PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: November 19, 2020

REVISED: January 13, 2021
ACCEPTED: January 19, 2021
PUBLISHED: February 26, 2021

Functional prescription for EFT matching

Timothy Cohen,® Xiaochuan Lu® and Zhengkang Zhang®
@ Institute for Fundamental Science, University of Oregon,
Eugene, OR 97403, U.S.A.

bWalter Burke Institute for Theoretical Physics, California Institute of Technology,
Pasadena, CA 91125, U.S.A.

E-mail: tcohen@uoregon.edu, xluGuoregon.edu, zkzhang@caltech.edu

ABSTRACT: We simplify the one-loop functional matching formalism to develop a stream-
lined prescription. The functional approach is conceptually appealing: all calculations are
performed within the UV theory at the matching scale, and no prior determination of
an Effective Field Theory (EFT) operator basis is required. Our prescription accommo-
dates any relativistic UV theory that contains generic interactions (including derivative
couplings) among scalar, fermion, and vector fields. As an example application, we match
the singlet scalar extended Standard Model (SM) onto SMEFT.

KEYWORDS: Beyond Standard Model, Effective Field Theories

ARX1v EPRINT: 2011.02484

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP02(2021)228


mailto:tcohen@uoregon.edu
mailto:xlu@uoregon.edu
mailto:zkzhang@caltech.edu
https://arxiv.org/abs/2011.02484
https://doi.org/10.1007/JHEP02(2021)228

Contents

1 Introduction 1
2 One-loop matching from functional supertraces 4
3 Enumerating supertraces 7
4 Evaluating supertraces 9
5 Summary: prescription for functional matching 13
6 Example: singlet scalar extended Standard Model 14
7 Outlook 23
A Comparison with previous approaches 24
B Interaction matrix for the singlet scalar model 27
C Evaluated supertraces for the singlet scalar model 31
D Summary of results for the singlet scalar model 34

1 Introduction

Effective Field Theory (EFT) approaches have wide-ranging applications across many areas
of physics, and are especially useful when one encounters a system that has a large hierarchy
of dimensionful scales, see e.g. refs. [1-9] for reviews. An EFT provides a more transparent
expression of a theory’s IR dynamics with the added benefit that one can systematically
sum IR logarithms using renormalization group techniques. Such frameworks can be useful
purely from the bottom up: one specifies the dynamical degrees of freedom along with
their transformations under a set of symmetries, and identifies a small power counting
parameter to organize the operator expansion. In this sense EFTs are “model independent,”
and as such they provide a compelling approach for classifying observables to facilitate
comparisons against data. On the other hand, the EFT paradigm is also useful when
applied from the top down. In scenarios where the (more) fundamental UV description of
the system is calculable, one can “match” it onto an EFT by “integrating out” the heavy
states. This relates the Wilson coefficients in the EFT to the microscopic parameters
of the UV theory, and enables the interpretation of experimental measurements and/or
constraints on the Wilson coeflicients in the context of specific UV models.
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Figure 1. This figure contrasts the procedure one follows for two different approaches to EFT
matching. Amplitude matching [left] requires first working out a basis of EFT operators, and then
determining their coefficients {¢;} by equating a carefully curated set of low-energy amplitudes
that must be computed twice, first using the UV theory and then again using the EFT. Functional
matching [right] provides a more direct route from Lyvy to LgrT, which requires neither constructing
an EFT operator basis in advance nor computing low-energy amplitudes. This paper establishes
a concise, readily accessible, four-step prescription (represented by the four colors) for functional
matching up to one loop order, as summarized in section 5.

Our focus here is on the methodology for matching a UV theory onto an EFT in this
top-down approach. Concretely, we consider a UV theory Luy|[p] with a mass hierarchy
among the fields ¢:

p=(2,¢), with  me>my, (1.1)

where we are denoting the heavy (light) fields with ® (¢). We would like to integrate out
the heavy fields ® to obtain Lgpr[¢]. In this case, the EFT power counting is simply set
by the mass ratio mg/me. More generally, the discussion that follows may be extended to
other cases where the power counting parameter is set by a kinematic restriction, provided
there is a clear separation between “hard” and “soft” modes.

A familiar strategy to derive Lgpr[¢] is to match low-energy amplitudes between the
UV theory and the EFT, as illustrated in the left panel of figure 1. In this approach, one
must first work out all the EFT operators, leaving only their coefficients {¢;} to be deter-
mined, and then identify a set of amplitudes to compute (typically via Feynman diagrams)
that can be used to solve for all these coefficients. This procedure is computationally expen-
sive, and typically requires significant human intervention. Furthermore, it critically relies
on performing amplitude calculations, which is conceptually a separate task and requires
keeping track of IR details.

In this work, we use functional methods to tackle the problem of EFT matching. In-
stead of matching individual amplitudes, the idea is to equate their generating functionals,



the one-(light-)particle-irreducible (1(L)PI) effective actions:

I'err(¢] = T, uv]9] . (1.2)

At tree-level, this yields the familiar result:

tree
Fi, U\)/ [¢] = Suv [Q), (b] ‘QZ(DC (¢] (tree)
(tree) (tree) —  Lgpr [¢] = EUV[(I)’QZ’]'@:%M ’ (1.3)
FEFT [¢] = SEFT M

where S = [ d%z £ denotes the action, and ®.[4] solves the classical equations of motion
(EOMs) for the heavy fields:

6Suv ] _o. (1.4)

0 lp=a.py
Obviously, solving the EOMs provides a more direct route to obtain .nge;) [¢] than com-
puting amplitudes.

The efficacy of functional matching extends beyond tree level. Critically, at one loop,
eq. (1.2) allows us to systematically solve the matching condition once and for all, and to
derive an expression for ES;%OP) directly in terms of Lyy. This is achieved by using the
method of regions [10, 11] to split the UV 1LPI effective action into hard and soft region

contributions:

1-1 1-1 1-1
rieerg) =i (9] +TH P[]

1.5
hard ( )

soft '
obtained by expanding all loop integrands assuming the loop momentum g ~ me > my
and ¢ ~ my <K mg, respectively, before performing the integration using dimensional
regularization. On the other hand, the EFT 1PI effective action receives contributions
from both operators with one-loop-generated matching coefficients used at tree (classical)
level and one-loop amplitudes computed with the tree-level EFT operators:

I’g;f;()p) (9] = SSI;{FOP) (o] + <1—100p contributions from ESE%?) [gb]) . (1.6)

One can show that the second term in eq. (1.5) is identical to the second term in
eq. (1.6) [12-14]. The matching condition therefore becomes

[t cieie = Tl (17)

hard
The intuition here is that a highly virtual loop whose momentum is outside the EFT regime
(g ~ ma > my) should be encoded by local operators within the EFT. Importantly, when
using eq. (1.7), one does not have to guess what effective operators will be generated by
integrating out the heavy states, and can fully disentangle the task of “matching” from the
IR aspects of amplitude calculations.

Despite these advantages, some technical aspects of one-loop functional matching have
only been firmly established recently, as demonstrated in the contexts of the Standard
Model EFT (SMEFT) [15-24], Higgs EFT (HEFT) [25], as well as non-relativistic EFTs
such as the Heavy Quark Effective Theory (HQET) [26]. The goal of this paper is to make



these technical advances more easily accessible by devising a streamlined prescription. Our
new formulation, summarized in the right panel of figure 1, highlights the simplicity and
efficiency at the core of the functional approach. It can be applied to integrating out any
perturbative UV states in a relativistic theory, regardless of the interaction structure.

The rest of this paper is organized as follows. We begin in section 2 by setting up
the framework for functional matching calculations. As we will show, the key objects
are a set of functional supertraces that take very specific forms. One-loop matching is
essentially reduced to (i) enumerating the relevant supertraces, and (i7) evaluating them
to simultaneously obtain the effective operators and their coefficients. In section 3, we
develop step (i) and show how the infinite series of functional supertraces can be organized
graphically in the spirit of ref. [14] (though the graphs presented here are technically
different). In section 4, we explain step (iz). This is usually the most tedious step, but
given its algorithmic nature, we have developed a Mathematica package that automates
the process using the covariant derivative expansion (CDE) technique [27-29]; see our
forthcoming paper [30] for details. All these steps can be summarized into a simple practical
prescription, which we present in section 5 as the central result of this work. To demonstrate
the prescription in detail, we reproduce the results for an example of phenomenological
interest in section 6: matching the singlet scalar extend SM onto SMEFT up to dimension
six, which was first studied comprehensively in ref. [31] and later reconsidered in ref. [32].
Finally, we conclude in section 7 and discuss some future directions.

The streamlined approach presented here improves upon previous works on one-loop
functional matching. The interested reader can find a brief comparison to the recent liter-
ature in appendix A. Technical details for the matching example in section 6 are provided
in appendices B, C, and D.

2  One-loop matching from functional supertraces

Similar to the classic Coleman-Weinberg potential calculation, the one-loop 1LPI effective

action, I S'[lf\?p) in eq. (1.7) yields the logarithm of a functional superdeterminant:*

<I)—¢'c[¢]>

where ®.[¢] is the solution to the heavy fields’ EOMs. The functional derivative here
generally consists of an inverse propagator part and an interaction part, such that

. 2
/ dda £GP (9] = %log Sdet (—5 Suy : (2.1)

dp?

hard

/ Atz LU0 [¢] = % log Sdet(K — X)| = % STrlog(K — X) (2.2)

hard hard '

“

We will explain the derivation of this equation shortly, and discuss the forms of the “in-
verse propagator matrix” K and “interaction matrix” X (see egs. (2.8) and (2.14) below).

!A superdeterminant “Sdet” is a generalization of the regular determinant by stipulating an inverse
power for the eigenvalues in fermionic blocks of the matrix. Similarly, a supertrace “STr” generalizes the
regular trace by assigning a minus sign for fermionic blocks of a matrix.



Writing K — X = K (1 — K1 X) and Taylor expanding log(l — K*IX), we obtain our
central formula for one-loop matching:?

/ At LR g] = L8Triog K (2.3)

a3 2 ST

This expresses the EFT Lagrangian as a sum over two different types of supertraces, which

hard '

we shall call “log-type” and “power-type,” respectively. As we will see, the X matrix is
derived from taking the second derivative of three- and higher-point interactions in the UV
theory, so it contains terms with at least one power of ¢ and has a (canonical) operator
dimension > 1; meanwhile, each K ! contributes an operator dimension > 0. This means
that only a finite number of terms in the infinite series of power-type supertraces (the sum
over n in eq. (2.3)) contribute to EFT operators up to a certain dimension. Hence, we
can truncate the series according to the desired order in the EFT Lagrangian, e.g. up to
dimension six for the SMEFT application in section 6.

In the rest of this section, we fill in the steps from eq. (2.1) to eq. (2.2), and discuss
the general forms of the K and X matrices.

Field multiplet. The functional derivative in eq. (2.1) should be taken with respect to all
the independent fields that appear in the path integral measure. For example, a complex
scalar s and a Dirac fermion f are each represented by a pair of fields with conjugate

Qs = (;) , = (J{C> : (2.4)

Here f¢ = —iy?f* is the charge conjugated fermion; note that both f and f¢ are (4-

quantum numbers:

component) Dirac spinors. Meanwhile, it is convenient to define a set of conjugate fields
. For example, for a complex scalar and a Dirac fermion, we define

pe(o )= (V0) em (7 )= () e

On the other hand, if s were a real scalar (or vector) and f were a Majorana fermion,
we would have ¢, = s, @, = s! and or = f, p5 = f. Generally, @ contains the same
independent fields as ¢, but with different ordering, and we can write

c=¢'R,  with |SdetR | =1. (2.6)

Inverse propagator matrix K. When written in terms of ¢ and ¢, the kinetic and
mass terms in the (relativistic) UV Lagrangian take the familiar block-diagonal form:

1 1
LUVDi@K‘P:iz:@iKi@ia (2.7)
7

2Tt is worth noting that the key difference compared to ref. [14] is that this separation and expansion is
carried out before any supertrace evaluation takes place. See appendix A for details.



with?
P? —m? (spin—O)
Ki=qP—my (spin-3) (28)
P =)+ (1= PP (spinc)

Here, we have introduced the notation

P

= iD,,. (2.9)

This is the Hermitian version of a covariant derivative, as can be seen from (APMB)Jr =
(AiD,B)' = (—iD,B") At 2 BYiD,A" = BTP, A, where A and B are arbitrary opera-
tors, and we have used integration by parts (IBP). When ¢; represents a pair of conjugate
fields, as in the case of a complex scalar s or a Dirac fermion f in eq. (2.4), a 2 x 2 identity
matrix in this field space is implicitly understood in eq. (2.8); the kinetic and mass terms

are written in a symmetric way between the two fields:

Dus]? — m2|sf? = %ST(PQ —m2)s+ %ST(Jﬂ _m2)s* = %@S(PQ ) 1e,,  (2.100)
FGD —mg) f = S F(P—mp) f+ 5 (P —mg) f= 5 op(P—mp)igg, (2100

where IBP has been used to make each P, act to the right.

Note that we work with four-component spinors for the spin—% case, hence the appear-
ance of P = v#P,. This obviously applies to Majorana fermions and Weyl fermions that
form Dirac pairs. The case of chiral fermions can also be accommodated by introducing
auxiliary fields as their Dirac partners, which we discuss in detail in section 6. In the spin-1
case, £ is the gauge fixing parameter. In practice, it is convenient to choose £ = 1, so that
K; for a spin-1 field takes the same form as for a spin-0 field. We will adopt this gauge
throughout this paper.

Interaction matrix X. In order to define the interaction matrix X, let us go back to
eq. (2.1) and compute the second variation:

(52£UV = 2£UV[SO + (SQO] O64?) = (5()5 (K — XUV) (5(p = 5¢TR (K — XUV) (5(p . (211)
Here ¢ is the classical background field and dp captures its quantum fluctuations. Note
that for a gauge field, we gauge fix dp, while maintaining the gauge invariance for ¢, as
is standard when using the background field method. From eq. (2.7), we anticipate the
appearance of K in eq. (2.11); the rest is then collected into the UV interaction matrix
Xuyvy. Since the functional superdeterminant in eq. (2.1) is evaluated with ® = ®.[¢],

we define
X = XUVB:M@ , (2.12)

3If there is kinetic or mass mixing between the fields in the UV theory, we first rotate it away. Also,
for a non-renormalizable UV theory, which is an EFT itself, there could be terms like @; D" @; with k > 2.
However, they can be traded for terms with fewer powers of covariant derivatives via a basis change using
the EOMs, so that K; can still be written in the form of eq. (2.8).



which then only depends on the light background fields ¢. Note that there is no distinction
between quantities before and after setting ® = ®.[¢] for the inverse propagator part,
since K does not depend on the heavy background fields. At this point, we can substitute
egs. (2.11) and (2.12) into eq. (2.1) and obtain

/ ddg £{HP) (4] = % log Sdet {—R (K - X)} (2.13)

hard ’

which yields eq. (2.2) up to an irrelevant constant.

Next, we discuss the structure of the X matrix. Without loss of generality, it can be
cast in the form:

X (¢, P,) =U[p] + (PuZ"[¢) + Z* (@) Py) + - - . (2.14)

As operators, the explicit factors of P, that multiply Z* and Z* should be understood
as “open” covariant derivatives that act on everything to their right (same for the P,’s
in eq. (2.8) above). These are in contrast with “closed” covariant derivatives that can be
written as commutators: [P, ¢] = i(D,¢) with D, acting on ¢ alone. The U, Z* and Z*
matrices, written here as functionals of ¢, can contain closed covariant derivatives:

U[¢]:U(¢, [Pm¢]a [Pu7[PV7¢]]7 )
=U(¢, i(Dyg), i*(DuDyg), ...). (2.15)

We emphasize that eq. (2.14) is an expansion in the number of open covariant deriva-
tives, and we have only written out the first two orders explicitly. Additional functionals
of ¢ appear in the higher order terms represented by “...”. Technically, this expansion is
not unique, since a closed covariant derivative can always be rewritten in terms of open
covariant derivatives: [P,,¢| = P,¢ — ¢P,. Typically, the calculation is more involved
when more open covariant derivatives appear, so it is desirable to write the X matrix in a
form that has the fewest possible open covariant derivatives.

In many practical matching calculations, the UV theory does not contain any derivative
interactions, and we simply have X (¢, P,) = U[¢]. More generally, derivative interactions
often involve a relatively small subset of fields in the UV theory, so we still have X;; = Uj;[¢]
for many blocks of the X matrix. However, we reiterate that the utility of functional
methods (in particular the prescription presented in this work) does not rely on the series
in eq. (2.14) truncating after the first or second order; derivative interactions with any
number of open covariant derivatives are all accommodated.

3 Enumerating supertraces

Starting from the central formula eq. (2.3), the remaining tasks are clear. We need to
enumerate the functional supertraces that contribute to the specific matching calculation
of interest and then evaluate them, the subjects of this and the next section, respectively.



Log-type supertraces. Since the K matrix is block-diagonal, the first term in eq. (2.3)
becomes a simple sum over the K; blocks given in eq. (2.8), each corresponding to a field in
the UV theory. For the light fields ¢, isolating the hard region contribution yields scaleless
loop integrals, which vanish in dimensional regularization. For the heavy fields ®, on the
other hand, it is the soft region contribution that yields vanishing scaleless integrals. Thus,

5 STrlog K| = > STrlogK; =5 > STrlogK; . (3.1)

ie{®} ie{®}

hard

Moreover, only the heavy fields that are charged under the EFT gauge group need to be
included; otherwise, if P, = i0,, the supertrace would evaluate to a constant. Therefore,
enumerating the log-type supertraces amounts to identifying the heavy fields @ in the UV
theory that are charged under the EFT gauge group.

Power-type supertraces. The second term in eq. (2.3) can be written in terms of the
blocks of the K and X matrices. Taking into account that K is block-diagonal, we have

11 _ 11 1 1 1

i1, in

(3.2)

The structure on the r.h.s. admits an intuitive graphical representation. We draw lines for

“propagators” KL (we remind the reader that these are functional operators, not the mo-

mentum space Feynman propagators), and nodes for interactions X;;. Concretely, we define

S%} ©i,
’ i1 1 1 1
= —— - STr| — X6 — Xiniqg - - —Xi g ) 3.3
: 2 r Kil 1122 Kig 1213 Kin Zn11:| hard ( )
Pis Piz
where the indices i1, - - - , 4, are not summed over. Here % is a symmetry factor accounting
for a possible Z, symmetry of the graph under rotation. For a generic set {iy, - ,i,},

the n cyclic permutations are distinct, and the terms that they represent in the sum in
eq. (3.2) all yield identical results upon evaluating the supertrace, so the % prefactor is
fully canceled, and r = 1. On the other hand, if the graph has a non-trivial Z, symmetry
under rotation, there would only be 7 distinct cyclic permutations, leaving a prefactor %
in eq. (3.3).

Enumerating the power-type supertraces therefore amounts to enumerating distinct
graphs of the form in eq. (3.3). Note that there is only one graph topology, so this enu-
meration is quite simple. We just need to keep track of the minimum operator dimension
contained in each X;;, and draw graphs where the sum of these numbers does not exceed
the desired maximum EFT operator dimension (e.g. six). The minimum operator dimen-
sion of Xj; is determined by Us;;(¢], ZZ.”J. (@], Z;‘j [¢], etc. following the expansion in eq. (2.14),
without counting open covariant derivatives P, (which, just like K 1 will yield a series of
terms starting at dimension zero upon evaluation). Also, each graph must contain at least
one heavy propagator, since a loop involving only light fields yields scaleless integrals upon
isolating the hard region.



4 Evaluating supertraces

We now move on to the next step, evaluating functional supertraces. This is an isolated
problem that can be solved in a variety of ways. For example, one can appeal to traditional
momentum-space Feynman diagrams, see e.g. sections 9.5, 11.4 and 16.6 of ref. [33]. On the
other hand, the covariant derivative expansion (CDE) provides a more efficient approach,
and we will use it here, mostly following ref. [16] and appendix B of ref. [26]. We aim
to provide a high-level summary in this section, and refer the reader to these references
for technical details. In particular, we focus on using simple examples to illustrate what
kind of results to expect from a CDE evaluation. More involved supertraces are evaluated
in the same manner. The tedium of supertrace evaluation grows rapidly as the calcu-
lation extends to higher operator dimensions, and/or supertraces with more complicated
structures. To facilitate this process, and to make functional matching fully accessible
to matching practitioners who are not necessarily familiar with the technical details of
CDE, we have authored a Mathematica package that automates the CDE evaluation of all
functional supertraces relevant for one-loop matching between relativistic theories, to be
presented in a forthcoming paper [30].

Log-type supertraces. The evaluation of log-type supertraces in eq. (3.1) is universal
across all UV theories. From eq. (2.8), we see that there are essentially only two scenarios
(taking & = 1 for the spin-1 case): STrlog (P2 — m2) and STrlog (P — m) These can
be directly evaluated with CDE techniques, and will yield an infinite series of effective
operators. Since the K;’s only depend on covariant derivatives P, = 1D, = 10y, + go G}, T
(with a summed over the gauge group generators), the resulting EFT operators can only
involve the gauge field strength of light vectors,

FMV = _i[P/u Pl/] = gaGZ,yTa’ (41)

and their covariant derivatives. Each P, = iD, has dimension one and each F}, has
dimension two, so the operator dimension truncation is straightforward. Here we show the
results up to dimension six, while noting that the same CDE procedure can be applied to
derive operators at dimension eight and higher (represented by “...”):

i s o (a1 2 m?\ 1 .
§STrlog (P —m )—/d $16w2 tr{ — <€—10g,u2> ﬂFWFu

1
+ - [_ (D“Flw) (Dpry) B @ iFMVFVpFPM] .. } ) (4'23)

i g 1 2 m?\ 1 .
§STrlog (P—m) = /d x 162 tr{ — (e — log /~L2> ﬂFleu

1 1
+ oo} [6() (DFFu) (DpFP) + sz#VFl,pr“} + } (4.2b)



Here and throughout this paper, we use dimensional regularization with the MS scheme; y is
2

the renormalization scale, and % = £ — v+ In4r will be cancelled by the MS counterterms
at the end of the calculation. We have assumed physical spin-statistics relations when
addressing the “super” aspect of the traces, i.e., (P2 — m2) comes from commuting fields
and (P — m) comes from anticommuting fields. An exception is the Faddeev-Popov ghosts,
which are anticommuting Lorentz scalars whose inverse propagator is (P? — m?); in this
case, one should multiply the r.h.s. of eq. (4.2a) by an extra minus sign.

Note that the operators (P? —m?) and (P —m) (as well as their logarithms) are acting
on the field ®(x). Therefore, as matrices they are acting on the giant vector space labeled
by both the components of ® and the spacetime coordinate x, namely their direct product
space. In eq. (4.2), we have carried out the (more complicated) trace over the infinite-
dimensional subspace labeled by z; this is the “functional part” of the supertrace. The
remaining trace “tr” in the results is taken over the finite-dimensional space formed by all
the components of @, including its components in the field multiplet ¢, spin indices, gauge
indices, etc. Concretely, this remaining trace is over three sets of ® indices and can be

schematically written as

tr = try, X triorentz X tra - (4.3)

The first two traces are over the components in the field multiplet ¢ and the Lorentz
representation space, respectively. These are trivial in the present case: the operators on
the r.h.s. of eq. (4.2) are proportional to the identity element in each of these spaces, so
these traces simply count the number of independent fields in the path integral measure n,
and the number of Lorentz components nyorent,. For example, n, = 1 for a real scalar or a
Majorana fermion, and n, = 2 for a complex scalar or a Dirac fermion; nperent; equals 1,
4, and d = 4 — ¢ for scalars, fermions and vectors, respectively. The third trace, trg, is over
internal gauge indices, and is evaluated with the covariant derivatives and field strengths
inheriting their representations from ®. For the common case of a simple Lie group with
associated gauge coupling g, we have F),, = g G}, Tg, and therefore

tre (Fu F™) = Co g* G%,G™ (4.4a)
trg [(D"Fyu) (D, F™)] = Ca g*(D"Gy,,)°, (4.4b)
trg (iF,"F,LF ) = —Co %g?’ feGerahlaer (4.4c)

where Cp is the group invariant defined by trg(T¢7%) = Cp 6.

We summarize the coefficients of these EFT operators (up to a common factor of 16%)
that result from evaluating log-type supertraces for the various types of fields in table 1, as
a convenient reference. Note that in the real vector case, when multiplying the coefficient
of the F},, F* operator in eq. (4.2a) by Nierentz = d = 4 — €, we obtain a finite piece
that results from e multiplying the % pole. In what follows, we drop the % terms in the
operator coefficients, with the understanding that they are eventually cancelled by the MS
counterterms; they can be easily restored in the intermediate steps in order to obtain finite

~10 -



Integrate out Operator coefficients x 1672
ateay .| ta(FuF®)  ti6[(DMFL) (D)) tG(iFAFE)
real scalar i log %,2 _ﬁ # _Flo #
complex scalar L log 7:7; -1 L
Majorana fermion % log %: _T15 # % #
Dirac fermion % log %,2 _125 # % #
real vector 3 (log m? %) -+ 1 —LL
ghost —= log ’ZZ—; &L L

Table 1. Universal results for log-type supertraces up to dimension six.

pieces by substituting
2 2
m 2 m
—log— — - —log—-. (4.5)
p? € I

Power-type supertraces. The power-type supertraces, eq. (3.3), involve the interaction
matrix X, whose detailed expression is derived from the UV theory. With the expansion in
eq. (2.14), a power-type supertrace becomes a sum of terms that are ready to be evaluated
using CDE. To illustrate this, let us consider a simple example with two spin-0 propagators,

¢; with a heavy mass M and ¢; with zero mass:
K;=P*-M?,  and K; = P?, (4.6)
with the following interaction structure:
Xij = U + Z%Pu =U,+2"P,, and X;;=Uj;+ Pqu‘.‘i =Us+ P, 2" (4.7)

In this case, we obtain a sum of four supertraces:

Pj
1 1
= 5 STr( =Xy =X, 4,
S r<K ]K >hard ( 8)
2
7 1 1 1
STy —— U, — T PZ”
28 r<P2M2U1 P2U2> hard S r<P2 Ul ) hard
—ZSTr ! —_7MP U- STr ! — 7P 1PZ”
2 P2 M2 #PQ ? hard P2 M2 “PQ hard

Each of these supertraces can be directly evaluated using CDE without further specifying
the quantities Uy, Ua, Z*, Z*. Asin eq. (4.2) above, we obtain a series of EFT operators

- 11 -



from each supertrace with successively higher powers of covariant derivatives:

i 1 1
—_ST

55 r(P2 e Ui pr U2> hard

1 1 M? 1

_ d

= /d T 1672 tr{2 (1 — log M2) U.U; + e (D”Ul) (DMU2> + ... } , (4.9&)
—fSTr( L _ulp ")

2 P2 M2t p2H hard

1/1 M?

i 1
—§STr<P2 5 Z2"Py o U)

1 1 /1 M? .
= /ddac 1672 tr{ — 1 <2 — IOg /_ﬂ) ) (D“ZM) U2 + ... } s (49C)

i 1
—5 ST (5573 2P 3 P2 P,z")

2
— —iZ’F,,Z" — i <2 — log 2) (D“Z”) (DuZy,)
2
% <; —log A;) [(DuZ“) (D,2") + (D, 2") (DuZ”)} ¥ } . (4.94)

On the r.h.s. of these equations, we have shown terms with up to two covariant derivatives;

13

higher derivative terms in ”corresponding to higher dimensional EFT operators, can
be similarly derived. The operator dimension is bounded from below by the minimum
operator dimensions carried by Uy, Uz, Z,, and Zﬂ; this explains why, when enumerating
power-type supertraces, we count the dimensions of U, Z, Z but not open covariant deriva-
tives P, or propagators K . Note that the CDE algorithm puts all covariant derivatives
into commutators [16, 30], so the results involve gauge field strengths F),, = —i[P,, P,]
and closed covariant derivatives like (D,Uy) = —i [Py, U1).

The procedure above carries over to all other power-type supertraces. Generally, we
can apply CDE to evaluate any supertrace over a product of covariant propagators K%
(which can have any spin and can be either heavy or light), open covariant derivatives P,,,
and generic functionals of the light fields Uj;[¢], Zj;[¢], VAy 18], etc. The result will be a
series of operators similar to eq. (4.9). Then the remaining straightforward tasks are to
substitute in explicit expressions for Uj;[¢], Z[;[4], ZZ‘ [¢], etc. derived from the specific UV
theory, and to carry out the remaining trace “tr” as defined in eq. (4.3). In this way, we
arrive at the operators in the one-loop EFT Lagrangian together with their coefficients.
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5 Summary: prescription for functional matching

We can summarize the procedure discussed in the previous sections into the following
practical prescription for functional matching up to one-loop order:

1. Derive heavy EOM(s) and L',g]?,al?). Starting with the UV Lagrangian Luyv|[®, ¢],

derive the EOMs for the heavy fields ® that one wishes to integrate out. Solve
these EOMs and substitute the solution ®.[¢] (expanded in inverse powers of the
heavy masses) into Lyv, to obtain the tree-level EF'T for the light fields: .Cglfﬂer;) [¢] =

['UV[(I)7 ¢] ‘q>:q>c[¢}‘

2. Derive K and X matrices. Write the UV field multiplet ¢ = {®, ¢} in terms of
the independent fields in the path integral measure, as in e.g. eq. (2.4). Take the
second variation of the UV action with respect to ¢ to extract the inverse propaga-
tor matrix K and interaction matrix X (where ® is set to ®.[¢]), as explained in
egs. (2.7), (2.8), (2.11) and (2.12). These enter the two types of functional supertraces
(log-type and power-type) in eq. (2.3), from which the one-loop EFT Lagrangian
£5:2°P) (4] will be derived.

3. Enumerate supertraces. For log-type supertraces, simply enumerate the heavy fields
charged under the EFT gauge group. For power-type supertraces, identify the mini-
mum operator dimension of each block X;; of the X matrix (excluding open covariant
derivatives in the counting), and enumerate distinct graphs of the form in eq. (3.3)
with at least one heavy propagator, where the sum of the miminum operator dimen-
sions of the X;; nodes does not exceed the desired operator dimension truncation of
the EFT Lagrangian.

4. Fvaluate supertraces to obtain ESPT,IEOOP). Apply CDE to evaluate the supertraces,
e.g. as implemented in our package [30]. For log-type supertraces, the results are
universal; see eq. (4.2) and table 1. For power-type supertraces, first work in terms
of generic U[@], Z,[¢], Z,[¢], etc. up to the desired EFT operator dimension as in
egs. (4.8) and (4.9), and then substitute in the concrete expressions derived in Step 2
for the specific UV theory under consideration to carry out the remaining trace
defined in eq. (4.3). Add up the results from evaluating all supertraces enumerated

in Step 3 to obtain CS;%OP) [¢].

These four steps are illustrated by arrows with different colors in the right panel of figure 1.
Following this prescription, one can derive the EFT Lagrangian up to one-loop order di-
rectly from any perturbative UV theory (renormalizable or not). In the next section, we
provide a detailed pedagogical example to demonstrate the prescription at work, and ex-
plain some of the more technical aspects and subtleties that one encounters when matching
functionally.
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6 Example: singlet scalar extended Standard Model

Let us consider a UV theory where the SM is extended by a heavy singlet scalar S. Including
all renormalizable interactions between S and the SM fields, we have

1 1 1 1 1
Luv = Lsum + 5(8HS)2 — 5M?S? — A|H|*S — 5/§|H|252 — 5#553 — IASS‘*, (6.1)

where H is the SM Higgs doublet, and our conventions for the SM Lagrangian are as
follows:

. 1 1 1
Lo =|DHP+ > filpf - ZG;‘,,GA“” — ZWP{,,W"“’ — B B"
f=q,u,dl,e

1 . _
—m?H? — ZAulH|* - (cjyuuH VqyadH +lyee H + h.c.) . (62)

where H = eH* with € = io? = <£)1 (1) ) , and the Yukawa couplings vy, ¥4, Ye are 3 x 3
matrices in generation space. We will often write SU(3)c and SU(2), indices in color for
clarity.

We will match this theory onto SMEFT up to dimension six. This example has been
adopted as a benchmark for one-loop SMEFT matching calculations in the recent liter-
ature: ref. [20] used functional methods (with a slightly different formulation than the
present work, see appendix A) to obtain the scalar sector contribution, ref. [31] computed
additional EFT operators using Feynman diagrams, while ref. [32] presented the full match-
ing calculation using Feynman diagrams. While repeating the complete calculation using
our approach, we will encounter many interesting aspects of one-loop functional matching,
such as mixed heavy-light loops, mixed bosonic-fermionic loops, and derivative interactions.

Step 1: derive heavy EOM and Egé?lf) . The EOM for the heavy field S is

1 1
PV AP+ (P M Rl HP) S — JpsS? gheS0 =0, (63)

To solve this equation order by order, we write the solution S, as
Se=8% 4+ 8W 450 4 (6.4)

where Sén) contains operators with mass dimension n multiplied by prefactors that scale
as M'~". Collecting terms in the EOM with operator dimensions 2, 4 and 6, we obtain

0=—AlH>— M?*5? (6.5a)

2
0= (P?—k|H[?)S@ — M2 — 1 [5(22)] : (6.5b)
3
0= (P2~ k| H[2) S — M2S® — jgS@ W — Lg [sgﬂ . (6.5¢)
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Therefore,

S&) = | HI?, (6.62)
SO = 4 [OHP) + (k- 55 1HIY] (6.6b)
S = A?{ (i — e2Y [P (@1HP) + [ (5~ ) (- 5) - 252 |m1®
+ [(32|H|2) + (F.;— g;;;) |H|4} } (6.6¢)
Note that the term &2[...] in S'% is a total derivative with operator dimension six, so it

cannot contribute to any EFT operators up to dimension six.
The tree-level EFT Lagrangian is obtained by substituting S. into Lyyv. Up to dimen-
sion six, we have

ree A
Lipr’ = Lsv+ g [ H' = Zl HP (0°1HP) = g (e — 552)[H. (67)

Step 2: derive K and X matrices. To take functional variations of the UV action, we
need to write the field multiplet ¢ in terms of the independent fields in the path integral
measure. In the present case, we have

pi € {SOS y, Y$PH, Yq, Pu, Pd, LI, Pe, PG, PW, (PB} ; (683)
Y € {@S ,  PH, @q v Pus Pdy Pl Pes PG, PW, @B} 5 (68b)
where
H f
ps = S, YH = <H*) , Spf = (fc> , Yy = V, (69&)
ps=S, eu=(H HT), ¢=(F )., @v=V, (695

with f =q,u,d,l,e, and V = G, W, B. We have omitted the ghosts fields that accompany
the SM gauge fields, as their only interactions are with the gauge field fluctuations, which
do not contribute to one-loop matching onto operators involving physical fields.

To treat the SM chiral fermions in a simple way, we introduce a set of auxiliary chiral
fermions (denoted with prime) as their Dirac partners, so that f and f¢ are Dirac fermion
fields, with the following Weyl components:*

Ga e | 4
q= ol s q = P 6.10a
i o= e 6.10b
U = u.l.a ) u = u/-‘—a ) ( . )

“Here we use the same symbol for a Dirac field and its Weyl components. This will not be confusing

in what follows as we will not need to write out the Weyl components explicitly in our calculation, and
f =q,u,d,l, e always refer to Dirac fields when they appear.
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and similarly for d, [ and e. Note that the positions of unprimed physical fields and primed
auxiliary fields are swapped for the left-handed vs. right-handed SM fermions (¢, [ vs. u,
d, e). With these auxiliary Weyl components introduced, projection operators %(1 +~%)
need to be properly inserted in the Yukawa interactions in eq. (6.2) to isolate the physical-
chirality fermions.

With the field multiplet in eq. (6.8), the inverse propagator matrix K takes the stan-
dard block-diagonal form with entries given by eq. (2.8). The interaction matrix X follows
from varying the UV Lagrangian as in eq. (2.11), and setting S = S, given by egs. (6.4)
and (6.6). We provide a few examples of this calculation, and collect the explicit expressions
for the X matrix entries in appendix B, in the interest of providing a useful reference for
future SMEFT matching calculations, since the majority of X matrix entries are derived
from the SM Lagrangian.

It is worth noting that, for most of the X matrix blocks, the series in eq. (2.14)
truncates after the first order, X;;(¢, P,) = U;;[¢]. The only exceptions are blocks between
the SM Higgs H and the electroweak gauge bosons W, B, where open covariant derivatives
appear and the series truncates after the next order; this serves as a concrete example of
functional matching involving derivative interactions.

Step 3: enumerate supertraces. There are no log-type supertraces, since the only
heavy field S is a gauge singlet. To enumerate the power-type supertraces, we first list the
minimum operator dimensions of the non-vanishing X matrix blocks as follows:

S H g v d I e G W B

S /2 1
3 3 3 3 3
H 1 z 2 2 2 3 3 ; ;
o : 7
u 2 2 2
. d 3 3 3
dim(X) > 2 2 2 (6.11)
I 3 1 3 3
2 2 2
e 3 1 3
3 3 3
[ e T
B 3 2 3 3 3 2 2

The next step is to enumerate the graphs of the form shown in eq. (3.3) that contribute
up to operator dimension six. We will follow the usual convention, using dashed lines for
scalars, solid lines for fermions, and wavy lines for vectors. We double the dashed line for
the heavy scalar S to distinguish it from the light scalar H. To make the operator dimension
counting transparent, we will label the nodes in the graphs with their minimum operator
dimensions — the sum of these numbers in each graph should be < 6. Correspondingly, we
will label X;;, U;j, etc. with superscripts to indicate their minimum operator dimensions;
for example, U E}I indicates that Ugy starts with operator dimension one. We will represent
an X;; node as U;; when the two are equal; otherwise, we will first express the graph in
terms of Xj;, and then expand the supertrace according to eq. (2.14).
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Having set up the notation, we now systematically enumerate graphs with increasing
numbers of propagators. Since a graph must have at least one heavy propagator, we begin
with an S propagator in each case, and then complete the loop in all possible ways according
to the nonvanishing blocks of the X matrix, as shown in eq. (6.11).

1-propagator graph. There is only one graph with a single S propagator:

I/,’ \\\\

n p :——STr[ Um” . (6.12)
W u” hard

\\\

\@;”
2

2-propagator graphs. The second propagator can be either .S or H, so we have

(6.13)

(6.14)

Note the symmetry factor % in eq. (6.13), due to the graph’s Z, symmetry under rotation.

3-propagator graphs. With 3 propagator, we can draw an S$SS loop, an SSH loop,
and an SHH loop:

//CF=\\\‘
A\ .
v R = 33T (mm URY]| (6.15)
..
2
2
,,40=¢\
18 01 = —iST|prlp Ul pimm Ukl i URS]| o (616)
. L ar
18 01 = —4ST[polyn ULl ol Uty o UR]| - (617)
N L ar
~o-

Again, note the symmetry factor % in eq. (6.15).
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4-propagator graphs. We can draw a loop with four S propagators, but it has a min-
imum operator dimension of 8 and will not contribute to the EFT Lagrangian up to di-
mension six. So we need at least one non-S propagator. First, we restrict ourselves to the
scalar sector and use just S and H. The possibilities are an SSSH loop, an SSHH loop,
an SHSH loop, and an SHH H loop (among which only the SHSH loop has a nontrivial
symmetry factor of 1):

2(;—=cf
Y Ry
_ i T IR St R R
18 01 = —3STr|(rtym USY)" prtape Ubly oo Ults|| (6.18)
\\ //
2
,,sC):\\\
o K ; 2 1 2 1
\\0,,
2
1d==:ql
!
Vil L1 2
\ [+ STI[(W Us pr=z Unis) } hard (6.20)
o.__o
1 == 1
SN 0 (1 2\2 1 ]
1? L = _%STI[P2—1M2 USH(P2—m2 UHH) WUHS} hard (6-21)
-

With four propagators, fields other than S and H can also enter the loop. After
attaching two H propagators to both ends of an S propagator, we can complete the loop
with a SM fermion f = ¢, u, d, [, e or electroweak vector V = W, B as the fourth propagator:

==z
NS

4 N

. W 1 (1] 1 [3/2] 1 7r7[3/2] 1 (1]
oo’
3 3
2 2
O S e e R (| I Sy e c R R 1)
1 Q1 s pr—gr Vs ez XV P2 AvH pr—mz VS
\ Y, hard
11
i 1 v[2] —mu. 1[2 1
= 7% S'I‘r[PQ*l]W2 U‘gf]"l P’Qi?n2 UI}‘/] 22) U‘//[H] P2im2 U][{]S:| hard (623)
4 STy U s o2 o UL ks U
1 V(2] —mu Hpr |l 1
+ Ué}i Y UH[V] P pr//H[ ]PPP2im2 UJ[LI]S} hard (6.24)

' (1] v =nuu ZTi[l] (1]
—3 STT[P2EM2 Us ez Doty % 200 Prproye UHS] )hard’ (6.25)

~ 18 —



where we have written out the Lorentz indices carried by V. Note that the two terms in
eq. (6.24) are Hermitian conjugates of each other, so we only need to compute one of them
explicitly.

5-propagator graphs. With five propagators, many possibilities are eliminated by the
requirement that the sum of the nodes’ minimum operator dimensions should be < 6.
Again starting within the scalar sector, we find only two possibilities:

1C?=O:#Q1
! \ i 2 1 1
'\ ) :_ZSTT[P21 L[%]’( : M2 éI}LIP21 UH) } hard (6.26)
1b= = =91
lg== ¢Q1
! \ i 2 1 1
26\) ,' = 732 STI.|:P2 m? UI[LI]H (P2 1m2 Ul[tlg P2 M2 U[ : ) ] hard (627)
o.__p
1 =271
Including fermions, we find one additional graph:
l///= ) \\\
Wi (1] 1 (3/21 1 7701 1 4703/2] 1 (1]
1(‘ia\o,o?1 = 48Tty Ul ot U 3 Ul U ot U
AR
(6.28)

where f1, fo are summed over ¢, u, d, [, e.

One may also draw graphs with vector propagators, such as SSHVH, SHVHH,
SHfVH with V =W, B. However, to keep the total operator dimension < 6, we must take
the dimension-one Z (Z) part of Xy (Xy g ), not the dimension-two U part. Furthermore,
in each case, the first order term in the CDE, which involves just U, Z, Z but not covariant
derivatives, already saturates the six operator dimensions, so the result must contain the
matrix product Usy Z%},, or Z{;;Unrg. One can easily confirm that Usy 25, = Z{/;;Uns =
0 from egs. (B.6), (B.21) and (B.23). Therefore, all the additional graphs with vector
propagators vanish at the dimension-six level.

6-propagator graphs. With six propagators, which come with six nodes, we have no
choice but to select only from the “1” entries in eq. (6.11); in this way we saturate the six
operator dimensions. Starting from an S propagator, there is no way to get to the “1”s
in the fermion-fermion blocks. Meanwhile, the HV and V H blocks are excluded because
they would result in Usy 2%, or Zt',Ups, both of which vanish as discussed above. We
are thus left with only one possibility:

1
/G:::Q
/ N )
14 @1 = —$3STr| (ke Uk pie URR)°] |- (6.29)
“o._.0"
1 1

Again note the symmetry factor %
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Beyond six propagators, any graph one can draw contributes to EFT operators with
dimension > 6. So we have completed the enumeration of supertraces that appear for
matching the singlet scalar extended SM onto SMEFT up to dimension six. We have
obtained 18 supertraces, shown in egs. (6.12)-(6.29). We are now ready to move on to the
last step, evaluating these 18 supertraces.

Step 4: evaluate supertraces to obtain £](311;1£0p) . Asexplained in section 4, we follow

a two-step procedure to convert the 18 power-type supertraces into effective operators in
the EFT Lagrangian. First, we apply CDE to egs. (6.12)—(6.29) assuming generic U, Z, and
Z. These results are summarized in egs. (C.1)—(C.18) in appendix C. We then substitute
in the concrete expressions of U, Z, and Z derived in Step 2 and collected in appendix B,
and carry out the remaining trace “tr” defined in eq. (4.3).

For completeness, we present the various contributions to the one-loop EFT Lagrangian
in a format that makes it transparent which equation in appendix C is used to evaluate
which supertrace. This should allow the interested reader to fill in the intermediate steps
by carefully working out the matrix algebra. Note that we use “=" (rather than “=")
to mean that the Lh.s. of each equation is equal to the spacetime integral [ d% of the
expression on the r.h.s.:

C.1 A
(6.12) (:) 1617r2§<1—logﬂlf;){(mMQ—usA)]HP [QMQ + Bs (KJ— 2“]1942>}|H|4
A A
- ﬁ[ﬁsﬁz ('f— i)+t (v i) (n - i) |10

(o )l @)} (6.30)

HP? (aZ\HP)} (6.31)

M2
+ 20 (5~ 1og 38 ) [HP (2| HP) + 6M4>D2H!
- (- )i o
+ig1 (HT(B“H) (aVBW’)]
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. [zgg(D“H)T {(D"H)W, + igi(D"H) (D" H) B,,

+ s | 68 (Hlo! o/ HY WL, W/ 4 g} |H|? B, B

+ 29190 (H'o! H)W;VB#”} } :

1 HSA MSA MSA )\SAQ 6
+W[2” (”"— W) —W(“— o) — 2 |1

+ 5im (k= Yt ) |HP (6| H )
1 o psA H2 D H2
Az \ T e |H|*|D,H|” ¢,

(6.17) &2 16;;‘2{ (1425 (33 = £2) (1~ 10g 25 ) 1]

A
— %(7/{ _ %)} ( —log M2 )yHyG

Mo = 4 (3 = og 25 ) | |12 (6211 ?)

2
2~ log M) |H|® + i (0, )

2
+ 12 (§ — log 2) | H D, H?

(6.21) ‘&2 161”21“24{(3@ - {}—Z)Q< —log 7r )!H!f’}

~ 91 —

1
2
+ oy (3~ o 38 ) (0ulH1)" — 3 (1P (1 (D) + (D°H) 1]

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)



(C 11) 2 2 _ 7 .
(6.22) = =i { (% log %) [HT (@5 Yy a. + 1 yeyin"1.) (iD,H) 5

+ (DY (@ yayin™an + 15 yeyin™l,) Hy

— 201 (iD,H) (aylyn"d) — 2 H'(iD, H)(dyly,"u)

+ HY @, vy} a.) iDL H ) + (D) (@5 y,yinten ) H
+ (HY D, H) (ayly, e — dylytd — e ylyev“e)]
+Z(——log )[HT(nyuyullpq”)

_ <—
- IHIQ(ﬂyLyuiIDqudyLydilDdJréylyeilDe)

T+ H (G5 yavhi Bao + 1wyl z’?la)Hs] } : (6.40)
(6.23) & L, Ai{;@ —log 25) (g3 (H'o" D) + g} (11D, 1)’ } , (6.41)
(6.20) & 1L, Ai{é(% ~log 242) [¢3 (110" D,u11)" + f (11D, 1) } 7 (6.42)
(6.25) &%) _L, A’i{é (1-tog28) g3 (10! Dut)* + g (11D, )?] } , (6.43)
(6.26) €2 1622’446{2 ( - %) (g — log AML;) \H\6} , (6.44)
(6.27) & _L, A‘;{ —4 (3 —tog 28 (33— £2) |H|6} (6.45)
(6.28) & 1 2]@1{}1 (4- 6)(* — log 24 ) {IH\ (Gy.yly,u H+ H ayly,yl q)

+ H(7yaulyed H + H' dylyay) )

+|H(lyylye H+ H eyly.y l)}} (6.46)
(6.20) &) _L, ;}68{4 (4 —1og 247 \HP‘} . (6.47)

In these equations, we have left most of the internal indices implicit when their con-
traction is obvious; in eq. (6.40), however, we have written out the SU(2); fundamental
indices «, 3 explicitly in several terms for clarity. Note that when the evaluation yields op-
erators that involve fermions, bilinears of both the original fields ¢, u,d, [, e and the charge
conjugated fields ¢°, u®, d¢, ¢, e¢ appear. We have rewritten the fermion bilinears involving
charge conjugated fields in terms of the original fields via fSTfS = + foT'f1, where the
+ (—) sign applies when I' is a product of an even (odd) number of v matrices. Also,
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14+5
2

the understanding that all auxiliary fields (e.g. the primed fields in eq. (6.10)) are set to

we have dropped the chiral projection operators when writing the final results, with
zero. Finally, we have denoted the SU(2), an& U(1)y gauge couplings by g2 and g;, re-
spectively, and adopted the standard notation D, when writing some of the operators, e.g.
2D, H = HY(D,H) — (D, H) H.

This completes the application of the prescription detailed in section 5 for matching the
singlet scalar extended SM onto SMEFT up to one loop and dimension six. In section D, we
further rewrite the results of this calculation in a way that makes them more amenable to
comparisons with the literature; tables 2—4 in that appendix provide an organized summary
of the results.

7 Outlook

We have presented a concise prescription for systematically matching a UV theory onto an
EFT up to one-loop order. Our prescription is based on functional methods augmented
by covariant derivative expansion (CDE) techniques. The functional approach has the
conceptual benefit that all aspects of the calculation are performed within the UV theory
at the matching scale, which avoids the need to carefully keep track of many IR details that
cannot contribute to the EFT Wilson coefficients. By streamlining the formalism, we were
able to reframe functional matching calculations as a four-step procedure, as summarized
in section 5 and illustrated in the right panel of figure 1. At the core of our approach are
the simple graphical enumeration and CDE evaluation of a set of functional supertraces.
The evaluation step can be treated in isolation; in a forthcoming paper [30], we will provide
a Mathematica package that automates the evaluation of any supertrace that can appear
when integrating out heavy particles in relativistic theories. Our point of view is that the
calculation of one-loop matching coefficients for this general class of theories (including the
very important application of SMEFT) is now completely straightforward and accessible.

Many interesting directions for future investigations remain. The most obvious is to
simply apply this formalism to other beyond the SM examples. Since the output of this
calculation is typically in a non-standard operator basis, there is also an opportunity to
integrate this technology with automated approaches to changing basis such as ref. [34].
We have not yet explored the supertrace building block structures for EFTs arising from
other low energy limits, such as a non-relativistic example like HQET. Finally, it would
be exciting to extend our prescription beyond one-loop fixed order [35], e.g. to incorporate
renormalization group improvements [36].
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A Comparison with previous approaches

In the main text of this paper, our goal was to introduce our prescription in the most
straightforward way to emphasize its simplicity and accessibility. We have therefore avoided
technical comparisons to the literature, and in particular how our prescription relates to
previous approaches. This appendix aims to provide such a discussion.

The use of functional methods and CDE for one-loop matching calculations dates
back to the 1980s [27-29]. More recently, interest in calculating precision electroweak and
Higgs observables in SMEFT has led to a revival of these methods [15, 16]. In particular,
following the CDE approach of Gaillard [27] and Cheyette [29], ref. [16] presented universal
results of integrating out heavy particles with degenerate masses. This idea of universality
in one-loop matching calculations was further emphasized in ref. [17], which extended
the results of ref. [16] to the nondegenerate case, and initiated the Universal One-Loop
Effective Action (UOLEA) program. It was soon realized, however, that the calculations
in refs. [16, 17] must be further extended to take into account contributions from mixed
heavy-light loops [37, 38]. This was initially done in refs. [12, 18], and was later on simplified
in refs. [13, 14]. In particular, ref. [14] developed a diagrammatic framework, dubbed
“covariant diagrams,” to facilitate the CDE calculation for generic interaction structures
among spin-0, spin—% and spin-1 fields in the UV theory. At this point, it is fair to claim that
one-loop functional matching was a fully solved problem. Afterward, efforts to explicitly
work out additional terms in the relativistic UOLEA continued [20, 22-24], while functional
matching also found applications in other contexts, including HEFT [25] and HQET [26].

In the following paragraphs, we discuss how our new prescription relates to some of
the key results in the literature summarized above.

Relation to ref. [12]. Our one-loop matching formula eq. (1.7), and subsequently
eq. (2.1), were essentially also derived in ref. [12]. In particular, eq. (2.37) in ref. [12]
summarized the total one-loop matching result as

: 2 : 52 (0)
/ di o) _ Lyop gqeq [ 7Suvle] g sdet [ - 8errl?l) iy g
o=acf)) 2 o¢?

T2 dp?
It was also stated that the first term gives the full UV 1LPI effective action F(Ll'é(i?p) [9];
see eq. (2.32b) therein. However, it was not articulated in ref. [12] that with the method

of regions, the second term can be identified with the soft region contribution, and hence
the subtraction leaves us with the hard region. This conceptual insight was highlighted in
refs. [13, 14], which our present work inherits.

Apart from the above conceptual improvement, a more important development in
the current work is to provide a simplified calculating procedure onward from eq. (2.1).
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For historical reasons, ref. [12] was focused on explaining the meaning and origin of mixed
heavy-light contributions. This motivated an effort to separate the two in eq. (A.1). In par-
ticular, significant manipulations were performed to further split the first term in eq. (A.1)
(see eq. (3.2) and appendix B in ref. [12]):

. 2
) = Elog Sdet <—5§U\;[@] )
P=.[¢] 2 ® P=c[¢]

5*Suv[e)lo—b. ¢
o2 '

i §2Suv¢]

+ %log Sdet <— (A.2)

The first part of the r.h.s. was then identified with the heavy-only contributions, and the sec-
ond (after subtracting the soft region contribution) with mixed heavy-light contributions.
This decomposition was helpful for explicitly showing that mixed heavy-light contributions
can be accounted for with functional matching. However, using the r.h.s. of eq. (A.2) for
practical evaluation, as proposed in ref. [12], introduces unnecessary complications. This is
because in the second term of eq. (A.2), one needs to substitute in the EOM solution ®.[¢]
before taking the functional variation with respect to the light fields ¢. Furthermore, it is
crucial to keep ®.[¢] “non-local” (like in egs. (3.23) and (3.24) in ref. [12]) throughout this
functional variation procedure. This is quite tedious for UV theories with ® interactions
beyond quadratic order. In the prescription presented in the current paper, we proceed
using the Lh.s. of eq. (A.2), where everything is “local” at the stage of taking the func-
tional variations. Furthermore, the EOM solution ®.[¢] can be kept implicit as in Uj;[¢]
and Z[;[¢] in our eq. (2.14) until the very end of the calculation, and one never needs to
use its non-local form.

Relation to covariant diagrams. In ref. [14], a slightly different route was taken when
computing the functional supertrace Strlog(K — X): the “functional part” of the su-
pertrace was evaluated at the very beginning, and the expansion of the logarithm came
afterward. In contrast, in this paper, we first make the separation

STrlog(K — X) = STrlog K + STrlog(1 — K~'X), (A.3)

and expand the logarithm in the second term as in eq. (2.3), while postponing the evaluation
to a later stage. Ultimately, the two approaches produce the same operator expansion, as
they must, but the key improvement here is a clean separation between the enumeration
and evaluation steps that makes the calculation more compact. Concretely, evaluating
the “functional part” of the supertrace obviously generates more terms in the subsequent
expansion. Since the goal of covariant diagrams in ref. [14] is to keep track of all these
resulting terms, the number of diagrams can easily grow large. In our present approach,
the graphical enumeration is carried out before evaluating any part of the supertrace, and
the number of graphs is therefore reduced. For example, our results in section 6 for the
one-loop matching calculation of the singlet scalar extended SM can be fully reproduced
by computing more than 40 covariant diagrams, as opposed to just 16 graphs here.
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In a sense, our present approach corresponds to an efficient packaging of covariant
diagrams. Technically, each functional supertrace here evaluates to the same results as an
infinite series of covariant diagrams. In particular, a log-type supertrace is reproduced by
the infinite sum of covariant diagrams with an even number (4, 6, . ..) of P insertions and no
U or Z insertions, while a power-type supertrace represented graphically as in eq. (3.3) —
more precisely, each term in a power-type supertrace following the expansion in eq. (2.14)
— is reproduced by summing over covariant diagrams with the same structure with regard
to U and Z insertions, but additionally allowing for an arbitrary number of P and light
mass insertions (filled nodes and crosses, respectively, in the notation of ref. [14]), with the
Lorentz indices contracted in all possible ways (represented by dotted lines). As a concrete
example, the results of evaluating the single supertrace in eq. (6.14) up to dimension six
(as shown in eq. (6.32)) is reproduced by a set of nine covariant diagrams:

“ .
4 Q in this work
\\\—/,
//’==\‘ AR 0"::\\\ ‘?:‘\\ ”=?:§\\
“ 7 W 1 " 7 . \Y 4 . "
=<4 ¢+ 6 o+ 6 o +8 ! o+ 8
\\ , N // \ /’ \\ : // \ : +
~=-- N - 3o _ A ~9- ~@o-
&R &R S2ETES
. A\ PR\ n
+46 = o+8:: 0+ + 6 Q } in ref. [14] (A.4)
LA LN coagens
v. o .. o h.’_’."

Relation to the UOLEA. The central goal of the UOLEA program is to derive a
master formula for one-loop matching, in a form that expresses Egl;?()p) in terms of P,,

Uij, Zt, etc. for generic relativistic UV theories. The derivation is carried out once and

157
for all; once such a master formula is available, all one needs to do to obtain ES}#OP) for a

specific UV theory is derive the concrete expressions of U;;, Z%:, etc. (as in Step 2 of our

ij
prescription) and directly substitute them into the formula. Wejrefer the reader to ref. [23]
for a detailed review of the development and current status of the UOLEA program, and
only give a brief summary here.

The UOLEA program began with a focus on the minimal case of heavy-only bosonic
loops with no open covariant derivatives, where the results are quite simple, with only 19
terms up to dimension six [16, 17]. These 19 terms suffice for some matching calculations
of phenomenological interest [16, 17, 39-42]. However, the limited scope of UV theories
that these 19 terms can cover motivated efforts to explicitly compute mixed heavy-light
bosonic loop and heavy fermionic loop contributions to the UOLEA (still in the absence of
open covariant derivatives), and they yield many more terms [20, 23]. In particular, when

fermion couplings involving different gamma matrix structures are written out explicitly,
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the combinatorics give rise to more than two thousand terms [23]. At this point, we
have gone a long way from the initial simple formula with 19 terms. While the range of
applicability of the UOLEA has been significantly expanded, the plethora of terms makes
its application cumbersome beyond simple cases.

The prescription we have developed in this work shares the UOLEA spirit to some
degree, in that we have isolated part of the calculation that can be done once and for all,
so as to simplify the task an EFT practitioner has to perform in a matching calculation.
In fact, the universal results of evaluating the log-type supertraces in table 1 readily form
part of the UOLEA. Also, each power-type supertrace can be evaluated once and for
all, assuming generic functionals U, Z, Z. For example, the results in appendix C are
useful beyond the singlet scalar example we worked out in section 6; if one is to perform
a matching calculation for a different UV theory, it is likely that they would encounter
some power-type supertraces that have the same form as those in appendix C. Technically,
the power-type supertraces in appendix C that do not involve fermionic propagators or
open covariant derivatives reproduce many of the UOLEA terms previously computed in
refs. [17, 20], whereas the those that involve both bosonic and fermionic propagators, as
well as those that involve open covariant derivatives, essentially produce terms in the part
of the UOLEA that has not been computed yet.

Given the complexity of the UOLEA in the most general case (including mixed bosonic-
fermionic loops and open covariant derivatives), we believe our prescription offers the best
alternative beyond the minimal cases where one can directly compute the EFT Lagrangian
using a small number of terms in the UOLEA. Also, our prescription (especially with
our supertrace evaluation package [30]) offers the flexibility to go beyond dimension-six
operators if desired, for which a general UOLEA would be too cumbersome to present
explicitly.

B Interaction matrix for the singlet scalar model

Here we provide the explicit expressions for the interaction matrix X of the singlet scalar
extended SM considered in section 6. Recall that the X matrix is derived by taking the
second variation of Lyy as in eq. (2.11), separating out the inverse propagator matrix K
that takes the form of eq. (2.8), and setting the heavy fields to their EOM solutions (S = S,
given by egs. (6.4) and (6.6) in the present case). As a simple example, Xgg is obtained
from the terms in Lyy with at least two powers of S:

1 1 1 1
2 2= 2 2 - 2q@2 3 4
Ly 0 0% |58 (P? = M?) S — S n[HIS* = 5 g S 4!)\5S]
D 68 (P2 — M?)6S — 68 (K‘HZ-FMSS-i-;)\SsQ) sS. (B.1)

The expression in parentheses in the second term, with S set to S, is therefore identified
with Xgg = Ugs.
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As a second,

less trivial example, let us work out X gz and Xpg. They come from the

terms in Lyy with at least one power of S and one power of H:

1
82 Lyy D 62 [—A |H|?S — 3 |H|252]

U

—2(6H'H + H'6H) (A+ £ S)6S

= —(6H'H + HT6H* + H'6H + 6HTH*) (A+ £ S) 65
6H
= — i T
5S ((A—i—/iS)H (A+kS)H ) <5H>

- (6HT (5HT> (&::5));) 3s. (B.2)

The 1 x 2 matrix in the first term and the 2 x 1 matrix in the second term are identified with

Xsp = Ugy and Xgg = Ugg, respectively, upon setting S = S.. Importantly, we have

rewritten the variation in a symmetric form between H and H* (viewed as column vectors

in gauge representation space), such that Ugy and Ugg are simply related by Hermitian

conjugation. Similarly, when dealing with terms in Lyy that involve fermions, we write

the variation in a symmetric form between f and f¢ using fi ['fo = + fST f{, where the +

(—) sign applies when I' is a product of an even (odd) number of v matrices.

As a final example, we consider Xgw and Xypy. They are derived from the Higgs

boson’s gauge interactions:

52['UV D)

D)

0*(IDuHI?)
[0*(DH)'| (D" H) + (D, H") [6*(D"H)] +2 [§ (D, H)'][6 (D" H)]
ig2 6W,, 0H' o' (D*H) — igy (D, H)' o' $H 6B"
—igy (Du0H) o' H6W,, + igy W, H' o' (D" H)
g . . * *
—52 sW) [~isH' 0! (D*H) — i (D*H)" o 6H
+i(D,H) o' 6H +i6H" ¢'* (D, H)*
+i(D,oH) o' H+iHT o' (D, 6H)*
—iH' o' (D'§H) — i (D"6H)T ¢'* H]

g2 _J (Dl/H) _npr/ g2 U'/ H
— (omt 6HT) 27 D 29 oW/
< ’LJ%O.J (DVH)* + p npy %0"/ H* v
— W/ [(32 (D'H)T o'~ (D' H)T o)

0H
+ <_77pu 2 Hfol per Z HTO'[*) z'Dp] <5H*> 5 (B.3)

where we have again symmetrized the variation between H and H*. In the last equation,

vJ

we can identify the expressions in brackets as X7y, and X{/{,[ 1> where i (v) and / (J) are

the Lorentz and gauge indices of the W fluctuation field on the left (right). In this case,
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the series in eq. (2.14) truncates after the second order:
vJ vJ vJ o] i i
Xtiw = Uw + PoZy Xy =Ulypy + 2515 P, . (B.4)

The Xpp and Xpp blocks are analogous. The blocks between the SM Higgs H and
electroweak gauge bosons W, B are the only blocks in the X matrix where open covariant
derivatives P, = ¢D, appear. For all the other blocks, X;; = U;;.

In what follows, we present the nonzero Usj, Z;;, Zij blocks. We will keep the adjoint
SU(3)¢ and SU(2), indices explicit, using A and / for the conjugate fields @; on the left,
and B and J for the fields ¢; on the right. The (anti-)fundamental representation indices
are mostly suppressed, with the understanding that the fields can be thought of as column
and row vectors, and we write the results in matrix form in these gauge representation
spaces whenever possible, e.g. 1, 1, € matrices appear in some of the equations. In a
few cases where all the index contractions cannot be unambiguously written in the matrix
multiplication form, we make the SU(2); (anti-)fundamental indices explicit, using o, o
for the conjugate fields @; on the left, and /3, 3 for the fields ¢; on the right. When @; (;)
is a vector boson, it also carries a Lorentz index, for which we use y (v); to avoid notation
clashes, we use p instead of p for the additional Lorentz indices carried by Z, Z in this
appendix, as in eq. (B.4) above.

It is worth emphasizing that most of the results presented in this appendix are in
fact derived from the renormalizable SM Lagrangian. Concretely, these include the term
proportional to Ay in eq. (B.7), and all of egs. (B.8)-(B.33). The utility of these re-
sults therefore extends beyond the singlet scalar extended SM, as they serve as a common
reference for future SMEFT matching calculations.

Scalar sector entries.

1
Uss = r |H|> + pig Se+ 5 S2. (B.5)
T H
Usir = (A + 5 5) (HT HT), Ups=(A+rS) (. ] (B.6)

10 |H?1 + HHT HHT
= (A 2 A ) B.

Fermion-fermion entries.

- ﬂyu#ﬁ 0 - ﬂyl#ﬁ”{ 0
U = 1os = s Uug = T4 o | (B.8)
1y, 0 [ 0 1yf 120 gt 0
qu - 2 % 1=9° pre |0 qu = Ya o T 1495 T | (Bg)
0 ly;,—=-H 0 lyy; —5-H

1497 yl l—v t
Ye —5- H 0 H 0
Ule = , Ua = . B.10
l ( 0 y? 1 27 H* ) l ( O yg 1+275 HT ( )
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Vector-vector entries.

uA,vB ABC ~Cuv
UL B = 2 gq fABOGOM

2
wlivJ TIK i Kpy 92 v oI 2
Upiy” =2g2¢ 7" WH — 35 6 H|S .

g9t

U = L .
U{/{/LBU _ _912.92 77HV HTO'IH, Ug,{/l&] _

Higgs-fermion entries.

7.1 1—9° —c, T 14+4°
Ung = Ly, 5 5 U JEZ U =
q _eﬁyl 1—2'7 14° yg 1—0—2'y ’ q

N 1++° 0
U _ (@€)a Yu 3 . U _
i 0 @y 5t) T

_ % 5
€Y. — 0 N
0 1eeyl Hf) 7 Vi =

0 Iy 157
UHe: l—”ye 1445 0 y UeH:

2

Higgs-vector entries.

. - J D'H :
Uﬁ{/{/:m< 0'( ) ’ U‘%/]H:@((D“H)TU[ —(D/’H)TO'I*>.

2 O.J* (DI/H)* 9

i
7 - {H ~pP L
ZI’}%:nP’/gﬁ ( g ) , Z{,’&éz#’“%(-HTU[ HTO']*).

2 O..]* H*
, ig1 ( —D"H . g1
Ul =2 of :—(D“HT —D“HT>.
HB 92 ((DI/H)*> ’ BH 9 ( ) ( )
v v g1 —-H Zp [ . 91
Z;IB:"TO 2<H*>7 Zg/H:’I]p/ §<—HT HT>

Fermion-vector entries.

vy B
5 93 [ —"A"q LA 93 A
UC;/G 5 (,YI/)\B* qc> ’ UG‘] o ? (_q fy/ A
vy B
vB g3 Y ACu uA g3
UuG - 5 (,YI/AB* uc> ) UGu - 5 <_u

— 30 —

n"Hie'H .

oo (0 @visE o
Hd = qo Y 1+75 0 ’ i = yg 1+75 £

uc ,y/; )\A*) ,

qe 7;1)\‘4*) ’

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)
(B.16)
(B.17)
(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)



V. g2 _FYVJJq o1 g2 _ LI
Uy = 5 < T C) v Uy = 5 (—q’y"af o’ ) : (B.27)

Yo q
AV ./l _ 3
=2 (000) =g (v Ee), may
Yo
% g1 _/Y’/q 1 g1 — .
f;B = g (,yl/qc> ’ U;Bq = g (_q,y/, qcf)//) ’ (B29)
v 291 _’qu ) 291 _ _ ;
=y (7) o Uhemg (mer ey (B.30)
UY., — g1 */Yud Uu o g1 (Z L JC " B.31
dB_i? ’}/Vdc ) Bd_ig(— Y ’7>7 ( : )
v g1 _’yul g1 T o T .
UlB = _5 ("}/VZC> ’ Ugl = _5 <_l/yl I ’Y/ ) ) (B32)
v —"e 4 " _ y
eB= —91 (fyzec> ) Ug. = —0 (—efy‘ e 7’) . (B.33)

C Evaluated supertraces for the singlet scalar model

In this appendix, we present formulae for the set of power-type supertraces used in section 6.
These are derived with the CDE technique for generic U, Z, Z, which we simply write as
Uy, Us, ete. In eq. (C.14), we set ZP” = nP’Z and ZP* = nPlZ, which is the case we
actually need in section 6, see egs. (6.25), (B.21) and (B.23). When computing the loop
integrals, we use the MS scheme, with matching scale p, i.e., the renormalization scale
where we connect the UV and EFT parameters. We drop the % poles and the associated
finite terms accompanying the logarithms that will eventually be cancelled by the MS
counterterms; they can be easily restored when needed. Each supertrace evaluates to an
infinite series of effective operators, which we truncate at operator dimension six. Results
for these supertraces at higher operator dimensions, as well as for any other supertraces
one could encounter in general relativistic matching calculations, can be obtained with our
CDE evaluation package, to be presented in ref. [30].

We group the supertraces by the number of propagators in what follows. In the
propagators, M is a heavy mass and m is a light mass. As in section 6, we put superscripts
“]” on the functionals U, Z, Z to indicate their minimum operator dimensions. All
covariant derivatives on the r.h.s. are enclosed in parentheses, meaning they are closed, see
the discussion below eq. (2.14). We also use the notation F),, = —i[P,, P,| as in section 4;
they come from the propagators and always appear between the U, Z, Z functionals, and
the gauge representation is determined by the field associated with the propagator. In the
case of the SMEFT, F},, = ggG;WT‘4 +92W/fl,t1 +91 B, Y, with T4 and t! the SU(3)¢c and
SU(2) generators in the representation that the corresponding field tramsfom;?.1 under,

and Y is its U(1)y hypercharge. For the fundamental representation, 7 = %~ where
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o 1

A" are the Gell-Mann matrices, and t/ = 7, where o' are the Pauli matrices; for the
adjoint representation, (74)%¢ = —if42% and (t/)’" = —ie//"* are given by the structure
constants. For a gauge singlet, e.g. the singlet scalar field S, we have F},, = 0, so e.g.

tr(Fu, F*"UspUns) = 0, since F),, inherits the representation of S.

1-propagator supertrace.

—i ST | gz U]

hard

- /dd e tr | M2(1 = log 27) Uy + gk F ' U3 | (C.1)

2-propagator supertraces.

—iSTe | pryps U iy UF |

hard
:/dda: L tr[( log M) U1 Uy — g (D2U1)U2} (C.2)
_iSTr[P2jM2 Ul[l] P U2m] hard

- /ddw 161#2 tr{ (1 + A”}[—z + ﬁ—i) (1 —log]\lf—;) U0,

¥ [ﬁ + 5 (3~ los %) | (D) (D"17)

+ g (D*U)(D*Us) — gifa (D F*)UL (D Us)
3M4 (’ — log MQ) Ur(Dy FW)(D Us)
+ o (DL ) (DuUs) — gigr (DuUL) F* (D, Us)
— et Fu F*UUs + 2 Un FWF“”UQ} : (C.3)

3-propagator supertraces.

—iSTr |:P2—1M2 U1[2] - 1 U2[2} - 1 U[Q]}

hard

_ /dd:c i tr| = 5 U1 02U3 (C.4)

—iSTx | prpgr UL gy US prkr UL

P2_m2

hard
_ /dd;C L tr{ |1+ 1 (2= log 247) | 010U

— i Un(DMUa)(D,Us) + e (D U1>U2U3} (©5)

—iSTr |:P2_1M2 Ul[l] pZim2 UQ[Q} P2im2 U?[’l]}

hard

/ 1617r2 tr{]\/lﬂ(l—i_ )(1_10g )Ul U2 U3 2]\1/[4 Ul(D2U2)U3
+

(3 —log 22°) (D, Ul)U2(D“U3)} (C.6)
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4-propagator supertraces.

—q Srﬁ“[P2 e Ul[ ! e e U2[2} P2—1M2 Ui’gl] P2im2 U‘E}] hard

/dd e tr 2M4 U1UxU3 U4} (©1)
—z'STl"[ Lz U el U e U UH hard

/dd . tr T (2 - log ) U1U2Us U4} (C.8)
—i STI“[ 2_1M2 Ulm P2i 2 UQM P2—1M2 U:EI] PQim2 UE]} hard

et

{— {ﬁ(Z—logM;) +%\/[ﬂ;(% log M7 )} Uy Uy U3 Uy

+ 355 (5 — log 27) (D, U1 )(D"U) Us Us
+ﬁ(3 log ) (D Ul Us (DHU3) Uy
ﬁ(l log ) Uy (D,Us)(D'U3) Uy
+ 575 (X —1lo “2)(1) U) Uy Us Uy
+ 5o U (D*Uz) Us Uy + 515 U U (D*Us) U4} , (C.9)
—iSTY[P25M2 Ulm PQimQ U2[2} PQimQ U?EQ] PQimQ U‘H hard
— /dd i tr| (1~ log 42) Uy U Us U (C.10)

—i ST | gz U iy U7

3/2 1
- IUQE,/] 1 Uz,[L}]

ﬁ P22

hard

/dd W2tr{2M4( — log 2) (D, U1) U 7" Us Us

— g1z U1 Ux " Us (D, Us)

+ o (3 108 MEY Uy Up y# (DMU3)U4}7 (C.11)
—i STr[PQ—lMQ Ulm e U[Q} P? U?[’z] P Um} hard
:/dd - tr[M4 (1 —log 2 M UL Uy Us U4] (C.12)
—iSTr| oty Ul ot B Y B UP o U

:/ddxm;?tr{m%( — log 24~ )[U1 (Du2ZY)UsUy — Uy Zb Us (D, Usy)

2M4 (D Ul) ZQ U3 U4} (Clg)
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v, p, L

1
PZ_N?

~iSTy| 2P oy U]

hard

:/dd 167r2tr{M2 (1+ ><1—10g >U1Z2Z3U4
7

_21 (

(D,UY) (D" Zy) Z3 Uy

5 —log 4f) (
% i)

Ui Zy (D Zs) (D*U,)

N ﬁ[ 2> (D" Zs) Us + Us (D) Z (D"U3) |
+ 57 D, Zy) (D" Z3) Uy
+ ﬁ(% M) D,U\) Zy Zs (D“U4)} (C.14)

5-propagator supertraces.

—4STr |:P271M2 UI[Q] 52 1]\/[2 UQ[H 1 UBD] 1 U[H 1 Uél]i|

P2—m? P2—m? hard

_ /ddx i tr| (3 — log 27) U U U U U (C.15)
i Sﬂ[pz 1 UI[I] o U2[1} - U?EI] o UF] - U5[1]} -

. / A i tr| = 5% (3 — log 2) U1 U Uy Uy U (C.16)
ST kg U s U4 U 4 U )|

- / A’ i tr| e (3 — og 26°) Uy Up 7 U, U Us | (C.17)
6-propagator supertrace.
—1 STr[leMQ 1[1] Pr— 1 2[1} p2 M2 ?El] pzimz il] p2_1M2 EE” pzim2 (El]} hard

_ / A ik tr 2 (4 — log 26°) Uy Uy Us Uy Us Us | (C.18)

D Summary of results for the singlet scalar model

The SMEFT operators that we obtained in eqs. (6.30)—(6.47) are not in any specific basis.
They are the raw output of functional matching. Of course, one is free to post-process
these results into a non-redundant complete basis. We will not do so here, since this is not
part of “matching” and the procedure is already well established, see e.g. refs. [34, 43, 44].
Rather, the idea is to present the EFT Lagrangian in a form that reflects its origin from
a pure-UV calculation as much as possible, without further field redefinitions within the
EFT. Nevertheless, there are some trivial simplifications that we shall implement to shorten
some of the expressions in eqs. (6.30)—(6.47). These include applying the product rule and
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Operator Coefficient x 1672
|H|? [3 (02 = g ) + 42(1+ 3 + 32 )| (1~ 10g 25
i (—log 3 ) + 5 (5 - i + )
|H|* +%{(%+3AH) (1—log1\j—;) —2(/&—1—]’;‘722) (%—log A}fj)}
+%% [6)\;1(1 —log Aj—;) - 3(& + %wi;) (% —log Aj—;) + ‘j\ff’;‘ (2 — log %2)}
EYT e 8 (5w

Table 2. Corrections to renormalizable operators.

IBP, e.g.
HY(D?H) + (D*H)'H = (0*/H|*) —2|D, H|*, (D.1a)
(9ulHP)* =5 —[HP(|H])., (D.1b)
and using group theoretic identities, e.g.

1
1 1
€aa/€pp = 5 (6(}350’3/ - O-Q/jo-a"j’) ; (DQa)

1
(5(\,;]/5(\’;‘3 = 5 (6(&/35(\’3/ + O'(I\,Lfo-(l}/5”> : (D2b)

Finally, eq. (6.46) contains an O(e) terms that comes from 7, = (4 — €) 1, and we need
to restore the % poles to obtain the additional finite pieces, e.g.

3 M? 2 3 M? M?
We summarize the results after these simplifications in tables 2, 3 and 4. The EFT

Lagrangian, up to one-loop level, is the sum of [,g;e;), given in eq. (6.7), and Egl;?p)

obtained by adding up all the entries in these tables. For an operator labeled with “(+h.c.)”
it is understood that one should multiply the operator and coefficient as listed in the table
and then add the Hermitian conjugate term. Also, note that the fermion fields carry

)

generation indices that we have left implicit, so coefficients of operators involving fermion
bilinears are 3 x 3 matrices in generation space.

A few remarks are in order regarding the renormalizable operators generated by match-
ing. First, from table 2 we see that

L 5 0Zu|DHP, (D.4)
with 2 22 2
1 m (5
32y = 2 log ). D.5
"= 1672 [2M2 MYZ (2 ©8 ,ﬂ)] (D-5)
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Operator Coefficient x 1672
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—&—9)‘]{}'[242 {—H(% — log %;) + A (1 — log %;)}
MSA3

T3 {7“(5*10g%)+%(4710g%[; +3)\H<2,10gM?)]

w2

1 o K2MSA
M?2

|H|°

4 b 2 2
i [ 25 (5 —tog 24 ) — 180p (3 — log 25|

_ TusA® (15 M? 948 (43 M?
sars |7 —log T ) + s (37 —log iz

K2 S5rpgA

T 24M? 12M4

HP(@HP) 44 [26( 5 —log 25) — 2 (1 - log 247 ) — 22 (§ — log 447 ) |

e — S+ M (2 - 108 %) - 354 (3 -10g )
e[ ) (o3 ¥+ ] i (v )
GBI e (3 - os38)
|D*H? A
Operator Coefficient x 1672
2 (o Drm) (D'W),) —gire (1 —1og 45)
(D) 0 Bu) e (5~ log 25)
iga(DFH)o! (DVH) W, — T
igy (D" H) (D" H) By, ~ T
H2W, W it
|H[* B B S
H'o' HW/), B 2624

Table 3. Dimension six bosonic operators.

When calculating observables in the EFT, it is convenient to canonically normalize the
kinetic terms. This is achevied by rescaling the Higgs field,

H— (1 - ;52}1)1{. (D.6)
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Operator Coefficient x 1672
(Ho"i D H) (@0 1%a) e (wanl + wayl) (3~ log 247
(Hi'D ,H) (gy"q) s (vl — yayl) (5 — 108 25
(H'i'D ,H) () Ayl (3 - log 247
(H'i'D ,H) (dy"d) _ A y:;yd(f ~log JY—)
(H'o!i'D 1) (Io' 1) e vl (3 log 247
(H'iD ) (171) et (3 - log 247
(17D uH) (er0) e vlwe (5~ o 3%
(H'i(DyuH)) (uryd) (+hc.) ~Fr ylva(3 —1og 2%
(H'o"H) ((70’1'?(1) — e (yuyl — yay)) (f — log - )
|H|*(q in) A (yuyl + ydyd)( — log 2 )
(H2 (@i B ) sl (3 — log 247)
HP(di D d) eyl (3 — log 247
(1o H) (Io'i B1) el (4 — log 227
(1B 1) eyl (5~ log 22)
(@i D) Az viye (4~ 10g 2%
[H? qu (+h.c.) £ vuvly. (1 —log %2)
H[?qd H (+h.c) e vaylya (1 - log 247
|H|*leH (+h.c.) o yyy(l log %2)

Table 4. Dimension six operators with fermions.

As a result, when written in terms of canonically normalized fields, the dimension-six
SMEFT Lagrangian contains the following additional terms at one loop order:

1 A? 3A? oA
AL = sz ptup @) + s (o= s )me) . 0

which come from applying eq. (D.6) to the tree-level Lagrangian, eq. (6.7).
The rescaling of H also introduces additional one-loop-level contributions to the coeffi-
cients of the renormalizable operators involving the H field. These, together with the |H|*
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term in Eg;if) in eq. (6.7) and the |H|?, |[H|* terms in E(ElﬁleOp) in table 2, contribute to the

threshold corrections, i.e., the differences between the renormalizable EFT parameters and
the corresponding UV theory parameters; see section 2.1 of ref. [19] for a recent discussion
in the context of functional matching. In order to compare our results to refs. [31, 32], the
tree-level threshold correction to the SM Higgs quartic Ay must be taken into account. We
have additionally kept the m? suppressed terms in the coefficients of the renormalizable
operators in table 2, up to the order consistent with the truncation at dimension six.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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