes probing the whole geometry of CY3 x T2, where the torus 7 is a spatial slice of our
system. An appearance of 4d melting crystals (also referred to as brane brick models) was
already noticed in the literature (see e.g. [54, 55]) in applications to enumerative geometry
counting problems of toric Calabi-Yau four-folds [56-58]. Although CY3 x T2 is not a toric
CY4 (for which a color/shape generalization of the solid partition should be relevant [59, 60],
nevertheless we expect that these two setups may have common features, in their countings
for BPS states of D-branes.

5 Hopf algebra and shuffle algebra from gauge theories

In the previous section we have seen that the quiver gauge theories give first-principle
derivations of the representations of our quiver BPS algebras. In this section we see
the added bonus that the quiver gauge theories also explain naturally the Hopf-algebra
structures and shuffle-algebra structures.
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5.1 Coproduct on crystal representations

For the discussion of the coproduct, the crucial ingredients are the representations of the
shifted quiver Yangians in terms of non-canonical crystals [3]. While we refer [3] for the
details, the essential points are that we change the framing of the quiver, which in turn
makes it possible to start growing crystals at different multiple points (‘starters’) on the
spectral curve. For the toroidal case the spectral curve is a cylinder and this looks as follows:

! / /
\ L \ L \ L
. . v 0

ma me9 ms

KiUKoUKsU...— 0 (51)

Unlike shifted quiver Yangian representations considered in [3], the crystal 2d lattices are
shifted with respect to each other along the spectral parameter cylinder for generic vectors
that are not an integral combination of hy, ho and the cylinder circumference, therefore the
crystals are not intersecting in general.

We treat a configuration like (5.1) as a disjoint union of crystals, we will denote a state
corresponding to multiple crystals K; growing from different seeds in the following way:

|K1—|—K2—|—K3—|—>

We can observe naturally an analogy between these crystal configurations and partition
vectors of [61]. An application to a braiding problem [62] suggests to treat multiple crystal
configurations as tensor products of representations associated with individual crystals
analogously to [2, section 2.7].

There is a certain freedom in the definition of the tensor product and the coproduct
action on it. For example, there are different variants of the coproduct on quantum
enveloping algebras, obtained by twisting the canonical coproduct. Moreover, for any
definition there are two canonical ways to define a coproduct that are related by the
R-matrix morphism. For us there is a freedom in choosing a representation. Although
we expect that a bootstrap representation (3.25) and a representation following from the
QFT localization (4.30) are isomorphic, the state norms in these two representations are
different. We will concentrate this freedom in a function w to be defined in such a way
that the coproduct will acquire a certain canonical form. Eventually the tensor product of
representations is defined in the following way:

K1) @ [K2) = u(Kq, K2)[Ki + Ka) . (5.2)

In [2, section 2.7] the function u was treated as an additional statistical factor keeping track
of ordering crystals in the tensor product.
For multiple tensor factors the relation has the following form:

®\Ki> = ZK> [T uXK: K;). (5.3)

1<J
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The right hand side of (5.2) is a vector of an ordinary crystal representation, and for

the algebra action on it we can use expressions (3.26). It is natural to treat this action
of the generator g on the left hand side of (5.2) as the coproduct A(g). Notice that on
the right hand side the generators satisfy algebra relations, and, therefore, A is an algebra

homomorphism by construction.

Summarizing, we derive the following representation for the coproduct action on the

bootstrap representation (3.25):

A (e(a)(z)> IKi) ® |Kg) =

u(Kq, K
= > MU+(@7K1)0+(@,K2)X
[eAdd(K:) 1 1522

0@ (hg)p(z — hg) (K1 — Ky + @] [Ky + &) ® [Ka)+

u(Kl, KQ)

+ Y
[@eAdd(Ka) u(Ky, Ke + @)

o4 (lal, K1)o ([, K2) %
% /0P (h)p (2 — hg) [Ka — Ko + @] K1) @ Ky + &)

A(F))K) ® [Ka) =
_ _ulK1,Ks)
o Z U(K1 — @,KQ)

EERem(Kl)

o_(d, Kq)o_ ([, Ka) x

x 1/ 028 (hg)p (2 — hg) [K1 = Ky — @] |K; — @) ® [Ka)+

P Y Rk g @K@ K

keZ[JeK; (a)
%\ 0. i) (hg)p (= — hg) [Ka — Ko — @] [K1) @ [Ka — @),

where

o= [ [=¢C(h)].

Ic{a—a}

Also we used the following short-hand notations:

¢a<:b<2 w) (ZW)QX” a<:b(z o 'U}) 7

W) =00 [T 1] (2Hg) *
beQo [b]leK

We choose the following function u:

ol

u(Kq,Kg) = H H vy (B2, [e)y) { p e (h@1 7h@2>}
la]; €Ky [bl2€Ka
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For this choice, the expressions for the generator actions simplify:

A () Kn) @ [K2) =
= Y oi(@K)p (2 - hg) K1 = Ki + @] K1 + &) ® [Ko)+

[aJeAdd(K1)
+ Y o(Ky,K2)au U (hg) o4 (@ Ki)p (2 — h) Ko — Ko + & [Ki) @ Ko + @),
[aleAdd(K>)

(5.8)
A (F(2)) K1) @ [Ka) =

= Y oK, K2)a. V) (hg) o- (@, K)p (= — hg) (K1 — Ky — @] [Ki — &) ® [Ka)+
[aleRem(K7)

+ Z o_ ([, Ky)p (Z—h) Ko = Ko — [@] K1) @ Ko — [@)
[eJ€Rem(K2)

where
oK, Ka)= [[ T[] (-~ (5.9)
lal; €K1 [alz€Ko
is a mutual statistics factor for a pair of crystals.
Let us define the following action of graded generators on the tensor product:

(et <> [K1) @ [Ks) = (e (2)[Ky) ) @ [Ka),

(1@ e (2)[K1) © [K) = oK1, Ko)[Ka) @ () () K2)) (5.10)
(f@ > 1[K1) @ [Ks) = o Kl,K2>(f<a><z>rK1>)®\Kz>, ‘
(1@ f@(2)[K1) © [Ks) = K1) @ (£(2)[Ka)) -

The tensor product is defined canonically for homogeneous elements in the following way:

(21 @ y1) (22 @ y2) = (1) (2129) @ (13) - (5.11)
The function ¥ in expression (5.8) is a product:
U (h) ~ [T (h@ = hgy) » (5.12)
@l
where O € K; and [0 € K for the raising generators A(e), and the situation is opposite
for the lowering generators A(f). We assume that the crystals are widely separated:

Im1| < ma| < ms] < ... . (5.13)
This allows one to approximate the following ratios:

HD/HD’ ~ \m1|/|m2| < 1, for O€ Ky, O e Ko,

5.14
H[]/HD/N‘TTLQ|/|TI’L1|>>1,fOI'|:|€K2, D,GKl, ( )

so that the functions ¥(hg) in (5.8) can be represented by the corresponding convergent
series [U(hg)],. The Taylor series can be combined with the following Laurent series of the
delta function:

[W(ho)ly p(z = ho) = [¥(2)l1 p(z — ho) -
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Using these manipulations, we derive the following closed-form expressions for the coproducts
of the raising/lowering generators:

A (69(2)) = e (2) @ 1+ 9l (2) @ e (2),
A(f92) = auf(2) @ v (2) + 1@ f(2).

The corresponding expressions for the coproducts for the Cartan generators can also

(5.15)

be easily derived since the Cartan generators act diagonally in the crystal basis.
Having our quiver BPS algebra A we can introduce a co-unit ¢ : A - A ® A and an
antipode S : A — A satisfying [63]:
mo(e®id)oA=mo(e®id)o A =id,
[mo (S®id)oA](a) =[mo(id® S)oA](a) =¢(a)-1,

where m is a multiplication. Therefore our BPS algebra is a Hopf algebra.

(5.16)

For future reference let us list here the whole set of relations (compare to [28, sec-
tion 4.2]):

A(d9(2)) = (@) ® 1+ 4 (2) ® @ (2),
A (f(a)(z)> = /D (2) ® ¢Sf)(z) +1® f9(2),
A=) = 0l (z) @ 0l (2),
e (=) == (7)) =0, e (¢17(2)) =0z, (5.17)
5 (e92) =~ (1.02)) " ez).
$(F() 1

= f(a) (qa )
5 (00(2) = (Bul(2)

As a result the coproduct A and the co-unit € are algebra homomorphisms, whereas
the antipode S is an algebra anti-homomorphism:

S(zy) = (~1)"S(y)S ().

We should stress that the resulting coproduct structure is a bit naive. It works well for
the quantum toroidal algebras (see e.g. [11]). However the canonical coproduct structures
chosen for affine Yangians [20] and quantum elliptic algebras [64-66] are more intricate.
5.2 Shuffle algebra

Consider a modification of the Borel positive part of the crystal representation (3.26) where
extra factors are absent:

E)K) = Y plz—hg) K= K+@ [K+E). (5.18)
[ale Add(K)

These generators satisfy a different algebra:
2@ (2)e® (w) = b (z — w) e (w)e(z), (5.19)
where the modified bond factor @ is defined in (3.23). We will call this algebra EX(Q).
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Following [67, 68] we define a function:

II ((z—w-—nhy)
Aap(z,w) == Ie{b—;azz — (5.20)
Using this definition it is possible to recombine the generator relations as
Aap(z,w) 69 (2)e® (w) = Ny o(w, 2) 60 (w)e @ (2). (5.21)

In what follows we will construct a shuffle algebra Sh(Q) associated to a quiver @
following [69]. It will be natural to identify this algebra with an algebra of the Coulomb
branch, similar to the one constructed in [70], whereas the BPS algebra constructed in
section 4.2 can be called an algebra of the Higgs branch (since we performed the localization
with respect to the Higgs branch of our quantum field theory). A generic approach to
localization dictates that both ways of localization are expected to give isomorphic Hilbert
spaces of BPS states, and this observation is referred to as the Higgs-Coulomb duality in
the literature. However, the Higgs-Coulomb duality should be approached with some care
(see e.g. [71]). The reason is that both Higgs and Coulomb branches may have singularities,
so that not all the BPS states are well defined in both frames. We will treat the following
homomorphism:

A

£: EI(Q) — Sh(Q), (5.22)

as being reminiscent of the Higgs-Coulomb duality.

In the literature [68, 72—75] on the shuffle algebras related to examples of quantum
Yangians, toroidal and elliptic algebras, it is proven that the homomorphism (5.22) may go
both ways, promoting ¢ to an algebra isomorphism.

Analogously to [69] we consider a subspace Sh(Q, Lf), where d is a dimension vector of
the quiver, being generated by Laurent series in the variables {z;,}. The index a run over
the quiver nodes, and i = 1,...,d,. The functions generating Sh(Q, cf) are symmetric in
each group of variables {xi,a}?;l labeled by a € Qp. This symmetry is reminiscent of the
Weyl subgroup of the broken gauge symmetry of the quantum filed theory in question. The

shuffle product is a binary operation acting in the following way:
w: Sh(Q,d) x Sh(Q,d) — Sh(Q,d+d). (5.23)

Explicitly the shuffle product acts on elements of Sh(Q) in the following way (compare
to [69, Theorem 2| and [76, Proposition 2.3] for generalized cohomology theories):

(fwg) ({ﬂfi,a} U {x;’a}) =

do 4
I I I IIII C(iﬂ},b—ffi,a—hf) (5.24)

) a€Qo beQo Ie{a—b}i=1j=1

0T 11 ¢ (), — o)

c€Qo i=1j=1

= Sym ¢ f({zia}) g ({x;a}

shuffles
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where the symmetrization is re-shuffling the elements of the groups {z;,} and {z],} in
dq

such a way that the result is symmetric with respect to each subgroup {xm}fil U{g .}y

for each a € Qq, and the total number of shuffles is

11 (d“ +d@> . (5.25)

a€Qo a
Let us rewrite this definition in a more “field-theoretic way.” Let us introduce a coupling
between two types of variables:

A (xi,av x;b) 1= Ao,a(Tj b, Tia) 5 (5.26)
and combine double indices (i,a) in single indices . Thus one could rewrite (5.24) in the
following way:

(fug) ({z} u{a}) = Sym {f({iv})g({w’}) HA(wa,:r’g)} : (5.27)

shuffles .8

In this form it becomes clear that the shuffle product is associative.

The homomorphism £ is then given by a simple identification of generator modes é%a)

n

., where each generator of
k)

with a multiplication in the shuffle algebra by a monomial z
E+(Q) corresponds to a new index .

To justify this definition it is enough to show that simple generators satisfy (5.21) and
extend it to the whole algebra by the shuffle product associativity. Indeed notice that for

simple generators we have the following relations:

€ a2, 0)e@ (2)e® (w)] = Aap(z,w) € [0 (2)] w e [V (w)]
" k 7 k
= Aap(z, w) (Z ZZ) w (Z ZI;‘“) = Agp(2,w) Sym {Z Z—Z Z ibk/\b,a(yb,a:a)}
neL

nezZ keZ shuffles keZ

n k
= Aap(2, W) Mpa(w, ) Sym {Z To %} = ¢ [Ma(w, 2)e®(w)e ()] . (5.28)
shuffies | ez, # kez v

6 Beyond elliptic BPS algebras: hyperelliptic curves and generalized
cohomologies

In our discussion of elliptic and toroidal quiver algebras, it has become clear that one of
the essential ingredients is the choice of an odd function (: once we fix this we can define
the generalized Euler class by (4.27), and compute all the matrix elements of the algebra
generators, thus recovering the representations of the algebra.

In fact, one can be even bolder and try to consider compactifications of quiver gauge
theories on more general Riemann surfaces ¥ with genus g > 1, and consider an even larger
class of functions ( there. Notice that it is indeed possible to consider compactification on
such a manifold, by a partial topological twist of the theory along the surface (cf. [77, 78]).

The fact that surfaces with genus g > 1 do not have Abelian additive laws defined on
them is not a problem for us. As discussed around (4.33), the equivariant parameters, and
hence the spectral parameter, of the algebra take values in the space of Wilson lines for the
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complex gauge fields, and since we are interested in the zero-vorticity sector the space is the
Jacobian J(X) ~ HY(X,R)/H' (2, Z) of the curve ¥. We can then choose an odd function
¢ on the Jacobian J(X) (which is an Abelian variety and has the additive structure), and
this is enough to define the quiver algebra — we can define the bond factor by (2.10), and
then define the algebra by the relations (2.7).

In practice, which function should we choose as (7 Since we have the theta function
for the elliptic case, a natural generalization is to consider analogues of theta functions for
the Jacobian J(X) as sections of corresponding determinant bundles (see e.g. [41]). The
theta functions depend on the choice of the spin structures or equivalently the choice of the
quadratic refinement of the intersection form. While there are 229 such spin structures, there
are 2971(29 — 1) spin structures (odd spin structures) whose associated theta functions are
odd. This means that we have a set of 2971(29 — 1) possible functions ¢, for a genus g surface.
Since different odd spin structures are related by the large coordinate transformations, it
follows that we need to consider all the 2971(29 — 1) choices of ¢ simultaneously. This is one
crucial difference from the genus g = 1 case. Moreover, for each choice of the theta function
we in practice need to choose the set of A and B-cycles, and the functions ¢ transform
non-trivially under the large coordinate transformations of the Jacobian — in this sense, the
algebras themselves behave more as a “wavefunction”, rather than a “partition function”.
Due to these subtleties it would be of great interest to further study the algebras associated
with higher genus surfaces.

In addition to the algebras, we can discuss the geometry, in the language of the
associated generalized cohomology theories for the moduli spaces of quiver gauge theories.
To explain this, let us recall some relevant facts and definitions from algebraic topology.
(Our discussion below will be far from complete, and readers are referred to e.g. [79] for a
modern review.)

Suppose that one has an oriented generalized cohomology theory (GCT) E*(—). From
the axioms one finds that £*(CP>) = E*(pt)[[z]] (for an extensive review of generalized
cohomology and homology theories see also [80]), where the generator x represents the first
Chern class ¢1(O(1)) of the universal line bundle O(1) on CP*. Now, by considering the
product of two line bundles we have a map CP* x CP*® — CP*°. When translated into the
cohomology theory this defines a map E*(CP*°) — E*(CP*®CP>) ~ E*(CP*)x E*(CP>),
where the last equality follows from the Atiyah-Hirzebruch spectral sequence. This map is
represented by the image Fr(z ® 1,1 ® ) of the generator x, with Fg(z,y) € B[z, y]].
It turns out that this image satisfies some consistency conditions, and is a formal group law.

A formal group law!! over a commutative ring R is a power series F(z,y) € R[[x,¥]],
such that the following three conditions are satisfied:

—~
—
~—
!

(z,0) =z, F(0,y)=uy, (6.1)

(z,y) = F(y,2),
(3) : F(QZ,F(y,Z)) = F(F(xay)vz)'

—
[\
~—
b

")\ore precisely, this defines a one-dimensional commutative formal group law. In the following by a
formal group law we always mean a one-dimensional commutative formal group law.
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The most obvious example of a formal group law is F(z,y) = = + y: this is called the
additive formal group law, and represents the ordinary cohomology theory. While a general
formal group law does not represent generalized cohomology theories, certain necessary
and sufficient conditions for representing generalized cohomology theories are known in the
literature [81].

The logarithm ¢ of a formal group F' is an isomorphism from the additive formal
group law to the formal group law F', so that

lp(0) =1, tp(F(z,y)) =tr(z) +lr(y). (6.4)

For a given formal group law F' we can construct its logarithm by a formal integral

-1
Op(z) = /0 (8F(§Zy) y:0> dt. (6.5)

For the additive formal group law we have a trivial logarithm ¢p(x) = x.

By comparing the logarithm ¢ with the weight factor ¢ (2.15) playing the central role
in our BPS algebra construction, we note that the two functions are inverse to each other:

((u) = lp' (u).

For simple line bundles the formal group law (6.4) boils down to a relation between
their Chern characters:

¢ e (L1 ® L)) = ¢ (e (L)) + ¢ (e (L2)) - (6.6)

The function ( specifies the relation between the first Chern class of some line bundle and its
characteristic that behaves linearly under tensor multiplication. The physical nature of such
a quantity is transparent: it is a charge — in our particular case when we consider simple
flavor bundles this charge is the flavour charge, or the complex mass of the corresponding
chiral field, or its equivariant weight. This physical intuition allows us to restore the relation
between an elementary contribution of a weighted subspace in the meson space to the Euler
class coincident in this case with the Chern class and its equivariant weight:

Cl(Lﬂavor) = C(ha) . (67)

We can now come back to our discussion of the cohomology theories underlying our
algebra. As the notation suggests, our ¢ for each of the rational/trigonometric/elliptic
versions of quiver BPS algebras can be regarded as a particular example of the inverse
logarithm of a formal group law underlying one of the ordinary cohomology /K-theory/elliptic
cohomology theories. We can however consider more general cohomology theories, or more
general formal group laws, and we expect that such choices will lead to general quiver
BPS algebras, including those associated with hyperelliptic curves (see [76] for a related
discussion on a generalized cohomology theory applied to Nakajima quiver varieties and [82]
for an elliptic chomology example). In other words, we expect to have a “quiver BPS
algebra of type F'” (which we can denote by F(Q, W)) for each formal group law F.
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Summarizing, we have a chain of concepts

generalized formal logarithm quiver
cohomology | & | group law | = lp(z) = | BPS algebra | . (6.8)
E*(-) Fp(z,y) = (") F(Q,W)

It is also worth pointing out that the cobordism can be regarded as a universal

i

cohomology theory [83, 84], and this suggests that we can define a “universal BPS algebra’
directly from oriented cobordism. Related to this, our function {(u) can be expanded as

2 4
CHu) =u+ ¢((;P )u?’ + SO((;)]P )u5 + - € Q[[u]], (6.9)

where ¢ : Q59 — Q is a multiplicative genus from the oriented cobordism Q5°, and the
oriented cobordism classes of complex projective spaces [(CIP’Q”] represent the polynomial
generators of the oriented cobordism with rational coefficients, i.e. 25° @ Q.

If we define a theory on a generic Riemann surface as a spatial slice, why is the result
related to a generalized cohomology theory of the target space? Although we have already
given a somewhat mathematical answer to this question, another more physical argument
is that we have already started with a cohomological theory by construction (4.6). Ideally,
we wish to verify the axioms of GCT directly from this definition. However, unfortunately,
we can not claim that our theory is some GCT E*(—) since (4.6) is defined for a specific
class of target spaces specified by a family of quivers, therefore we are unable to check if
defined in this way cohomology H*(—, Q) satisfies the set of GCT axioms for arbitrary
CW complexes. We do not think that this issue is insurmountable. To put forward our
arguments let us make a brief step back to K-theory. We may claim that the theory of maps
from a circle represents K-theory since this situation mimics another well-known scenario in
string theory (see e.g. [85-87]). If we Wick-rotate the temporal direction of the space-time
cylinder S' x Ry, the partition function of the resulting configuration represents the Witten
index of a BPS string state stretched between two branes. The brane boundary conditions
are well-known to carry the structure of coherent sheaves under derived equivalences of the
resulting BPS string states as Chan-Paton factors [88, 89]. The Witten indices of these
BPS Hilbert spaces correspond to the Grothendieck group Ky of the category of coherent
sheaves. There exists a crucial difference between this setup and the cohomology (4.6):
in the K-theory case we can choose a generic algebraic variety as the support of a stalk
produced by a Wilson line operator of a superconnection defined in [90] in a theory with,
say, a CP" target space. If we were able to present for a theory on a generic Riemann
surface a surface operator commuting with the supercharges and associated with a generic
algebraic variety, we might try to argue that a theory defined as a cohomology of maps
from a generic Riemann surface to some target space always corresponds to some GCT of
the target space by checking whether it satisfies the GCT axioms. As an eventual outcome
of this program we might be able to construct a physically motivated cocycle GCT model
(see [91] for such a construction for the equivariant elliptic cohomology theory).
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A Analysis on cylinder

Throughout this section we use a complex parameterization of the cylinder:
zeC* =C\{0,00}.
In terms of this, the delta function on the cylinder reads:

i(z) = sz, (A1)

keZ

which has the following defining property:
6(z/w)f(z) = 0(z/w) f(w), (A.2)

where f(z) is a Laurent series.

Consider a rational function g(z) of the complex variable z. In general, it is not
holomorphic on the cylinder C*, therefore there is no unique decomposition in Laurent
series. We can define two extreme forms of decomposition:

Gl = D == (),

Pl 2mi
Coo (A.3)
R 1 dz
g = bt =),
k=sg Co

where Cp and C, are small clockwise contours encircling zero and infinity, respectively, and

+

5 are finite integers that bound the two sums from above and below correspondingly.

s
Suppose a function g(z) has the following form:

(A.4)

where 7 and J are some sets of indices. Then we have the following “residue formula”:

o)~ Lo = X (m (-t g (157) ) 0073 (G007) . (A9)
keJg
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where
p=(1Z| - |7]) mod 2. (A.6)

Apparently, this analysis goes through if the function ¢(z) is multiplied by any mono-
mial z*. This observation allows us to extend this formula to the situation when g(z) is
multiplied by a Laurent series of z: we just apply it term by term.

In a similar fashion we deal with the cases when ¢(z) is a ratio of theta-functions — we
expand the theta-functions in ¢ and apply this formula to each g-term that is represented by
a rational function multiplied by a finite Laurent polynomial. We apply this tactics whenever
we deal with the ratio of theta-functions, hence, in particular, the two decompositions of
the theta function read:'?

1 1 1 > ¥§Z_k > igZ’“
[04(2)], = £ZF2exp <(q2 - qﬁ) L; qk . + kz::l qk s D . (A7)

B Consistency check of the algebra

In this appendix, we check the consistency of the algebra defined in (2.7).

B.1 Mutual consistency of algebraic relations

The relations in (2.7) can be classified into three groups:
1. ¥4 — 14 relations:

9 (2) pO(w) = C X O (w) (W (2) €=+,

a<b c c
@y O P Sw—8) @), () (B.1)
v ) = E I B ) o).
2. ¥+ —e and ¥+ — f relations:
@0 w) 2 o (22 5w ) Ol o),
(B.2)

1
O w) = e (25 Sw)  FOp ),

(S
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We will start with the equations in group-3, and first derive the equations in group-2, and
finally using the equations in group-3 and group-2 to derive those in group-1.

First, write the last equation in (B.3) (with a slight change of variables) as L®(z1, z9) ~
R*(21, 29), with

L* (21, 29) = [e(a)(zl)af(b)('z?)} ’

R¥ (21, 29) 1= —6, (p(21 — 29 — c)z/J(f) (21 — C) —p(z1 — 20+ C)zp(_a) (22 _ g)) _
(B.4)
Let us consider the product L**(zy, z0) e!® (w): passing the e(® (w) to the other side of
L®(21, 29) using the e — e and e — f relations, we have

L% (21, 20) € (w) = (= 1)1 M0V (0= (21 ) €@ (w) L0 (21, 20)

(B.5)

— (=Dl (z1) L (w, 29) + (= 1)1 (21, w) LY (w, 22) el (1)) .
Using L%%(z1, 22) ~ R®"(21, 29) to replace all the L’s in (B.5) by the R’s (with appropriate
superscripts and variables), we have

R (21, 29) el (w) = (1)l (0050 (21 ) el (w) L (21, 20)

()M () R, 2) 1 (~ 1) ey ) R, ) D ()
Plugging in the definition of R’s (the 2nd equation of (B.4)) into (B.6), we obtain a relation
that involves ¥4+ and e. Focusing on each delta function, one thus obtain the ¢4 — e relations
in (B.2). In particular, the last line in (B.6) vanishes due to the reciprocity condition (2.14)
of the bond factor.

Now, repeating the procedure above, but replacing e® (w) by f® (w), we obtain the
Yy — f relations in (B.2). We have thus obtained all the equations in group-2.

Finally, let’s derive the equations in group-1. Again, we use the relation L*? (21, 29) ~
R*Y(21, 29) with (B.4). First, consider the product L®*(z1, 2o) zpf) (w): passing the ¢$‘)(w)
to the other side of L%(zy, z3) using the ¢+ — e and )1 — f relations that we just derived,
we have
@' (wF §,20)
(pd«:a (w + %7 21)

LO(21, 20) 17 (w) = O (w) L9 (21, 29) (B.7)

Using L%%(z1, z2) =~ R¥*(21, 22) to replace both L%(z1, 25) in (B.7) by R%"(z1, z2), we have

d<=b c
ab Dy = £ WF522) @) pab B8
R (21, 22) Yy’ (w) = T (wx &, o) P (w) R (21, 22) - (B.8)

Then plugging in the expression of R*®(z1, z5) from the second equation of (B.4) into (B.8),
we obtain a relation among 4. Focusing on each delta function, one thus obtains the
4 — 14 relations in (B.1). This concludes our check on the mutual consistency of the
algebra (2.7).
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B.2 Consistency of central extension

Although we have just checked explicitly the mutual consistency of the algebraic relations
in (2.7), let us discuss further the potential subtlety of the central extension. Ultimately,
the check that the central extension is possible again boils down to checking the mutual
consistency of the algebra (2.7) when ¢ # 0.

In (2.7) we have introduced a central extension of the toroidal and elliptic quiver BPS
algebras by a central element ¢. These relations are a natural algebra deformation based on
known extensions in quantum toroidal [28] and elliptic algebras [29]. For the case ¢ = 0 we
have constructed explicitly a non-trivial crystal representation. However this setup raises a
natural question whether a generic elliptic quiver BPS algebra for ¢ # 0 constructed as a
quotient of a free algebra of generators (e(a)(z), f9(z), @ (z)) by the relations (2.7) is
non-empty.

To convince ourselves that the resulting algebra is non-trivial we propose the following
construction mechanism. We start with a free associative algebra Ag of only e(®)(z) and
f (a)(z) elements. If one considers further the quotient A; of this algebra by the e-e and
f-f relations in (2.7), the resulting quotient is non-zero since the e-e and f-f relations are
not affected by the central extension. Then for all commutators in the resulting algebra we
introduce two novel generators wﬁf )(z) according to the rule dictated by the e-f relation
in (2.7). This last operation is a standard introduction of a central extension. One can
switch the order of taking the quotient and first take the quotient of Ay by the e-f relation
to get As. The only information on the quiver entering As is the number of generators and
their statistics, and we can therefore easily mimic As by the generators and relations of the

suitable quantum toroidal algebra associated with é\[ that is known to be non-empty.

mn
We have seen in the previous subsection that the r(lmaining -e, Y-f and -1 relations
can be derived from the e-e, f-f, e-f relations. Since the ¢ # 0 case is actually slightly
simpler than the general case, we repeat the computation for ¢ % 0 here again.
First let us note that when ¢ # 0, the e-f relation allows us to define 11 as the

corresponding contact terms:

¥l (2) ~ —p(0) ! [l (2 £ ¢/2), F1) (2 F ¢/2)} (B.9)

It is a simple exercise to derive the remaining relations for a # b.

For coincident indices a = b let us multiply the last string in (2.7) by a generator
el®) (u) from the left. After massaging the resulting expression a little we arrive at the
following relation:
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Then, colliding different pairs of points out of a triplet (z,w, u) such that the delta functions
in the Lh.s. of (B.10) diverge, we derive the 1-e relations for coincident indices a = b. The
- f relations can be derived in the same fashion. Eventually, all the -1 relations follow
from the -e and - f relations and the identification (B.9).

C Free field realization for .

Before proceeding let us introduce a useful notation for the bond potential:

Upsti= N HF - Y HY, [k >1. (C.1)
Ie{a—b} Je{b—a}

We note that this bond potential function satisfies the following symmetry property:
Ut = —yest. (C.2)
In addition we extend the notion of the bond potential to the value k& = 0:

Ug=t:= > logHr+ Y. logHy. (C.3)
Ie{a—b} Je{b—a}

In terms of this notation, two Laurent expansions of the bare bond factors can be
written in the following form:

|:SDCL<:b(Z):|

Iy pXab tlyast =~ 2T e
:I::(_l) 2 Xab 7757 eF270  exp —Z Ug . (C.4)

k=1 k

In this section we will construct a free field representation for a subalgebra generated
by the generators ¢§§ )(z) similarly to [92]. Unfortunately, unlike the field OPE (2.7) this
representation is not universal with respect to the hierarchy (1.1). We will restrict ourselves
to T(Q), assuming that the corresponding representation for E(Q) can be derived along the
lines of [30].

In this representation, the expressions for the fields wﬁ_f )(z) can be rewritten in terms
of the new generators:

o (a)
a a (&% —_

W0 =l e (-3

k=1

o @ (C.5)
9(:) =1 exp (_ 2 A Z) |

k=1
Here the new generators form a Heisenberg algebra with relations:

[al(c“), ozg;)} = 6k+mk3 (Ck — C*k> U,;N:b7

(a) ., (b) (a) (a), (b) (a) (b) _

b b) (a — b) (a
A 02 7( ),7 . YY) = C’Xabpy( )7( ), A9y C xab,y( )’y( )

and all the other commutators are trivial.
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The commutators of the Heisenberg algebra generators with the operators e(®) (z) and
£(@)(2) read:

[al(f), e(b)(z)} = 7FC % Uzt . e®)(z),

[5(a),e(b)(z)} = vap e®(2), {B(a)’f(b)@)} = —xar fO(2),

vf)e(b)(z) — 0 ezU8T" 0 (z

Xa

YO FO(z) = O3 FO;

7(_a)f(b)(z) — (_Z)Xabe%Ué”:b O ()

For the case ¢ = 0 the Heisenberg algebra becomes commutative and we can rewrite

the operators in terms of Wilson operators defined in (4.33) with the help of additional
operators d, that are diagonal in the crystal basis:

da[K) = [K®| - [K),
thus we have:
> Xabde
o) = Y Urt W, g0 =
beQo (C.8)
@ 3 2, Ug=bdy @ > (xapTrlog(=Wy)—3Ug<"dy )
VL =e beQo , oA —= eP€Q0

D On Serre relations for Ty (Kpz2) and Tg (Kpiyp1)

Calabi-Yau threefolds in general may have chiral unframed quivers @, corresponding quiver
algebras A(Q) can not be associated with a deformation of some affine Lie superalgebra
g(mm. Here by A we imply any of Y, T or E;. This issue makes it difficult to assign some
Serre relations to them. However it is possible to summarize some set of rules the Serre

relations obey for quiver algebras associated with gA[m‘n:

1. The Serre relations are automatically satisfied for an analytic continuation of (2.7)
when e-e relations are treated as an equality.

2. The Serre relations for A =Y are independent of the Q2-background parameters hy, hs.

3. Consider the lowest weight module .#; of A(Q) := A(Q)/{Serre relations} satisfying

£0(2)]) ~ 22t

o), f9(2)e) =0.

Module .#; is isomorphic to a canonical crystal representation, where the canonical
crystal starts its growth from an atom of color i. For details on this property of Serre
relations see [1, sections 5.3, 8.2.3.2, appendix A].
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We could take this set of rules as a guiding principle and suggest relations allowing one to
reduce the corresponding algebra further consistently even for the cases of chiral quivers. By
analogy, we will call these relations Serre relations for our quiver algebras. Unfortunately, at
present we do not have a generic algorithm to construct the Serre relations for an arbitrary
quiver algebra A(Q), however we can present corresponding Serre relations for few examples
associated with chiral quivers to demonstrate that such a construction is valid in principle.

We will consider examples of Calabi-Yau threefolds Kp2 and Kpi p1 both having a
compact four-cycle. Corresponding quivers and superpotentials read:

Kp1yp1
1 Ai=1,2 2

Di—1,2 Bi—1,2

(D.1)

4 Ci=1,2 3

W= e*Tr (Z,Y; Xy,)|W = Tr (Z D;C;B;A; — Y DiCjBZ-Aj>
1,5,k 7 i#£j

Correspondingly, we propose the following sets of Serre relations for Y (Kp2) and
Y (K]pl X]P)l):

CycSym (z1 — 229 + 23) e (z3) 8(2)(22) e(l)(zl) =0,

{1,2,3} (D.2)
CycSym (21 — 20 — 23 + 24) €™ (24) e (23) e (29) eV (21) = 0,
{1,2,3,4}
and for Ty (Kp2) and Tg (Kpiyp1) respectively:
Z5 ) o®) () e®(2) oM
CycSym |1 — Z .)€ (z3) €'Y (29) e (21) =0,
{1,2,3} 143 (D.3)

CycSym <1 — Z2ZS> e (z4) e®(23) e (z5) eM(21) = 0.
{1,2,3.4} ZnZy

Here by a symbol CycSym we imply a symmetrization with respect to all cyclic permutations

of respective sets of indices and superscripts.

These Serre relations (D.2) and (D.3) are automatically satisfied for analytic continua-
tion of the quiver algebras. Furthermore, they reduce the numbers of states at modules .#;
to those of canonical molten crystals up to level 5 in both cases. For the number of states
in modules .#; to match the number of molten crystals one needs to apply higher order
Serre relations.

E Sign equations

In this section we describe a method to solve the equations (3.17).
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The crystal atoms have internal statistics, therefore processes re-shuffling atoms may
lead to additional + signs multiplying the crystal wave functions. Let us consider a process
of adding/removing an atom [a] to/from the crystal K. This process produces a statistical
multiplier that we denote as P([a, K). Now suppose we add/remove first an atom [a] then
another atom [&]. Then if we apply the same set of operations to the atoms [l and [z but in
the reverse order, the result might be different:

P (@ K) P (m,K + @)
P(@,K) P (@, K + m)

— (-, (1)
where the function f,; only depends on the atom colors a and b and satisfies
fab + fba =0 (mod 2) . (EZ)

Following [2, section 2.7] we search for the solution of (E.1) using the following ansatz:

POK) =[] v(O,0), (E.3)
0eK

where the unknown function v is a function of a pair of atoms, with the boundary condition
v(0,0) =1.
Substituting (E.3) into (E.1), we derive the defining equation for v:

v (@, B2) = (1) (T, @) , (E.4)

where subscripts 1,2 are used to stress that the atoms contributing to this equation never
coincide, therefore the functions f,; are not subject to the further constraint f,, = 0 (mod 2).

To solve (E.4) further, let us assign a global ordering to a generic set of atoms in the
canonical crystal lattice, for example, by following a lexicographic ordering < of monomials
in the quiver path algebra associated to crystal atoms. We then introduce a function:

+1, U > Uy,
Uy,02) = E.5
Sgn( L 2) {—1, 0 <0y ( )
Then a solution to (E.4) reads:
1
v (@, @) = exp (m fp o) Sgl;(@’ ) > . (E.6)

We note that this is not the unique solution to (E.4): for example, different choices of the
ordering function for (E.5) will lead to unequal solutions to (E.1).

Let us introduce a notation for a solution to (E.1) that we will use throughout the paper:

P(DvK) =10 [fab‘K] . (E7)
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F 3d N =2 SUSY in curved space-time

In this appendix we place a 4d N =1 theory on R; x St x Y4 with appropriate topological
twist, where R; is the temporal direction, and ¥, is a Riemann surface of genus g. Our
aim is to study the 3d N = 2 theory on R; x X, that can be derived from the 4d V' =1
theory on R; x S! x ¥, by dimensional reduction along the S'. Nevertheless notations for
the former theory are more compact and symmetric than those for the latter, therefore
we construct supersymmetric Lagrangians and transformations in 4d — to reduce to the
latter theory we simply assume that all the fields are constant along S', and the gauge field
component As gives rise to a real scalar X.

In this section and throughout the paper we adopt the notations of [93].

On R; x St x >, we choose a product metric and a metric along ¥, component in a
conformally flat form:

2 2 .
ds? = g drtde” = — (dwo) + (de) + edz;dz" . (F.1)
In these terms the spin connection reads (€13 = —€91 = 1):
1 4
w12 = §6ijd:lizajg0 . (F2)

We gauge the R-symmetry with the following connection:
®__ L pm ®_ - 2, 1 (R)
AW = ——w FYW =dAY = ——detgd*z, — FYW=g¢g—-1, (F.3)
2 4 27 2,
where R is a 2d scalar curvature of ¥:
R=—e¢¥%00;p. (F.4)

Recall that the canonical R-charges of the various components in the Lagrangian are:

SalAua|D|6| ¢a | F W

(F.5)
L]0 [ 1]0]rg[rs —1]ry — 2] 2
The 3d action consists of five components — gauge, chiral, superpotential, Fayet-
Tliopolous and Chern-Simons terms:
S = Sgauge + Sy + Sw + Sr1 + Stop - (F.6)

The gauge extension of the covariant derivatives reads:

Dy = 9,0 +iAMT,
F{9) = 0,A® —0,Al") — fabe AL A() (F.7)
DA = g\ — pabe gD

The supersymmetry (SUSY) is generated by a covariantly-constant Killing spinor &:

1 .
Dyba = duba — 5wuar (0€)  +iAiVe = 0. (F.8)
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This equation has a constant solution:

¢a = (c,0). (F.9)
The action of the gauge fields reads:
1 a v(a -y (a) = a 1 a a
Sgauge = / dz /=g <4F5V>F# @ _ix@grp, A@ 4 ED( D! >) . (F.10)
R¢xSTxEg

with the SUSY transformations:

6AW = _iX95 ¢ +icg A\

nw
ON) = (077€), i) + 16D
A = — (E) FE — 6D,
sD@ = D NDgh¢ 4 gt D AW
The chiral action is:
S, = / d*z\/—g ( — D,¢' D¢ — 5" D) + FTF+ (F.12)

RixSTxX,
+1V2 (I TUpA®) — XpTg) + DWIT + i%R cz%) ,

with the SUSY transformations:

3¢ = V280,

Mo =1V2 (0"€) Dud+V2F, 1)

6 = —1V2(§0")g Do’ + VIEFT, |
OF = V266" D,tp 4 2i T PEND .

The superpotential term reads:
1
Sw = / dz /=g Tr <F8¢W - §a§W 1/)¢> + (c.c.). (F.14)
RixSTxX,

This is invariant under SUSY only if the superpotential W is gauge invariant and has
R-charge +2. In the case of the curved surface X , the R-charge contributes manifestly to
the coupling with AU,

The FI term is defined by a real FI parameter 7:

Se= [ doy=g (D@ 11", (F.15)
R¢xS1x3g

Traditionally one considers in 3d a Chern-Simons topological term as well (see e.g. [94]).
We will omit it in our consideration since we are aiming to consider a sequence of dimensional
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compactifications from 4d super Yang-Mills theory towards 1d quiver quantum mechanics,
and a Chern-Simons topological term is not universal in view of this reduction.
The anti-commutators for the fermionic fields are:

{0al@), 950} = ——= 02 6P (@ - 7). (F.16)

The Gauss law constraint says that the following operator annihilates physical states:

_ 168
V=964 (F.17)
= D, P10 — i fabex g0\ 45 (¢FT° D0 — DO¢TT?) + 46T .

ja

The supercharges generate SUSY transformations:
50 =i [£Q +£€Q,0] .

The only supercharge components generated by £ are (2 and QQ Expressions for them
can be easily derived from covariantized supercharge expressions in a flat background:

Qo = / ¢z /=g [V2D,! (a%%)a +iV2 (a%)a F—

Stx¥,
—ilo™sO\(@) F(j‘f) — (6°A@) D@}
Qi = / /=g [V2($5°") Do~ iVIF! (10%)
S1x3g
—i(\Wa%) Fle) — (A6%) D],
These supercharges satisfy the following superalgebras:
{QQ, QQ} =20 +2iG [Ag“) - Ag@} —97,
) 9 (F.19)
(@2)" = (@) =0,
where H is the Hamiltonian, the gauge-transformation operator reads:
Gl = / B =g e T (F.20)

S1x3,
The central charge term is specific to a particular form of the spatial manifold S x Xy
admitting non-trivial fluxes of magnetic field through Xi,:
7 = volg1 x r/F(a) e T®. (F.21)
29
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