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Abstract: We simplify the one-loop functional matching formalism to develop a stream-

lined prescription. The functional approach is conceptually appealing: all calculations are

performed within the UV theory at the matching scale, and no prior determination of

an Effective Field Theory (EFT) operator basis is required. Our prescription accommo-

dates any relativistic UV theory that contains generic interactions (including derivative

couplings) among scalar, fermion, and vector fields. As an example application, we match

the singlet scalar extended Standard Model (SM) onto SMEFT.
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1 Introduction

Effective Field Theory (EFT) approaches have wide-ranging applications across many areas

of physics, and are especially useful when one encounters a system that has a large hierarchy

of dimensionful scales, see e.g. refs. [1–9] for reviews. An EFT provides a more transparent

expression of a theory’s IR dynamics with the added benefit that one can systematically

sum IR logarithms using renormalization group techniques. Such frameworks can be useful

purely from the bottom up: one specifies the dynamical degrees of freedom along with

their transformations under a set of symmetries, and identifies a small power counting

parameter to organize the operator expansion. In this sense EFTs are “model independent,”

and as such they provide a compelling approach for classifying observables to facilitate

comparisons against data. On the other hand, the EFT paradigm is also useful when

applied from the top down. In scenarios where the (more) fundamental UV description of

the system is calculable, one can “match” it onto an EFT by “integrating out” the heavy

states. This relates the Wilson coefficients in the EFT to the microscopic parameters

of the UV theory, and enables the interpretation of experimental measurements and/or

constraints on the Wilson coefficients in the context of specific UV models.

– 1 –
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<latexit sha1_base64="kBWQcyjgHB0dt6nUAQnhDUjN3Zs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgupCSi6LLoxoWLCvYBTQiT6aQZOnkwcyOW0K0bf8WNC0Xc+gfu/BsnbRbaeuDC4Zx7ufcePxVcgWV9GwuLS8srq5W16vrG5ta2ubPbVkkmKWvRRCSy6xPFBI9ZCzgI1k0lI5EvWMcfXhV+555JxZP4DkYpcyMyiHnAKQEteSZ2IgIhJSK/GXsOsAfIW+1xz2mG/NhJQ+56Zs2qWxPgeWKXpIZKND3zy+knNItYDFQQpXq2lYKbEwmcCjauOpliKaFDMmA9TWMSMeXmk0/G+FArfRwkUlcMeKL+nshJpNQo8nVncbea9QrxP6+XQXDh5jxOM2AxnS4KMoEhwUUsuM8loyBGmhAqub4V05BIQkGHV9Uh2LMvz5P2Sd0+q1u3p7XGZRlHBe2jA3SEbHSOGugaNVELUfSIntErejOejBfj3fiYti4Y5cwe+gPj8wcKZJqK</latexit>LUV[�,�]

<latexit sha1_base64="bGT0ck+gCseAVUB8BLjCjuyqrXU=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiSi6LIoigsXFfqCJITJdNIOnTyYuRFLyMaNv+LGhSJu/Qd3/o2TtgttPXDhcM693HuPn3AmwTS/tdLC4tLySnm1sra+sbmlb++0ZZwKQlsk5rHo+lhSziLaAgacdhNBcehz2vGHl4XfuadCsjhqwiihboj7EQsYwaAkT993QgwDgnl2m3sO0AfIrq6bue0kA+Z6etWsmWMY88SakiqaouHpX04vJmlIIyAcS2lbZgJuhgUwwmlecVJJE0yGuE9tRSMcUulm4y9y41ApPSOIhaoIjLH6eyLDoZSj0Fedxc1y1ivE/zw7heDczViUpEAjMlkUpNyA2CgiMXpMUAJ8pAgmgqlbDTLAAhNQwVVUCNbsy/OkfVyzTmvm3Um1fjGNo4z20AE6QhY6Q3V0gxqohQh6RM/oFb1pT9qL9q59TFpL2nRmF/2B9vkDEJGY7Q==</latexit>LEFT[�]

<latexit sha1_base64="hb2S9G2hVyFiMdMprkCAdZNyFiU=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gOaGDbbTbt0dxN2N0oJ/R9ePCji1f/izX/jts1BWx8MPN6bYWZelHKmjet+O6WV1bX1jfJmZWt7Z3evun/Q1kmmCG2RhCeqG2FNOZO0ZZjhtJsqikXEaSca3Uz9ziNVmiXy3oxTGgg8kCxmBBsrPaQhQz7nSIR+c8jCas2tuzOgZeIVpAYFmmH1y+8nJBNUGsKx1j3PTU2QY2UY4XRS8TNNU0xGeEB7lkosqA7y2dUTdGKVPooTZUsaNFN/T+RYaD0Wke0U2Az1ojcV//N6mYmvgpzJNDNUkvmiOOPIJGgaAeozRYnhY0swUczeisgQK0yMDapiQ/AWX14m7bO6d1F3785rjesijjIcwTGcggeX0IBbaEILCCh4hld4c56cF+fd+Zi3lpxi5hD+wPn8AbWmkf8=</latexit>

pi ⌧ m�

<latexit sha1_base64="4G3J05iM9g4joQcAZvZt60x+5as=">AAAB/3icbVDJSgNBEO2JW4zbqODFS2MQPMUZUfQY9KK3KGaBZAg9nUrSpGehu0YNYw7+ihcPinj1N7z5N3aWgyY+KHi8V0VVPT+WQqPjfFuZufmFxaXscm5ldW19w97cqugoURzKPJKRqvlMgxQhlFGghFqsgAW+hKrfuxj61TtQWkThLfZj8ALWCUVbcIZGato7DYQHTO8P6dUNVdBJJMNIDZp23ik4I9BZ4k5InkxQatpfjVbEkwBC5JJpXXedGL2UKRRcwiDXSDTEjPdYB+qGhiwA7aWj+wd03ygt2o6UqRDpSP09kbJA637gm86AYVdPe0PxP6+eYPvMS0UYJwghHy9qJ5JiRIdh0JZQwFH2DWFcCXMr5V2mGEcTWc6E4E6/PEsqRwX3pOBcH+eL55M4smSX7JED4pJTUiSXpETKhJNH8kxeyZv1ZL1Y79bHuDVjTWa2yR9Ynz/SDpX6</latexit>

w/ IR regulator

<latexit sha1_base64="4G3J05iM9g4joQcAZvZt60x+5as=">AAAB/3icbVDJSgNBEO2JW4zbqODFS2MQPMUZUfQY9KK3KGaBZAg9nUrSpGehu0YNYw7+ihcPinj1N7z5N3aWgyY+KHi8V0VVPT+WQqPjfFuZufmFxaXscm5ldW19w97cqugoURzKPJKRqvlMgxQhlFGghFqsgAW+hKrfuxj61TtQWkThLfZj8ALWCUVbcIZGato7DYQHTO8P6dUNVdBJJMNIDZp23ik4I9BZ4k5InkxQatpfjVbEkwBC5JJpXXedGL2UKRRcwiDXSDTEjPdYB+qGhiwA7aWj+wd03ygt2o6UqRDpSP09kbJA637gm86AYVdPe0PxP6+eYPvMS0UYJwghHy9qJ5JiRIdh0JZQwFH2DWFcCXMr5V2mGEcTWc6E4E6/PEsqRwX3pOBcH+eL55M4smSX7JED4pJTUiSXpETKhJNH8kxeyZv1ZL1Y79bHuDVjTWa2yR9Ynz/SDpX6</latexit>

w/ IR regulator

<latexit sha1_base64="A+Dr7oFPvNfVCjl+Kqh0iRoViqA=">AAACAnicbVDLSgNBEJz1GeMr6km8DAbBU9gVRY9RLx4jmAckS5id7SRDZmeXmV4xLMGLv+LFgyJe/Qpv/o2Tx0ETCxqKqm66u4JECoOu++0sLC4tr6zm1vLrG5tb24Wd3ZqJU82hymMZ60bADEihoIoCJTQSDSwKJNSD/vXIr9+DNiJWdzhIwI9YV4mO4Ayt1C7stxAeMLuM7DJMQ6ARQ94TqjtsF4puyR2DzhNvSopkikq78NUKY55GoJBLZkzTcxP0M6ZRcAnDfCs1kDDeZ11oWqpYBMbPxi8M6ZFVQtqJtS2FdKz+nshYZMwgCmynvbBnZr2R+J/XTLFz4WdCJSmC4pNFnVRSjOkoDxoKDRzlwBLGtbC3Ut5jmnG0qeVtCN7sy/OkdlLyzkru7WmxfDWNI0cOyCE5Jh45J2VyQyqkSjh5JM/klbw5T86L8+58TFoXnOnMHvkD5/MHA6SX0g==</latexit>

Amplitude matching
<latexit sha1_base64="xObjKIJNfeXA0Mc9sLtRJiiX2Dg=">AAACB3icbVDLSgMxFM3UV62vqktBgkWomzIjii6LgrisYB/QlpJJb9vQTGZI7qhl6M6Nv+LGhSJu/QV3/o3pY6GtBwKHc+4l9xw/ksKg6347qYXFpeWV9GpmbX1jcyu7vVMxYaw5lHkoQ13zmQEpFJRRoIRapIEFvoSq378c+dU70EaE6hYHETQD1lWiIzhDK7Wy+w2EB0zy9wJ79AoGKmCKtgXrahaYo2Erm3ML7hh0nnhTkiNTlFrZr0Y75HEACrlkxtQ9N8JmwjQKLmGYacQGIsb7rAt1SxULwDSTcY4hPbRKm3ZCbZ9COlZ/byT2JjMIfDsZMOyZWW8k/ufVY+ycNxOhohhB8clHnVhSDOmoFBtYA0c5GCXnWthbKe8xzTja6jK2BG828jypHBe804J7c5IrXkzrSJM9ckDyxCNnpEiuSYmUCSeP5Jm8kjfnyXlx3p2PyWjKme7skj9wPn8A7cKZVw==</latexit>

(with Feynman diagrams)

<latexit sha1_base64="zT7tJSii49lsjixVIRVibhylAek=">AAACD3icbVBNS8NAEN34WetX1KOXYFHqpSSi6LHqxWMF0xaaEDbbTbt088HuRCwh/8CLf8WLB0W8evXmv3HT5qCtDwYe780wM89POJNgmt/awuLS8spqZa26vrG5ta3v7LZlnApCbRLzWHR9LClnEbWBAafdRFAc+px2/NF14XfuqZAsju5gnFA3xIOIBYxgUJKnHzk+GziZE2IYEsyzy9xzgD5AZrfzeuKx44mfe3rNbJgTGPPEKkkNlWh5+pfTj0ka0ggIx1L2LDMBN8MCGOE0rzqppAkmIzygPUUjHFLpZpN/cuNQKX0jiIWqCIyJ+nsiw6GU49BXncXdctYrxP+8XgrBhZuxKEmBRmS6KEi5AbFRhGP0maAE+FgRTARTtxpkiAUmoCKsqhCs2ZfnSfukYZ01zNvTWvOqjKOC9tEBqiMLnaMmukEtZCOCHtEzekVv2pP2or1rH9PWBa2c2UN/oH3+ALV0nRI=</latexit>�
AUV(pi)

 

<latexit sha1_base64="KmZgdVt1dC+pW8jbMIr/S0Jv9Bw=">AAACEHicbVC7SgNBFJ2NrxhfUUubwSDGJuyKomVUFMsIeUE2LLOT2WTI7IOZu2JY9hNs/BUbC0VsLe38GyfJFpp4YOBwzrnMvceNBFdgmt9GbmFxaXklv1pYW9/Y3Cpu7zRVGEvKGjQUoWy7RDHBA9YADoK1I8mI7wrWcodXY791z6TiYVCHUcS6PukH3OOUgJac4qHt8r6d2D6BASUiuUgdG9gDJNc39bQcOfxoEkidYsmsmBPgeWJlpIQy1Jzil90LaeyzAKggSnUsM4JuQiRwKlhasGPFIkKHpM86mgbEZ6qbTA5K8YFWetgLpX4B4In6eyIhvlIj39XJ8eJq1huL/3mdGLzzbsKDKAYW0OlHXiwwhHjcDu5xySiIkSaESq53xXRAJKGgOyzoEqzZk+dJ87hinVbMu5NS9TKrI4/20D4qIwudoSq6RTXUQBQ9omf0it6MJ+PFeDc+ptGckc3soj8wPn8ANlqdUA==</latexit>�
AEFT(pi)

 

<latexit sha1_base64="ZUU0HxYHekvFsTPhYGjLFLjnzBk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokoehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1lx6xfl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI4fjMU=</latexit>=

<latexit sha1_base64="kBWQcyjgHB0dt6nUAQnhDUjN3Zs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAgupCSi6LLoxoWLCvYBTQiT6aQZOnkwcyOW0K0bf8WNC0Xc+gfu/BsnbRbaeuDC4Zx7ufcePxVcgWV9GwuLS8srq5W16vrG5ta2ubPbVkkmKWvRRCSy6xPFBI9ZCzgI1k0lI5EvWMcfXhV+555JxZP4DkYpcyMyiHnAKQEteSZ2IgIhJSK/GXsOsAfIW+1xz2mG/NhJQ+56Zs2qWxPgeWKXpIZKND3zy+knNItYDFQQpXq2lYKbEwmcCjauOpliKaFDMmA9TWMSMeXmk0/G+FArfRwkUlcMeKL+nshJpNQo8nVncbea9QrxP6+XQXDh5jxOM2AxnS4KMoEhwUUsuM8loyBGmhAqub4V05BIQkGHV9Uh2LMvz5P2Sd0+q1u3p7XGZRlHBe2jA3SEbHSOGugaNVELUfSIntErejOejBfj3fiYti4Y5cwe+gPj8wcKZJqK</latexit>LUV[�,�]

<latexit sha1_base64="nrvIBx/RIBsSG7THHnYuL/1jgrg=">AAACCXicbVDLSsNAFJ3UV62vVJdugkVwVRJRdFkUxGUF+4A2lMl00g6dmYSZG7WEfoHf4FbX7sStX+HSP3HSZmFbD1w4nHMv53KCmDMNrvttFVZW19Y3ipulre2d3T27vN/UUaIIbZCIR6odYE05k7QBDDhtx4piEXDaCkbXmd96oEqzSN7DOKa+wAPJQkYwGKlnl7tAnyC9SSTJBMwnPbviVt0pnGXi5aSCctR79k+3H5FEUAmEY607nhuDn2IFjHA6KXUTTWNMRnhAO4ZKLKj20+nrE+fYKH0njJQZCc5U/XuRYqH1WARmU2AY6kUvE//zOgmEl37KZJwAlWQWFCbcgcjJenD6TFECfGwIJoqZXx0yxAoTMG3NpQQi68RbbGCZNE+r3nnVvTur1K7ydoroEB2hE+ShC1RDt6iOGoigR/SCXtGb9Wy9Wx/W52y1YOU3B2gO1tcvHYebGw==</latexit>

Functional
<latexit sha1_base64="f80wtEeUfk+8HcVlp3jJi7fj4bI=">AAACCnicbZDPSsNAEMY39V+t/2I9egkWwVNJRNFj0YvHCrYV2lA222m7dLMJuxNpCX0Dn8Grnr2JV1/Co2/ips3Btn4w8PHNDDP8glhwja77bRXW1jc2t4rbpZ3dvf0D+7Dc1FGiGDRYJCL1GFANgktoIEcBj7ECGgYCWsHoNuu3nkBpHskHnMTgh3QgeZ8ziibq2uUOwhhTncSgUFEGetq1K27VnclZNV5uKiRXvWv/dHoRS0KQyATVuu25MfopVciZgGmpk2iIKRvRAbSNlTQE7aez36fOqUl6Tj9SpiQ6s/TvRkpDrSdhYCZDikO93MvC/3rtBPvXfsplnCBINj/UT4SDkZOBcHpcAUMxMYYyxc2vDhtSgwANroUrQZgx8ZYJrJrmedW7rLr3F5XaTU6nSI7JCTkjHrkiNXJH6qRBGBmTF/JK3qxn6936sD7nowUr3zkiC7K+fgFEvJvD</latexit>

supertraces

<latexit sha1_base64="O2OawNHS5UKV/90W+lY/wVAP0rs=">AAACA3icbVA9SwNBEJ3zM8avqKXNYhAsJNyJomXQRrCJYD4gOcLeZpMs2d07d/eEcFzpb7DV2k5s/SGW/hP3kitM4oNhHu/NMMMLIs60cd1vZ2l5ZXVtvbBR3Nza3tkt7e03dBgrQusk5KFqBVhTziStG2Y4bUWKYhFw2gxGN5nffKJKs1A+mHFEfYEHkvUZwcZKficQyV16mrVW2i2V3Yo7AVokXk7KkKPWLf10eiGJBZWGcKx123Mj4ydYGUY4TYudWNMIkxEe0LalEguq/WTydIqOrdJD/VDZkgZN1L8bCRZaj0VgJwU2Qz3vZeJ/Xjs2/Ss/YTKKDZVkeqgfc2RClCWAekxRYvjYEkwUs78iMsQKE2NzmrkSiCwTbz6BRdI4q3gXFff+vFy9ztMpwCEcwQl4cAlVuIUa1IHAI7zAK7w5z8678+F8TkeXnHznAGbgfP0CqgCYqw==</latexit>

K,X

<latexit sha1_base64="49dDZl7LGdNxeQwJDas3hX/WrW8=">AAACJnicbZDLSsNAFIYn9VbrLerSTbAIdWFJRNFlURQXLir0Bk0sk+m0HTrJhJkTsYS8hQ/hM7jVtTsRd/omTi8L2/rDwMd/zuHM+f2IMwW2/WVkFhaXlleyq7m19Y3NLXN7p6ZELAmtEsGFbPhYUc5CWgUGnDYiSXHgc1r3+5fDev2BSsVEWIFBRL0Ad0PWYQSDtlpm0Q0w9AjmyW3acoE+QnJ1XUnvkzEXnCMuRHSYpk036jGvZebtoj2SNQ/OBPJoonLL/HHbgsQBDYFwrFTTsSPwEiyBEU7TnBsrGmHSx13a1BjigCovGd2VWgfaaVsdIfULwRq5fycSHCg1CHzdObxCzdaG5n+1Zgydcy9hYRQDDcl4USfmFghrGJLVZpIS4AMNmEim/2qRHpaYgI5yaosfpDoTZzaBeagdF53Ton13ki9dTNLJoj20jwrIQWeohG5QGVURQU/oBb2iN+PZeDc+jM9xa8aYzOyiKRnfv8MFpw8=</latexit>

L(1-loop)
EFT [�]

<latexit sha1_base64="Cr2s0cYdkW7oEVCJfIDgRJnoUH0=">AAACJHicbZDJSgNBEIZ7XGPcoh69DAYhgoQZUfQYFMWDhwjZIDOGnk7FNOlZ6K4RwzAv4UP4DF717E08eBF8EzvLwST+0PDxVxXV9XuR4Aot68uYm19YXFrOrGRX19Y3NnNb2zUVxpJBlYUilA2PKhA8gCpyFNCIJFDfE1D3eheDev0BpOJhUMF+BK5P7wPe4Yyitlq5Q8en2GVUJDdpy0F4xOTyqpLeJSMuoAQ4SNOmE3W528rlraI1lDkL9hjyZKxyK/fjtEMW+xAgE1Sppm1F6CZUImcC0qwTK4go69F7aGoMqA/KTYZXpea+dtpmJ5T6BWgO3b8TCfWV6vue7hzcoKZrA/O/WjPGzpmb8CCKEQI2WtSJhYmhOYjIbHMJDEVfA2WS67+arEslZaiDnNji+anOxJ5OYBZqR0X7pGjdHudL5+N0MmSX7JECsckpKZFrUiZVwsgTeSGv5M14Nt6ND+Nz1DpnjGd2yISM71+2U6aT</latexit>

L(tree)
EFT [�]

<latexit sha1_base64="Pr3xWr2Y+icxikiSX+3lzjGPIGM=">AAACCHicbVDLSsNAFJ34rPUVdekmWARXJRFFl0URXFawD2hDmUxv26GTSZi5KZbQH/Ab3Oranbj1L1z6J07aLGzrgQuHc+7hXk4QC67Rdb+tldW19Y3NwlZxe2d3b98+OKzrKFEMaiwSkWoGVIPgEmrIUUAzVkDDQEAjGN5mfmMESvNIPuI4Bj+kfcl7nFE0Use22whPmN7JJARFESYdu+SW3SmcZeLlpERyVDv2T7sbMROXyATVuuW5MfopVciZgEmxnWiIKRvSPrQMlTQE7afTzyfOqVG6Ti9SZiQ6U/VvIqWh1uMwMJshxYFe9DLxP6+VYO/aT7mMEwTJZod6iXAwcrIanC5XwFCMDaFMcfOrwwZUUYamrLkrQZh14i02sEzq52Xvsuw+XJQqN3k7BXJMTsgZ8cgVqZB7UiU1wsiIvJBX8mY9W+/Wh/U5W12x8swRmYP19QtF7Zqk</latexit>

Enumerate

<latexit sha1_base64="4U6A2NF2ztGDD40t1amt7WwsJ5Y=">AAACB3icbVDLSsNAFJ3UV62PRl26CRbBVUlE0WVRBJcV7APaUCbTm3boZBJmbool9AP8Bre6didu/QyX/olJm4VtPXDhcM69nMvxIsE12va3UVhb39jcKm6Xdnb39svmwWFTh7Fi0GChCFXboxoEl9BAjgLakQIaeAJa3ug281tjUJqH8hEnEbgBHUjuc0YxlXpmuYvwhMndmIqYIkx7ZsWu2jNYq8TJSYXkqPfMn24/ZHEAEpmgWnccO0I3oQo5EzAtdWMNEWUjOoBOSiUNQLvJ7PGpdZoqfcsPVToSrZn69yKhgdaTwEs3A4pDvexl4n9eJ0b/2k24jGIEyeZBfiwsDK2sBavPFTAUk5RQpnj6q8WGVFGGaVcLKV6QdeIsN7BKmudV57JqP1xUajd5O0VyTE7IGXHIFamRe1InDcJITF7IK3kzno1348P4nK8WjPzmiCzA+PoFa5CaKw==</latexit>

Evaluate

<latexit sha1_base64="16igLemJ8zMzJvoTKIOIyKBzecA=">AAACA3icbVDLSgNBEJz1GeMr6k0vg0HwFHZF0WNQEI8RzAOSJcxOOsmQ2dllplcMS8CLv+LFgyJe/Qlv/o2zSQ6aWNBQVHXT3RXEUhh03W9nYXFpeWU1t5Zf39jc2i7s7NZMlGgOVR7JSDcCZkAKBVUUKKERa2BhIKEeDK4yv34P2ohI3eEwBj9kPSW6gjO0Uruw30J4wPQ6UTwTmKQhQ94XqjdqF4puyR2DzhNvSopkikq78NXqRDwJQSGXzJim58bop0yj4BJG+VZiIGZ8wHrQtFSxEIyfjn8Y0SOrdGg30rYU0rH6eyJloTHDMLCd9sK+mfUy8T+vmWD3wk+FihMExSeLuomkGNEsENoRGjjKoSWMa2FvpbzPNONoY8vbELzZl+dJ7aTknZXc29Ni+XIaR44ckENyTDxyTsrkhlRIlXDySJ7JK3lznpwX5935mLQuONOZPfIHzucP2k6YSg==</latexit>

Functional matching
<latexit sha1_base64="TjCOxlvFFKA/KijP6z2/uDL8T34=">AAACAnicbVDLSgMxFM3UV62vUVfiJliEuikzouiy6MZlBfuAdiiZNNOGZjJDckcsQ3Hjr7hxoYhbv8Kdf2OmnYW2Hggczrk3yTl+LLgGx/m2CkvLK6trxfXSxubW9o69u9fUUaIoa9BIRKrtE80El6wBHARrx4qR0Bes5Y+uM791z5TmkbyDccy8kAwkDzglYKSefdAF9gBpxdyHzaKmiseZczLp2WWn6kyBF4mbkzLKUe/ZX91+RJOQSaCCaN1xnRi8lCjgVLBJqZtoFhM6IgPWMVSSkGkvnUaY4GOj9HEQKXMk4Kn6eyMlodbj0DeTIYGhnvcy8T+vk0Bw6aVcxgkwSWcPBYnAEOGsD9znilEQY0OICW/+iumQKELBtFYyJbjzkRdJ87Tqnled27Ny7Sqvo4gO0RGqIBddoBq6QXXUQBQ9omf0it6sJ+vFerc+ZqMFK9/ZR39gff4AxpSXqw==</latexit>

(our prescription)

<latexit sha1_base64="1QUmUwAY2B3ylkvPeClEqqIfV48=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBFclUQUXRbduKxgH5CEMJlOmqGTBzM3Ygj1V9y4UMStH+LOv3HaZqGtBy4czrmXe+8JMsEVWNa3sbK6tr6xWduqb+/s7u2bB4c9leaSsi5NRSoHAVFM8IR1gYNgg0wyEgeC9YPxzdTvPzCpeJrcQ5ExLyajhIecEtCSbzbcTsR9F9gjlHTiuFnEPd9sWi1rBrxM7Io0UYWOb365w5TmMUuACqKUY1sZeCWRwKlgk7qbK5YROiYj5miakJgpr5wdP8EnWhniMJW6EsAz9fdESWKlijjQnTGBSC16U/E/z8khvPJKnmQ5sITOF4W5wJDiaRJ4yCWjIApNCJVc34ppRCShoPOq6xDsxZeXSe+sZV+0rLvzZvu6iqOGjtAxOkU2ukRtdIs6qIsoKtAzekVvxpPxYrwbH/PWFaOaaaA/MD5/ACo+lRo=</latexit>

�c[�]

<latexit sha1_base64="x21oIJJJhXz3jaKdeLhE+4g1IcU=">AAACCXicbVC7SgNBFJ2NrxhfUUubwSBYhV1RtAyKYBnBPCC7hNnJTTJk9uHM3WBY0tr4KzYWitj6B3b+jZNkC008MHA4517unOPHUmi07W8rt7S8srqWXy9sbG5t7xR39+o6ShSHGo9kpJo+0yBFCDUUKKEZK2CBL6HhD64mfmMISosovMNRDF7AeqHoCs7QSO0idREeML2+TxgCxYh2QIkh0DF1U94W7rhdLNllewq6SJyMlEiGarv45XYingQQIpdM65Zjx+ilTKHgEsYFN9EQMz5gPWgZGrIAtJdOk4zpkVE6tBsp80KkU/X3RsoCrUeBbyYDhn09703E/7xWgt0LLxVhnCCEfHaom8hJ4kkttCMUcJQjQxhXwvyV8j5TjKMpr2BKcOYjL5L6Sdk5K9u3p6XKZVZHnhyQQ3JMHHJOKuSGVEmNcPJInskrebOerBfr3fqYjeasbGef/IH1+QNyb5oq</latexit>

Equate to derive {ci}

Figure 1. This figure contrasts the procedure one follows for two different approaches to EFT

matching. Amplitude matching [left] requires first working out a basis of EFT operators, and then

determining their coefficients {ci} by equating a carefully curated set of low-energy amplitudes

that must be computed twice, first using the UV theory and then again using the EFT. Functional

matching [right] provides a more direct route from LUV to LEFT, which requires neither constructing

an EFT operator basis in advance nor computing low-energy amplitudes. This paper establishes

a concise, readily accessible, four-step prescription (represented by the four colors) for functional

matching up to one loop order, as summarized in section 5.

Our focus here is on the methodology for matching a UV theory onto an EFT in this

top-down approach. Concretely, we consider a UV theory LUV[ϕ] with a mass hierarchy

among the fields ϕ:

ϕ = (Φ, φ) , with mΦ � mφ , (1.1)

where we are denoting the heavy (light) fields with Φ (φ). We would like to integrate out

the heavy fields Φ to obtain LEFT[φ]. In this case, the EFT power counting is simply set

by the mass ratio mφ/mΦ. More generally, the discussion that follows may be extended to

other cases where the power counting parameter is set by a kinematic restriction, provided

there is a clear separation between “hard” and “soft” modes.

A familiar strategy to derive LEFT[φ] is to match low-energy amplitudes between the

UV theory and the EFT, as illustrated in the left panel of figure 1. In this approach, one

must first work out all the EFT operators, leaving only their coefficients {ci} to be deter-

mined, and then identify a set of amplitudes to compute (typically via Feynman diagrams)

that can be used to solve for all these coefficients. This procedure is computationally expen-

sive, and typically requires significant human intervention. Furthermore, it critically relies

on performing amplitude calculations, which is conceptually a separate task and requires

keeping track of IR details.

In this work, we use functional methods to tackle the problem of EFT matching. In-

stead of matching individual amplitudes, the idea is to equate their generating functionals,
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the one-(light-)particle-irreducible (1(L)PI) effective actions:

ΓEFT[φ] = ΓL, UV[φ] . (1.2)

At tree-level, this yields the familiar result:

Γ
(tree)
L, UV[φ] = SUV[Φ, φ]

∣∣
Φ=Φc[φ]

Γ
(tree)
EFT [φ] = S(tree)

EFT [φ]





=⇒ L(tree)
EFT [φ] = LUV[Φ, φ]

∣∣
Φ=Φc[φ]

, (1.3)

where S ≡
∫

ddxL denotes the action, and Φc[φ] solves the classical equations of motion

(EOMs) for the heavy fields:
δSUV[ϕ]

δΦ

∣∣∣∣
Φ=Φc[φ]

= 0 . (1.4)

Obviously, solving the EOMs provides a more direct route to obtain L(tree)
EFT [φ] than com-

puting amplitudes.

The efficacy of functional matching extends beyond tree level. Critically, at one loop,

eq. (1.2) allows us to systematically solve the matching condition once and for all, and to

derive an expression for L(1-loop)
EFT directly in terms of LUV. This is achieved by using the

method of regions [10, 11] to split the UV 1LPI effective action into hard and soft region

contributions:

Γ
(1-loop)
L,UV [φ] = Γ

(1-loop)
L, UV [φ]

∣∣∣
hard

+ Γ
(1-loop)
L, UV [φ]

∣∣∣
soft

, (1.5)

obtained by expanding all loop integrands assuming the loop momentum q ∼ mΦ � mφ

and q ∼ mφ � mΦ, respectively, before performing the integration using dimensional

regularization. On the other hand, the EFT 1PI effective action receives contributions

from both operators with one-loop-generated matching coefficients used at tree (classical)

level and one-loop amplitudes computed with the tree-level EFT operators:

Γ
(1-loop)
EFT [φ] = S(1-loop)

EFT [φ] +
(

1-loop contributions from L(tree)
EFT [φ]

)
. (1.6)

One can show that the second term in eq. (1.5) is identical to the second term in

eq. (1.6) [12–14]. The matching condition therefore becomes

∫
ddxL(1-loop)

EFT [φ] = Γ
(1-loop)
L, UV [φ]

∣∣∣
hard

. (1.7)

The intuition here is that a highly virtual loop whose momentum is outside the EFT regime

(q ∼ mΦ � mφ) should be encoded by local operators within the EFT. Importantly, when

using eq. (1.7), one does not have to guess what effective operators will be generated by

integrating out the heavy states, and can fully disentangle the task of “matching” from the

IR aspects of amplitude calculations.

Despite these advantages, some technical aspects of one-loop functional matching have

only been firmly established recently, as demonstrated in the contexts of the Standard

Model EFT (SMEFT) [15–24], Higgs EFT (HEFT) [25], as well as non-relativistic EFTs

such as the Heavy Quark Effective Theory (HQET) [26]. The goal of this paper is to make
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these technical advances more easily accessible by devising a streamlined prescription. Our

new formulation, summarized in the right panel of figure 1, highlights the simplicity and

efficiency at the core of the functional approach. It can be applied to integrating out any

perturbative UV states in a relativistic theory, regardless of the interaction structure.

The rest of this paper is organized as follows. We begin in section 2 by setting up

the framework for functional matching calculations. As we will show, the key objects

are a set of functional supertraces that take very specific forms. One-loop matching is

essentially reduced to (i) enumerating the relevant supertraces, and (ii) evaluating them

to simultaneously obtain the effective operators and their coefficients. In section 3, we

develop step (i) and show how the infinite series of functional supertraces can be organized

graphically in the spirit of ref. [14] (though the graphs presented here are technically

different). In section 4, we explain step (ii). This is usually the most tedious step, but

given its algorithmic nature, we have developed a Mathematica package that automates

the process using the covariant derivative expansion (CDE) technique [27–29]; see our

forthcoming paper [30] for details. All these steps can be summarized into a simple practical

prescription, which we present in section 5 as the central result of this work. To demonstrate

the prescription in detail, we reproduce the results for an example of phenomenological

interest in section 6: matching the singlet scalar extend SM onto SMEFT up to dimension

six, which was first studied comprehensively in ref. [31] and later reconsidered in ref. [32].

Finally, we conclude in section 7 and discuss some future directions.

The streamlined approach presented here improves upon previous works on one-loop

functional matching. The interested reader can find a brief comparison to the recent liter-

ature in appendix A. Technical details for the matching example in section 6 are provided

in appendices B, C, and D.

2 One-loop matching from functional supertraces

Similar to the classic Coleman-Weinberg potential calculation, the one-loop 1LPI effective

action, Γ
(1-loop)
L, UV in eq. (1.7) yields the logarithm of a functional superdeterminant:1

∫
ddxL(1-loop)

EFT [φ] =
i

2
log Sdet

(
−δ

2SUV

δϕ2

∣∣∣∣
Φ=Φc[φ]

)∣∣∣∣∣
hard

, (2.1)

where Φc[φ] is the solution to the heavy fields’ EOMs. The functional derivative here

generally consists of an inverse propagator part and an interaction part, such that

∫
ddxL(1-loop)

EFT [φ] =
i

2
log Sdet

(
K −X

)∣∣∣
hard

=
i

2
STr log

(
K −X

)∣∣∣
hard

. (2.2)

We will explain the derivation of this equation shortly, and discuss the forms of the “in-

verse propagator matrix” K and “interaction matrix” X (see eqs. (2.8) and (2.14) below).

1A superdeterminant “Sdet” is a generalization of the regular determinant by stipulating an inverse

power for the eigenvalues in fermionic blocks of the matrix. Similarly, a supertrace “STr” generalizes the

regular trace by assigning a minus sign for fermionic blocks of a matrix.
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Writing K −X = K (1−K−1X) and Taylor expanding log
(
1−K−1X

)
, we obtain our

central formula for one-loop matching:2

∫
ddxL(1-loop)

EFT [φ] =
i

2
STr logK

∣∣∣
hard
− i

2

∞∑

n=1

1

n
STr

[(
K−1X

)n]∣∣∣
hard

. (2.3)

This expresses the EFT Lagrangian as a sum over two different types of supertraces, which

we shall call “log-type” and “power-type,” respectively. As we will see, the X matrix is

derived from taking the second derivative of three- and higher-point interactions in the UV

theory, so it contains terms with at least one power of φ and has a (canonical) operator

dimension ≥ 1; meanwhile, each K−1 contributes an operator dimension ≥ 0. This means

that only a finite number of terms in the infinite series of power-type supertraces (the sum

over n in eq. (2.3)) contribute to EFT operators up to a certain dimension. Hence, we

can truncate the series according to the desired order in the EFT Lagrangian, e.g. up to

dimension six for the SMEFT application in section 6.

In the rest of this section, we fill in the steps from eq. (2.1) to eq. (2.2), and discuss

the general forms of the K and X matrices.

Field multiplet. The functional derivative in eq. (2.1) should be taken with respect to all

the independent fields that appear in the path integral measure. For example, a complex

scalar s and a Dirac fermion f are each represented by a pair of fields with conjugate

quantum numbers:

ϕs =

(
s

s∗

)
, ϕf =

(
f

f c

)
. (2.4)

Here f c ≡ −iγ2f∗ is the charge conjugated fermion; note that both f and f c are (4-

component) Dirac spinors. Meanwhile, it is convenient to define a set of conjugate fields

ϕ̄. For example, for a complex scalar and a Dirac fermion, we define

ϕ̄s ≡
(
s† sT

)
= ϕTs

(
0 1

1 0

)
, ϕ̄f ≡

(
f̄ f̄ c

)
= ϕTf

(
0 iγ0γ2

iγ0γ2 0

)
. (2.5)

On the other hand, if s were a real scalar (or vector) and f were a Majorana fermion,

we would have ϕs = s, ϕ̄s = sT and ϕf = f , ϕ̄f = f̄ . Generally, ϕ̄ contains the same

independent fields as ϕ, but with different ordering, and we can write

ϕ̄ = ϕTR , with
∣∣ SdetR

∣∣ = 1 . (2.6)

Inverse propagator matrix K. When written in terms of ϕ̄ and ϕ, the kinetic and

mass terms in the (relativistic) UV Lagrangian take the familiar block-diagonal form:

LUV ⊃
1

2
ϕ̄K ϕ =

1

2

∑

i

ϕ̄iKi ϕi , (2.7)

2It is worth noting that the key difference compared to ref. [14] is that this separation and expansion is

carried out before any supertrace evaluation takes place. See appendix A for details.
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with3

Ki =





P 2 −m2
i

(
spin-0

)

/P −mi

(
spin-1

2

)

−ηµν(P 2 −m2
i ) +

(
1− 1

ξ

)
PµP ν

(
spin-1

)
. (2.8)

Here, we have introduced the notation

Pµ ≡ iDµ . (2.9)

This is the Hermitian version of a covariant derivative, as can be seen from (APµB)† =

(A iDµB)† =
(
−iDµB

†)A† IBP
= B†iDµA

† = B†PµA
†, where A and B are arbitrary opera-

tors, and we have used integration by parts (IBP). When ϕi represents a pair of conjugate

fields, as in the case of a complex scalar s or a Dirac fermion f in eq. (2.4), a 2× 2 identity

matrix in this field space is implicitly understood in eq. (2.8); the kinetic and mass terms

are written in a symmetric way between the two fields:

|Dµs|2 −m2
s|s|2 =

1

2
s†(P 2 −m2

s)s+
1

2
sT (P 2 −m2

s)s
∗ =

1

2
ϕ̄s(P

2 −m2
s)1ϕs , (2.10a)

f̄ (i /D −mf ) f =
1

2
f̄ (/P −mf ) f +

1

2
f̄ c (/P −mf ) f c =

1

2
ϕ̄f (/P −mf ) 1ϕf , (2.10b)

where IBP has been used to make each Pµ act to the right.

Note that we work with four-component spinors for the spin- 1
2 case, hence the appear-

ance of /P ≡ γµPµ. This obviously applies to Majorana fermions and Weyl fermions that

form Dirac pairs. The case of chiral fermions can also be accommodated by introducing

auxiliary fields as their Dirac partners, which we discuss in detail in section 6. In the spin-1

case, ξ is the gauge fixing parameter. In practice, it is convenient to choose ξ = 1, so that

Ki for a spin-1 field takes the same form as for a spin-0 field. We will adopt this gauge

throughout this paper.

Interaction matrix X. In order to define the interaction matrix X, let us go back to

eq. (2.1) and compute the second variation:

δ2LUV = 2LUV[ϕ+ δϕ]
∣∣∣
O(δϕ2)

≡ δϕ̄ (K −XUV) δϕ = δϕTR (K −XUV) δϕ . (2.11)

Here ϕ is the classical background field and δϕ captures its quantum fluctuations. Note

that for a gauge field, we gauge fix δϕ, while maintaining the gauge invariance for ϕ, as

is standard when using the background field method. From eq. (2.7), we anticipate the

appearance of K in eq. (2.11); the rest is then collected into the UV interaction matrix

XUV. Since the functional superdeterminant in eq. (2.1) is evaluated with Φ = Φc[φ],

we define

X ≡XUV

∣∣
Φ=Φc[φ]

, (2.12)

3If there is kinetic or mass mixing between the fields in the UV theory, we first rotate it away. Also,

for a non-renormalizable UV theory, which is an EFT itself, there could be terms like ϕ̄iD
kϕi with k > 2.

However, they can be traded for terms with fewer powers of covariant derivatives via a basis change using

the EOMs, so that Ki can still be written in the form of eq. (2.8).
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which then only depends on the light background fields φ. Note that there is no distinction

between quantities before and after setting Φ = Φc[φ] for the inverse propagator part,

since K does not depend on the heavy background fields. At this point, we can substitute

eqs. (2.11) and (2.12) into eq. (2.1) and obtain

∫
ddxL(1-loop)

EFT [φ] =
i

2
log Sdet

[
−R

(
K −X

)]∣∣∣
hard

, (2.13)

which yields eq. (2.2) up to an irrelevant constant.

Next, we discuss the structure of the X matrix. Without loss of generality, it can be

cast in the form:

X(φ, Pµ) = U [φ] +
(
PµZ

µ[φ] + Z̄µ[φ]Pµ
)

+ · · · . (2.14)

As operators, the explicit factors of Pµ that multiply Zµ and Z̄µ should be understood

as “open” covariant derivatives that act on everything to their right (same for the Pµ’s

in eq. (2.8) above). These are in contrast with “closed” covariant derivatives that can be

written as commutators: [Pµ, φ] = i(Dµφ) with Dµ acting on φ alone. The U , Zµ and Z̄µ

matrices, written here as functionals of φ, can contain closed covariant derivatives:

U [φ] = U
(
φ , [Pµ, φ] , [Pµ, [Pν , φ]] , . . .

)

= U
(
φ , i (Dµφ) , i2 (DµDνφ) , . . .

)
. (2.15)

We emphasize that eq. (2.14) is an expansion in the number of open covariant deriva-

tives, and we have only written out the first two orders explicitly. Additional functionals

of φ appear in the higher order terms represented by “. . . ”. Technically, this expansion is

not unique, since a closed covariant derivative can always be rewritten in terms of open

covariant derivatives: [Pµ, φ] = Pµφ − φPµ. Typically, the calculation is more involved

when more open covariant derivatives appear, so it is desirable to write the X matrix in a

form that has the fewest possible open covariant derivatives.

In many practical matching calculations, the UV theory does not contain any derivative

interactions, and we simply have X(φ, Pµ) = U [φ]. More generally, derivative interactions

often involve a relatively small subset of fields in the UV theory, so we still have Xij = Uij [φ]

for many blocks of the X matrix. However, we reiterate that the utility of functional

methods (in particular the prescription presented in this work) does not rely on the series

in eq. (2.14) truncating after the first or second order; derivative interactions with any

number of open covariant derivatives are all accommodated.

3 Enumerating supertraces

Starting from the central formula eq. (2.3), the remaining tasks are clear. We need to

enumerate the functional supertraces that contribute to the specific matching calculation

of interest and then evaluate them, the subjects of this and the next section, respectively.
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Log-type supertraces. Since the K matrix is block-diagonal, the first term in eq. (2.3)

becomes a simple sum over the Ki blocks given in eq. (2.8), each corresponding to a field in

the UV theory. For the light fields φ, isolating the hard region contribution yields scaleless

loop integrals, which vanish in dimensional regularization. For the heavy fields Φ, on the

other hand, it is the soft region contribution that yields vanishing scaleless integrals. Thus,

i

2
STr logK

∣∣∣
hard

=
i

2

∑

i∈{Φ}

STr logKi

∣∣∣
hard

=
i

2

∑

i∈{Φ}

STr logKi . (3.1)

Moreover, only the heavy fields that are charged under the EFT gauge group need to be

included; otherwise, if Pµ = i∂µ, the supertrace would evaluate to a constant. Therefore,

enumerating the log-type supertraces amounts to identifying the heavy fields Φ in the UV

theory that are charged under the EFT gauge group.

Power-type supertraces. The second term in eq. (2.3) can be written in terms of the

blocks of the K and X matrices. Taking into account that K is block-diagonal, we have

− i
2

1

n
STr

[(
K−1X

)n]
= − i

2

1

n

∑

i1,··· ,in

STr

[
1

Ki1

Xi1i2

1

Ki2

Xi2i3 · · ·
1

Kin

Xini1

]
. (3.2)

The structure on the r.h.s. admits an intuitive graphical representation. We draw lines for

“propagators” 1
Ki

(we remind the reader that these are functional operators, not the mo-

mentum space Feynman propagators), and nodes for interactions Xij . Concretely, we define

ϕi1
ϕin

ϕi3
ϕi2

≡ − i
2

1

r
STr

[
1

Ki1

Xi1i2

1

Ki2

Xi2i3 · · ·
1

Kin

Xini1

]∣∣∣∣
hard

, (3.3)

where the indices i1, · · · , in are not summed over. Here 1
r is a symmetry factor accounting

for a possible Zr symmetry of the graph under rotation. For a generic set {i1, · · · , in},
the n cyclic permutations are distinct, and the terms that they represent in the sum in

eq. (3.2) all yield identical results upon evaluating the supertrace, so the 1
n prefactor is

fully canceled, and r = 1. On the other hand, if the graph has a non-trivial Zr symmetry

under rotation, there would only be n
r distinct cyclic permutations, leaving a prefactor 1

r

in eq. (3.3).

Enumerating the power-type supertraces therefore amounts to enumerating distinct

graphs of the form in eq. (3.3). Note that there is only one graph topology, so this enu-

meration is quite simple. We just need to keep track of the minimum operator dimension

contained in each Xij , and draw graphs where the sum of these numbers does not exceed

the desired maximum EFT operator dimension (e.g. six). The minimum operator dimen-

sion of Xij is determined by Uij [φ], Zµij [φ], Z̄µij [φ], etc. following the expansion in eq. (2.14),

without counting open covariant derivatives Pµ (which, just like K−1
i , will yield a series of

terms starting at dimension zero upon evaluation). Also, each graph must contain at least

one heavy propagator, since a loop involving only light fields yields scaleless integrals upon

isolating the hard region.
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4 Evaluating supertraces

We now move on to the next step, evaluating functional supertraces. This is an isolated

problem that can be solved in a variety of ways. For example, one can appeal to traditional

momentum-space Feynman diagrams, see e.g. sections 9.5, 11.4 and 16.6 of ref. [33]. On the

other hand, the covariant derivative expansion (CDE) provides a more efficient approach,

and we will use it here, mostly following ref. [16] and appendix B of ref. [26]. We aim

to provide a high-level summary in this section, and refer the reader to these references

for technical details. In particular, we focus on using simple examples to illustrate what

kind of results to expect from a CDE evaluation. More involved supertraces are evaluated

in the same manner. The tedium of supertrace evaluation grows rapidly as the calcu-

lation extends to higher operator dimensions, and/or supertraces with more complicated

structures. To facilitate this process, and to make functional matching fully accessible

to matching practitioners who are not necessarily familiar with the technical details of

CDE, we have authored a Mathematica package that automates the CDE evaluation of all

functional supertraces relevant for one-loop matching between relativistic theories, to be

presented in a forthcoming paper [30].

Log-type supertraces. The evaluation of log-type supertraces in eq. (3.1) is universal

across all UV theories. From eq. (2.8), we see that there are essentially only two scenarios

(taking ξ = 1 for the spin-1 case): STr log
(
P 2 −m2

)
and STr log

(
/P −m

)
. These can

be directly evaluated with CDE techniques, and will yield an infinite series of effective

operators. Since the Ki’s only depend on covariant derivatives Pµ = iDµ = i∂µ + gaG
a
µT

a

(with a summed over the gauge group generators), the resulting EFT operators can only

involve the gauge field strength of light vectors,

Fµν ≡ −i[Pµ, Pν ] = gaG
a
µνT

a , (4.1)

and their covariant derivatives. Each Pµ = iDµ has dimension one and each Fµν has

dimension two, so the operator dimension truncation is straightforward. Here we show the

results up to dimension six, while noting that the same CDE procedure can be applied to

derive operators at dimension eight and higher (represented by “. . . ”):

i

2
STr log

(
P 2−m2

)
=

∫
ddx

1

16π2
tr

{
−
(

2

ε̄
− log

m2

µ2

)
1

24
FµνF

µν

+
1

m2

[
− 1

120
(DµFµν) (DρF

ρν)− 1

180
i Fµ

νFν
ρFρ

µ

]
+ . . .

}
, (4.2a)

i

2
STr log

(
/P−m

)
=

∫
ddx

1

16π2
tr

{
−
(

2

ε̄
− log

m2

µ2

)
1

24
FµνF

µν

+
1

m2

[
− 1

60
(DµFµν) (DρF

ρν) +
1

360
i Fµ

νFν
ρFρ

µ

]
+ . . .

}
. (4.2b)
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Here and throughout this paper, we use dimensional regularization with the MS scheme; µ is

the renormalization scale, and 2
ε̄ ≡ 2

ε − γ + ln 4π will be cancelled by the MS counterterms

at the end of the calculation. We have assumed physical spin-statistics relations when

addressing the “super” aspect of the traces, i.e.,
(
P 2 −m2

)
comes from commuting fields

and
(
/P −m

)
comes from anticommuting fields. An exception is the Faddeev-Popov ghosts,

which are anticommuting Lorentz scalars whose inverse propagator is (P 2 −m2); in this

case, one should multiply the r.h.s. of eq. (4.2a) by an extra minus sign.

Note that the operators (P 2−m2) and (/P −m) (as well as their logarithms) are acting

on the field Φ(x). Therefore, as matrices they are acting on the giant vector space labeled

by both the components of Φ and the spacetime coordinate x, namely their direct product

space. In eq. (4.2), we have carried out the (more complicated) trace over the infinite-

dimensional subspace labeled by x; this is the “functional part” of the supertrace. The

remaining trace “tr” in the results is taken over the finite-dimensional space formed by all

the components of Φ, including its components in the field multiplet ϕ, spin indices, gauge

indices, etc. Concretely, this remaining trace is over three sets of Φ indices and can be

schematically written as

tr = trϕ × trLorentz × trG . (4.3)

The first two traces are over the components in the field multiplet ϕ and the Lorentz

representation space, respectively. These are trivial in the present case: the operators on

the r.h.s. of eq. (4.2) are proportional to the identity element in each of these spaces, so

these traces simply count the number of independent fields in the path integral measure nϕ
and the number of Lorentz components nLorentz. For example, nϕ = 1 for a real scalar or a

Majorana fermion, and nϕ = 2 for a complex scalar or a Dirac fermion; nLorentz equals 1,

4, and d = 4− ε for scalars, fermions and vectors, respectively. The third trace, trG, is over

internal gauge indices, and is evaluated with the covariant derivatives and field strengths

inheriting their representations from Φ. For the common case of a simple Lie group with

associated gauge coupling g, we have Fµν = g GaµνT
a
Φ, and therefore

trG
(
FµνF

µν
)

= CΦ g
2GaµνG

aµν , (4.4a)

trG
[
(DµFµν) (DρF

ρν)
]

= CΦ g
2
(
DµGaµν

)2
, (4.4b)

trG
(
iFµ

νFν
ρFρ

µ
)

= −CΦ
1

2
g3fabcGaµ

νGbν
ρ
Gcρ

µ , (4.4c)

where CΦ is the group invariant defined by trG(T aΦT
b
Φ) = CΦ δ

ab.

We summarize the coefficients of these EFT operators (up to a common factor of 1
16π2 )

that result from evaluating log-type supertraces for the various types of fields in table 1, as

a convenient reference. Note that in the real vector case, when multiplying the coefficient

of the FµνF
µν operator in eq. (4.2a) by nLorentz = d = 4 − ε, we obtain a finite piece

that results from ε multiplying the 1
ε pole. In what follows, we drop the 2

ε̄ terms in the

operator coefficients, with the understanding that they are eventually cancelled by the MS

counterterms; they can be easily restored in the intermediate steps in order to obtain finite
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Operator coefficients × 16π2
Integrate out

a heavy . . . trG
(
FµνF

µν
)

trG
[
(DµFµν) (DρF

ρν)
]

trG
(
iFµ

νFν
ρFρ

µ
)

real scalar 1
24 log m2

µ2 − 1
120

1
m2 − 1

180
1
m2

complex scalar 1
12 log m2

µ2 − 1
60

1
m2 − 1

90
1
m2

Majorana fermion 1
6 log m2

µ2 − 1
15

1
m2

1
90

1
m2

Dirac fermion 1
3 log m2

µ2 − 2
15

1
m2

1
45

1
m2

real vector 1
6

(
log m2

µ2 + 1
2

)
− 1

30
1
m2 − 1

45
1
m2

ghost − 1
12 log m2

µ2
1
60

1
m2

1
90

1
m2

Table 1. Universal results for log-type supertraces up to dimension six.

pieces by substituting

− log
m2

µ2
→ 2

ε̄
− log

m2

µ2
. (4.5)

Power-type supertraces. The power-type supertraces, eq. (3.3), involve the interaction

matrix X, whose detailed expression is derived from the UV theory. With the expansion in

eq. (2.14), a power-type supertrace becomes a sum of terms that are ready to be evaluated

using CDE. To illustrate this, let us consider a simple example with two spin-0 propagators,

ϕi with a heavy mass M and ϕj with zero mass:

Ki = P 2 −M2 , and Kj = P 2 , (4.6)

with the following interaction structure:

Xij = Uij + Z̄µijPµ ≡ U1 + Z̄µPµ , and Xji = Uji + PµZ
µ
ji ≡ U2 + PµZ

µ . (4.7)

In this case, we obtain a sum of four supertraces:

ϕi

ϕj

= − i
2

STr

(
1

Ki
Xij

1

Kj
Xji

)∣∣∣∣
hard

(4.8)

= − i
2

STr

(
1

P 2 −M2
U1

1

P 2
U2

)∣∣∣∣
hard

− i

2
STr

(
1

P 2 −M2
U1

1

P 2
PµZ

µ

)∣∣∣∣
hard

− i

2
STr

(
1

P 2 −M2
Z̄µPµ

1

P 2
U2

)∣∣∣∣
hard

− i

2
STr

(
1

P 2 −M2
Z̄µPµ

1

P 2
PνZ

ν

)∣∣∣∣
hard

.

Each of these supertraces can be directly evaluated using CDE without further specifying

the quantities U1, U2, Z̄µ, Zµ. As in eq. (4.2) above, we obtain a series of EFT operators
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from each supertrace with successively higher powers of covariant derivatives:

− i
2

STr
( 1

P 2 −M2
U1

1

P 2
U2

)∣∣∣
hard

=

∫
ddx

1

16π2
tr

{
1

2

(
1− log

M2

µ2

)
U1U2 +

1

4M2
(DµU1) (DµU2) + . . .

}
, (4.9a)

− i
2

STr
( 1

P 2 −M2
U1

1

P 2
PµZ

µ
)∣∣∣

hard

=

∫
ddx

1

16π2
tr

{
1

4

(
1

2
− log

M2

µ2

)
i U1 (DµZ

µ) + . . .

}
, (4.9b)

− i
2

STr
( 1

P 2 −M2
Z̄µPµ

1

P 2
U2

)∣∣∣
hard

=

∫
ddx

1

16π2
tr

{
− 1

4

(
1

2
− log

M2

µ2

)
i
(
DµZ̄

µ
)
U2 + . . .

}
, (4.9c)

− i
2

STr
( 1

P 2 −M2
Z̄µPµ

1

P 2
PνZ

ν
)∣∣∣

hard

=

∫
ddx

1

16π2
tr

{
1

8
M2

(
3

2
− log

M2

µ2

)
Z̄µZµ

− 1

8
i Z̄µFµνZ

ν − 1

24

(
5

6
− log

M2

µ2

)(
DµZ̄ν

)
(DµZν)

+
1

12

(
1

3
− log

M2

µ2

)[(
DµZ̄

µ
)(
DνZ

ν
)

+
(
DνZ̄

µ
)(
DµZ

ν
)]

+ . . .

}
. (4.9d)

On the r.h.s. of these equations, we have shown terms with up to two covariant derivatives;

higher derivative terms in “. . . ”, corresponding to higher dimensional EFT operators, can

be similarly derived. The operator dimension is bounded from below by the minimum

operator dimensions carried by U1, U2, Zµ and Z̄µ; this explains why, when enumerating

power-type supertraces, we count the dimensions of U , Z, Z̄ but not open covariant deriva-

tives Pµ or propagators K−1
i . Note that the CDE algorithm puts all covariant derivatives

into commutators [16, 30], so the results involve gauge field strengths Fµν ≡ −i [Pµ, Pν ]

and closed covariant derivatives like (DµU1) ≡ −i [Pµ, U1].

The procedure above carries over to all other power-type supertraces. Generally, we

can apply CDE to evaluate any supertrace over a product of covariant propagators 1
Ki

(which can have any spin and can be either heavy or light), open covariant derivatives Pµ,

and generic functionals of the light fields Uij [φ], Zµij [φ], Z̄µij [φ], etc. The result will be a

series of operators similar to eq. (4.9). Then the remaining straightforward tasks are to

substitute in explicit expressions for Uij [φ], Zµij [φ], Z̄µij [φ], etc. derived from the specific UV

theory, and to carry out the remaining trace “tr” as defined in eq. (4.3). In this way, we

arrive at the operators in the one-loop EFT Lagrangian together with their coefficients.
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5 Summary: prescription for functional matching

We can summarize the procedure discussed in the previous sections into the following

practical prescription for functional matching up to one-loop order:

1. Derive heavy EOM(s) and L(tree)
EFT . Starting with the UV Lagrangian LUV[Φ, φ],

derive the EOMs for the heavy fields Φ that one wishes to integrate out. Solve

these EOMs and substitute the solution Φc[φ] (expanded in inverse powers of the

heavy masses) into LUV, to obtain the tree-level EFT for the light fields: L(tree)
EFT [φ] =

LUV[Φ, φ]
∣∣
Φ=Φc[φ]

.

2. Derive K and X matrices. Write the UV field multiplet ϕ = {Φ, φ} in terms of

the independent fields in the path integral measure, as in e.g. eq. (2.4). Take the

second variation of the UV action with respect to ϕ to extract the inverse propaga-

tor matrix K and interaction matrix X (where Φ is set to Φc[φ]), as explained in

eqs. (2.7), (2.8), (2.11) and (2.12). These enter the two types of functional supertraces

(log-type and power-type) in eq. (2.3), from which the one-loop EFT Lagrangian

L(1-loop)
EFT [φ] will be derived.

3. Enumerate supertraces. For log-type supertraces, simply enumerate the heavy fields

charged under the EFT gauge group. For power-type supertraces, identify the mini-

mum operator dimension of each block Xij of theX matrix (excluding open covariant

derivatives in the counting), and enumerate distinct graphs of the form in eq. (3.3)

with at least one heavy propagator, where the sum of the miminum operator dimen-

sions of the Xij nodes does not exceed the desired operator dimension truncation of

the EFT Lagrangian.

4. Evaluate supertraces to obtain L(1−loop)
EFT . Apply CDE to evaluate the supertraces,

e.g. as implemented in our package [30]. For log-type supertraces, the results are

universal; see eq. (4.2) and table 1. For power-type supertraces, first work in terms

of generic U [φ], Zµ[φ], Z̄µ[φ], etc. up to the desired EFT operator dimension as in

eqs. (4.8) and (4.9), and then substitute in the concrete expressions derived in Step 2

for the specific UV theory under consideration to carry out the remaining trace

defined in eq. (4.3). Add up the results from evaluating all supertraces enumerated

in Step 3 to obtain L(1-loop)
EFT [φ].

These four steps are illustrated by arrows with different colors in the right panel of figure 1.

Following this prescription, one can derive the EFT Lagrangian up to one-loop order di-

rectly from any perturbative UV theory (renormalizable or not). In the next section, we

provide a detailed pedagogical example to demonstrate the prescription at work, and ex-

plain some of the more technical aspects and subtleties that one encounters when matching

functionally.
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6 Example: singlet scalar extended Standard Model

Let us consider a UV theory where the SM is extended by a heavy singlet scalar S. Including

all renormalizable interactions between S and the SM fields, we have

LUV = LSM +
1

2
(∂µS)2 − 1

2
M2S2 −A|H|2S − 1

2
κ|H|2S2 − 1

3!
µSS

3 − 1

4!
λSS

4 , (6.1)

where H is the SM Higgs doublet, and our conventions for the SM Lagrangian are as

follows:

LSM = |DµH|2 +
∑

f=q,u,d,l,e

f̄ i /Df − 1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν

−m2|H|2 − 1

2
λH |H|4 −

(
q̄ yuu H̃ + q̄ yd dH + l̄ ye eH + h.c.

)
, (6.2)

where H̃ ≡ εH∗ with ε = iσ2 =
(

0 1
−1 0

)
, and the Yukawa couplings yu, yd, ye are 3 × 3

matrices in generation space. We will often write SU(3)C and SU(2)L indices in color for

clarity.

We will match this theory onto SMEFT up to dimension six. This example has been

adopted as a benchmark for one-loop SMEFT matching calculations in the recent liter-

ature: ref. [20] used functional methods (with a slightly different formulation than the

present work, see appendix A) to obtain the scalar sector contribution, ref. [31] computed

additional EFT operators using Feynman diagrams, while ref. [32] presented the full match-

ing calculation using Feynman diagrams. While repeating the complete calculation using

our approach, we will encounter many interesting aspects of one-loop functional matching,

such as mixed heavy-light loops, mixed bosonic-fermionic loops, and derivative interactions.

Step 1: derive heavy EOM and L(tree)
EFT . The EOM for the heavy field S is

δSUV

δS
= −A|H|2 +

(
P 2 −M2 − κ|H|2

)
S − 1

2
µSS

2 − 1

3!
λSS

3 = 0 . (6.3)

To solve this equation order by order, we write the solution Sc as

Sc = S(2)
c + S(4)

c + S(6)
c + . . . , (6.4)

where S
(n)
c contains operators with mass dimension n multiplied by prefactors that scale

as M1−n. Collecting terms in the EOM with operator dimensions 2, 4 and 6, we obtain

0 = −A|H|2 −M2S(2)
c , (6.5a)

0 =
(
P 2 − κ|H|2

)
S(2)

c −M2S(4)
c − 1

2µS

[
S(2)

c

]2
, (6.5b)

0 =
(
P 2 − κ|H|2

)
S(4)

c −M2S(6)
c − µSS(2)

c S(4)
c − 1

3!λS

[
S(2)

c

]3
. (6.5c)
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Therefore,

S(2)
c = − A

M2 |H|2 , (6.6a)

S(4)
c = A

M4

[(
∂2|H|2

)
+
(
κ− µSA

2M2

)
|H|4

]
, (6.6b)

S(6)
c = − A

M6

{(
κ− µSA

M2

)
|H|2

(
∂2|H|2

)
+
[(
κ− µSA

M2

)(
κ− µSA

2M2

)
− λSA

2

6M2

]
|H|6

+ ∂2
[(
∂2|H|2

)
+
(
κ− µSA

2M2

)
|H|4

]}
. (6.6c)

Note that the term ∂2[. . . ] in S
(6)
c is a total derivative with operator dimension six, so it

cannot contribute to any EFT operators up to dimension six.

The tree-level EFT Lagrangian is obtained by substituting Sc into LUV. Up to dimen-

sion six, we have

L(tree)
EFT = LSM + A2

2M2 |H|4 − A2

2M4 |H|2
(
∂2|H|2

)
− A2

2M4

(
κ− µSA

3M2

)
|H|6 . (6.7)

Step 2: derive K and X matrices. To take functional variations of the UV action, we

need to write the field multiplet ϕ in terms of the independent fields in the path integral

measure. In the present case, we have

ϕi ∈ {ϕS , ϕH , ϕq , ϕu , ϕd , ϕl , ϕe , ϕG , ϕW , ϕB} , (6.8a)

ϕ̄i ∈ {ϕ̄S , ϕ̄H , ϕ̄q , ϕ̄u , ϕ̄d , ϕ̄l , ϕ̄e , ϕ̄G , ϕ̄W , ϕ̄B} , (6.8b)

where

ϕS = S , ϕH =

(
H

H∗

)
, ϕf =

(
f

f c

)
, ϕV = V , (6.9a)

ϕ̄S = S , ϕ̄H =
(
H† HT

)
, ϕ̄f =

(
f̄ f̄ c

)
, ϕ̄V = V , (6.9b)

with f = q, u, d, l, e, and V = G,W,B. We have omitted the ghosts fields that accompany

the SM gauge fields, as their only interactions are with the gauge field fluctuations, which

do not contribute to one-loop matching onto operators involving physical fields.

To treat the SM chiral fermions in a simple way, we introduce a set of auxiliary chiral

fermions (denoted with prime) as their Dirac partners, so that f and f c are Dirac fermion

fields, with the following Weyl components:4

q =

(
qa
q′†ȧ

)
, qc =

(
q′a
q†ȧ

)
, (6.10a)

u =

(
u′a
u†ȧ

)
, uc =

(
ua
u′†ȧ

)
, (6.10b)

4Here we use the same symbol for a Dirac field and its Weyl components. This will not be confusing

in what follows as we will not need to write out the Weyl components explicitly in our calculation, and

f = q, u, d, l, e always refer to Dirac fields when they appear.
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and similarly for d, l and e. Note that the positions of unprimed physical fields and primed

auxiliary fields are swapped for the left-handed vs. right-handed SM fermions (q, l vs. u,

d, e). With these auxiliary Weyl components introduced, projection operators 1
2(1 ± γ5)

need to be properly inserted in the Yukawa interactions in eq. (6.2) to isolate the physical-

chirality fermions.

With the field multiplet in eq. (6.8), the inverse propagator matrix K takes the stan-

dard block-diagonal form with entries given by eq. (2.8). The interaction matrix X follows

from varying the UV Lagrangian as in eq. (2.11), and setting S = Sc given by eqs. (6.4)

and (6.6). We provide a few examples of this calculation, and collect the explicit expressions

for the X matrix entries in appendix B, in the interest of providing a useful reference for

future SMEFT matching calculations, since the majority of X matrix entries are derived

from the SM Lagrangian.

It is worth noting that, for most of the X matrix blocks, the series in eq. (2.14)

truncates after the first order, Xij(φ, Pµ) = Uij [φ]. The only exceptions are blocks between

the SM Higgs H and the electroweak gauge bosons W , B, where open covariant derivatives

appear and the series truncates after the next order; this serves as a concrete example of

functional matching involving derivative interactions.

Step 3: enumerate supertraces. There are no log-type supertraces, since the only

heavy field S is a gauge singlet. To enumerate the power-type supertraces, we first list the

minimum operator dimensions of the non-vanishing X matrix blocks as follows:

dim(X) ≥

S H q u d l e G W B





S 2 1

H 1 2 3
2

3
2

3
2

3
2

3
2 1 1

q 3
2 1 1 3

2
3
2

3
2

u 3
2 1 3

2
3
2

d 3
2 1 3

2
3
2

l 3
2 1 3

2
3
2

e 3
2 1 3

2

G 3
2

3
2

3
2 2

W 1 3
2

3
2 2 2

B 1 3
2

3
2

3
2

3
2

3
2 2 2

. (6.11)

The next step is to enumerate the graphs of the form shown in eq. (3.3) that contribute

up to operator dimension six. We will follow the usual convention, using dashed lines for

scalars, solid lines for fermions, and wavy lines for vectors. We double the dashed line for

the heavy scalar S to distinguish it from the light scalar H. To make the operator dimension

counting transparent, we will label the nodes in the graphs with their minimum operator

dimensions — the sum of these numbers in each graph should be ≤ 6. Correspondingly, we

will label Xij , Uij , etc. with superscripts to indicate their minimum operator dimensions;

for example, U
[1]
SH indicates that USH starts with operator dimension one. We will represent

an Xij node as Uij when the two are equal; otherwise, we will first express the graph in

terms of Xij , and then expand the supertrace according to eq. (2.14).
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Having set up the notation, we now systematically enumerate graphs with increasing

numbers of propagators. Since a graph must have at least one heavy propagator, we begin

with an S propagator in each case, and then complete the loop in all possible ways according

to the nonvanishing blocks of the X matrix, as shown in eq. (6.11).

1-propagator graph. There is only one graph with a single S propagator:

2

= − i
2 STr

[
1

P 2−M2 U
[2]
SS

]∣∣∣
hard

. (6.12)

2-propagator graphs. The second propagator can be either S or H, so we have

22 = − i
2

1
2 STr

[(
1

P 2−M2 U
[2]
SS

)2]∣∣∣
hard

, (6.13)

11 = − i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

. (6.14)

Note the symmetry factor 1
2 in eq. (6.13), due to the graph’s Z2 symmetry under rotation.

3-propagator graphs. With 3 propagator, we can draw an SSS loop, an SSH loop,

and an SHH loop:

2

2

2

= − i
2

1
3 STr

[(
1

P 2−M2 U
[2]
SS

)3]∣∣∣
hard

, (6.15)

1

2

1 = − i
2 STr

[
1

P 2−M2 U
[2]
SS

1
P 2−M2 U

[1]
SH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

, (6.16)

11

2

= − i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[2]
HH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

. (6.17)

Again, note the symmetry factor 1
3 in eq. (6.15).
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4-propagator graphs. We can draw a loop with four S propagators, but it has a min-

imum operator dimension of 8 and will not contribute to the EFT Lagrangian up to di-

mension six. So we need at least one non-S propagator. First, we restrict ourselves to the

scalar sector and use just S and H. The possibilities are an SSSH loop, an SSHH loop,

an SHSH loop, and an SHHH loop (among which only the SHSH loop has a nontrivial

symmetry factor of 1
2):

1

22

1 = − i
2 STr

[(
1

P 2−M2 U
[2]
SS

)2 1
P 2−M2 U

[1]
SH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

, (6.18)

1

2

1

2

= − i
2 STr

[
1

P 2−M2 U
[2]
SS

1
P 2−M2 U

[1]
SH

1
P 2−m2 U

[2]
HH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

, (6.19)

11

1 1

= − i
2

1
2 STr

[(
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[1]
HS

)2]∣∣∣
hard

, (6.20)

11

2 2

= − i
2 STr

[
1

P 2−M2 U
[1]
SH

(
1

P 2−m2 U
[2]
HH

)2 1
P 2−m2 U

[1]
HS

]∣∣∣
hard

. (6.21)

With four propagators, fields other than S and H can also enter the loop. After

attaching two H propagators to both ends of an S propagator, we can complete the loop

with a SM fermion f = q, u, d, l, e or electroweak vector V = W,B as the fourth propagator:

11

3
2

3
2

=− i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[3/2]
Hf

1
/P
U

[3/2]
fH

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

, (6.22)

11

1 1

=− i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 X

ν[1]
HV

−ηνµ
P 2 X

µ[1]
V H

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

=− i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

ν[2]
HV

−ηνµ
P 2 U

µ[2]
V H

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

(6.23)

− i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 PρZ

ρν [1]
HV

−ηνµ
P 2 U

µ[2]
V H

1
P 2−m2 U

[1]
HS

+ 1
P 2−M2 U

[1]
SH

1
P 2−m2 U

ν[2]
HV

−ηνµ
P 2 Z̄

ρµ [1]
V H Pρ

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

(6.24)

− i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 PρZ

ρν [1]
HV

−ηνµ
P 2 Z̄

τµ [1]
V H Pτ

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

, (6.25)
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where we have written out the Lorentz indices carried by V . Note that the two terms in

eq. (6.24) are Hermitian conjugates of each other, so we only need to compute one of them

explicitly.

5-propagator graphs. With five propagators, many possibilities are eliminated by the

requirement that the sum of the nodes’ minimum operator dimensions should be ≤ 6.

Again starting within the scalar sector, we find only two possibilities:

1
2

1

1 1

= − i
2 STr

[
1

P 2−M2 U
[2]
SS

(
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[1]
HS

)2]∣∣∣
hard

, (6.26)

11

2

1 1

= − i
2 STr

[
1

P 2−m2 U
[2]
HH

(
1

P 2−m2 U
[1]
HS

1
P 2−M2 U

[1]
SH

)2]∣∣∣
hard

. (6.27)

Including fermions, we find one additional graph:

11

3
2 1

3
2

= − i
2 STr

[
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[3/2]
Hf1

1
/P
U

[1]
f1f2

1
/P
U

[3/2]
f2H

1
P 2−m2 U

[1]
HS

]∣∣∣
hard

,

(6.28)

where f1, f2 are summed over q, u, d, l, e.

One may also draw graphs with vector propagators, such as SSHV H, SHVHH,

SHfV H with V = W,B. However, to keep the total operator dimension ≤ 6, we must take

the dimension-one Z (Z̄) part of XHV (XV H), not the dimension-two U part. Furthermore,

in each case, the first order term in the CDE, which involves just U , Z, Z̄ but not covariant

derivatives, already saturates the six operator dimensions, so the result must contain the

matrix product USHZ
ρν
HV or Z̄ρµV HUHS . One can easily confirm that USHZ

ρν
HV = Z̄ρµV HUHS =

0 from eqs. (B.6), (B.21) and (B.23). Therefore, all the additional graphs with vector

propagators vanish at the dimension-six level.

6-propagator graphs. With six propagators, which come with six nodes, we have no

choice but to select only from the “1” entries in eq. (6.11); in this way we saturate the six

operator dimensions. Starting from an S propagator, there is no way to get to the “1”s

in the fermion-fermion blocks. Meanwhile, the HV and V H blocks are excluded because

they would result in USHZ
ρν
HV or Z̄ρµV HUHS , both of which vanish as discussed above. We

are thus left with only one possibility:

1

11

1

1 1

= − i
2

1
3 STr

[(
1

P 2−M2 U
[1]
SH

1
P 2−m2 U

[1]
HS

)3]∣∣∣
hard

. (6.29)

Again note the symmetry factor 1
3 .
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Beyond six propagators, any graph one can draw contributes to EFT operators with

dimension > 6. So we have completed the enumeration of supertraces that appear for

matching the singlet scalar extended SM onto SMEFT up to dimension six. We have

obtained 18 supertraces, shown in eqs. (6.12)–(6.29). We are now ready to move on to the

last step, evaluating these 18 supertraces.

Step 4: evaluate supertraces to obtain L(1-loop)
EFT . As explained in section 4, we follow

a two-step procedure to convert the 18 power-type supertraces into effective operators in

the EFT Lagrangian. First, we apply CDE to eqs. (6.12)–(6.29) assuming generic U , Z, and

Z̄. These results are summarized in eqs. (C.1)–(C.18) in appendix C. We then substitute

in the concrete expressions of U , Z, and Z̄ derived in Step 2 and collected in appendix B,

and carry out the remaining trace “tr” defined in eq. (4.3).

For completeness, we present the various contributions to the one-loop EFT Lagrangian

in a format that makes it transparent which equation in appendix C is used to evaluate

which supertrace. This should allow the interested reader to fill in the intermediate steps

by carefully working out the matrix algebra. Note that we use “⇒” (rather than “=”)

to mean that the l.h.s. of each equation is equal to the spacetime integral
∫

ddx of the

expression on the r.h.s. :

(6.12)
(C.1)
=⇒ 1

16π2
1
2

(
1− log M2

µ2

){
(κM2 − µSA)|H|2 +

[
λSA

2

2M2 +
µSA

M2

(
κ− µSA

2M2

)]
|H|4

− 1
M2

[
λSA

2

M2

(
κ− 2µSA

3M2

)
+

µSA

M2

(
κ− µSA

M2

)(
κ− µSA

2M2

)]
|H|6

− 1
M2

[
λSA

2

M2 +
µSA

M2

(
κ− µSA

M2

)]
|H|2

(
∂2|H|2

)}
, (6.30)

(6.13)
(C.2)
=⇒ 1

16π2
1
4

(
κ− µSA

M2

){(
κ− µSA

M2

)(
− log M2

µ2

)
|H|4

+ 1
M2

[
λSA

2

M2 +
2µSA

M2

(
κ− µSA

2M2

)](
− log M2

µ2

)
|H|6

− 1
M2

[
1
6κ−

2µSA

M2

(
1
12 − log M2

µ2

)]
|H|2

(
∂2|H|2

)}
, (6.31)

(6.14)
(C.3)
=⇒ 1

16π2

{(
1− log M2

µ2

)[(
1 + m2

M2 + m4

M4

)
A2|H|2

−
(

1 + m2

M2

)
2κA2

M2 |H|4 + κA2

M4

(
3κ− µSA

M2

)
|H|6

]

+ A2

M2

[
1
2 + m2

M2

(
5
2 − log M2

µ2

)]
|DµH|2 − κA2

M4 |H|2|DµH|2

+ 2κA2

M4

(
5
4 − log M2

µ2

)
|H|2

(
∂2|H|2

)
+ A2

6M4

∣∣D2H
∣∣2

− A2

12M4

(
7
3 − log M2

µ2

)[
ig2

(
H†σI

←→
DµH

)(
DνW I

µν

)

+ ig1

(
H†
←→
DµH

)(
∂νBµν

)]
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− A2

12M4

[
ig2(DµH)†σI(DνH)W I

µν + ig1(DµH)†(DνH)Bµν

]

+ A2

16M4

[
g2

2

(
H†σIσJH

)
W I
µνW

Jµν + g2
1 |H|2BµνBµν

+ 2g1g2

(
H†σIH

)
W I
µνB

µν
]}

, (6.32)

(6.15)
(C.4)
=⇒ 1

16π2
1
M2

{
− 1

12

(
κ− µSA

M2

)3
|H|6

}
, (6.33)

(6.16)
(C.5)
=⇒ 1

16π2
A2

M2

{
−
(
κ− µSA

M2

)[
1 + m2

M2

(
2− log M2

µ2

)]
|H|4

+ 1
M2

[
2κ
(
κ− µSA

M2

)
− µSA

M2

(
κ− µSA

2M2

)
− λSA

2

2M2

]
|H|6

+ 1
3M2

(
κ− 4µSA

M2

)
|H|2

(
∂2|H|2

)

− 1
2M2

(
κ− µSA

M2

)
|H|2|DµH|2

}
, (6.34)

(6.17)
(C.6)
=⇒ 1

16π2
A2

M2

{(
1 + 2m2

M2

)(
3λH − A2

M2

)(
1− log M2

µ2

)
|H|4

− 1
M2

[
6κλH − A2

2M2

(
7κ− µSA

M2

)](
1− log M2

µ2

)
|H|6

− 1
M2

[
1
2λH − A2

M2

(
3
2 − log M2

µ2

)]
|H|2

(
∂2|H|2

)

+ λH
2M2

(
3
2 − log M2

µ2

)(
∂µ|H|2

)2 − λH
M2 |H|2

[
H†(D2H) + (D2H)†H

]

+ 1
M2

(
λH − A2

M2

)(
5
2 − log M2

µ2

)
|H|2|DµH|2

}
, (6.35)

(6.18)
(C.7)
=⇒ 1

16π2
A2

M4

{
1
2

(
κ− µSA

M2

)2
|H|6

}
, (6.36)

(6.19)
(C.8)
=⇒ 1

16π2
A2

M4

{
−
(
κ− µSA

M2

)(
3λH − A2

M2

)(
2− log M2

µ2

)
|H|6

}
, (6.37)

(6.20)
(C.9)
=⇒ 1

16π2
A4

M4

{
−
[(

2− log M2

µ2

)
+ 4m2

M2

(
3
2 − log M2

µ2

)]
|H|4

+ 4κ
M2

(
2− log M2

µ2

)
|H|6 + 1

2M2

(
∂µ|H|2

)2

+ 1
M2

(
8
3 − log M2

µ2

)
|H|2|DµH|2

+ 1
2M2

(
14
3 − log M2

µ2

)
|H|2

[
H†(D2H) + (D2H)†H

]}
, (6.38)

(6.21)
(C.10)
=⇒ 1

16π2
A2

M4

{(
3λH − A2

M2

)2(
1− log M2

µ2

)
|H|6

}
, (6.39)
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(6.22)
(C.11)
=⇒ 1

16π2
A2

M4

{
1
4

(
5
2 − log M2

µ2

)[
H†α
(
q̄β ydy

†
dγ

µqα + l̄β yey
†
eγ
µlα
)
(iDµH)β

+ (iDµH)†α
(
q̄β ydy

†
dγ

µqα + l̄β yey
†
eγ
µlα
)
Hβ

− 2 H̃†(iDµH)
(
ūy†uydγ

µd
)
− 2H†(iDµH̃)

(
d̄y†dyuγ

µu
)

+ H̃†α
(
q̄β yuy

†
uγ

µqα
)
(iDµH̃β) + (iDµH̃)†α

(
q̄β yuy

†
uγ

µqα
)
H̃β

+
(
H† i
←→
DµH

)(
ūy†uyuγ

µu− d̄y†dydγµd− ēy†eyeγµe
)]

+ 1
4

(
1
2 − log M2

µ2

)[
H̃†α
(
q̄β yuy

†
u i
←→
/D qα

)
H̃β

+ |H|2
(
ūy†uyu i

←→
/D u+ d̄y†dyd i

←→
/D d+ ēy†eye i

←→
/D e
)

+H†α
(
q̄β ydy

†
d i
←→
/D qα + l̄β yey

†
e i
←→
/D lα

)
Hβ

]}
, (6.40)

(6.23)
(C.12)
=⇒ 1

16π2
A2

M4

{
1
8

(
1− log M2

µ2

)[
g2

2

(
H†σI

←→
DµH

)2
+ g2

1

(
H†
←→
DµH

)2]
}
, (6.41)

(6.24)
(C.13)
=⇒ 1

16π2
A2

M4

{
1
8

(
1
2 − log M2

µ2

)[
g2

2

(
H†σI

←→
DµH

)2
+ g2

1

(
H†
←→
DµH

)2]
}
, (6.42)

(6.25)
(C.14)
=⇒ 1

16π2
A2

M4

{
1
8

(
1− log M2

µ2

)[
g2

2

(
H†σI

←→
DµH

)2
+ g2

1

(
H†
←→
DµH

)2]
}
, (6.43)

(6.26)
(C.15)
=⇒ 1

16π2
A4

M6

{
2
(
κ− µSA

M2

)(
5
2 − log M2

µ2

)
|H|6

}
, (6.44)

(6.27)
(C.16)
=⇒ 1

16π2
A4

M6

{
− 4

(
3
2 − log M2

µ2

)(
3λH − A2

M2

)
|H|6

}
, (6.45)

(6.28)
(C.17)
=⇒ 1

16π2
A2

M4

{
1
4 (4− ε)

(
3
2 − log M2

µ2

)[
|H|2

(
q̄ yuy

†
uyuu H̃ + H̃† ūy†uyuy

†
u q
)

+ |H|2
(
q̄ ydy

†
dyddH +H† d̄y†dydy

†
d q
)

+ |H|2
(
l̄ yey

†
eyeeH +H† ēy†eyey

†
e l
)]}

, (6.46)

(6.29)
(C.18)
=⇒ 1

16π2
A6

M8

{
4
(

11
6 − log M2

µ2

)
|H|6

}
. (6.47)

In these equations, we have left most of the internal indices implicit when their con-

traction is obvious; in eq. (6.40), however, we have written out the SU(2)L fundamental

indices α, β explicitly in several terms for clarity. Note that when the evaluation yields op-

erators that involve fermions, bilinears of both the original fields q, u, d, l, e and the charge

conjugated fields qc, uc, dc, lc, ec appear. We have rewritten the fermion bilinears involving

charge conjugated fields in terms of the original fields via f̄ c
1 Γf c

2 = ± f̄2 Γf1, where the

+ (−) sign applies when Γ is a product of an even (odd) number of γ matrices. Also,
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we have dropped the chiral projection operators 1±γ5

2 when writing the final results, with

the understanding that all auxiliary fields (e.g. the primed fields in eq. (6.10)) are set to

zero. Finally, we have denoted the SU(2)L and U(1)Y gauge couplings by g2 and g1, re-

spectively, and adopted the standard notation
←→
Dµ when writing some of the operators, e.g.

H†
←→
DµH ≡ H†(DµH)− (DµH)†H.

This completes the application of the prescription detailed in section 5 for matching the

singlet scalar extended SM onto SMEFT up to one loop and dimension six. In section D, we

further rewrite the results of this calculation in a way that makes them more amenable to

comparisons with the literature; tables 2–4 in that appendix provide an organized summary

of the results.

7 Outlook

We have presented a concise prescription for systematically matching a UV theory onto an

EFT up to one-loop order. Our prescription is based on functional methods augmented

by covariant derivative expansion (CDE) techniques. The functional approach has the

conceptual benefit that all aspects of the calculation are performed within the UV theory

at the matching scale, which avoids the need to carefully keep track of many IR details that

cannot contribute to the EFT Wilson coefficients. By streamlining the formalism, we were

able to reframe functional matching calculations as a four-step procedure, as summarized

in section 5 and illustrated in the right panel of figure 1. At the core of our approach are

the simple graphical enumeration and CDE evaluation of a set of functional supertraces.

The evaluation step can be treated in isolation; in a forthcoming paper [30], we will provide

a Mathematica package that automates the evaluation of any supertrace that can appear

when integrating out heavy particles in relativistic theories. Our point of view is that the

calculation of one-loop matching coefficients for this general class of theories (including the

very important application of SMEFT) is now completely straightforward and accessible.

Many interesting directions for future investigations remain. The most obvious is to

simply apply this formalism to other beyond the SM examples. Since the output of this

calculation is typically in a non-standard operator basis, there is also an opportunity to

integrate this technology with automated approaches to changing basis such as ref. [34].

We have not yet explored the supertrace building block structures for EFTs arising from

other low energy limits, such as a non-relativistic example like HQET. Finally, it would

be exciting to extend our prescription beyond one-loop fixed order [35], e.g. to incorporate

renormalization group improvements [36].

Acknowledgments

We are very grateful to Dave Sutherland for detailed comments on the draft. X.L. is grateful

to Brian Henning and Hitoshi Murayama for fruitful discussions on CDE and functional

matching. Z.Z. has likewise benefited from collaboration with Sebastian Ellis, Jérémie

Quevillon, Pham Ngoc Hoa Vuong and Tevong You on several past works on functional

matching. T.C. and X.L. are supported by the U.S. Department of Energy, under grant

– 23 –



J
H
E
P
0
2
(
2
0
2
1
)
2
2
8

number DE-SC0011640. The work of Z.Z. was supported in part by the U.S. Department

of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-

AC02-05CH11231.

A Comparison with previous approaches

In the main text of this paper, our goal was to introduce our prescription in the most

straightforward way to emphasize its simplicity and accessibility. We have therefore avoided

technical comparisons to the literature, and in particular how our prescription relates to

previous approaches. This appendix aims to provide such a discussion.

The use of functional methods and CDE for one-loop matching calculations dates

back to the 1980s [27–29]. More recently, interest in calculating precision electroweak and

Higgs observables in SMEFT has led to a revival of these methods [15, 16]. In particular,

following the CDE approach of Gaillard [27] and Cheyette [29], ref. [16] presented universal

results of integrating out heavy particles with degenerate masses. This idea of universality

in one-loop matching calculations was further emphasized in ref. [17], which extended

the results of ref. [16] to the nondegenerate case, and initiated the Universal One-Loop

Effective Action (UOLEA) program. It was soon realized, however, that the calculations

in refs. [16, 17] must be further extended to take into account contributions from mixed

heavy-light loops [37, 38]. This was initially done in refs. [12, 18], and was later on simplified

in refs. [13, 14]. In particular, ref. [14] developed a diagrammatic framework, dubbed

“covariant diagrams,” to facilitate the CDE calculation for generic interaction structures

among spin-0, spin- 1
2 and spin-1 fields in the UV theory. At this point, it is fair to claim that

one-loop functional matching was a fully solved problem. Afterward, efforts to explicitly

work out additional terms in the relativistic UOLEA continued [20, 22–24], while functional

matching also found applications in other contexts, including HEFT [25] and HQET [26].

In the following paragraphs, we discuss how our new prescription relates to some of

the key results in the literature summarized above.

Relation to ref. [12]. Our one-loop matching formula eq. (1.7), and subsequently

eq. (2.1), were essentially also derived in ref. [12]. In particular, eq. (2.37) in ref. [12]

summarized the total one-loop matching result as

∫
ddxL(1-loop)

EFT =
i

2
log Sdet

(
−δ

2SUV[ϕ]

δϕ2

∣∣∣∣
Φ=Φc[φ]

)
− i

2
log Sdet

(
−δ

2S(0)
EFT[φ]

δφ2

)
. (A.1)

It was also stated that the first term gives the full UV 1LPI effective action Γ
(1-loop)
L,UV [φ];

see eq. (2.32b) therein. However, it was not articulated in ref. [12] that with the method

of regions, the second term can be identified with the soft region contribution, and hence

the subtraction leaves us with the hard region. This conceptual insight was highlighted in

refs. [13, 14], which our present work inherits.

Apart from the above conceptual improvement, a more important development in

the current work is to provide a simplified calculating procedure onward from eq. (2.1).
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For historical reasons, ref. [12] was focused on explaining the meaning and origin of mixed

heavy-light contributions. This motivated an effort to separate the two in eq. (A.1). In par-

ticular, significant manipulations were performed to further split the first term in eq. (A.1)

(see eq. (3.2) and appendix B in ref. [12]):

i

2
log Sdet

(
−δ

2SUV[ϕ]

δϕ2

∣∣∣∣
Φ=Φc[φ]

)
=
i

2
log Sdet

(
−δ

2SUV[ϕ]

δΦ2

∣∣∣∣
Φ=Φc[φ]

)

+
i

2
log Sdet

(
−
δ2SUV[ϕ]|Φ=Φc[φ]

δφ2

)
. (A.2)

The first part of the r.h.s. was then identified with the heavy-only contributions, and the sec-

ond (after subtracting the soft region contribution) with mixed heavy-light contributions.

This decomposition was helpful for explicitly showing that mixed heavy-light contributions

can be accounted for with functional matching. However, using the r.h.s. of eq. (A.2) for

practical evaluation, as proposed in ref. [12], introduces unnecessary complications. This is

because in the second term of eq. (A.2), one needs to substitute in the EOM solution Φc[φ]

before taking the functional variation with respect to the light fields φ. Furthermore, it is

crucial to keep Φc[φ] “non-local” (like in eqs. (3.23) and (3.24) in ref. [12]) throughout this

functional variation procedure. This is quite tedious for UV theories with Φ interactions

beyond quadratic order. In the prescription presented in the current paper, we proceed

using the l.h.s. of eq. (A.2), where everything is “local” at the stage of taking the func-

tional variations. Furthermore, the EOM solution Φc[φ] can be kept implicit as in Uij [φ]

and Zµij [φ] in our eq. (2.14) until the very end of the calculation, and one never needs to

use its non-local form.

Relation to covariant diagrams. In ref. [14], a slightly different route was taken when

computing the functional supertrace Str log(K −X): the “functional part” of the su-

pertrace was evaluated at the very beginning, and the expansion of the logarithm came

afterward. In contrast, in this paper, we first make the separation

STr log(K −X) = STr logK + STr log
(
1−K−1X

)
, (A.3)

and expand the logarithm in the second term as in eq. (2.3), while postponing the evaluation

to a later stage. Ultimately, the two approaches produce the same operator expansion, as

they must, but the key improvement here is a clean separation between the enumeration

and evaluation steps that makes the calculation more compact. Concretely, evaluating

the “functional part” of the supertrace obviously generates more terms in the subsequent

expansion. Since the goal of covariant diagrams in ref. [14] is to keep track of all these

resulting terms, the number of diagrams can easily grow large. In our present approach,

the graphical enumeration is carried out before evaluating any part of the supertrace, and

the number of graphs is therefore reduced. For example, our results in section 6 for the

one-loop matching calculation of the singlet scalar extended SM can be fully reproduced

by computing more than 40 covariant diagrams, as opposed to just 16 graphs here.
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In a sense, our present approach corresponds to an efficient packaging of covariant

diagrams. Technically, each functional supertrace here evaluates to the same results as an

infinite series of covariant diagrams. In particular, a log-type supertrace is reproduced by

the infinite sum of covariant diagrams with an even number (4, 6, . . . ) of P insertions and no

U or Z insertions, while a power-type supertrace represented graphically as in eq. (3.3) —

more precisely, each term in a power-type supertrace following the expansion in eq. (2.14)

— is reproduced by summing over covariant diagrams with the same structure with regard

to U and Z insertions, but additionally allowing for an arbitrary number of P and light

mass insertions (filled nodes and crosses, respectively, in the notation of ref. [14]), with the

Lorentz indices contracted in all possible ways (represented by dotted lines). As a concrete

example, the results of evaluating the single supertrace in eq. (6.14) up to dimension six

(as shown in eq. (6.32)) is reproduced by a set of nine covariant diagrams:

in this work

=

{
+ + + +

+ + + +

}
in ref. [14]. (A.4)

Relation to the UOLEA. The central goal of the UOLEA program is to derive a

master formula for one-loop matching, in a form that expresses L(1-loop)
EFT in terms of Pµ,

Uij , Z
µ
ij , etc. for generic relativistic UV theories. The derivation is carried out once and

for all; once such a master formula is available, all one needs to do to obtain L(1-loop)
EFT for a

specific UV theory is derive the concrete expressions of Uij , Z
µ
ij , etc. (as in Step 2 of our

prescription) and directly substitute them into the formula. We refer the reader to ref. [23]

for a detailed review of the development and current status of the UOLEA program, and

only give a brief summary here.

The UOLEA program began with a focus on the minimal case of heavy-only bosonic

loops with no open covariant derivatives, where the results are quite simple, with only 19

terms up to dimension six [16, 17]. These 19 terms suffice for some matching calculations

of phenomenological interest [16, 17, 39–42]. However, the limited scope of UV theories

that these 19 terms can cover motivated efforts to explicitly compute mixed heavy-light

bosonic loop and heavy fermionic loop contributions to the UOLEA (still in the absence of

open covariant derivatives), and they yield many more terms [20, 23]. In particular, when

fermion couplings involving different gamma matrix structures are written out explicitly,

– 26 –



J
H
E
P
0
2
(
2
0
2
1
)
2
2
8

the combinatorics give rise to more than two thousand terms [23]. At this point, we

have gone a long way from the initial simple formula with 19 terms. While the range of

applicability of the UOLEA has been significantly expanded, the plethora of terms makes

its application cumbersome beyond simple cases.

The prescription we have developed in this work shares the UOLEA spirit to some

degree, in that we have isolated part of the calculation that can be done once and for all,

so as to simplify the task an EFT practitioner has to perform in a matching calculation.

In fact, the universal results of evaluating the log-type supertraces in table 1 readily form

part of the UOLEA. Also, each power-type supertrace can be evaluated once and for

all, assuming generic functionals U , Z, Z̄. For example, the results in appendix C are

useful beyond the singlet scalar example we worked out in section 6; if one is to perform

a matching calculation for a different UV theory, it is likely that they would encounter

some power-type supertraces that have the same form as those in appendix C. Technically,

the power-type supertraces in appendix C that do not involve fermionic propagators or

open covariant derivatives reproduce many of the UOLEA terms previously computed in

refs. [17, 20], whereas the those that involve both bosonic and fermionic propagators, as

well as those that involve open covariant derivatives, essentially produce terms in the part

of the UOLEA that has not been computed yet.

Given the complexity of the UOLEA in the most general case (including mixed bosonic-

fermionic loops and open covariant derivatives), we believe our prescription offers the best

alternative beyond the minimal cases where one can directly compute the EFT Lagrangian

using a small number of terms in the UOLEA. Also, our prescription (especially with

our supertrace evaluation package [30]) offers the flexibility to go beyond dimension-six

operators if desired, for which a general UOLEA would be too cumbersome to present

explicitly.

B Interaction matrix for the singlet scalar model

Here we provide the explicit expressions for the interaction matrix X of the singlet scalar

extended SM considered in section 6. Recall that the X matrix is derived by taking the

second variation of LUV as in eq. (2.11), separating out the inverse propagator matrix K

that takes the form of eq. (2.8), and setting the heavy fields to their EOM solutions (S = Sc

given by eqs. (6.4) and (6.6) in the present case). As a simple example, XSS is obtained

from the terms in LUV with at least two powers of S:

δ2LUV ⊃ δ2

[
1

2
S (P 2 −M2)S − 1

2
κ |H|2S2 − 1

3!
µS S

3 − 1

4!
λS S

4

]

⊃ δS (P 2 −M2) δS − δS
(
κ |H|2 + µS S +

1

2
λS S

2

)
δS . (B.1)

The expression in parentheses in the second term, with S set to Sc, is therefore identified

with XSS = USS .
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As a second, less trivial example, let us work out XSH and XHS . They come from the

terms in LUV with at least one power of S and one power of H:

δ2LUV ⊃ δ2

[
−A |H|2S − 1

2
κ |H|2S2

]

⊃ −2 (δH†H +H†δH) (A+ κS) δS

= −(δH†H +HT δH∗ +H†δH + δHTH∗) (A+ κS) δS

= −δS
(

(A+ κS)H† (A+ κS)HT
)( δH

δH∗

)

−
(
δH† δHT

)( (A+ κS)H

(A+ κS)H∗

)
δS . (B.2)

The 1×2 matrix in the first term and the 2×1 matrix in the second term are identified with

XSH = USH and XHS = UHS , respectively, upon setting S = Sc. Importantly, we have

rewritten the variation in a symmetric form between H and H∗ (viewed as column vectors

in gauge representation space), such that USH and UHS are simply related by Hermitian

conjugation. Similarly, when dealing with terms in LUV that involve fermions, we write

the variation in a symmetric form between f and f c using f̄1 Γf2 = ± f̄ c
2 Γf c

1 , where the +

(−) sign applies when Γ is a product of an even (odd) number of γ matrices.

As a final example, we consider XHW and XWH . They are derived from the Higgs

boson’s gauge interactions:

δ2LUV ⊃ δ2
(
|DµH|2

)

=
[
δ2(DµH)†

]
(DµH) + (DµH

†)
[
δ2(DµH)

]
+ 2

[
δ (DµH)†

][
δ (DµH)

]

⊃ ig2 δW
I
µ δH

† σI (DµH)− ig2 (DµH)† σI δH δBµ

−ig2 (DµδH)† σI H δW I
µ + ig2 δW

I
µ H

† σI (DµδH)

= −g2

2
δW I

µ

[
−i δH† σI (DµH)− i (DµH)T σI∗ δH∗

+i (DµH)† σI δH + i δHT σI∗ (DµH)∗

+i (DµδH)† σI H + iHT σI∗ (DµδH)∗

−iH† σI (DµδH)− i (DµδH)T σI∗H∗
]

IBP
= −

(
δH† δHT

)[(− ig2

2 σJ (DνH)
ig2

2 σJ
∗

(DνH)∗

)
+ iDρ

(
−ηρν g2

2 σ
J H

ηρν g2

2 σ
J∗ H∗

)]
δW J

ν

− δW I
µ

[(
ig2

2 (DµH)† σI − ig2

2 (DµH)TσI∗
)

+
(
−ηρµ g2

2 H
† σI ηρµ g2

2 H
T σI∗

)
iDρ

](
δH

δH∗

)
, (B.3)

where we have again symmetrized the variation between H and H∗. In the last equation,

we can identify the expressions in brackets as XνJ
HW and XµI

WH , where µ (ν) and I (J) are

the Lorentz and gauge indices of the W fluctuation field on the left (right). In this case,
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the series in eq. (2.14) truncates after the second order:

XνJ
HW = UνJHW + PρZ

ρ νJ
HW , XµI

WH = UµIWH + Z̄ρµIWHPρ . (B.4)

The XHB and XBH blocks are analogous. The blocks between the SM Higgs H and

electroweak gauge bosons W , B are the only blocks in the X matrix where open covariant

derivatives Pρ = iDρ appear. For all the other blocks, Xij = Uij .

In what follows, we present the nonzero Uij , Zij , Z̄ij blocks. We will keep the adjoint

SU(3)C and SU(2)L indices explicit, using A and I for the conjugate fields ϕ̄i on the left,

and B and J for the fields ϕj on the right. The (anti-)fundamental representation indices

are mostly suppressed, with the understanding that the fields can be thought of as column

and row vectors, and we write the results in matrix form in these gauge representation

spaces whenever possible, e.g. 1, 1, ε matrices appear in some of the equations. In a

few cases where all the index contractions cannot be unambiguously written in the matrix

multiplication form, we make the SU(2)L (anti-)fundamental indices explicit, using α, ᾱ

for the conjugate fields ϕ̄i on the left, and β, β̄ for the fields ϕj on the right. When ϕ̄i (ϕj)

is a vector boson, it also carries a Lorentz index, for which we use µ (ν); to avoid notation

clashes, we use ρ instead of µ for the additional Lorentz indices carried by Z, Z̄ in this

appendix, as in eq. (B.4) above.

It is worth emphasizing that most of the results presented in this appendix are in

fact derived from the renormalizable SM Lagrangian. Concretely, these include the term

proportional to λH in eq. (B.7), and all of eqs. (B.8)–(B.33). The utility of these re-

sults therefore extends beyond the singlet scalar extended SM, as they serve as a common

reference for future SMEFT matching calculations.

Scalar sector entries.

USS = κ |H|2 + µS Sc +
1

2
λS S

2
c . (B.5)

USH = (A+ κSc)
(
H† HT

)
, UHS = (A+ κSc)

(
H

H∗

)
. (B.6)

UHH =

(
ASc +

1

2
κS2

c

)(
1 0

0 1

)
+ λH

(
|H|21 +HH† HHT

H∗H† |H|21 +H∗HT

)
. (B.7)

Fermion-fermion entries.

Uqu =

(
1yu

1+γ5

2 H̃ 0

0 1y∗u
1−γ5

2 H̃∗

)
, Uuq =

(
1y†u

1−γ5

2 H̃† 0

0 1yTu
1+γ5

2 H̃T

)
. (B.8)

Uqd =

(
1yd

1+γ5

2 H 0

0 1y∗d
1−γ5

2 H∗

)
, Udq =

(
1y†d

1−γ5

2 H† 0

0 1yTd
1+γ5

2 HT

)
. (B.9)

Ule =

(
ye

1+γ5

2 H 0

0 y∗e
1−γ5

2 H∗

)
, Uel =

(
y†e

1−γ5

2 H† 0

0 yTe
1+γ5

2 HT

)
. (B.10)
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Vector-vector entries.

UµA, νBGG = 2 g3 f
ABCGCµν . (B.11)

UµI, νJWW = 2 g2 ε
IJKWKµν − g2

2

2
ηµν δIJ |H|2 . (B.12)

Uµ, νBB = −g
2
1

2
ηµν |H|2 . (B.13)

UµI, νWB = −g1g2

2
ηµν H†σIH , Uµ, νJBW = −g1g2

2
ηµνH†σJH . (B.14)

Higgs-fermion entries.

UHq =

(
1 d̄y†d

1−γ5
2

−ε ūc yTu
1+γ5

2

−ε ūy†u 1−γ5
2

1 d̄c yTd
1+γ5

2

)
, UqH =

(
yd

1+γ5

2
d 1 yu

1+γ5

2
u ε

y∗u
1−γ5

2
uc ε y∗d

1−γ5
2

dc 1

)
. (B.15)

UHu =

(
(q̄ ε)ᾱ yu

1+γ5

2
0

0 (q̄c ε)α y
∗
u

1−γ5
2

)
, UuH =

(
−y†u 1−γ5

2
(ε q)β 0

0 −yTu 1+γ5

2
(ε qc)β̄

)
. (B.16)

UHd =

(
0 q̄c

ᾱ y
∗
d

1−γ5
2

q̄α yd
1+γ5

2
0

)
, UdH =

(
0 y†d

1−γ5
2

qβ̄

yTd
1+γ5

2
qc
β 0

)
. (B.17)

UHl =

(
1 ēy†e

1−γ5
2

0

0 1 ēc yTe
1+γ5

2

)
, UlH =

(
ye

1+γ5

2
e 1 0

0 y∗e
1−γ5

2
ec 1

)
. (B.18)

UHe =

(
0 l̄cᾱ y

∗
e

1−γ5
2

l̄α ye
1+γ5

2
0

)
, UeH =

(
0 y†e

1−γ5
2

lβ̄

yTe
1+γ5

2
lcβ 0

)
. (B.19)

Higgs-vector entries.

UνJHW =
ig2

2

(
−σJ(DνH)

σJ∗ (DνH)∗

)
, UµIWH =

ig2

2

(
(DµH)† σI −(DµH)T σI∗

)
. (B.20)

Zρ νJHW = ηρν
g2

2

(
−σJH
σJ∗H∗

)
, Z̄ρµIWH = ηρµ

g2

2

(
−H†σI HT σI∗

)
. (B.21)

UνHB =
ig1

2

(
−DνH

(DνH)∗

)
, UµBH =

ig1

2

(
(DµH)† −(DµH)T

)
. (B.22)

Zρ νHB = ηρν
g1

2

(
−H
H∗

)
, Z̄ρµBH = ηρµ

g1

2

(
−H† HT

)
. (B.23)

Fermion-vector entries.

UνBqG =
g3

2

(
−γνλBq
γνλB∗ qc

)
, UµAGq =

g3

2

(
−q̄ γµλA q̄c γµλA∗

)
, (B.24)

UνBuG =
g3

2

(
−γνλBu
γνλB∗ uc

)
, UµAGu =

g3

2

(
−ū γµλA ūc γµλA∗

)
, (B.25)

UνBdG =
g3

2

(
−γνλBd
γνλB∗ dc

)
, UµAGd =

g3

2

(
−d̄ γµλA d̄c γµλA∗

)
, (B.26)
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UνJqW =
g2

2

(
−γνσJq
γνσJ∗ qc

)
, UµIWq =

g2

2

(
−q̄ γµσI q̄c γµσI∗

)
, (B.27)

UνJlW =
g2

2

(
−γνσJ l
γνσJ∗ lc

)
, UµIWl =

g2

2

(
−l̄ γµσI l̄c γµσI∗

)
, (B.28)

UνqB =
g1

6

(
−γνq
γνqc

)
, UµBq =

g1

6

(
−q̄ γµ q̄c γµ

)
, (B.29)

UνuB =
2g1

3

(
−γνu
γνuc

)
, UµBu =

2g1

3

(
−ū γµ ūc γµ

)
, (B.30)

UνdB = −g1

3

(
−γνd
γνdc

)
, UµBd = −g1

3

(
−d̄ γµ d̄c γµ

)
, (B.31)

UνlB = −g1

2

(
−γν l
γν lc

)
, UµBl = −g1

2

(
−l̄ γµ l̄c γµ

)
, (B.32)

UνeB = −g1

(
−γνe
γνec

)
, UµBe = −g1

(
−ē γµ ēc γµ

)
. (B.33)

C Evaluated supertraces for the singlet scalar model

In this appendix, we present formulae for the set of power-type supertraces used in section 6.

These are derived with the CDE technique for generic U , Z, Z̄, which we simply write as

U1, U2, etc. In eq. (C.14), we set Zρν = ηρνZ and Z̄ρµ = ηρµZ̄, which is the case we

actually need in section 6, see eqs. (6.25), (B.21) and (B.23). When computing the loop

integrals, we use the MS scheme, with matching scale µ, i.e., the renormalization scale

where we connect the UV and EFT parameters. We drop the 1
ε poles and the associated

finite terms accompanying the logarithms that will eventually be cancelled by the MS

counterterms; they can be easily restored when needed. Each supertrace evaluates to an

infinite series of effective operators, which we truncate at operator dimension six. Results

for these supertraces at higher operator dimensions, as well as for any other supertraces

one could encounter in general relativistic matching calculations, can be obtained with our

CDE evaluation package, to be presented in ref. [30].

We group the supertraces by the number of propagators in what follows. In the

propagators, M is a heavy mass and m is a light mass. As in section 6, we put superscripts

“[·]” on the functionals U , Z, Z̄ to indicate their minimum operator dimensions. All

covariant derivatives on the r.h.s. are enclosed in parentheses, meaning they are closed, see

the discussion below eq. (2.14). We also use the notation Fµν ≡ −i [Pµ, Pν ] as in section 4;

they come from the propagators and always appear between the U , Z, Z̄ functionals, and

the gauge representation is determined by the field associated with the propagator. In the

case of the SMEFT, Fµν = g3G
A
µνT

A+ g2W
I
µνt

I + g1BµνY , with TA and tI the SU(3)C and

SU(2)L generators in the representation that the corresponding field transforms under,

and Y is its U(1)Y hypercharge. For the fundamental representation, TA = λA

2 where
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λA are the Gell-Mann matrices, and tI = σI

2 where σI are the Pauli matrices; for the

adjoint representation, (TA)BC = −ifABC and (tI)JK = −iεIJK are given by the structure

constants. For a gauge singlet, e.g. the singlet scalar field S, we have Fµν = 0, so e.g.

tr(FµνF
µνUSHUHS) = 0, since Fµν inherits the representation of S.

1-propagator supertrace.

−i STr
[

1
P 2−M2 U

[2]
1

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[
M2
(
1− log M2

µ2

)
U1 + 1

12M2 FµνF
µν U1

]
. (C.1)

2-propagator supertraces.

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[2]
2

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[(
− log M2

µ2

)
U1U2 − 1

6M2 (D2U1)U2

]
, (C.2)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[1]
2

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{(
1 + m2

M2 + m4

M4

)(
1− log M2

µ2

)
U1U2

+
[

1
2M2 + m2

M4

(
5
2 − log M2

µ2

)]
(DµU1)(DµU2)

+ 1
6M4 (D2U1)(D2U2)− 2 i

9M4 (DνF
µν)U1(DµU2)

− i
3M4

(
7
3 − log M2

µ2

)
U1(DνF

µν)(DµU2)

+ i
6M4 F

µν(DµU1)(DνU2)− i
6M4 (DµU1)Fµν(DνU2)

− 1
6M4 FµνF

µνU1U2 + 1
4M4 U1 FµνF

µνU2

}
. (C.3)

3-propagator supertraces.

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[2]
2

1
P 2−M2 U

[2]
3

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[
− 1

2M2 U1U2U3

]
, (C.4)

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[1]
2

1
P 2−m2 U

[1]
3

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
− 1

M2

[
1 + m2

M2

(
2− log M2

µ2

)]
U1U2U3

− 1
2M4 U1(DµU2)(DµU3) + 1

3M4 (D2U1)U2U3

}
, (C.5)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[2]
2

1
P 2−m2 U

[1]
3

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
1
M2

(
1 + 2m2

M2

)(
1− log M2

µ2

)
U1 U2 U3 − 1

2M4 U1(D2U2)U3

+ 1
M4

(
5
2 − log M2

µ2

)
(DµU1)U2(DµU3)

}
. (C.6)
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4-propagator supertraces.

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[2]
2

1
P 2−M2 U

[1]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

1
2M4 U1 U2 U3 U4

]
, (C.7)

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[1]
2

1
P 2−m2 U

[2]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[
− 1

M4

(
2− log M2

µ2

)
U1 U2 U3 U4

]
, (C.8)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[1]
2

1
P 2−M2 U

[1]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
−
[

1
M4

(
2− log M2

µ2

)
+ 4m2

M6

(
3
2 − log M2

µ2

)]
U1 U2 U3 U4

+ 1
M6

(
8
3 − log M2

µ2

)
(DµU1)(DµU2)U3 U4

+ 1
M6

(
3− log M2

µ2

)
(DµU1)U2 (DµU3)U4

− 1
M6

(
1− log M2

µ2

)
U1 (DµU2)(DµU3)U4

+ 1
M6

(
17
6 − log M2

µ2

)
(D2U1)U2 U3 U4

+ 5
6M6 U1 (D2U2)U3 U4 + 1

M6 U1 U2 (D2U3)U4

}
, (C.9)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[2]
2

1
P 2−m2 U

[2]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

1
M4

(
1− log M2

µ2

)
U1 U2 U3 U4

]
, (C.10)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[3/2]
2

1
/P
U

[3/2]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
i

2M4

(
3
2 − log M2

µ2

)
(DµU1)U2 γ

µ U3 U4

− i
2M4 U1 U2 γ

µ U3 (DµU4)

+ i
2M4

(
1
2 − log M2

µ2

)
U1 U2 γ

µ (DµU3)U4

}
, (C.11)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[2]
2

1
P 2 U

[2]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

1
M4

(
1− log M2

µ2

)
U1 U2 U3 U4

]
, (C.12)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 Pµ Z

µ[1]
2

1
P 2 U

[2]
3

1
P 2−m2 U

[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
i

2M4

(
3
2 − log M2

µ2

)[
U1 (DµZ

µ
2 )U3 U4 − U1 Z

µ
2 U3 (DµU4)

]

+ i
2M4 (DµU1)Zµ2 U3 U4

}
, (C.13)
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−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 Pµ Z

[1]
2

1
P 2 Z̄

[1]
3 Pµ 1

P 2−m2 U
[1]
4

]∣∣∣
hard

=

∫
ddx 1

16π2 tr

{
1
M2

(
1 + 2m2

M2

)(
1− log M2

µ2

)
U1 Z2 Z̄3 U4

− 1
2M4

(
1
2 − log M2

µ2

)
(DµU1) (DµZ2) Z̄3 U4

− 1
2M4

(
1
2 − log M2

µ2

)
U1 Z2

(
DµZ̄3

)
(DµU4)

+ 1
M4

[
(DµU1)Z2

(
DµZ̄3

)
U4 + U1 (DµZ2) Z̄3 (DµU4)

]

+ 1
2M4 U1 (DµZ2)

(
DµZ̄3

)
U4

+ 1
M4

(
5
2 − log M2

µ2

)
(DµU1)Z2 Z̄3 (DµU4)

}
. (C.14)

5-propagator supertraces.

−i STr
[

1
P 2−M2 U

[2]
1

1
P 2−M2 U

[1]
2

1
P 2−m2 U

[1]
3

1
P 2−M2 U

[1]
4

1
P 2−m2 U

[1]
5

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

1
M6

(
5
2 − log M2

µ2

)
U1 U2 U3 U4 U5

]
, (C.15)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[1]
2

1
P 2−M2 U

[1]
3

1
P 2−m2 U

[2]
4

1
P 2−m2 U

[1]
5

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[
− 2

M6

(
3
2 − log M2

µ2

)
U1 U2 U3 U4 U5

]
, (C.16)

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[3/2]
2

1
/P
U

[1]
3

1
/P
U

[3/2]
4

1
P 2−m2 U

[1]
5

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

1
4M4

(
3
2 − log M2

µ2

)
U1 U2 γ

µ U3 γµ U4 U5

]
. (C.17)

6-propagator supertrace.

−i STr
[

1
P 2−M2 U

[1]
1

1
P 2−m2 U

[1]
2

1
P 2−M2 U

[1]
3

1
P 2−m2 U

[1]
4

1
P 2−M2 U

[1]
5

1
P 2−m2 U

[1]
6

]∣∣∣
hard

=

∫
ddx 1

16π2 tr
[

3
M8

(
11
6 − log M2

µ2

)
U1 U2 U3 U4 U5 U6

]
. (C.18)

D Summary of results for the singlet scalar model

The SMEFT operators that we obtained in eqs. (6.30)–(6.47) are not in any specific basis.

They are the raw output of functional matching. Of course, one is free to post-process

these results into a non-redundant complete basis. We will not do so here, since this is not

part of “matching” and the procedure is already well established, see e.g. refs. [34, 43, 44].

Rather, the idea is to present the EFT Lagrangian in a form that reflects its origin from

a pure-UV calculation as much as possible, without further field redefinitions within the

EFT. Nevertheless, there are some trivial simplifications that we shall implement to shorten

some of the expressions in eqs. (6.30)–(6.47). These include applying the product rule and
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Operator Coefficient × 16π2

|H|2
[
1
2

(
κM2 − µSA

)
+A2

(
1 + m2

M2 + m4

M4

)](
1− log M2

µ2

)

κ2

4

(
− log M2

µ2

)
+

µSA
M2

(
κ
2 −

µSA
4M2 + A2

M2

)

|H|4 + A2

M2

[(
λS

4 + 3λH

)(
1− log M2

µ2

)
− 2
(
κ+ A2

M2

)(
3
2 − log M2

µ2

)]

+m2

M2
A2

M2

[
6λH

(
1− log M2

µ2

)
− 3
(
κ+ 2A2

M2

)(
4
3 − log M2

µ2

)
+

µSA
M2

(
2− log M2

µ2

)]

|DµH|2 A2

2M2 + A2m2

M4

(
5
2 − log M2

µ2

)

Table 2. Corrections to renormalizable operators.

IBP, e.g.

H†(D2H) + (D2H)†H = (∂2|H|2)− 2|DµH|2 , (D.1a)

(
∂µ|H|2

)2 IBP−→ −|H|2(∂2|H|2) , (D.1b)

and using group theoretic identities, e.g.

εαα′εββ′ =
1

2

(
δαβδα′β′ − σIαβσIα′β′

)
, (D.2a)

δαβ′δα′β =
1

2

(
δαβδα′β′ + σIαβσ

I
α′β′

)
. (D.2b)

Finally, eq. (6.46) contains an O(ε) terms that comes from γµγµ = (4− ε) 1, and we need

to restore the 1
ε poles to obtain the additional finite pieces, e.g.

(4− ε)
(

3

2
− log

M2

µ2

)
→ (4− ε)

(
2

ε
+

3

2
− log

M2

µ2

)
→ 4

(
1− log

M2

µ2

)
. (D.3)

We summarize the results after these simplifications in tables 2, 3 and 4. The EFT

Lagrangian, up to one-loop level, is the sum of L(tree)
EFT , given in eq. (6.7), and L(1-loop)

EFT ,

obtained by adding up all the entries in these tables. For an operator labeled with “(+h.c.)”

it is understood that one should multiply the operator and coefficient as listed in the table

and then add the Hermitian conjugate term. Also, note that the fermion fields carry

generation indices that we have left implicit, so coefficients of operators involving fermion

bilinears are 3× 3 matrices in generation space.

A few remarks are in order regarding the renormalizable operators generated by match-

ing. First, from table 2 we see that

L(1-loop)
EFT ⊃ δZH |DµH|2 , (D.4)

with

δZH =
1

16π2

[
A2

2M2
+
A2m2

M4

(
5

2
− log

M2

µ2

)]
. (D.5)
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Operator Coefficient × 16π2

1
M2

(
−κ3

12 −
κ2µSA
4M2 +

κµ2
SA

2

2M4 − λSA
4

2M4 − µ3
SA

3

6M6 +
µ2
SA

4

M6

)

+κA2

M4

[
3κ
(

11
6 − log M2

µ2

)
− λS

4

(
2− log M2

µ2

)]

|H|6
+ 9λHA

2

M4

[
−κ
(

4
3 − log M2

µ2

)
+ λH

(
1− log M2

µ2

)]

+
µSA

3

M6

[
−κ
(

5− log M2

µ2

)
+ λS

12

(
4− log M2

µ2

)
+ 3λH

(
2− log M2

µ2

)]

+ A4

M6

[
21κ
2

(
37
21 − log M2

µ2

)
− 18λH

(
4
3 − log M2

µ2

)]

− 7µSA
5

2M8

(
15
7 − log M2

µ2

)
+ 9A6

M8

(
43
27 − log M2

µ2

)

− κ2

24M2 − 5κµSA
12M4

|H|2
(
∂2|H|2

)
+ A2

M4

[
2κ
(

17
12 − log M2

µ2

)
− λS

2

(
1− log M2

µ2

)
− λH

2

(
9
2 − log M2

µ2

)]

+
11µ2

SA
2

24M6 − 4µSA
3

3M6 + 3A4

2M6

(
20
9 − log M2

µ2

)
− 3g22A

2

8M4

(
5
6 − log M2

µ2

)

|H|2|DµH|2 A2

M4

[(
λH − A2

M2

)(
9
2 − log M2

µ2

)
− 3κ

2 +
µSA
2M2

]
− 3g22A

2

2M4

(
5
6 − log M2

µ2

)

1
2

(
H†←→D µH

)2 3g21A
2

4M4

(
5
6 − log M2

µ2

)

|D2H|2 A2

6M4

Operator Coefficient × 16π2

ig2
2

(
H†σI

←→
D µH

)
(DνW I

µν) − A2

6M4

(
7
3 − log M2

µ2

)

ig1
2

(
H†←→D µH

)
(∂νBµν) − A2

6M4

(
7
3 − log M2

µ2

)

ig2(DµH)†σI(DνH)W I
µν − A2

12M4

ig1(DµH)†(DνH)Bµν − A2

12M4

|H|2W I
µνW

Iµν g22A
2

16M4

|H|2BµνBµν g21A
2

16M4

H†σIHW I
µνB

µν g1g2A
2

8M4

Table 3. Dimension six bosonic operators.

When calculating observables in the EFT, it is convenient to canonically normalize the

kinetic terms. This is achevied by rescaling the Higgs field,

H →
(

1− 1

2
δZH

)
H . (D.6)
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Operator Coefficient × 16π2

(
H†σI i

←→
D µH

)(
q̄σIγµq

)
A2

8M4

(
yuy

†
u + ydy

†
d

)(
5
2 − log M2

µ2

)

(
H† i
←→
D µH

)(
q̄γµq

)
− A2

8M4

(
yuy

†
u − ydy†

d

)(
5
2 − log M2

µ2

)

(
H† i
←→
D µH

)(
ūγµu

)
A2

4M4 y
†
uyu

(
5
2 − log M2

µ2

)

(
H† i
←→
D µH

)(
d̄γµd

)
− A2

4M4 y
†
dyd

(
5
2 − log M2

µ2

)

(
H†σI i

←→
D µH

)(
l̄σIγµl

)
A2

8M4 yey
†
e

(
5
2 − log M2

µ2

)

(
H† i
←→
D µH

)(
l̄γµl

)
A2

8M4yey
†
e

(
5
2 − log M2

µ2

)

(
H† i
←→
D µH

)(
ēγµe

)
− A2

4M4 y
†
eye

(
5
2 − log M2

µ2

)

(
H̃† i (DµH)

)(
ūγµd

)
(+h.c.) − A2

2M4 y
†
uyd

(
5
2 − log M2

µ2

)

(
H†σIH

)(
q̄ σI i

←→
/D q
)

− A2

8M4

(
yuy

†
u − ydy†

d

)(
1
2 − log M2

µ2

)

|H|2
(
q̄ i
←→
/D q
)

A2

8M4

(
yuy

†
u + ydy

†
d

)(
1
2 − log M2

µ2

)

|H|2
(
ū i
←→
/D u
)

A2

4M4 y
†
uyu

(
1
2 − log M2

µ2

)

|H|2
(
d̄ i
←→
/D d
)

A2

4M4 y
†
dyd

(
1
2 − log M2

µ2

)

(
H†σIH

)(
l̄ σI i
←→
/D l
)

A2

8M4 yey
†
e

(
1
2 − log M2

µ2

)

|H|2
(
l̄ i
←→
/D l
)

A2

8M4 yey
†
e

(
1
2 − log M2

µ2

)

|H|2
(
ē i
←→
/D e
)

A2

4M4 y
†
eye

(
1
2 − log M2

µ2

)

|H|2 q̄ u H̃ (+h.c.) A2

M4 yuy
†
uyu

(
1− log M2

µ2

)

|H|2 q̄ dH (+h.c.) A2

M4 ydy
†
dyd

(
1− log M2

µ2

)

|H|2 l̄ eH (+h.c.) A2

M4 yey
†
eye

(
1− log M2

µ2

)

Table 4. Dimension six operators with fermions.

As a result, when written in terms of canonically normalized fields, the dimension-six

SMEFT Lagrangian contains the following additional terms at one loop order:

∆L(1-loop)
EFT = δZH

[
A2

M4
|H|2

(
∂2|H|2

)
+

3A2

2M4

(
κ− µSA

3M2

)
|H|6

]
, (D.7)

which come from applying eq. (D.6) to the tree-level Lagrangian, eq. (6.7).

The rescaling of H also introduces additional one-loop-level contributions to the coeffi-

cients of the renormalizable operators involving the H field. These, together with the |H|4
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term in L(tree)
EFT in eq. (6.7) and the |H|2, |H|4 terms in L(1-loop)

EFT in table 2, contribute to the

threshold corrections, i.e., the differences between the renormalizable EFT parameters and

the corresponding UV theory parameters; see section 2.1 of ref. [19] for a recent discussion

in the context of functional matching. In order to compare our results to refs. [31, 32], the

tree-level threshold correction to the SM Higgs quartic λH must be taken into account. We

have additionally kept the m2 suppressed terms in the coefficients of the renormalizable

operators in table 2, up to the order consistent with the truncation at dimension six.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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