
J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

Published for SISSA by Springer

Received: November 29, 2021
Accepted: January 17, 2022
Published: February 3, 2022

Integrating three-loop modular graph functions and
transcendentality of string amplitudes

Eric D’Hoker and Nicholas Geiser
Mani L. Bhaumik Institute for Theoretical Physics,
Department of Physics and Astronomy, University of California,
Los Angeles, CA 90095, U.S.A.

E-mail: dhoker@physics.ucla.edu, ngeiser@physics.ucla.edu

Abstract: Modular graph functions (MGFs) are SL(2,Z)-invariant functions on the
Poincaré upper half-plane associated with Feynman graphs of a conformal scalar field on
a torus. The low-energy expansion of genus-one superstring amplitudes involves suitably
regularized integrals of MGFs over the fundamental domain for SL(2,Z). In earlier work,
these integrals were evaluated for all MGFs up to two loops and for higher loops up to
weight six. These results led to the conjectured uniform transcendentality of the genus-
one four-graviton amplitude in Type II superstring theory. In this paper, we explicitly
evaluate the integrals of several infinite families of three-loop MGFs and investigate their
transcendental structure. Up to weight seven, the structure of the integral of each individual
MGF is consistent with the uniform transcendentality of string amplitudes. Starting at
weight eight, the transcendental weights obtained for the integrals of individual MGFs are
no longer consistent with the uniform transcendentality of string amplitudes. However, in
all the cases we examine, the violations of uniform transcendentality take on a special form
given by the integrals of triple products of non-holomorphic Eisenstein series. If Type II
superstring amplitudes do exhibit uniform transcendentality, then the special combinations
of MGFs which enter the amplitudes must be such that these integrals of triple products of
Eisenstein series precisely cancel one another. Whether this indeed is the case poses a novel
challenge to the conjectured uniform transcendentality of genus-one string amplitudes.

Keywords: Scattering Amplitudes, Superstrings and Heterotic Strings

ArXiv ePrint: 2110.06237

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2022)019

mailto:dhoker@physics.ucla.edu
mailto:ngeiser@physics.ucla.edu
https://arxiv.org/abs/2110.06237
https://doi.org/10.1007/JHEP02(2022)019


J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

Contents

1 Introduction 1
1.1 Transcendental weight assignments 3
1.2 Overview of goals and results 4
1.3 A useful byproduct 7
1.4 Organization 8

2 Modular graph functions and forms 8
2.1 Conventions and definitions 9
2.2 Modular graph forms 10
2.3 Identities between modular graph forms 13
2.4 One-loop modular graph forms 15
2.5 Two-loop modular graph functions 17

3 Integrating modular graph functions overML 22
3.1 Integrals of modular graph functions 22
3.2 Integrals of exact differentials 24
3.3 Integrals of Poincaré series 27

4 Integrating two-loop modular graph functions 31
4.1 The integral of V(n)

s,t 31
4.2 The integral of Cu,v;w 32

5 Integrating triple products of Eisenstein series 38
5.1 The integral of E∗sE∗tE∗u 39
5.2 The integral of W(m,n)

s 41

6 Integrating E∗k Ca,b,c and E∗k Cw;m;p 44
6.1 The integral of E∗k Cw;m;p with k 6= w − 2m 45
6.2 The integral of E∗s Cw;m;p with Re(s) > 1 47
6.3 The integral of E∗w−2m Cw;m;p 48
6.4 The integral of E∗k Ca,b,c 49

7 Integrating vk,3 50
7.1 The integral of vk,2 51
7.2 The integral of vk,3 52

8 Integrating Ck,1,1,1 57
8.1 The integral of Ck,1,1 58
8.2 The integral of Ck,1,1,1 59

9 Conclusion 64

– i –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

A Zeta functions, zeta-values, and multiple zeta-values 66
A.1 The Riemann zeta function 66
A.2 Multiple zeta-values 68

B Relating Ca,b,c and Cw;m;p 69
B.1 The generating function W 71
B.2 Proof of theorem B.1: expressing Ww;m;p in terms of La,b,c 74
B.3 Proof of theorem B.2: expressing La,b,c in terms of Ww;m;p 75
B.4 The d coefficients at different weights 80
B.5 Proof of theorem B.3: the h coefficients 80

C The Laurent polynomials of Ca,b,c, Cw;m;p, and vk,2 81
C.1 The Laurent polynomial of Ca,b,c 81
C.2 The Laurent polynomial of Cw;m;p 82
C.3 The Laurent polynomial of vk,2 83

D Proof of lemma 8.3 84
D.1 The integral of Λ[2]

k,1,1,1 84
D.2 The integral of Λ[3]

k,1,1,1 85
D.3 The exponential integrals 86
D.4 The power-behaved integrals 87

E Proof of lemma 8.5 87
E.1 The function Jk(ε) 87
E.2 Splitting Jk(ε) 87
E.3 Computing the integrals 88
E.4 Summing over N 90
E.5 Odd k 90
E.6 Even k 91

1 Introduction

Modular graph functions (MGFs) are SL(2,Z)-invariant functions on the Poincaré upper
half-plane associated with Feynman graphs for a conformal scalar field theory on a torus.
MGFs may be partially organized by their loop order and their transcendental weight, which
are the number of loops and the number of scalar Green function edges, respectively, in their
corresponding Feynman graphs. MGFs may be added and multiplied together so that the
space of MGFs forms a graded ring, where the grading is given by the transcendental weight.
The modular weight of a MGF vanishes and is not to be confused with its transcendental
weight, which is often simply referred to as the weight.

MGFs of small weight were encountered in the low-energy expansion of the genus-one
four-graviton amplitude in Type II superstring theory [1, 2]. The coefficients of the effective
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interactions in this expansion involve suitably regularized integrals of MGFs over the moduli
space of compact genus-one Riemann surfaces. The weights of the MGFs which enter this
expansion are intimately related with the space-time structure of these effective interactions.
For example, the coefficients of the effective interactions of the form D2wR4 involve integrals
of MGFs of weight w.

MGFs of arbitrary weight and loop order were defined in terms of multiple Kronecker-
Eisenstein sums in [3–5], where their systematic study was initiated. Modular graph
functions were generalized in [6] to modular graph forms, which are modular forms of
non-vanishing modular weight associated with decorated Feynman graphs. Modular graph
forms encompass holomorphic, anti-holomorphic, and non-holomorphic modular forms and
may be assigned a generalized weight. Modular graph functions and forms obey a hierarchy
of algebraic identities and differential equations which preserve their weight but generally
mix different loop orders. A systematic method to derive these identities at two-loop order
and arbitrary weight was developed in [3] and was generalized to arbitrary loop orders and
weight in [6–9]. A Mathematica package containing the systematic implementation of all
identities among MGFs up to weight six was introduced in [10, 11]. Various special cases of
these identities were proven in [12–17].

Modular graph functions are closely related to other mathematical objects. For instance,
the Kronecker-Eisenstein series representation of MGFs shows that they may be viewed as
natural generalizations of multiple zeta-values. The loop order and weight of MGFs may be
identified with the depth and transcendental weight of multiple zeta-values, respectively.
Weight provides a grading on the ring of MGFs generalizing the grading by transcendental
weight on the space of (motivic) multiple zeta-values [18]. Identities between MGFs generalize
identities between multiple zeta-values, such as those collected in [19]. Additionally, MGFs
may be viewed as generalizations of the non-holomorphic Eisenstein series, which themselves
provide a one-dimensional basis for all one-loop MGFs. Moreover, MGFs may be obtained as
special values of elliptic modular graph functions which are closely related to single-valued
elliptic polylogarithms [5, 20–22] and iterated modular integrals [23, 24].

Especially important for the present work are the Fourier and Poincaré series for
arbitrary connected two-loop MGFs obtained in [25–29]. These series were used in [30] to
evaluate the integrals of two-loop MGFs using the unfolding trick familiar from the Rankin-
Selberg-Zagier method [31–33]. These integrals may be expressed in terms of zeta-values
and assigned a definite transcendental weight, thereby providing the starting point for a
systematic investigation of the transcendentality properties of the genus-one four-graviton
amplitude in Type II superstring theory in [34].

In particular, the low-energy expansion of the genus-one four-graviton amplitude
in Type II superstring theory was computed explicitly and shown to exhibit uniform
transcendentality up to the order of D12R4 using the integrals of MGFs up to weight
six. Although the corresponding integrands involve MGFs with as many as five loops, the
identities of [7] may be used to re-express the integrands in terms of one-loop and two-loop
MGFs plus a single three-loop MGF. This three-loop MGF may then be integrated using
the differential equation it satisfies, which was obtained in [22]. Thus, up to the order
of D12R4, only the integrals of one-loop and two-loop MGFs are effectively needed.
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The low-energy expansion of the amplitude beyond the order of D12R4 requires integrals
of MGFs of weight seven and higher as well as integrals of MGFs with three or more loops
which cannot be reduced to two-loop order. Few such integrals have been calculated prior
to this work.

Significant partial results, to be explained below, support the validity of uniform
transcendentality to arbitrary order in the low-energy expansion of the genus-one four
graviton amplitude in Type II superstring theory, as conjectured in [34]. However, the
results of the present paper raise the possibility of violations of uniform transcendentality
starting at weight eight, which corresponds to the order of D16R4 in the low-energy
expansion. Before turning to the detailed calculations involved, we shall provide a brief
overview of the questions pursued and the results obtained in the sequel of the paper.

1.1 Transcendental weight assignments

To explain the goal and results of the present paper, we shall begin with a brief summary
of the assignments of transcendental weight to superstring amplitudes and to the various
mathematical ingredients out of which these amplitudes are constructed.

The Riemann zeta function ζ(z) is defined for Re(z) > 1 by the series,1

ζ(z) =
∞∑
n=1

1
nz

(1.1)

In number theory, it is standard to assign (transcendental) weight zero to rational numbers,
weight one to π and to the natural logarithm of rational numbers, and weight n to the
zeta-value ζ(n) for integer n ≥ 2. This standard assignment of transcendental weight is
consistent with the fact that the even zeta-values ζ(2n) may be written as follows for n ≥ 1,

ζ(2n) = 1
2(−)n+1 (2π)2n B2n

(2n)! (1.2)

where the Bernoulli numbers Bn are rational.
In physics, the tree-level four-graviton amplitude in Type II superstring theory is given

by the following expression, up to a kinematic multiplicative factor,

1
stu

Γ(1− s)Γ(1− t)Γ(1− u)
Γ(1 + s)Γ(1 + t)Γ(1 + u) = 1

stu
exp

{
2
∞∑
m=1

ζ(2m+ 1)
2m+ 1 σ2m+1(s, t, u)

}
(1.3)

where s, t, u are dimensionless kinematic variables and σk(s, t, u) = sk + tk + uk are the
corresponding symmetric polynomials subject to momentum conservation σ1 = 0. Taylor
expanding the right-hand side of (1.3) in powers of s, t, u produces the low-energy expansion
of this tree-level amplitude.

Uniform transcendentality of an amplitude refers to the property that all terms in its
low-energy expansion may be assigned the same transcendental weight. For the tree-level
amplitude (1.3), this is achieved by adopting the standard number theoretic transcendental

1In appendix A, we review the salient properties needed in this paper of zeta functions, zeta-values, finite
harmonic sums, and multiple zeta-values, including their transcendental weight assignments.
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weight assignments for ζ(n) and choosing the transcendental weight of s, t, u to be −1. With
these assignments, each term in the low-energy expansion of (1.3) has transcendental weight
three. Thus, the tree-level four-graviton amplitude in Type II superstring theory exhibits
uniform transcendentality in the sense defined above. Remarkably, string amplitudes have
non-trivial transcendental structure already at tree-level while in quantum field theory,
non-trivial transcendental structure only arises from loop integrals [35–38].

At loop-level in Type II superstring theory, the transcendental structure of the genus-one
four-graviton amplitude was investigated in [34]. There it was shown that the low-energy
expansion of this amplitude exhibits uniform transcendentality up to the order of D12R4

provided we make the following additional assignments of transcendental weight.

• The logarithmic derivative of the Riemann zeta function ζ ′(n)/ζ(n) with integer n ≥ 2
and the Euler-Mascheroni constant γE have transcendental weight one.2

• The finite harmonic sums H1(m) = ∑m−1
k=1

1
k have transcendental weight one.

This last assumption is delicate. One should think of H1(m) not as its value for a single m
(which would give a rational number whose natural transcendental weight assignment is zero)
but instead as a function of m to be inserted into an infinite series in m. For instance, H1(m)
occurs in this manner in the double zeta-value ζ(n, 1),

ζ(n, 1) =
∑

m>k>0

1
mn k

=
∞∑
m=2

H1(m)
mn

(1.4)

The standard transcendental weight assignments of ζ(n) and ζ(n, 1) are n and n + 1,
respectively, which justifies assigning transcendental weight one to the function H1(m). In
fact, this assignment of non-zero transcendental weight to finite harmonic sums is familiar
to N = 4 supersymmetric quantum field theory amplitudes [35, 36].

1.2 Overview of goals and results

To describe our goals and results requires some additional set-up. We shall parametrize the
Poincaré upper half-plane H by the variable τ = τ1 + iτ2 ∈ C with τ1, τ2 ∈ R and τ2 > 0.
The modular group SL(2,Z) acts on H by its normal subgroup PSL(2,Z) = SL(2,Z)/Z2.
The moduli space of compact genus-one Riemann surfaces is given byM = PSL(2,Z)\H
and may be represented by the standard fundamental domain,

M =
{
τ ∈ H : |Re(τ)| ≤ 1

2 , |τ | ≥ 1
}

(1.5)

which contains a single cusp at τ = i∞. The modular-invariant Poincaré metric d2τ/τ2
2

provides a volume form onM to integrate modular-invariant functions, such as modular
graph functions. We shall review the properties of MGFs in section 2.

Generically, a modular graph function C will have polynomial growth at the cusp
so that its integral over M diverges. To associate a finite integral to C, we partition

2This assignment is a slightly stronger version of Assumption 3 of [34].
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the fundamental domain M =ML ∪MR into a neighborhood of the cusp MR and the
truncated fundamental domainML, defined by,

ML =M∩ {Im(τ) ≤ L} MR =M∩ {Im(τ) > L} (1.6)

for some cut-off L > 1. The integral of C over ML is convergent but L-dependent.
Mathematically, a finite integral of C overM may be defined by adding to the integral of C
overML the integral overMR of a truncated version of C in which the polynomial growth
is subtracted [33]. We shall review the technical details of these integrals in section 3.

Physically, the divergence of the integral of C overMR must be considered from the
vantage point of the full genus-one Type II superstring amplitude. The integral formula
for the full amplitude is absolutely convergent only when the dimensionless kinematic vari-
ables s, t, u are purely imaginary. The existence and uniqueness of the analytic continuation
of the full amplitude in s, t, u was established long ago in [39]. Therefore, the source of
the divergence of the integral over M of the modular graph function C stems from the
non-uniformity acrossM of the Taylor expansion in powers of s, t, u of the amplitude’s inte-
grand. Analytically continuing the integral overMR in s, t, u produces the non-analyticities
expected on physical grounds from the presence of massless strings. These non-analyticities
include the logarithms ln s, ln t, and ln u which give rise to the physical branch cuts produced
by massless string pairs required by the unitarity of the string amplitude, as described in [34].

The genus-one contributions to the low-energy effective interactions of the string
amplitude are computed by an integral over the full fundamental domain M, which may
be partitioned into the regions ML andMR defined above. The cut-off L > 1 is clearly
arbitrary and necessarily cancels out of the full amplitude. The contribution from ML

to the full amplitude is analytic in s, t, u so that the contributions fromML to any order
in the low-energy expansion are given by a sum of integrals over ML of MGFs. When
the modular graph function C appears in this context, the L-dependence in its integral
over ML will be cancelled by the integral of the full string integrand over MR. See for
instance [2, 34].

The partial results regarding the transcendentality of the genus-one four-graviton ampli-
tude in Type II superstring theory beyond the order of D12R4 in the low-energy expansion,
alluded to earlier, consist of two parts [34]. First, the coefficients of the ln s, ln t, ln u
non-analyticities exhibit uniform transcendentality. This result is fully expected from the
factorization of the genus-one amplitude and follows from the uniform transcendentality
of the tree-level amplitude (1.3). Second, the contribution to the analytically continued
integral which arises from the integral over MR and which is analytic in s, t, u exhibits
uniform transcendentality to all orders in the low-energy expansion. This second result is not
known to follow from factorization and constitutes a non-trivial motivation for the uniform
transcendentality conjecture of the full genus-one amplitude. Thus, to prove the conjecture
up to an arbitrary order in the low-energy expansion, it remains to study the transcendental
structure of the integrals overML of the MGFs that appear in this low-energy expansion.

Before considering three-loop MGFs, we shall first review the results at two-loops. The
integrals overML of arbitrary connected two-loop MGFs were evaluated in [30]. In this
paper, we shall also evaluate the integrals of arbitrary disconnected two-loop MGFs. From
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these explicit calculations, we find that the transcendental structure of the integrals of all
two-loop MGFs is consistent with the uniform transcendentality of superstring amplitudes.
Specifically, we prove the following proposition in section 4.

Proposition 1.1. The integral overML of an arbitrary two-loop modular graph function C
of weight w, has the following structure,∫

ML

d2τ

τ2
2
C = Aw+1 +BwH1 +O(L±) (1.7)

where O(L±) indicates the omission of terms with non-trivial L-dependence; Aw+1 and Bw
have transcendental weight w + 1 and w, respectively; and H1 is a sum of rational numbers
which may be interpreted as a sum of finite harmonic sums of transcendental weight one.

Prior to the present work, it was an open question whether this transcendental structure
persisted in the integrals of three-loop MGFs. In this paper, we shall evaluate the integrals
over ML of an infinite number of three-loop MGFs belonging to several special infinite
families. We shall also investigate the transcendental structure of these integrals. We restrict
to these families because the evaluation of the integrals of the most general three-loop
MGFs appears prohibitively involved with the methods presently available. Our results
from the study of these integrals are as follows.

• Up to weight seven included, the transcendental structure of the integral of each individual
three-loop MGF is consistent with the uniform transcendentality of genus-one superstring
amplitudes.

• At weight eight and higher, the transcendental structure of the integrals of certain
individual three-loop MGFs is not consistent with the uniform transcendentality of
superstring amplitudes.

• If the full genus-one superstring amplitude is to exhibit uniform transcendentality, then
special cancellations between the integrals of individual three-loop MGFs must occur.

The nature of the violations of uniform transcendentality that occur in the integrals
of individual three-loop MGFs may be illustrated by considering the simplest such case,
the integral of a triple product of non-holomorphic Eisenstein series. The non-holomorphic
Eisenstein series E∗s (τ, τ̄) = 1

2Γ(s)Es(τ, τ̄) of weight s will be defined in section 2.4 and is a
one-loop modular graph function. Zagier evaluated the integral of the triple product E∗sE∗tE∗u
in terms of a quadruple product of zeta functions in [33]. For integer weights s, t, u ≥ 2,

∫
ML

d2τ

τ2
2
E∗sE

∗
tE
∗
u = cs,t,u

πw−1 ζ(w − 1) ζ(w − 2s) ζ(w − 2t) ζ(w − 2u) +O(L±) (1.8)

where w = s+t+u and O(L±) indicates the omission of terms with non-trivial L-dependence.
The proportionality factor cs,t,u will be given in theorem 5.1 and has transcendental weight
zero or one when w is even or odd, respectively. Naively, the transcendental weight of the
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integral is w or w + 1. This result indeed holds as long as the three integers s, t, u ≥ 2
satisfy,

s+ t− u, t+ u− s, u+ s− t ≥ 2 ⇐⇒ max(s, t, u) ≤ bw/2c − 1 (1.9)

However, if say s+ t− u < 0, then the corresponding zeta-value ζ(w− 2u) = ζ(s+ t− u) is
a rational number with transcendental weight zero. In other words, when the zeta functions
have a non-positive argument, they violate the expected counting of transcendental weight.
As a result, the transcendental weight of the integral is now larger than w + 1, and no
harmonic sum with positive weight can make up for the violation.

The main result of this paper is that the violations of uniform transcendentality
occurring in the integrals of individual three-loop MGFs are all of the same form as the
violations endemic to Zagier’s integrals of triple products of Eisenstein series. Specifically,
we prove the following proposition for the various infinite families of three-loop MGFs whose
integrals we calculate in section 5, section 6, section 7, and section 8.

Proposition 1.2. For an arbitrary three-loop modular graph function C of weight w, there
exist rational numbers Q`1,`2,`3 such that,

∫
ML

d2τ

τ2
2

(
C −

∑
`1,2,3≥2

`1+`2+`3=w

Q`1,`2,`3 E
∗
`1E
∗
`2E
∗
`3

)
= Aw+1 +BwH1 +O(L±) (1.10)

where O(L±) indicates the omission of terms with non-trivial L-dependence; Aw+1 and Bw
have transcendental weight w + 1 and w, respectively; and H1 is a sum of rational numbers
which may be interpreted as a sum of finite harmonic sums of transcendental weight one.

It is an important open question whether this proposition holds for arbitrary three-loop
MGFs beyond the infinite families studied in this paper.

In any case, the necessity of subtracting these triple products of Eisenstein series
constitutes a novel source of violations of uniform transcendentality and raises challenging
questions for the transcendental structure of genus-one superstring amplitudes. Is uniform
transcendentality in the physical genus-one superstring amplitudes for four gravitons violated
at sufficiently high weight? Or do the violations found in the integrals of individual MGFs
conspire to cancel in the full superstring amplitude? The present work constitutes a first
step towards investigating and answering these questions.

1.3 A useful byproduct

Finally, an important byproduct emerges from our investigations concerning the two-loop
modular graph functions Ca,b,c for integer a, b, c ≥ 1 which were introduced in [3] and
will be reviewed in section 2.5. It was shown in [3] that these functions obey a system
of inhomogeneous Laplace eigenvalue equations at each weight w = a + b + c whose
inhomogeneous part is a linear combination of the non-holomorphic Eisenstein series Ew
and the double products EkEw−k for 2 ≤ k ≤ w − 2. The eigenvalues of the corresponding
homogeneous system were shown to be of the form s(s− 1), where s = w− 2, w− 4, · · · ≥ 0.
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The explicit diagonalization of this homogeneous system was achieved only for small weights
in [3] but is obtained in appendix B of this paper for arbitrary weights.

In particular, the formulas of appendix B make it possible to express the modular
graph functions Ca,b,c as a linear combination with rational coefficients of the modular
functions F+(s)

m,k introduced in [40, 41]. These functions obey the inhomogeneous Laplace
equation (∆− s(s− 1))F+(s)

m,k = EmEk where the inhomogeneous term is a double product
of non-holomorphic Eisenstein series.

1.4 Organization

The remainder of this paper is organized as follows. In section 2, we review modular graph
functions and forms. In section 3, we discuss several methods to evaluate the integrals of
MGFs over the truncated fundamental domainML. In section 4, we evaluate the integrals
of arbitrary two-loop MGFs using these methods. In the subsequent four sections, we
evaluate the integrals of various special infinite families of three-loop MGFs and analyze
their transcendental structures. Specifically we evaluate the integrals for the following
integrands:

Section 5, triple products of Eisenstein series and their derivatives using the results of [33];
Section 6, the disconnected three-loop MGFs E∗kCa,b,c using their differential equations;
Section 7, the connected three-loop MGFs vk,3 using their differential equations;
Section 8, the three-loop MGFs Ck,1,1,1 using their Poincaré series and the unfolding trick.

We conclude in section 9 and discuss open problems including the transcendental structure
of physical superstring amplitudes. In appendix A, we review zeta functions, zeta-values,
multiple zeta-values, and finite harmonic sums. In appendix B, we discuss the relation
between the two-loop modular graph functions Ca,b,c and Cw;m;p announced in section 1.3.
In appendix C we review the Laurent polynomials of several two-loop modular graph
functions. The final two appendices, appendix D and appendix E, contain several technical
details used to evaluate the integral of Ck,1,1,1.
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2 Modular graph functions and forms

In this section, we shall review modular graph functions and forms, and we shall introduce
several infinite families of one-loop modular graph forms and two-loop modular graph
functions.
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2.1 Conventions and definitions

The modular group SL(2,Z) will be parametrized as follows,

SL(2,Z) =
{(

α β
γ δ

)
: α, β, γ, δ ∈ Z, αδ − βγ = 1

}
(2.1)

A modular transformation λ =
(
α β
γ δ

)
∈ SL(2,Z) acts on the variable τ ∈ C by a Möbius

transformation,

λτ = ατ + β

γτ + δ
(2.2)

The modular group has several important subgroups. For instance, Z2 = {±1} ⊂ SL(2,Z)
leaves τ invariant, and the Borel subgroup Γ∞ defined by,

Γ∞ = {± ( 1 n
0 1 ) : n ∈ Z} ⊂ SL(2,Z) (2.3)

implements integer translations of τ . The modular group is itself a subgroup of the group
SL(2,R) of isometries of the Poincaré upper half-plane H, which is defined by,

H = SL(2,R)/U(1) = {τ ∈ C : Im(τ) > 0} (2.4)

We shall parametrize H by the complex variable τ = τ1 + iτ2 with τ1, τ2 ∈ R and τ2 > 0.
The modular group acts on H by its normal subgroup PSL(2,Z) = SL(2,Z)/Z2.

The moduli space of compact genus-one Riemann surfaces is given by the quotient
M = PSL(2,Z)\H and may be represented by the standard fundamental domain,

M =
{
τ ∈ H : |Re(τ)| ≤ 1

2 , |τ | ≥ 1
}

(2.5)

which contains a single cusp at τ = i∞. As discussed in section 1.2, we shall partition
the fundamental domain M =ML ∪MR into a neighborhood of the cusp MR and the
truncated fundamental domainML, which are defined as follows,

ML =M∩ {Im(τ) ≤ L} MR =M∩ {Im(τ) > L} (2.6)

for some cut-off L > 1. In practice it will often be convenient to work with a small
neighborhoodMR with large L� 1.

We may also consider quotients of H by subgroups of the full modular group. For
example, the upper half-strip Γ∞\H is given by the quotient of H by the Borel subgroup of
translations defined in (2.3) and may be represented as follows,

Γ∞\H = {τ ∈ H : 0 ≤ Re(τ) ≤ 1} (2.7)

Elements of Γ∞ stabilize the cusp at τ = i∞.
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2.1.1 Modular forms

A complex-valued function f of τ ∈ H is said to have modular weight (u, v), with u, v ∈ R
and u− v ∈ Z, if it has the following transformation law under SL(2,Z),

f(λτ, λτ̄) = (γτ + δ)u (γτ̄ + δ)v f(τ, τ̄) (2.8)

and may be referred to as a modular (u, v)-form. If u = v = 0, then f is modular invariant
and called a modular function. If f is holomorphic in τ then we must have v = 0 and u ∈ Z,
and f is referred to as a holomorphic modular form. Similarly when f is anti-holomorphic,
we must have u = 0 and v ∈ Z, and f is referred to as an anti-holomorphic modular form.
In all other cases, f is referred to as non-holomorphic modular forms.

The variable τ2 is itself a modular form of weight (−1,−1). Multiplication by τ c2
provides a canonical equivalence relation between modular forms of weight (u, v) and
modular forms of weight (u− c, v − c). The equivalence class of modular forms of vanishing
weight (u, v) ≈ (0, 0) is referred to as the class of non-holomorphic modular functions.

In view of the transformation law of the differential, d(λτ) = (γτ + δ)−2 dτ , there is a
one-to-one correspondence between functions of modular weight (u, v) and modular-invariant
differential forms on H given by f(τ, τ̄) (dτ)u/2 (dτ̄)v/2. In particular, the upper half-plane
supports the SL(2,Z) ⊂ SL(2,R)-invariant Poincaré metric whose volume form is given by,

d2τ

τ2
2

= idτ ∧ dτ̄
2τ2

2

∫
M

d2τ

τ2
2

= π

3 (2.9)

and thereby provides a well-defined volume form onM to integrate modular functions.

2.2 Modular graph forms

Modular graph forms are modular forms associated to a decorated graph (Γ, A,B) with
V vertices and R edges. The V ×R connectivity matrix Γ has components Γvr, where the
index v = 1, . . . , V labels the vertices and r = 1, . . . , R labels the edges. No edge is allowed
to begin and end on the same vertex. When edge r contains vertex v we have Γvr = ±1
while otherwise Γvr = 0. The decoration (A,B) consists of two R-dimensional arrays,

A = [a1, . . . , aR] B = [b1, . . . , bR] (2.10)

whose entries satisfy ar, br ∈ C with ar − br ∈ Z. The pair (ar, br) is associated with
the edge r. We refer to ar and br as the holomorphic and anti-holomorphic exponents,
respectively, and define the total exponents a = ∑R

r=1 ar and b = ∑R
r=1 br.

To the decorated graph (Γ, A,B) we associate a complex-valued function of τ ∈ H
called a modular graph form, defined by the following Kronecker-Eisenstein series,

CΓ

[
A

B

]
(τ, τ̄) =

(
τ2
π

)(a+b)/2 ∑
p1,...,pR∈Λ′

R∏
r=1

1
(pr)ar(p̄r)br

V∏
v=1

δ

( R∑
s=1

Γvs ps
)

(2.11)

whenever the sum is absolutely convergent. Throughout the sequel of this paper, we shall
often suppress the dependence on τ and τ̄ when no confusion is expected to arise.
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The variables pr are summed over the lattice Λ′ = Λ \ {0} where Λ = Zτ + Z,
corresponding to the momenta on a torus with periods τ and 1. We shall often use the
parametrization pr = mrτ + nr and p̄r = mr τ̄ + nr with (mr, nr) ∈ Z2 \ {(0, 0)}. The
Kronecker delta symbols enforce conservation of momentum at each vertex since δ(x = 0) = 1
and δ(x 6= 0) = 0. The number of loops in the graph, R− V + 1, is equal to the number of
independent momenta.

The Kronecker-Eisenstein series (2.11) is absolutely convergent if, after solving all the
delta symbols, the powers of each loop momentum in the denominator are greater than two.
In string theory, the exponents ar and br will always be non-negative integers satisfying
ar + br ≥ 2 for all r so that absolute convergence is guaranteed. The theory of modular
graph forms with non-integer exponents is not well-developed beyond one loop.

A modular graph form CΓ vanishes whenever the graph Γ becomes disconnected upon
severing a single edge or whenever the integer a− b is odd since the summand is odd and the
domain Λ′ is invariant under the reversal of the signs of all momenta pr. For a connected
graph Γ which is the union of two graphs Γ = Γ1 ∪ Γ2 whose intersection Γ1 ∩ Γ2 consists of
a single vertex, the modular graph form factorizes as CΓ = CΓ1×CΓ2 with the corresponding
partition of exponents.

2.2.1 Feynman rules for modular graph forms

Modular graph forms are associated with vacuum Feynman graphs of a conformal scalar
field on a torus. A decorated edge r with exponents (ar, br) and momentum pr is drawn as
follows and contributes the following factor to the Kronecker-Eisenstein summand,

· · ·
pr →

ar, br · · · =
(
τ2
π

)(ar+br)/2 1
(pr)ar(p̄r)br

(2.12)

Each vertex v contributes a momentum-conserving factor δ(∑R
s=1 Γvs ps) to the summand.

These Feynman rules, along with the instructions to sum each momentum over the lattice Λ′
and to connect edges to vertices according to the connectivity matrix Γ, reproduce the
definition (2.11).

2.2.2 Modular transformations

The modular graph form CΓ owes part of its designation to the fact that it transforms as
a modular form under the modular group acting on τ with the arrays A and B invariant.
Under a modular transformation λ =

(
α β
γ δ

)
∈ SL(2,Z),

CΓ

[
A

B

]
(λτ, λτ̄) =

(
γτ + δ

γτ̄ + δ

)(a−b)/2
CΓ

[
A

B

]
(τ, τ̄) (2.13)

The modular weight (a−b2 , b−a2 ) of any non-vanishing CΓ has integer entries in view of the
fact that the integer a− b must be even.

For the special case where a = b, the modular graph form CΓ is modular invariant and
referred to as a modular graph function (MGF) with weight w = a = b. The weight of a
MGF is not to be confused with its modular weight which necessarily vanishes.

– 11 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

The choice made for the exponent of the τ2 prefactor in the definition (2.11) of CΓ
ensures that the modular weight vanishes for MGFs, for which a = b. However, when a 6= b

there is no canonical normalization. Two alternative normalizations C±Γ are,

C±Γ

[
A

B

]
= (τ2)±(a−b)/2 CΓ

[
A

B

]
(2.14)

The normalizations C+
Γ and C−Γ have modular weights (0, b− a) and (a− b, 0), respectively.

For MGFs, a = b so that CΓ = C+
Γ = C−Γ .

2.2.3 Dihedral modular graph forms

One-loop decorated graphs have only bivalent vertices. Connected modular graph forms
with two or more loops may be distinguished by the number of non-bivalent vertices in
their corresponding graphs. Following the nomenclature introduced in [6], this distinction
is into dihedral graphs, trihedral graphs, tetrahedral graphs, and so on. All connected
two-loop graphs are dihedral, but connected three-loop graphs come in dihedral, trihedral,
and tetrahedral varieties. We shall also consider one-loop graphs as dihedral.

In this paper, we shall study only dihedral modular graph forms. A generic dihedral
modular graph form with R ≥ 2 edges (and R− 1 loops) has the following decorated graph,
matrix of exponents, and Kronecker-Eisenstein series representation,

...

a1, b1

a2, b2

aR, bR

= C
[
a1 a2 · · · aR
b1 b2 · · · bR

]
=
(
τ2
π

)(a+b)/2 ∑
pr∈Λ′
r=1,...,R

δ(p1 + · · ·+ pR)
pa1

1 p̄
b1
1 · · · p

aR
R p̄bRR

(2.15)

This Kronecker-Eisenstein series is absolutely convergent if Re(ar + br + as + bs) > 2 for all
pairs of r, s = 1, 2, . . . , R with r 6= s.

2.2.4 Poincaré series

Modular graph functions may be written as Poincaré series with respect to Γ∞\PSL(2,Z),
the coset of the modular group by the Borel subgroup of translations Γ∞, defined in (2.3).
A Poincaré series representation for the modular graph function CΓ is written as,

CΓ

[
A

B

]
(τ, τ̄) =

∑
λ∈Γ∞\PSL(2,Z)

ΛΓ

[
A

B

]
(λτ, λτ̄) (2.16)

where ΛΓ is referred to as a Poincaré seed function for CΓ. The Poincaré seed is not unique,
and clever choices may simplify subsequent calculations.

It was shown in [27] that a Poincaré seed for a generic dihedral modular graph function
may be constructed by replacing the sum over any one lattice momentum pr in (2.15) by a
sum over pr = N ∈ Z \ {0}. Thus, a Poincaré seed for a generic dihedral modular graph
function with weight w = a = b, is given by the following Kronecker-Eisenstein series,

Λ
[
w − a′ a2 · · · aR
w − b′ b2 · · · bR

]
=
(
τ2
π

)w ∑
N 6=0

∑
pr∈Λ′
r=2,...,R

Na′+b′

|N |2w
δ(N + p2 + · · ·+ pR)
pa2

2 p̄
b2
2 · · · p

aR
R p̄bRR

(2.17)
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where a′ = ∑R
r=2 ar and b′ = ∑R

r=2 br. This Kronecker-Eisenstein sum is absolutely
convergent for sufficiently large Re(w) and may be defined by analytic continuation in
the weight w elsewhere, while keeping integer exponents ar, br ∈ Z for r = 2, . . . R. The
two-loop case of this analytic continuation was studied in [27].

2.2.5 Asymptotic expansions

The asymptotics at the cusp τ = i∞ of a modular graph function with integer exponents and
weight w ≥ 2 are given by a Laurent polynomial in τ2 of degree (w, 1−w) plus exponentially
suppressed terms [5],

CΓ

[
A

B

]
=

w∑
`=1−w

c
(`)
C τ `2 +O(e−2πτ2) (2.18)

where the Laurent coefficients c(`)C are constants with transcendental weight w. It was shown
in [5] that π−w c

(w)
C is a rational number and that each π−` c(`)C for 1− w ≤ ` ≤ w − 1 is a

linear combination of single-valued multiple zeta-values with rational coefficients. Modular
graph functions or forms with non-integer exponents do not have a Laurent polynomial
in τ2 at the cusp.

More generally, modular graph functions with integer exponents have an asymptotic
expansion in powers of the nome q = e2πiτ and its complex conjugate q̄,

CΓ

[
A

B

]
=

∑
M,N≥0

c
(M,N)
C (τ2) qM q̄N (2.19)

where c
(M,N)
C (τ2) are Laurent polynomials in τ2. The expansion (2.19) contains the Fourier

expansion of CΓ in the variable τ1. Terms with M = N constitute the constant Fourier
mode which consists of the Laurent polynomial in τ2 (from M = N = 0) plus infinitely
many exponential terms (from M = N > 0) that are suppressed at the cusp.

2.3 Identities between modular graph forms

For a systematic discussion of the identities obeyed by modular graph forms, we refer the
reader to [7]. Here we shall summarize the essential identities needed for this paper.

2.3.1 Algebraic identities

Momentum conservation. Modular graph forms obey the following momentum conser-
vation identity at each vertex v = 1, . . . , V ,

R∑
r=1

Γvr CΓ

[
A− Sr
B

]
=

R∑
r=1

Γvr CΓ

[
A

B − Sr

]
= 0 Sr = [ 0, . . . , 0︸ ︷︷ ︸

r−1

, 1, 0, . . . , 0︸ ︷︷ ︸
R−r

] (2.20)

where the R-dimensional row-vector Sr has zeroes in all slots except for the rth which
instead equals one. These momentum conservation identities yield linear algebraic relations
between modular graph forms with the same modular weight and loop order.
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Factorization. Modular graph forms with a vanishing pair of holomorphic and anti-
holomorphic exponents ar = br = 0 obey factorization identities. In particular, dihedral
graphs with R ≥ 3 edges obey,

C
[
a1 · · · aR−1 0
b1 · · · bR−1 0

]
=

R−1∏
r=1
C
[
ar 0
br 0

]
− C

[
a1 · · · aR−1
b1 · · · bR−1

]
(2.21)

These factorization identities yield non-linear algebraic relations between modular graph
forms with the same modular weight but different loop order.

Holomorphic subgraph reduction. Modular graph forms with two vanishing holomor-
phic or anti-holomorphic exponents may be simplified into modular graph forms with fewer
loops using a procedure called holomorphic subgraph reduction [6–8].

These simpler functions include the holomorphic and anti-holomorphic Eisenstein
series G` and Ḡ`, which are defined by the following Kronecker-Eisenstein series,

G`(τ) = 1
π`/2

∑
p∈Λ′

1
p`

Ḡ`(τ̄) = 1
π`/2

∑
p∈Λ′

1
p̄`

(2.22)

which are absolutely convergent for integer ` > 2 and vanish for odd ` ≥ 3. For ` = 2, the
series (2.22) are conditionally convergent. Siegel’s prescription defines a non-holomorphic
but modular-covariant regularization Ĝ2 as follows,

Ĝ2(τ, τ̄) = 1
π

lim
s→0

∑
p∈Λ′

1
p2|p|s

(2.23)

Alternatively, one may preserve holomorphicity at the cost of modular invariance by defining
the function G2(τ) = −4πi ∂τ ln η(τ) where η(τ) is the Dedekind η function.

For dihedral graphs, the holomorphic subgraph reduction procedure is expressed by
the following equation [8],

C
[
a+ a− A

0 0 B

]
= (−)a− τa0/2

2 Ga0 C
[
A

B

]
−
(
a0
a+

)
C
[
a0 A

0 B

]

+
max(a±)∑
`=4

{(
a0 − 1− `
a+ − `

)
+
(
a0 − 1− `
a− − `

)}
τ
`/2
2 G` C

[
a0 − ` A

0 B

]

+
(
a0 − 2
a+ − 1

){
τ2 Ĝ2 C

[
a0 − 2 A

0 B

]
+ C

[
a0 − 1 A

−1 B

]}
(2.24)

where A and B are row vectors of exponents and a0 = a+ + a−. When A and B are
one-dimensional, the first term on the right-hand side of (2.24) is absent. In combinations
appearing from the application of derivatives to modular graph forms, the two terms
on the last line with abnormal modular weight always cancel. The reduction formula
for modular graph forms with two vanishing anti-holomorphic exponents is given by the
complex conjugate of (2.24).
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2.3.2 Differential identities

Modular graph functions and forms also obey a number of identities involving the differential
operators ∇, ∇̄, and ∆.

The first-order Maass operators ∇ and ∇̄ map the space of modular graph forms
into itself. The Christoffel connection in the covariant derivatives vanishes in ∇ when
acting on a modular graph (0, b− a)-form C+

Γ and in ∇̄ when acting on a modular graph
(a− b, 0)-form C−Γ , giving the following simple representations,

on a (0, b− a)-form C+
Γ ∇ = +2iτ2

2 ∂τ = τ2
2 (∂τ2 + i∂τ1)

on a (a− b, 0)-form C−Γ ∇̄ = −2iτ2
2 ∂τ̄ = τ2

2 (∂τ2 − i∂τ1) (2.25)

The action of these operators results in an algebraic action on the exponents,

∇C+
Γ

[
A

B

]
=

R∑
r=1

ar C+
Γ

[
A+ Sr
B − Sr

]
∇̄C−Γ

[
A

B

]
=

R∑
r=1

br C−Γ

[
A− Sr
B + Sr

]
(2.26)

with Sr defined in (2.20). Thus, ∇ maps modular graph (0, b−a)-forms to (0, b−a−2)-forms
while ∇̄ maps modular graph (a− b, 0)-forms to (a− b− 2, 0)-forms.

The second-order Laplace-Beltrami operator ∆ on the upper half-plane H maps the
space of modular graph functions, for which a = b, into itself. We may write several
equivalent expressions for ∆,

∆ = ∇ τ−2
2 ∇̄ = ∇̄ τ−2

2 ∇ = 4τ2
2 ∂τ̄∂τ = τ2

2 (∂2
τ1 + ∂2

τ2) (2.27)

The action of ∆ on a MGF with weight w = a = b may be expressed in terms of an algebraic
action on the exponents,

(∆ + w) CΓ

[
A

B

]
=

R∑
r,s=1

arbs CΓ

[
A+ Sr − Ss
B − Sr + Ss

]
(2.28)

with Sr defined in (2.20)

2.4 One-loop modular graph forms

We may completely characterize the space of one-loop modular graph forms. Decorated
one-loop graphs contain only bivalent vertices and are specified by a single holomorphic
exponent a and a single anti-holomorphic exponent b since,

C
[
a 0
b 0

]
= (−)a2−b2 C

[
a1 a2
b1 b2

]
(2.29)

for a = a1 + a2 and b = b1 + b2. All one-loop modular graph forms, including those with
complex non-integer exponents, may be written in terms of various Eisenstein series.
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2.4.1 Non-holomorphic Eisenstein series

The unique one-loop modular graph function with weight w = a = b is the non-holomorphic
(also called real-analytic) Eisenstein series Ew. For Re(w) > 1, Ew has the following
decorated graph, matrix of exponents, and Kronecker-Eisenstein series representation,

Ew = w,w = C
[
w 0
w 0

]
= τw2
πw

∑
p∈Λ′

1
|p|2w

(2.30)

The Eisenstein series is an eigenfunction of the Laplace-Beltrami operator,

∆Ew = w(w − 1)Ew (2.31)

In fact, Ew is the unique modular-invariant solution to this differential equation with
polynomial growth at the cusp.

Although the Eisenstein series Ew arises naturally in string theory, it will be convenient
to work with the starred Eisenstein series, an alternative normalization defined as follows,

E∗w = 1
2Γ(w)Ew (2.32)

The starred Eisenstein series obeys the functional relation E∗1−w = E∗w analogous to the
functional relation ζ∗(1− w) = ζ∗(w) obeyed by the starred zeta function,

ζ∗(w) = π−w/2 Γ(w/2) ζ(w) (2.33)

Other properties of the starred zeta function are discussed in appendix A. The asymptotic
expansion of E∗w manifestly exhibits its functional relation,

E∗w = ζ∗(2w) τw2 + ζ∗(2w − 1) τ1−w
2 +O(e−2πτ2) (2.34)

A Poincaré series for E∗w is given by,

E∗w(τ, τ̄) = ζ∗(2w)
∑

λ∈Γ∞\PSL(2,Z)

[
Im(λτ)

]w (2.35)

so that ζ∗(2w) τw2 is a Poincaré seed for E∗w.
The derivatives of E∗w span the space of all one-loop modular graph forms. Using (2.26)

to compute the action of ∇ and ∇̄, we find,

C+
[
w + ` 0
w − ` 0

]
= 2 Γ(w + `)−1∇`E∗w

C−
[
w − ` 0
w + ` 0

]
= 2 Γ(w + `)−1 ∇̄`E∗w (2.36)

for Re(w) > 1 and integer ` ≥ 0.
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2.4.2 Holomorphic and anti-holomorphic Eisenstein series

The derivatives of E∗w include the holomorphic and anti-holomorphic Eisenstein series G`
and Ḡ` defined in (2.22). Our normalization is standard in the literature on modular graph
forms and is chosen so that,

τ2`
2 G2` = C+

[
2` 0
0 0

]
= 2 Γ(2`)−1∇`E∗`

τ2`
2 Ḡ2` = C−

[
0 0
2` 0

]
= 2 Γ(2`)−1 ∇̄`E∗` (2.37)

The Fourier series of G2` for integer ` ≥ 2 is given by,

G2` = 2 ζ(2`)
π`

+ 2 (−4π)`
Γ(2`)

∞∑
n=1

σ2`−1(n) qn (2.38)

where q = e2πiτ and σp(n) = ∑
d|n d

p is the sum of pth powers of the positive divisors of n.

2.5 Two-loop modular graph functions

The space of two-loop modular graph forms is much more complicated than the space at
one loop. Two-loop graphs may be connected or disconnected. Disconnected two-loop
graphs factorize into one-loop graphs, and connected two-loop graphs are always dihedral.
To simplify our discussion, we shall restrict to two-loop modular graph functions, and for
the connected two-loop functions, we shall restrict to non-negative integer exponents.

2.5.1 The disconnected functions V(n)
s,t

Disconnected two-loop modular graph functions are equal to the product of two one-loop
modular graph forms whose total modular weight vanishes. For these disconnected functions
we shall consider complex non-integer exponents.

We define the infinite family of functions V(n)
s,t with Re(s),Re(t) > 1 and integer n ≥ 0

by the following decorated graph and matrix of exponents,

V(n)
s,t = s+ n, s− n t− n, t+ n = C

[
s+ n 0
s− n 0

]
C
[
t− n 0
t+ n 0

]
(2.39)

These functions have weight s+ t and may be written in terms of derivatives acting on two
Eisenstein series as follows,

V(n)
s,t = 4 Γ(s+ n)−1 Γ(t+ n)−1 τ−2n

2 ∇nE∗s ∇̄nE∗t (2.40)

Many properties of these functions, such as their asymptotic expansion or Poincaré series,
follow from the respective properties of the Eisenstein series.

This infinite family of functions spans the space of all disconnected two-loop MGFs.
For instance, the case n = 0 reduces to the double product V(0)

s,t = 4 Γ(s)−1 Γ(t)−1E∗sE
∗
t

of two non-holomorphic Eisenstein series while the case n = s = t ≥ 2 reduces to the
product V(n)

n,n = τ2n
2 G2n Ḡ2n of a holomorphic and an anti-holomorphic Eisenstein series.
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2.5.2 The connected functions Ca,b,c
We shall now consider connected two-loop modular graph functions with non-negative
integer exponents. To simplify things further, we shall first consider the case where each
pair of holomorphic and anti-holomorphic exponents is equal.

The infinite family of connected two-loop modular graph functions Ca,b,c was introduced
in [3]. These functions have the following decorated dihedral graph, matrix of exponents,
and Kronecker-Eisenstein series representation,

Ca,b,c =

a, a

b, b

c, c = C
[
a b c

a b c

]
= τa+b+c

2
πa+b+c

∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)
|p1|2a |p2|2b |p3|2c

(2.41)

The functions Ca,b,c have weight a+ b+ c and are invariant under permutations of a, b, c.
For integer a, b, c ≥ 1, the Kronecker-Eisenstein series is absolutely convergent and Ca,b,c
is real. The Laurent polynomial of Ca,b,c for integer a, b, c was calculated in [25] and is
reviewed in appendix C.

The space of functions Ca,b,c obeys a system of inhomogeneous Laplace eigenvalue
equations. The action of the Laplace-Beltrami operator ∆ on Ca,b,c may be computed
using (2.28) and is given by,

∆Ca,b,c =
(
a(a−1)+b(b−1)+c(c−1)

)
Ca,b,c

+ab
(
Ca−1,b+1,c+Ca+1,b−1,c+Ca+1,b+1,c−2−2Ca,b+1,c−1−2Ca+1,b,c−1

)
+bc

(
Ca,b−1,c+1+Ca,b+1,c−1+Ca−2,b+1,c+1−2Ca−1,b,c+1−2Ca−1,b+1,c

)
+ca

(
Ca+1,b,c−1+Ca−1,b,c+1+Ca+1,b−2,c+1−2Ca+1,b−1,c−2Ca,b−1,c+1

)
(2.42)

When the right-hand side of this equation involves a lower index a′, b′, or c′ which equals
either 0 or −1, the corresponding MGFs reduce to Eisenstein series as follows,

Cw−`,`,0 = E`Ew−` − Ew Cw+1−`,`,−1 = E`Ew−` + E`−1Ew−`+1 (2.43)

The right-hand side of either equation in (2.43) may involve the symbol E1, formally
corresponding to a divergent series, but its contribution will always cancel out of the right-
hand side of (2.42). Thus, the Laplacian maps the space of Ca,b,c with weight w = a+ b+ c

and integer a, b, c ≥ 1 into itself (the homogeneous part) plus a linear combination of the
Eisenstein series Ew and double products E`Ew−` (the inhomogeneous part).

2.5.3 The eigenfunctions Cw;m;p

It was shown in [3] that the action (2.42) of ∆ on the space of functions Ca,b,c may
be diagonalized, resulting in eigenfunctions Cw;m;p which are linear combinations of the
functions Ca,b,c with weight w = a+ b+ c and integer a, b, c ≥ 1.3 Each eigenfunction obeys
an inhomogeneous Laplace eigenvalue equation of the following form,

(
∆− (w − 2m)(w − 2m− 1)

)
Cw;m;p = h(0)

w;m;pE
∗
w +

bw/2c∑
`=2

h(`)
w;m;pE

∗
`E
∗
w−` (2.44)

3Our notation for the second subscript differs from [3]. Our Cw;m;p = Cw;w−2m;p of [3].
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where the h coefficients are constants and the labels m and p are integers which run over
the following ranges,

1 ≤ m ≤
⌊
w−1

2

⌋
0 ≤ p ≤

⌊
w−2m−1

3

⌋
(2.45)

The label m specifies the eigenvalue (w− 2m)(w− 2m− 1) while p labels the degeneracy in
the spectrum. We have written the inhomogeneous part of the Laplace equation (2.44) in
terms of starred Eisenstein series for later convenience.

At any fixed weight w ≥ 3, the number of eigenfunctions Cw;m;p is equal to the number
of functions Ca,b,c modulo permutations of a, b, c. In other words,

bw−1
2 c∑

m=1

bw−2m−1
3 c∑

p=0
=

∑
a≥b≥c≥1
a+b+c=w

(2.46)

Thus, we may systematically relate the two bases of functions. Without loss of generality,
we choose representatives of the Ca,b,c with a ≥ b ≥ c. We then expand each basis in terms
of the other as follows,

Ca,b,c =
bw−1

2 c∑
m=1

bw−2m−1
3 c∑

p=0
dw;m;p
a,b,c Cw;m;p Cw;m;p =

∑
a≥b≥c≥1
a+b+c=w

da,b,cw;m;pCa,b,c (2.47)

In appendix B, we derive explicit expressions for the coefficients dw;m;p
a,b,c and da,b,cw;m;p as well as

for the h coefficients which appear in the inhomogeneous Laplace eigenvalue equation (2.44),
thereby proving the following proposition.

Proposition 2.1. The coefficients dw;m;p
a,b,c , da,b,cw;m;p, and h

(`)
w;m;p are all rational numbers.

Moreover, we have h
(`)
w;m;p = 0 for 2 ≤ ` ≤ m.

In appendix C, we compare the Laurent polynomials of Ca,b,c and Cw;m;p. We also write
the Laurent coefficients of Cw;m;p in terms of the h coefficients.

Similar inhomogeneous Laplace equations of the form (∆− s(s− 1))F+(s)
m,k = EmEk

were recently studied in [40, 41]. There it was shown that the solutions to these equations
include the modular graph functions Cw;m;p as well as modular functions which are not
modular graph function. The formulas of appendix B make it possible to express the
modular graph functions Ca,b,c as a linear combination of the modular functions F+(s)

m,k .

2.5.4 The connected functions Cu,v;w

We shall now consider the larger space of all connected two-loop modular graph functions
with non-negative integer coefficients. A generic connected two-loop MGF has the following
decorated graph, matrix of exponents, and Kronecker-Eisenstein series representation,

a1, b1

a2, b2

a3, b3 = C
[
a1 a2 a3
b1 b2 b3

]
= τw2
πw

∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)
pa1

1 p̄
b1
1 p

a2
2 p̄

b2
2 p

a3
3 p̄

b3
3

(2.48)
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where w = a1 + a2 + a3 = b1 + b2 + b3. This Kronecker-Eisenstein series is absolutely
convergent if ar + br + as + bs ≥ 3 for all pairs of r, s = 1, 2, 3 with r 6= s which implies
that w ≥ 3. This larger space of two-loop MGFs contains the subspace of functions Ca,b,c
(as well as their linear combinations, the functions Cw;m;p).

The generic connected two-loop MGF (2.48) simplifies when any two of its exponents
vanish. When ar = br = 0 for some r, when ar = as = 0 for some r 6= s, or when
br = bs = 0 for some r 6= s, the function may be written in terms of the disconnected
two-loop MGFs V(n)

s,t and the Eisenstein series E∗w using the factorization identity (2.21)
and holomorphic subgraph reduction (2.24). When ar = bs = 0 for some r 6= s with all
other exponents positive, the function belongs to the infinite family of functions Cu,v;w.

The infinite family of connected two-loop modular graph functions Cu,v;w was introduced
in [27]. These functions have unequal pairs of holomorphic and anti-holomorphic exponents
and the following decorated dihedral graph, matrix of exponents, and Kronecker-Eisenstein
series representation,

Cu,v;w =
u, 0

0, v

w − u,w − v = C
[
u 0 w − u
0 v w − v

]
= τw2
πw

∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)
pu1 p̄

v
2 p

w−u
3 p̄w−v3

(2.49)

where u and v are integers satisfying 1 ≤ u, v ≤ w − 1 and u + v ≥ 3. The Laurent
polynomial, Fourier series, and Poincaré series of Cu,v;w were calculated in [27].

Like the space of functions Ca,b,c, the space of functions Cu,v;w obeys a system of
inhomogeneous Laplace-eigenvalue equations. The action of the Laplace-Beltrami operator ∆
on Cu,v;w may be computed using (2.28) and is given by,

∆Cu,v;w =
(
w(w − 1) + 2uv − w(u+ v)

)
Cu,v;w + uv Cu+1,v+1;w

+ u(2v − w) Cu+1,v;w + u(v − w) Cu+1,v−1;w

+ v(2u− w) Cu,v+1;w + v(u− w) Cu−1,v+1;w (2.50)

When the right-hand side of this equation involves an index u′ or v′ which equals 0 or w,
the corresponding MGFs can be reduced to Eisenstein series or double products of their
derivatives using the factorization identity (2.21) and holomorphic subgraph reduction (2.24).
Thus, the Laplacian maps the space of Cu,v;w with integer u, v, w into itself (the homogeneous
part) plus a linear combination of the Eisenstein series E∗w and disconnected two-loop MGFs
(the inhomogeneous part).

In principle, one may diagonalize the action of the Laplacian on the space of Cu,v;w,
thereby constructing eigenfunctions which are linear combinations of the Cu,v;w analogous
to the eigenfunctions Cw;m;p which are linear combinations of the Ca,b,c. It may be possible
to construct these eigenfunctions using a generalization of the construction of the Cw;m;p
in [3], which we review in appendix B. Unfortunately, this problem is more challenging
than the diagonalization of the Ca,b,c, and no analytic solution is known. It is, however, a
simple matter to construct these eigenfunctions with a computer algebra system. Numerical
studies at small weights indicate that the eigenfunctions constructed from Cu,v;w have
eigenvalues (w −m)(w −m− 1) for integers m satisfying 1 ≤ m ≤ w − 1. This is to be
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compared with the eigenfunctions Cw;m;p whose eigenvalues are (w − 2m)(w − 2m− 1) for
integers m satisfying 1 ≤ m ≤

⌊
w−1

2

⌋
.

The functions Cu,v;w are also special because all connected two-loop MGFs with non-
negative integer exponents and at most one vanishing exponent may be written as linear
combinations of the Cu,v;w.

Proposition 2.2. An arbitrary connected two-loop modular graph function with non-
negative integer exponents, weight w = ∑3

r=1 ar = ∑3
r=1 br ≥ 3, and no more than one

vanishing exponent ar = 0 or br = 0 admits the following decomposition,

C
[
a1 a2 a3
b1 b2 b3

]
=

∑
1≤u,v≤w−1
u+v≥3

Ku,v;w
[ a1 a2 a3
b1 b2 b3

]
Cu,v;w (2.51)

where the coefficients are integers defined by,

Ku,v;w
[ a1 a2 a3
b1 b2 b3

]
= (−)u+v+a3

×
{

(−)b2+w (w−a3−u−1
a2−1

)(v−b2−1
b1−1

)
Θ(a1 − u)Θ(b3 − w + v)

+ (−)b1+w (w−a3−u−1
a1−1

)(v−b1−1
b2−1

)
Θ(a2 − u)Θ(b3 − w + v)

+ (−)b2
(u−a3−1
a2−1

)(v−b2−1
b3−1

)
Θ(a1 − w + u) Θ(b1 − w + v)

+ (−)b1
(u−a3−1
a1−1

)(v−b1−1
b3−1

)
Θ(a2 − w + u) Θ(b2 − w + v)

}
(2.52)

and the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0.

A similar decomposition formula was proved in [27]. To prove our proposition, we first
perform a partial fraction decomposition on the holomorphic momenta in the summand
of (2.48) using p1 = −p2 − p3. We write,

1
pa1

1 p
a2
2 p

a3
3

=
a1∑
u=1

(a1+a2−u−1
a2−1

)
pu1p

w−u
3

(−)a1+a2+u +
a2∑
u=1

(a1+a2−u−1
a1−1

)
pu2p

w−u
3

(−)a1+a2+u

=
w−1∑
u=1

(−)w+a3+u
{(w−u−a3−1

a2−1
)

pu1p
w−u
3

Θ(a1 − u) +
(w−u−a3−1

a1−1
)

pu2p
w−u
3

Θ(a2 − u)
}

(2.53)

where in the second line we have introduced step functions to extend the upper range
of the finite sums. We have also used the fact that no more than one ar vanishes which
implies that w − 1 ≥ a1, a2. We similarly decompose the anti-holomorphic momenta in the
summand of (2.48) in two different ways,

1
p̄b1

1 p̄
b2
2 p̄

b3
3

=
w−1∑
v=1

(−)w+b2+u


(w−v−b2−1

b1−1
)

p̄v3p̄
w−v
2

Θ(b3 − v) +
(w−v−b2−1

b3−1
)

p̄v1p̄
w−v
2

Θ(b1 − v)


=

w−1∑
v=1

(−)w+b1+u


(w−v−b1−1

b3−1
)

p̄v2p̄
w−v
1

Θ(b2 − v) +
(w−v−b1−1

b2−1
)

p̄v3p̄
w−v
1

Θ(b3 − v)

 (2.54)

We use the first line of (2.54) for the anti-holomorphic momenta which multiply the first
term on the second line of (2.53), and we use the second line of (2.54) for the second
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term in (2.53). After some straightforward manipulations, we arrive at (2.51). The
coefficient K1,1;w necessarily vanishes, so the decomposition includes only convergent Cu,v;w
with u+ v ≥ 3. This completes our proof of proposition 2.2.

Our decomposition formula is not unique since we could have performed several
different partial fraction decompositions. Moreover, the functions Cu,v;w are themselves
not algebraically independent. For instance, the decomposition formula (2.51) for the
function C2,1,1 defined in (2.41) yields,

C2,1,1 = C2,2;4 − 2 C2,3;4 − C3,2;4 (2.55)

Since C2,1,1 is real, this expression must be equal to its complex conjugate. Acting on Cu,v;w,
complex conjugation interchanges u and v. Thus, we conclude that C2,3;4 = C3,2;4. There
are many other linear algebraic identities between the Cu,v;w. Despite this ambiguity, the
functions Cu,v;w have many nice properties and have been extensively studied.

2.5.5 Two loops and beyond

We have shown that two infinite families of functions V(n)
s,t and Cu,v;w span the space of all

two-loop MGFs with non-negative integer exponents. This is to be compared with the case
at one loop, where there is a unique MGF at each weight.

Corollary 2.3. An arbitrary two-loop modular graph function with non-negative integer
coefficients and weight w can be written as a linear combination with rational coefficients
of the connected two-loop functions Cu,v;w, the disconnected two-loop functions V(n)

s,t , and
the Eisenstein series E∗w, where u, v are integers satisfying 1 ≤ u, v ≤ w − 1 and u+ v ≥ 3
and s, t, n are integers satisfying s, t ≥ 2, s+ t = w, and min(s, t) ≥ n ≥ 0.

The space of three-loop MGFs is considerably more complicated, and consists of
connected dihedral, trihedral, and tetrahedral graphs as well as disconnected graphs.
Instead of tackling the general three-loop case, we shall restrict our attention in this paper
to several special infinite families of connected and disconnected three-loop MGFs, to be
introduced in the sequel.

3 Integrating modular graph functions over ML

In this section, we shall discuss the general structure of the integrals of modular graph
functions over the truncated fundamental domainML defined in (2.6). We shall also discuss
several methods to calculate these integrals as well as their transcendental weights. These
methods include the integration of certain exact differentials using Stokes’ theorem and the
integration of regularized Poincaré series using the unfolding trick.

3.1 Integrals of modular graph functions

Modular graph functions with integer exponents, such as those which arise in string
theory, have an asymptotic expansion of the form (2.18) near the cusp. Because they have
polynomial growth at the cusp, their integrals over the full fundamental domainM generally
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diverge, as we discussed in section 1.2. Their integrals over the truncated fundamental
domainML are, however, finite functions of the cut-off L.

The general structure of the integral overML of a modular graph function C = CΓ
[
A
B

]
with integer exponents and weight w may be inferred from its Laurent polynomial (2.18).
This integral is given by,4∫

ML

d2τ

τ2
2
C = IC + c

(1)
C lnL+

w∑
`=1−w
` 6=1

c
(`)
C
L`−1

`− 1 +O(e−2πL) (3.1)

where c(`)C are the Laurent coefficients of C introduced in (2.18). The term IC is independent
of L and cannot be inferred from the Laurent polynomial of C since it receives contributions
from the integral of terms exponentially suppressed in τ2, namely the terms withM = N 6= 0
in (2.19). Alternatively, IC may be defined as the following limit,

IC = lim
L→∞

(∫
ML

d2τ

τ2
2
C − c

(1)
C lnL−

w∑
`=2

c
(`)
C
L`−1

`− 1

)
(3.2)

Mathematically, one may then assign IC as the value of the renormalized integral of C
overM, following Zagier [33].

Physically, genus-one contributions to the low-energy effective interactions of string
theory are computed by an integral over M. This integral may be partitioned into a
contribution fromML and a contribution from its complementMR. The cut-off L > 1 is
arbitrary and necessarily cancels in the complete integral. The contribution from ML is
analytic in the dimensional kinematic variables s, t, u. At any order in the expansion in
powers of these variables, this analytic contribution is given by a sum of integrals over ML

of MGFs with non-negative integer exponents times rational coefficients. When the modular
graph function C appears in this context, the L-dependence in its integral overML (3.1)
will be cancelled by the integral of the full string integrand overMR. Thus, in the context of
string theory we may drop the L-dependent terms in (3.1). However, a special role is played
by the lnL term, whose cancellation against the integral over MR produces logarithmic
terms in s, t, u which in turn give rise to the physical branch cuts required by unitarity of
the string amplitude, as described in [34].

Therefore, in the sequel of this paper we shall systematically write the integrals over
ML of modular graph functions with integer exponents using the following instructions.

• Omit terms which are exponentially suppressed in L (as announced in footnote 4) and
terms which are powers of L with non-zero exponents.

• Retain L-independent terms and terms proportional to lnL.

We introduce the following notation which renders these instructions explicit,∫
ML

d2τ

τ2
2
C ≈ IC + c

(1)
C lnL (3.3)

4Throughout the sequel of this paper we shall omit all terms that are exponentially suppressed in L for
large L and suppress the corresponding symbol O(e−2πL).
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In other words, the symbol ≈ denotes equality up to positive powers of L and terms which
vanish in the limit L→∞.

It will often be convenient to perform intermediate calculations using MGFs with
complex non-integer exponents, such as the Eisenstein series E∗s with Re(s) > 1 and s not
necessarily integer. MGFs with non-integer exponents do not have a Laurent polynomial
near the cusp, so their integrals overML will not be of the form (3.1). When writing these
integrals, we shall retain all L-dependent terms except for those which are exponentially
suppressed in L (as announced in footnote 4). The ≈ notation introduced above will not
be used for the integrals of MGFs with non-integer exponents.

3.2 Integrals of exact differentials

Integrals of exact differentials overML may be evaluated using Stokes theorem and the
fact that the boundary ofML is given by,

∂ML = {τ1 ∈ R/Z, τ2 = L} (3.4)

This simple observation, used in conjunction with the differential relations between MGFs
in (2.26) and (2.28), provides a powerful tool to calculate the integrals of various MGFs, as
shown in [34]. Moreover, we may systematically formulate the transcendental structure of
the integrals of several exact differentials of MGFs.

3.2.1 Integrals involving ∆, ∇, ∇̄

The first-order Maass operators ∇ and ∇̄ were defined in (2.25). The second-order Laplace-
Beltrami operator ∆ was defined in (2.27). Integrals of exact differentials involving these
operators are given as follows.

Proposition 3.1. For arbitrary modular graph functions C, modular graph (0, 2)-forms C+,
and modular graph (2, 0)-forms C−,∫

ML

d2τ

τ2
2

∆C =
∫ 1

0
dτ1 ∂τ2C

∣∣
τ2=L ≈ c

(1)
C∫

ML

d2τ

τ2
2
∇C+ =

∫ 1

0
dτ1 C+∣∣

τ2=L ≈ c
(0)
C+∫

ML

d2τ

τ2
2
∇̄C− =

∫ 1

0
dτ1 C−

∣∣
τ2=L ≈ c

(0)
C− (3.5)

where c
(1)
C and c

(0)
C± are the Laurent coefficients of C and C±, respectively. The ≈ notation

applies only when C, ∇C+, and ∇̄C− are modular graph functions with integer exponents
and weight w. In this case, the transcendental weight of each integral is also w.

The proof of the equalities in (3.5) using Stokes theorem is straightforward, and the
transcendental weight assignments follow from the fact that c(1)

C and c
(0)
C± have transcendental

weight w when C, ∇C+, and ∇̄C− have weight w. In contrast with the integral (3.1) of an
arbitrary MGF with integer exponents, the integrals in (3.5) necessarily have vanishing lnL
contributions since the asymptotic expansions of C and C± are free of logarithms ln τ2.
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3.2.2 The integral of E∗s
As an application of proposition 3.1, we shall compute the integral of the Eisenstein series E∗s
with Re(s) > 1 but s not necessarily integer. At one loop, E∗s is the unique modular graph
function with weight s. The Laplace equation (2.31), the asymptotic expansion (2.34), and
the first equation of (3.5) yield,∫

ML

d2τ

τ2
2
E∗s = 1

s(s− 1)

∫
ML

d2τ

τ2
2

∆E∗s = ζ∗(2s) L
s−1

s− 1 + ζ∗(2s− 1) L
−s

−s
≈ 0 (3.6)

where the ≈ notation applies for integer s ≥ 2. In this case, the integral of E∗s vanishes up
to non-zero powers of L.

3.2.3 Integrals involving ∆k

The differential operator ∆k with integer k ≥ 1 was used in [12, 27] and may be equivalently
defined in terms of the second-order operator ∆ or in terms of the first-order operators ∇
and ∇̄ as follows,

∆k =
k∏
`=1

(
∆− `(`− 1)

)
= ∇̄kτ−2k

2 ∇k = ∇kτ−2k
2 ∇̄k (3.7)

Like the Laplace-Beltrami operator ∆ = ∆1, the operator ∆k acts on modular graph
functions and maps the space of MGFs into itself.

Both the monomial τ s2 and the Eisenstein series E∗s are eigenfunctions of ∆k with the
eigenvalue λk(s) given by,

λk(s) =
k∏

`=1−k
(s− `) = Γ(s+ k)

Γ(s− k) = λk(1− s) (3.8)

The eigenvalue vanishes for integer s with 1− k ≤ s ≤ k so that ∆k annihilates an arbitrary
Laurent polynomial in τ2 of degree (k, 1− k). As a result, for an arbitrary modular graph
function C with integer exponents and weight w, ∆wC is a cusp form with exponential decay
at the cusp.

Additionally, the derivative of the eigenvalue, λ′k(s) = d
dsλk(s), is itself an integer for

integer values of s. This fact may be verified using the properties of the digamma function
ψ(s) = Γ′(s)/Γ(s) discussed in appendix A.

The operator ∆k may be used to construct a total derivative from two arbitrary MGFs.
The integral of this total derivative is given as follows.

Proposition 3.2. For arbitrary modular graph functions C1 and C2 with integer exponents
and respective weights w1 and w2, C1∆kC2 − C2∆kC1 is a total derivative whose integral is,∫

ML

d2τ

τ2
2

(
C1∆kC2 − C2∆kC1

)
≈

w1∑
`1=1−w1

w2∑
`2=1−w2

c
(`1)
C1

c
(`2)
C2

λ′k(`2) δ`1+`2,1 (3.9)

where c
(`1)
C1

and c
(`2)
C2

are the Laurent coefficients of C1 and C2, respectively, and the sum is
over `1 and `2 satisfying `1 + `2 = 1. This integral has transcendental weight w1 + w2.
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Before we prove this proposition, a few remarks are in order. First, the right-hand
side of (3.9) is anti-symmetric under the interchange of the labels 1 and 2, as required,
since λ′(`2) = −λ′(1− `2) = −λ′(`1) for `1 + `2 = 1. Moreover, for C1 = 1, C2 = C, and
k = 1, the expression (3.9) reproduces the integral of ∆C given in (3.5) upon using λ′1(1) = 1.

To prove this proposition we first rewrite the combination C1∆kC2 − C2∆kC1 using the
following relations,

C1∆kC2 = ∇
k−1∑
j=0

(−)j
(
∇jC1

)(
∇k−j−1τ−2k

2 ∇̄kC2
)

+ (−)k τ−2k
2

(
∇kC1

)(
∇̄kC2

)
C2∆kC1 = ∇̄

k−1∑
j=0

(−)j
(
∇̄jC2

)(
∇̄k−j−1τ−2k

2 ∇kC1
)

+ (−)k τ−2k
2

(
∇̄kC2

)(
∇kC1

)
(3.10)

Subtracting the second relation from the first cancels the last term on the right-hand side
of each line and expresses the integrand of (3.9) in terms of total derivatives. Using the
results on the last two lines of (3.5) and the asymptotic expansions (2.18) for C1 and C2,
the integral of (3.9) evaluates as follows,

w1∑
`1=1−w1

w2∑
`2=1−w2

k−1∑
j=0

c
(`1)
C1

c
(`2)
C2

(−)j
[(
∇jτ `12

)(
∇k−j−1τ−2k

2 ∇̄kτ `22
)

−
(
∇̄jτ `22

)(
∇̄k−j−1τ−2k

2 ∇kτ `12
)]
τ2=L

(3.11)

To proceed we use∇nτ s2 = ∇̄nτ s2 = Γ(s+n) τ s+n2 /Γ(s) and carry out the sum over j to obtain
the right-hand side of (3.9) after some straightforward simplifications. The transcendental
weight assignment follows from the fact that c(`1)

C1
and c

(`2)
C2

have transcendental weights w1
and w2, respectively. This completes our proof.

In the special case where one of the MGFs is E∗s with Re(s) > 1 but s not necessarily
integer, the above construction does not directly apply since we assumed in proposition 3.2
that the MGFs had integer exponents. The appropriate generalization is given as follows.

Proposition 3.3. For an arbitrary modular graph function C with integer exponents and
weight w, the combination C∆kE

∗
s − E∗s∆kC with Re(s) > 1 is a total derivative whose

integral is given by the analytic continuation in s of the following expression,∫
ML

d2τ

τ2
2

(
C∆kE

∗
s − E∗s∆kC

)
=

w∑
`=1−w

c
(`)
C
[
λk(s)− λk(`)

]
G`(s) (3.12)

where c
(`)
C are the Laurent coefficients of C and,

G`(s) = ζ∗(2s) L`+s−1

`+ s− 1 + ζ∗(2s− 1) L
`−s

`− s
(3.13)

For integer s ≥ 2, this integral has transcendental weight w + s.

To prove this proposition we write the combination C∆kE
∗
s − E∗s∆kC in terms of total

derivatives using the relations in (3.10). We then use the results on the last two lines of (3.5)
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and the asymptotic expansions (2.18) and (2.34) for C and E∗s , respectively. We find that
the integral of (3.12) evaluates as follows,

w∑
`=1−w

k−1∑
j=0

c
(`)
C ζ∗(2s) (−)j

[(
∇jτ `2

)(
∇k−j−1τ−2k

2 ∇̄kτ s2
)

−
(
∇̄jτ s2

)(
∇̄k−j−1τ−2k

2 ∇kτ `2
)]
τ2=L

+ (s→ 1− s) (3.14)

where the instruction (s→ 1− s) refers to the entire previous term. We proceed as in the
proof of proposition 3.2 and obtain the right-hand side of (3.12) after some straightforward
simplifications. The transcendental weight assignment follows from the fact that c

(`)
C has

transcendental weight w and the fact that both ζ∗(2s) and ζ∗(2s− 1) have transcendental
weight s for integer s ≥ 2, as discussed in appendix A.

3.2.4 The integral of E∗sE∗t
As another application, we shall use the operator ∆1 = ∆ to compute the integral of the
product of two Eisenstein series. This integral is known as the Maass-Selberg relation [33].

Proposition 3.4. The integral of E∗sE∗t with Re(s),Re(t) > 1 is given by the analytic
continuation in s and t of the following expression,∫

ML

d2τ

τ2
2
E∗sE

∗
t = ζ∗(2s) ζ∗(2t) Ls+t−1

s+ t− 1 + ζ∗(2s) ζ∗(2t− 1) L
s−t

s− t

+ ζ∗(2s− 1) ζ∗(2t) L
t−s

t− s
+ ζ∗(2s− 1) ζ∗(2t− 1) L1−s−t

1− s− t (3.15)

which vanishes up to non-zero powers of L for integer s, t ≥ 2 unless s = t.

To prove this proposition, we consider E∗s∆E∗t − E∗t ∆E∗s with s 6= t. This combination
is proportional to E∗sE∗t and may be written in terms of total derivatives using the relations
in (3.10). We use the results on the last two lines of (3.5) and the asymptotic expansion (2.34)
to arrive at (3.12), which may be analytically continued in s and t.

3.3 Integrals of Poincaré series

In addition to Stokes’ theorem, we may use the method of unfolding a Poincaré series,
also called the unfolding trick, to evaluate the integrals of modular graph functions over
ML. The Poincaré series representation of a MGF was given in (2.16). A Poincaré seed
function Λ for a modular graph function C is usually simpler than the function C itself. The
unfolding trick exploits this simplification.

3.3.1 The standard unfolding trick

We shall first consider a modular-invariant function Ĉ whose integral overM is absolutely
convergent and which has a Poincaré seed function Λ̂. The standard unfolding trick replaces
the integral of Ĉ overM = PSL(2,Z)\H with an integral of its seed function Λ̂ over the
upper half-strip Γ∞\H, which is described in (2.7). We have,∫

M

d2τ

τ2
2
Ĉ(τ, τ̄) =

∫
PSL(2,Z)\H

d2τ

τ2
2

∑
λ∈Γ∞\PSL(2,Z)

Λ̂(λτ, λτ̄) =
∫ ∞

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ̂(τ, τ̄) (3.16)
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The absolute convergence of the integral and sum in the middle expression permits swapping
their order and changing integration variables λτ → τ to obtain the final expression.

3.3.2 Unfolding modular graph functions

We shall now consider an arbitrary modular graph function C with integer exponents and
weight w. In general, C has polynomial growth at the cusp and is not integrable onM.

To perform the unfolding trick, we construct from C an associated function Ĉ which
has a finite limit at the cusp by subtracting the positive powers of τ2 from the Laurent
polynomial (2.18) of C. Terms quadratic or higher in τ2 may be subtracted by Eisenstein
series, and we use the two-loop modular graph function C2,1,1 defined in (2.41) to subtract
any linear divergence in τ2, following [30]. For integers ` ≥ 1, we define,

E` =


45

πζ(3)
(
C2,1,1 − 2

9E
∗
4
)

` = 1

1
ζ∗(2`) E

∗
` ` ≥ 2

(3.17)

Our normalizations are chosen so that near the cusp E` = τ `2 +O(τ−1
2 ), and for ` ≥ 2

the Poincaré seeds are simply ΛE` = τ `2 . Given the positive-power Laurent coefficients
c
(1)
C , . . . , c

(w)
C of C, the modular-invariant function Ĉ defined by,

Ĉ = C −
w∑
`=1

c
(`)
C E` = c

(0)
C +O(τ−1

2 ) (3.18)

is integrable overM. By unfolding the integral of Ĉ overM, we can calculate the integral of C
overML. This procedure was carried out in [30] for the connected two-loop functions Cu,v;w.

One could in principle continue to higher loops, but calculating the Laurent polynomial
of higher-loop MGFs is prohibitively laborious. Only a few Laurent polynomials of higher-
loop MGFs are explicitly known. For this reason, we present the following lemma, which
describes a procedure for integrating MGFs which does not require a priori knowledge of
the full Laurent polynomial.

Lemma 3.5. For an arbitrary modular graph function C with integer exponents, weight w,
and Poincaré seed Λ,∫

ML

d2τ

τ2
2
C ≈ lim

L→∞

(∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ−c(1)

C ln(2L)−
w∑
`=2

c
(`)
C
L`−1

`−1

)
+c

(1)
C ln(2L) (3.19)

where c
(`)
C are the Laurent coefficients of C.

Before we prove this lemma, we shall make a few remarks. First, we may identify
the limit on the right-hand side of (3.19) with the constant term IC in (3.1). Second, the
Laurent coefficients c

(`)
C are needed here only for ` ≥ 1, and they are usually easier to

calculate from the Poincaré seed Λ than from the full modular graph function C. In fact,
the positive-power part of the Laurent polynomial of C is equal to the positive-power part
of the Laurent polynomial of Λ. Finally, the result of this lemma is reminiscent of the
Rankin-Selberg-Zagier (RSZ) method of [33]. To integrate a function C over the fundamental
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domain using RSZ, one regularizes the product E∗s C for sufficiently large Re(s), unfolds
the Eisenstein series to its Poincaré seed ζ∗(2s) τ s2 , integrates the resulting expression over
the upper half-strip, and then finally computes the residue of this expression at s = 1. In
comparison, the procedure described in lemma 3.5 unfolds C to its Poincaré seed Λ and
then integrates this seed function over the upper half-strip.

3.3.3 Proof of lemma 3.5

We shall use the two following propositions to prove our lemma.

Proposition 3.6. For τ ∈ H and m,N ∈ Z with m 6= 0,∫ 1

0
dτ1

∑
n∈Z

1
|mτ + n|2|mτ + n+N |2

= 2π
|m|τ2

(
4m2τ2

2 +N2) (3.20)

Proof. We first separately decompose the holomorphic and anti-holomorphic factors in
the summand using partial fractions as follows,

1
(mτ + n)(mτ + n+N) = 1

N

( 1
mτ + n

− 1
mτ + n+N

)
(3.21)

Since N ∈ Z, we can shift the sums over n and again use partial fraction decomposition on
each term in the summand to write the left-hand side of (3.20) as,

1
N2

( 1
mτ2

− 1
2mτ2 + iN

− 1
2mτ2 − iN

)∫ 1

0
dτ1

∑
n∈Z

i

mτ + n
+ c.c.

 (3.22)

where c.c. stands for the complex conjugate of the previous term in parentheses. The sum
over n is given by,

∑
n∈Z

i

mτ + n
= πε(m)

(
1 + 2

∑
p>0

e2πi|m|pτ
)

(3.23)

where ε(m) = ±1 is equal to the sign of m. Integrating over τ1 annihilates the sum
over p. The terms in the first set of parentheses in (3.22) can then be combined with like
denominators to yield the right-hand side of (3.20).

Proposition 3.7. Let ΛE1 be a Poincaré seed for E1 defined in (3.17). Then,

lim
L→∞

(∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 ΛE1 − ln(2L)

)
= ζ ′(4)
ζ(4) −

ζ ′(3)
ζ(3) (3.24)

Proof. A Poincaré seed for E1 is given by,

ΛE1 = 45
πζ(3)

(
Λ2,1,1 −

2π4

14175 τ
4
2

)
(3.25)
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where Λ2,1,1 is a Poincaré seed for C2,1,1. We obtain Λ2,1,1 from the Kronecker-Eisenstein
series representation (2.41) of C2,1,1 by rotating the integer pair (m3, n3) 6= (0, 0) to the
pair (0, N) 6= (0, 0),

Λ2,1,1 = τ4
2
π4

∑
N 6=0

′∑
(mr,nr)∈Z2

r=1,2

δ(m1 +m2)δ(n1 + n2 +N)
|m1τ + n1|2|m2τ + n2|2N4 (3.26)

Next we split Λ2,1,1 into contributions according to the number of non-vanishing summation
variables mr. The contribution with both m1 = m2 = 0 cancels the τ4

2 term in (3.25). The
contribution with only one non-zero mr vanishes in view of the Kronecker delta function.
Thus, the remaining contribution arises entirely from non-vanishing m1 and m2,

ΛE1 = 45τ4
2

π5ζ(3)
∑

m1,m2,N 6=0

∑
n1,n2∈Z

δ(m1 +m2)δ(n1 + n2 +N)
|m1τ + n1|2|m2τ + n2|2N4 (3.27)

To evaluate this sum we use the delta symbols to solve m = m1 = −m2 and n2 = −n1 −N .
We then integrate over τ1 using (3.20) of proposition 3.6. Restricting the sums to m,N > 0
and integrating over τ2, we find,∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 ΛE1 = 1

ζ(3)ζ(4)
∑

m,N>0

1
m3N4 ×

1
2 ln

(
(2mL/N)2 + 1

)
(3.28)

The limit (3.24) simply follows.

Proof of lemma 3.5. Returning to our lemma, we first construct the finite modular
graph function Ĉ as in (3.18) and use the standard unfolding trick (3.16) to find,∫

M

d2τ

τ2
2
Ĉ =

∫ ∞
0

dτ2
τ2

2

∫ 1

0
dτ1

(
Λ− c

(1)
C ΛE1 −

w∑
`=2

c
(`)
C τ `2

)
(3.29)

By construction, Ĉ is finite at the cusp, so the integrals of Ĉ over M and ML differ by
terms of order O(L−1). Using the definition of Ĉ we obtain,∫

ML

d2τ

τ2
2
Ĉ =

∫
ML

d2τ

τ2
2
C −

w∑
`=1

c
(`)
C

∫
ML

d2τ

τ2
2
E` (3.30)

The integrals of the Eisenstein series are given in (3.6). The integral of E1 can be calculated
using the differential equation (∆− 2)C2,1,1 = 9E4 − E2

2 , the Laurent polynomial of C2,1,1,
and the integral of E2

2 . We simply quote the result from [30],∫
ML

d2τ

τ2
2
E1 = ζ ′(4)

ζ(4) −
ζ ′(3)
ζ(3) + ln(2L) +O(L−1) (3.31)

Now we return to (3.29) and write the τ2 integral as the limit of a definite integral from 0
to L. Combining the results above, we find,∫

ML

d2τ

τ2
2
C ≈ lim

L→∞

(∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 ΛC − c

(1)
C

∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 ΛE1 −

w∑
`=2

c
(`)
C
L`−1

`− 1

)

+ c
(1)
C

(
ζ ′(4)
ζ(4) −

ζ ′(3)
ζ(3) + ln(2L)

)
(3.32)
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Finally, we add and subtract c(1)
C ln(2L) within the limit in (3.32) and use (3.24) of proposi-

tion 3.7 to arrive at (3.19). This completes our proof of lemma 3.5.

4 Integrating two-loop modular graph functions

In this section, we shall evaluate the integrals of two-loop modular graph functions and
discuss their transcendental structure. In section 2.5, we proved that the space of two-loop
MGFs with non-negative integer exponents is spanned by the disconnected functions V(n)

s,t

defined in (2.39) and the connected functions Cu,v;w defined in (2.49). We shall first evaluate
the integral of V(n)

s,t using Stokes’ theorem. Then we shall evaluate the integral of Cu,v;w
using the unfolding trick.

4.1 The integral of V(n)
s,t

The infinite family of functions V(n)
s,t with Re(s),Re(t) > 1 and integer n ≥ 0 spans the

space of disconnected two-loop MGFs. Before specializing to integer s, t ≥ 2, we shall
consider complex non-integer values of s, t. In (3.15), we calculated the integral of the
double product E∗sE∗t with Re(s),Re(t) > 1 and found that it vanishes up to non-zero
powers of L for integer s, t ≥ 2 unless s = t. This previous result is a special case of the
following lemma.

Lemma 4.1. The integral of V(n)
s,t with Re(s),Re(t) > 1 and integer n ≥ 0 is given by the

analytic continuation in s and t of the following expression,
∫
ML

d2τ

τ2
2
V(n)
s,t = 4

{
ζ∗(2s)
Γ(s)

ζ∗(2t)
Γ(t)

Ls+t−1

s+t−1

+ ζ∗(2s)
Γ(s)

ζ∗(2t−1)
Γ(t+n)

Γ(1−t+n)
Γ(1−t)

Ls−t

s−t
+ ζ∗(2t)

Γ(t)
ζ∗(2s−1)
Γ(s+n)

Γ(1−s+n)
Γ(1−s)

Lt−s

t−s

+ ζ∗(2s−1)
Γ(s+n)

ζ∗(2t−1)
Γ(t+n)

Γ(1−s+n)
Γ(1−s)

Γ(1−t+n)
Γ(1−t)

L1−s−t

1−s−t

}
(4.1)

This integral has L-independent or lnL terms only when s= t. In this case,∫
ML

d2τ

τ2
2
V(n)
s,s = 4 ζ

∗(2s)2

Γ(s)2
L2s−1

2s−1 +4 ζ
∗(2s−1)2

Γ(s+n)2
Γ(1−s+n)2

Γ(1−s)2
L1−2s

1−2s (4.2)

+8 ζ
∗(2s)
Γ(s)

ζ∗(2s−1)
Γ(s+n)

Γ(1−s+n)
Γ(1−s)

×
[
ζ ′(2s)
ζ(2s) −

ζ ′(2s−1)
ζ(2s−1) −ψ(2s−1)+ 1

2ψ(s+n)+ 1
2ψ(s−n)+ln(2L)

]
where ψ(z) = Γ′(z)/Γ(z) is the digamma function.

To prove this lemma, we first consider s 6= t. We use (2.40) and (3.10) to write V(n)
s,t in

terms of E∗sE∗t plus total derivative terms. The integral of E∗sE∗t is given by (3.15). The
total derivative terms may be integrated using the results on the last two lines of (3.5)
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and the asymptotic expansion (2.34) of the Eisenstein series. After some straightforward
simplifications, we arrive at (4.1), which agrees with (3.15) when n = 0. The result for s = t

follows by analytic continuation. In this case, the singular terms on the second and third
lines must cancel, generating constant and lnL contributions. We explicitly compute the
limit t→ s using the properties of the starred zeta function and the digamma function given
in appendix A. After taking this limit, we use the duplication formula for the digamma
function, ψ(z) + ψ(z − 1

2) = 2ψ(2z − 1)− 2 ln 2, to find (4.2). This completes our proof.
We shall now restrict to integer s, t ≥ 2. In this case, we may write the integral in a

form which makes its transcendental structure manifest.

Theorem 4.2. The integral of V(n)
s,t with integer s, t ≥ 2 and n ≥ 0 is given as follows.

• When s 6= t, the integral vanishes up to non-zero powers of L.

• When s = t ≤ n, the integral has transcendental weight 2s and is given by,∫
ML

d2τ

τ2
2
V(n)
s,s ≈ 8πζ(2s−1) B2s

(2s)!
(2s−2)!(n−s)!

(n+s−1)! (4.3)

• When s= t>n, the integral has transcendental weight 2s+1 and is given by,∫
ML

d2τ

τ2
2
V(n)
s,s ≈ (−)s+n−1 16πζ(2s−1) B2s

(2s)!
(2s−2)!

(s−n−1)!(s+n−1)! (4.4)

×
[
ζ ′(2s)
ζ(2s) −

ζ ′(2s−1)
ζ(2s−1) −H1(2s−1)+ 1

2H1(s+n)+ 1
2H1(s−n)+ln(2L)

]
where H1(m) = ∑m−1

k=1
1
k are finite harmonic sums.

In each case, the integral of V(n)
s,t is of the form claimed in proposition 1.1.

To prove this theorem, we only need to consider the case s = t. In this case, we begin
with (4.2) and use the properties in appendix A to manipulate the starred zeta functions
and digamma functions in the limit of integer s. When s = t ≤ n, we use,

lim
z→s

ψ(z − n)/Γ(1− z) = (−)s−1 (s− 1)! (4.5)

and find (4.3). When s = t = n, the integrand is given by V(n)
n,n = τ2n

2 G2n Ḡ2n, and our
result agrees with Zagier’s calculation of the same integral in [33]. When s = t > n, we
find (4.4).

4.2 The integral of Cu,v;w

We shall now evaluate the integral of the connected two-loop modular graph function Cu,v;w.
This integral was calculated in [30] using the unfolding trick. This calculation made explicit
use of the Laurent coefficients of Cu,v;w which were calculated in [27].

Our calculation will similarly use the unfolding trick but will not rely on a priori
knowledge of the Laurent coefficients. Instead, we shall compute the integral of Cu,v;w using
lemma 3.5. In the remainder of this subsection, we shall prove the following theorem.
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Theorem 4.3. The integral of Cu,v;w with integer u, v, w satisfying 1 ≤ u, v ≤ w − 1 and
u+ v ≥ 3 is given as follows.

• For odd w < u+ v, the integral vanishes up to non-zero powers of L.

• For odd w ≥ u+ v, the integral has transcendental weight w + 1 and is given by,∫
ML

d2τ

τ2
2
Cu,v;w≈ 2πζ(w) Bw−1

(w−1)!
(w−2)!

(u−1)!(v−1)!(w−u−v)! (4.6)

• For even w<u+v, the integral has transcendental weight w and is given by,∫
ML

d2τ

τ2
2
Cu,v;w≈ (−)u+v−1 8πζ(w−1)Bw

w!
(w−2)!(u+v−w−1)!

(u−1)!(v−1)! (4.7)

• For even w≥u+v, the integral has transcendental weight w+1 and is given by,∫
ML

d2τ

τ2
2
Cu,v;w≈−8πζ(w−1)Bw

w!
(w−2)!

(u−1)!(v−1)!(w−u−v)! (4.8)

×
[
ζ ′(w)
ζ(w) −

ζ ′(w−1)
ζ(w−1) −H1(w−1)+H1(w−u−v+1)+ln(2L)

]
where H1(m) = ∑m−1

k=1
1
k are finite harmonic sums.

In each case, the integral of Cu,v;w is of the form claimed in proposition 1.1.

Before we prove this theorem, we note that the expressions for these integrals are
compatible with the system of differential equations (2.50) obeyed by the functions Cu,v;w.

4.2.1 The Poincaré seed Λu,v;w

Following lemma 3.5, we shall compute the integral of Cu,v;w by integrating its Poincaré
seed function Λu,v;w over the truncated upper half-strip. This calculation is similar to the
proof of proposition 3.7.

We first obtain an expression for Λu,v;w from the Kronecker-Eisenstein series represen-
tation (2.49) of Cu,v;w by rotating the integer pair (m3, n3) 6= (0, 0) to (0, N) 6= (0, 0),

Λu,v;w = τw2
πw

∑
N 6=0

′∑
(mr,nr)∈Z2

r=1,2

δ(m1 +m2)δ(n1 + n2 +N)
(m1τ + n1)u(m2τ̄ + n2)vN2w−u−v (4.9)

Splitting Λu,v;w = Λ[0]
u,v;w + Λ[1]

u,v;w + Λ[2]
u,v;w into contributions according to the number of

non-vanishing summation variables mr, we see that Λ[1]
u,v;w vanishes thanks to the delta

function constraint. The remaining contributions are given by,

Λ[0]
u,v;w = τw2

πw

∑
n1,n2,N 6=0

δ(n1 + n2 +N)
nu1n

v
2N

2w−u−v

Λ[2]
u,v;w = τw2

πw

∑
m1,m2,N 6=0

∑
n1,n2∈Z

δ(m1 +m2)δ(n1 + n2 +N)
(m1τ + n1)u(m2τ̄ + n2)vN2w−u−v (4.10)
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The Λ[0]
u,v;w contribution yields a term proportional to Lw−1 in the integral of Λu,v;w and

may be ignored in light of lemma 3.5. This leaves only Λ[2]
u,v;w. Hence,∫

ML

d2τ

τ2
2
Cu,v;w ≈

∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[2]

u,v;w (4.11)

To evaluate Λ[2]
u,v;w, we first sum over the variables m2 and n2 using the two delta symbols.

We then define m = m1 and n = n1 and find,

Λ[2]
u,v;w = τw2

πw

∑
m,N 6=0

∑
n∈Z

(−)v
(mτ + n)u(mτ̄ + n+N)vN2w−u−v (4.12)

The sum over n may be carried out by partial fraction decomposition and the following
standard summation formula,

∑
n∈Z

1
(z + n)k+1 = iπ

(−)k
k!

dk

dzk

(
1 + e2πiz

1− e2πiz

)
(4.13)

Integrating over τ1 projects onto the constant Fourier mode which contributes only when
k = 0. Thus we find,∫ 1

0
dτ1

∑
n∈Z

1
(mτ + n)u(mτ̄ + n+N)v =

(u+v−2
u−1

) 2πi ε(m) (−)v−1

(2imτ2 −N)u+v−1 (4.14)

where ε(m) = ±1 is equal to the sign of m. We now integrate over τ2 and find,∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[2]

u,v;w = − 4i
πw−1

(u+v−2
u−1

) ∑
m,N>0

1
N2w−u−v (4.15)

×
∫ L

0
dτ2 τ

w−2
2

(
1

(2imτ2 −N)u+v−1 + (−)u+v

(2imτ2 +N)u+v−1

)

After some straightforward simplifications and a change of integration variables, we obtain
the following expression,

∫
ML

d2τ

τ2
2
Cu,v;w ≈

8
(2π)w−1

bu+v−2
2 c∑
`=0

(u+v−2
u−1

)(u+v−1
2`+1

)
(−)u+v+`−1

×
∑

m,N>0

1
mw−1Nw

∫ 2mL
N

0

dxxw+2`−1

(x2 + 1)u+v−1 (4.16)

This expression includes an infinite series of finite integrals which may be compactly
expressed in terms of a more general family of functions.

4.2.2 Fg functions

Before we introduce the general family of functions Fg, we shall briefly review the aspects
of arithmetic functions and Dirichlet series which are needed here.
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An arithmetic function f : Z+ → C is defined for positive integers m. For example, the
constant (or trivial) function 1 : m 7→ 1 and the finite harmonic series H1 : m 7→∑m−1

k=1
1
k

are both arithmetic functions.
For an arithmetic function f , the Dirichlet series ζf (s) and its derivative ζ ′f (s) are

functions of s ∈ C defined by the following sums when absolutely convergent and elsewhere
by analytic continuation in s,

ζf (s) =
∑
m>0

f(m)
ms

ζ ′f (s) = −
∑
m>0

f(m)
ms

ln(m) (4.17)

In particular, ζ1(s) = ζ(s) is the Riemann zeta function, and ζH1(s) = ζ(s, 1) is a double
zeta function. Both converge for Re(s) > 1.

We shall now define the general family of functions Fg(a, b; c, d; f ;L) by the following
infinite series of integrals,

Fg(a, b; c, d; f ;L) = (−)a+b+1 ∑
m,n>0

f(m)
mcnd

∫ 2mL
n

0

dxx2a+g

(x2 + 1)b (4.18)

for g = 0 or 1, integers a, b ≥ 0, real numbers c, d > 1, an arithmetic function f , and a
finite cut-off L > 1. The sign prefactor is included for later convenience. The convergence
properties and large-L behavior of Fg are given by the following lemma.

Lemma 4.4. For fixed L > 1, the sums in (4.18) which define Fg converge if the following
Dirichlet series is absolutely convergent,

ζf
(
c− 2(a− b)Θ(a− b)− g − 1

)
(4.19)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0.
When Fg converges, its large-L behavior up to powers of L with non-zero exponents

and terms which vanish in the limit L→∞ is given as follows,

F0(a,b;c,d;f ;L)≈πζf (c)ζ(d)
b−1∑
`=0

( a
b−1−`

)(2`
`

) (−)`
22`+1

F1(a,b;c,d;f ;L)≈ ζf (c)ζ(d)
{( a

b−1
)[ζ ′(d)

ζ(d) −
ζ ′f (c)
ζf (c) +ln(2L)

]
+ 1

2

b−1∑
`=1

( a
b−1−`

)(−)`
`

}
(4.20)

where the ≈ notation was introduced in (3.3).

We shall begin our proof with the convergence condition on Fg. We may bound the
integral in (4.18) as follows,∫ 2mL

n

0

dxx2a+g

(x2 + 1)b <
∫ 2mL

n

0
dxx2(a−b)Θ(a−b)+g = (2mL/n)2(a−b)Θ(a−b)+g+1

2(a− b)Θ(a− b) + g + 1 (4.21)

Therefore, the sums in (4.18) converge if the following sums are convergent,

∑
m,n>0

f(m)
mcnd

(
m

n

)2(a−b)Θ(a−b)+g+1
= ζf

(
c− 2(a− b)Θ(a− b)− g − 1

)
× ζ

(
d+ 2(a− b)Θ(a− b) + g + 1

)
(4.22)
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Since d > 1 by assumption, the sum over n converges, leaving our claimed condition on the
Dirichlet series. This convergence condition is sufficient but not strictly necessary. However,
every instance of Fg which appears in this paper will satisfy this condition.

To prove the remainder of lemma 4.4, we decompose the integrand in the definition (4.18)
into a sum of polynomials in x plus terms of the form xg/(x2 + 1)` for positive integer `
using a generalization of the finite geometric series formula. For integers a, b ≥ 0,

(−)a+b+1 x2a

(x2 + 1)b =
b−1∑
`=0

( a
b−1−`

) (−)`
(x2 + 1)`+1 +

a−b∑
`=0

(a−1−`
b−1

)
(−)`+1x2` (4.23)

Using this identity, the definition of Fg in (4.18) becomes,

Fg =
∑

m,n>0

f(m)
mcnd

∫ 2mL
n

0
dx

[
b−1∑
`=0

( a
b−1−`

) (−)` xg
(x2 + 1)`+1 +

a−b∑
`=0

(a−1−`
b−1

)
(−)`+1 x2`+g

]
(4.24)

Integrating the polynomial terms in (4.24) at fixed m, n, and L and then performing the
sums over m and n produces terms which are proportional to positive powers of L. We
define a function F̃g by subtracting these terms as follows,

F̃g = Fg +
a−b∑
`=0

(a−1−`
b−1

)
(−)` (2L)2`+g+1

2`+ g + 1 ζf (c− 2`− g − 1) ζ(d+ 2`+ g + 1)

=
b−1∑
`=0

( a
b−1−`

)
(−)`

∑
m,n>0

f(m)
mcnd

∫ 2mL
n

0

dxxg

(x2 + 1)`+1 (4.25)

The zeta functions in this expression converge if Fg converges.
When g = 0, the integrand in F̃0 decays like x−2 for large x, so F̃0 converges as L→∞.

In this case, the asymptotic expansion in (4.20) follows after using the integral,∫ ∞
0

dx

(x2 + 1)`+1 = π

22`+1

(
2`
`

)
(4.26)

When g = 1, the integrand in F̃1 decays like x−1 for large x, so F̃1 diverges like lnL
as L→∞. Isolating the ` = 0 term of (4.25) and evaluating the integral, we find,

F̃1(a, b; c, d; f ;L)
∣∣
`=0 =

( a
b−1
) ∑
m,n>0

f(m)
mcnd

× 1
2 ln

(
(2mL/n)2 + 1

)
(4.27)

Subtracting the lnL divergence, taking the limit L→∞, and performing the sums over m
and n, we find,

lim
L→∞

[
F̃1
∣∣
`=0 −

( a
b−1
)
ζf (c) ζ(d) ln(2L)

]
=
( a
b−1
)
ζf (c) ζ(d)

[
ζ ′(d)
ζ(d) −

ζ ′f (c)
ζf (c)

]
(4.28)

We return to (4.25). The ` > 0 terms are finite as L→∞ and may be evaluated using,∫ ∞
0

dxx

(x2 + 1)`+1 = 1
2` (4.29)

– 36 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

Combining these results, we arrive at the asymptotic expansion in (4.20) for the case g = 1.
This completes our proof of lemma 4.4.

With the general Fg functions in hand, we shall now return to the integral of Cu,v;w.
We may clearly write the right-hand side of (4.16) in terms of the Fg functions. It will be
convenient, however, to separately consider the cases of odd and even w.

4.2.3 Odd w

First we consider odd w = 2κ+ 1 with integer κ ≥ 1. In this case, we may write (4.16) in
terms of the functions F0(κ + `, u + v − 1;w − 1;w;1;L). The large-L behavior of F0 is
given by lemma 4.4. After some simplifications, we find,∫

ML

d2τ

τ2
2
Cu,v;w ≈ 2π ζ(w) Bw−1

(w − 1)! R
(odd)
u,v;w (4.30)

where we have written the even zeta-value ζ(w − 1) in terms of a Bernoulli number and
defined the rational number R by,

R(odd)
u,v;w =

bu+v−2
2 c∑
`=0

(u+v−2
u−1

)(u+v−1
2`+1

) u+v−2∑
j=0

( κ+`
u+v−2−j

)(2j
j

)(−)j
22j (4.31)

To evaluate the sum over j, we use the following identity for integers a, b ≥ 0,

b−1∑
j=0

( a
b−1−j

)(2j
j

)(−)j
22j =

Γ(a+ 1
2)

Γ(b)Γ(a− b+ 3
2)

(4.32)

We then find,

R(odd)
u,v;w = (u+v−1)!

(u−1)!(v−1)!

bu+v−2
2 c∑
`=0

Γ(κ+`+ 1
2)

Γ(2`+2)Γ(u+v−2`−1)Γ(κ+`−u−v+ 5
2)

(4.33)

The sum over ` may be computed by separately considering the two cases of u+ v even or
odd. In either case, we find,

R(odd)
u,v;w = (w − 2)!

(u− 1)!(v − 1)!(w − u− v)! (4.34)

which vanishes for u+ v > w. This completes our proof of theorem 4.3 for odd w.

4.2.4 Even w

Now we consider even w = 2κ with integer κ ≥ 2. In this case, we may write (4.16) in
terms of the functions F1(κ+ `− 1, u+ v− 1;w− 1;w;1;L). The large-L behavior is again
given by lemma 4.4. After some simplifications, we find,∫
ML

d2τ

τ2
2
Cu,v;w≈−8πζ(w−1)Bw

w!

(
R(even)
u,v;w

[
ζ ′(w)
ζ(w) −

ζ ′(w−1)
ζ(w−1) +ln(2L)

]
+Hu,v;w

)
(4.35)
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where we have written the even zeta-value ζ(w) in terms of a Bernoulli number and defined
the rational numbers R and H by,

R(even)
u,v;w =

bu+v−2
2 c∑
`=0

(u+v−2
u−1

)(u+v−1
2`+1

)(κ+`−1
u+v−2

)

Hu,v;w = 1
2

bu+v−2
2 c∑
`=0

(u+v−2
u−1

)(u+v−1
2`+1

) u+v−2∑
j=1

( κ+`−1
u+v−2−j

)(−)j
j

(4.36)

We may compute R by separately considering the two cases of u+ v even or odd. In either
case, we find,

R(even)
u,v;w = (w − 2)!

(u− 1)!(v − 1)!(w − u− v)! (4.37)

which vanishes for u+ v > w. When u+ v ≤ w, H is an integer times the difference of two
finite harmonic sums,

Hu,v;w = − (w − 2)!
(u− 1)!(v − 1)!(w − u− v)!

[
H1(w − 1)−H1(w − u− v + 1)

]
(4.38)

When u+ v > w, H is the following rational number,

Hu,v;w = (−)u+v (w − 2)!(u+ v − w − 1)!
(u− 1)!(v − 1)! (4.39)

This completes our proof of theorem 4.3 for even w.

5 Integrating triple products of Eisenstein series

In this section, we shall evaluate the integrals of some of the simplest three-loop modular
graph functions, namely triple products of Eisenstein series and their derivatives, and shall
obtain their the transcendental structure.

First we shall consider the infinite family of triple products of non-holomorphic Eisen-
stein series E∗sE∗tE∗u with Re(s),Re(t),Re(u) > 1. These triple products are disconnected
three-loop modular graph functions with weight s+ t+u and the following decorated graph,

E∗sE
∗
tE
∗
u = 1

8 Γ(s) Γ(t) Γ(u)× s, s t, t u, u (5.1)

where the prefactor arises from the normalization of the starred Eisenstein series relative to
the un-starred Eisenstein series.

We shall also consider the infinite family of disconnected three-loop modular graph
functions W(m,n)

s with Re(s) ≥ 6 and integers m,n which satisfy 2 ≤ m,n ≤ bRe(s)/2c − 1.
These functions are equal to a product of three one-loop modular graph forms and have the
following decorated graph and matrix of exponents,

W(m,n)
s = 2m, 0 0, 2n s− 2m, s− 2n = C

[
2m 0
0 0

]
C
[

0 0
2n 0

]
C
[
s− 2m 0
s− 2n 0

]
(5.2)
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The functions W(m,n)
s have weight s and may be written in terms of derivatives acting on

three Eisenstein series as follows,

W(m,n)
s = 8 Γ(2m)−1 Γ(2n)−1∇mE∗m∇̄nE∗n

×


Γ(s− 2m)−1 τ−2n

2 ∇n−mE∗s−m−n m ≤ n

Γ(s− 2n)−1 τ−2m
2 ∇̄m−nE∗s−m−n m ≥ n

(5.3)

The first two factors in (5.2) are respectively proportional to the holomorphic and anti-
holomorphic Eisenstein series G2m and Ḡ2n, and we restrict to m,n ≥ 2 so that their
Kronecker-Eisenstein series are absolutely convergent.

5.1 The integral of E∗sE∗tE∗u
The integral of the triple product E∗sE∗tE∗u with Re(s),Re(t),Re(u) > 1 was calculated by
Zagier in [33] using the unfolding trick. This integral is given by the analytic continuation
in s, t, u of the following expression,∫

ML

d2τ

τ2
2
E∗sE

∗
tE
∗
u = ζ∗(w − 1) ζ∗(w − 2s) ζ∗(w − 2t) ζ∗(w − 2u)

+
∑

x=s,1−s

∑
y=t,1−t

∑
z=u,1−u

ζ∗(2x) ζ∗(2y) ζ∗(2z) Lx+y+z−1

x+ y + z − 1 (5.4)

where w = s+ t+ u and the finite sum over x, y, z has eight total terms.
To analyze the transcendental structure of this integral, we restrict to integer s, t, u ≥ 2

and thus w ≥ 6. Without loss of generality, we shall choose the ordering u ≥ t ≥ s so
that we have w − 2s ≥ w − 2t ≥ 2. Thus (5.4) has two singular terms when 2u = w or
when 2u = w − 1. In both cases, the two singular terms precisely cancel, generating L-
independent and lnL terms. When 2u does not equal w or w − 1, there are no singular
terms, and the integral simply equals the quadruple product of zeta-values on the first
line of (5.4) up to non-zero powers of L. The following theorem makes these observations
precise and writes the integral in a form with manifest transcendental weight.

Theorem 5.1. The integral of E∗sE∗tE∗u with integer u ≥ t ≥ s ≥ 2 and w = s+ t+ u is
given as follows. In each case, the top entry in the piecewise notation is for w odd, and the
bottom entry is for w even.

• When u < bw/2c, the integral has transcendental weight w when w is even and transcen-
dental weight w + 1 when w is odd. It is given by,∫
ML

d2τ

τ2
2
E∗sE

∗
tE
∗
u ≈ 2π (−)b

w
2c+1 (w − 3)!! (w − 2s− 2)!! (w − 2t− 2)!! (w − 2u− 2)!!

×


Bw−1
(w−1)! ζ(w − 2s) ζ(w − 2t) ζ(w − 2u)

Bw−2s
(w−2s)!

Bw−2t
(w−2t)!

Bw−2u
(w−2u)! ζ(w − 1)

(5.5)
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trans. weight u w

w + 1 u < bw/2c odd
w u < bw/2c even
w + 1 u = bw/2c odd
w + 1 ∗ u = bw/2c even
2u+ 1 u > bw/2c odd or even

Table 1. The transcendental weights of the integral of E∗
sE

∗
t E

∗
u with integer u ≥ t ≥ s ≥ 2 and

w = s+ t+ u. The asterisk in the case of w = 2u denotes the presence of a term proportional to
ln(2π).

• When u = bw/2c, the integral has transcendental weight w + 1, except for a term
proportional to ln(2π) that occurs when w is even. It is given by,∫
ML

d2τ

τ2
2
E∗sE

∗
tE
∗
u ≈ 2π (−)b

w+1
2 c (w − 3)!! (w − 2s− 2)!! (w − 2t− 2)!! (5.6)

×



Bw−1
(w−1)! ζ(w − 2s) ζ(w − 2t)

×
[
Z(w − 1)−Z(w − 2s)−Z(w − 2t) + γE + ln(2L)

]
Bw−2s
(w−2s)!

Bw−2t
(w−2t)! ζ(w − 1)

×
[
Z(w − 1)−Z(w − 2s)−Z(w − 2t) + ln(2π)− ln(2L)

]
where Z is the combination of the logarithmic derivative of the Riemann zeta function
and finite harmonic sums defined in (A.14) and γE is the Euler-Mascheroni constant.

• When u > bw/2c, the integral has transcendental weight 2u+ 1 and is given by,∫
ML

d2τ

τ2
2
E∗sE

∗
tE
∗
u ≈ 2π (−)u (w − 3)!! (w − 2s− 2)!! (w − 2t− 2)!! (2u− w − 1)!!

×


Bw−1
(w−1)!

B2u−w+1
(2u−w+1)! ζ(w − 2s) ζ(w − 2t)

Bw−2s
(w−2s)!

Bw−2t
(w−2t)! ζ(w − 1) ζ(2u− w + 1)

(5.7)

In each case, the integral of E∗sE∗tE∗u is trivially of the form claimed in proposition 1.2.

To prove this theorem, we begin with (5.4) and use the properties of the starred zeta
functions in appendix A to compute the appropriate limits. After some algebra we arrive
at (5.5), (5.6), and (5.7).

In each case, the integral of E∗sE∗tE∗u is given by the product of a rational number, a
single factor of π, and odd zeta-values. When u = bw/2c there is also a factor whose terms
have unit transcendental weight (excluding the pesky ln(2π) term that occurs for 2u = w).
The transcendental structure of this integral may be summarized in table 1.
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• When 2u ≤ w − 1, the integral has transcendental weight w or w + 1 which is consistent
with the integrals of total derivatives and the integrals of two-loop MGFs.

• When 2u = w, the asterisk in the table indicates the presence of ln(2π), which spoils
the transcendental structure. The logarithm of a transcendental number cannot be
consistently assigned a transcendental weight. Moreover, ln(2π) did not occur in the
integrals of any two-loop MGFs and is new to these three-loop integrals.

• When 2u > w, the integral has transcendental weight 2u+ 1 > w + 1, a phenomenon
which also did not occur at two loops.

Compared to the integrals of arbitrary two-loop MGFs, the integral of E∗sE∗tE∗u has novel
transcendental structure when 2u ≥ w ≥ 8. For example, at weight eight the integral of
E∗2E

∗
2E
∗
4 contains ln(2π), and at weight nine the integral of E∗2E∗2E∗5 has transcendental

weight eleven.

5.2 The integral of W(m,n)
s

We shall now consider the infinite family of disconnected three-loop modular graph func-
tions W(m,n)

s defined in (5.2). Before specializing to integer s, we shall consider complex s.

Lemma 5.2. The integral of W(m,n)
s with Re(s) ≥ 6 and integers 2 ≤ m,n ≤ bRe(s)/2c − 1

is given by the analytic continuation in s of the following expression,∫
ML

d2τ

τ2
2
W(m,n)
s = 16(−)m+n

×
{

Γ(s−1)
Γ(2m)Γ(2n)

ζ(s−1)ζ(s−2m)ζ(s−2n)ζ(s−2m−2n+1)
(2π)2s−2m−2n−1

+ Γ(2s−2m−2n−1)
Γ(s−2m)Γ(s−2m)

ζ(2m)ζ(2n)ζ(2s−2m−2n−1)
(2π)s−1

(2L)2m+2n−s

2m+2n−s

+(−)m+n ζ(2m)ζ(2n)ζ(2s−2m−2n)
(2π)s

(2L)s−1

s−1

}
(5.8)

The first and second terms on the right-hand side each have simple poles at s = 2m+ 2n
which cancel and generate constant and lnL terms.

We shall prove this lemma using the unfolding trick. We begin with (5.3) and the
Laurent polynomial (2.34) of the Eisenstein series to find the asymptotic expansion of
W(m,n)
s near the cusp,

W(m,n)
s = 8 ζ

∗(2m)
Γ(m)

ζ∗(2n)
Γ(n)

{
ζ∗(2s− 2m− 2n)

Γ(s−m− n) τ s2 (5.9)

+ (−)m+n Γ(s−m− n) ζ
∗(2s− 2m− 2n− 1)
Γ(s− 2m)Γ(s− 2n) τ2m+2n−s+1

2

}
+O(e−2πτ2)
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When Re(s) > 2m+ 2n+ 1, the only positive-power part of this asymptotic expansion is
proportional to τ s2 . When Re(s) ≤ 2m+ 2n+ 1, there is a second divergent term.

We shall work in the first range so that we may construct a regularized function which
vanishes near the cusp by subtracting a single Eisenstein series from the original function.
At the end of our calculation we shall then analytically continue our result to Re(s) ≥ 6.
We define the regularized function as follows,

W̃(m,n)
s =W(m,n)

s − 8 ζ
∗(2m)
Γ(m)

ζ∗(2n)
Γ(n)

ζ∗(2s− 2m− 2n)
Γ(s−m− n)

1
ζ∗(2s) E

∗
s (5.10)

A Poincaré seed for the regularized function is given by,

Λ̃(m,n)
s = Λ(m,n)

s − 8 ζ
∗(2m)
Γ(m)

ζ∗(2n)
Γ(n)

ζ∗(2s− 2m− 2n)
Γ(s−m− n) τ s2 (5.11)

where Λ(m,n)
s is a Poincaré seed for the un-regularized function. We construct this seed

function by unfolding the last factor in (5.2) and find,

Λ(m,n)
s = 2 ζ

∗(2s− 2m− 2n)
Γ(s−m− n) τ s2 G2m Ḡ2n (5.12)

where G2m and Ḡ2n are holomorphic and anti-holomorphic Eisenstein series, respectively.
Using the Fourier expansion (2.38) for these Eisenstein series, we find,∫ 1

0
dτ1 Λ̃(m,n)

s = 8(−4)m+n ζ(2s−2m−2n)
Γ(2m)Γ(2n)

τ s2
πs−2m−2n

∞∑
k=1

σ2m−1(k)σ2n−1(k)(qq̄)k (5.13)

where q = e2πiτ and σ`(n) is the divisor sum defined below (2.38).
Using the standard unfolding trick (3.16), we unfold the integral of the regularized

function over the full fundamental domain and find,∫
M

d2τ

τ2
2
W̃(m,n)
s = 16 (−)m+n Γ(s− 1)

Γ(2m)Γ(2n)
ζ(2s− 2m− 2n)
(2π)2s−2m−2n−1

∞∑
k=1

σ2m−1(k)σ2m−1(k)
ks−1 (5.14)

To obtain this result, we have freely interchanged the sum over k with the integral over
τ2 using the positivity of the integrand and Fubini’s theorem. The sum may be evaluated
using the following formula of Ramanujan,

∞∑
k=1

σa(k)σb(k)
kz

= ζ(z) ζ(z − a) ζ(z − b) ζ(z − a− b)
ζ(2z − a− b) (5.15)

which converges for Re(z),Re(z − a),Re(z − b),Re(z − a− b) > 1. We are working in the
range Re(s) > 2m+ 2n+ 1, so the sum converges and yields,∫

M

d2τ

τ2
2
W̃(m,n)
s = 16 (−)m+n Γ(s− 1)

Γ(2m)Γ(2n)
1

(2π)2s−2m−2n−1

× ζ(s− 1) ζ(s− 2m) ζ(s− 2n) ζ(s− 2m− 2n+ 1) (5.16)

which is manifestly finite for Re(s) > 2m+ 2n+ 1.
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At this point, we have integrated the regularized function over the full fundamental
domainM. However, we set out to integrate the un-regularized function over the truncated
fundamental domainML. We may relate these two integrals as follows,∫

ML

d2τ

τ2
2
W(m,n)
s =

∫
M

d2τ

τ2
2
W̃(m,n)
s −

∫
MR

d2τ

τ2
2
W̃(m,n)
s (5.17)

+ 8 ζ
∗(2m)
Γ(m)

ζ∗(2n)
Γ(n)

ζ∗(2s− 2m− 2n)
Γ(s−m− n)

1
ζ∗(2s)

∫
ML

d2τ

τ2
2
E∗s

whereMR =M\ML is defined in (2.6). The second and third integrals depend on the
cut-off L. The integral of the Eisenstein series is given in (3.6). The integral of W̃(m,n)

s

over MR may be calculated by replacing the integrand with its asymptotic expansion,
which is given by (5.9) and (2.34). Then using Re(s) > 2m+ 2n+ 1, we find,
∫
MR

d2τ

τ2
2
W̃(m,n)
s = 8 ζ

∗(2m)
Γ(m)

ζ∗(2n)
Γ(n)

{
ζ∗(2s− 2m− 2n)

Γ(s−m− n)
ζ∗(2s− 1)
ζ∗(2s)

L−s

−s

− (−)m+n Γ(s−m− n) ζ
∗(2s− 2m− 2n− 1)
Γ(s− 2m)Γ(s− 2n)

L2m+2n−s

2m+ 2n− s

}
(5.18)

Combining these results and rewriting the starred zeta functions in terms of Riemann zeta
functions, we arrive at (5.8).

This final expression may be analytically continued in s from Re(s) > 2n+ 2m+ 1 to
all Re(s) ≥ 6. When s = 2m+ 2n, the two simple poles precisely cancel, and the integral is
finite as required. Since 2 ≤ m,n ≤ bRe(s)/2c− 1, there are no other poles. This completes
our proof of lemma 5.2.

To analyze the transcendental structure of this integral, we restrict to integer s ≥ 6. In
this case, the constant term in (5.8) is proportional to the quadruple product of zeta-values,

ζ(s− 1) ζ(s− 2m) ζ(s− 2n) ζ(s− 2m− 2n+ 1) (5.19)

This quadruple product vanishes for odd s satisfying 6 ≤ s < 2m+ 2n since the Riemann
zeta function vanishes at negative even integers. Moreover, this constant term is similar to
the constant term in the integral (5.4) of the triple product E∗mE∗nE∗s−m−n, which is given
by the quadruple product of starred zeta-values,

ζ∗(s− 1) ζ∗(s− 2m) ζ∗(s− 2n) ζ∗(s− 2m− 2n+ 1) (5.20)

Both quadruple products have a simple pole at s = 2m+ 2n which precisely cancels against
an L-dependent pole in their respective integrals, generating constant and lnL terms. These
two integrals are closely related and may be written in terms of each other.

Theorem 5.3. The integral of W(m,n)
s with integer s ≥ 6 and 2 ≤ m,n ≤ bs/2c − 1 may

be written in terms of the integral E∗mE∗nE∗s−m−n as follows,∫
ML

d2τ

τ2
2

(
W(m,n)
s −Q(W)

m,n,s−m−nE
∗
mE
∗
nE
∗
s−m−n

)
≈ δs,2m+2n Im,n (5.21)
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where Q(W)
m,n,s−m−n is the following rational number,

Q
(W)
m,n,s−m−n = 4 (−)m+n

(2m− 1)!(2n− 1)!
(s− 2)!!

(s− 2m− 2)!!(s− 2n− 2)!!

×



0 odd s < 2m+ 2n
(−)m+n+s/2 (2m+ 2n− s− 1)!! even s < 2m+ 2n
−1 s = 2m+ 2n
(s− 2m− 2n− 1)!!−1 s > 2m+ 2n

(5.22)

and Im,n has transcendental weight 2m+ 2n+ 1,

Im,n = 8π ζ(2m+ 2n− 1) B2m
(2m)!

B2n
(2n)!

(2m+ 2n− 1)!
(2m− 1)!(2n− 1)!

×
[
H1(2m)− 1

2H1(m) +H1(2n)− 1
2H1(n)− 1

2H1(m+ n)
]

(5.23)

The right-hand side of (5.21) is non-vanishing only when s = 2m+ 2n, and in that case
it has transcendental weight s+ 1. Thus, the integral of W(m,n)

s is of the form claimed in
proposition 1.2.

To prove this theorem, we compute the analytic continuation of (5.8) to integer s ≥ 6
using the properties of the Riemann zeta function given in appendix A. We then compare
the result to the integrals of triple products of Eisenstein series presented in theorem 5.1.

The transcendental structure of the integral of W(m,n)
s is similar to that of the integral

of E∗mE∗nE∗s−m−n. When s < 2m+ 2n, the integral of W(m,n)
s vanishes or has transcendental

weight s. When s = 2m+2n, the presence of ln(2π) spoils the transcendental structure, as we
described in detail below theorem 5.1. When s > 2m+ 2n, the integral has transcendental
weight 2s− 2m− 2n+ 1 > s+ 1. Thus, compared to the integrals of arbitrary two-loop
MGFs, the integral of W(m,n)

s has novel transcendental structure when s ≥ 2m+ 2n. This
structure first appears at weight eight with W(2,2)

8 whose integral contains ln(2π). Then
at weight nine the integral of W(2,2)

9 has transcendental weight eleven. At any weight, we
can remove the terms with novel transcendental structure in the integral of W(m,n)

s by
subtracting a rational multiple of the integral of E∗mE∗nE∗s−m−n, as shown in (5.21).

6 Integrating E∗k Ca,b,c and E∗k Cw;m;p

In this section, we shall evaluate the integrals of the infinite family of disconnected three-loop
modular graph functions E∗kCa,b,c for arbitrary integers a, b, c ≥ 1 and k ≥ 2 as well as the
infinite family of functions E∗kCw;m;p. We shall also discuss the transcendental structure of
these integrals.

The functions E∗kCa,b,c are obtained by multiplying the Eisenstein series E∗k and the
two-loop modular graph function Ca,b,c, which was defined in (2.41). These three-loop
MGFs have weight a+ b+ c+ k and the following decorated graph,

E∗kCa,b,c = 1
2 Γ(k)× k, k

a, a

b, b

c, c (6.1)
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where the prefactor arises from the normalization of the starred Eisenstein series relative
to the un-starred Eisenstein series. For example, E∗2 C2,1,1 appears at weight six in the
low-energy expansion of the genus-one four-graviton amplitude in Type II superstring theory.
Its integral overML was calculated in [34].

To tackle the general case, we recall our discussion in section 2.5 of the system of
differential equations (2.42) obeyed by the functions Ca,b,c and the corresponding eigen-
functions Cw;m;p. Each eigenfunction obeys the inhomogeneous Laplace eigenvalue equa-
tion (2.44), which we repeat here for convenience,

(
∆− (w − 2m)(w − 2m− 1)

)
Cw;m;p = h(0)

w;m;pE
∗
w +

bw/2c∑
`=m+1

h(`)
w;m;pE

∗
`E
∗
w−` (6.2)

where we have used proposition 2.1 to set h
(`)
w;m;p = 0 for 2 ≤ ` ≤ m. The two bases of

functions are related by (2.47), which we also repeat here for convenience,

Ca,b,c =
bw−1

2 c∑
m=1

bw−2m−1
3 c∑

p=0
dw;m;p
a,b,c Cw;m;p Cw;m;p =

∑
a≥b≥c≥1
a+b+c=w

da,b,cw;m;pCa,b,c (6.3)

The h coefficients which appear in the inhomogeneous part of the Laplace equation and
the expansion coefficients dw;m;p

a,b,c and da,b,cw;m;p are all rational numbers. Explicit expressions
for these coefficients are given in appendix B. The Laurent coefficients of Ca,b,c and Cw;m;p
are given in appendix C. These appendices contain novel results but are tangential to our
discussions of integration and transcendentality.

Although we are ultimately interested in the integral of E∗kCa,b,c, we shall first use the
simple differential equation obeyed by Cw;m;p to calculate the integral of E∗kCw;m;p. The
integral of E∗kCa,b,c will be given by a rational linear combination of the former integrals.

6.1 The integral of E∗k Cw;m;p with k 6= w − 2m

We shall first consider integer k 6= w − 2m. In this case, E∗k and Cw;m;p do not have the
same eigenvalues under the action of the Laplacian, and we find the following result.

Lemma 6.1. The integral of E∗kCw;m;p with integer k ≥ 2 and k 6= w − 2m is given by the
following sum of integrals of double and triple products of Eisenstein series plus a boundary
contribution with transcendental weight k + w,

∫
ML

d2τ

τ2
2
E∗kCw;m;p ≈

h
(0)
w;m;p
µk;w;m

∫
ML

d2τ

τ2
2
E∗kE

∗
w +

bw/2c∑
`=m+1

h
(`)
w;m;p
µk;w;m

∫
ML

d2τ

τ2
2
E∗kE

∗
`E
∗
w−`

+ (2k − 1)
µk;w;m

(
ζ∗(2k) c(1−k)

w;m;p − ζ∗(2k − 1) c(k)
w;m;p

)
(6.4)

where µk;w;m = (k − w + 2m)(k + w − 2m− 1) and c
(`)
w;m;p are the Laurent coefficients of

Cw;m;p. The boundary contribution on the second line vanishes when k > w.
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To prove this lemma, we use the Laplace equations for E∗k and Cw;m;p to write their
product E∗kCw;m;p as follows,

µk;w;mE
∗
kCw;m;p = Cw;m;p∆E∗k − E∗k∆Cw;m;p + h(0)

w;m;pE
∗
kE
∗
w

+
bw/2c∑
`=m+1

h(`)
w;m;pE

∗
kE
∗
`E
∗
w−` (6.5)

where we have defined the difference of their eigenvalues,

µk;w;m = k(k − 1)− (w − 2m)(w − 2m− 1) = (k − w + 2m)(k + w − 2m− 1) (6.6)

which is a non-zero integer for k 6= w − 2m. Next we use proposition 3.2 to evaluate the
integral of the total derivative terms and find,∫

ML

d2τ

τ2
2

(
Cw;m;p∆E∗k − E∗k∆Cw;m;p

)
≈ λ′1(k) ζ∗(2k) c(1−k)

w;m;p

+ λ′1(1− k) ζ∗(2k − 1) c(k)
w;m;p (6.7)

where λ1(s) = Γ(s + 1)/Γ(s − 1) = s(s − 1). This integral vanishes for k > w since the
Laurent coefficient c(`)w;m;p is non-zero only for 1− w ≤ ` ≤ w. We now use,

λ′1(k) = −λ′1(1− k) = 2k − 1 (6.8)

After dividing by µk;w;m, we arrive at (6.4).
The assignment of transcendental weight follows from the fact that c(`)w;m;p has transcen-

dental weight w and the fact that the starred zeta-values ζ∗(2k) and ζ∗(2k − 1) each have
transcendental weight k. This completes our proof of lemma 6.1.

In each case, integral of E∗kCw;m;p with k 6= w− 2m is equal to a boundary contribution
with transcendental weight k + w plus an integral of the double product E∗kE∗w plus a sum
of integrals of triple products of Eisenstein series. When k = w, the integral of E∗kE∗w has
transcendental weight k+w+1, and when k 6= w, it does not contribute. The transcendental
structure of the integrals of the triple products is more complicated. As we described at
length in section 5, the integrals of the triple products will have a novel transcendental
structure if 2 max(k,w − `, `) ≥ k + w, which first occurs at weight eight.

Thus, the integral of E∗kCw;m;p will generally have a novel transcendental structure
when its weight k + w ≥ 8. For instance, at weight eight the integral of E∗4C4;1;0 includes
the integral of E∗2E∗2E∗4 which contains ln(2π). Then at weight nine the integral of E∗5C4;1;0
includes the integral of E∗2E∗2E∗5 which has transcendental weight eleven. We have, however,
clearly isolated these terms and identified their origin from the inhomogeneous Laplace
equation for Cw;m;p. By subtracting these triple products, we may construct the following
integral whose terms have transcendental weight k + w or k + w + 1,

∫
ML

d2τ

τ2
2

E∗kCw;m;p −
bw/2c∑
`=m+1

h
(`)
w;m;p
µk;w;m

E∗kE
∗
`E
∗
w−`

 (6.9)

Thus, the integral of E∗kCw;m;p with k 6= w − 2m is of the form claimed in proposition 1.2.
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6.2 The integral of E∗s Cw;m;p with Re(s) > 1

So far we have evaluated the integral of E∗kCw;m;p for integer k 6= w − 2m. Unfortunately,
the case of k = w−2m is more involved. Since the difference of eigenvalues µw−2m;w−m = 0,
our previous proof fails. To tackle this case, we shall first compute the integral of E∗sCw;m;p
for arbitrary complex s with Re(s) > 1.

Lemma 6.2. The integral of E∗sCw;m;p with Re(s) > 1 is given by the analytic continuation
in s of the following expression,∫
ML

d2τ

τ2
2
E∗sCw;m;p =

bw/2c∑
`=m+1

h(`)
w;m;p

ζ∗(w + s− 1) ζ∗(w − s) ζ∗(s+ w − 2`) ζ∗(s− w + 2`)
(s− w + 2m)(s+ w − 2m− 1)

+
w∑

`=1−w
c(`)w;m;p G`(s) (6.10)

where c
(`)
w;m;p are the Laurent coefficients of Cw;m;p and G`(s) is defined in (3.13).

To prove this lemma, we shall first consider Re(s) > w. The result for Re(s) > 1 will
then follow by analytic continuation. As in our previous proof, we use the Laplace equations
for E∗s and Cw;m;p to write E∗sCw;m;p as follows,

E∗sCw;m;p = 1
s(s− 1)− (w − 2m)(w − 2m− 1) (6.11)

×

Cw;m;p∆E∗s − E∗s∆Cw;m;p + h(0)
w;m;pE

∗
sE
∗
w +

bw/2c∑
`=m+1

h(`)
w;m;pE

∗
sE
∗
`E
∗
w−`


Unlike our previous proof, the weight s of the Eisenstein series is not necessarily an integer,
so the integral of the total derivative term is given by proposition 3.3 rather than by
proposition 3.2. In this case, we have,∫

ML

d2τ

τ2
2

(
Cw;m;p∆E∗s − E∗s∆Cw;m;p

)
=

w∑
`=1−w

(
s(s− 1)− `(`− 1)

)
c(`)w;m;p G`(s) (6.12)

where G`(s) was defined in (3.13). Since we are working in the range Re(s) > w, the G
functions which appear here are all finite functions of s.

Next we recall the expressions for the integrals of double and triple products of Eisenstein
series in (3.15) and (5.4), respectively. We may rearrange these expressions so that they
are written in terms of G functions. For the integral of the double product, we find,∫

ML

d2τ

τ2
2
E∗sE

∗
w = ζ∗(2w)Gw(s) + ζ∗(2w − 1)G1−w(s) (6.13)

and for the integral of the triple product,∫
ML

d2τ

τ2
2
E∗sE

∗
`E
∗
w−` = ζ∗(w + s− 1) ζ∗(w − s) ζ∗(s+ w − 2`) ζ∗(s− w + 2`)

+ ζ∗(2w − 2`) ζ∗(2`)Gw(s) + ζ∗(2w − 2`− 1) ζ∗(2`− 1)G2−w(s)

+ ζ∗(2w − 2`) ζ∗(2`− 1)Gw−2`+1(s)

+ ζ∗(2w − 2`− 1) ζ∗(2`)G1−w+2`(s) (6.14)
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Since Re(s) > w, the starred zeta functions and the G functions which occur in these
expressions are all finite functions of s.

It remains to combine (6.11), (6.12), (6.13), and (6.14). To simplify the result, we shall
relate the Laurent coefficients of Cw;m;p and the h coefficients. Inserting the asymptotic
expansions for the eigenfunctions Cw;m;p and the starred Eisenstein series into the Laplace
equation (6.2), yields the following formula,

0 = h(0)
w;m;p

(
ζ∗(2w) τw2 + ζ∗(2w − 1) τ1−w

2

)
+

w∑
`=1−w

(
(w − 2m)(w − 2m− 1)− `(`− 1)

)
c(`)w;m;p τ

`
2

+
bw/2c∑
`=m+1

h(`)
w;m;p

(
ζ∗(2w − 2`) τw−`2 + ζ∗(2w − 2`− 1) τ1−w+`

2

)
×
(
ζ∗(2`) τ `2 + ζ∗(2`− 1) τ1−`

2

)
(6.15)

which may be solved order-by-order in τ2 to derive a series of relations between the Laurent
coefficients and the h coefficients. We shall use these relations to simplify the combination
of equations (6.11) through (6.14). After some straightforward but tedious algebra, we
arrive at (6.10). Thus far we have worked with Re(s) > w, but (6.10) may be analytically
continued in s to Re(s) > 1. This completes our proof of lemma 6.2.

We note that individual terms in (6.10) have simple poles at integers 2 ≤ s ≤ w.
However, for all such s, the integral of E∗sCw;m;p overML must be a finite function of L, so
the poles necessarily cancel, generating lnL contributions to the integral.

6.3 The integral of E∗w−2m Cw;m;p

With the general result in hand, we shall now consider the integral of E∗w−2mCw;m;p.

Lemma 6.3. The integral of E∗w−2mCw;m;p has transcendental weight 2w − 2m+ 1 and is
given by,

∫
ML

d2τ

τ2
2
E∗w−2mCw;m;p ≈

1
(2w − 4m− 1) ζ

∗(2w − 2m− 1) ζ∗(2m)

×
bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w − 2`− 2m) ζ∗(2`− 2m)

×
[
Z(2w − 2m− 1) + Z(2w − 2`− 2m)− 2Z(2w − 4m)

+ Z(2`− 2m)−Z(2m)− ln(2L)

−H1(2w − 4m) +H1(2w − 4m− 1)
]

(6.16)

where Z is the combination of the logarithmic derivative of the Riemann zeta function and
finite harmonic sums defined in (A.14).
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To prove this lemma, we simply compute the limit s→ w−2m of (6.10) from lemma 6.2.
We first set s = w − 2m+ ε on the right-hand side of (6.10) and find,

ζ∗(2w−2m−1+ε)ζ∗(2m−ε)
ε(2w−4m−1+ε)

bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w−2m−2`+ε)ζ∗(2m+2`+ε)

+c(1−w+2m)
w;m;p ζ∗(2w−4m+2ε) L

ε

ε
+c(w−2m)

w;m;p ζ∗(2w−4m+2ε−1) L
−ε

−ε
+O(L±) (6.17)

where O(L±) denotes terms which are non-zero powers of L in the limit ε→ 0. We may
ignore the third term in this expression because the Laurent coefficient c

(w−2m)
w;m;p = 0. This

coefficient vanishes because the corresponding Laurent coefficients c
(w−2m)
a,b,c vanish, and

the eigenfunctions Cw;m;p are linear combinations of the functions Ca,b,c. The Laurent
polynomial of Ca,b,c was computed in [25] and is reviewed in appendix C.

The two remaining terms in (6.17) are proportional to 1/ε and must conspire in the
limit ε→ 0 because the integral of E∗w−2mCw;m;p overML is necessarily a finite function of
the cut-off L. Thus, the remaining Laurent coefficient is given by,

c(1−w+2m)
w;m;p = − ζ∗(2m) ζ∗(2w − 2m− 1)

(2w − 4m− 1) ζ∗(2w − 4m)

×
bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w − 2`− 2m) ζ∗(2`− 2m) (6.18)

We now use this expression as well as the properties of the starred zeta function given in
appendix A to compute the limit ε→ 0. Several of the resulting terms may be conveniently
written in terms of the combinations Z defined in (A.14). We also write the following
fraction in terms of finite harmonic sums,

1
2w − 4m− 1 = H1(2w − 4m)−H1(2w − 4m− 1) (6.19)

After some rearrangements, we arrive at (6.16). The assignment of transcendental weight
follows from the fact that the starred zeta-value ζ∗(n) has transcendental weight b(n+ 1)/2c
for integer n ≥ 2. This completes our proof of lemma 6.3.

6.4 The integral of E∗k Ca,b,c
Because the functions Ca,b,c may be written as rational linear combinations of the eigenfunc-
tions Cw;m;p, the integral of E∗kCa,b,c as well as its transcendental structure follow trivially
from our results above. Our findings are summarized in the following theorem.

Theorem 6.4. The integral of E∗kCa,b,c for integer k ≥ 2 and a, b, c ≥ 1 is given by,

∫
ML

d2τ

τ2
2
E∗kCa,b,c =

bw−1
2 c∑

m=1

bw−2m−1
3 c∑

p=0
dw;m;p
a,b,c

∫
ML

d2τ

τ2
2
E∗kCw;m;p (6.20)

where w = a+ b+ c. The integral of E∗kCw;m;p is given in lemma 6.1 and lemma 6.3. In
each case, we may subtract the integral of a suitable linear combination of triple products of
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Eisenstein series to construct the following integral whose terms all have transcendental
weight k + w or k + w + 1,∫

ML

d2τ

τ2
2

(
E∗kCa,b,c −

bw/2c∑
`=2

Q
(EC)
k,`,w−`E

∗
kE
∗
`E
∗
w−`

)
(6.21)

where Q(EC)
k,`,w−` is the following rational number,

Q
(EC)
k,`,w−` =

`−1∑
m=1

m 6=(w−k)/2

bw−2m−1
3 c∑

p=0

dw;m;p
a,b,c h

(`)
w;m;p

(k − w + 2m)(k + w − 2m− 1) (6.22)

Thus, the integral of E∗kCa,b,c is of the form claimed in proposition 1.2.

In general, the integrals of E∗kCa,b,c and E∗kCw;m;p have terms with novel transcendental
structure when the weight k +w ≥ 8. For instance, at weight eight, the integral of E∗4C2,1,1
includes the integral of E∗2E∗2E∗4 which contains ln(2π). Then at weight nine, the integral
of E∗5C2,1,1 includes the integral of E∗2E∗2E∗5 which has transcendental weight eleven. We
have, however, clearly isolated the terms with novel transcendental structure and identified
their origin from the inhomogeneous Laplace equations obeyed by the functions Ca,b,c.

7 Integrating vk,3

In this section, we shall evaluate the integrals of the infinite family of connected three-loop
modular graph functions vk,3 for integers k ≥ 2 using their inhomogeneous Laplace equations.
As a warm-up for this three-loop calculation, we shall first evaluate the integrals of the
infinite family of connected two-loop modular graph functions vk,2 which are the two-loop
analogues of vk,3. We shall also discuss the transcendental structure of these integrals.

The connected two-loop functions vk,2 were introduced in [7] and form an infinite
subfamily of the functions Cu,v;w which were defined in (2.49). They satisfy vk,2 = Ck,k;k+1
and have the following decorated dihedral graph, matrix of exponents, and Kronecker-
Eisenstein series representation,

vk,2 =
k, 0

0, k

1, 1 = C
[
k 1 0
0 1 k

]
= τk+1

2
πk+1

∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)
pk1 |p2|2 p̄k3

(7.1)

The functions vk,2 have weight k + 1. For integers k ≥ 2, the Kronecker-Eisenstein series
converges and is real. The Laurent polynomial of vk,2 was calculated in [27] and is reviewed
in appendix C. Because they have only two exponents greater than one, these functions are
one of the simplest families of connected two-loop MGFs.

The connected three-loop functions vk,3 were also introduced in [7] and are the three-loop
analogues of vk,2. They have the following decorated dihedral graph, matrix of exponents,
and Kronecker-Eisenstein series representation,

vk,3 =
k, 0

0, k

1, 1

1, 1
= C

[
k 1 1 0
0 1 1 k

]
= τk+2

2
πk+2

∑
p1,p2,p3,p4∈Λ′

δ(p1 + p2 + p3 + p4)
pk1 |p2|2 |p3|2 pk4

(7.2)
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The functions vk,3 have weight k + 2. For integers k ≥ 2, the Kronecker-Eisenstein series
converges and is real. Because they have only two exponents greater than one, these
functions are one of the simplest families of connected three-loop MGFs.

7.1 The integral of vk,2

Because vk,2 = Ck,k;k+1, the integral of vk,2 overML is given by theorem 4.3, but with the
three-loop function vk,3 in mind, we shall present a new calculation for this integral using
the inhomogeneous Laplace equation obeyed by vk,2,. In the remainder of this subsection,
we shall prove the following theorem.

Theorem 7.1. The integral of vk,2 for integer k ≥ 2 is given as follows.

• When k is even, the integral vanishes up to non-zero powers of L.

• When k is odd, the integral has transcendental weight k + 1 and is given by,∫
ML

d2τ

τ2
2
vk,2 ≈ −8π ζ(k) Bk+1

(k + 1)!
1

k − 1 (7.3)

In each case, the integral is of the form claimed in proposition 1.1.

7.1.1 The inhomogeneous Laplace equation for vk,2
Like the two-loop modular graph functions Ca,b,c, the functions vk,2 obey inhomogeneous
Laplace eigenvalue equations. Unlike the case of Ca,b,c, the action of ∆ on vk,2 produces mod-
ular graph functions with two vanishing holomorphic or anti-holomorphic exponents. These
inhomogeneous terms may then be simplified using holomorphic subgraph reduction (2.24),
yielding the following result.

Lemma 7.2. The functions vk,2 with integer k ≥ 2 obey the following Laplace equations.

• When k is even,

(
∆− k(k − 1)

)
vk,2 = k(k2 − 2)Ek+1 − k

k/2∑
`=2

(2`− 1)
(
V(`)
`,k+1−` + V(`)

k+1−`,`

)
(7.4)

• When k is odd,

(
∆− k(k − 1)

)
vk,2 = −k(k2 − 2)Ek+1 + k

(k−1)/2∑
`=2

(2`− 1)
(
V(`)
`,k+1−` + V(`)

k+1−`,`

)
+ k2 τk+1

2 Gk+1 Ḡk+1 (7.5)

where Ek+1, Gk+1, and Ḡk+1 are the non-holomorphic, holomorphic, and anti-holomorphic
Eisenstein series, respectively, and V is the disconnected two-loop modular graph function
defined in (2.39).
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To prove this lemma, we first use (2.28) to evaluate the action of the Laplacian on vk,2.
The result includes MGFs with exponents equal to −1. We use the momentum conservation
identities (2.20) to remove these MGFs and find,

(
∆− k(k − 1)

)
vk,2 = k2 C

[
k+1 0 0

0 k+1 0

]
+ k(k − 1) C

[
k 1 0
0 0 k+1

]
− k C

[
k−1 2 0

0 0 k+1

]
+ k(k − 1) C

[
0 0 k+1
k 1 0

]
− k C

[
0 0 k+1

k−1 2 0

]
(7.6)

Since k ≥ 2, each MGF in this expression is absolutely convergent. The first term on right-
hand side may be simplified using the factorization identity (2.21). The remaining terms
may be simplified using holomorphic subgraph reduction (2.24). After some straightforward
rearrangements using the properties of MGFs discussed in section 2, we obtain (7.4) and (7.5),
which completes our proof of lemma 7.2.

Alternatively, we could have proved this lemma using the fact that vk,2 = Ck,k;k+1. The
action of the Laplacian on the functions Cu,v;w is given in (2.50). For the case at hand, the
right-hand side of this expression will include the functions Cu,v;w with u = w or v = w.
Using the identities of section 2, we may rewrite these functions in terms of Eisenstein series
and disconnected two-loop modular graph functions, yielding the inhomogeneous Laplace
equations (7.4) and (7.5).

7.1.2 Proof of theorem 7.1

We shall now evaluate the integral of vk,2 overML by considering the contributions from
each term in its inhomogeneous Laplace equation.

Several of the terms do not contribute. The integral of Ek+1 is given in (3.6) and
vanishes up to powers of L with non-zero exponents. Similarly, the integral of V(`)

`,k+1−`
with 2 ≤ ` ≤ bk/2c vanishes by theorem 4.2. This leaves the contributions from the total
derivative term ∆vk,2 and (for odd k) from the double product τk+1

2 Gk+1 Ḡk+1.
By proposition 3.1, the integral of ∆vk,2 is equal to the coefficient of the linear term

in the Laurent polynomial of vk,2. The Laurent polynomial of vk,2 was calculated in [27]
and is reviewed in appendix C. For all k, the linear coefficient vanishes. Thus, the integral
of ∆vk,2 vanishes, and for even k, the integral of vk,2 vanishes.

For odd k, the contribution from τk+1
2 Gk+1 Ḡk+1 remains. This integral is given by (4.3)

of theorem 4.2 with n = s = t = (k + 1)/2. Combining these results with the Laplace
equation (7.5) yields (7.3), which completes our proof of theorem 7.1.

7.2 The integral of vk,3

We now turn to the three-loop functions vk,3. In the remainder of this subsection, we shall
prove the following theorem using the inhomogeneous Laplace equations obeyed by vk,3.

Theorem 7.3. The integral of vk,3 for integer k ≥ 2 is given as follows.

• When k is even, the integral of vk,3 is equal to a sum of terms with transcendental
weight k+ 2 plus a sum of the integrals of the three-loop modular graph functions W(m,n)

k+2 ,
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which are defined in (5.2) and whose integrals are is given in theorem 5.3,

∫
ML

d2τ

τ2
2
vk,3 ≈ 16π ζ(k + 1) 1

k(k − 1)

{ k/2−1∑
`=2

(( k−2
2`−2

)
+ 4 (2`− 1)

) B2`
(2`)!

Bk+2−2`
(k + 2− 2`)!

− (k2 + k − 1) Bk+2
(k + 2)!

}

+ 2
k/2∑

m,n=2

(2m− 1)(2n− 1)
k(k − 1)

∫
ML

d2τ

τ2
2
W(m,n)
k+2 (7.7)

• When k is odd, the integral of vk,3 is equal to a sum of the integrals of W(m,n)
k+2 ,

∫
ML

d2τ

τ2
2
vk,3 ≈ −2

(k−1)/2∑
m,n=2

(2m− 1)(2n− 1)
k(k − 1)

∫
ML

d2τ

τ2
2
W(m,n)
k+2 (7.8)

In each case, we may subtract the integral of a suitable linear combination of triple products
of Eisenstein series to construct the following integral whose terms all have transcendental
weight k + 2 or k + 3,

∫
ML

d2τ

τ2
2

vk,3 − bk/2c∑
m,n=2

Q
(v)
m,n,k+2−m−n

∫
ML

d2τ

τ2
2
E∗mE

∗
nE
∗
k+2−m−n

 (7.9)

where Q(v)
m,n,k+2−m−n is the following rational number,

Q
(v)
m,n,k+2−m−n = 8 (−)k+m+n (k − 2)!!

(k − 1)(2m− 1)!(2n− 1)!(k − 2m)!!(k − 2n)!! (7.10)

×



0 odd k + 2 < 2m+ 2n
(−)m+n+k/2+1 (2m+ 2n− k − 3)!! even k + 2 < 2m+ 2n
−1 k + 2 = 2m+ 2n
(k + 1− 2m− 2n)!!−1 k + 2 > 2m+ 2n

Thus, the integral of vk,3 is of the form claimed in proposition 1.2.

Before we prove this theorem, some remarks are in order. For all integers k ≥ 2, we
have written the integral of vk,3 in terms of a piece with transcendental weight k + 2 plus
integrals of the disconnected three-loop modular graph functions W(m,n)

k+2 . As described in
theorem 5.3, these latter integrals may have a novel transcendental structure when k ≥ 6
(that is, for weight k + 2 ≥ 8). For instance, the integral of W(2,2)

8 contains ln(2π), and
the integral of W(2,2)

9 has transcendental weight eleven. At any weight, we can remove the
terms with novel transcendental structure by subtracting a rational multiple of the integral
of the triple product E∗mE∗nE∗k+2−m−n, as demonstrated in (7.9).
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7.2.1 The inhomogeneous Laplace equation for vk,3

Just like their two-loop analogues vk,2, the three-loop functions vk,3 obey inhomogeneous
Laplace eigenvalue equations. The action of ∆ on vk,3 produces MGFs with two vanishing
holomorphic or anti-holomorphic exponents. These inhomogeneous terms may be simplified
using holomorphic subgraph reduction (2.24), yielding the following result.

Lemma 7.4. The functions vk,3 with integer k ≥ 2 obey the following Laplace equations.

• When k is even,

(
∆− k(k − 1)

)
vk,3 = 1

2(k + 2)2(k − 1)2Ek+2 − 2k(k2 − 2) vk+1,2

− 2
k/2∑

m,n=2
(2m− 1)(2n− 1)W(m,n)

k+2

− 2
k/2∑
`=2

(2`− 1)
(
∇U+

k;` + ∇̄ U−k;`

)
+ 2(k + 1)2 τk+2

2 Gk+2 Ḡk+2 (7.11)

• When k is odd,

(
∆− k(k − 1)

)
vk,3 = −1

2(k + 2)2(k − 1)2Ek+2 − 2k(k2 − 2) vk+1,2

+ 2
(k−1)/2∑
m,n=2

(2m− 1)(2n− 1)W(m,n)
k+2

− 2
(k−1)/2∑
`=2

(2`− 1)
(
∇U+

k;` + ∇̄ U−k;`

)
+ k(k + 1)(k − 2)

(
V( k+1

2 )
k+1

2 , k+3
2

+ V( k+1
2 )

k+3
2 , k+1

2

)
(7.12)

where Ek+1, Gk+1, and Ḡk+1 are the non-holomorphic, holomorphic, and anti-holomorphic
Eisenstein series, respectively; vk+1,2 is the connected two-loop modular graph function
defined in (7.1); V is the disconnected two-loop modular graph function defined in (2.39);
W is the disconnected three-loop modular graph function defined in (5.2); and U± are
disconnected three-loop modular graph forms with modular weights (0, 2) and (2, 0),

U+
k;` = Ḡ2` C+

[
k 1 0
0 1 k + 2− 2`

]
U−k;` =

(
U+
k;`

)∗
(7.13)

where ∗ denotes complex conjugation.

To prove this lemma, we first use (2.28) to evaluate the action of the Laplacian on vk,3.
We then use the momentum conservation identities (2.20) to remove MGFs with negative
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exponents and find,(
∆− k(k − 1)

)
vk,3 = −2

{
k C
[
k+1 1 0 0

0 0 2 k

]
− C

[
k 2 0 0
0 0 2 k

] }
− 2k

{
k C
[
k+1 1 1 −1

0 0 1 k+1

]
− C

[
k 2 1 −1
0 0 1 k+1

] }
+ 2k

{
(k − 1) C

[
0 0 1 k+1
k 1 1 0

]
− C

[
0 0 1 k+1

k−1 2 1 0

] }
(7.14)

where we have kept the two MGFs with negative exponents in the second line in order to
not expose any divergent MGFs. Since k ≥ 2, each MGF in this expression is absolutely
convergent. Moreover, each term on the right-hand side may be simplified using holomorphic
subgraph reduction (2.24). Some of the resulting terms may then be simplified using a
second application of (2.24).

After some straightforward rearrangements using the properties of MGFs discussed in
section 2, we obtain the following expression for the inhomogeneous part of the Laplace
equation for vk,3,

1
2(k + 2)2(k − 1)2 C

[
k+2 0

0 k+2

]
− 2k(k2 − 2) C

[
k+1 1 0

0 1 k+1

]

+ 2(k + 1)2 C
[
k+2 0

0 0
]
C
[ 0 0
k+2 0

]
+ k(k + 1)(k − 2)

{
C
[
k+1 0

0 0
]
C
[ 1 0
k+2 0

]
+ c.c.

}

+
k∑
`=4

(`− 1)
{

2k C
[
` 0
0 0
]
C
[
k+1−` 1 0

0 1 k+1

]
− (k + 2)(k − 1) C

[
` 0
0 0
]
C
[
k+2−` 0

0 k+2

]
+ c.c.

}

+ 2
k+1∑
m,n=4

m+n 6=2k+2

(m− 1)(n− 1) C[m 0
0 0 ] C[ 0 0

0 n ] C
[
k+2−m 0

0 k+2−n

]
(7.15)

where c.c. refers to the complex conjugate of the preceding term. We now use the following
differential identity as well as its complex conjugate to simplify the last two lines,

∇̄
{
C−
[
` 0
0 0
]
C−
[
k+2−` 1 0

0 1 k

] }
= 1

2(k + 2)(k − 1) C
[
` 0
0 0
]
C
[
k+2−` 0

0 k+2

]

− k C
[
` 0
0 0
]
C
[
k+1−` 1 0

0 1 k+1

]

−
k+1∑
j=4

(j − 1) C
[
` 0
0 0
]
C
[

0 0
j 0

]
C
[
k+2−` 0

0 k+2−j

]
(7.16)

This identify follows from the action of the Maass operators (2.25) and holomorphic subgraph
reduction (2.24). After writing each inhomogeneous term using named modular graph
functions, we arrive at (7.11) and (7.12). This completes our proof of lemma 7.4.

7.2.2 Proof of theorem 7.3

We shall now evaluate the integral of vk,3 overML by considering the contributions from
each term in its inhomogeneous Laplace equation.
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We have already calculated the integrals of many of these terms. The integral of Ek+2
is given in (3.6) and vanishes up to powers of L with non-zero exponents. The integral
of vk+1,2 is given by theorem 7.1 and vanishes when k is odd. The integral of W(m,n)

k+2 is
given by theorem 5.3. For even k, the integral of τk+2

2 Gk+2 Ḡk+2 is given by theorem 4.2.
For odd k, the integrals of the V terms vanish by theorem 4.2. This leaves the contributions
from the total derivative terms ∆vk,3, ∇U+

k;`, and ∇̄ U
−
k;`.

By proposition 3.1, the integral of ∆vk,3 is equal to the coefficient of the linear term in
the Laurent polynomial of vk,3, and this linear term is fixed by the inhomogeneous Laplace
equations (7.11) and (7.12).

The Eisenstein series Ek+2, the two-loop function vk+1,2, and the disconnected two-loop
modular graph functions on the last lines of both (7.11) and (7.12) do not have linear
terms in their Laurent polynomials. The asymptotic expansions of these functions are
given in (2.34), (C.8), and (2.40), respectively. Moreover, the total derivative terms cannot
have linear terms in their Laurent polynomials. Thus, only the disconnected three-loop
function W(m,n)

k+2 can contribute a linear term to the Laurent polynomial of vk,3. These two
Laurent coefficients are related by,

c(1)
vk,3 = 2 (−)k

k(k − 1)

bk/2c∑
m,n=2

(2m− 1)(2n− 1) c(1)
W(m,n)
k+2

(7.17)

The asymptotic expansion of W(m,n)
k+2 is given in (5.9), and its Laurent polynomial has a

linear term if and only if k + 2 = 2m + 2n. Thus, the linear coefficient of the Laurent
polynomial of vk,3 is given by,

c(1)
vk,3 = 16π ζ(k + 1)

bk/2c∑
m,n=2

(k − 2)!
(2m− 2)!(2n− 2)!

B2m
(2m)!

B2n
(2n)! δk+2,2m+2n (7.18)

which vanishes for all odd k as well as for even k ≤ 4.
By proposition 3.1, the integrals of ∇U+

k;` and ∇̄ U
−
k;` are equal to the coefficients of the

constant terms in the Laurent polynomials of U+ and U−, respectively. To calculate these
coefficients, we shall work with U+. The case of U− is related by complex conjugation.

We first recall the definition (7.13) of U+
k;`. Since Ḡ2` has only a constant term in its

Laurent polynomial (2.38), we may focus on the modular graph form C+
[
k 1 0
0 1 k+2−2`

]
. This

function obeys the following differential identity,

C+
[
k 1 0
0 1 k+2−2`

]
= (−)`−1 (k−`)!

(k−1)!∇
`−1C+

[
k+1−` 1 0

0 1 k+1−`

]
(7.19)

+(−)k−1
`−1∑
j=1

(k−1−j)!
(k−1)! ∇

j−1
(

1
2(k+2−j)(k−1−j)C+

[
k+2−j 0

k+2−2`+j 0

]
−
k+1−j∑
m=4

(m−1)C+[m 0
0 0 ]C+

[
k+2−j−m 0
k+2−2`+j 0

])

which may be proved through repeated use of holomorphic subgraph reduction (2.24).
The first term on the right-hand side of this expression is a derivative of the two-loop
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modular graph function vk+1−`,2. The second and third lines can be written as derivatives
of Eisenstein series and do not have constant terms in their Laurent polynomials. Thus,

C+
[
k 1 0
0 1 k+2−2`

] ∣∣
const. = (−)`−1 (k−`)!

(k−1)!
(
∇`−1vk+1−`,2

)∣∣
const. =

(k−1
`−1
)−1

c(1−`)vk+1−`,2 (7.20)

The Laurent coefficients for vk+1−`,2 are given below (C.8). After including the multiplicative
contribution from the constant term in the Laurent polynomial of Ḡ2`, we obtain,

c
(0)
U±
k;`

= (1− δ2`,k) 16π ζ(k + 1) B2`
(2`)!

Bk+2−2`
(k + 2− 2`)! (7.21)

which vanishes for all odd k as well as for even k = 2`.
Combining these results, we obtain the expressions for the integral of vk,3 given in (7.7)

and (7.8) of theorem 7.3. The subtraction of triple products of Eisenstein series with rational
coefficients described in (7.9) and (7.10) follows from the discussion of the transcendentality
of the integral of W(m,n)

k+2 in theorem 5.3. This completes our proof of theorem 7.3.

8 Integrating Ck,1,1,1

In this section, we shall evaluate the integrals of the infinite family of connected three-loop
modular graph functions Ck,1,1,1 for integer k ≥ 2 using the unfolding trick.5 As a warm-up
for this three-loop calculation, we shall first evaluate the integrals of the infinite family
of connected two-loop modular graph functions Ck,1,1 which are the two-loop analogues
of Ck,1,1,1. We shall also discuss the transcendental structure of these integrals.

The connected two-loop functions Ck,1,1 form an infinite subfamily of the two-loop func-
tions Ca,b,c defined in (2.41) with a = k and b = c = 1. They have the following decorated
dihedral graph, matrix of exponents, and Kronecker-Eisenstein series representation,

Ck,1,1 =
k, k

1, 1

1, 1 = C
[
k 1 1
k 1 1

]
= τk+2

2
πk+2

∑
p1,p2,p3∈Λ′

δ(p1 + p2 + p3)
|p1|2 |p2|2 |p3|k

(8.1)

The functions Ck,1,1 have weight k + 2. For integer k ≥ 1, the Kronecker-Eisenstein series
converges and is real.

The connected three-loop functions Ck,1,1,1 are the three-loop analogues of Ck,1,1. They
have the following decorated dihedral graph, matrix of exponents, and Kronecker-Eisenstein
series representation,

Ck,1,1,1 =
k, k

1, 1

1, 1

1, 1
= C

[
k 1 1 1
k 1 1 1

]
= τk+3

2
πk+3

∑
p1,p2,p3,p4∈Λ′

δ(p1 + p2 + p3 + p4)
|p1|2 |p2|2 |p3|2 |p4|2k

(8.2)

The functions Ck,1,1,1 have weight k + 3. For integer k ≥ 1, the Kronecker-Eisenstein series
converges and is real. Unlike the functions of previous two sections, the Laplacian does

5The case k = 1 has already been discussed in [34] and will not be reconsidered here as its treatment
requires some extra technical modifications to the procedure used for k ≥ 2.
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not have a nice action on the functions Ck,1,1,1. The cases C1,1,1,1, C2,1,1,1, and C3,1,1,1
appear in the low-energy expansion of the genus-one four-graviton amplitude in Type II
superstring theory, and their integrals overML were calculated in [34]. The function C1,1,1,1
is a so-called melon modular graph function and is often denoted by D4 [42].

8.1 The integral of Ck,1,1
The two-loop functions Ck,1,1 may be written as a linear combination of the functions Cu,v;w
using proposition 2.2. Thus, the integral of Ck,1,1 may be computed from the expressions
for the integrals of Cu,v;w in theorem 4.3. However, with the three-loop function Ck,1,1,1 in
mind, we shall present a new calculation using the unfolding trick and lemma 3.5 which is
more readily generalized to three loops. In the remainder of this subsection, we shall prove
the following theorem.

Theorem 8.1. The integral of Ck,1,1 for integer k ≥ 1 is given as follows.

• When k is odd, the integral has transcendental weight k + 3 and is given by,∫
ML

d2τ

τ2
2
Ck,1,1 ≈ 4π ζ(k + 2) Bk+1

(k + 1)! (8.3)

• When k is even, the integral has transcendental weight k + 3 and is given by,∫
ML

d2τ

τ2
2
Ck,1,1 ≈ −16π ζ(k + 1) Bk+2

(k + 2)!

[
ζ ′(k + 2)
ζ(k + 2) −

ζ ′(k + 1)
ζ(k + 1) + ln(2L)

]
(8.4)

In each case, the integral is of the form claimed in proposition 1.1.

8.1.1 Proof of theorem 8.1

To prove this theorem, we shall integrate the Poincaré seed function Λk,1,1 for Ck,1,1 over the
truncated upper half-strip. This calculation is similar to the proofs of both proposition 3.7
and theorem 4.3.

We first obtain an expression for Λk,1,1 from the Kronecker-Eisenstein series representa-
tion (8.1) of Ck,1,1 by rotating the integer pair (m3, n3) 6= (0, 0) to (0, N) 6= (0, 0),

Λk,1,1 = τk+2
2
πk+2

∑
N 6=0

′∑
(mr,nr)∈Z2

r=1,2

δ(m1 +m2)δ(n1 + n2 +N)
|m1τ + n1|2|m2τ + n2|2N2k (8.5)

Splitting Λk,1,1 = Λ[0]
k,1,1 + Λ[1]

k,1,1 + Λ[2]
k,1,1 into contributions according to the number of non-

vanishing summation variables mr, we see that Λ[1]
k,1,1 vanishes thanks to the delta function

constraint. The remaining contributions are given by,

Λ[0]
k,1,1 = τk+2

2
πk+2

∑
n1,n2,N 6=0

δ(n1 + n2 +N)
n2

1n
2
2N

2k

Λ[2]
k,1,1 = τk+2

2
πk+2

∑
m1,m2,N 6=0

∑
n1,n2∈Z

δ(m1 +m2)δ(n1 + n2 +N)
|m1τ + n1|2|m2τ + n2|2N2k (8.6)
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The Λ[0]
k,1,1 contribution yields a term proportional to Lk+1 in the integral of Λk,1,1 and may

be ignored in light of lemma 3.5, leaving only Λ[2]
k,1,1.

To evaluate Λ[2]
k,1,1, we first sum over the variables m2 and n2 using the two delta symbols.

We then define m = m1 and n = n1, integrate over τ1 using (3.20) of proposition 3.6, and
finally integrate over τ2. After some straightforward simplifications and a change of
integration variables, we obtain the following infinite series of finite integrals,

∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[2]

k,1,1 = 16
(2π)k+1

∑
m,N>0

1
mk+1Nk+2

∫ 2mL
N

0

dxxk−1

x2 + 1 (8.7)

This expression may be compactly expressed in terms of the Fg functions defined in (4.18).
Defining κ = bk/2c and δ = k − 2κ so that δ = 0 for even k and δ = 1 for odd k, we write,

∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[2]

k,1,1 = 16 (−)κ+δ+1

(2π)k+1 F1−δ(κ+ δ − 1, 1; k + 1, k + 2;1;L) (8.8)

For odd k, the integral is proportional to F0 and has only polynomial divergences in L. For
even k, it is proportional to F1 and has both polynomial and lnL divergences. In either case,
lemma 4.4 details its large L behavior. Combining these results with lemma 3.5 to calculate
the integral of Ck,1,1, we obtain (8.3) and (8.4). This completes our proof of theorem 8.1.

8.2 The integral of Ck,1,1,1

We now turn to the connected three-loop functions Ck,1,1,1. In the remainder of this
subsection, we shall prove the following theorem using a Poincaré seed function Λk,1,1,1
for Ck,1,1,1 and the unfolding trick. This calculation is significantly more involved than the
two-loop case, and several technical details are contained in appendix D and appendix E.

Theorem 8.2. The integral over ML of Ck,1,1,1 for integer k ≥ 2 is given as follows.

• When k is odd, the integral is equal to a sum of terms with transcendental weight k + 3
or k + 4 plus a term proportional to ln(2π) and terms with odd transcendental weight
greater than k + 4,

∫
ML

d2τ

τ2
2
Ck,1,1,1≈ 48πζ(k+2)

{ (k−1)/2∑
`=2

B2`
(2`)!

Bk+3−2`
(k+3−2`)!

[
(k+4−6`) ζ

′(2`)
ζ(2`) −ln(2π)

]

−B2
2!

Bk+1
(k+1)!

[
ζ ′(k+2)
ζ(k+2) +2(k+2) ζ

′(k+1)
ζ(k+1) −(k+2) ζ

′(2)
ζ(2) −ln(2L)−2

]

− Bk+3
(k+3)!

[
5(k+1) ζ

′(k+3)
ζ(k+3) + 1

2(k−1)(k−2) ζ
′(k+2)
ζ(k+2) −

1
2(k−1)(k−2) ln(2L)−6

]

+
(k−1)/2∑
`1,2=2

`1+`2<(k+3)/2

Bk+3−2`1
(k+3−2`1)!

Bk+3−2`2
(k+3−2`2)! (k+3−2`1−2`2)!ζ(k+4−2`1−2`2)

}
(8.9)
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• When k is even, the integral is equal to a sum of terms with transcendental weight k + 4
plus terms with odd transcendental weight greater than k + 4,

∫
ML

d2τ

τ2
2
Ck,1,1,1≈ 4π Bk+2

(k+2)!

{
−(2k+1)(k+1)ζ(k+3)

+12
k/2−1∑
`=1

ζ(2`+1)ζ(k+1−2`)
[
ζ ′(k+2)
ζ(k+2) −

ζ ′(k+1−2`)
ζ(k+1−2`) −

ζ ′(2`)
ζ(2`) +γE+ln(2L)

]

+4
k/2−1∑
`1,2=1

`1+`2<k/2

ζ(2`1+1)ζ(2`2+1)ζ(k+1−2`1−2`2)

−12
k/2∑

`1,2=2
`1+`2<(k+4)/2

Bk+4−2`1−2`2
(k+4−2`1−2`2)! ζ(k+3−2`1)ζ(k+3−2`2)

}
(8.10)

In each case, we may subtract the integral of a suitable linear combination of triple products
of Eisenstein series to construct the following integral whose terms all have transcendental
weight k + 3 or k + 4,

∫
ML

d2τ

τ2
2

Ck,1,1,1 −
bk/2c∑
`1,2=2

`1+`2<(k+4)/2

Q
(C)
`1,`2,k+3−`1−`2 E

∗
`1E
∗
`2E
∗
k+3−`1−`2

 (8.11)

where Q(C)
`1,`2,k+3−`1−`2 is the following rational number,

Q
(C)
`1,`2,k+3−`1−`2 = 24 (−)`1+`2+δk+3,2`1+2`2

(k + 3− 2`1 − 2`2)!!
k!!(k + 1− 2`1)!!(k + 1− 2`2)!! (8.12)

Thus, the integral of Ck,1,1,1 is of the form claimed in proposition 1.2.

Before we prove this theorem, some remarks are in order. For all k ≥ 2, we have
written the integral of Ck,1,1,1 as a piece with transcendental weight k + 3 or k + 4 plus
terms with novel transcendental structure. These novel terms include ln(2π) which occurs
for odd k ≥ 5. There are also terms with odd transcendental weight greater than k + 4 for
all k ≥ 6. For instance, at weight eight, the integral of C5,1,1,1 contains ln(2π). Then at
weight nine, the integral of C6,1,1,1 includes a term with transcendental weight eleven. This
is precisely the transcendental structure of the integrals of triple products of Eisenstein series
which we described at length in section 5. In any case, the terms with novel transcendental
structure may be removed by subtracting the integral of a suitable linear combination of
triple products of Eisenstein series as detailed in (8.11). We speculate that this structure
originates from triple products of Eisenstein series (or their derivatives) which appear in
the inhomogeneous Laplace equation obeyed by a larger family of three-loop MGFs.
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8.2.1 Proof of theorem 8.2
Following lemma 3.5 and our previous two-loop calculation, we shall integrate the Poincaré
seed function Λk,1,1,1 over the truncated upper half-strip.

We first obtain an expression for Λk,1,1,1 from the Kronecker-Eisenstein series represen-
tation (8.2) of Ck,1,1,1 by rotating the integer pair (m4, n4) 6= (0, 0) to (0, N) 6= (0, 0),

Λk,1,1,1 = τk+3
2
πk+3

∑
N 6=0

′∑
(mr,nr)∈Z2

r=1,2,3

δ(m1 +m2 +m3)δ(n1 + n2 + n3 +N)
|m1τ + n1|2|m2τ + n2|2|m3τ + n3|2N2k (8.13)

Splitting Λk,1,1,1 = Λ[0]
k,1,1,1 + Λ[1]

k,1,1,1 + Λ[2]
k,1,1,1 + Λ[3]

k,1,1,1 into contributions according to the
number of non-vanishing summation variables mr, we see that Λ[1]

k,1,1,1 vanishes thanks to
the delta function constraint. The remaining contributions are given by,

Λ[0]
k,1,1,1 = τk+3

2
πk+3

∑
N 6=0

∑
nr 6=0
r=1,2,3

δ(n1 + n2 + n3 +N)
n2

1n
2
2n

2
3N

2k

Λ[2]
k,1,1,1 = 3 τ

k+3
2
πk+3

∑
n3,N 6=0

∑
mr 6=0
nr∈Z
r=1,2

δ(m1 +m2)δ(n1 + n2 + n3 +N)
|m1τ + n1|2|m2τ + n2|2n2

3N
2k

Λ[3]
k,1,1,1 = τk+3

2
πk+3

∑
N 6=0

∑
mr 6=0
nr∈Z
r=1,2,3

δ(m1 +m2 +m3)δ(n1 + n2 + n3 +N)
|m1τ + n1|2|m2τ + n2|2|m3τ + n3|2N2k (8.14)

The factor of 3 in Λ[2]
k,1,1,1 arises from the three different mr which can vanish. The Λ[0]

k,1,1,1
contribution is proportional to τk+3

2 and will produce a contribution proportional to Lk+2

in the integral of Λk,1,1,1 which may be ignored in light of lemma 3.5.
Hence, only Λ[2]

k,1,1,1 and Λ[3]
k,1,1,1 will contribute to the integral of Λk,1,1,1 (and thus to

the integral of Ck,1,1,1). Their integrals may be massaged into the following form.
Lemma 8.3. Up to exponentially suppressed corrections, the integral of Λ[2]

k,1,1,1 + Λ[3]
k,1,1,1

over the truncated upper half-strip may be written as follows,∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1

(
Λ[2]
k,1,1,1 + Λ[3]

k,1,1,1

)
= I(exp)

k,1,1,1 + I(pow)
k,1,1,1(L) (8.15)

where I(exp)
k,1,1,1 and I(pow)

k,1,1,1(L) are the following infinite series of integrals,

I(exp)
k,1,1,1 = 96 ζ(k + 2)

(2π)k+1

∑
N1,N2>0

1
Nk−1

1 Nk−1
2

∫ ∞
0

dxxk−1

(x2 +N2
1 )(x2 +N2

2 )
e−2πx

1− e−2πx

I(pow)
k,1,1,1(L) = 48

(2π)k+2

∑
m,N>0

{
2 ζ(2)

mk+2Nk+1

∫ 2mL
N

0

dxxk

x2 + 1 + 1
mk+2Nk+3

∫ 2mL
N

0

dxxk

(x2 + 1)2

− 4
mk+2Nk+3

∫ 2mL
N

0

dxxk

(x2 + 1)3 −
π

mk+2Nk+2

∫ 2mL
N

0

dxxk−1

x2 + 1

+ 2π
mk+2Nk+2

∫ 2mL
N

0

dxxk−1

(x2 + 1)2 + 4πH1(m)
mk+1Nk+2

∫ 2mL
N

0

dxxk−1

x2 + 1

}
(8.16)
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These two contributions are so named because their integrands decay exponentially or are
power-behaved for large x.

In appendix D, we prove this lemma by manipulating the Kronecker-Eisenstein series
for Λ[2]

k,1,1,1 and Λ[3]
k,1,1,1. It now remains to explicitly evaluate I(pow)

k,1,1,1(L) and I(exp)
k,1,1,1.

We shall begin with the series of power-behaved integrals. The six terms in I(pow)
k,1,1,1(L)

are each similar to the integral of Λ[2]
k,1,1 in (8.7) which we encountered in our two-loop

warm-up. Similarly, these integrals may be compactly expressed in terms of the general
family Fg functions defined in (4.18). The large-L behavior of I(pow)

k,1,1,1(L) is then given by
lemma 4.4, and we find the following lemma.

Lemma 8.4. The power-behaved contribution I(pow)
k,1,1,1(L) for integer k ≥ 2 is given by,

I(pow)
k,1,1,1(L) ≈ 24 (−)bk/2c ζ(k + 2)

(2π)k+1 J
(pow)
k,1,1,1(L) (8.17)

where J (pow)
k,1,1,1(L) is given as follows.

• When k is odd,

πJ (pow)
k,1,1,1(L) =π2

(
2ζ(k+1,1)− 1

2(k−1)ζ(k+2)
)

(8.18)

+2ζ(2)ζ ′(k+1)− 1
2(k−1)(k−2)ζ ′(k+3)+

(
k− 3

2

)
ζ(k+3)

+
(1

2(k−1)(k−2)ζ(k+3)−2ζ(2)ζ(k+1)
)(

ζ ′(k+2)
ζ(k+2) −ln(2L)

)

• When k is even,

J (pow)
k,1,1,1(L) = ζ(k+1)ζ(2)−ζ(k+2)−(k−1)ζ ′(k+2)+4 d

dk
ζ(k+1,1)

− 1
4(k−1)(k−2)ζ(k+3)

+
(
(k−1)ζ(k+2)−4ζ(k+1,1)

)(ζ ′(k+2)
ζ(k+2) +ln(2L)

)
(8.19)

We have arranged these expressions in a specific form for later convenience.

To prove this lemma, we first define κ = bk/2c and δ = k − 2κ. We then write the
expression for I(pow)

k,1,1,1(L) in (8.16) in terms of the Fg functions as follows,

I(pow)
k,1,1,1(L) = 48 (−)κ / (2π)k+2

{
2 ζ(2)Fδ(κ, 1; k + 2, k + 1;1;L)

− Fδ(κ, 2; k + 2, k + 3;1;L)

− 4Fδ(κ, 3; k + 2, k + 3;1;L)

+ π (−)δ F1−δ(κ+ δ − 1, 1; k + 2, k + 2;1;L)

+ 2π (−)δ F1−δ(κ+ δ − 1, 2; k + 2, k + 2;1;L)

− 4π (−)δ F1−δ(κ+ δ − 1, 1; k + 1, k + 2;H1;L)
}

(8.20)
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We note that here both F0 and F1 appear regardless of whether k is odd or even. In the
two-loop case, only F0 or F1 respectively appeared for odd or even k. We now use lemma 4.4
to extract the constant and lnL terms from this expression. The arithmetic functions 1
and H1(m) appear in the second-to-last arguments of the Fg functions, so both the Riemann
zeta function ζ(s) and the double zeta function ζ(s, 1) will appear. Some straightforward
algebra then yields (8.17), (8.19), and (8.18). This completes our proof of lemma 8.4.

The remaining contribution I(exp)
k,1,1,1 is more difficult to evaluate but may be written in

terms of zeta-values and related functions. In appendix E, we prove the following lemma
using contour integral methods and analytic continuation.

Lemma 8.5. The exponential contribution I(exp)
k,1,1,1 for integer k ≥ 2 is given by,

I(exp)
k,1,1,1 = 24 (−)bk/2c ζ(k + 2)

(2π)k+1 J
(exp)
k,1,1,1 (8.21)

where J (pow)
k,1,1,1(L) is given as follows.

• When k is odd,

πJ (exp)
k,1,1,1 =−π2

(
2ζ(k+1,1)− 1

2(k−1)ζ(k+2)
)

−
(
k+ 9

2

)
ζ(k+3)+4ζ(2)ζ(k+1)+ 1

2(k+3)(k+4)ζ ′(k+3)

−8
(k−1)/2∑
`=1

(`+1)ζ(k+1−2`)ζ ′(2`+2)−6ζ(2)ζ ′(k+1)

+4
(k−1)/2∑
`1,2=1

ζ(2`1)ζ(2`2)ζ ′(k+3−2`1−2`2) (8.22)

• When k is even,

J (exp)
k,1,1,1 =−ζ(k+1)ζ(2)+ζ(k+2)+(k−1)ζ ′(k+2)−4 d

dk
ζ(k+1,1)

+ 1
4(k2−k−4)ζ(k+3)−2kζ(k+2,1)+4ζ(k+1,1,1)

+4
k/2−1∑
`=1

ζ(k+1−2`)
(
ζ(2`+1,1)−`ζ(2`+2)

−ζ ′(2`+1)+ 1
2γE ζ(2`+1)

)

+2
k/2−1∑
`1,2=1

`1+`2 6=k/2

ζ(2`1+1)ζ(2`2+1)ζ(k+1−2`1−2`2) (8.23)

We have arranged these expressions in a specific form for later convenience.
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By lemma 3.5 and lemma 8.3, the integral of Ck,1,1,1 is equal to the sum of I(exp)
k,1,1,1

and I(pow)
k,1,1,1(L). Thus, to complete our proof we must simply combine these two terms. At

this point we shall separately consider the cases of odd and even k.
We first consider odd k. In this case, we have the sum of (8.18) and (8.22) which is

messy but simplifies considerably. We have arranged these expressions so that their first
lines precisely cancel. We then use (A.4) to perform the finite sums over even zeta-values
and (A.8) to rewrite the derivatives of the Riemann zeta function at even negative integers.
Finally, we write the remaining even zeta-values in terms of Bernoulli numbers. After some
rearrangements, we arrive at (8.9).

Next we consider even k. Once more, the sum of (8.19) and (8.23) is quite messy, but
we have arranged these expressions so that their first lines precisely cancel. We use (A.4) to
perform the finite sums over even zeta-values and (A.17) to rewrite the double zeta-values
of the form ζ(N, 1) in terms of Riemann zeta-values. We also use (A.18) to write the triple
zeta-value ζ(k + 1, 1, 1) in terms of Riemann zeta-values, and we write the remaining even
zeta-values in terms of Bernoulli numbers. After some rearrangements, we arrive at (8.10).

With (8.9) and (8.10) in hand, it remains to prove that the integral (8.11) of Ck,1,1,1
minus a particular linear combination of triple products of Eisenstein series contains only
terms with transcendental weight k + 3 or k + 4. This follows directly from the expressions
for the integrals of triple products in theorem 5.1. This completes our proof of theorem 8.2.

9 Conclusion

In this paper, we have evaluated the integrals overML of several special infinite families of
three-loop modular graph functions using a variety of methods. In section 5, we reviewed
the integrals of triple products of Eisenstein series E∗sE∗tE∗u, and we used the unfolding
trick to integrate the disconnected three-loop functions W(m,n)

s . In section 6, we integrated
the disconnected three-loop functions E∗kCa,b,c using the system of inhomogeneous Laplace
equations obeyed by the functions Ca,b,c. In section 7, we integrated the connected three-
loop functions vk,3 using their inhomogeneous Laplace equations. Finally, in section 8, we
integrated the connected three-loop functions Ck,1,1,1 using their Poincaré series and the
unfolding trick.

The integrals of each of these infinite families of three-loop MGFs contain the same
mathematical ingredients and exhibit similar transcendental structures. Each integral is
composed of Riemann zeta-values, their first derivatives, and reducible multiple zeta-values.
No irreducible multiple zeta-values nor derivatives of multiple zeta-values appear in our
final expressions.

For weight w ≤ 7, the transcendental structure of the integrals of each individual
three-loop MGF is consistent with the uniform transcendentality of superstring amplitudes.
Specifically, each integral is the sums of terms with transcendental weight w + 1 and terms
with transcendental weight w multiplied by rational numbers which may be interpreted as
arising from finite harmonic sums.

For weight w ≥ 8, the transcendental structure of the integrals of certain three-loop
MGFs is not consistent with the uniform transcendentality of superstring amplitudes.
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Moreover, the violations of uniform transcendentality occurring in the integrals of individual
three-loop MGFs are all of the same form as the violations endemic to the integrals of triple
products of Eisenstein series. Thus, the violations in the integrals of each three-loop MGF
may be precisely removed by subtracting the integral of a suitable linear combination of
these triple products. These subtractions are generally described in proposition 1.2 and are
specifically demonstrated in (5.21), (6.9), (6.21), (7.9), and (8.11).

Our results have physical implications for the conjectured uniform transcendentality
of the genus-one four-graviton amplitude in Type II superstring theory. The integrals of
certain three-loop MGFs violate uniform transcendentality in a controlled way, but these
violations may be consistently subtracted with triple products of Eisenstein series. Thus, if
the full genus-one superstring amplitude is to exhibit uniform transcendentality at weight
eight and higher, special cancellations between the integrals of individual three-loop MGFs
must occur. In other words, if physical amplitudes exhibit uniform transcendentality, then
the violations described in this paper constrain the combinations of MGFs which may
appear in the integrand of any superstring amplitude.

Future work on this front may calculate the contributions of order D14R4 and D16R4

in the low-energy expansion to see if any violations occur at weight eight. It may also
be fruitful to study the transcendental structure of the genus-one five-point amplitude in
Type II superstring theory [43] since considerable progress has been recently made with the
genus-two five-point amplitude [44–46].

Moreover, transcendentality may offer a significant guide to discovering a higher-
genus generalization of the Kawai-Lewellen-Tye relations [47] between open and closed
string amplitudes (and thus between gauge theory and gravity) at genus zero. The single-
valued map, which acts on motivic multiple zeta-values [18], relates open and closed string
amplitudes at genus zero [48–53]. A genus-one generalization, the elliptic single-valued map,
was studied in [4, 20, 22, 54–56]. The precise map between open and closed strings at genus
one is under active study.

Future work may also attempt to evaluate the integrals of other infinite families of
three-loop MGFs using the technology developed in this paper. For instance, the family of
functions Ck,1,1,1 forms a subset of the larger family of dihedral three-loop functions Ca,b,c,d
which are analogous to the two-loop functions Ca,b,c. Unfortunately, integrating this infinite
family using the Laplace operator seems intractable since the action of the Laplacian does
not close on this space. In fact, it was shown in [16, 17] that the Laplacian mixes the
spaces of dihedral, trihedral, and tetrahedral three-loop MGFs. It may be fruitful to apply
a generating function approach, as in appendix B, to the larger space of three-loop MGFs
with mixed topologies. It may also be possible to evaluate the integral of Ca,b,c,d using its
Poincaré series and the unfolding trick by generalizing the computation of section 8.

The integrals of four-loop MGFs are completely unknown beyond a few simple examples
at small weights. Not even the integral of a quadruple product of Eisenstein series has been
explicitly evaluated. Perhaps our methods may be adapted to integrate some simple infinite
families of four-loop MGFs.

Orthogonally, our methods might also be used in other physical contexts to evaluate
the integrals over M or ML of modular-invariant functions outside the space of MGFs.
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Such integrals have recently appeared in string phenomenology [57] and in the context of
holography between three-dimensional theories of gravity and ensembles of two-dimensional
conformal field theories [58–60].

Perhaps the most pressing open question is whether the transcendental structure of the
integrals of modular graph functions may be obtained without having to explicitly evaluate
the integrals. Understanding the source(s) of the violations of uniform transcendentality
in some way other than by explicit calculations would significantly help progress in this
direction. The fact that violations occur only for special ranges or arrangements of the
exponents of the modular graph functions studied in this paper provides one piece of
circumstantial evidence that such a characterization may well exist.

A Zeta functions, zeta-values, and multiple zeta-values

Zeta functions, zeta-values, and multiple zeta-values play an important role in this paper.
A review of these concepts may be found in [61]. In this appendix, we shall review their
salient properties.

A.1 The Riemann zeta function

The Riemann zeta function is defined for Re(z) > 1 by the absolutely convergent series,

ζ(z) =
∑
m>0

1
mz

(A.1)

and may be analytically continued to a meromorphic function of z ∈ C with a single simple
pole at z = 1. Near this pole,

ζ(z) = 1
z − 1 + γE +O(z − 1) (A.2)

where γE is the Euler-Mascheroni constant.

A.1.1 Riemann zeta-values

For integer arguments n 6= 1, ζ(n) is referred to as a zeta-value. The zeta-value ζ(n)
with n ≥ 2 is assigned transcendental weight n. Zeta-values for even positive integers and
for all negative integers may be expressed in terms of the Bernoulli numbers Bn,

ζ(2n) = 1
2(−)n+1 (2π)2n B2n

(2n)! ζ(−n) = (−)n Bn+1
n+ 1 (A.3)

The Bernoulli numbers are rational, and the negative even zeta-values vanish since the odd
Bernoulli numbers, other than B1, vanish. The expression for ζ(2n) implies that π has
transcendental weight one. Additionally, ζ(0) = −1

2 .
Finite sums of even zeta-values satisfy several identities which correspond to properties

of the Bernoulli numbers. For instance, for integer n ≥ 2,
n−1∑
`=1

ζ(2`) ζ(2n− 2`) = (n+ 1
2) ζ(2n)

n−1∑
`=1

` ζ(2`) ζ(2n− 2`) = 1
2n(n+ 1

2) ζ(2n) (A.4)
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The first identity is proved in [61], and the second may be reduced to the first by changing
summation variables `→ n− `.

A.1.2 The starred zeta function

It is often convenient to perform intermediate calculations in terms of the starred zeta
function ζ∗(z) rather than the Riemann zeta function ζ(z). The starred function is defined by,

ζ∗(z) = π−z/2 Γ(z/2) ζ(z) (A.5)

and obeys the functional equation ζ∗(1−z) = ζ∗(z) which provides an analytic continuation
for ζ∗(z), and thus ζ(z), to the complex z-plane. The starred zeta function has simple poles
at z = 0 and z = 1.

For positive integer arguments, the starred zeta function is given by,

ζ∗(2n) = (−)n+1 (2n− 2)!! (2π)n B2n
(2n)!

ζ∗(2n+ 1) = (2n− 1)!! (2π)−n ζ(2n+ 1) (A.6)

where n ≥ 1 and the double factorial is defined by,

n!! = n (n− 2)!! 1!! = 0!! = (−1)!! = 1 (A.7)

The starred zeta-values ζ∗(n) have transcendental weight b(n+ 1)/2c for integer n ≥ 2.
Thus, the use of starred zeta-values obscures an expression’s transcendental weight. For
this reason, we shall always write our final expressions in terms of explicit factors of π, odd
zeta-values, rational numbers such as the Bernoulli numbers Bn, and other objects with
manifest transcendental weight.

A.1.3 Derivatives, harmonic sums, and the digamma function

The derivative of the Riemann zeta function obeys several identities which stem from its
functional equation. For instance, the derivative at even negative integers is given by,

ζ ′(−2n) = 1
2(−)n (2π)−2n (2n)! ζ(2n+ 1) (A.8)

which has transcendental weight one. Additionally, ζ ′(0) = −1
2 ln(2π).

The logarithmic derivative of the Riemann zeta function ζ ′(z)/ζ(z) and the digamma
function ψ(z) = Γ′(z)/Γ(z) often arise together because the logarithmic derivative of the
starred zeta function is given by,

ζ∗′(z)
ζ∗(z) = ζ ′(z)

ζ(z) + 1
2ψ(z/2)− 1

2 ln π (A.9)

The digamma function obeys the reflection identity,

ψ(1− z) = ψ(z) + π cot(πz) (A.10)

– 67 –



J
H
E
P
0
2
(
2
0
2
2
)
0
1
9

and the duplication formula,

ψ(z) + ψ(z − 1
2) = 2ψ(2z − 1)− 2 ln 2 (A.11)

which may be derived from the respective properties of the gamma function.
At positive integer and half-integer arguments, the digamma function may be written in

terms of finite harmonic sums and the Euler-Mascheroni constant γE . The finite harmonic
sums H1(m) with integer m ≥ 1 are defined as follows,

H1(m) =
m−1∑
k=1

1
k

(A.12)

with H1(1) = 0. Definitions of H1(m) with a different upper limit are also common. For
integer n ≥ 1, we then have,

ψ(n) = H1(n)− γE

ψ(n+ 1
2) = 2H1(2n+ 1)−H1(n+ 1)− 2 ln 2− γE (A.13)

As discussed in section 1.1, the terms H1(m), ln 2, and γE each have transcendental weight
one. Thus, ψ(n) and ψ(n+ 1

2) also have unit transcendental weight.
These objects will often occur in combinations such that the Euler-Mascheroni constants

cancel, leaving only logarithmic derivative of the Riemann zeta function and finite harmonic
sums. For this reason, it will be convenient to define the following combination,

Z(n) = ζ ′(n)
ζ(n) +


1
2H1

(
n
2
)

n even

H1(n)− 1
2H1

(
n+1

2
)

n odd
(A.14)

for integer n ≥ 2. The combination Z(n) has transcendental weight one.

A.2 Multiple zeta-values

The Riemann zeta function may be generalized to the multiple zeta function of depth `,
which is defined by the following `-fold infinite sum,

ζ(z1, . . . , z`) =
∑

m1>···>m`>0

1
mz1

1 · · ·m
z`
`

(A.15)

The series definition of the multiple zeta function converges for Re(z1) > 1 and Re(zj≥2) ≥ 1
and may be analytically continued in C` [62, 63].

The multiple zeta function with positive integer arguments, is called a multiple zeta-value
(MZV). The MZV ζ(n1, . . . , n`) with integer n1 ≥ 2 and nj≥2 ≥ 1 is assigned transcendental
weight n1 + · · · + n`. All known identities between zeta-values and MZVs respect their
(conjectural) grading by transcendental weight [19].

Multiple zeta-values which can be written in terms of zeta-values with rational coeffi-
cients are said to be reducible. The MZVs which occur in this paper are all reducible. For
example, the double zeta-value ζ(N, 1) with integer N ≥ 2 obeys,

ζ(N, 1) = 1
2N ζ(N + 1)− 1

2

N−2∑
`=1

ζ(`+ 1) ζ(N − `) (A.16)
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which may be further simplified (using (A.4) to obtain the second equation) as follows,

ζ(2n, 1) = n ζ(2n+ 1)−
n−1∑
`=1

ζ(2`+ 1) ζ(2n− 2`)

ζ(2n+ 1, 1) = 1
4(2n− 1) ζ(2n+ 2)− 1

2

n−1∑
`=1

ζ(2`+ 1) ζ(2n+ 1− 2`) (A.17)

for integer n ≥ 1. Similarly, the triple zeta-value ζ(2n+ 1, 1, 1) is reducible and obeys [64],

ζ(2n+ 1, 1, 1) = 1
6(2n+ 1)(2n+ 2) ζ(2n+ 3)− n ζ(2) ζ(2n+ 1)

− 1
2

n−1∑
`=1

(
n+ `− 1

2

)
ζ(2`+ 1) ζ(2n+ 2− 2`)

+ 1
6

n−1∑
`1=1

n−1−`1∑
`2=1

ζ(2`1 + 1) ζ(2`2 + 1) ζ(2n− 2`1 − 2`2 + 1) (A.18)

for integer n ≥ 1. We note that these expression explicitly respect transcendental weight.
Multiple zeta-values may also be written in terms of generalized finite harmonic sums.

We shall define the generalized finite harmonic sums Hk(m) for integer k,m ≥ 1 as follows,

Hk(m) =
m−1∑
M=1

1
Mk

(A.19)

with Hk(1) = 0. Definitions of Hk(m) with a different upper limit are also common. In
analogy with our discussion of H1(m) in section 1.1, Hk(m) is assigned transcendental
weight k. Again, one should think of Hk(m) not as its value for a single m (which would
give a rational number whose natural transcendental weight assignment is zero) but instead
as a function of m to be inserted into an infinite series in m. For instance, Hk(m) occurs in
this manner in the double zeta-value ζ(n, k),

ζ(n, k) =
∑

m1>m2>0

1
mn

1 m
k
2

=
∞∑
m=2

Hk(m)
mn

(A.20)

The standard transcendental weight assignments of ζ(n) and ζ(n, k) are n and n + k,
respectively, which justifies assigning transcendental weight k to Hk(m).

B Relating Ca,b,c and Cw;m;p

In this appendix, we shall explicitly relate the two-loop modular graph functions Ca,b,c
and Cw;m,p which were introduced in section 2.5. The functions Cw;m,p are linear combi-
nations of the functions Ca,b,c which diagonalize the homogeneous part of their system of
inhomogeneous Laplace eigenvalue equations.
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The linear relations (2.47) between these functions define the expansion coefficients d
and d, which we repeat here to render this appendix reasonably self-contained,

Ca,b,c =
bw−1

2 c∑
m=1

bw−2m−1
3 c∑

p=0
dw;m;p
a,b,c Cw;m;p Cw;m;p =

∑
a≥b≥c≥1
a+b+c=w

da,b,cw;m;pCa,b,c (B.1)

The coefficients h were defined in (B.2), which we also repeat here for convenience,

(
∆− (w − 2m)(w − 2m− 1)

)
Cw;m;p = h(0)

w;m;pE
∗
w +

bw/2c∑
`=2

h(`)
w;m;pE

∗
`E
∗
w−` (B.2)

Throughout this appendix, the ranges of the variables m and p are those indicated in the
first sum of (B.1),

1 ≤ m ≤
⌊
w−1

2

⌋
0 ≤ p ≤

⌊
w−2m−1

3

⌋
(B.3)

where m determines the eigenvalue of the Laplacian and p labels the degeneracy of the
corresponding eigenspace.

In this appendix, we shall obtain explicit formulas for the coefficients d, d, and h. Our
results are packaged in the following three theorems.

Theorem B.1. The expansion coefficients d are rational numbers given by,

dw;m;p
a,b,c =

m+∑
k=m

k−1∑
κ=0

∑
αj≥0

∑
βj≥0

∑
γj≥0

(w−3p−2m−1)!
(w−3p−2k−1)!

(2w−2m−2k−3)!!
(2k−2m)!!

(k−1
κ

)
× (α1+α2+α3)!

α1!α2!α3!
(β1+β2+β3)!
β1!β2!β3!

(γ1+γ2+γ3)!
γ1!γ2!γ3! 2w−2m−1 3k−1 (−4)κ (−)m−1

×δα1+α2+α3,3p δβ1+β2+β3,κ δγ1+γ2+γ3,w−3p−2κ−3

×ψ(α1,α2,α3)δa,α1+β2+β3+γ1+1 δb,α2+β3+β1+γ2+1 δc,α3+β1+β2+γ3+1 (B.4)

where m+ = b(w − 3p− 1)/2c and the function ψ(α, β, γ) is given by,

ψ(α, β, γ) = 2
3
{

cos
(2π

3 (α− β)
)

+ cos
(2π

3 (β − γ)
)

+ cos
(2π

3 (γ − α)
)}

(B.5)

The function ψ(α, β, γ) depends on its integer arguments modulo 3 and is invariant under
permutations, simultaneous shifts, and simultaneous sign reversal of its arguments. It takes
the values ψ(0, 0, 0) = 2, ψ(0, 0, 1) = 0, and ψ(0, 1,−1) = −1 on its inequivalent orbits
which implies that ψ(α, β, γ) = 0 when α+ β + γ 6≡ 0 (mod 3).

Theorem B.2. The expansion coefficients d are rational numbers given by,

(σa,b,c)−1 da,b,cw;m;p =
m∑
s=1

m+∑
`=s

(w−3p−2s−1)!
(w−3p−2m−1)!

(2w−4m−1)
(2w−2s−2m−1)!!

1
(2m−2s)!!

(`−1
s−1
)
(−)s−1

×2w−3p−2m−2`−δp,0+1
(1

3

)w−3
Ma,b,c(`−1,3p+`−1) (B.6)
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The normalization factor σa,b,c provides proper combinatorial counting and is given by,

(σa,b,c)−1 = 1 + δa,b + δb,c + δc,a + 2 δa,b δb,c (B.7)

The value of (σa,b,c)−1 is equal to n! when n of its three arguments a, b, c are equal to one
another. The function Ma,b,c(`1, `2) is given by,

Ma,b,c(`1, `2) =
a−1∑
αj=0

b−1∑
βj=0

c−1∑
γj=0

(a−1)!
α1!α2!(a−1−α1−α2)!

(b−1)!
β1!β2!(b−1−β1−β2)!

(c−1)!
γ1!γ2!(c−1−γ1−γ2)!

×3ψ(α1−α2,β1−β2,γ1−γ2)δ`1,α1+β1+γ1 δ`2,α2+β2+γ2 (B.8)

where ψ(α, β, γ) was defined in (B.5). The function Ma,b,c(`1, `2) is invariant under
permutations of a, b, c and under swapping `1, `2. Also, Ma,b,c(`1, `2) = 0 when `1 6≡ `2
(mod 3) as well as when `1 + `2 > w − 3.

Theorem B.3. The coefficients h(`) with 2 ≤ ` ≤ m are rational numbers given in terms
of the coefficients d by the following relation,

h(`)
w;m;p = − 4

(w − `− 2)!(`− 2)!
{(

1 + δ`,2 − δ`,2 δw,4
)
dw−`,`−1,1
w;m;p

+ Θ(`− 3)
(
1 + δ2`,w−1 − δ2`,w

)
dw−`−1,`,1
w;m;p

−Θ(`− 3)
(
1 + δ`,3 + δ`,3 δw,6

)
dw−`−1,`−1,2
w;m;p

}
(B.9)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. The coefficients h(0)

are also rational numbers given in terms of the coefficients d and h(`) by,

h(0)
w;m;p = 2

(w − 1)!

{ b(w−1)/2c∑
`=1

(w − `− 1)
(
2`+ 2δ`,1 + δ`,1 δw,3 − δ`,2

)
dw−`−1,`,1
w;m;p

− 1
4

bw/2c∑
`=2

(w − `− 1)!(`− 1)! h(`)
w;m;p

}
(B.10)

The coefficients h(`) vanish for 2 ≤ ` ≤ m.

B.1 The generating function W

To prove these theorems, we shall appeal to the generating function W for the modular
graph functions Ca,b,c which was introduced in [3] and is defined by,

W(t1, t2, t3|τ, τ̄) =
∞∑

a,b,c=1
ta−1
1 tb−1

2 tc−1
3 Ca,b,c(τ, τ̄) (B.11)

Since each Ca,b,c is invariant under permutations of its indices, the generating function
is itself invariant under permutations of the auxiliary variables t1, t2, t3. To make this
symmetry more manifest we recast W as a sum over the monomial ta−1

1 tb−1
2 tc−1

3 plus its
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five permutations, irrespective of whether some of the exponents are equal to one another
or not. Restricting the sum in (B.11) to ordered a ≥ b ≥ c ≥ 1, we obtain,

W(t1, t2, t3|τ, τ̄) =
∑

a≥b≥c≥1
σa,b,c La,b,c(t1, t2, t3)Ca,b,c(τ, τ̄) (B.12)

where the symmetry factor σa,b,c was defined in (B.7) and La,b,c is given by,

La,b,c(t1, t2, t3) = ta−1
1 tb−1

2 tc−1
3 + 5 permutations of t1, t2, t3 (B.13)

By a slight abuse of terminology we shall refer to La,b,c as symmetrized monomials.
The modular graph functions Cw;m;p emerge by expanding the generating function W

in a basis of the simultaneous eigenfunctions Ww;m;p of the following mutually commuting
differential operators,

D = t1∂t1 + t2∂t2 + t3∂t3

L2 = D2 + D + (t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1)(∂t1∂t2 + ∂t2∂t3 + ∂t3∂t1)

L2
0 = 1

3
(
(t1 − t2) ∂t3 + (t2 − t3) ∂t1 + (t3 − t1) ∂t2

)2 (B.14)

with the following eigenvalues,

DWw;m;p = (w − 3)Ww;m;p

L2 Ww;m;p = (w − 2m)(w − 2m− 1)Ww;m;p

L2
0 Ww;m;p = −9p2 Ww;m;p (B.15)

Eigenfunctions of the scaling operator D are homogeneous polynomials in t1, t2, t3. More-
over, all three differential operators are manifestly invariant under permutations of these
variables. The construction of these operators relies on a certain SO(2, 1) algebra with the
generators L0,L± obeying the structure relations [L0,L±] = ±iL± and [L+,L−] = −iL0.
The quadratic Casimir operator of this algebra is given by L2 = L+L− + L−L+ − L2

0. For
more details, see [3] or appendix A of [17].

Explicit expressions for Ww;m;p may be conveniently obtained in terms of a new set of
auxiliary variables u, z, z̄ which are well-adapted to the SO(2, 1) structure of the problem.
These new variables are related to the original variables t1, t2, t3 by the following relations,6

√
3 t1 = u

(
1 + 1

2z + 1
2 z̄
) √

3u = t1 + t2 + t3
√

3 t2 = u
(
1 + 1

2ε
2z + 1

2εz̄
)

1
2
√

3uz = t1 + εt2 + ε2t3
√

3 t3 = u
(
1 + 1

2εz + 1
2ε

2z̄
)

1
2
√

3uz̄ = t1 + ε2t2 + εt3 (B.16)

where ε = e2πi/3. Assuming that the variables t1, t2, t3 are real-valued, then u is real-valued
while z, z̄ are complex-valued and mutual complex conjugates. In terms of these new

6The variables v, v̄ used in [3] are related to the variables z, z̄ used here by
√

2 v = uz and
√

2 v̄ = uz̄.
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variables, the eigenfunctions Ww;m;p take the following form,7

Ww;m;p(u,z, z̄) =
(√

3u
)w−3(

z3p+z̄3p)
×

m+∑
k=m

(w−3p−2m−1)!
(w−3p−2k−1)!

(2w−2m−2k−2)!
(w−m−k−1)!

1
(k−m)! (−)k−m (1−zz̄)k−1

(B.17)

where m+ = b(w − 3p− 1)/2c. We have chosen an overall normalization for Ww;m;p which
will be convenient in the sequel. The dependence of Ww;m;p on the variables u and z/z̄ is
completely determined by the quantum numbers w and p, respectively, and factors out of
the finite sum over k.

We now return to the generating function W. Using the Laplace equation (2.42)
for Ca,b,c and the definition of the generating function in (B.11), we readily verify that the
action of the differential operator L2 reproduces the action of the Laplacian ∆ on W,

(
∆− L2

)
W = inhomogeneous terms (B.18)

where the inhomogeneous terms are non-holomorphic Eisenstein series and their double
products, as described in section 2.5. Thus, the eigenfunctions Cw;m;p of ∆ must multiply
the eigenfunctions Ww;m;p of L2 when W is expanded in this basis. In fact, we shall define
the eigenfunctions Cw;m;p by this expansion,

W(t1, t2, t3|τ, τ̄) =
∞∑
w=3

bw−1
2 c∑

m=1

bw−2m−1
3 c∑

p=0
Ww;m;p(u, z, z̄)Cw;m;p(τ, τ̄) (B.19)

where the variables u, z, z̄ implicitly depend on t1, t2, t3.
We may now use the two expressions (B.12) and (B.19) for the generating functionW to

relate the two bases of modular graph functions, Ca,b,c and Cw;m;p. The linear relations (B.1)
between these functions define the expansion coefficients d and d. Equating (B.12) and (B.19)
and expanding either basis of modular graph functions using (B.1), we obtain,

σa,b,c La,b,c =
bw−1

2 c∑
m=1

bw−2m−1
3 c∑

p=0
da,b,cw;m;pWw;m;p (B.20)

Ww;m;p =
∑

a≥b≥c≥1
a+b+c=w

dw;m;p
a,b,c σa,b,c La,b,c (B.21)

In other words, we may compute the expansion coefficients d and d by converting the
symmetrized monomials La,b,c and the eigenfunctions Ww;m;p into one another. It is these
formulas which we shall use to compute d and d.

7Our eigenfunctions Ww;m;p are proportional to the eigenfunctions Ww;s;p with s = w − 2m in [3].
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B.2 Proof of theorem B.1: expressing Ww;m;p in terms of La,b,c
We shall first express the eigenfunctions Ww;m;p of (B.17) in terms of the symmetrized
monomials La,b,c as in (B.21) to extract the coefficients d. To carry out this expansion, we
shall write Ww;m;p in terms of the variables u, uz, uz̄ since these variables are each linear
in t1, t2, t3. Therefore, our starting point is the following expression,

Ww;m;p =
(√

3u
)w−3((uz)3p + (uz̄)3p) (B.22)

×
m+∑
k=m

(w−3p−2m−1)!
(w−3p−2k−1)!

(2w−2m−2k−2)!
(w−m−k−1)!

1
(k−m)! (−)k−m uw−3p−1−2k (u2 − (uz)(uz̄)

)k−1

We shall decompose each factor in this expression into powers of t1, t2, t3 while maintaining
manifest permutation symmetry.

We begin with the factor ((uz)3p + (uz̄)3p). Both uz and uz̄ are trinomials in t1, t2, t3
which may be expanded while maintaining manifest permutation symmetry by using three
summation variables constrained by a Kronecker delta function,

(uz)3p+(uz̄)3p =
( 1√

3

)3p ∑
αj≥0

(α1+α2+α3)!
α1!α2!α3! ψ(α1,α2,α3)δα1+α2+α3,3p t

α1
1 tα2

2 tα3
3 (B.23)

where the function ψ(α1, α2, α3) was defined in (B.5). This function arises from the explicit
symmetrization of ε2α2+α3 + εα2+2α3 , where we recall the notation ε = e2πi/3. For the
allowed values of its arguments αj , namely those which satisfy α1 + α2 + α3 ≡ 0 (mod 3),
the function ψ(α1, α2, α3) can take the values −1 or 2.

Next, we shall expand the factor (u2− (uz)(uz̄))k−1 in the summand using the relation,

u2 − (uz)(uz̄) = 4 (t1t2 + t2t3 + t3t1)− (t1 + t2 + t3)2 (B.24)

It will be convenient to first use a binomial expansion for the k − 1 power of the two terms
on the right side of the above relation. We will then use a trinomial expansion only for the
term (t1t2 + t2t3 + t3t1) while leaving the powers of (t1 + t2 + t3) un-expanded. These steps
produce the following expansion,

(
u2−(uz)(uz̄)

)k−1 = (−)k−1
k−1∑
κ=0

(k−1
κ

)
(−4)κ

∑
βj≥0

(β1+β2+β3)!
β1!β2!β3! δβ1+β2+β3,κ

×tβ2+β3
1 tβ3+β1

2 tβ1+β2
3 (t1+t2+t3)2k−2−2κ (B.25)

where we have again expanded the trinomial using three summation variables constrained
by a Kronecker delta function in order to maintain manifest permutation symmetry. At
this stage we could eliminate the sum over κ by solving the delta function constraint to
get κ = β1 + β2 + β3, but it saves space to keep the sum over κ as it stands.

Thus far, we have refrained from expanding the powers of (t1 + t2 + t3) as they will
profitably combine with the remaining powers of u. The combined exponent of (t1 + t2 + t3)
is w − 3p− 2κ− 3, and we have the following final trinomial expansion,

(t1 + t2 + t3)w−3p−2κ−3 =
∑
γj≥0

(γ1+γ2+γ3)!
γ1!γ2!γ3! δγ1+γ2+γ3,w−3p−2κ−3 t

γ1
1 t

γ2
2 t

γ3
3 (B.26)
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Putting all the contributions together, we obtain,

Ww;m;p =
m+∑
k=m

k−1∑
κ=0

∑
αj≥0

∑
βj≥0

∑
γj≥0

(w−3p−2m−1)!
(w−3p−2k−1)!

(2w−2m−2k−2)!
(w−m−k−1)!

1
(k−m)!

(k−1
κ

)
3k−1 (−4)κ (−)m−1

× (α1+α2+α3)!
α1!α2!α3!

(β1+β2+β3)!
β1!β2!β3!

(γ1+γ2+γ3)!
γ1!γ2!γ3!

× δα1+α2+α3,3p δβ1+β2+β3,κ δγ1+γ2+γ3,w−3p−2κ−3

× ψ(α1, α2, α3) tα1+β2+β3+γ1
1 tα2+β3+β1+γ2

2 tα3+β1+β2+γ3
3 (B.27)

This expression is manifestly invariant under permutations of t1, t2, t3. One may also readily
verify that the sum of the exponents of t1, t2, t3 equals w − 3 as expected.

To extract the expansion coefficient dw;m;p
a,b,c from this expression, we use the fact that the

normalized symmetrized monomial σa,b,c La,b,c includes as a term the monomial ta−1
1 tb−1

2 tc−1
3

with unit coefficient. Hence, the expansion coefficient dw;m;p
a,b,c is equal to the coefficient of

this monomial in Ww;m;p. An explicit expression is given in (B.4) of theorem B.1. This
expression is manifestly symmetric under permutations of a, b, c. The finite sum is over
eleven variables constrained by six Kronecker delta functions, leaving effectively a sum over
five variables. Manifestly, we have dw;m;p

a,b,c ∈ Q. This completes our proof of theorem B.1.

B.3 Proof of theorem B.2: expressing La,b,c in terms of Ww;m;p

To calculate the coefficients d, we use (B.20). Unfortunately, obtaining the decomposition
of the symmetrized monomial La,b,c in terms of the eigenfunctions Ww;m;p is considerably
more complicated than the inverse problem solved in the previous subsection.

We begin by expanding each factor of the monomial ta−1
1 tb−1

2 tc−1
3 in terms of the

variables u, z, z̄ using the relations of (B.16) and the trinomial expansion,

ta−1
1 =

( u√
3

)a−1 a−1∑
αj=0

(a−1)!
α1!α2!(a−1−α1−α2)!

(
1
2z
)α1 (1

2 z̄
)α2

tb−1
2 =

( u√
3

)b−1 b−1∑
βj=0

(b−1)!
β1!β2!(b−1−β1−β2)!

(
1
2ε

2z
)β1 (1

2εz̄
)β2

tc−1
1 =

( u√
3

)c−1 c−1∑
γj=0

(c−1)!
γ1!γ2!(c−1−γ1−γ2)!

(
1
2εz

)γ1 (1
2ε

2z̄
)γ2 (B.28)

where we recall the notation ε = e2πi/3. Taking the product of these three expressions and
adding the five permutations of t1, t2, t3, we obtain the following expression for La,b,c in
terms of the variables u, z, z̄,

La,b,c =
( u√

3

)w−3 a−1∑
αj=0

b−1∑
βj=0

c−1∑
γj=0

(a−1)!
α1!α2!(a−1−α1−α2)!

(b−1)!
β1!β2!(b−1−β1−β2)!

(c−1)!
γ1!γ2!(c−1−γ1−γ2)!

× 3ψ(α1 − α2, β1 − β2, γ1 − γ2)

×
(

1
2

)α1+α2+β1+β2+γ1+γ2
zα1+β1+γ1 z̄α2+β2+γ2 (B.29)
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The function ψ(α, β, γ), which was defined in (B.5), results from summing the various
powers of ε over the six permutations of t1, t2, t3 and using the identity,

ψ(α, β, γ) = 1
3
∣∣εα + εβ + εγ

∣∣2 − 1 (B.30)

The properties of the function ψ(α, β, γ) given at the end of theorem B.1 will be crucial to
the decomposition of (B.29) into the eigenfunctions Ww;m;p.

B.3.1 Extracting the (z3p + z̄3p)-dependence

We now return to the expression (B.29) for La,b,c and introduce two Kronecker delta
functions to parametrize the exponents of z and z̄ as follows,

La,b,c =
( u√

3

)w−3 ∑
`1,`2≥0

`1+`2≤w−3

Ma,b,c(`1, `2)
(1

2
)`1+`2 z`1 z̄`2 (B.31)

whereMa,b,c(`1, `2) was defined in (B.8). The functionMa,b,c(`1, `2) inherits the following
properties from the properties of the function ψ(α, β, γ). First,Ma,b,c(`1, `2) is invariant
under permutations of a, b, c and under swapping `1, `2. Second, it satisfiesMa,b,c(`1, `2) = 0
when `1 6≡ `2 (mod 3) or when `1 + `2 > w − 3, as stated at the end of theorem B.2.

The fact that Ma,b,c(`1, `2) vanishes unless `1 ≡ `2 (mod 3) allows us to change
summation variables from `1 and `2 to the new variables ` and p defined by min (`1,2) + 1 = `

and max (`1,2) + 1 = `+ 3p. Carrying out this change of summation variables, we obtain,

La,b,c =
( u√

3

)w−3 b
w−3

3 c∑
p=0

m+∑
`=1

(1
2
)2`−2+3p+δp,0 (z3p + z̄3p)(zz̄)`−1

×Ma,b,c(`− 1, `+ 3p− 1) (B.32)

where we recall that m+ = b(w − 3p− 1)/2c. Comparing this expression with the for-
mula (B.17) for the eigenfunction Ww;m;p, we see that the factor uw−3 (z3p + z̄3p) matches
precisely and in both cases multiplies a function of the single variable zz̄.

B.3.2 Extracting the zz̄-dependence

To compare the zz̄-dependence of La,b,c and Ww;m;p, we shall instead work with the variable
r2 = 1− zz̄. Binomial expanding the factor (zz̄)`−1 in (B.32), we obtain,

La,b,c =
( u√

3

)w−3 b
w−3

3 c∑
p=0

m+∑
s=1

m+∑
`=s

(`−1
s−1
)(1

2
)2`−2+3p+δp,0 (−)s−1 (z3p + z̄3p) r2s−2

×Ma,b,c(`− 1, 3p+ `− 1) (B.33)

Next, we recall the expression (B.17) for the eigenfunctions Ww;m;p and re-express them in
terms of the variable r,

Ww;m;p(u, z, z̄) =
(√

3u
)w−3(

z3p + z̄3p) (2w−4m−2)!
(w−2m−1)! Rw;m;p(r) (B.34)
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where the function Rw;m;p is given by,

Rw;m;p(r) =
m+−m∑
k=0

(w−3p−2m−1)!
(w−3p−2m−2k−1)!

(2w−4m−2k−3)!!
(2w−4m−3)!!

1
(2k)!! (−)k r2m+2k−2 (B.35)

for m = 1, . . . ,m+. The normalization of Rw;m;p has been chosen so that the k = 0 term is
simply r2m−2 with unit coefficient.

For fixed w and p, we may view the definition of Rw;m;p as a system of linear equations
expressing the m+ number of functions Rw;1;p, . . . ,Rw;m+;p in terms of the m+ number of
monomials 1, r2, . . . , r2m+−2. To express La,b,c in terms of the eigenfunctions Ww;m;p we
need to invert this system and obtain the various powers of r2 as linear combinations of the
functions Rw;1;p, . . . ,Rw;m+;p. This inversion is given by the following lemma.

Lemma B.4. For fixed w and p, the system of equations (B.35) may be inverted as follows,

r2s−2 =
m+−s∑
n=0

(w − 3p− 2s− 1)!
(w − 3p− 2s− 2n− 1)!

(2w − 4s− 4n− 1)!!
(2w − 4s− 2n− 1)!!

1
(2n)!! Rw;s+n;p(r) (B.36)

for s = 1, . . . ,m+ = b(w − 3p− 1)/2c.

We shall prove this lemma after we complete our decomposition of La,b,c. Combin-
ing (B.33) and (B.36) yields,

La,b,c =
bw−3

3 c∑
p=0

m+∑
m=1

m∑
s=1

m+∑
`=s

(w−3p−2s−1)!
(w−3p−2m−1)!

(2w−4m−1)!!
(2w−2s−2m−1)!!

(w−2m−1)!
(2w−4m−2)!

1
(2m−2s)!!

(`−1
s−1
)

(−)s−1

×
(1

3
)w−3(1

2
)3p+2`−2+δp,0Ma,b,c(`− 1, 3p+ `− 1)Ww;m;p (B.37)

To obtain the expansion coefficient da,b,cw;m;p from this expression, we simply multiply by σa,b,c
and extract the coefficient of Ww;m;p. The explicit expression is given in (B.6) of theorem B.2.
To complete the proof of this theorem, it remains only to provide a proof of lemma B.4.

B.3.3 Proof of lemma B.4

Before we analytically prove (B.36), we shall first provide numerical evidence for this
formula. We define ε = w − 3p− 1− 2m+ so that ε = 0 when w − 3p− 1 is even and ε = 1
when w − 3p − 1 is odd. We also define the parameter k = m+ −m and introduce the
following abbreviations,

Rk = Rw;m+−k;p(r) Tk = r2m+−2k−2 (B.38)

In terms of Rk and Tk, the system of linear relations (B.35) which define Rw;m;p becomes,

Rk =
k∑

n=0

Γ(w − 2m+ + 2k − n− 1
2)

Γ(w − 2m+ + 2k − 1
2)

(2k + ε)!
(2k − 2n+ ε)! 22n n! (−)n Tk−n (B.39)

This linear system may be described by a triangular matrix with unit diagonal elements
and may be solved by forward substitution.
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To carry out this process, we parametrize the relations between Rk and Tk, including
all dependence on w and m+, in terms of the following functions,

fk = 1
2w − 4m+ + k

(B.40)

for integer k ≥ 0. In terms of these functions,

Rk = Tk +
k∑

n=1

(2k + ε)!
(2k − 2n+ ε)! 22n n! (−)n f4k−3f4k−5 · · · f4k−2n−1 Tk−n (B.41)

For k 6= `, these functions obey the partial fraction decomposition fkf` = 1
`−k (fk−f`) which

may be used to express each coefficient in (B.41) as a linear combination of fk functions.
At this point we shall invert the system of relations between Rk and Tk for low values

of k using MAPLE. For the case ε = 0, we find the following relations for k ≤ 5,

T0 = R0 (B.42)
T1 = R1 + f1R0

T2 = R2 + 6f5R1 + 3
2(f1 − f3)R0

T3 = R3 + 15f9R2 + 45
2 (f5 − f7)R1 + 15

8 (f1 − 2f3 + f5)R0

T4 = R4 + 28f13R3 + 105(f9 − f11)R2 + 105
2 (f5 − 2f7 + f9)R1

+ 35
16(f1 − 3f3 + 3f5 − f7)R0

T5 = R5 + 45f17R4 + 315(f13 − f15)R3 + 1575
4 (f9 − 2f11 + f13)R2

+ 1575
16 (f5 − 3f7 + 3f9 − f11)R1 + 315

128(f1 − 4f3 + 6f5 − 4f7 + f9)R0

For the case ε = 1, we similarly find,

T0 = R0 (B.43)
T1 = R1 + 3f1R0

T2 = R2 + 10f5R1 + 15
2 (f1 − f3)R0

T3 = R3 + 21f9R2 + 105
2 (f5 − f7)R1 + 105

8 (f1 − 2f3 + f5)R0

T4 = R4 + 36f13R3 + 189(f9 − f11)R2 + 315
2 (f5 − 2f7 + f9)R1

+ 315
16 (f1 − 3f3 + 3f5 − f7)R0

T5 = R5 + 55f17R4 + 495(f13 − f15R3 + 3465
4 (f9 − 2f11 + f13)R2

+ 5775
16 (f5 − 3f7 + 3f9 − f11)R1 + 3465

128 (f1 − 4f3 + 6f5 − 4f7 + f9)R0

Based on these low order expressions, we readily observe the following properties which
have been verified by MAPLE to order k ≤ 22,

• The coefficient of Rk−n in Tk is proportional to the alternating binomial sum,

n−1∑
m=0

(n−1
m

)
(−)m f4k+1−4n+2m = 2n−1 (n− 1)!

n−1∏
m=0

f4k+1−4n+2m (B.44)
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• The coefficient multiplying this alternating binomial sum of fk functions depends on the
two numbers k and n and is given by the binomial

(2k+ε
2n
)
multiplied by the following

function which is independent of k and ε,

(2n)!
22n n! (n− 1)! (B.45)

Combining these ingredients, we obtain the following conjectural formula for Tk,

Tk = Rk +
k∑

n=1

(2k + ε)!
(2k − 2n+ ε)! 2n n!

(
n−1∏
m=0

f4k+1−4n+2m

)
Rk−n (B.46)

which becomes (B.36) with s = m+ − k when written in terms of Rw;m;p and r.
To prove this formula, we shall simply show that the right-hand side equals r2s−2.

Substituting the definition (B.35) of Rw;m;p into the right-hand side of (B.36), we obtain,
m+−s∑
n=0

m+−s−n∑
k=0

(w−3p−2s−1)!
(w−3p−2s−2n−2k−1)!

(2w−4s−4n−2k−3)!!
(2w−4s−2n−1)!!

(2w−4s−4n−1)
(2n)!!(2k)!! (−)k r2s+2n+2k−2 (B.47)

We change summation variables from k to N = n+ k and interchange the order of the two
finite sums to find,

m+−s∑
N=0

(w−3p−2s−1)!
(w−3p−2s−2N−1)! (−)N r2s+2N−2

N∑
n=0

(2w−4s−2n−2N−3)!!
(2w−4s−2n−1)!!

(2w−4s−4n−1)
(2n)!!(2N−2n)!! (−)n (B.48)

The N = 0 term of this sum is just r2s−2. For N ≥ 1, the sum over n may be written as a
difference of two hypergeometric functions by writing the factorials and double factorials in
terms of gamma functions. After some careful algebra, we find,

N∑
n=0

(2w−4s−2n−2N−3)!!
(2w−4s−2n−1)!!

(2w−4s−4n−1)
(2n)!!(2N−2n)!! (−)n (B.49)

=
N∑
n=0

(2w−4s−2n−2N−3)!!
(2w−4s−2n−3)!!

1
(2n)!!(2N−2n)!! (−)n +

N−1∑
n=0

(2w−4s−2n−2N−5)!!
(2w−4s−2n−3)!!

1
(2n)!!(2N−2−2n)!! (−)n

= (−1
4)N Γ(1/2−w+2s+1)

N ! Γ(1/2−w+2s+N+1) 2F1(−N, 1/2− w + 2s+ 1; 1/2− w + 2s+N + 1; 1)

− (−1
4)N Γ(1/2−w+2s+1)

(N−1)! Γ(1/2−w+2s+N+2) 2F1(−N, 1/2− w + 2s+ 1; 1/2− w + 2s+N + 2; 1)

where the hypergeometric function is defined by,

2F1(a, b; c; z) =
∞∑
n=0

Γ(a+ n)
Γ(a)

Γ(b+ n)
Γ(b)

Γ(c)
Γ(c+ n)

zn

n! (B.50)

Using Gauss’s evaluation of the hypergeometric function at unit argument,

2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(b− c) (B.51)

we see that (B.49) vanishes. Thus, the right-hand side of (B.36) equals r2s−2. This completes
our proof or lemma B.4 and thus also our proof of theorem B.2.
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B.4 The d coefficients at different weights

Although (B.6) provides an explicit analytic expression for the d coefficients, it will be
useful to have a formula which relates these coefficients at weight w to those at the lower
weight w − 2. For fixed w and m ≥ 2, this relationship provides an embedding of the space
of eigenfunctions Cw−2;m−1;p into the space of Cw;m;p as discussed in [3].

Lemma B.5. The coefficient da,b,cw;m;p with m ≥ 2 may be written as follows,

da,b,cw;m;p = σa,b,c
3 (2m−2)(2w−2m−3)

{
(a−1)(b−1)
σa,b,c+1

d
max(a−1,c),med(a−1,b−1,c),min(b−1,c)
w−2;m−1;p

+ (b−1)(c−1)
σa+1,b,c

da,b−1,c−1
w−2;m−1;p

+ (c−1)(a−1)
σa,b+1,c

d
max(a−1,b),min(a−1,b),c−1
w−2;m−1;p

}
(B.52)

where σa,b,c is defined in (B.7). The min, med, and max functions on the right-hand side
of this expression ensure that the coefficients da

′,b′,c′

w−2;m−1;p have ordered indices a′ ≥ b′ ≥ c′.

We shall prove this lemma using the differential operator P = (∂t1∂t2 + ∂t2∂t3 + ∂t3∂t1).
The action of P on the symmetrized monomial La,b,c is given by,

PLa,b,c = (a− 1)(b− 1)La−1,b−1,c + (b− 1)(c− 1)La,b−1,c−1

+ (c− 1)(a− 1)La−1,b,c−1 (B.53)

To calculate the action of P on Ww;m;p, we first write P in terms of the operators D and L2

using (B.14) and the following relation between the variables t1, t2, t3 and u, z, z̄,

−u2 (1− zz̄) = t21 + t22 + t23 − 2t1t2 − 2t2t3 − 2t3t1 (B.54)

We thus obtain P = (u2 (1− zz̄))−1(D2 + D− L2). Now, Ww;m;p is an eigenfunction with
eigenvalue (2m − 2)(2w − 2m − 3) under the action of (D2 + D − L2). The other factor
in P produces the following action,

(u2 (1− zz̄))−1 Ww;m;p = 3Ww−2;m−1;p (B.55)

which follows directly from the definition (B.17) of Ww;m;p. Thus,

PWw;m;p = 3 (2m− 2)(2w − 2m− 3)Ww−2;m−1;p (B.56)

We now act with P on the expansion (B.20) of La,b,c in terms the eigenfunctions Ww;m;p
with coefficients da,b,cw;m;p. After some straightforward rearrangements we find (B.52).

B.5 Proof of theorem B.3: the h coefficients

We shall now consider the h coefficients which multiply the inhomogeneous terms in the
Laplace equation for Cw;m;p. These coefficients are written in terms of the d coefficients in
theorem B.3.

To begin our proof this theorem, we recall the expansion (B.1) of the eigenfunction Cw;m;p
in terms of the functions Ca,b,c with ordered indices a ≥ b ≥ c ≥ 1. We shall use the
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Laplace equation (2.42) for Ca,b,c and the Laplace equation (2.44) for Cw;m;p to isolate the
inhomogeneous terms, i.e. the Eisenstein series, which arise from the functions Ca,b,c with
any index a, b, c = 0,−1. The functions Cw−`,`,0 and Cw−`+1,`,−1 are written in terms of
Eisenstein series in (2.43). Since the action of ∆ lowers an index by at most two, only the
functions Ca,b,c with c = 1, 2 in the expansion (B.1) will contribute inhomogeneous terms.

Using these results, we may collect together all the Eisenstein series E∗w and the double
products E∗w−`E∗` with 2 ≤ ` ≤ bw/2c which result from the action of ∆ on ∑a,b,c dCa,b,c.
The coefficient of E∗w is equal to h(0), and the coefficients of the double products are equal
to h(`). Some careful algebra then yields (B.9) and (B.10) of theorem B.3. Since the d

coefficients are rational, each h ∈ Q manifestly.
We shall now combine (B.9), which writes the h(`) coefficients in terms of the d

coefficients, and (B.52), which relates the d coefficients at different weights, to find a relation
between the h(`) coefficients at weights w and w − 2. After some tedious algebra, we find,

h(`)
w;m;p = Θ(`− 3) 1

3 (2m−2)(2w−2m−3) h
(`−1)
w−2;m−1;p (B.57)

for m ≥ 2, where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. This
expression may then be iterated m− 1 times to yield,

h(`)
w;m;p = Θ(`−m− 1)

(
1
3

)m−1 (2w−4m−1)!!
(2m−2)!! (2w−2m−3)!! h

(`−m+1)
w−2(m−1);1;p (B.58)

In other words, the coefficient h(`)
w;m;p is proportional to h

(`−m+1)
w−2(m−1);1;p for m+ 1 ≤ ` ≤ bw/2c

and vanishes for 2 ≤ ` ≤ m. This completes our proof of theorem B.3.

C The Laurent polynomials of Ca,b,c, Cw;m;p, and vk,2

In this appendix, we shall discuss the Laurent polynomials of the infinite families of two-loop
modular graph functions Ca,b,c, Cw;m;p, and vk,2.

C.1 The Laurent polynomial of Ca,b,c
The two-loop modular graph function Ca,b,c was defined in (2.41). The Laurent polynomial
of Ca,b,c was computed in [25]. Near the cusp, Ca,b,c has the following asymptotic expansion,

Ca,b,c = c
(w)
a,b,c τ

w
2 +

w−1∑
`=1

c
(w−2`−1)
a,b,c τw−2`−1

2 + c
(2−w)
a,b,c τ2−w

2 +O(e−2πτ2) (C.1)

The Laurent coefficients each have transcendental weight w = a+ b+ c and are given by,8

c
(w)
a,b,c = (−4π)w

max(b,c)∑
k=0

B2k
(2k)!

B2w−2k
(2w − 2k)!

[(2b+2c−2k−1
2b−1

)
+
(2b+2c−2k−1

2c−1
)]

c
(w−2`−1)
a,b,c = (4π)w−2`−1 q

(w−2`−1)
a,b,c ζ(2`+ 1)

c
(2−w)
a,b,c = (4π)2−w

w−3∑
k=1

λa,b,c(k) ζ(2k + 1) ζ(2w − 2k − 3) (C.2)

8The expression for c(2−w)
a,b,c was obtained in [25] assuming the validity of a conjectured identity between

rational numbers which was numerically verified to high order in MAPLE. Our expression for c(2−w)
a,b,c corrects

a factor of 2 error in (1.26), an error in the upper limit of the finite sum in (1.26), and a minus sign error in
(1.28) of the second version of [25].
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where q
(w−2`−1)
a,b,c and λa,b,c(k) are rational numbers defined as follows,

q
(w−2`−1)
a,b,c = 2B2w−2`−2

(2w − 2`− 2)!

a−1∑
α=0

a−1−α∑
β=0

(−)β+c+1 Θ
(
c+

⌊
b+β

2

⌋
− w + `+ 1

)
×
(2a−2−α−β

a−1
)(b+α−1

b−1
)(b+β−1

b−1
)(2`−2a+α+β+1

b+α−1
)

+ 5 permutations of a, b, c

λa,b,c(k) = −Z0(a, b, c) + 2Zk(a, b, c) Θ(a− k − 1)

−
a−1∑
α=1

2α−1∑
β=0

Zα(a, b, c) Eβ(0)
( 2k
2α−β

)(2w−2α+β−4
β

)
+ 5 permutations of a, b, c (C.3)

The step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. Here En(x) are the Euler
polynomials (not to be confused with the Eisenstein series Es) which are defined by the
following generating function,

2 ext
ex + 1 =

∞∑
n=1

En(t)x
n

n! (C.4)

Finally, the functions Zα(a, b, c) are integers defined by,

Zα(a, b, c) =
∑min(a,2α+1)

k=max(1,2α+2−a)

(a+c−k−1
c−1

)(a+c−2α+k−3
c−1

)( 2α
k−1
)(2w−2α−4

w−k−1
)

(C.5)

We will not use these expressions in this paper, but we have included them for completeness.
We note that these Laurent coefficients have a particular transcendental structure. The

leading coefficient is a rational multiple of πw. The coefficient of τw−2`−1
2 for 1 ≤ ` ≤ w − 1

is a rational multiple of πw−2`−1ζ(2`+ 1). The coefficient of τ2−w
2 is equal to π2−w times a

sum of double products of odd zeta-values with transcendental weight 2w − 2.

C.2 The Laurent polynomial of Cw;m;p

The two-loop modular graph functions Cw;m;p were introduced in section 2.5. Because
the functions Cw;m;p are rational linear combinations of the functions Ca,b,c, their Laurent
polynomials must have the same transcendental structure. However, for fixed m, several
of the Laurent coefficients c

(`)
w;m;p may vanish while the corresponding c

(`)
a,b,c are generally

non-zero. Moreover, the Laurent coefficients of Cw;m;p may be written in terms of the
rational coefficients h which appear in the inhomogeneous Laplace equation (2.44) for
Cw;m;p. Explicit expressions for these coefficients are given in appendix B.

Theorem C.1. Near the cusp, Cw;m;p has the following asymptotic expansion,

Cw;m;p = c(w)
w;m;p τ

w
2 +

w−m−1∑
k=m

c(w−2k−1)
w;m;p τw−2k−1

2

+ c(2−w)
w;m;p τ

2−w
2 + c(1−w)

w;m;p τ
1−w
2 +O(e−2πτ2) (C.6)
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The Laurent coefficients each have transcendental weight w and are given by,

c(w)
w;m;p = 1

(2m)(2w − 2m− 1)
(
h(0)
w;m;p ζ

∗(2w) +
bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w − 2`) ζ∗(2`)
)

c(w−2k−1)
w;m;p = − (1 + δ2k,w−2) h

(min(k+1,w−k−1))
w;m;p

(2k − 2m+ 1)(2w − 2k − 2m− 2) ζ
∗(2w − 2k − 2) ζ∗(2k + 1)

c(1−w+2m)
w;m;p = − ζ∗(2m) ζ∗(2w − 2m− 1)

(2w − 4m− 1) ζ∗(2w − 4m)

bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w − 2`− 2m) ζ∗(2`− 2m)

c(2−w)
w;m;p = 1

(2m− 1)(2w − 2m− 2)

bw/2c∑
`=m+1

h(`)
w;m;p ζ

∗(2w − 2`− 1) ζ∗(2`− 1)

c(1−w)
w;m;p = 1

(2m)(2w − 2m− 1) h
(0)
w;m;p ζ

∗(2w − 1) (C.7)

In the second line, the integer k runs over the range m ≤ k ≤ w −m− 2.

The form of the Laurent polynomial in (C.6) follows from the asymptotic expansion
of the function Ca,b,c in (C.1) and from the relations (6.15) implied by the inhomogeneous
Laplace equation for Cw;m;p. In fact, these relations determine every Laurent coefficient
except for c(1−w+2m)

w;m;p in terms of starred zeta-values and the coefficients h. The remaining
Laurent coefficient was determined in (6.18) by demanding that the integral of E∗sCw;m;p
overML in (6.10) was finite in the limit s→ w − 2m.

C.3 The Laurent polynomial of vk,2
The two-loop modular graph functions vk,2 were defined in (7.1). The Laurent polynomial
of vk,2 was computed in [27]. Near the cusp, vk,2 has the following asymptotic expansion,

vk,2 = c
(k+1)
k,2 τk+1

2 +
bk/2c∑
`=2

c
(−k+2`)
k,2 τ−k+2`

2 + c
(1−k)
k,2 τ1−k

2 + c
(−k)
k,2 τ−k2 +O(e−2πτ2) (C.8)

The only positive-power term in this Laurent polynomial is proportional to τk+1
2 . We also

note that there is no τ2−k
2 term. The coefficients have transcendental weight k + 1 and are

given as follows,

c
(k+1)
k,2 = 2 (−4π)k+1

bk/2c∑
`=0

B2`
(2`)!

B2k−2`+2
(2k − 2`+ 2)!

(2k−2`−1
k−1

)
c
(−k+2`)
k,2 = 2 (−4π)−k+2` ζ(2k − 2`+ 1) B2`

(2`)!
[
Θ(1− `)

(2k−2`
2−2`

)(2k−2
k−1

)
− 2

(2k−2`−1
k−2`

)]

c
(1−k)
k,2 = 2 (−4π)1−k (2k−2

k−1
) k−2∑
`=1

ζ(2`+ 1) ζ(2k − 2`− 1) (C.9)

where the step function is defined by Θ(x ≥ 0) = 1 and Θ(x < 0) = 0. These Laurent
coefficients have the same transcendental structure as those of Ca,b,c and Cw;m;p.
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D Proof of lemma 8.3

In this appendix, we shall prove lemma 8.3 by explicitly manipulating the Kronecker-
Eisenstein series for Λ[2]

k,1,1,1 and Λ[3]
k,1,1,1 in (8.14).

D.1 The integral of Λ[2]
k,1,1,1

We begin with (8.14) and sum over m2 and n2 using the two delta symbols. We rename m1
to m, define ν = n3 +N , and restrict the sum over m to m > 0. Performing the integral
over τ1 using (3.20) of proposition 3.6, we find,

1
τ2

2

∫ 1

0
dτ1 Λ[2]

k,1,1,1 = 12 τk2
πk+2

∑
m>0

∑
N 6=0

∑
ν 6=N

1
mN2k(N − ν)2(4m2τ2

2 + ν2) (D.1)

To perform the sum over ν, we use the following partial fraction decomposition,
1

(N − ν)2(y2 + ν2) = 1
(N − ν)2(y2 +N2) + 2N

(N − ν)(y2 +N2)2

+ N2 + 2νN − y2

(y2 + ν2)(y2 +N2)2 (D.2)

where y = 2mτ2. The sum over ν may then be performed in terms of the Riemann zeta
function and the series,

1
2π
∑
ν∈Z

y

y2 + ν2 = 1
2 + e−2πy

1− e−2πy (D.3)

which gives the following result,∑
ν 6=N

1
(N − ν)2(y2 + ν2) = 2 ζ(2)

y2 +N2 + 1
(y2 +N2)2 −

4N2

(y2 +N2)3

−
[

2π
y(y2 +N2) −

4πN2

y(y2 +N2)2

] [
1
2 + e−2πy

1− e−2πy

]
(D.4)

At this point we begin to see a distinction between power-behaved and exponential terms.
We shall separate the integral over τ2 along these lines. Restricting the N sum to N > 0,
integrating over τ2, and changing variables, we find,∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[2]

k,1,1,1 = I [2](exp)
k,1,1,1 (L) + I [2](pow)

k,1,1,1 (L) (D.5)

where the two contributions are given by,

I [2](exp)
k,1,1,1 (L) = 48

(2π)k+1

∑
m,N>0

∫ 2mL

0

dxxk−1

mk+2N2k
N2 − x2

(x2 +N2)2
e−2πx

1− e−2πx

I [2](pow)
k,1,1,1 (L) = 48

(2π)k+2

∑
m,N>0

∫ 2mL
N

0

dxxk−1

mk+2Nk+3

×
[

2 ζ(2)N2x

x2 + 1 + x

(x2 + 1)2 −
4x

(x2 + 1)3 −
πN

x2 + 1 + 2πN
(x2 + 1)2

]
(D.6)
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D.2 The integral of Λ[3]
k,1,1,1

We begin with (8.14) and perform partial fraction decomposition in nr on each factor
of |pr|−2 for r = 1, 2, 3 to find,9

Λ[3]
k,1,1,1 = iτk2

8πk+3

∑
N 6=0

∑
mr 6=0
nr∈Z
r=1,2,3

δ(m)δ(n+N)
m1m2m3N2k

( 1
p̄1
− 1
p1

)( 1
p̄2
− 1
p2

)( 1
p̄3
− 1
p3

)
(D.7)

where m = ∑3
r=1mr and n = ∑3

r=1 nr. The summand is invariant under permutations of
the labels (1, 2, 3). Using this symmetry, we make the following replacement within the
summand, ( 1

p̄1
− 1
p1

)( 1
p̄2
− 1
p2

)( 1
p̄3
− 1
p3

)
→
( 3
p̄1p2p3

− 1
p1p2p3

)
− c.c. (D.8)

where c.c. stands for the complex conjugate of the preceding term. We then use the following
partial fraction decomposition,

1
ABC

= 1
A+B + C

( 1
A

+ 1
B + C

)( 1
B

+ 1
C

)
(D.9)

along with the delta function constraint p1 + p2 + p3 = −N and the remaining permutation
symmetry of the labels (2, 3) to make the following replacement within the summand,

3
p̄1p2p3

− 1
p1p2p3

→ 2
p2

[ 3
p̄1 − p1 −N

( 1
p̄1
− 1
p1 +N

)
+ 1
N

( 1
p1
− 1
p1 +N

)]
(D.10)

The term with a factor of 1/N vanishes in the full sum.
We now return to Λ[3]

k,1,1,1 with the above replacements, sum over m3 and n3 using the
delta symbols, and restrict the sum over N to N > 0. The sums over n1 and n2 factorize
and may each be expressed in terms of the following function,

B(τ,m) = 1
2π

∑
n∈Z

(
i

mτ + n
− i

mτ̄ + n

)
(D.11)

which satisfies B(τ,m) = ε(m)B(τ, |m|) where ε(m) = ±1 is equal to the sign of m. After
some algebra, we find,

Λ[3]
k,1,1,1 = 12 τk+1

2
πk+1

∑
N>0

∑
m1,m2 6=0
m1+m2 6=0

ε(m1)ε(m1)B(τ, |m1|)B(τ, |m2|)
m2(m1 +m2)N2k(4m2

1τ
2
2 +N2) (D.12)

Only the B functions depend on τ1. Their Fourier expansion is given by,

B(τ, |m|) = 1 +
∑
p>0

(
q|m| p + q̄|m| p

)
(D.13)

9Recall that pr = mrτ + nr.
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with q = e2πiτ . The constant Fourier mode of their product is thus,∫ 1

0
dτ1 B(τ, |m1|)B(τ, |m2|) = 1 +

∑
p1,p2>0

(
q|m1| p1 q̄|m2| p2 + c.c.

) ∣∣
|m1| p1=|m2| p2

= 1 + 2
∑
p>0

(qq̄){|m1|,|m2|} p

= 1 + 2 e−4π{|m1|,|m2|}τ2

1− e−4π{|m1|,|m2|}τ2
(D.14)

where we have defined the arithmetic operation {m1,m2} = m1m2/ gcd(m1,m2). To go
from the first to the second line, we solved the constraint |m1| p1 = |m2| p2 by,

p1 = |m2| p
gcd

(
|m1|, |m2|

) p2 = |m1| p
gcd

(
|m1|, |m2|

) (D.15)

for positive integers p. Thus, the sums over p1 and p2 in the first line collapse into a single
sum over p > 0. In the final line we again see a split between power-behaved and exponential
terms. We separate the integral over τ2 along these lines and find,∫ L

0

dτ2
τ2

2

∫ 1

0
dτ1 Λ[3]

k,1,1,1 = I [3](exp)
k,1,1,1 (L) + I [3](pow)

k,1,1,1 (L) (D.16)

where the two contributions are given by,

I [3](exp)
k,1,1,1 (L) = 48

(2π)k+1

∑
m1,m2 6=0
m1+m2 6=0

∑
N>0

ε(m1)ε(m2)
m2(m1 +m2)N2k

×
∫ 2L

0

dxxk−1

m2
1x

2 +N2
e−2π{|m1|,|m2|}x

1− e−2π{|m1|,|m2|}x

I [3](pow)
k,1,1,1 (L) = 24

(2π)k+1

∑
m1,m2 6=0
m1+m2 6=0

∑
N>0

ε(m1)ε(m2)
|m1|km2(m1 +m2)Nk+2

∫ 2|m1|L
N

0

dxxk−1

x2 + 1 (D.17)

D.3 The exponential integrals

We shall now combine the two exponential integrals. Symmetrizing the summand of I [3](exp)
k,1,1,1

in m1 and m2 eliminates the factor of 1/(m1 +m2) and allows us to restore the m1 +m2 = 0
contribution to the sum. This contribution precisely equals the expression for I [2](exp)

k,1,1,1
in (D.6). After some algebra, we find,

I [2](exp)
k,1,1,1 (L) + I [3](exp)

k,1,1,1 (L) = 96
(2π)k+1

∑
m1,m2,N>0

1
m̃k−1

1 m̃k−1
2 gcd(m1,m2)k+2N2k−2

×
∫ 2{m1,m2}L

0

dxxk−1

(x2 + m̃2
1N

2)(x2 + m̃2
2N

2)
e−2πx

1− e−2πx (D.18)

where m̃1,2 = m1,2/ gcd(m1,m2) so that the integers m̃1 and m̃2 are coprime.
To proceed, we raise the upper the limit of the integral to infinity which removes

the pesky appearance {m1,m2} and introduces corrections of order O(e−2πL). We then
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parametrize the sums over m1 and m2 by splitting them into the independent sums over
their greatest common divisor and over pairs of coprime integers m̃1, m̃2 > 0. That is,∑

m1,m2>0
=

∑
gcd(m1,m2)>0

∑
m̃1,m̃2>0
coprime

(D.19)

The sum over gcd(m1,m2) yields the Riemann zeta-value ζ(k + 2). The sum over N may
then be carried out by defining the independent variables N1 = N m̃1 and N2 = N m̃2 and
using (D.19) in reverse. In total, we find I [2](exp)

k,1,1,1 + I [3](exp)
k,1,1,1 = I(exp)

k,1,1,1 as in (8.16).

D.4 The power-behaved integrals

We shall now combine the two power-behaved integrals. The summand of I [3](pow)
k,1,1,1 is

invariant under (m1,m2)→ −(m1,m2), so we fix m1 > 0. We then evaluate the sum over
m2 for fixed m1 by decomposing its summand in partial fractions and splitting the sum as,∑

m2 6=0,−m1

ε(m2)
m2(m1 +m2) = 1

m1

∑
m2>0

( 1
m2
− 1
m1 +m2

)
+ 1
m1

∑
m2>0
m2 6=m1

( 1
m2

+ 1
m1 −m2

)

= 2H1(m1)
m1

(D.20)

where H1(m) = ∑m−1
k=1

1
k are finite harmonic sums.

After some straightforward rearrangements, we find I [2](pow)
k,1,1,1 + I [3](pow)

k,1,1,1 = I(pow)
k,1,1,1 as

in (8.16). This completes our proof of lemma 8.3.

E Proof of lemma 8.5

In this appendix, we shall prove lemma 8.5 using contour integral methods and analytic
continuation.

E.1 The function Jk(ε)

For integer k ≥ 2 and ε ∈ C, we define the following function,

Jk(ε) = 4 (−)bk/2c
∑

M,N>0

1
Mk−1Nk−1

∫ ∞
0

dxxε

(x2 +M2)(x2 +N2)
e−2πx

1− e−2πx (E.1)

which converges for Re(ε) > 0 and obeys Jk(k − 1) = J (exp)
k,1,1,1 with J (exp)

k,1,1,1 defined in (8.21).
We shall proceed with ε in the range 1 < Re(ε) < 2. In this range, we may decompose Jk(ε)
into a sum of elementary integrals and perform the infinite sums in terms of convergent zeta
functions. The resulting expression will then admit an analytic continuation to ε = k − 1.

E.2 Splitting Jk(ε)

To begin, we write the exponential factor in the integrand of Jk(ε) in terms of an infinite
sum over positive integers using the following identity,

e−2πx

1− e−2πx = −1
2 + 1

2πx + 1
π

∑
P>0

x

x2 + P 2 (E.2)
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For 1 < Re(ε) < 2, we may interchange the order of the integral over x and the sum over P
in Jk(ε). We then split the unrestricted sums over M , N , and P into sums over distinct
positive integers and write,

Jk(ε) = (−)bk/2c
8∑
`=1
J (`)
k (ε) (E.3)

where the eight contributions J (`)
k (ε) are given by,

J (1)
k (ε) = −2

∑
M>0

1
M2k−2

∫ ∞
0

dxxε

(x2 +M2)2

J (2)
k (ε) = −2

∑
M,N>0

dist

1
Mk−1Nk−1

∫ ∞
0

dxxε

(x2 +M2)(x2 +N2)

J (3)
k (ε) = 2

π

∑
M>0

1
M2k−2

∫ ∞
0

dxxε−1

(x2 +M2)2

J (4)
k (ε) = 2

π

∑
M,N>0

dist

1
Mk−1Nk−1

∫ ∞
0

dxxε−1

(x2 +M2)(x2 +N2)

J (5)
k (ε) = 4

π

∑
M>0

1
M2k−2

∫ ∞
0

dxxε+1

(x2 +M2)3

J (6)
k (ε) = 8

π

∑
M,N>0

dist

1
Mk−1Nk−1

∫ ∞
0

dxxε+1

(x2 +M2)2(x2 +N2)

J (7)
k (ε) = 4

π

∑
M,P>0

dist

1
M2k−2

∫ ∞
0

dxxε+1

(x2 +M2)2(x2 + P 2)

J (8)
k (ε) = 4

π

∑
M,N,P>0

dist

1
Mk−1Nk−1

∫ ∞
0

dxxε+1

(x2 +M2)(x2 +N2)(x2 + P 2) (E.4)

Here “dist” denotes that the summation variables must be distinct. The additional factor
of 2 in J (6)

k (ε) counts the two equivalent contributions of M = P 6= N and M 6= N = P .

E.3 Computing the integrals

The integrals in each contribution converge for 1 < Re(ε) < 2 and may be calculated using
a keyhole contour that begins at the origin, runs up the positive real axis from above, circles
counter-clockwise around the complex plane at infinity, and then runs down the positive
real axis from below.

The eight integrals evaluate to rational expression in the relevant summation variables
multiplied by sec(επ2 ) or csc(επ2 ). After integration, the single sums in J (1)

k (ε), J (3)
k (ε),

and J (5)
k (ε) may be performed in terms of the Riemann zeta function,

cos(επ2 )× J (1)
k (ε) = 1

2(ε− 1)π ζ(2k + 1− ε)

sin(επ2 )× J (3)
k (ε) = −1

2(ε− 2) ζ(2k + 2− ε)

sin(επ2 )× J (5)
k (ε) = −1

4ε(ε− 2) ζ(2k + 2− ε) (E.5)
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The contributions J (2)
k (ε), J (4)

k (ε), and J (6)
k (ε) may be written as,

cos(επ2 )× J (2)
k (ε) =

∑
M,N>0

dist

−2π
Mk−εNk−1(N2 −M2)

sin(επ2 )× J (4)
k (ε) =

∑
M,N>0

dist

2
Mk+1−εNk−1(N2 −M2)

sin(επ2 )× J (6)
k (ε) =

∑
M,N>0

dist

2ε
Mk+1−εNk−1(N2 −M2) (E.6)

The final contributions, J (7)
k (ε) and J (8)

k (ε), may be simplified using the following identities,∑
N>0
N 6=M

1
N2 −M2 = 3

4M2

∑
N>0
N 6=M

1
(N2 −M2)2 = ζ(2)

2M2 −
11

16M4 (E.7)

which may be derived by decomposing the denominator of each summand in partial fractions.
Using these sums we find,

sin(επ2 )× J (7)
k (ε) = ζ(2) ζ(2k − ε) + (3

4ε−
11
8 ) ζ(2k + 2− ε)

+
∑

M,N>0
dist

−2N ε

M2k−2(N2 −M2)2

sin(επ2 )× J (8)
k (ε) =

∑
M,N>0

dist

−3
Mk+1−εNk−1(N2 −M2)

+
∑

M,N>0
dist

4
Mk−1−εNk−1(N2 −M2)2

+
∑

M,N,P>0
dist

−2P ε
Mk−1Nk−1(M2 − P 2)(N2 − P 2) (E.8)

We now reassemble the eight contributions and find,

(−)bk/2c × Jk(ε) = 1
2(ε− 1) sec(επ2 )π ζ(2k + 1− ε)

+ csc(επ2 )
[
− 1

4(ε2 − 3ε+ 3
2) ζ(2k + 2− ε) + ζ(2) ζ(2k − ε)

]
+
∑
M>0

1
Mk+1−ε

[
(2ε− 1) csc(επ2 )− 2πM sec(επ2 )

]
×
∑
N>0
N 6=M

1
Nk−1(N2 −M2)

+ 4 csc(επ2 )
∑
M>0

1
Mk−1−ε

∑
N>0
N 6=M

1
Nk−1(N2 −M2)2

− 2 csc(επ2 )
∑
M>0

1
M−ε


∑
N>0
N 6=M

1
Nk−1(N2 −M2)


2

(E.9)
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The squared sum on the last line arises from the combination of the final terms in the
previous expressions for J (7)

k (ε) and J (8)
k (ε).

E.4 Summing over N

There are two distinct infinite sums over the variable N in (E.9). Both summands may be
decomposed in partial fractions. The sums may then be explicitly evaluated as functions
of the integers M ≥ 1 and k ≥ 2. The result depends on whether k is even or odd. With
some algebra, we find,

∑
N>0
N 6=M

1
Nk−1(N2 −M2) =

1
2(k + 1

2)
Mk+1 −

b(k−1)/2c∑
`=1

ζ(k + 1− 2`)
M2`

−


H1(M + 1)

Mk
k even

0 k odd

∑
N>0
N 6=M

1
Nk−1(N2 −M2)2 =

−1
8(k2 + 3k + 3

2)
Mk+3 +

b(k−1)/2c∑
`=1

` ζ(k + 1− 2`)
M2`+2

+


1
2kH1(M + 1)

Mk+2 +
1
2 H2(M + 1)

Mk+1 k even
1
2 ζ(2)
Mk+1 k odd

(E.10)

where H2(n) = ∑n−1
N=1

1
N2 is a generalized finite harmonic series. It remains to insert these

expressions into (E.9), perform the sums over M in terms of convergent zeta functions, and
then analytically continue the result to ε = k − 1. At this point, we shall discuss the cases
of odd and even k separately.

E.5 Odd k

For odd k ≥ 3, we insert (E.10) into (E.9), perform the sums over M , and find,

Jk(ε) = (−)(k−1)/2 π sec(επ2 )
{
− (k + 1− ε

2) ζ(2k + 1− ε)

+ 2
(k−1)/2∑
`=1

ζ(k + 1− 2`) ζ(k + 2`− ε)
}

+ (−)(k−1)/2 csc(επ2 )
{
− 1

4(2k + 2− ε)(2k + 3− ε) ζ(2k + 2− ε)

+ 3 ζ(2) ζ(2k − ε)

+ 2
(k−1)/2∑
`=1

(k + 2`+ 1− ε) ζ(k + 1− 2`) ζ(k + 1 + 2`− ε)

− 2
(k−1)/2∑
`1,2=1

ζ(k + 1− 2`1) ζ(k + 1− 2`2) ζ(2`1 + 2`2 − ε)
}

(E.11)
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This expression is an analytic function of ε valid for Re(ε) > 0. Near ε = k − 1 with k odd,
the zeta functions are finite, sec(επ2 ) ∼ (−) k−1

2 , and csc(επ2 ) ∼ (−) k+1
2 2

π
1

k−1−ε . Thus, the
terms in brackets which multiply csc(επ2 ) must vanish at ε = k− 1 to cancel the simple pole.
Indeed, we may show that they vanish using the identities obeyed by finite sums of even
zeta-values in (A.4). Hence, Jk(k − 1) for odd k is finite as required and given by (8.22).

In the first line of (8.22) we have used (A.17) to write a finite sum of odd zeta-values
with transcendental weight k + 2 in terms of the double zeta-value ζ(k + 1, 1) for later
convenience. This completes our proof of lemma 8.5 for odd k.

E.6 Even k

For even k ≥ 2, we again insert (E.10) into (E.9). The square of the finite harmonic
sum H1(M + 1) is given by,

H1(M + 1)2 =
M∑

m1,m2=1

1
m1m2

= 1
M2 +

M−1∑
m=1

1
m2 + 2

M

M−1∑
m=1

1
m

+
M−1∑
m1=1

m1−1∑
m2=1

2
m1m2

(E.12)

The second term is equal to the generalized harmonic sum H2(M) and cancels. The last
term yields a triple zeta-value ζ(s, 1, 1) upon summing over M . Performing these sums, we
find the following lengthy expression,

Jk(ε) = (−)k/2 π sec(επ2 )
{
− (k − 1− ε

2) ζ(2k + 1− ε) + 2 ζ(2k − ε, 1)

+ 2
k/2−1∑
`=1

ζ(k + 1− 2`) ζ(k + 2`− ε)
}

+ (−)k/2 csc(επ2 )
{
− 1

4(4k2 − 6k − 4εk + ε2 + 3ε− 2) ζ(2k + 2− ε)

+ ζ(2) ζ(2k − ε) + 2 (2k − 1− ε) ζ(2k + 1− ε, 1)− 4 ζ(2k − ε, 1, 1)

+ 2
k/2−1∑
`=1

(k + 2`− 1− ε) ζ(k + 1− 2`) ζ(k + 1 + 2`− ε)

− 4
k/2−1∑
`=1

ζ(k + 1− 2`) ζ(k + 2`− ε, 1)

− 2
k/2−1∑
`1,2=1

ζ(k + 1− 2`1) ζ(k + 1− 2`2) ζ(2`1 + 2`2 − ε)
}

(E.13)

This is again an analytic function of ε valid for Re(ε) > 0. Near ε = k − 1 with k even,
we have csc(επ2 ) ∼ (−)k/2+1 and sec(επ2 ) ∼ (−)k/2+1 2

π
1

k−1−ε . The zeta functions, however,
are not all finite. The terms in the last line with 2`1 + 2`2 = k have a simple pole since
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ζ(k − ε) ∼ 1
k−1−ε . These poles must combine with the sec(επ2 ) poles to produce a finite

result at ε = k − 1. We must then have,

0 = (k − 1) ζ(k + 2)− 4 ζ(k + 1, 1)− 2
k/2−1∑
`=1

ζ(k + 1− 2`) ζ(2`+ 1) (E.14)

Using the multiple zeta-value identity (A.17), we see that this expression indeed vanishes.
Hence, Jk(k − 1) for even k is finite as required and given by (8.23). This completes our
proof of lemma 8.5 for even k.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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