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1 Introduction

Black hole bound states play an interesting role in black hole physics. A central question is
how to keep a configuration of multiple black holes in equilibrium: the gravitational force
should be balanced by the electromagnetic interaction and the interplay with other matter
fields. Solutions of multicenter black holes in asymptotically flat spacetime were found
first in the context of Einstein-Maxwell theory [1, 2], their causal structure and coordinate
extension being studied in [3]. Subsequently, asymptotically flat multicenter solutions have
been found as exact solutions of the N = 2 (ungauged) supergravity equations of motion [4,
5], and have gathered widespread attention due to their relation to the phenomenon of wall-
crossing [6, 7] in the context of BPS state counting. While the first examples of multicenter
black holes relied on preserving supersymmetry, it was later discovered that non-BPS
multicenter black holes [8, 9] exist as well. Studies in the probe approximation [10, 11]
showed that these bound states persist also at low, finite non-zero temperature.

Finding black hole bound states in AdS spacetime is more difficult because of the con-
fining effect of the AdS potential.1 There are some indications that bound states exist: for
instance hovering black holes on top of black branes in [14, 15], and black holes in FRLW
spacetimes [16]. Moreover, AdS black Saturns [17] and probe multicenter black holes [18]
were constructed via approximate methods (the blackfold approach and the probe approx-
imation, respectively). These black hole phases in AdS are particularly interesting because
they model properties of strongly coupled matter via holography and allow the computation
of transport coefficients that were previously beyond reach. The relation between glassy,
disordered states of matter and metastable multicenter black holes was first investigated
in [18]. Indeed black hole horizons behave like perfect fluids [19–22] and in [18] it was argued
that they can undergo supercooling, leading to a state that shares the disorder of a liquid
and the rigidity of a solid. Several characteristics, such as qualitative behaviour of the vis-
cosity and the relaxation dynamics of a cloud of metastable black hole probes, were checked,
finding agreement with the glassy phase. Given these analogies, a proposal to model “holo-
graphic” glass by means of multicenter black holes in AdS space was put forward.

The analysis in [18] was performed in a model of four-dimensional Fayet-Iliopoulos
gauged supergravity with AdS vacuum. Embedding this setup in string theory requires
taking into account additional features. For instance, in AdS4 ×M6 type IIA compactifi-
cations a linear combination of the U(1)s obtained by reducing the RR potentials is in fact
Higgsed, see for instance the discussion in [23] for the CP 3 reduction. The magnetic com-
ponent of a Higgsed U(1) generates a vortex, a magnetic flux tube confined in all but one
spatial direction by the Meissner effect. At the level of string theory, this corresponds to
the fact that wrapped branes carrying D6 and D2-charge will generically come with strings
attached. Moreover, certain models coming from the reduction on S7, include light charged
matter with masses of the order of the AdS scale, which will condense [24–26]. Lastly, in
analogy to their asymptotically flat counterpart, the black hole charges should correspond

1The situation is different in asymptotically de Sitter spacetimes, where exact solutions of multicenter
black holes in four dimensions are known, see [12]. See also [13] for multicenter solutions in Euclidean
signature.
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to wrapped D-branes. The main aim of this paper is to address these points and estab-
lish the presence of multicenter black holes in supergravity models with charged scalars,
obtained by reducing M-theory on Sasaki-Einstein manifolds which have noncontractible
cycles in the internal manifold, which can be wrapped by branes. Such manifolds have non-
trivial Betti numbers, the nth Betti number parameterizing the number of linearly indepen-
dent harmonic n-forms on the internal manifold. The charges corresponding to wrapped
branes are denoted “baryonic”, and “Betti multiplets” are the supermultiplets containing
the (massless) gauge fields arising from the supergravity fluctuations involving the harmonic
forms. The requirement that the probes carry no magnetic charge under the Higgsed U(1)
corresponds to the tadpole cancellation condition, which we will impose in our analysis.

The main result of this paper is that we find stable systems of black hole bound states in
Sasaki-Einstein truncations, working in the probe approximation. We use the background
black hole solutions found in [27] (and generalizations thereof) which were dubbed “black
holes with halos” due to the fact that their horizons are clouded by an “atmosphere” of
vector field condensate. String and M- theory provides many possible objects with different
charges, therefore we analyze possible instabilities of this solution towards nucleation of
various kinds of M2 branes and, upon reduction to IIA, D-branes. We compute the probe
brane potential using the DBI action: a global minimum of the probe potential outside
the horizon signals an instability towards brane nucleation (this instability was also called
Fermi seasickness in [28]). Our results indicate that close to extremality, for a specific
range of charges, a black hole/brane can be unstable towards brane nucleation. Indeed,
the black hole system can lower its energy by emitting probe branes, which will then sit
at a minimum of the potential outside the horizon (this happens for wrapped branes) or
keep moving out to the boundary of AdS (for spacetime filling branes2). In [29], black
brane solutions of the same model (albeit with a smaller set of charges turned on) were
found to be stable towards emission of spacetime filling M2 branes and M2 branes wrapped
around noncontractible cycles of the internal Sasaki-Einstein manifold. Here we consider
a larger set of solutions and show that they suffer from various nucleation instabilities.
For instance, low temperature black branes with R-symmetry field turned on can emit
spacetime filling branes (see figure 3). Of particular relevance is the fact that spherical black
holes admit stable wrapped fluxed D6 probe-branes, which are particle-like objects in 4d:
upon backreaction these systems can turn into multicenter black holes in AdS spacetimes.
We show a black hole with halo and probes sitting outside the horizon in figure 1.

The paper is structured in this way: in section 2 we review the details of the 4d
supergravity model obtained upon reduction of M-theory on the homogeneous 7d Sasaki-
Einstein manifolds Q111 and M111, and we provide uplift formulae based on [30]. In
section 3 we describe the black hole solutions that we use as background: these include the
ones found in [27] for M111 and their generalizations to the Q111 reduction and to different
horizon topologies. We discuss the numerical shooting technique used to find solutions.
Section 4 is devoted to the analysis of the instabilities of planar horizons towards emitting

2We use the common nomenclature “spacetime filling” M2 branes for M2 branes that are extended in
t, x, y, hence three out of the four spacetime dimensions.

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
9

Figure 1. Example of black hole with halo and probe black holes (we ignore the mutual interaction
between probes) with different charges. The red region corresponds to the peak of the massive
vector field: the three probes lying further away from the horizon are stable, while the other two
are metastable. More details in section 5.2.2.

spacetime filling branes. Section 5 instead deals with the analysis of the probe stability for
wrapped branes (M2 and fluxed D6). We comment on the concept of caged wall crossing
and in particular on the supersymmetric limit of the solutions. Finally, several appendices
elucidate parts of our computations.

2 Four-dimensional supergravity setup and uplift in 11d

We will work with models that arise from a left-invariant consistent truncation of 11D
supergravity on 7D coset manifolds of the form M7 = G/H admitting a G-invariant SU(3)-
structure. There are a few choices of possible 7d Sasaki-Einstein manifolds that support a
N = 2 supersymmetric AdS4 vacuum, they are for instance listed in table 1 of [30] whose
conventions we mostly follow. We choose to work with the truncations on the manifolds
Q111 andM111, which give four-dimensional models of Abelian N = 2 gauged supergravity.
The former, Q111, is the coset manifold G/H where G = SU(2)3 and H = U(1)2. There are
two nontrivial two-cycles, and the four-dimensional theory contains two so-called “Betti
vector multiplets” in its spectrum. The truncation on M111 used in [27] can be obtained
from the reduction on Q111 upon setting to zero one of the two Betti multiplets, by suitably
identifying two gauge fields A3 = A1 and two scalar fields t3 = t1. For the moment, we work
in full generality with the Q111 truncation. The superconformal field theory dual to the
Q111 model is the superconformal Chern-Simons flavored quiver of [31, 32] (see also [33]).
We proceed below by describing the content of the four-dimensional theory in the language
of N = 2 supergravity.

2.1 4d supergravity from M-theory on SE7: M111 and Q111

The field content of the four-dimensional theory consists of the gravity multiplet, the
universal hypermultiplet and three vector multiplets (nv = 3). The conventions are spelled
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out in [27] and we refer to that paper for details. The Lagrangian has the form

S =
∫ 1

2R∗1+gīDti∧∗Dt̄̄+huvDqu∧∗Dqv+ 1
4 ImNΛΣF

Λ∧∗FΣ + 1
4ReNΛΣF

Λ∧FΣ−V ,
(2.1)

where ti = τ i + ibi, (i = 1, 2, 3) are the three complex vectormultiplet scalars and qu, (u =
1, . . . 4) are real fields in the hypermultiplet. The scalars in the vector multiplets parame-
terize the special Kähler manifold

(
SU(1|1)

U(1)

)3
with metric

gī = ∂i∂̄K(t, t̄) , and K = − log[i(XΛ
FΛ −XΛFΛ)] , (2.2)

where FΛ = ∂ΛF and (XΛ, FΛ) are the covariantly holomorphic sections. We will (mostly)
work in the symplectic frame where all gaugings are purely electric, which is the theory
obtained after dualization of the massive tensor multiplet in a massive vector multiplet
(full details in [34]). The Q111 model is characterized by the corresponding holomorphic
prepotential

F (X) = −2i
√
X0X1X2X3. (2.3)

TheM111 model is simply obtained by identifying two of the scalars and vectors of the Q111

theory. Our choice of sections is such that XΛ = {X0, X1, X2, X3} = {1, t2t3, t1t3, t1t2}
and FΛ = {it1t2t3, it1, it2, it3} and the couplings between scalars and vector fields are
encoded in the period matrix NΛΣ, obtained via the special geometry relation

NΛΣ = FΛΣ + 2i ImFΛ∆ImFΣΓX
∆XΓ

ImF∆ΓX∆XΓ , (2.4)

with F∆Σ = ∂2F
∂X∆∂XΣ .

The scalars in the universal hypermultiplet parameterize the quaternionic Kähler mani-
fold SU(2,1)

SU(2)×U(1) : if we denote the scalars by q
u = (φ, a, ξ, ξ̄), the metric huv on the manifold is

huvdqudqv = dφ2 + e4φ

4

[
da− i

4(ξdξ̄ − ξ̄dξ)
]2

+ e2φ

4 dξdξ̄ . (2.5)

The truncations under consideration are such that we gauge a U(1) isometry of the hy-
permultiplet manifold, and such gauging is specified by the Killing prepotentials P xΛ , from
which we can read off the quaternionic Killing vectors kuΛ [35–37]

Ωx
vwk

w
Λ = −∇vP xΛ , Ωx

vw = dωx + 1
2ε

xyzωy ∧ ωz . (2.6)

The covariant derivatives for the vector multiplets and the hyperscalars are given by

Dti = dti + kiΛA
Λ = dti , Dqu = dqu + kuΛA

Λ , (2.7)

where we took into account that, given our gauging, only hyperscalars are charged, i.e.
kiΛ = 0. The explicit form of the prepotentials and Killing vectors of the gauging can be
read off from [30, 34] and have the form

P0 = 6Pa − 4Pξ , P1 = 2Pa , P2 = 2Pa , P3 = 2Pa , (2.8)
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where

Pξ =

 i
2(1− ξξ̄e−2φ) −iξe−φ

−iξ̄e−φ − i
2(1− ξξ̄e−2φ)

 , Pa =

 ie2φ

4 0
0 − ie2φ

4

 (2.9)

and PΛ = P xΛ

(
− i

2σ
x
)
. The quaternionic Killing vectors are

k0 = −6∂a + 4i(ξ∂ξ − ξ̄∂ξ̄) , k1 = −2∂a , k2 = −2∂a k3 = −2∂a. (2.10)

With this data at our disposal, we compute the scalar potential:

V (t, t̄, q) = (gīkiΛk
̄
Σ + 4huvkuΛkvΣ)L̄ΛLΣ + (fΛ

i f
Σ
̄ g

ī − 3L̄ΛLΣ)P xΣP xΛ , (2.11)

where
(LΛ,MΛ) = e−K/2(XΛ, FΛ) ≡ V , fΛ

i =
(
∂i + 1

2∂iK
)
LΛ . (2.12)

The couplings introduced by the gauging in the truncation we just described are such
that one of the vectors is Higgsed. The spectrum for the truncation Q111 can be read off
from table 7 of [30] and consists of:

• the gravity multiplet, which contains the metric and the graviphoton;

• a massive vector multiplet with the following content: a massive vector with m2l2AdS =
12 (corresponding holographically to an operator with ∆ = 5), which has eaten
the axion a, and five scalars of masses m2l2AdS = (18, 10, 10, 10, 4) corresponding to
∆ = (6, 5, 5, 5, 4);

• two Betti vector multiplets: each of them contains a massless vector and a complex
scalar of mass m2l2AdS = −2 > mBF , i.e. with operators with dimensions either
∆ = (2, 1) depending on the choice of boundary conditions.

The truncation on the manifold M111 instead has only one Betti vector, a massive vector
multiplet and the gravity one. In section 3.1 we will see exactly which identification among
the fields is required to switch off the additional Betti vector.

2.2 11-dimensional uplift formulae

We report here the relevant details of the eleven dimensional setup from which the four-
dimensional theory is obtained [30]. The 11d metric reads

ds2
11 = e2VK−1ds2

4 + e−V ds2(B6) + e2V (θ +A0)2 , (2.13)

where A0 is one of the four gauge fields present in the 4d Lagrangian (corresponding to
the R-symmetry field), ds2

4 is the line element of the 4d space (where the black hole lives),
and where K and V are

e2V =
(
σ2τ1τ2τ3

)2/3
, K = 1

8e
−K = τ1τ2τ3 , (2.14)

where we have defined σ = eφ.
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The field strength of the 11d 3-form C3 is

F4 = dC3 = H4 + dB ∧ (θ +A0) +H i
2 ∧ ωi + (bIQAI αA − bIQI,AβA) ∧ (θ +A0)

+Dbi ∧ ωi ∧ (θ +A0) +DξA ∧ αA −Dξ̃A ∧ βA + χiω̃
i , (2.15)

where bi are the axion fields, the vector bI being bI = (1, bi), αA and βA are 2 three-forms
on B6. For the solutions we will be interested in, we have that ξA = 0 = ξ̃A: these are part
of the hyperscalars that are set to zero. Moreover, for the specific SE7 manifolds under
consideration we have QA0 = Q0,A = 0 (see bottom of page 26 of [30]). In addition, we
anticipate that in all the examples used as background for the probe analysis, which are
either purely electric or purely magnetic, the axions will be consistently set to zero and.
The other quantities appearing in (2.15) are

χi = ei +Kijkmjbk +QTi Cξ (2.16)

where in our case eI = (e0, ei) = (e0, 0, 0, 0). The four form H4 is given by

H4 = K−1σ4
(
bIEI + 1

2Kijkm
ibjbk

)
?4 1 (2.17)

which, for our purposes, will boil down to H4 = 6K−1σ4 ?4 1 and

Dbi = dbi −A0bjqj
i +Ajqj

i . (2.18)

The quantities qj i are related to non-Abelian gaugings and in our case are set to zero. In
addition, we have

H i
2 = −dAi + 2B + bidA0 (2.19)

and the two form B will be dualized into a scalar a according to

− σ−4 ?4 dB = da−AI
(
eI + 1

2Q
T
I Cξ

)
− ÃImI , (2.20)

which, in our case, will boil down to the term −σ4 ?4 dB being proportional to the massive
vector.

In what follows we specialize to the manifold Q111. Here we give more specific data of
the manifold. First of all, comparison with [29] where ψ is the coordinate of the fiber, tells
us that

θ = dψ + 1
4 (cos θ1dφ1 + cos θ2dφ2 + cos θ3dφ3) , (2.21)

or alternatively
dθ = 2(ω1 + ω2 + ω3) , (2.22)

with
ω1 = 1

8e
12 , ω1 = 1

8e
34 , ω1 = 1

8e
56 , (2.23)

where

e1 = dθ1 e2 = sin θ1dφ1 (2.24)
e3 = dθ2 e4 = sin θ2dφ2 (2.25)
e5 = dθ3 e6 = sin θ3dφ3 (2.26)
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The manifold B6 is specified by

ds2(B6) = τ1ds
2
V1 + τ2ds

2
V2 + τ3ds

2
V3 , (2.27)

and

ds2
V1 = 1

8
(
dθ1 +sin2 θ1dφ

2
1

)
, ds2

V2 = 1
8
(
dθ2 +sin2 θ2dφ

2
2

)
, ds2

V3 = 1
8
(
dθ2

3 +sin2 θ3dφ
2
3

)
.

(2.28)
Before wrapping up this section, let us mention that the symplectic prepotential obtained
upon reduction from 11d is the so-called “STU” one, namely

FSTU = X1X2X3

X0 . (2.29)

As done in [38], we will work in the rotated symplectic frame which for simplicity we call
“magnetic STU” (mSTU), already introduced in section 2.1

FmSTU = −2i
√
X0X1X2X3 , (2.30)

where all gaugings are electric. As explained in [34], this allows us to avoid working with
tensor multiplets which are instead present in the STU frame. Notice that the charges in
the two frames are related via the symplectic rotation (see for instance [39])

S =


1 0 0 0
0 0 0 −13×3

0 0 1 0
0 13×3 0 0

 , VmSTU = S VSTU . (2.31)

Indices Λ,Σ = 0, 1, 2, 3 are used when working in the mSTU frame, meanwhile I, J =
0, 1, 2, 3 are used when we work in the STU frame (the latter is used here and in ap-
pendix A).

3 Recap: AdS4 black holes with massive vector halo

In this section we recapitulate the main features of the static black hole solutions that
will be used as the background for the probe analysis. We resort to a numerical shooting
technique to find solutions of the full system of Einstein-Maxwell-scalar equations of mo-
tion. Some more details of this procedure can be found in [27] where it was used to find
spherical solutions of the M111 model. We trivially extend here these technique in order to
find solutions with one additional vector multiplet (arising as truncation on Q111) and with
planar and hyperbolic horizons. We explain the shooting technique below. The equations
of motion can be straightforwardly computed from the Lagrangian in eq. (2.1), and we do
not report them here (those for the M111 model can be found in appendix A of [27]).

– 8 –
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3.1 Consistent truncation

In the model we have described in the previous section it is easy to see that the complex
hyperscalar ξ can be consistently set to zero, and the field a is the Stueckelberg field which
can consistently be gauged away. As explained in [27], in our quest for black hole solutions
we will adopt these simplifications, therefore the quaternionic Killing prepotentials simplify
considerably and their nonvanishing components are

P 3
Λ = (4− 3e2φ,−e2φ,−e2φ,−e2φ) , (3.1)

so that the Killing vectors are
kaΛ = −(6, 2, 2, 2) . (3.2)

For simplicity we have assumed a specific value for the Freund-Rubin parameter e0 = 6,
which leads to the fixed value of AdS radius lAdS = 1

2
( e0

6
)3/4 = 1/2 [38].

In total, we have the following matter content: three massless vector fields, a massive
one, and seven scalars of masses m2l2AdS = (18, 10, 4,−2,−2,−2,−2) which correspond to
dual operators of dimensions ∆ = (6, 5, 4, (2, 1), (2, 1), (2, 1), (2, 1)) where (2, 1) indicates
the two normalizable modes for a scalar with mass m2l2AdS = −2.
Redefining the hypermultiplet field φ as φ = log σ, the total action (2.1) resulting from the
specified gauging is of the form

S =
∫
d4x
√
−g

(1
2R− V

)
+ SV + SH , (3.3)

where the scalar potential is, using (2.11),

V = −8σ2 1
τ1

+ σ4

τ1τ2τ3

(1
3(b1b2 + b1b3 + b2b3 + 3)2 + (b1 + b2)2τ2

3 + τ2
1 τ

2
2

)
+(cyclic) . (3.4)

For the following values of the scalar fields

τ1 = τ2 = τ3 = σ = 1 , b1 = b2 = b3 = 0 , (3.5)

the potential is extremized leading to an AdS vacuum with Vextr = −12. The vector
multiplet Lagrangian reads

SV = 1
4

∫
d4x
√
−g

[
−

3∑
i=1

(∇(log τi))2 −
3∑
i=1

(∇bi)2

τ2
i

]
+

+ 1
4

∫ (
ImNΛΣF

Λ ∧ ∗FΣ + ReNΛΣF
Λ ∧ FΣ

)
, (3.6)

withNΛΣ given in (2.4) (its explicit form for the models of interest is spelled out in appendix
A of [27]). Finally, the action for the hypermultiplet sector is

SH = −1
2

∫
d4x
√
−g

[
2
(
∇ log σ

)2 + 1
2σ

4(∇a− (6A0 + 2A1 + 2A2 + 2A3)
)2]

, (3.7)
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where the scalar field a is the Stueckelberg field responsible for the Higgsing of the linear
combination of vector fields 6A0 + 2A1 + 2A2 + 2A3. Lastly, let us express the vectors AΛ

as linear combination of the massless eigenstates A1, A2, A3 and the massive one B:

A0 = 1
2A1 +

√
3

2 B ,

A1 = −1
2A1 +

√
3

6 B −
1√
6
A2 −A3 ,

A2 = −1
2A1 +

√
3

6 B + 2√
6
A2

A3 = −1
2A1 +

√
3

6 B −
1√
6
A2 +A3 . (3.8)

This action reduces to the one used in [27] if we identify two of the scalars and gauge
fields, t3 = t1 and A3 = A1: this corresponds to switching off the Betti vector multiplet
A3. If instead we set t1 = t2 = t3 and A1 = A2 = A3 we recover the action spelled out
in [34], where the two Betti vectors A2 and A3 are set to zero. In this way we obtain the
universal SE7 reduction of [34], which coincides with the truncation on S7 = SU(4)/SU(3)
that retains the SU(4) left-invariant modes.

3.2 Ansatz for static black holes

We will construct numerical solutions that correspond to static black holes of the form

ds2 = −e−β(r)h(r) dt2 + dr2

h(r) + r2 dΩ2
2 , dΩ2

2 =


dθ2 + sin2 θdφ2 κ = 1
dx2 + dy2 κ = 0

dθ2 + sinh2 θdφ2 κ = −1
(3.9)

which allows for asymptotically locally AdS spacetimes. We consider horizons with spher-
ical (κ = 1), planar (κ = 0), and hyperbolic (κ = −1) horizons. In the latter two cases, we
can obtain compact horizons by appropriately taking a quotient (e.g. Riemann surfaces of
higher genus can be obtained by taking a quotient of H2 by a suitable subgroup).

The seven real scalar fields have only radial dependence:

σ = σ(r) , τi = τi(r) , bi = bi(r) , i = 1, 2, 3 . (3.10)

The vectors are parameterized in this way:

Ai = ξi(r)dt+ P idΩ, B = ζ(r)dt+ PmdΩ (3.11)

where dΩ = cos θdφ for κ = 1, dΩ = cosh θdφ for κ = −1, and dΩ = 1
2(xdy − ydx)

for κ = 0. As anticipated in the previous section, Ai are associated to actual conserved
electromagnetic charges, and B is instead the massive vector.

The electromagnetic charges are defined as the integral of the field strength flux Fµν
and its dual Gµν through the S2 at spatial infinity:

Qi = 1
4π

∫
S2

∞

GAi , Gµν,Λ = 2 ∂L
∂Fµν,Λ

, (3.12)
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where we have defined the dual field strengths, and

P i = 1
4π

∫
S2

∞

FAi . (3.13)

In the case of non-compact horizons, one can analogously define the charge densities as
the components of the field strength and its dual along the spatial section of the conformal
boundary.

The equations of motion for the vectors ξi can be integrated by introducing the con-
served quantities pξi which equal the asymptotic value of the charges Qi. The Maxwell
equation imposes to the condition PΛkuΛ = 0, which translates into the fact that the massive
vector in (3.11) has zero magnetic component:

Pm = 0 . (3.14)

This is due to our ansatz (3.9)–(3.10)–(3.11) which has spherical symmetry. Relaxing the
condition of spherical symmetry would allow for a nontrivial magnetic component, resulting
in vortex lines of the Nielsen-Olsen type [40], which correspond to strings ending on the
D-branes which compose the background solution.

There are other conditions we need to satisfy when the horizon is compact. First of all,
the Dirac quantization conditions need to hold, since in our symplectic frame the fermions
are electrically charged:

PΛkuΛ(q̄) ∈ Z , PΛP 3
Λ(q̄) ∈ Z , (3.15)

where P 3
Λ(q̄) = {1,−1,−1,−1} and kuΛ(q̄) = −{6, 2, 2, 2} are respectively the Quaternionic

Killing prepotentials and Killing vectors computed on the vacuum (3.5). The first Dirac
quantization condition in (3.15) is automatically satisfied since we set the magnetic com-
ponent of the massive field to zero, while the second, via (3.8), translates into

2P 1 ∈ Z . (3.16)

Following the analysis of [41, 42], we notice that the equations of motion and the background
fields have the following scaling symmetry,

t→ γ t , β → β + 2 log γ , ζ → ζ

γ
, ξi →

ξi
γ
, (3.17)

which can be used to choose limr→∞ β = 0 without loss of generality.
The equations of motion for the M111 case are reported in full detail in [27], appendix

B, and for brevity we do not report the full Q111 here. From the analysis of the equations
of motion one can see that, in total, there are 18 degrees of freedom: two from the warp
factors β and h, whose equations of motion are first order. The scalars τi, bi and σ, and the
massive vector mode ζ have second order equations of motion, hence they bring additional
16 degrees of freedom as summarized in table 1.

The radial coordinate of the black hole solutions is denoted by u, whose relation to
the radial Schwarzschild coordinate is3

u = log
(
r

rH

)
, (3.18)

3For planar horizons there is another scaling symmetry which allows to pick rH =1 without loss of
generality, see for instance [41, 42].
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where rH is the location of the event horizon. The horizon is at u = 0 limit, while for
u → ∞ the solution approaches AdS4 spacetime, with radius lAdS = 1/2, which is kept
fixed. Therefore, at the operative level we will work with the following metric:

ds2 = −e2u−β(u) r2
H H(u) dt2 + du2

H(u) + e2u r2
HdΩ2

2 , h(u) = r2
H e

2uH(u) . (3.19)

The Reissner-Nordström “universal” solution is obtained by setting all the scalar fields
to their the vacuum values (3.5) throughout the entire solution. The warp factors are:

β = 0 , H(u) = 4 + κ
e−2u

r2
H

− (16r4
H + 4κr2

H + (P 1)2 +Q2
1) e−3u

4r4
H

+ ((P 1)2 +Q2
1) e−4u

4r4
H

,

(3.20)
with the following additional conditions coming from the scalar equations of motion:

P 2 = 0 , Q2 = 0 . (3.21)

The Reissner-Nordström solution in (3.20) is characterized by the two charges Q1 and P 1,
and the mass M (alternatively, the radius of the horizon rH).

3.2.1 Strategy for numeric simulations

To find the asymptotically AdS black hole and black brane solutions of interest, we will
numerically solve the equations of motion subject to the appropriate boundary conditions.

The equations of motion are given by the Euler-Lagrange equations derived from the
action using the metric ansatz (3.19) as well as (3.10)–(3.11) for the matter fields. This
leads to a system of coupled ODEs that determine the radial profile of the fields. The
solutions depend on a number of integration constants, equal to the number of “degrees of
freedom” one would expect from each of the fields. For example, the scalar fields have a
second order equation of motion, contributing 2 integration constants each. The massless
vector fields only contribute 1 each, the other one being constrained by a conservation law.

The boundary conditions are determined by physical requirements at the boundary of
AdS and at the event horizon. Asymptotically, we restrict the scalar fields to approach
the value that minimizes the potential (3.4), which provides the negative cosmological
constant. The heavy scalar fields and the massive vector have solutions that diverge near
the boundary, the coefficients of which are required to vanish. We will describe the resulting
asymptotic boundary conditions in section 3.2.2. Near the black hole horizon, where H →
0, we require the spacetime to remain regular and the energy-momentum tensor to stay
finite. We will explain the result in section 3.2.3.

These boundary conditions fix some of the integration constants in terms of the others.
For generic values of the free parameters at the boundary, λibdy, the solution to the radial
equations of motion will not satisfy the horizon boundary conditions, and vice versa. To
find solutions which satisfy both sets of boundary conditions simultaneously, we employ
a shooting algorithm where we start from two solutions, one satisfying the asymptotic
boundary conditions and parameterized by λibdy, and another one satisfying the horizon
boundary conditions and parameterized by λiBH. We then tune these parameters using
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field H β σ τ1 τ2 τ3 b1 b2 b3 ζ

horizon parameters 0 1 1 1 1 1 1 1 1 1
boundary parameters 1 0 1 2 1 2 2 1 2 1
matching conditions -1 -1 -2 -2 -2 -2 -2 -2 -2 -2

Q111 × × × × × × × × × ×
Q111
e × × × × × × ×

Q111
m × × × × × ×

M111 × × × × × × × ×

Table 1. Overview of the degrees of freedom for the boundary value problem in each model.
The horizon and boundary parameters are discussed in sections 3.2.3 and 3.2.2, respectively. The
number of matching conditions for each field is given by the order of its equation of motion. This
is usually referred to as the number of (dynamical) degrees of freedom, but they count negatively
towards the number of free parameters of the boundary value problem.

a numerical minimization algorithm so that the fields and their derivatives match at an
arbitrary radius between the boundary and the horizon.

For each field in the Q111 model, the number of free parameters at the black hole
horizon and at the boundary of AdS is given in table 1, as well as the number of conditions
that must be matched in the middle.4 We also indicate the field content that remains in
the M111 model, as well as the models obtained by restricting to purely electric (Q111

e )
or purely magnetic (Q111

m ) black holes. This is a further simplification that we will adopt
later, as it allows us to consistently set the axions bi to zero, in which case the period
matrix NΛΣ is purely imaginary.

To get the final counting of free parameters, the electromagnetic charges and (for
spherical and hyperbolic black holes) the black hole radius need to be taken into account,
as in table 2. This gives the expected dimensionality of the solution space. In principle,
this counting could be off, due to the nonlinearity of the system, but in practice we find
that it is correct.

3.2.2 Asymptotic fall off of the fields

Near the AdS boundary, the solutions have a characteristic fall-off, polynomial (or loga-
rithmic) in terms of the Fefferman-Graham coordinate z = 1/r = e−u/rH . We can obtain
the boundary conditions by solving the equations of motion perturbatively in z. At each
order in zn log(z)m, with n,m > 0 to keep the stress tensor finite, the equations of motion
determine all but a few coefficients in the Taylor expansion of the fields. The coefficients
left undetermined are the parameters in table 1 that distinguish the different solutions.

4The counting at the AdS boundary must be taken with a grain of salt. The behavior near the conformal
boundary is characterized by the fields that diagonalize the mass matrix. These are nontrivial combinations
of the fields in table 1. So it is not quite correct to assign boundary parameters to the fields in this table.
Nevertheless, the total number of free boundary parameters in table 2 is correct for each of these models.
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horizon boundary matching charges radius total
Q111 9 13 -18 6 1 (0) 11 (10)
Q111
e 6 8 -12 3 1 (0) 6 (5)

Q111
m 5 7 -10 3 1 (0) 6 (5)

M111 7 9 -14 4 1 (0) 7 (6)

Table 2. Counting the number of free parameters in each model, using the degrees of freedom in
table 1 and the charges. The radius of the black hole is a free parameter for spherical black holes
and hyperbolic black branes. For planar black branes, there is a symmetry3 that effectively removes
this degree of freedom, reducing the dimensionality of the solution space as indicated in brackets.

As an illustration, consider the scalar fields τi with expansion τi(z) = 1+τ (1)
i z+O(z2).

The first term ensures that the potential (3.5) is minimized asymptotically. The scalar
equations of motion further imply, at linear order in z, that τ (1)

1 + τ
(1)
2 + τ

(1)
3 = 0. We take

this constraint to fix τ (1)
3 in terms of τ (1)

1 and τ (1)
2 . The later remain unconstrained by the

equations of motion at any order.
Performing this process systematically for all fields and equations of motion up to 6th

order in z (indeed, the most massive field has ∆ = 6) we find that in the Q111 compactifi-
cation, all coefficients can be determined in terms of the charges and 13 parameters

(τ (1)
1 , τ

(1)
2 , b

(1)
1 , b

(1)
2 , τ

(2)
1 , τ

(2)
1 , b

(2)
1 , b

(2)
2 , H(3), σ(4), ζ(4), b

(5)
1 , σ(6)) . (3.22)

They parameterize the following asymptotic behavior. The components of the metric are

H = 4 +
(
κ+ 2τ (1)2

1 + 2τ (1)2
2 + 2τ (1)

1 τ
(1)
2 + 2b(1)2

1 + 2b(1)2
2 + 2b(1)

2 b
(1)
2

)
z2 + h(3)z

3 +O
(
z4
)

β = 1
2
(
τ

(1)2
1 + τ

(1)2
2 + τ

(1)
1 τ

(1)
2 + b

(1)2
1 + b

(1)2
2 + b

(1)
1 b

(1)
2

)
z2 +O

(
z3
)
, (3.23a)

The AdS-Reissner-Nordström solution with M = −h(3)/2, as in (3.20), is a solution for
which all coefficients in (3.22) except for H(3) vanish. As mentioned before, we choose the
time coordinate such that β|z=0 = 0.

The scalar fields have the following expansion as z → 0 (for the sake of clarity, we omit
terms that are at least quadratic in the coefficients)

τ1 = 1 + τ
(1)
1 z + τ

(2)
1 z2 + . . .+

(4
3σ

(4) − κ

12τ
(2)
1 + . . .

)
z4 + . . .

−
(
σ(6) + κ

2σ
(4) − κ2

80τ
(2)
1 + . . .

)
z6 +O

(
z7
)

τ2 = 1 + τ
(1)
2 z + τ

(2)
2 z2 + . . .+

(4
3σ

(4) − κ

12τ
(2)
2 + . . .

)
z4 + . . .

−
(
σ(6) + κ

2σ
(4) − κ2

80τ
(2)
2 + . . .

)
z6 +O

(
z7
)

τ3 = 1− (τ (1)
1 + τ

(1)
2 )z −

(
τ

(2)
1 + τ

(2)
2 + . . .

)
z2 + . . .+

(4
3σ

(4) + κ

12(τ (2)
1 + τ

(2)
2 ) + . . .

)
z4

+ . . .−
(
σ(6) + κ

2σ
(4) + κ2

80(τ (2)
1 + τ

(2)
2 ) + . . .

)
z6 +O

(
z7
)
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b1 = b
(1)
1 z + b

(2)
1 z2 + . . .−

(
κ

12b
(2)
1 + . . .

)
z4 + (b(5)

1 + . . .)z5 +
(
κ2

80b
(2)
1 + . . .

)
z6 +O

(
z7
)

b2 = b
(1)
2 z + b

(2)
2 z2 + . . .−

(
κ

12b
(2)
2 + . . .

)
z4 + (b(5)

1 + . . .)z5 +
(
κ2

80b
(2)
2 + . . .

)
z6 +O

(
z7
)

b3 = −(b(1)
1 + b

(1)
2 )z − (b(2)

1 + b
(2)
2 + . . .)z2 + . . .+

(
κ

12(b(2)
1 + b

(2)
2 ) + . . .

)
z4

+
(
b
(5)
1 + . . .

)
z5 −

(
κ2

80(b(2)
1 + b

(2)
2 )
)
z6 +O

(
z7
)

σ = 1 + . . .+
(
σ(4) + . . .

)
z4 + . . .+

(
κσ(6) + . . .

)
z6 +O

(
z7
)

(3.23b)

This asymptotic behavior is consistent with the masses m2l2AdS = (18, 10, 4,−2,−2,−2,−2)
that we found in section 3.1: there are two independent components for each of the fields
with mass −2, and one for each field that is more massive. Interactions give rise to terms
quadratic and higher order in these coefficients or in the charges, which are included in the
“. . .”.

The massive vector field ζ falls off as

ζ = . . .+
(
ζ(4) + . . .

)
z4 −

(1
6ζ

(4) + . . .

)
z6 +O

(
z7
)
. (3.23c)

This asymptotic behavior z4 is compatible with the mass of the vector field and is related
to the expectation value of a dual operator with scaling dimension ∆ = 5. Nevertheless,
interactions with the other fields give rise to terms proportional to the conserved charges
that fall off more slowly near the boundary.

3.2.3 Boundary conditions at the horizon

The event horizon is located where gtt ∝ H vanishes. We choose our coordinates so
that this happens at u = 0. In order to ensure the regularity of spacetime, the Einstein
equations impose that the energy momentum tensor must remain finite. This would not
be the case if the massive vector field ζ had a nonzero value at the horizon. Using the
equations of motion, we find that the behavior of the fields at the horizon is characterized
by 9 parameters for the Q111 model

(
β(h), σ(h), τ

(h)
1 , τ

(h)
2 , τ

(h)
3 , b

(h)
1 , b

(h)
2 , b

(h)
3 , ζ ′(h)

)
, (3.24)

which determine the values of the fields in the obvious way

β = β(h) +O (u) , σ = σ(h) +O (u) , ζ = ζ ′(h)u+O
(
u2
)
,

τ1 = τ
(h)
1 +O (u) , τ2 = τ

(h)
2 +O (u) , τ3 = τ

(h)
3 +O (u) ,

b1 = b
(h)
1 +O (u) , b2 = b

(h)
2 +O (u) , b3 = b

(h)
3 +O (u) . (3.25)
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The higher order terms are determined by the equations of motion. For example, the first
derivative of H near the horizon is

H ′(0) = 12− 2
[
24σ̃(h) − 8σ̃(h)(τ̃ (h)

1 + τ̃
(h)
2 + τ̃

(h)
3 )

+ τ̃
(h)2
1 + τ̃

(h)2
2 + τ̃

(h)2
3 + 4(τ̃ (h)

1 τ̃
(h)
2 + τ̃

(h)
2 τ̃

(h)
3 + τ̃

(h)
1 τ̃

(h)
3 )

+ b̃
(h)2
1 + b̃

(h)2
2 + b̃

(h)2
3 + 4(b̃(h)

1 b̃
(h)
2 + b̃

(h)
2 b̃

(h)
3 + b̃

(h)
1 b̃

(h)
3 )

]
+
κ− 1

4ζ
(h)

r2
H

−
P 2

1 + P 2
2 + 2P 2

3 + p2
ξ1

+ p2
ξ2

+ 1
2p

2
ξ3

4r4
H

+ . . . , (3.26)

where we have included only terms that are at most quadratic in the difference between
the horizon coefficients and the asymptotic values, i.e. we include terms quadratic in the
coefficients (β(h), b

(h)
1 , b

(h)
2 , b

(h)
3 , ζ(h)) as well as in (σ̃(h) ≡ σ(h) − 1, τ̃ (h)

1 ≡ τ
(h)
1 − 1, τ̃ (h)

2 ≡
τ − 2(h) − 1, τ̃ (h)

3 ≡ τ (h)
3 − 1).

This explains the counting in table 2 for the Q111 compactification. The other models
can be obtained by further constraining certain coefficients at outlined at the end of sec-
tion 3.1. In the following sections we will give several examples of black hole solutions that
we have found with this shooting technique.

3.2.4 Thermodynamics and stability

The solutions we have found are characterized by temperature

T = e−β/2h′

4π

∣∣∣∣
r=rH

, (3.27)

which can be rewritten in terms of eq. (3.26) using that h′ = r2
HH

′ on the horizon. The
other thermodynamic quantities such as the mass and the entropy are

M = − 1
12∂

3
zH

∣∣∣∣
z=0

, S = πr2
H , (3.28)

and the free energy can be found by suitably renormalizing the on-shell action, see [27],
where the thermodynamics of the spherical solutions was studied. It was shown that a
liquid-gas-like first order phase transition arises between small and large black holes, once
the charges are below a certain critical value. Across the phase transition, the black hole
“swallows” the massive vector halo, and the process turns a small black hole with a larger
value for the massive vector field into a black hole with large area and small value for the
massive vector. See [27], section 5 for further details.

We will now turn to the study of the possibility of brane nucleation from various black
holes. We will work in the canonical ensemble of fixed temperature and electromagnetic
charges: unless stated otherwise, all the solutions we use as background have positive
specific heat

CQ = T

(
dS

dT

)
Q
, (3.29)

namely the (single center) background solutions per se are thermodynamically stable.
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We will see that in certain cases they are unstable due to the possibility of nucleating
various kinds of branes. In what follows we will work with purely electric or purely magnetic
backgrounds, so that the solutions themselves are supported by scalars which have no
axions. We will probe these backgrounds against different kinds of instabilities, in particular
nucleation of wrapped probe branes and spacetime filling ones. The former will appear
point-like in the four-dimensional AdS spacetime and form real black hole bound states.
We turn to the latter in the next section.

4 Spacetime filling probe branes

As a first example of instability towards brane nucleation, in this section will analyze
the (in)stability towards nucleating spacetime filling M2 branes of the (purely electric
and purely magnetic) planar solutions that we can find with the methods outlined above.
These branes are of the same type as those which “provide” the dual field theory, a negative
minimum outside the horizon signals an instability that leads to a Higgsing of the gauge
group, in other words there is a spontaneous breaking of the gauge symmetry.

4.1 Spacetime filling M2 brane

We consider here configurations of probe M2 branes which extend along the t, x, y spacetime
components, in Poincaré coordinates (κ = 0). The action for a probe M2 brane in our black
brane background is

SM2 = −τM2

∫
d3x
√
G± τM2

∫
C3 = −τM2

∫
dtdx1dx2(Vg + Ve) . (4.1)

We will consider backgrounds with nonzero value for the vector field A0. In the M-theory
uplift of section 2.2 one can see that the R-charge corresponds to angular momentum: the
black brane in the eleven dimensional spacetime is rotating in the ψ direction. Let us
parameterize the coordinates of the M2 branes with (τ, χ1, χ2), all noncompact, ranging
from −∞ to +∞. This section follows [43], where the possibility of D3 brane nucleation
on black branes from the T 11 truncation is studied. We will stick to their notation to
facilitate comparison between the two cases. We proceed by making the following ansatz
for the embedding:

Θ1 = θ1
0 , Φ1 = φ1

0 , Θ2 = θ2
0 , Φ2 = φ2

0 , Θ3 = θ3
0 , Φ3 = φ3

0 , (4.2)
T = T (τ) , R = R(τ) , Xi = χi , (i = 1, 2) Ψ = Ψ(τ) ,

where the quantities with the subscript 0 denote the constant position of the brane in
the internal coordinates. Consider an observer located on the brane at fixed worldvolume
coordinates. Let the velocity be

U ≡ dXµ

dτ
∂µ = Ṫ ∂t + Ṙ∂r + ψ̇∂ψ , (4.3)

so that
UµU

µ = gttṪ 2 + grrṘ2 + gψψψ̇
2 + 2gtψṪ ψ̇ (4.4)
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will eventually be set to −1 by an appropriate choice of worldvolume time τ . The induced
line element is then

ds2
3 = UµU

µdτ2 + gxx(dχ2
1 + dχ2

2) . (4.5)
The gravitational part of the probe action (4.1) reads:√

−det(P [gµν ]) = gxx
√
−UµUµ , (4.6)

whereas the WZ term of the action becomes

P [C3] = [(C3)tṪ + (C3)ψψ̇] dτ ∧ dχ1 ∧ dχ2 , (4.7)

where we have defined (C3)t and (C3)ψ as the t, x, y and ψ, x, y components of the M-theory
3-form.

We can now compute the energy and the angular momentum of the M2 brane, varying
the Lagrangian density with respect to Ṫ and ψ̇, arriving at the expressions:

E = − 1
τM2

∂LM2

∂Ṫ
= gxx(−gttṪ − gtψψ̇)− (C3)t , (4.8)

J = 1
τM2

∂LM2

∂ψ̇
= gxx(gtψṪ + gψψψ̇) + (C3)ψ , (4.9)

where we have set UµUµ = −1 after doing the variation. We can now express the energy
in function of the angular momentum. In doing so we first choose the branch with Ṫ > 0
when solving for Ṫ from UµU

µ = −1. We arrive at

E = −(C3)t−gtψ
J − (C3)ψ

gψψ
+

√
g2
tψ − gψψgtt

√
((C3)2

ψ − J)2 + gψψg2
xx(1 + grrṘ2)

gψψ
, (4.10)

and we set Ṙ = 0 in order to extract the form of the effective potential for the probe M2
brane:

VM2 = −(C3)t−gtψ
J − (C3)ψ

gψψ
+

√
g2
tψ − gψψgtt

√
(C3)2

ψ − 2(C3)ψJ + J2 + gψψg2
xx

gψψ
. (4.11)

After we plug in the explicit metric components, we obtain

VM2 = −(C3)t −A0
t (r)(J − (C3)ψ) +

√
he−β/2
√
τ1τ2τ3

√
((C3)ψ − J)2 + σ4r4 (4.12)

where A0 is defined in (3.8). Moreover QR = Q0 = J is the electric charge associated to
A0. The components of the 3-form can be inferred from (2.15),

(C3)t =
∫
dr
(
6e−β/2r2K−1σ4 + 4

√
3(e−β/2r2Bt)A0(r)σ4

)
=

=
∫
dr

[
6
(

σ4

τ1τ2τ3

)
r2 e−β/2 + 4

√
3(e−β/2r2Bt)A0(r)σ4

]
,

(C3)ψ = 4
√

3
∫
dre−β/2r2Btσ4 . (4.13)

We are now going to plot the potential for M2 branes in different examples, with and
without the R-symmetry field A0, whose associated charge is interpreted as the angular
momentum for the probe branes.
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4.1.1 Purely magnetic and purely electric background black branes

As a warm up case, we first identify the two Betti vectors and switch off the electric charges.
This means that the solution, written in our symplectic frame will only have P2 charge.
Therefore, A0 = 0, (C3)ψ = 0 and Jψ = 0, so that the probe potential reduces to:

VM2 = −(C3)t +
√
he−β/2

σ2
√
τ1τ2τ3

r2 , (4.14)

which, upon the change of variables

1
2 log(τ1) = 3χ− 2η2 − 2η3

4 ,
1
2 log(τ2) = 3χ− 2η1 − 2η3

4 ,
1
2 log(τ3) = 3χ− 2η2 − 2η1

4 ,

(4.15)
and φ = −3χ−η1−η2−η3

2 coincides with the potential found in [29]:5

Vg(r) =
√
G = e−21χ/4√ge−β/2r2 , V ′e (r) = ±6r2e−β/2−21χ/2 . (4.16)

The − sign corresponds to an M2-brane of the same type as those sourcing the background
(the plus sign instead corresponds to a brane of opposite charge, which is always attracted to
the black brane). We will work with the minus sign. In [29] it was found that the potential
increases monotonically and never dips below the horizon value, so the background is stable
with respect to tunneling of spacetime filling M2-branes. We reproduced their result as a
control case, see figure 3.

The situation becomes more interesting if we consider solutions with nonzero R-
symmetry charges P1 or Q1. Indeed the effective potential (4.12), which is normalized
to be zero at the horizon, asymptotically approaches a negative value for sufficiently low
temperature in, for example, purely electric solutions — see figure 2. This means that it
is energetically favorable for a black brane to nucleate probe M2 branes that move away
towards the boundary of spacetime, confirming the fact that these sort of horizons suffer
from an instability close to extremality.6 We find the same behaviour when we consider
purely magnetic branes: also in this case, a nonzero (magnetic) component of the R-
symmetry field triggers the instability towards M2 brane nucleation (the massive vector
field is switched off in this case). In figure 3 we show the regions in phase space where the
instability is present, for the electric (left) and magnetic (right) cases.

In a way, the kind of potential displayed in figure 2 does not come as a surprise given
that the R-symmetry field is turned on, and the brane is effectively rotating in 11d: the
probe branes experience a centrifugal force that pushes them away from the center. In this
case the dimension of the M-theory direction (the function e2V in (2.14)) decreases near
the BH for all solutions, the decrease being sharper for the solutions with the instability
towards M2 decay.

5Recall that in our conventions e0 = 6 and l2AdS = 1/4, and β = w.
6Another instability for magnetic branes in S7 truncations of M-theory as found in [44, 45]. The latter

instability is of a different nature: it concerns spatially modulated instability and violations of the BF
bound in the near horizon AdS2 region. It will be nevertheless interesting to investigate whether there is a
relation between this and the instability we have found.
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Figure 2. M2 spacetime filling brane potential for the planar AdS4 solution with R-symmetry field
turned on. The value of Q2 is kept fixed, and the plot displays solutions with Q1 = −0.1 (pink),
Q1 = 0.9 (violet) and Q1 = 1.5 (yellow).
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q2 stable

unstable
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Figure 3. In blue, the region of parameter space where the black branes are stable with respect
to nucleation of spacetime filling M2 branes. The orange region contains unstable solutions. No
black brane solutions exist in the green area, as they would be over-extremal. The graph on the left
refers to purely electric black branes (the black dots refer to the three solutions plotted in figure 2),
the one on the right to purely magnetic ones, both with R-symmetry gauge field turned on. The
stability result of [29] corresponds to the vanishing unstable region on the P2 axis (for P1 = 0),
where the blue and green regions touch.

To end this section, let us mention that a similar instability driven by R-symmetry
field was found in the case of spacetime-filling D3 branes in conifold truncations [43], and
was interpreted as a color superconductor instability in which the rank of the group is
changed with the expulsion of branes.
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5 Wrapped probe branes

In this section we focus on the stability of probe branes wrapped around non-contractible
cycles of the internalQ111 andM111 manifold. We first analyze wrapped M2 branes: for this
case we find that there are no stable probes outside the horizon of the simple class of purely
magnetic solutions with spherical horizons. Next, we perform the formal reduction to type
IIA and turn our attention to the stability of probe fluxed D6 branes, which correspond to
states of KK-monopoles, M5, M2 branes and KK modes in the M-theory picture. These
latter possess a combination of charges which is more likely to find bound states [18], given
our background solutions. We find that stable fluxed D6 probes exist on purely electric
backgrounds, confirming the possible presence of multicenter black holes in this sort of
truncations. We also consider magnetic backgrounds that admit a supersymmetric limit,
however we find that a local minimum of the effective potential does not form in this regime.

5.1 Wrapped M2 branes

In this section we consider for simplicity the same setup described in [29], namely solutions
with A0 = 0 and purely baryonic charges.7 Our solutions will however have spherical
horizons, while in [29] only planar horizons were considered. We start from the action

SCM2 = −τM2

∫
d3x

√
−det(g) + τM2

∫
C3 , (5.1)

where τM2 is the M2 brane tension, and we again split it in two parts

SDp = Sgrav + SF . (5.2)

When we wrap M2 brane on one of the 2-cycles inside Q111, the gravitational potential is
proportional to the volume of such cycles, while SF is topological: minimizing the volume
increases the possibility of finding stable probes. A simple way to construct non-trivial
two-cycles in the 7d manifold Y 7 is to start with a 2-cycle in the six-dimensional base
B6 and lift it to Y 7. There are of course conditions that need to be satisfied that allow
one to lift these 2 cycles on Y 7 and these were conveniently worked out in [29], for a
particular sub-truncation which corresponds in our conventions to zero R-symmetry field,
purely magnetic configurations and hence vanishing massive vector and axions. The upshot
of their analysis is that the cycle C should satisfy∫

C
J = 0 , J = ω1 + ω2 + ω3 , (5.3)

with ωi, i = 1, 2, 3 defined in (2.23).
We will focus our attention on the minimal volume cycle denoted as C2 in [29]

C2 :



θ1 = θ3

θ2 = const

φ1 = −φ3

φ2 = const

(5.4)

7This choice allows us to borrow the results of [29] for the minimal volume cycles. A non-zero value for
A0 could in principle alter the computation.
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Figure 4. Potential for M2 brane wrapped on C2 for the spherical AdS4 solution without R-
symmetry field, for configurations with magnetic charge P2 = 1/100 (blue), P2 = 152/25 (orange)
and P2 = 8 (green).

We can now compute the gravitational and electrostatic potentials of M2 branes wrapped
on C2. We choose to identify both Betti vectors as in [29]. Notice that the 4-form pulled
back onto the M2 brane worldvolume in our solutions is

F4 = H i
2 ∧ ωi , (5.5)

hence the electromagnetic potential reads:

SF = 4πϕ , ϕ′ = dϕ

dr
= 1

4
8√
6
P2
r2 e

−β/2
( 1
τ2

+ 2 τ2
τ2

1

)
. (5.6)

For the gravitational part we have [29]

√
det2 = √ge−β/2

(
1
√
τ2

+
√
τ2
τ1

)
. (5.7)

So in total for the C2 in Q111 we have:

SC2Q111 = 4π
(
√
ge−β/2

(
1
√
τ2

+
√
τ2
τ1

)
− ϕ

)
. (5.8)

The behaviour of the potential is depicted in figure 4 which shows that the probes are over-
whelmingly gravitationally attracted by the black hole (no stable and metastable probes).

To sum up, in this section we have found that wrapped M2 probe branes on black hole
background solutions of the same nature (i.e. with only charges due to the Betti vector)
cannot be stable. Consistently with the expectations from black hole bound states in
asymptotically flat spacetimes, we expect that only mutually nonlocal charges can form a
bound state. This is confirmed by our findings in the next section.

– 22 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
9

5.2 Wrapped fluxed D6 branes

In this section we analyze the stability of probe fluxed D6 branes on black hole backgrounds
which have either purely electric or purely magnetic charges. We performed a KK reduction
from 11d to 10d, the details of which are in appendix A.

Before beginning with the probe analysis, a few comments are in order. First of all
let us mention that the M-theory compactification we are using leads to a RR flux in IIA
proportional to J , with k = 1. This means that the 11d supergravity approximation is
well-suited, however we will use perturbative IIA nomenclature “D6, D4, D2, D0” to label
different charges in the 4D theory, even though we are not in a regime in which there is a
reliable perturbative string description of the corresponding sources as D-branes.8 In the
present setup, it would perhaps be more apt to refer to these charges as “KK-monopole,
M5, M2, KK mode”, but we will stick to the former nomenclature. We will moreover
assume that the computation of the masses by using the IIA Born-Infeld action, imagining
the “D6, D4, D2, D0” charges as arising from wrapped D-branes, is valid. Along this
reasoning, at large charges and large lAdS one is bound to retrieve the asymptotically flat
case, and we find that this is the case.

Another important point is that we want the fluxed D6 branes to be treatable as
“probes”. A fluxed D6 will be very heavy at k = 1: mD6 ∼ N3/2/lAdS.9 For this to
be treatable as a probe, it needs to be parametrically lighter still than the mass of the
background black hole, which is of the order M ∼ rH/G where rH is the horizon radius.10

In our setup, in which we kept fixed lAdS = 1/2 we were able to find stable probes on
background black holes having rH = 1, but for larger black holes, the stable probes appear
only for increasingly low temperature, making it numerically more challenging. Intuitively,
this effect is due to the fact that a larger black hole fills up the spacetime and the probe is
pushed closer towards the horizon by the confining potential in AdS. We also considered
planar configurations (which can be viewed as the large-size limit of spherical black hole
configurations) and found solutions with metastable probe D6 branes outside the horizon.

Last but not least, let us mention that there are subtleties regarding the allowed
boundary conditions for baryonic operators in ABJM-like theories, see for example [29],
with further progress in the recent paper [49]. We will come back to both these points later
on in the discussion section.

Being aware of the aforementioned subtleties, and of the regime of validity of our
computations, we can proceed with the calculation of the DBI action, which we report in

8Even in vacua in which IIA string perturbation theory is valid, objects with D6-D4-D2-D0 charges large
enough to be well-described as weakly-curved black hole geometries in supergravity necessarily fall outside
the regime of applicability of string perturbation theory.

9The compactification on M111 is just one example in a class of compactifications on manifolds called
Mpqr, labeled by 3 nonnegative integers [46]. These are not all independent, since Mpqr = Mpq0/Zl where
l = (3p2 +q2)/k where k is the highest common factor of 2rp, rq and 3p2 +q2 [47]. Furthermore, when p = q

and r 6= 0, the low-energy effective action of the resulting M-theory compactifications is independent of the
values of p and r [48]. Therefore, taking p = q and r = 1, we have that k = p and l = 4p, so we find that
Mpp1 = M110/Z4p and the volume of the compact manifold can be made arbitrarily small by taking p large.

10We thank F. Denef for correspondence on these issues.
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appendix A. It turns out that it assumes the familiar form

SD6,f =
∫
dt mΓ(ti)√gtt + 1

2
√

2

∫
(QIA

I −PIBI) , mΓ(ti) = |Z(ti,Γ)| , (5.9)

where Γ is the probe charge, which is a function of the worldvolume flux f , Z(ti,Γ) is the
central charge of the ungauged theory, and AI and BI are the electric and dual magnetic
potentials respectively (see the definition in appendix A).

First of all, one can notice that the hypermultiplets have dropped out from the expres-
sion of the mass, which depends solely on the vector multiplets scalars. Previous examples
of probe computations (wrapped M2 branes on AdS4 backgrounds of [29], and wrapped D3
branes on AdS5 black branes discussed in [43]) also showed the same pattern. It is however
surprising that this sector of the theory does not contribute to the mass term of the DBI
action.

The expression (5.9) coincides with the probe action for a black hole in ungauged N = 2
supergravity, where BPS extremal black holes have mass m = |Z|. In [50] it was shown that
in Calabi-Yau compactifications, the DBI action for a D-brane wrapped on supersymmetric
cycles in the internal manifold gives exactly (5.9), via kappa-symmetry, justifying its use
as effective action for a probe black hole in asymptotically Minkowski spacetimes. A probe
action of the form (5.9) was postulated in [18] and was rederived via the DBI action in [51]
for the M-theory compactification on S7/Zk. Let us finally mention that an expression of
the form (5.9) is compatible with our intuition since the mass of an extremal black hole
becomes insensitive to the AdS curvature for sufficiently large AdS radius.

In what follows we will use the explicit value of the central charge

|Z(ti,Γ)| = |f3 − if2τ1 − fτ1τ2 + iτ1τ2τ3 − fτ1τ3 − if2τ2 − fτ2τ3 − if2τ3| , (5.10)

and all the computations in this section will take place in the rotated symplectic frame
called “magnetic STU” (mSTU)

FmSTU = −2i
√
X0X1X2X3 . (5.11)

As explained in section 2.1, this allows us to avoid working with tensor multiplets. The
charges and the sections in the two frames are related via the symplectic rotation (2.31),
therefore, the probe charge for a pure fluxed D6 in the model with FmSTU is

Γ = (P 0, P 1, P 2, P 3, Q0, Q1, Q2, Q3) =
(
1,−f2,−f2,−f2,−f3, f, f, f

)
. (5.12)

5.2.1 Strings attached to the D-branes

In the reduction to IIA under consideration, D2 and D6 branes come with fundamental
strings attached due to the fact that they have a magnetic charge with respect to the
massive U(1) vector field [23].

One can see this from the equation for the worldvolume gauge field (A.14) (see also
the discussion in section 4.4 of [51])

d ?7 (F + . . .) = dC5 + L2
sdC3 ∧ F + L4

s

2 dC1 ∧ F ∧ F , (5.13)
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on the D6 brane worldvolume. The integral of the left hand side vanishes and so must the
right hand side. Using the expressions for C1, C3 and C5 in appendix A (eqs. (A.7), (A.11)
and (A.30)), one can see that the contribution from dC3 has vanishing pullback onto the
worldvolume, whereas from dC5 only the contribution ?10H4 survives. Integrating both
sides, using the flux (A.16), this gives

0 = −6× 1
83 × (4π)3 + 6

2 ×
1
4 ×

(1
8

)2
× (4π)3f2 = −6(π)3

8 + 3
4π

3f2 (5.14)

which is satisfied if f2 = ±1.
One can see this from the four-dimensional point of view, by noticing that the massive

vector combination is11

B = 6A0 + 2A1 + 2A2 + 2A3 . (5.15)

Computing its magnetic field strength and integrating to get the charges we obtain

0 = 6P 0 + 2P 1 + 2P 2 + 2P 3 = 6− 3× 2f2 = 6(1− f2) , (5.16)

where in the second equality we used (5.12). This means that for the value of worldvolume
flux f2 = 1, the brane configuration is consistent and the tadpole is cancelled. We will see in
what follows that the value f = 1 gives stable probes, and we stick to this value of worldvol-
ume flux in most of our computations, knowing that for a different value we would need to
take into account the strings stretched between the probes (nevertheless, we plot different
values of f in figure 7 to analyze the dependence of the potentials on the probe charges).

We will now proceed to plot the behaviour of the effective potential for various black
hole backgrounds, focusing first on spherical purely electric solutions (with massive vector
halo), and on magnetic black holes with hyperbolic horizons which admit a supersymmetric
limit. For the latter configurations, the massive vector field is switched off: this is due to
the spherically symmetric ansatz that we adopt. To anticipate the results in the next two
sections, we will see that there exist stable and metastable pure fluxed D6 probes at finite
(small) temperature on the electric backgrounds, while we do not find such stable probes
on the magnetic black holes.

5.2.2 Purely electric background black hole

In this section we consider purely electric background solutions, characterized by a non-
vanishing massive vector field halo. To find these numerically, we start with the Reissner-
Nordström at given rH and Q1 and increase the other charges step by step. We thus find
a series of solutions with decreasing temperature for which the fluxed D6 brane potential
VD6 develops a minimum outside the horizon, first metastable and then stable. For black
holes with larger radii, it is necessary to go closer to extremality for the minima of the
potential to appear. We show solutions with rH = 1/4 and rH = 1 in figures 5 and 6. In
figure 7 we compare cases with different temperature and worldvolume flux.

11Notice that we changed frame, dualizing the two form into the pseudoscalar a, and effectively switching
the prepotential F = 2i

√
X0X1X2X3.
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Figure 5. Radial profile of the fields as a function of the coordinate u for a purely electric solution
with parameters pξ1 = pξ3 = −0.66, pξ2 = −0.089 and rH = 1/4, with worldvolume flux f = 1 for
the probe D6 brane. This solution has temperature T = 0.013. The potential VD6 for fluxed D6
branes dips below zero, signalling the presence of stable probes.

We have not done a complete scan of the 6-dimensional parameter space of spherical
electric black holes, see table 2. In particular we have kept the leading modes of light
scalars turned off and Q3 = Q1. By sampling this space of solutions we were able to draw
the following conclusions:

• Consistently with the expectations, a sufficient increase in the temperature makes
the stable probes disappear (see figure 7). Notice that in order to find bound states
we were inspired by the existence of stable probes, namely we have focused our search
to the equivalent of the green region of figure 5.2 of [18].12

• We have found that there is a specific range of values for the worldvolume parameter
f ∈ [fa, fb] that allow presence of stable and metastable probes. For instance, for the
solution in figure 5, the interval in which the probes are stable is f ∈ [0.644, 1.648],

12A direct mapping between the model we use and that implemented in [18] is not possible since, among
other things, the number of vector multiplets is different. We have however reproduced their analysis in
the STU model in appendix C: we have set one of the vectors to zero and taken this as a starting region
where to possibly find stable probes.
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Figure 6. Radial profile for the electric solution with parameters pξ1 = pξ3 = −7.35, pξ2 = −0.99
and rH = 1, with worldvolume flux f = 1 (notice the different scale of the horizontal axis for the
profile of the massive vector field). The temperature of this black hole is T = 0.000476.

while metastable are in f ∈ [0.561, 0.644[ and in f ∈]1.648, 2.04]. Outside this region,
the probes become unstable. Notice that the value f = 1, which gives zero strings
attached to the probes, lies in the interval which allows for stable probes.

• Increasing the value of the parameter rH in the black hole background makes stable
and metastable probes lie closer to the horizon. This is also reflected in the two plots
in figure 5 and 6 (notice the different scales on the horizontal axes). It is due to
the fact that a bigger black hole “fills up” AdS space, and the confining potential of
the negative cosmological constant pushes the probes closer to the center. Since the
limit of large spherical black holes should be captured by planar solutions, we have
considered those as well. As shown in figure 8 we found metastable probes in these
configurations for non-integer values of the flux f . We were unable to find solutions
with fully stable probes as well as metastable probes with f = 1, but it is possible
that such solutions exist at lower temperatures.

• In the cases we examined, the radial location of the minimum of the potential is
located further away from the horizon for stable probes than for metastable ones,
which instead seem to be pushed closer to the horizon — see for instance figure 7 and

– 27 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
9

0.0 0.2 0.4 0.6 0.8

0.0

0.1

0.2

0.3

VD6, different T

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.05

0.10

VD6, different f

Figure 7. D6 probe potential as a function of u for probes with worldvolume flux f = 1 on
black holes with pξ1 = pξ3 = −0.66, pξ2 = −0.089, and different temperatures: T = 0.013 (blue,
rH = 1/4), T = 0.07 (orange, rH = 26/100), T = 0.16 (green, rH = 28/100). On the right, solutions
with T = 0.013, and different values f = 0.6 (violet), f = 1.1 (light blue) and f = 1.5 (yellow).

figure 10. In “large” background solutions (rH > lAdS) the stable probes lie in the
region within the horizon and the “peak” of the amplitude for the massive vector halo,
while for smaller black holes these lie further away, on top of the peak. Generically,
the place where the stable probes reside roughly coincides with the region where the
massive vector field is more pronounced. It would be interesting to check if this is
the case also for other kind of probes or massive objects (e.g. probe black rings).

• Metastable probes which lie closer to the horizon have lower “barrier heights” with
respect to the ones lying further away. This seems to be in agreement with what
was found in [18]. We make further comments on this point and on the relaxation
dynamics of metastable probe clouds in the conclusions.

5.2.3 Asymptotically flat limit and “caged wall crossing”

We can consider the small black hole/asymptotically flat limit by sending the cosmological
constant to zero, i.e. taking the gauge coupling constant to zero. This corresponds to
switching off the mass term for the vector field as well, therefore the analysis follows that
of [18]. We recap it here for simplicity, before analyzing the case of probes on 1/4 BPS
black hole backgrounds.

Sending the gauging to zero corresponds to the framework of ungauged N = 2 super-
gravity, where multicenter BPS black holes preserving half of the supersymmetries are well
known and studied [4, 5]. Analytic expressions are available for these configurations, and
in the two-center cases one can easily find the radius of separation between the two centers
(“BPS distance”) of charges Γ1 and Γ2, according to this formula:

xBPS = 〈Γ1,Γ2〉
2Im(e−iαZ(Γ1))∞

, (5.17)

where Z = 〈V ,Γ〉 is the central charge of the N = 2 theory. More explicitly, in the
symplectic frame that we have chosen (which is rotated with respect to that used in [10]),
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Figure 8. Planar solution with purely electric charges pξ1 = −5.58, pξ2 = −2.84 and rH = 1.
This solution has temperature T = 0.01. The flux through the D6 brane probe is given by f = 0.66.
Probe D6 branes with f = 1 are unstable on this background solution. Notice the different scale of
the horizontal axis (coordinate u) for the bottom right figure.
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Figure 9. Plot of the potential profiles as a function of u for various probes on purely electric black
holes with rH = 1/8, f = 1 and temperature T = 0.045, 0.17, 0.28, 0.33 (yellow, red, blue, violet
respectively). One can see that the probes closer to the horizon have a higher value of the minima
of the potential (“barrier height”) with respect to those lying further away.
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Figure 10. On the left, the 2D plot of the massive vector field profile for the electric solution of
figure 5. The metastable probes (with f = 5/8, rightmost, and f = 9/5 the lowest one) lie close to
the horizon, between the peak of the massive vector and the horizon. The other probes, starting
from f = 3/4 (upper), f = 1 leftmost, f = 3/2 bottom left are all stable, and again their equilibrium
distances lie behind the massive halo. Right: 2 metastable (rightmost, lowest) and 3 stable probes
on the background solution characterized by pξ1 = pξ3 = −0.194, pξ2 = −0.026, T = 0.15 and
rH = 1/10. We see that in this case the equilibrium distance for stable probes lies on top of the
peak of the massive vector. Notice that only the probes with f = 1 come without strings attached.

for a solution with Q1 = Q2 = Q3 the formula reduces to

xBPS = Q0 − 3f2Q1
3a0f2 − a1

, (5.18)

where a0 and a1 are the asymptotic values of the symplectic sections X0 and X1 (see
notation of [10], which we follow with different normalizations). The BPS equilibrium
distance can be read off from the potential Vp for a fluxed probe D6 brane on background
of an asymptotically flat BPS black hole, which is of the form (see for instance [10])

Vp =
√

∆2 + V 2
em + Vem . (5.19)

Let us focus on a supersymmetric probe black hole. For some radial coordinate there is a
minimum of the potential at Vp = 0: this is due to the fact that ∆BPS = 0 and Vem < 0.
The condition ∆BPS = 0 gives exactly formula (5.18). The situation is depicted in figure 11,
where one can see that the potential has a zero for r = xBPS . Notice that the quantity
xBPS diverges for 3a0f2

a1
= 1. This location in moduli space corresponds to decay at marginal

stability: the distance between centers becomes infinite and the bound state ceases to exist.
Anti-de Sitter space acts like a box and has a “confining” effect: in this setup, the

true separation distance cannot diverge and for a sufficiently large radius the bound state
will start feeling the presence of the AdS potential.13 In [18] an expression for the first

13In addition to this, in the supergravity models in which BPS solutions have been found the value of
the scalar fields is fixed asymptotically demanding that it extremizes the scalar potential. Therefore there
are no moduli to tune that would allow the phenomenon of wall crossing.
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0.04

VD6
Asymptotically flat BPS background

Figure 11. BPS potential for D6 probes in asymptotically flat space: there is a minimum of the
potential, V = 0 outside the horizon at the value xBP S = 2 (charges are q0 = 7, q1 = q2 = q3 = 1,
worldvolume flux f = 1 and the asymptotic values of the scalars are set to one). The value of xBP S

obtained from the probe potential agrees with the value of the exact two center solutions of [5].

correction to the potential due to the AdS confining force was given. The solutions treated
in that case are analytic and in a closed form, which makes the analysis more transparent.
The upshot of their finding is that when we vary the parameters such that we pass through
the location where xBPS diverges, no actual decay will happen. Instead, the minimum of
the potential is lifted to give a metastable probe.

In our case, we have verified numerically that the probe potential has the same qualita-
tive behaviour: the value14 of worldvolume flux for which xBPS →∞ leads to a metastable
probes. Note that even though we discussed what happens upon taking the ungauged
supergravity limit g → 0 and expanding around the 1/2 BPS solution, there are actually
no known regular static solutions preserving half of the supersymmetries in the gauged
supergravity models under consideration: all static known solutions of this kind (i.e. [52])
present naked singularities. However there exist static configurations of finite area that
preserve 1/4 of the supercharges. In the next section we use the latter as backgrounds for
the probe analysis.

5.2.4 Probes on purely magnetic supersymmetric black hole background

In this section we are interested in investigating the stability of D6 probe branes on
top of backgrounds that have a well-behaved supersymmetric limit, corresponding to the
Halmagyi-Petrini-Zaffaroni BPS black holes [38]. The details of these solutions can be
found in appendix B and here we recap their salient features, focussing in particular on
purely magnetic configurations with no axions.

Supersymmetry, coupled with the requirement of having a finite nonzero entropy, forces
us to work with a hyperbolic horizon. These solutions have a zero-temperature, supersym-

14In our case the value of the scalar fields at infinity are fixed to one. The value of the worldvolume flux
f = 1/

√
3 which gives a diverging xBPS lies in the range of metastable probes (see previous section). Notice

however that, as mentioned in section 5.2.1, for this value of worldvolume flux the probes has fundamental
strings attached to it.
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metric limit characterized by a near-horizon geometry of the form AdS2×H2. The explicit
near-horizon geometries (and a numerical solution interpolating between the near-horizon
geometry and an AdS4 asymptotic region) were first found in [38]. The near-horizon metric
reads

ds2 = −R2
1r

2dt2 + dr2

r2R2
1

+R2
2(dθ2 +f(θ)2dφ2) , f(θ) =

 sin θ for κ = 1
sinh θ for κ = −1

(5.20)

with gauge fields

AΛ = q̃Λr dt+ PΛf ′(θ)dφ , (5.21)

q̃Λ = − 1
R2

2

(
ImNΛΣReNΣΓP

Γ + ImNΛΣQΣ
)
. (5.22)

We focus on solutions with zero axions bi = 0 and purely magnetic charges, QΛ = 0. The
magnetic charges are

P 0 = − 1
4
√

2
, P 3 = P 1 , P 2 = 3

4
√

2
− 2P 1 , P 1 = − τ2

1
(
τ2

1 − 3
)

4
√

2
(
τ2

1 + 1
) , (5.23)

with
τ3 = τ1 , τ2 = 3− τ2

1
2τ1

, (5.24)

where for simplicity we expressed the charges in function of the horizon value of the scalar
τ1. The size of the AdS2 and the S2 are

R2
1 = τ1

32
(
3− τ2

1

)
, R2

2 = −κτ1
(
τ4

1 − 2τ2
1 + 9

)
32
(
τ2

1 + 1
) . (5.25)

After verifying that the (supersymmetric) near horizon geometry satisfies our equations, we
implemented our shooting technique and found a series of purely magnetic full-flow black
hole solutions with decreasing temperature, the near horizon geometry of which eventually
approximates to a good extent the BPS near horizon geometry of [38], see figure 12. To
give an idea of the precision to which we work, the extrapolated value of the scalars at the
horizon are within 2% of the actual BPS value computed analytically from the near horizon-
geometry data. We retrieve the extremal black hole solution by solving the equations of
motion, imposing the boundary conditions discussed in section 3.2.2. In order to get the
T = 0 supersymmetric solution it would be more efficient and appropriate to directly solve
the first order BPS equations, and analyze carefully the boundary conditions dictated by su-
persymmetry, along the lines of [53–55]. Just like the BPS equations generate a subset of the
solutions to the full equations of motion, the allowed boundary conditions would be particu-
lar a subset of those in table 1. For the time being we proceed nonetheless with our shooting
technique setting the leading fall-offs to zero, leaving generalizations for future work.15

15Supersymmetry requires that the real and imaginary parts of the scalars are quantized differently
(pseudoscalars are subject to regular boundary conditions, while the scalars obey alternative quantization).
Moreover, it relates the fall-offs of different matter fields sitting in the same supermultiplet. We thank Chris
Herzog and Nikolay Bobev for remarks on these points.
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τ2 τ1

rH BPS

τ1|exact
fit

τ2|fit
exact

1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

VD6, magnetic

Figure 12. On the left, extrapolated values for τ1 and τ2. Note that the horizontal axis is not
the u coordinate within a single solution, but rather the value of rH that labels different solutions:
each of the solid points indicates a numerical solution. The lowest temperature we obtain is
T ∼ 0.0003. On the right: probe potential as a function of u for solutions with magnetic charge
that approximate the BPS solution of [38]. The temperatures are: T = 2.55 (orange), T = 1.71
(violet), T = 0.69 (red), T = 0.16 (green), T = 0.00038 (blue). From our analysis we see no sign
of stable or metastable probes.

Once again, while a complete scan of the parameter space is almost impossible with
our current techniques, we have plotted several examples of solutions with temperature
as low as T ∼ 0.0003. In all cases we have considered we were unable to find stable or
metastable probes: the potential did not show any sign of inflection — see figure 12.

We performed a similar probe analysis or purely magnetic (spherical and hyperbolic)
solutions from the S7 reduction from M-theory, and the results are reported in appendix C.
Similarly, also in that case we did not find any stable probes. Stable probes in supersym-
metric black hole backgrounds were found in [10] in the context of asymptotically flat 1/2
BPS black holes in a box of finite volume. The absence in our case could be due to the
different way supersymmetry is realized (a different projector in the Killing spinor allows
to have a 1/4 BPS solution) and to the confining effect of the AdS potential.

To conclude this section, we remind the reader that, despite having considered (ap-
proximately) supersymmetric background solutions, the probe D6 branes most likely break
supersymmetry. The type IIA background that we have obtained upon reduction of the
11-dimensional configuration on the coordinate ψ (see appendix A) breaks supersymme-
try [56, 57]. For this reason we are certainly not in a position to claim that supersymmetric
bound states do not exist. Moreover, our analysis considered only the simplified setup in
which the background is without axions. Repeating this analysis including dyonic back-
grounds can considerably alter the picture, but a complete treatment of this case is, at the
moment, outside of the scope of this work.

6 Conclusions

In this paper we have analyzed the instabilities of black holes and black branes towards
nucleation of various kinds of D-branes and M-branes.
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The main result is the existence of stable probe black holes composed by wrapping
branes on noncontractible cycles in Sasaki-Einstein manifolds. We have analyzed in par-
ticular the case of D6 branes wrapped on the six-dimensional internal manifold obtained
upon reduction along the M-theory direction, and we have shown that bound states exist
for specific sets of charges and for sufficiently low temperature. It seems then that, with
respect to [18], the Higgsing of one of the vector fields does not hinder the existence of
multicenter configurations in duals of ABJM-like theories. The location of the stable probe-
black holes, with respect to the peak of the massive vector field, seems to lie either closer
to the horizon (large black holes), or roughly coincide with it (for smaller ones). Another
general feature is that metastable probes seem to lie closer to the horizon with respect
to stable ones. Moreover, in our case the wrapped fluxed D6 branes have the special KK
direction orthogonal to the M2 brane worldvolume direction. In the asymptotically flat
case, in five dimensions, a similar nucleation instability corresponds to the BMPV black
hole transforming itself into a black ring [58] (see also [59, 60]). It would be interesting to
make connection to the physical picture described in those papers.

Interestingly, the supersymmetric purely magnetic solutions in this compactification
seem not to support stable probes. Let us also mention that the status of the microstate
counting for supersymmetric configurations of these models is still work in progress, due
to the fact that the baryonic charges seem to not be visible in the large N limit and
our configurations need to have these switched on. Recent advances on the topic can be
found for instance in [61–63]. We restricted our attention only to non-axionic solutions
for simplicity, but it would be interesting to generalize the analysis to static dyonic, and
stationary configurations, for example those found in [64–66] and their supersymmetric
limits [67, 68]. In presence of rotation (and genuinely complex scalar fields) we foresee a
richer phase space for stable D brane probes.16

There are a few points that we have left for future investigation. First of all, particu-
larly important is the role of boundary conditions in these sort of supergravity truncations
(see for instance discussion in [29]), which allow a specific set of M branes. Recent inves-
tigations [49] regarding the interplay between boundary conditions in gravity and allowed
gauge invariant operators in the dual ABJM theory pointed out that various versions of
the latter theory exist, characterized by different the gauge groups. One version in par-
ticular allows for gauge invariant di-baryonic operators, corresponding to D4 branes. It
would be interesting to connect this story to our framework, which involves theories dual
to the Q111 truncation, and probe D6 branes. This point for sure deserves a more thorough
investigation, which we leave for future study.

Secondly, in our case we set the magnetic component of the massive vector field to
zero, and this is a consequence of the static and spherically symmetric ansatz we adopted.
We could alternatively decide to relax this spherical symmetry and work with axially sym-
metric solutions: this would allow for vortex-like configurations, in which magnetic flux
lines are squeezed together by the Meissner effect. Examples of vortices emanating from

16In the context of microstate counting, wrapped D3 branes in Euclidean signature have recently played
a role in [69]. There it was shown that non-perturbative corrections due to the D3 branes rule out some of
the extra gravitational solutions allowing for a precise one to one match with the field theory duals.
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rotating black holes have been found numerically for instance in [70]. Finding stationary
black hole backgrounds would entail solving coupled PDEs and would complicate our anal-
ysis considerably, but it would certainly be very interesting to see if the presence of this
vortex solution, which microscopically corresponds to strings stretched between various
branes [23], would alter the probe brane analysis.

Third, for planar horizons we have found an instability towards nucleation of spacetime
filling M2 branes. This is of the same form as in [43], where five-dimensional black branes in
the conifold T 11 theory were found to be unstable towards the emission of spacetime filling
D3 branes. In both cases this phase transition is triggered not by the baryonic charges, but
by the R-symmetry. It would be good to investigate whether the Weak Gravity Conjecture,
which states that the quantum corrections should decrease the relative mass to charge ratio,
so that the extremal black branes can decay, plays any role in our analysis. Moreover, it
would be interesting to examine for our backgrounds a decay channel known as brane-jet
instability [71], along the lines of [72].

Let us conclude with some observations. In [18] the tunnelling probability of metastable
probes was related to the relaxation dynamics of glassy systems. In particular, the authors
found that a cloud of (finely spaced) metastable probes exhibits logarithmic aging behavior,
for which an observable O will evolve schematically like O(t)−O(t0) = − log(t/t0), typical
of glasses. In other words, there is no time translation invariance in the system, but rather a
scale invariance. Their computation considered the time evolution of the probe number den-
sities, and took into account that there is a correlation between distances from the horizon
and barrier heights, with the probes closest to the black hole having relatively low absorp-
tion barriers, and therefore short lifetimes, and those far away having the longest lifetimes.
In our case, we find the same qualitative behaviour (see section 5.2.2) regarding barrier
height and horizon distance, and a more thorough analysis would be desirable to show the
same logarithmic law. This, together with the computation of the viscosity via holography,
from the cross section of low energy gravitons, as done in [73], would allow us to corroborate
the picture that relates these multicentered bound systems to the physics of glass.

Lastly, in addition to the already mentioned applications to relaxation dynamics and
glassy physics, we would also like to point out that a more careful study of bound states
with supersymmetry would be desired, in relation to the phenomenon of wall-crossing for
AdS4 black holes. It would be necessary first of all to identify in this context what serves
the role the moduli that control the decay at marginal stability, and a more thorough
investigation of the supersymmetric indices (whose computation is problematic for single
center black holes already) would be desirable.

We hope to come back to all these points in the near future.
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A Reduction to IIA and fluxed D6 probe action

A.1 Reduction to IIA

The reduction from 11d supergravity with metric gµν and three-form field Cµνρ (µ, ν =
0, . . . 10) results in the type IIA supergravity theory in ten dimensions with indices denoted
by α, β = 0, . . . 9 whose bosonic fields are the metric, dilaton and Kalb-Ramond field, as
well as the RR 1-form and 3-form

gαβ ,Φ, Bαβ , Cα, Cαβγ (A.1)

The field Bαβ is an antisymmetric two-form field, and the field Φ is a scalar (the dilaton,
not to be confused with the hyperscalar φ).

We will formally reduce the Sasaki-Einstein manifold Q111 along the coordinate ψ
to get a IIA supergravity theory. It is a well-known fact that the reduction along this
coordinate does not lead to a supersymmetric background, see for instance [56, 57], but
this will not be necessary for our purposes.17 We use the standard decomposition [74]

ds2
11 = e−2Φ/3gαβdx

αdxβ + e4Φ/3(dψ + Cαdx
α)2 . (A.2)

For the 11d truncation on Q111 of [30] we have:

ds2
11,C =

(
σ2τ1τ2τ3

)2/3
K−1ds2

4 +
(
σ2τ1τ2τ3

)−1/3
ds2(B6) +

(
σ2τ1τ2τ3

)2/3
(θ +A0)2 =

=
(
σ2τ1τ2τ3

)2/3
τ1τ2τ3

ds2
4 +

(
σ2τ1τ2τ3

)−1/3
ds2(B6) +

(
σ2τ1τ2τ3

)2/3
(θ +A0)2 , (A.3)

where we took into account that 8K = e−K and we remind the reader that

θ = dψ + σ1 + σ2 + σ3 = dψ + 1
4(cos θ1dφ1 + cos θ2dφ2 + cos θ3dφ3) . (A.4)

The dilaton is then
Φ = 1

2 log(σ2τ1τ2τ3) . (A.5)

From the 10-dimensional perspective, we have the metric

ds2
10 = σ2ds2

4 + τ1
8
(
dθ2

1 + sin2 θ1dφ
2
1

)
+ τ2

8
(
dθ2

2 + sin2 θ2dφ
2
2

)
+ τ3

8
(
dθ2

3 + sin2 θ3dφ
2
3

)
,

(A.6)
17Later on we are going to wrap a D6 brane on the six dimensional internal manifold of topology S2×S2×

S2. Like in the case analyzed in [51], the probe action will take a “BPS form” linear in the charges, even in
absence of supersymmetry. Roughly speaking, this is possible because the geometry is large, so any possible
corrections to the leading-order classical geometric brane energy formula, which happens to take the form
M = |Z|, are small (one could say that this form is not so much “BPS” but rather “geometric” or “classical”).
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and the Ramond-Ramond field Cα, obtained from the metric component gµψ

Cα = σ1 + σ2 + σ3 +A0 , (A.7)

where A0 is the graviphoton.
Furthermore, we have the 10-dimensional three-form Cαβγ , coming from the M-theory

3-form which can be decomposed into basis forms on the four-dimensional noncompact
space

Cµνρ = C3 + B̃ ∧ (θ +A0)−Ai ∧ ωi + ξAαA − ξ̃AβA + biωi ∧ (θ +A0) . (A.8)

Here C3 is a three form (which in our case will only have components along the AdS4 direc-
tions), B̃ is a (four-dimensional) two-form, Ai are 3 vectors and αA, βA are 2 three forms on
B6. For the solutions we will be interested in, we have that ξA = 0 = ξ̃A: these are part of
the hyperscalars that are set to zero. We will moreover consider purely electric and purely
magnetic configurations with zero axions, bi = 0. The M-theory 4-form flux then reads

F4 = dC3 + dB̃ ∧ (θ +A0) +H i
2 ∧ ωi (A.9)

and where θ is defined in eq. (2.21). The ψ component of the form Cµνρ, which becomes
the NS NS B- field,

B = B̃ (A.10)

only has components in four dimensions. The two form B̃ is dual to the massive vector
field (see for instance [34]). The rest of the components of the M-theory form become the
Ramond-Ramond 3 form

dCαβγ = H4 + dB ∧ (σ1 + σ2 + σ3 +A0) +H i
2 ∧ ωi . (A.11)

A.2 DBI action for fluxed D6 branes

The Lagrangian for the type IIA theory is

SIIA = 2π
g2
sL

8
s

∫
d10x
√
−g
[
e−2φ

(
R+ 4(∇φ)2 − 1

12H
2
3

)
− 1

2F2 ∧ ?F2

− 1
2 F̃4 ∧ ?F̃4 −

1
2B ∧ F4 ∧ F4

]
, (A.12)

with F2 = dC1, F̃4 = dC3 − C1 ∧H3, H3 = dB and F4 = dC3. We follow the conventions
of [75], which were also adopted in [51]. We will now consider now a D6 brane that wraps
the six internal dimensions.18 We split the DBI action into in two parts:

SDp = Sm + SWZ , (A.13)

with

Sm = − 2π
gsL

p+1
s

∫
dp+1e−Φ

√
−det(g + L2

sF) , SWZ = 2π
gsL

p+1
s

∫ ∑
n

Cn ∧ eL
2
sF (A.14)

18Let us also mention that the bare masses for D-branes in AdS4×CP 3 compactifications were computed
in [76].
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and
F = 1

L2
s

Bαβ + 1
2πdA

(1) (A.15)

where A(1) is the U(1) gauge field living on the worldvolume, Φ is the string theory dilaton.
As for the embedding ansatz, we have coordinates τ, θ1, φ1, θ2, φ2, θ3, φ3 where τ goes from
−∞ to +∞ and 0 ≤ θi < π, 0 ≤ φi < 2π. The D6 brane wraps the entire 6-manifold ob-
tained upon reduction from 11d to IIA, once around each S2, and looks like a particle in 4d.

We take the worldvolume flux to be:19

L2
sF = f(ω1 + ω2 + ω3) . (A.16)

Looking at the NS NS B-field in (A.10), we notice that for our backgrounds the two form
B is

dB ∝ ?4B , (A.17)

and the massive vector B has only component along the time direction. Therefore the ?4B
is aligned in r, θ, φ directions: this part does not contribute to the action because it is zero
on the brane. In addition, the term in bi is zero due to the absence of axions (also see
covariant derivative, as defined in (2.18)). Summing up the contributions we get

Sm = −2π
∫
d7xe−Φ

√
−det (g + fJ)

= −2π
∫
d7x

e−Φ

83

√
τ2

1 τ
2
2 τ

2
3

(
τ2

1 + f2)
τ2

1

(
τ2

2 + f2)
τ2

2

(
τ2

3 + f2)
τ2

3
σ
√
gtt

= −2π4
∫
dt

π3

8√τ1τ2τ3

√(
τ2

1 + f2) (τ2
2 + f2) (τ2

3 + f2)√gtt . (A.18)

In passing, we notice the cancellation between the dilaton and the prefactor in the rescaled
10d gtt component. In going from the second to the third line we have integrated over the
angular coordinates θi, φi: each 2-sphere gives a factor 4π. We can rewrite the formula we
have found as

Sm = −2π4
∫
dt

π3

23√τ1τ2τ3

√
gtt|(τ1 + if)(τ2 + if)(τ3 + if)| , (A.19)

and we notice, as in [51], that Sm becomes then proportional to the absolute value of
the so-called “complexified Kähler volume”, obtained by modifying J → JC ≡ J + iLsF .
Towards the end of this section, we will see that this part can be conveniently repackaged
in terms of four-dimensional N = 2 supergravity quantities.

Now we have to unpack the Wess Zumino (WZ) piece of the DBI. We denote with Ci
the RR forms. We have

SWZ = 2π
gsL7

s

[∫
C7 + L2

s

∫
C5 ∧ F + L4

s

2

∫
C3 ∧ F ∧ F + L6

s

6

∫
C1 ∧ F ∧ F ∧ F

]
≡ SWZ,D6 + SWZ,D4 + SWZ,D2 + SWZ,D0 (A.20)

19This flux should be quantized in units of α′ but we can regard it as a continuous parameter: we consider
fluxes of order one, therefore we have a large number of dissolved D- branes (though compatible with the
probe approximation).
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First of all, the term
SWZ,D0 = 2π

gsLs

1
6

∫
C1 ∧ F ∧ F ∧ F (A.21)

picks up the 0-th component of the RR field C1, which upon reduction from 11d is (A.7).
Given the form of the worldvolume flux (A.16), this term gives rise to this:

SWZ,D0 = 2π
gsL7

s

(4π)3

83

∫
dtA0

t f3 = π4

4gsL7
s

∫
dtA0

t f3 . (A.22)

Secondly, the term
SWZ,D2 = 2π

gsL3
s

1
2

∫
(C3 ∧ F ∧ F) (A.23)

where we need to have the zeroth (t-) component of C3. It gives

SWZ,D2 = − 2π
gsL7

s

(4π)3f2

2× 83

∫
dt 2× (A1

t +A2
t +A3

t ) = − π4 f2

4gsL7
s

∫
dt (A1

t +A2
t +A3

t ) , (A.24)

where we took into account the minus sign coming from (A.8). We then have the piece

SWZ,D4 = 2π
gsL5

s

∫
(C5 ∧ F) , (A.25)

where C5 is20

dC5 = − ?10 (dC3 − C1 ∧H3)− C3 ∧H3 . (A.30)

This term gives

SWZ,D2 = 2π
gsL7

s

(4π)3

83

∫
dt f

( 3∑
i=1

Bi,t

)
, (A.31)

where BI are the magnetic gauge potentials, defined as

dBI = GI GI = 2 ∂L
∂Fµν,I

(A.32)

Finally,
SWZ,D6 = 2π

gsL7
s

∫
C7 , (A.33)

20The RR dual forms C5 and C7 are defined such that the Bianchi identities for these coincide with the
Maxwell’s equations for the dual fields C3 and C1. Indeed we define

F̃6 = dC5 + C3 ∧H3 , F̃8 = dC7 + C5 ∧H3 . (A.26)

Demanding that the Bianchi identities dF̃6 = dC3 ∧H3 and dF̃8 = dC5 ∧H3 coincide with the Maxwell’s
equation of motion for C3 and C1 we get

F̃6 = − ?10 F̃4 , ?10F2 = F8 , (A.27)

giving in total

dC5 = − ?10 (dC3 − C1 ∧H3)− C3 ∧H3 , (A.28)
dC7 = ?10 dC1 − C5 ∧H3 . (A.29)

Notice that this is consistent with the remarks on the dual pairs after formula (11) in [75].
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with
dC7 = ?10 dC1 − C5 ∧H3 (A.34)

gives

SWZ,D6 = 2π
gsL7

s

(4π3)
83

∫
dtB0,t . (A.35)

From these computation, we can seen now that the D-brane charges are

γ = (qD6, qD4, qD4, qD4, qD0, qD2, qD2, qD2) =
(
1, f , f , f , f3, f2, f2, f2

)
, (A.36)

where the D6 brane corresponds to the supergravity charge P0, the induced charges of
the D4 branes wrapped on different 4-cycles of B6 correspond to the supergravity probes
charges P1,P2,P3, D2 branes wrapped on different 2-cycles of B6 are Q1,Q2,Q3 and
the D0 brane charge in the 4d supergravity21 conventions corresponds to −Q0. We have
verified that this charge assignment can also be obtained from the lower dimensional su-
pergravity theory by requiring that the discriminant D(γ) (also called “quartic invariant”
I4) is invariant under the shift of charges described in section 4.1 of [10].

At the end of the day the WZ part of the action takes the form

SWZ = SWZ,D0 + SWZ,D2 + SWZ,D4 + SWZ,D6 =

= π4

4gsL7
s

∫
dt

(
B0,t × 1 +

( 3∑
i=1

Bi,t

)
× f−

( 3∑
i=1

Ait

)
× f2 +A0

t × f3
)
. (A.37)

This can be rewritten in a more compact form by defining the four-dimensional symplectic
vector of electromagnetic charges

Γ = (P0,P1,P2,P3,Q0,Q1,Q2,Q3) =
(
1, f , f , f ,−f3, f2, f2, f2

)
. (A.38)

In this way, the full SWZ reads

SWZ = π4

4gsL7
s

∫
(−QIA

I + PIBI) = − π4

4gsL7
s

∫
〈A,Γ〉 , (A.39)

where A = (AI , BI) is the symplectic vector of the electric and dual magnetic potentials,
BI being the dual potentials to the gauge fields AI defined as in (A.32) and the probe
charge vector γ is defined in (A.36). The symplectic product between two vectors m,n,
such that m = (mI ,mI), n = (nI , nI), is defined as

〈m,n〉 = mInI − nImI . (A.40)

We can now repackage the first term, Sm in the DBI action, which reads
1

2
√

2√τ1τ2τ3
|(τ1 + if)(τ2 + if)(τ3 + if)| = (A.41)

= 1
2
√

2√τ1τ2τ3

(
f6 + f4(τ2

1 + τ2
2 + τ2

3 ) + f2(τ2
1 τ

2
2 + τ2

3 τ
2
1 + τ2

2 τ
2
3 ) + τ2

1 τ
2
2 τ

2
3

)1/2

21The minus sign in qD0 = −Q0 is due to a trivial difference in conventions and was already noticed
in [51], section 4.3.
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in terms Z ≡ 〈V ,Γ〉, the central charge of the N = 2 theory, defined by the symplectic
product of the vector of the electromagnetic charges Γ and the covariantly holomorphic
sections V defined in (2.12). Using (A.38), this reads

|Z(τ i,Γ)|2 = 1
8τ1τ2τ3

(
f2τ2

2 τ
2
1 + f2τ2

2 τ
2
3 + f4τ2

2 + f2τ2
1 τ

2
3 + f4τ2

1 + f4τ2
3 + f6 + τ2

2 τ
2
1 τ

2
3

)
,

(A.42)
which matches with (A.41). In total for Sm we then have

Sm = − π
4
√

2

∫
dt
√
gtt |Z(τ i,Γ)| . (A.43)

Apart from overall normalization factors, this expression reproduces formula (4.11) of [51]:
there it is shown that the gravitational part of the DBI action for a fluxed D6 brane
wrapped around CP3 becomes proportional to the absolute value of the central charge |Z|.
Here we have shown that the same is valid for a fluxed D6 brane wrapping the 6d manifold
obtained by the reduction on ψ of the compactification on Q111.

Hence in total we arrived at the following probe action:

S = − π
4
√

2

∫
dt
√
gtt |Z(τ i,Γ)| − π4

4

∫
〈A,Γ〉 . (A.44)

In asymptotically flat spacetimes the energy of a BPS state is obtained as its eigenvalue
under the action of the central charge operator appearing in the N = 2 superalgebra.
In AdS4 spacetimes this we cannot directly apply this reasoning since there is no such
central charge operator in any of the two possible superalgebras allowed in N = 2 gauged
supergravity [77]. As noticed in [51], it is nevertheless remarkable that the form of the
probe action obtained from the DBI resembles the one of flat space.

As a final remark, let us mention that the total probe action (A.44) we obtained
(written in the frame with stu prepotential) reduces22 to formula (4.11) of [51] for the
choice X1 = X2 = X3, and probe charges Q1 = Q2 = Q3 and P1 = P2 = P3. Their setup
corresponds moreover to the black hole background charges Q0 = P i = 0, i = 1, 2, 3.

B Q111 black hole solutions with supersymmetry

We give here a brief summary of the details of the supersymmetric solutions of Halmagyi-
Petrini-Zaffaroni [38].23 The latter paper analytically constructs the near-horizon AdS2×Σg

geometry of supersymmetric black holes in various SE7 truncations, including the models
arising from Q111 and M111, in the mSTU prepotential. The geometry interpolating
between the near horizon geometry and the asymptotically AdS4 space is constructed
numerically by solving the ODEs from the Killing spinor equations.

22Apart from some normalization factors in the charges, due to the fact that in [51] the chosen model has
prepotential F ∝ (X1)3

X0 , namely sections and gauge fields are identified from the start, while in our model
they are kept different and are identified only a posteriori.

23Subsets of the solution space were found also in [78, 79]. See [62, 80, 81] for other studies regarding
supersymmetric AdS2 near horizon geometries in Sasaki-Einstein truncations and black hole microstates.
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The conditions to preserve supersymmetry are

PΛP 3
Λ = −κ , (B.1)

PΛkuΛ = 0 , (B.2)

and

LΛ
r P

3
Λ = 0 , (B.3)

LΛ
i k

u
Λ = 0 , (B.4)

where LΛ is
LΛ = LΛ

r + iLΛ
i = −eK/2XΛ . (B.5)

For concreteness, we will focus on the M111 model with Freund-Rubin parameter24

e0,HPZ = 6. Inserting the values of the prepotentials P 3
Λ and the quaternionic Killing

vectors kuΛ

P 3
Λ =
√

2
{

4− 1
2e

2φe0,−2e2φ,−eφ
}
, (B.6)

kaΛ = −
√

2{e0, 4, 2} . (B.7)

The NH geometries of [38] are of the form

ds2 = −R2
1r

2dt2 + dr2

r2R2
1

+R2
2(dθ2 + f(θ)2dφ2) , f(θ) =

 sin θ for κ = 1
sinh θ for κ = −1

(B.8)

with gauge fields

AΛ = q̃Λrdt+ PΛf ′(θ)dφ , (B.9)

q̃Λ = − 1
R2

2

(
ImNΛΣReNΣΓP

Γ + ImNΛΣQΣ
)
, (B.10)

and constant values of the scalars. The conditions for supersymmetry leave a two-
dimensional parameter space given by

b3 = b1 , τ3 = τ1 , P 3 = P 1 , Q3 = Q1 , (B.11)

with

b1 = ε2

√
τ1(6− 2τ1(τ1 + 2τ2))

2(τ1 + 2τ2) ,

b2 = −(τ1 + τ2)b1
τ1

,

e2φ = σ2 = 4(τ1 + 2τ2)2

2τ4
1 + 8τ3

1 τ2 + (18 + 8τ2
1 )τ2

2
,

R1 = τ1
√
τ2

4 ,

R2
2 = κR2

1
(2τ4

1 + 8τ3
1 τ2 + (18 + 8τ2

1 )τ2
2 )

τ2(18τ2 − 4τ1(τ1 + 2τ2)2) , (B.12)

24Let us remind the reader that our conventions are such that e0,HPZ = 6e0,ours.
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and charges

P 0 = − 1
4
√

2
,

P 2 = 3
4
√

2
− 2p1 ,

P 1 = − 3
4
√

2
2τ4

1 − 18τ2(τ1 + τ2) + 12τ2
1 τ2(τ1 + 2τ2) + 16τ1τ

3
2

(τ1 + 2τ2)(18τ2 − 4τ1(τ1 + 2τ2)2) ,

Q0 = −ε2κ16

√
τ1(6− 2τ1(τ1 + 2τ2))

2(τ1 + 2τ2)

×
(

8τ6
1 − τ2(τ1 + τ2)(108 + 24τ2

1 − 48τ4
1 ) + 48τ4

1 τ
2
2 + 8τ1τ

3
2 (6 + 8τ2

1 )
18τ2 − 4τ1(τ1 + 2τ2)2

)
,

Q1 = −ε2κ8

√
τ1(6− 2τ1(τ1 + 2τ2))

2(τ1 + 2τ2)
18τ2 − 2τ1(τ1 + 2τ2)2

18τ2 − 4τ1(τ1 + 2τ2)2 ,

Q2 = −ε2κ8

√
τ1(6− 2τ1(τ1 + 2τ2))

2(τ1 + 2τ2)
4τ4

1 + τ2(16τ2
1 − 18)(τ2 + τ1)

18τ2 − 4τ1(τ1 + 2τ2)2 . (B.13)

The supersymmetry conditions allow for the axions bi to vanish and for purely magnetic
solutions. One choice is this

6− 2τ1(τ1 + 2τ2) = 0 → τ2 = 3− τ2
1

2τ1
. (B.14)

The near horizon solution is then

Q0 = Q2 = Q3 = 0 , P 0 = − 1
4
√

2
, P 2 = 3

4
√

2
− 2P 1 , (B.15)

with

P 1 = − τ2
1
(
τ2

1 − 3
)

4
√

2
(
τ2

1 + 1
) , (B.16)

and25

R2
1 = τ1

32
(
3− τ2

1

)
, R2

2 = −κτ1
(
τ4

1 − 2τ2
1 + 9

)
32
(
τ2

1 + 1
) . (B.17)

Solutions with positive values of R1 andR2 and scalars inside the Kähler cone exist, however
they need κ = −1 (for instance, κ = −1, τ1 = 1.14173 gives R2

1 ≈ 0.06 and R2
2 ≈ 0.125). As

a consistency check, we have verified that these configurations are solutions to our equations
of motion.26 In the main text, we show that we have constructed full-flow solutions with
sets of charges satisfying (B.12)–(B.13) and close to extremality from or system of second
order equations of motion.

25We thank Hyojoong Kim for pointing out a typo (which did not propagate in the subsequent steps) in
the value of R2 in the first version of the manuscript.

26Our conventions differ from those of [38] by a factor in the definition of the charges, i.e. PΛ
HPZ = 1√

2P
Λ
ours.
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C Exact solutions from the S7 truncation

Analytic AdS4 black hole solutions exist in N = 2, U(1)-gauged supergravity in the ab-
sence of hypermultiplets (with Fayet-Iliopoulos gauging). This theory comes from the
reduction of 11 dimensional supergravity on S7 [82] and is characterized by prepotential
F = −2i

√
X0X1X2X3. The black holes are found as solutions to the equations of motion

of the Lagrangian

L = R

2 + gīDt
i ∧ ∗Dt̄̄ + 1

4 ImNΛΣF
Λ ∧ ∗FΣ + 1

4ReNΛΣF
Λ ∧ FΣ + V , (C.1)

with the same gī and NΛΣ as in (2.2) and (2.4). Assuming τ i real and positive, the
potential reads

V = −2g2
( 1
τ1

+ τ1 + 1
τ2

+ τ2 + 1
τ3

+ τ3

)
. (C.2)

The purely electric solutions that we are interested in are of the form [52]

ds2 = −U2(r)dt2 + dr2

U2(r) + h2(r)(dθ2 + sin2 θdφ2) , (C.3)

with warp factors

h2(r) = r2√H0H1H2H3 , HΛ = 1 + bΛ
r
, (C.4)

U2(r) = 1√
H0H1H2H3

(
1− µ

r
+ 2g2r2H0H1H2H3

)
, (C.5)

and purely electric gauge fields

FΛ
rt = 1

2
√

2h2 ImN
ΛΣQΣ , (C.6)

scalars

τ1 =
√
H2H3
H0H1

, τ2 =
√
H1H3
H2H0

, τ3 =
√
H2H1
H0H3

, (C.7)

with parameters

bΛ = µ sinh2(qΛ) , QΛ = µ sinh(qΛ) cosh(qΛ) . (C.8)

These solutions can be uplifted to 11-dimensional supergravity on the seven-sphere and
they can be interpreted as spinning M2 branes [83]. Notice that the black hole horizon
is located at the largest real zero of the function U2(r) and the singularity is at the zero
of H0H1H2H3 which is usually located at a finite nonzero radial coordinate. When the
gauging is turned off g = 0 these solutions become non extremal black holes with Minkowski
asymototics, solutions of theories of ungauged supergravity. Upon further setting µ = 0
and qΛ = bΛ, we retrieve the 1/2 BPS black hole solutions of [84].

The thermodynamics of these solutions was studied in [85] and, in a different symplectic
frame, in [18]. In the latter paper, a detailed analysis of stability of probe D-branes on
the black hole background, which provides a simple adaptation of the D0-D4 system to
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Figure 13. Example of fluxed D6 brane potential for the spherical AdS4 solution from the S7

truncation. The plot is for the parameters lAdS = 1/2, T = 0.05(blue), 0.11(orange), 0.38(green),
with probe charge κ = 0.44. For each of the solutions we have shifted the radial coordinate in such
a way that the horizon is at r = 0.

asymptotically AdS spacetimes, was performed. The probe action [50], is again composed
of two parts

VD6 = Vg + Ve , (C.9)

with
Vg = √gtt |Z(Γ, τ i)| , Ve = QΛA

Λ − PΛBΛ , (C.10)

where we have used the same notation as in (5.9). This form for the probe action, originally
assumed in [18], was later shown to be can be derived from the DBI action of a fluxed
D6 brane in [51]. One of the main messages on [18] and the previous related studies in
asymptotically flat spacetimes [10] is that the black hole bound states initially found by [4,
5] in the form of BPS configurations persist at finite temperature, even in asymptotically
AdS spacetimes. Indeed there are regions of parameter space where configurations of stable
and metastable probes exist in the background of the black holes (C.3)–(C.8), the precise
region was spelled out in detail in the grand canonical ensemble. It is relatively easy to
translate their results in the canonical ensemble (fixed charge), and one can indeed provide
examples of stable and metastable probes such as those in figure 13.

For our purposes, the study in the canonical ensemble that we have illustrated in this
section was instrumental in providing an adequate guess on the region of parameters in
which one could reasonably expect stable probes. Thanks to this intuition we could find
the stable probes of section 5.2.2, see figure 5. This notwithstanding, finding stable probes
in our model was a nontrivial task, due to the fact that we had to take into account also
the presence of hypermultiplets, which give mass to one of the vectors, and this made the
numerical work challenging.

As a last remark, we point out that there exist also purely magnetic solutions with
a regular supersymmetric limit [39, 86, 87] and without axions. The solution can have

– 45 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
9

spherical, planar and hyperbolic horizons, and reads

U2(r) = 1√
H0H1H2H3

(
2g2r2 + c1 −

µ

r
+ c2
r2

)
, h2(r) = r2√H0H1H2H3 , (C.11)

with
HΛ = 1 + bΛ

r
, FΛ

θφ = 1
2
√

2
PΛf ′(θ) , (C.12)

scalars

τ1 =
√
H0H1
H2H3

, τ2 =
√
H2H0
H1H3

, τ3 =
√
H0H3
H2H1

, (C.13)

with parameters

3∑
Λ=0

bΛ = 0 , c1 = κ+ 2b0g2(b1 + b2 + b3) + 2b1g2(b2 + b3) + 2b2b3g2 . (C.14)

Eliminating one of the scalar parameters, for example b3, we obtain

(P 0)2 = −b20
(
2b21g2 + 2b1b2g2 + 2b22g2 + 1

)
− 2b30g2(b1 + b2) + b0µ+ c2 ,

(P 1)2 = −b21
(
2b20g2 + 2b0b2g2 + 2b22g2 + 1

)
− 2b31g2(b0 + b2) + b1µ+ c2 ,

(P 2)2 = −b22
(
2b20g2 + 2b0b1g2 + 2b21g2 + 1

)
− 2b32g2(b0 + b1) + b2µ+ c2 ,

(P 3)2 = 2g2(b0 + b1 + b2)2(b0(b1 + b2) + b1b2)− b20 − 2b0(b1 + b2)− b21 +
−2b1b2 − b22 + c2 − µ(b0 + b1 + b2) , (C.15)

with supersymmetric limit obtained when

c2 = c2
1

8g2 . (C.16)

Scanning the parameter space to the best of our possibilities, we could not find stable
or metastable probes with these backgrounds. This result goes in the same direction
as section 5.2.4, denoting the absence of stable probes on these sort of supersymmetric
magnetic backgrounds.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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