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Abstract: In Λ0
b → Λ+

c (→ Λ0π+)τ−ν̄τ decay, the solid angle of the final-state particle τ−
cannot be determined precisely since the decay products of the τ− include an undetected ντ .
Therefore, the angular distribution of this decay cannot be measured. In this work, we con-
struct a measurable angular distribution by considering the subsequent decay τ− → π−ντ .
The full cascade decay is Λ0

b → Λ+
c (→ Λ0π+)τ−(→ π−ντ )ν̄τ . The three-momenta of the

final-state particles Λ0, π+, and π− can be measured. Considering all Lorentz structures
of the new physics (NP) effective operators and an unpolarized initial Λb state, the five-
fold differential angular distribution can be expressed in terms of ten angular observables
Ki(q2, Eπ). By integrating over some of the five kinematic parameters, we define a number
of observables, such as the Λc spin polarization PΛc(q2) and the forward-backward asym-
metry of π− meson AFB(q2), both of which can be represented by the angular observables
K̂i(q2). We provide numerical results for the entire set of the angular observables K̂i(q2)
and K̂i both within the Standard Model and in some NP scenarios, which are a variety of
best-fit solutions in seven different NP hypotheses. We find that the NP which can resolve
the anomalies in B̄ → D(∗)τ−ν̄τ decays has obvious effects on the angular observables
K̂i(q2), except K̂1ss(q2) and K̂1cc(q2).
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1 Introduction

The anomalous measurements [1–9] on B̄ → D(∗)τ−ν̄τ decays indicate the existence of new
physics (NP) that breaks the universality of lepton flavour in b → cτ−ν̄τ transition. At
the typical energy scale µ ' mb, the b-hadron decays involving b → cτ−ν̄τ transition are
governed by the following effective Hamiltonian1

Heff =
√

2GFVcb
[
gV (c̄γµb)(τ̄ γµντL) + gA(c̄γµγ5b)(τ̄ γµντL)

+ gS(c̄b)(τ̄ ντL) + gP (c̄γ5b)(τ̄ ντL)

+ gT (c̄σµν(1− γ5)b)(τ̄σµνντL)
]

+ H.c., (1.1)

where σµν = i
2 [γµ, γν ]. ντL = PLντ is the field of left-handed neutrino. The left-handed

chirality projector PL = (1 − γ5)/2. In the Standard Model (SM), the Wilson coefficients
satisfy gV = −gA = 1 and gS = gP = gT = 0. To understand the anomalies in B̄ →

1In this work, we only consider left-handed neutrinos. The effective Hamiltonian containing right-handed
neutrinos can be found in refs. [10–12]. It can be derived from the identity σµνγ5 = − i

2 ε
µναβσαβ that the

operator (c̄σµν(1 + γ5)b)(τ̄σµνντL) is absent. We use the convention ε0123 = −ε0123 = 1.
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D(∗)τ−ν̄τ decays, a number of global analyses have been carried out [13–20], finding that
some different combinations of Wilson coefficients can well explain these anomalies. In
addition, a large number of studies have been done in some specific NP models, such as
leptoquarks, R-parity violating supersymetric models, charged Higgses, and charged vector
bosons; see for instance refs. [21–45]. In these NP scenarios, the Λ0

b → Λ+
c τ
−ν̄τ decay, which

is also governed by the b→ cτ−ν̄τ transition, will receive contributions from the NP.
The baryonic decay Λ0

b → Λ+
c τ
−ν̄τ could be useful to confirm possible Lorentz struc-

tures of the NP effective operators and to distinguish the specific NP models. Due to the
spin-half nature of Λb and Λc baryons, all the effective operators in eq. (1.1) can affect
Λ0
b → Λ+

c τ
−ν̄τ decay. But for the mesonic counterparts, the operators (c̄γµγ5b)(τ̄ γµντL)

and (c̄γ5b)(τ̄ ντL) cannot affect the B̄ → D processes, and operator (c̄b)(τ̄ ντL) cannot affect
the B̄ → D∗ processes. The large production cross section of Λ0

b on the LHC and the clear
Λ0
b → Λ+

c transition form factors [46–51] make Λ0
b → Λ+

c τ
−ν̄τ decay a good candidate to

complement the B̄ → D(∗)τ−ν̄τ decays. In the previous studies of the NP contributions
in Λ0

b → Λ+
c τ
−ν̄τ decay [14, 52–57], especially in some studies considering the angular

distribution of the cascade decay Λ0
b → Λ+

c (→ Λ0π+)τ−ν̄τ [58–61], the information of the
polar and azimuthal angles (θτ , φτ ) of the final-state particle τ− may be used. However,
as pointed out in ref. [62], the polar and azimuthal angles (θτ , φτ ) cannot be determined
precisely since the decay products of the τ− include an undetected ντ . Therefore, in this
work, we construct a measurable angular distribution by considering the subsequent decay
τ− → π−ντ . The full cascade decay is Λ0

b → Λ+
c (→ Λ0π+)τ−(→ π−ντ )ν̄τ , which includes

two undetected final-state particles ντ and ν̄τ , as well as three visible final-state particles
whose three momenta can be measured: Λ0, π+, and π−.

Our paper is organized as follows. In section 2, we define the independent transversity
amplitudes and give the analytical results of the measurable angular distribution of the
five-body decay Λ0

b → Λ+
c (→ Λ0π+)τ−(→ π−ντ )ν̄τ , with an unpolarized Λ0

b . Discussions
of the integrated observables are included in section 3. The numerical analyses and results
are shown in section 4. Our conclusions are finally made in section 5. In the appendix A,
we present the detailed calculation procedures and some conventions.

2 Analytical results

In this section, we directly list the analytical results of the angular distribution. The
detailed calculation procedures are presented in the appendix A.

2.1 Transversity amplitudes

In order to get the compact form of the analytical results, we adopt the helicity-based
definition of the Λb → Λc form factors [63], which are given in ref. [47]. The matrix
elements of vector and axial vector currents can be expressed by six helicity form factors
F+, F⊥, F0, G+, G⊥, and G0. Using the Ward-like identity for the Λb → Λc matrix
elements

〈Λc |c̄ (γ5) b|Λb〉 = qµ
mb ∓mc

〈Λc |c̄ (γ5) γµb|Λb〉 , (2.1)
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the matrix elements of scalar and pseudoscalar currents can be written in terms of F0 and
G0, respectively. In the absence of the tensor operator, we can define six independent
transversity amplitudes as follows

A⊥t = ASP⊥t + mτ√
q2A

V A
⊥t , (2.2)

A‖t = ASP‖t + mτ√
q2A

V A
‖t , (2.3)

A⊥1 = −2F⊥
√
Q−gV , (2.4)

A‖1 = −2G⊥
√
Q+gA, (2.5)

A⊥0 = F+
√

2Q−
mΛb +mΛc√

q2 gV , (2.6)

A‖0 = G+
√

2Q+
mΛb −mΛc√

q2 gA. (2.7)

Here, ⊥ and ‖ stand for the different transversity states. The subscript t represents time-
like τ−ν̄τ state; the subscripts 1 and 0 denote the magnitude of the z-component of the
τ−ν̄τ angular momentum in the vector τ−ν̄τ state. Q± ≡ (mΛb±mΛc)2−q2. The time-like
transversity amplitudes ASP⊥t , A

SP
‖t , AV A⊥t , and A

V A
‖t are respectively defined as

ASP⊥t = F0
√

2Q+
mΛb −mΛc
mb −mc

gS , ASP‖t = −G0
√

2Q−
mΛb +mΛc
mb +mc

gP , (2.8)

AV A⊥t = F0
√

2Q+
mΛb −mΛc√

q2 gV , AV A‖t = G0
√

2Q−
mΛb +mΛc√

q2 gA. (2.9)

The matrix elements of the tensor currents can be expressed by four helicity form
factors h+, h⊥, h̃+, and h̃⊥, and we need to define four additional independent transversity
amplitudes as follows

AT⊥1 = 4h⊥
√
Q−

mΛb +mΛc√
q2 gT , (2.10)

AT‖1 = 4h̃⊥
√
Q+

mΛb −mΛc√
q2 gT , (2.11)

AT⊥0 = −2h+
√

2Q−gT , (2.12)
AT‖0 = −2h̃+

√
2Q+gT . (2.13)

The superscript T indicates that an amplitude arises only when there are tensor operators.

2.2 Angular distribution

The measurable angular distribution of the five-body Λ0
b → Λ+

c (→ Λ0π+)τ−(→ π−ντ )ν̄τ
decay, with an unpolarized Λ0

b , is described by the τ−ν̄τ invariant mass squared q2; the
helicity angle of Λ0 baryon in the Λ+

c rest frame, θΛ; as well as the energy, the polar angle,
and the azimuthal angle of π− in the τ−ν̄τ center-of-mass frame, Eπ, θπ, and φπ. For more
details, we refer to figure 1 and the appendix A. The five-fold differential decay rate can

– 3 –
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Transversity Amplitudes Couplings
AV A⊥t , A⊥1 , A⊥0 gV

AV A‖t , A‖1 , A‖0 gA

ASP⊥t gS

ASP‖t gP

A⊥t gV , gS
A‖t gA, gP

AT⊥1
, AT‖1 , A

T
⊥0

, AT‖0 gT

Table 1. Contributions of the NP Wilson coefficients to the various transversity amplitudes.

z

x

y

Λ+
c Λ0

π+

W ∗−

τ−

ν̄τ

ντ

π−

Λ0
b

θΛ

φπ

θπ

Figure 1. Definition of the angles in the unpolarized Λ0
b → Λ+

c (→ Λ0π+)τ−(→ π−ντ )ν̄τ decay.

then be written as

d5Γ
dq2dEπd cos θπdφπd cos θΛ

= G2
F |Vcb|

2 |pΛc | (q2)3/2m2
τ

256π4m2
Λb(m

2
τ −m2

π)2 B(τ → π−ντ )B(Λc → Λπ+)

×K
(
q2, Eπ, cos θΛ, cos θπ, φπ

)
, (2.14)

where |pΛc | =
√
Q+Q−/(2mΛb) is the magnitude of the Λc three-momentum in the Λb

rest frame. By rearranging N S
i |Ai|2, NR

i,jRe[AiA∗j ], and N I
i,jIm[AiA∗j ] pieces of eq. (A.51),

which are listed in table 3, 4, and 5, the angular distribution K can be expressed as a set
of trigonometric functions as follows

K
(
q2, Eπ, cos θΛ, cos θπ, φπ

)
=

10∑
i=1
Ki(q2, Eπ)Ωi(cos θΛ, cos θπ, φπ)

≡
(
K1ss sin2 θπ +K1cc cos2 θπ +K1c cos θπ

)
+
(
K2ss sin2 θπ +K2cc cos2 θπ +K2c cos θπ

)
cos θΛ

+ (K3sc sin θπ cos θπ +K3s sin θπ) sin θΛ sinφπ
+ (K4sc sin θπ cos θπ +K4s sin θπ) sin θΛ cosφπ, (2.15)
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where the ten angular observables Ki(q2, Eπ) can be completely expressed by the transver-
sity amplitudes, the dimensionless factors (see eqs. (A.53)–(A.64)), and the asymmetry
parameter αΛc (see eq. (A.38)) as follows

K1ss =
[
St |A⊥t |

2 + (S1 − S3) |A⊥1 |
2 + (S1 + S3) |A⊥0 |

2

+
(
ST1 − ST3

) ∣∣∣AT⊥1

∣∣∣2 +
(
ST1 + ST3

) ∣∣∣AT⊥0

∣∣∣2 + (⊥↔‖)
]

+ Re
[
(R1 −R3)A⊥1AT∗⊥1 + (R1 +R3)A⊥0AT∗⊥0 + (⊥↔‖)

]
, (2.16)

K1cc =
[
St |A⊥t |

2 + (S1 + S3) |A⊥1 |
2 + (S1 − 3S3) |A⊥0 |

2

+
(
ST1 + ST3

) ∣∣∣AT⊥1

∣∣∣2 +
(
ST1 − 3ST3

) ∣∣∣AT⊥0

∣∣∣2 + (⊥↔‖)
]

+ Re
[
(R1 +R3)A⊥1AT∗⊥1 + (R1 − 3R3)A⊥0AT∗⊥0 + (⊥↔‖)

]
, (2.17)

K1c = 2Re
[
S2A⊥1A∗‖1 + ST2 AT⊥1A

T∗
‖1

]
+ Re

[
R2A⊥1AT∗‖1 −

√
2RtA⊥tA∗⊥0 −

√
2RTt A⊥tAT∗⊥0 + (⊥↔‖)

]
, (2.18)

K2ss = 2αΛcRe
[
StA⊥tA∗‖t + (S1 − S3)A⊥1A∗‖1 + (S1 + S3)A⊥0A∗‖0

+
(
ST1 − ST3

)
AT⊥1A

T∗
‖1 +

(
ST1 + ST3

)
AT⊥0A

T∗
‖0

]
+ αΛcRe

[
(R1 +R3)A⊥0AT∗‖0 + (R1 −R3)A⊥1AT∗‖1 + (⊥↔‖)

]
, (2.19)

K2cc = 2αΛcRe
[
StA⊥tA∗‖t + (S1 + S3)A⊥1A∗‖1 + (S1 − 3S3)A⊥0A∗‖0

+
(
ST1 + ST3

)
AT⊥1A

T∗
‖1 +

(
ST1 − 3ST3

)
AT⊥0A

T∗
‖0

]
+ αΛcRe

[
(R1 +R3)A⊥1AT∗‖1 + (R1 − 3R3)A⊥0AT∗‖0 + (⊥↔‖)

]
, (2.20)

K2c = αΛc

[
S2 |A⊥1 |

2 + ST2

∣∣∣AT⊥1

∣∣∣2 + (⊥↔‖)
]

+ αΛcRe
[
R2A⊥1AT∗⊥1 −

√
2RtA⊥tA∗‖0 −

√
2RTt A⊥tAT∗‖0 + (⊥↔‖)

]
, (2.21)

K3sc = 2
√

2αΛcIm
[
2S3A⊥1A∗⊥0 + 2ST3 AT⊥1A

T∗
⊥0

+R3A⊥1AT∗⊥0 −R3A⊥0AT∗⊥1 − (⊥↔‖)
]
, (2.22)

K3s = −αΛc√
2

Im
[√

2RtA⊥tA∗⊥1 +
√

2RTt A⊥tAT∗⊥1 + 2S2A⊥1A∗‖0

+R2A⊥1AT∗‖0 +R2A⊥0AT∗‖1 + 2ST2 AT⊥1A
T∗
‖0 − (⊥↔‖)

]
, (2.23)

K4sc = 2
√

2αΛcRe
[
R3A⊥0AT∗‖1 − 2S3A⊥1A∗‖0

−R3A⊥1AT∗‖0 − 2ST3 AT⊥1A
T∗
‖0 − (⊥↔‖)

]
, (2.24)

K4s = αΛc√
2

Re
[√

2RtA⊥tA∗‖1 +
√

2RTt A⊥tAT∗‖1 + 2S2A⊥1A∗⊥0

+R2A⊥1AT∗⊥0 +R2A⊥0AT∗⊥1 + 2ST2 AT⊥1A
T∗
⊥0 − (⊥↔‖)

]
. (2.25)
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The time-like pieces of our results can be completely formulated by transversity ampli-
tudes A⊥t and A‖t , without using ASP⊥t , A

SP
‖t , AV A⊥t , and/or A

V A
‖t . This is consistent with

the Ward-like relation (2.1). We can obtain the differential decay rate dΓ/dq2 as a function
of q2 by integrating over Eπ, cos θΛ, cos θπ, and φπ. Apart from the factors B(τ → π−ντ )
and B(Λc → Λπ+), we find that our results of dΓ/dq2 (see eq. (3.5)) are complete agree-
ment with those in ref. [47], which discusses the Λb → Λcτ ν̄τ decay in the presence of all
dimension-six operators.

In the SM, gV = −gA = 1 and gS = gP = gT = 0, the angular observables K3sc and
K3s are vanishing. Therefore, a non-vanishing K3sc or K3s indicates that there is NP effect,
which induces a complex contribution to the amplitude.

• Suppose that the angular distribution is found to contain the component
sin θπ cos θπ sin θΛ sinφπ. This indicates that at least one of Im[A⊥1AT∗⊥0

],
Im[A⊥0AT∗⊥1

], Im[A‖1AT∗‖0 ], and Im[A‖0AT∗‖1 ] is nonzero, which implies that gT 6= 0,
and that the gT has a different phase than gV or gA.

• Suppose that the angular distribution is found to contain the component
sin θπ sin θΛ sinφπ. This indicates that the imaginary part of at least one of gSg∗V ,
gP g

∗
A, gV g∗A, gSg∗T , gP g∗T , gV g∗T , and gAg∗T is not equal to zero.

Here we give a direct way to determine the existence of the tensor operator,
that is, a nonzero angular observable K3sc would be a solid signal of tensor-type NP.
In fact, the angular distribution K can also be written in terms of the Wigner D-
functions, and the terms corresponding to the last two lines of eq. (2.15) are given
by 2Re

[
K1,1

1 Ω1,1
1 (ΩΛ,Ωπ) +K1,2

1 Ω1,2
1 (ΩΛ,Ωπ)

]
[64], where ΩΛ = (0, θΛ, 0) and Ωπ =

(φπ, θπ,−φπ). The KlΛ,lπm are given by

K1,2
1 = 1√

3
(K4sc + iK3sc) , K1,1

1 = K4s + iK3s, (2.26)

and the ΩlΛ,lπ
m (ΩΛ,Ωπ) = DlΛ

m,0 (ΩΛ)Dlπ
m,0 (Ωπ), with the explicit Wigner D-functions used

here are given by

D1
1,0 (φ, θ,−φ) = − 1√

2
sin θ e−iφ, D2

1,0 (φ, θ,−φ) = −
√

3
8 sin 2θ e−iφ. (2.27)

Each Wigner D-function in ΩlΛ,lπ
m is derived by reducing the pair of Wigner D-functions

generated by the squared matrix element to single one by the Clebsch-Gordan series. So
the range of the indices lΛ and lπ is 0 ≤ lΛ(π) ≤ 2 max

[
JΛc(W )

]
. The JΛc = 1

2 leads to
0 ≤ lΛ ≤ 1. In the lepton-side factorization approximation, only JW ≤ 1 contributions
come from the dimension-six operators in effective Hamiltonian Heff , thus resulting in
0 ≤ lπ ≤ 2. There is no JW = 2 partial wave since the two indices in the tensor operator
are antisymmetric and therefore in a spin-1 representation. The time-like contributions,
which are induced by scalar and pseudo-scalar operators as well as the spin-0 components
of the vector and axial-vector operators, are not included in the factor K1,2

1 (or the angular
observables K3sc and K4sc), because they need to be combined with the contribution of an

– 6 –
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operator in spin-2 representation to produce lπ = 2. Furthermore, there is no imaginary
part in A⊥1A∗⊥0

∼ |gV |2 and A‖1A∗‖0 ∼ |gA|
2. These make it possible to directly determine

the existence of the NP tensor operators by using a nonzero angular observable K3sc. The
similar direct conclusion does not exist for K3s since lπ = 1 can be produced by various
combinations, each of which contains contribution from at least one operator in spin-1
representation. Therefore, the eq. (2.23) does not contain terms that are only combined
by time-like transversity amplitudes.

3 Observables

The five-fold differential decay rate of Λ0
b → Λ+

c (→ Λ0π+)τ−(→ π−ντ )ν̄τ decay depends on
five measurable kinematic parameters q2, Eπ, θΛ, θπ, and φπ, and a complete experimental
analysis may be limited by statistics. By integrating some kinematic parameters, abundant
observables can be constructed.

3.1 Hadron-side observables

By integrating over the lepton-side kinematic parameters Eπ, θπ, and φπ, we can obtain
the two-fold differential decay rate as follows

d2Γ
dq2d cos θΛ

= 1
2
dΓ
dq2

[
1 + αΛcPΛc(q2) cos θΛ

]
. (3.1)

Here, PΛc(q2) represents the Λc spin polarization, which is defined as

PΛc(q2) ≡ dΓλΛc=1/2/dq2 − dΓλΛc=−1/2/dq2

dΓλΛc=1/2/dq2 + dΓλΛc=−1/2/dq2 . (3.2)

The differential decay rates for the polarized intermediate state Λc baryon are given by
dΓλΛc=±1/2

dq2 = N
(
A±0 +A±1 κτ +A±2 κ

2
τ

)
, (3.3)

A±0 ≡
3
2
∣∣∣A⊥t ±A‖t ∣∣∣2 +

∣∣∣A⊥1 ±A‖1
∣∣∣2 +

∣∣∣A⊥0 ±A‖0
∣∣∣2

+ 2
∣∣∣AT⊥1 ±A

T
‖1

∣∣∣2 + 2
∣∣∣AT⊥0 ±A

T
‖0

∣∣∣2 ,
A±1 ≡ −6Re

[(
A⊥1 ±A‖1

) (
AT⊥1 ±A

T
‖1

)∗
+
(
A⊥0 ±A‖0

) (
AT⊥0 ±A

T
‖0

)∗]
,

A±2 ≡
1
2
∣∣∣A⊥1 ±A‖1

∣∣∣2 + 1
2
∣∣∣A⊥0 ±A‖0

∣∣∣2 + 4
∣∣∣AT⊥1 ±A

T
‖1

∣∣∣2 + 4
∣∣∣AT⊥0 ±A

T
‖0

∣∣∣2 ,
where the dimensionless parameter κτ ≡ mτ/

√
q2, and the factor

N ≡ G2
F |Vcb|

2 |pΛc | q2

384π3m2
Λb

(
1− κ2

τ

)2
B(τ → π−ντ )B(Λc → Λπ+). (3.4)

Further integrating over the variable θΛ, we can obtain the following differential decay
rate depending only on q2,

dΓ
dq2 = dΓλΛc=1/2

dq2 + dΓλΛc=−1/2

dq2

= N
[(
A+

0 +A−0

)
+
(
A+

1 +A−1

)
κτ +

(
A+

2 +A−2

)
κ2
τ

]
. (3.5)
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Our dΓ/dq2 (apart from B(τ → π−ντ )B(Λc → Λπ+)) is consistent with that in ref. [47],
which has also been checked by refs. [14, 60]. Since we have integrated over all the lepton-
side kinematic parameters, the observables constructed above are not affected by τ decay
dynamics, so they are also applicable to light leptons ` = µ, e (Necessary replacement
mτ → m` and removal of factor B(τ → π−ντ ) are required). The universality of lepton
flavor can be tested by comparing the predicted values of observables dΓ/dq2 or PΛc(q2) of
τ and `.

3.2 Lepton-side observables

By integrating over the hadron-side kinematic parameters θΛ, and one or two lepton-side
kinematic parameters, we can construct a variety of observables. These observables depend
on at least one kinematic parameter of π−, so they only exist in τ channels, and specifically
for the τ → π−ντ decay.

The differential decay rates for which Eπ has not been integrated over can be expressed
simply as the angular observables Ki. To reduce the uncertainty of theoretical predictions,
we use d2Γ/(dq2dEπ) to normalize them.

d3Γ
dq2dEπd cos θπ

= 3
2

d2Γ
dq2dEπ

K1ss sin2 θπ +K1cc cos2 θπ +K1c cos θπ
2K1ss +K1cc

, (3.6)

d3Γ
dq2dEπdφπ

= 1
2π

d2Γ
dq2dEπ

(
1 + 3π2

16
K3s sinφπ +K4s cosφπ

2K1ss +K1cc

)
, (3.7)

with
d2Γ

dq2dEπ
= dΓ
dq2

4κ2
τ√

q2 (κ2
τ − κ2

π)2 (1− κ2
τ )2

2K1ss +K1cc(
A+

0 +A−0

)
+
(
A+

1 +A−1

)
κτ +

(
A+

2 +A−2

)
κ2
τ

.

(3.8)
The forward-backward asymmetry of the π− meson can be obtained by the difference
between the integrals of the eq. (3.6) on the interval [0, π/2) and [π/2, π). We can define
the following asymmetry AFB(q2, Eπ) as a function of q2 and Eπ,

AFB(q2, Eπ) =
∫ 1

0
d3Γ

dq2dEπd cos θπ d cos θπ −
∫ 0
−1

d3Γ
dq2dEπd cos θπ d cos θπ

d2Γ
dq2dEπ

= 3
2

K1c
2K1ss +K1cc

. (3.9)

The difference between the integrals of the eq. (3.7) on the interval [0, π) and [π, 2π) can
isolate the angular observable K3s, which is nonzero only if the NP induces a complex
contribution to the amplitude.

Further integrating over the π− energy Eπ in eqs. (3.6) and (3.7), one can obtain the
two-fold differential decay rates d2Γ/(dq2d cos θπ) and d2Γ/(dq2dφπ). Similarly, we can use
them to construct asymmetry observables that do not depend on the variable Eπ. For
example, the forward-backward asymmetry of the π− meson as a function of q2 can be
defined as

AFB(q2) =
∫ 1

0
d2Γ

dq2d cos θπ d cos θπ −
∫ 0
−1

d2Γ
dq2d cos θπ d cos θπ

dΓ
dq2

. (3.10)
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This result can also be obtained by integrating over Eπ separately in the numerator and
denominator in eq. (3.9).

3.3 The angular observables K̂i(q2) and K̂i

Starting from five-fold differential decay rate (2.14), integrating over the variable Eπ, and
after proper normalization, we can obtain the following angular function

K̂
(
q2, cos θΛ, cos θπ, φπ

)
≡
∫ d5Γ
dq2dEπd cos θπdφπd cos θΛ

dEπ∫ d2Γ
dq2dEπ

dEπ

= 3
8π

10∑
i=1
K̂i(q2)Ωi(cos θΛ, cos θπ, φπ), (3.11)

with the angular observables K̂i(q2) given by

K̂i(q2) ≡
∫
Ki(q2, Eπ)dEπ∫

(2K1ss +K1cc) dEπ
. (3.12)

Comparing eqs. (3.9), (3.10) and (3.12), we can easily get the AFB(q2) = 3
2K̂1c(q2). The

spin polarization of Λc baryon satisfies αΛcPΛc(q2) = 2K̂2ss(q2) + K̂2cc(q2).
If the variables Eπ and q2 in eq. (2.14) are simultaneously integrated over, we can

obtain the following angular distribution

K̂ (cos θΛ, cos θπ, φπ) ≡
∫ d5Γ
dq2dEπd cos θπdφπd cos θΛ

dEπdq
2∫ d2Γ

dq2dEπ
dEπdq2

= 3
8π

10∑
i=1
K̂iΩi(cos θΛ, cos θπ, φπ), (3.13)

with the angular observables K̂i given by

K̂i ≡
∫

(q2)3/2√Q+Q−Ki(q2, Eπ)dEπdq2∫
(q2)3/2√Q+Q− (2K1ss +K1cc) dEπdq2 . (3.14)

Our choice of the normalization in eq. (3.12) and (3.14) make the first two angular observ-
ables exactly satisfy the relationships, 2K̂1ss(q2) + K̂1cc(q2) = 1 and 2K̂1ss + K̂1cc = 1. All
observables related to Λ0

b → Λ+
c (→ Λ0π+)τ−(→ π−ντ )ν̄τ decay can be expressed linearly

by the corresponding angular observables Ki and the normalized ones K̂i, which contain
0 ∼ 2 variables in Eπ and q2. For instance, the forward-backward asymmetry of the π−
meson is AFB = 3

2K̂1c, or as a function of q2 is AFB(q2) = 3
2K̂1c(q2), or as a function of q2

and Eπ is AFB(q2, Eπ) = 3
2K̂1c(q2, Eπ). In the following numerical analyses, we only focus

on the normalized angular observables K̂i and K̂i(q2), because they have less theoretical
uncertainty to facilitate the discussion of the effects of the NP. The K̂i(q2, Eπ) are not in-
cluded for the time being, as they require more experimental statistics than K̂i and K̂i(q2).
When the statistics are large enough, it is necessary to discuss K̂i(q2, Eπ) in detail.
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Figure 2. The angular observables K̂i(q2) as a function of q2, predicted both within the SM
and in some NP scenarios. The asymmetry parameter αΛc

is factored out in K̂i(q2) with i =
2ss, 2cc, 2c, 3sc, 3s, 4sc, and 4s. The observable K̂1cc(q2) can be obtained as 1 − 2K̂1ss(q2). The
width of each curve is derived from the theoretical uncertainties of Λb → Λc form factors, except
that the widths of light-colored curves are derived from the uncertainties of both the form factors
and the NP parameters given in BP1, BP2, and BP7.
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4 Numerical results

The model-independent analyses to study the NP effects in B̄ → D(∗)τ−ν̄τ decays have been
completed in the previous literatures [13–20]. In order to illustrate our results numerically,
we select a variety of best-fit values as the NP scenarios. These best-fit values are usually
performed in a set of bases, which is equivalent to eq. (1.1) by the following relations

gV = 1 + CVL + CVR , gA = −1− CVL + CVR ,

gS = CSL + CSR , gP = −CSL + CSR , gT = CT . (4.1)

We should choose the best-fit values from recent global analyses [15, 16, 18–20], including
two new results recently announced by the Belle experiment: the first measurement [65] of
D∗ longitudinal polarization fraction in B → D∗τν decay and the new measurements [9]
of R(D(∗)). The fitting results show that a single Wilson coefficient CVL can explain the
experimental data well. However, in this scenario, there is no change in the normalized
angular observables K̂i and K̂i(q2), so we do not choose it. The scenario with a single CVR is
allowed only if CVR is complex. We choose (Re [CVR ] , Im [CVR ]) = (−0.031(34), 0.460(52))
(with correlation 0.59) [19] as the NP scenario and mark it as BP1.2 The scenario with a
single CSL or CSR is ruled out by the branching ratio of Bc → τν decay [26, 37, 66]. For
the scenario with a single CT , we take (Re [CT ] , Im [CT ]) = (0.011(62), 0.164(60)) (with
correlation 0.98) [19] as the other NP scenario and mark it as BP2.

In ref. [18], a set of benchmark points is determined by considering the best-fit points
of different scenarios induced by specific UV models. Specifically, we will choose the best-fit
points of the following four different NP hypotheses, all of which can explain the R(D(∗))
anomalies, as our NP benchmark points (the remaining Wilson coefficients Ci are set to
zero in each case)

BP3: (CVL , CSL = −4CT ) = (0.10, −0.04)
BP4: (CSR , CSL) = (0.21, −0.15) (A) or (−0.26, −0.61) (B)
BP5: (CVL , CSR) = (0.08, −0.01)
BP6: (Re [CSL = 4CT ] , Im [CSL = 4CT ]) = (−0.06, 0.31)

where the Wilson coefficients are given at the scale µ = 1TeV, and we run them down to
the typical energy scale µ = mb [14, 17, 67]. Finally, we choose a set of values labelled
“Min 1b” in table 8 of ref. [16] as our BP7 scenario

BP7: (CVL , CSR , CSL , CT ) =
(
0.09+0.13

−0.12, 0.086+0.12
−0.61, −0.14+0.52

−0.07, 0.008+0.046
−0.044

)
Next, we should discuss the entire set of angular observables, including the functions

K̂i(q2) and the numbers K̂i, within the SM and in these NP scenarios respectively. For
angular observables Ki with i = 2ss, 2cc, 2c, 3sc, 3s, 4sc, and 4s, we factor out the asym-
metry parameter αΛc = −0.82± 0.09 [60], because it can bring great uncertainty to these
observables, thus interfering with the emergence of the NP effects.

2The corresponding complex conjugate fitting value (Re [CVR ] , Im [CVR ]) = (−0.031(34), −0.460(52))
(with correlation −0.59) [19] is marked as BP1∗. Similar conventions are used in other two complex scenarios
BP2∗ and BP6∗.
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observable SM BP1 BP2 BP3 BP4A
K̂1ss 0.323(1) 0.323(1)(0) 0.328(1)+0.004

−0.002 0.323(1) 0.324(1)

K̂1c 0.224(5) 0.204(4)(4) 0.145(6)+0.016
−0.043 0.230(4) 0.251(4)

K̂2ss/αΛc −0.240(4) −0.153(3)(14) −0.130(8)+0.067
−0.027 −0.249(4) −0.254(4)

K̂2cc/αΛc −0.279(5) −0.178(3)(16) −0.172(8)+0.066
−0.027 −0.289(5) −0.289(5)

K̂2c/αΛc −0.274(3) −0.200(1)(13) −0.252(3)+0.020
−0.013 −0.270(3) −0.291(3)

K̂3sc/αΛc 0 0 0.032(2)+0.008
−0.012 0 0

K̂3s/αΛc 0 0.055(1)(5) 0.172(5)+0.045
−0.067 0 0

K̂4sc/αΛc −0.024(2) −0.015(1)(1) −0.024(1)+0.009
−0.010 −0.022(2) −0.021(1)

K̂4s/αΛc −0.149(4) −0.117(3)(8) −0.124(4)+0.065
−0.063 −0.130(4) −0.138(4)

observable BP4B BP5 BP6 BP7
K̂1ss 0.324(1) 0.323(1) 0.325(1) 0.323(1)+0.004

−0.004

K̂1c 0.067(7) 0.222(5) 0.198(4) 0.237(4)+0.035
−0.125

K̂2ss/αΛc −0.091(4) −0.240(4) −0.181(4) −0.252(4)+0.075
−0.034

K̂2cc/αΛc −0.126(4) −0.279(5) −0.219(4) −0.291(5)+0.082
−0.032

K̂2c/αΛc 0.004(4) −0.272(3) −0.220(2) −0.274(3)+0.146
−0.025

K̂3sc/αΛc 0 0 0.014(1) 0
K̂3s/αΛc 0 0 0.022(3) 0
K̂4sc/αΛc −0.021(2) −0.024(2) −0.025(1) −0.022(2)+0.016

−0.016

K̂4s/αΛc 0.117(5) −0.148(4) −0.115(4) −0.128(4)+0.166
−0.100

Table 2. Predictions for the entire set of angular observables K̂i within the SM and in some NP
scenarios. The asymmetry parameter αΛc

is factored out in K̂i with i = 2ss, 2cc, 2c, 3sc, 3s, 4sc,
and 4s. The observable K̂1cc can be obtained as 1 − 2K̂1ss. The first uncertainties come from the
Λb → Λc form factors, and the second (only in BP1, BP2, and BP7) come from the NP parameters.

In our numerical analyses, we use the Λb → Λc form factors computed in lattice QCD
including all the types of Lorentz structures of the NP effective operators [46, 47]. The re-
sults of the angular observables K̂i(q2) as a function of q2 are shown in figure 2. When only
the central value of Wilson coefficients in each NP scenario is considered (corresponding
to the normally colored regions in figure 2), the theoretical uncertainties of the observ-
ables K̂i(q2) mainly come from the Λb → Λc form factors since the cancellations through
normalization to the decay rate and the asymmetry parameter αΛc has been factored out.
Benefiting from the correlation between the uncertainties of the Λb → Λc form factors,
these observables have small uncertainties. The accurate prediction of the observables cor-
responding to each NP point enables us to use them to discuss the NP effects. In figure 2,
we also give the predictions of the observables K̂i(q2) as the NP Wilson coefficients in
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BP1, BP2, and BP7 vary within 1σ level (corresponding to the light-colored regions which
simultaneously contain uncertainties of the form factors and the NP Wilson coefficients).
Let us now comment on the results we obtain.

• K̂1ss(q2). At two endpoints, the values of K̂1ss(q2) are fixed at 1
3 . Specifically, at end-

point q2
max = (mΛb−mΛc)2, the transversity amplitudes A‖t , A⊥1,0 , andAT⊥1,0

are van-
ishing. The endpoint relations of the helicity form factors G+(q2

max) = G⊥(q2
max) [46]

and h̃+(q2
max) = h̃⊥(q2

max) [47] result in K̂1ss(q2
max) = 1

3 . Near the endpoint q2
min = m2

τ ,
the dimensionless factors after integrating over Eπ satisfy the following asymptotic
relationships

S̄t = ηε2 +O(ε3), S̄1 = ηε2 +O(ε3), S̄2 = −ηε2 +O(ε3), (4.2)
S̄3 = O(ε3), S̄T1 = 4ηε2 +O(ε3), S̄T2 = −4ηε2 +O(ε3), (4.3)
S̄T3 = O(ε3), R̄t = −

√
2ηε2 +O(ε3), R̄Tt = 2

√
2ηε2 +O(ε3), (4.4)

R̄1 = −4ηε2 +O(ε3), R̄2 = 4ηε2 +O(ε3), R̄3 = O(ε3), (4.5)

where S̄i(R̄i) ≡
∫
Si(Ri)dEπ, η ≡

√
q2(1 − κ2

π)2, and ε ≡ 1 − κτ . By comparing
eq. (2.16) with eq. (2.17), one can immediately get K̂1ss(q2

min) = 1
3 . The NP does not

have much impact on K̂1ss(q2), even though the uncertainties of the NP parameters
are taken into account in scenarios BP1, BP2, and BP7. The NP effect in scenario
BP2 contributes the most to K̂1ss(q2), but it can only increase K̂1ss(q2) by about 3%.

• K̂1c(q2) = 2
3AFB(q2). This observable can clearly distinguish the two best-fit

points in the NP hypothesis (CSR , CSL), which is motivated by models with extra
charged Higgs. The predicted value of K̂1c(q2) decreases greatly in BP4B, but in-
creases slightly in BP4A. Although there is a great deal of uncertainty, the NP effect
in scenario BP2 can still greatly reduce K̂1c(q2). The uncertainties of the NP param-
eters do not bring considerable uncertainty to the prediction of K̂1c(q2) in scenario
BP1. The predicted values of K̂1c(q2) in scenarios BP1 and BP2 do not overlap. In
scenarios BP1 and BP6, the predicted values of K̂1c(q2) decrease slightly. At the
endpoint q2

max, the disappearance of transversity amplitudes A‖t , A⊥1,0 , and AT⊥1,0

leads to K1c(q2, Eπ) = 0 (see eq. (2.18)) and thus K̂1c(q2
max) = 0.

• K̂2ss(q2)/αΛc. This observable can also clearly distinguish the two best-fit points in
the NP hypothesis (CSR , CSL). The predicted value of K̂2ss(q2)/αΛc increases greatly
in BP4B, but decreases slightly in BP4A. The NP effects in scenarios BP1, BP2, and
BP6 can significantly increase the predicted value of this observable. The correspond-
ing region of scenario BP2 almost cover the region of scenario BP1, but these two
regions do not coincide with that of scenario BP7. At the endpoint q2

max, the disap-
pearance of transversity amplitudes A‖t , A⊥1,0 , and AT⊥1,0

leads to K2ss(q2, Eπ) = 0
(see eq. (2.19)) and thus K̂2ss(q2

max) = 0.

• K̂2cc(q2)/αΛc. The image of this observable is very similar to that of K̂2ss(q2)/αΛc .
For the sake of brevity, we will not repeat it here.
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• K̂2c(q2)/αΛc. The two best-fit points in the NP hypothesis (CSR , CSL) can also
be distinguished by this observable clearly. The predicted value of this observable
increases greatly in BP4B, but decreases slightly in BP4A. There are overlapping
parts in the regions of scenarios BP1, BP2, and BP7. In scenarios BP1 and BP6, the
predicted values of K̂2c(q2)/αΛc increase.

• K̂3sc(q2)/αΛc. Consistent with our previous discussion in subsection 2.2, only sce-
narios BP2 and BP6 can provide nonzero K̂3sc(q2). This observable can distin-
guish between the scenario and its complex conjugate partner since the relation-
ship K̂3sc(q2)

∣∣
BP∗ = −K̂3sc(q2)

∣∣
BP, where BP stands for BP2 and BP6, holds. The

K̂3sc(q2
max) = 0 is due to the disappearance of the transversity amplitudes A‖t , A⊥1,0 ,

and AT⊥1,0
at the endpoint q2

max and the relationships G+(q2
max) = G⊥(q2

max) and
h̃+(q2

max) = h̃⊥(q2
max). The eq. (2.22) contains only the dimensionless factors S3,

ST3 , and R3. After integrating over Eπ, they become S̄3, S̄T3 , and R̄3, respectively.
Obviously, K̂3sc(q2

min) = 0 since S̄3, S̄
T
3 , R̄3 ∼ O(ε3).

• K̂3s(q2)/αΛc. Consistent with our expectation in subsection 2.2, the predicted value
of this observable is nonzero only in the three scenarios with complex phases. Since
the relationship K̂3s(q2)

∣∣
BP∗ = −K̂3s(q2)

∣∣
BP, where BP represents BP1, BP2, and

BP6, holds, the scenario and its complex conjugate partner can be distinguished by
K̂3s(q2). This observable can also clearly distinguish the scenarios BP1 and BP2.
The transversity amplitudes A‖t , A⊥1,0 , and AT⊥1,0

are vanishing at the endpoint
q2

max causing K̂3s(q2
max) = 0.

• K̂4sc(q2)/αΛc. Only the predicted value in scenario BP1 has a large deviation from
that in the SM. Other NP scenarios are difficult to distinguish from the SM. The
two endpoints of this observable are fixed at zero, since the eq. (2.24) contains only
the dimensionless factors S3, ST3 , and R3, and the transversity amplitudes A‖t , A⊥1,0 ,
and AT⊥1,0

are vanishing at q2
max.

• K̂4s(q2)/αΛc. In scenario BP4B, the predicted value of K̂4s(q2)/αΛc is a relatively
large positive number (also see table 2), which is quite different from the predicted
value in other NP scenarios and the SM. In scenarios BP1 and BP6, the predicted
value of this observable is slightly improved.

Observables K̂3sc(q2) and K̂4sc(q2) only include the suppressed dimensionless factors
S̄3, S̄T3 , and R̄3, making them an order of magnitude smaller than other observables. Except
the K̂3sc(q2) and K̂3s(q2), other observables are not sensitive to the sign of imaginary part,
and their predicted values in complex conjugate scenario BP∗ are exactly the same as those
in scenario BP, where BP stands for BP1, BP2, and BP6. The NP effects in scenarios BP3
and BP5 are mainly the contribution of CVL , so they have little impact on the normalized
angular observables K̂i(q2). There is always an overlap between the SM predictions and
the predictions in scenario BP7. The values of the corresponding angular observables K̂i
are provided in table 2.
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5 Conclusions

Inspired by the anomalies in B̄ → D(∗)τ−ν̄τ decays, many works have been done to explore
possible NP patterns in b→ cτ−ν̄τ transition by studying the baryonic counterparts, that
is, the Λ0

b → Λ+
c τ
−ν̄τ decay or the cascade decay Λ0

b → Λ+
c (→ Λ0π+)τ−ν̄τ . Comparing with

B̄ → D(∗)τ−ν̄τ decays, the baryonic counterparts could be useful to confirm more possible
Lorentz structures of the NP effective operators. However, the angular distribution of
them cannot be measured since the solid angle of the final-state particle τ− cannot be
determined precisely. Therefore, in this work, we further consider the subsequent decay
τ− → π−ντ to construct a measurable angular distribution. The full process is Λ0

b →
Λ+
c (→ Λ0π+)τ−(→ π−ντ )ν̄τ , which includes three visible final-state particles Λ0, π+, and

π− whose three momenta can be measured.
For an unpolarized initial Λb state, the five-fold differential angular distribution in-

cluding all Lorentz structures of the NP effective operators can be expressed in terms of
ten angular observables Ki(q2, Eπ), which can be completely expressed by ten independent
transversity amplitudes, the asymmetry parameter αΛc related to Λ+

c → Λ0π+ decay, and
some dimensionless factors given in eqs. (A.53)–(A.64). Our results are consistent with
the Ward-like relation, and when the transversity states ⊥ and ‖ are exchanged, they
have good symmetry or antisymmetry. We also find that our results of dΓ/dq2, which can
be obtained by integrating over the kinematic parameters Eπ, cos θΛ, cos θπ, and φπ, are
complete agreement with those in ref. [47]. Based on these, we believe that our results
are correct.

If the angular distribution is found to contain the nonzero component
sin θπ cos θπ sin θΛ sinφπ, this will be an unquestionable sign of the NP, indicating that
the tensor operator must exist and that the corresponding Wilson coefficient gT has a
different weak phase than gV or gA.

We obtain a number of observables by integrating over some of the five kinematic
parameters. On the hadron side, there are the Λc spin polarization PΛc(q2) and certainly
the differential decay rate dΓ/dq2. Since all the lepton-side kinematic parameters have
been integrated over, these observables are not affected by τ− decay dynamics, so their
expressions are applicable to light leptons ` = µ, e (Necessary replacement mτ → m` and
removal of factor B(τ → π−ντ ) are required). On the lepton side, there are the three-
fold differential angular distributions d3Γ/(dq2dEπd cos θπ) and d3Γ/(dq2dEπdφπ), and the
two-fold differential decay rate d2Γ/(dq2dEπ), as well as the π− meson forward-backward
asymmetry AFB(q2). These observables depend on at least one kinematic parameter of
π−, so they only exist in τ channels, and specifically for the τ → π−ντ decay. The PΛc(q2)
and AFB(q2) can be represented by the angular observables K̂i(q2).

Using the Λb → Λc form factors computed in lattice QCD including all the types of
Lorentz structures of the NP effective operators, we predict the entire set of the angular
observables K̂i(q2) and K̂i both within the SM and in some NP scenarios, which are a
variety of best-fit solutions in seven different NP hypotheses. We find that the two best-fit
points in the NP hypothesis (CSR , CSL), which is motivated by models with extra charged
Higgs, can be distinguished by observables K̂1c, K̂2ss, K̂2cc, K̂2c, and K̂4s. Although the
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uncertainties of the NP parameters and the Λb → Λc form factors are taken into account,
the predicted values in scenario BP1 are still accurate. This allows scenario BP1 to be
well distinguished from other scenarios and the SM. The predicted values of observables
K̂1c, K̂2ss, K̂2cc, K̂3sc, and K̂3s in scenario BP2 are significantly different from the predicted
values in the SM.

The (HL-)LHC will produce a large number of Λb baryons, with a production cross
section σ(Λb)/σ(bb̄) ∼ 10%. Future precise measurements of the angular observables in
Λ0
b → Λ+

c (→ Λ0π+)τ−(→ π−ντ )ν̄τ decay, especially precise measurements of the normal-
ized ones, would be very helpful to provide a more definite answer concerning the observed
anomalies by the BaBar, Belle, and LHCb collaborations, restricting further or even deci-
phering the NP models.
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A The detailed calculation of the measurable angular distribution

The differential decay rate of the unpolarized Λ0
b → Λ+

c (→ Λ0π+)τ−(→ π−ντ )ν̄τ decay can
be written as

dΓ = 1
2mΛb

|M|2 dΠ5(pΛb ; pπ− , pν , pν̄ , pΛ, pπ+), (A.1)

where the squared matrix element is

|M|2 =
∑
λΛ

1
2
∑
λΛb

∣∣∣MλΛ
λΛb

∣∣∣2 ,
MλΛ

λΛb
=

∑
λΛc ,λτ

MλΛc ,λτ
λΛb

(Λb → Λcτ ν̄τ )MλΛ
λΛc

(Λc → Λπ+)Mλτ (τ → π−ντ )
(p2

Λc −m
2
Λc + imΛcΓΛc)(p2

τ −m2
τ + imτΓτ ) , (A.2)

as well as the five-body phase space3 is

dΠ5(pΛb ; pπ− , pν , pν̄ , pΛ, pπ+) =
dq2dp2

τdp
2
Λc

(2π)3 dΠ2(pΛb ; q, pΛc)

× dΠ2(q; pτ , pν̄)dΠ2(pτ ; pπ− , pν)dΠ2(pΛc ; pΛ, pπ+). (A.3)

The λx stands for the helicity of the particle x. We drop the helicity indices λπ± as they
are null and fix λν̄τ (λντ ) to 1

2 (−1
2).

3In this work, the n-body phase space is most generally defined as

dΠn(P ; pi) =

(∏
i

d3pi
(2π)32Ei

)
(2π)4δ(4)

(
P −

∑
pi

)
.
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Using the effective Hamiltonian given in eq. (1.1), one can express the helicity ampli-
tude of Λb → Λcτ ν̄τ decay as

MλΛc ,λτ
λΛb

(Λb→Λcτ ν̄τ ) =
√

2GFVcb

HλΛc
λΛb

Lλτ +
∑
λ

ηλH
λΛc ,λ
λΛb

Lλτλ +
∑
λ,λ′

ηληλ′H
λΛc ,λ,λ

′

λΛb
Lλτλ,λ′

 .
(A.4)

Here λ(′) = t, ±1, 0 indicates the helicity of the virtual vector boson W ∗. The number
of the helicity indexes depends on the Lorentz structure of the effective operator. The
factor η that appears here is due to the use of the completeness relation (eq. (A.19)) of
the polarization vectors of the virtual vector boson. The hadronic and leptonic helicity
amplitudes are respectively defined as

H
λΛc
λΛb
≡
〈
Λc(λΛc) |gS(c̄b) + gP (c̄γ5b)|Λb(λΛb)

〉
, (A.5)

H
λΛc ,λ
λΛb

≡ εµ∗(λ)
〈
Λc(λΛc) |gV (c̄γµb) + gA(c̄γµγ5b)|Λb(λΛb)

〉
, (A.6)

H
λΛc ,λ,λ

′

λΛb
≡ gT εµ∗(λ)εν∗(λ′)

〈
Λc(λΛc) |c̄iσµν(1− γ5)b|Λb(λΛb)

〉
, (A.7)

and

Lλτ ≡
〈
τ−(λτ )ν̄ |τ̄PLν| 0

〉
, (A.8)

Lλτλ ≡ ε
µ(λ)

〈
τ−(λτ )ν̄ |τ̄ γµPLν| 0

〉
, (A.9)

Lλτλ,λ′ ≡ (−i)εµ(λ)εν(λ′)
〈
τ−(λτ )ν̄ |τ̄σµνPLν| 0

〉
, (A.10)

where εµ(λ) is the polarization vector of the virtual vector boson with helicity λ.
Using the narrow width (Γy � my) approximation

1
(p2
y −m2

y)2 +m2
yΓ2

y

= π

myΓy
δ(p2

y −m2
y), (y = Λc, τ) (A.11)

in eq. (A.1) and by integrating over the dp2
τdp

2
Λc , one can obtain two on-shell relations

p2
Λc = m2

Λc and p
2
τ = m2

τ , as well as

dΓ = dq2

25πmΛbmτΓτmΛcΓΛc
dΠ2(pΛb ; q, pΛc)dΠ2(q; pτ , pν̄)dΠ2(pτ ; pπ− , pν)dΠ2(pΛc ; pΛ, pπ+)

×
∑

λΛ,λΛb

∣∣∣∣∣∣
∑

λΛc ,λτ

MλΛc ,λτ
λΛb

(Λb → Λcτ ν̄τ )MλΛ
λΛc

(Λc → Λπ+)Mλτ (τ → π−ντ )

∣∣∣∣∣∣
2

. (A.12)

Since each individual two-body phase space or helicity amplitude is Lorentz invariant in
eqs. (A.12) and (A.4), one can finish each part of dΓ in different reference frames. In this
work, we should consider three measurable reference frames — the Λb rest frame, the Λc
rest frame and the τ−ν̄τ center-of-mass frame.

A.1 In the Λb rest frame

In this frame, we calculate the hadronic helicity amplitudes H and the two-body phase
space dΠ2(pΛb ; q, pΛc). We choose the three-momentum of the Λc baryon to point to the
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+z direction and the three-momentum of the virtual vector boson W ∗ to point to the −z
direction, see figure 1. The momenta of Λb, Λc, and W ∗ are respectively given by

pµΛb = (mΛb , 0, 0, 0), pµΛc = (EΛc , 0, 0, |pΛc |), qµ = (q0, 0, 0,− |q|). (A.13)

The spinors of Λb and Λc are then given by [68, 69]

uΛb

(1
2

)
=
(√

2mΛb , 0, 0, 0
)T

, uΛb

(
−1

2

)
=
(
0,
√

2mΛb , 0, 0
)T

, (A.14)

uΛc

(1
2

)
=
(
β+

Λc , 0, β
−
Λc , 0

)T
, uΛc

(
−1

2

)
=
(
0, β+

Λc , 0,−β
−
Λc

)T
, (A.15)

with β±x ≡
√
Ex ±mx. In this frame, the polarization vectors of the virtual vector boson

W ∗ can be written as [68, 69]
εµ(t) = qµ/

√
q2, (A.16)

corresponding to JW = 0, λW = 0, and

εµ(±1) = (0,±1,−i, 0)/
√

2, (A.17)

εµ(0) = (|q|, 0, 0,−q0)/
√
q2, (A.18)

corresponding to JW = 1, λW = ±1, 0. The well-known completeness relation can be
expressed as

gµν =
∑

λ∈{t,±1,0}
εµ(λ)εν∗(λ)ηλ, (A.19)

with ηt = 1 and η±1,0 = −1.
By integrating over the two-body phase space, we can get∫

dΠ2(pΛb ; q, pΛc) = |pΛc |
4πmΛb

, (A.20)

as well as |pΛc | = |q| = λ1/2(m2
Λb ,m

2
Λc , q

2)/(2mΛb), EΛc = (m2
Λb +m2

Λc − q
2)/(2mΛb), and

q0 = (m2
Λb−m

2
Λc+q2)/(2mΛb). The Källén function λ(a, b, c) ≡ a2+b2+c2−2ab−2ac−2bc,

and λ(m2
Λb ,m

2
Λc , q

2) = Q+Q−.
The nonzero hadronic helicity amplitudes H can be expressed by the transversity

amplitudes as follows

H
1/2
1/2 =

(
ASP⊥t +ASP‖t

)
/
√

2, H
−1/2
−1/2 =

(
ASP⊥t −A

SP
‖t

)
/
√

2, (A.21)

H
1/2,t
1/2 =

(
AV A⊥t +AV A‖t

)
/
√

2, H
−1/2,t
−1/2 =

(
AV A⊥t −A

V A
‖t

)
/
√

2, (A.22)

H
1/2,1
−1/2 =

(
A⊥1 +A‖1

)
/
√

2, H
−1/2,−1
1/2 =

(
A⊥1 −A‖1

)
/
√

2, (A.23)

H
1/2,0
1/2 =

(
A⊥0 +A‖0

)
/
√

2, H
−1/2,0
−1/2 =

(
A⊥0 −A‖0

)
/
√

2, (A.24)

H
−1/2,−1,t
1/2 = H

−1/2,0,−1
1/2 =

AT⊥1
−AT‖1

2
√

2
, H

1/2,1,−1
1/2 = H

1/2,0,t
1/2 =

AT⊥0
+AT‖0

2
√

2
, (A.25)

H
1/2,1,0
−1/2 = H

1/2,1,t
−1/2 =

AT⊥1
+AT‖1

2
√

2
, H

−1/2,1,−1
−1/2 = H

−1/2,0,t
−1/2 =

AT⊥0
−AT‖0

2
√

2
, (A.26)
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together with the other eight non-vanishing tensor-type helicity amplitudes related to the
above ones by

H
λΛc ,λ,λ

′

λΛb
= −HλΛc ,λ

′,λ
λΛb

. (A.27)

A.2 In the Λc rest frame

In this frame, we calculate the helicity amplitude MλΛ
λΛc

(Λc → Λπ+) and the two-body
phase space dΠ2(pΛc ; pΛ, pπ+). The momenta of Λc and Λ are respectively given by

p̃µΛc = (mΛc , 0, 0, 0), pµΛ = (EΛ, |pΛ| sin θΛ, 0, |pΛ| cos θΛ). (A.28)

The “̃ ” here and the following are only used to distinguish the representations of the
same kinematic quantity in different reference frames. The spinors of Λc and Λ are given
by [68, 69]

ũΛc

(1
2

)
=
(√

2mΛc , 0, 0, 0
)T
, ũΛc

(
−1

2

)
=
(
0,
√

2mΛc , 0, 0
)T
, (A.29)

uΛ

(1
2

)
=
(
β+

Λ cos θΛ
2 , β+

Λ sin θΛ
2 , β−Λ cos θΛ

2 , β−Λ sin θΛ
2

)T
, (A.30)

uΛ

(
−1

2

)
=
(
−β+

Λ sin θΛ
2 , β+

Λ cos θΛ
2 , β−Λ sin θΛ

2 ,−β−Λ cos θΛ
2

)T
, (A.31)

By integrating over the δ(4) term and the azimuthal angle φΛ in two-body phase space,
one can get

dΠ2(pΛc ; pΛ, pπ+) = 1
8π
|pΛ|
mΛc

d cos θΛ, (A.32)

as well as |pΛ| = λ1/2(m2
Λc ,m

2
Λ,m

2
π)/(2mΛc) and EΛ = (m2

Λc +m2
Λ −m2

π)/(2mΛc).
The helicity amplitude

MλΛ
λΛc

(Λc → Λπ+) = iūΛ(λΛ)(A+Bγ5)uΛc(λΛc),

= iχ†Λ(λΛ) (S + Pσ · p̂Λ)χΛc(λΛc). (A.33)

Where S = √2mΛcβ
+
ΛA stands for the parity-violating s-wave amplitude and P =

−
√2mΛcβ

−
ΛB stands for the parity-conserving p-wave amplitude. σ = (σ1, σ2, σ3) is a

vector composed of Pauli matrices. p̂Λ is the unit vector along the direction of Λ baryon.
The four helicity amplitudes are

M1/2
1/2(Λc → Λπ+) = i(S + P ) cos θΛ

2 , M1/2
−1/2(Λc → Λπ+) = i(S + P ) sin θΛ

2 , (A.34)

M−1/2
1/2 (Λc → Λπ+) = −i(S − P ) sin θΛ

2 , M−1/2
−1/2(Λc → Λπ+) = i(S − P ) cos θΛ

2 . (A.35)

The two helicity amplitudes in eq. (A.34) correspond to λΛ = 1
2 . By using them, one can

obtain that the decay rate of Λc → Λπ+ with λΛ = 1
2 is

ΓλΛ=1/2(Λc → Λπ+) = |pΛ|
16πm2

Λc
|S + P |2 . (A.36)
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In the same way, one can obtain the decay rate

ΓλΛ=−1/2(Λc → Λπ+) = |pΛ|
16πm2

Λc
|S − P |2 , (A.37)

by using the two helicity amplitudes in eq. (A.35). The angular asymmetry parameter αΛc
is defined as

αΛc ≡
2<(S∗P )
|S|2 + |P |2

, (A.38)

and one can immediately get the relations

ΓλΛ=1/2

ΓλΛ=1/2 + ΓλΛ=−1/2 = 1
2(1 + αΛc),

ΓλΛ=−1/2

ΓλΛ=1/2 + ΓλΛ=−1/2 = 1
2(1− αΛc). (A.39)

A.3 In the τ−ν̄τ center-of-mass frame

In this frame, we calculate the leptonic helicity amplitudes L and the helicity amplitudes
Mλτ (τ → π−ντ ), as well as the two-body phase spaces dΠ2(q; pτ , pν̄) and dΠ2(pτ ; pπ− , pν).
The momentum of π− is defined as pµπ = (Eπ, |pπ| p̂π) with

p̂π = (sin θπ cosφπ, sin θπ sinφπ, cos θπ), (A.40)

is the unit vector along the direction of π−. In this frame, the polarization vectors of the
virtual vector boson W ∗ are changed to

ε̃µ(t) = (1, 0, 0, 0), ε̃µ(±1) = (0,±1,−i, 0)/
√

2, ε̃µ(0) = (0, 0, 0,−1). (A.41)

The helicity amplitudesMλτ (τ → π−ντ ) can be written as

Mλτ (τ → π−ντ ) = i
√

2GFV ∗udfπūντ /pπPLuτ (λτ ), (A.42)

and one can obtain that the decay rate is

Γ(τ → π−ντ ) = G2
F |Vud|

2 f2
π(m2

τ −m2
π)2

16πmτ
. (A.43)

Using the relation ∑
λτ uτ (λτ )ūτ (λτ ) = /pτ + mτ , we link the ūντ /pπPLuτ (λτ ) in

eq. (A.42) with the leptonic helicity amplitudes L, and we can obtain the new leptonic
helicity amplitudes as follows

L = mτp
µ
πūντγµPLvν̄τ , (A.44)

Lλ = m2
τ ε
µ(λ)ūντγµPLvν̄τ , (A.45)

Lλ,λ′ = mτ
[
pπ · ε(λ)εµ(λ′)− pπ · ε(λ′)εµ(λ) + iερανµpπρεα(λ)εν(λ′)

]
ūντγµPLvν̄τ . (A.46)
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Next, we deduce the phase spaces dΠ2(q; pτ , pν̄) and dΠ2(pτ ; pπ− , pν) simultaneously
in the τ−ν̄τ center-of-mass frame [62].

dΠ2(q;pτ ,pν̄)dΠ2(pτ ;pπ,pν)

=
∫
δ(8)

d3pτ
(2π)32Eτ

d3pν̄
(2π)32Eν̄

(2π)4δ(4) (q−pτ−pν̄) d3pπ
(2π)32Eπ

d3pν
(2π)32Eν

(2π)4δ(4) (pτ−pπ−pν)

=
∫
δ(2)

1
28π4

d3pτ
Eτ |pτ |

δ

(√
q2−Eτ−|pτ |

)
d3pπ

Eπ |pτ−pπ|
δ (Eτ−Eπ−|pτ−pπ|) . (A.47)

The momentum-conservation relations pν̄ = −pτ and pν = pτ − pπ hold. Since three-
momentum pπ can be measured experimentally, the remaining two δ functions will be used
to integrate over the two variables in d3pτ . We define the solid angle of τ− relative to the
direction of π− instead of the z-axis as (θπτ , φπτ ).4 Next, we will see that the magnitude
|pτ | and the π− − τ− opening angle θπτ can be determined theoretically.

Using formula δ(g(t)) = ∑
i δ(t − ti)/ |g′(ti)| where g(ti) = 0 and g′(ti) 6= 0 to deduce

the remaining two δ functions, one has

dΠ2(q; pτ , pν̄)dΠ2(pτ ; pπ, pν) = 1
28π4

1√
q2dφπτdEπd cos θπdφπ, (A.48)

as well as
|pτ | =

q2 −m2
τ

2
√
q2 , cos θπτ = 2EτEπ −m2

τ −m2
π

2 |pτ | |pπ|
. (A.49)

Accordingly, the variables q2 and Eπ can take

m2
τ ≤ q2 ≤

(
mΛb −mΛc

)2
,

m4
τ +m2

πq
2

2m2
τ

√
q2 ≤ Eπ ≤

m2
π + q2

2
√
q2 . (A.50)

So far, all of the pieces of eq. (A.12) have been completed.

A.4 The five-fold differential decay rate

The five-fold differential decay rate is

d5Γ
dq2dEπd cos θπdφπd cos θΛ

= G2
F |Vcb|

2 |pΛc | (q2)3/2m2
τ

28π4m2
Λb(m

2
τ −m2

π)2 B(τ → π−ντ )B(Λc → Λπ+)

×
∑
i,j

(
N S
i |Ai|2 +NR

i,jRe[AiA∗j ] +N I
i,jIm[AiA∗j ]

)
, (A.51)

where the terms N S
i |Ai|2, NR

i,jRe[AiA∗j ], and N I
i,jIm[AiA∗j ] are respectively listed in ta-

ble 3, 4, and 5.
4The relationships between (θπτ , φπτ ) and the solid angle of τ− relative to z-axis (θτ , φτ ), which can not

be measured experimentally, are

cos θπτ = cos θπ cos θτ + sin θπ sin θτ cos(φπ − φτ ),

cosφπτ = sin θτ sin(φπ − φτ )√
sin2 θτ sin2(φπ − φτ ) + (cos θτ sin θπ − cos θπ sin θτ cos(φπ − φτ ))2

,

sinφπτ = − cos θτ sin θπ + cos θπ sin θτ cos(φπ − φτ )√
sin2 θτ sin2(φπ − φτ ) + (cos θτ sin θπ − cos θπ sin θτ cos(φπ − φτ ))2

.
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Transversity Amplitudes N S

|A⊥t |2 St

|A‖t |2 St

|A⊥1 |2 S1 + αΛcS2 cos θΛ cos θπ + S3 cos 2θπ
|A‖1 |2 S1 + αΛcS2 cos θΛ cos θπ + S3 cos 2θπ
|A⊥0 |2 (S1 − S3)− 2S3 cos 2θπ
|A‖0 |2 (S1 − S3)− 2S3 cos 2θπ
|AT⊥1

|2 ST1 + αΛcS
T
2 cos θΛ cos θπ + ST3 cos 2θπ

|AT‖1 |
2 ST1 + αΛcS

T
2 cos θΛ cos θπ + ST3 cos 2θπ

|AT⊥0
|2 (ST1 − ST3 )− 2ST3 cos 2θπ

|AT‖0 |
2 (ST1 − ST3 )− 2ST3 cos 2θπ

Table 3. The enumeration of N S
i |Ai|2 pieces of eq. (A.51).

To make the expressions more compact, we define the following dimensionless param-
eters

κτ ≡
mτ√
q2 , κπ ≡

mπ√
q2 , ωπ ≡

Eπ√
q2 . (A.52)

The dimensionless factors in table 3, 4, and 5 are given by

St = 2ωπκ2
τ − κ4

τ − κ2
π, (A.53)

S1 = κ2
τ

8 (ω2
π − κ2

π)
[
κ2
π

(
−6ωπκ2

τ + 3κ4
τ + 4ω2

π + 10ωπ − 5
)

+
(
2ωπ − κ2

τ

) (
2ω2

π + 2ωπ − 1
)
κ2
τ − 3κ4

π + 6 (1− 2ωπ)ω2
π

]
, (A.54)

S2 = κ2
τ

(
κ2
π − 2ωπ + 1

) (
ωπ − κ2

τ

)√
ω2
π − κ2

π

, (A.55)

S3 = κ2
τ

8 (ω2
π − κ2

π)
[
κ2
π

(
−2ωπκ2

τ + κ4
τ + 4ω2

π − 2ωπ + 1
)

+
(
κ2
τ − 2ωπ

) (
2ω2

π − 6ωπ + 3
)
κ2
τ − κ4

π + 2 (1− 2ωπ)ω2
π

]
, (A.56)

ST1 = 1
2 (κ2

π − ω2
π)
{
κ4
π

(
2ωπκ2

τ + 5κ4
τ + 2ωπ − 3

)
+ 4ω2

πκ
2
τ

[
(3ωπ − 1)κ2

τ − ωπ
]

+ κ2
π

[(
−6ω2

π − 10ωπ + 3
)
κ4
τ + 2 (3− 2ωπ)ωπκ2

τ + 2ω2
π

]
− κ6

π

}
, (A.57)

ST2 = 4κ2
τ

(
κ2
π − 2ωπ + 1

) (
κ2
π − ωπκ2

τ

)√
ω2
π − κ2

π

, (A.58)

ST3 = 1
2 (ω2

π − κ2
π)
{
κ4
π

(
−6ωπκ2

τ + κ4
τ − 6ωπ + 1

)
− 4ω2

πκ
2
τ

[
(ωπ − 1)κ2

τ + ωπ
]

+ κ2
π

[(
2ω2

π − 2ωπ − 1
)
κ4
τ + 2ωπ (6ωπ − 1)κ2

τ + 2ω2
π

]
+ 3κ6

π

}
, (A.59)
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Re[A⊥tA∗‖t ] 2αΛcSt cos θΛ

Re[A⊥tA∗‖1 ] αΛcRt sin θΛ sin θπ cosφπ

Re[A⊥tA∗⊥0
] −

√
2Rt cos θπ

Re[A⊥tA∗‖0 ] −
√

2αΛcRt cos θΛ cos θπ

Re[A⊥tAT∗‖1 ] αΛcR
T
t sin θΛ sin θπ cosφπ

Re[A⊥tAT∗⊥0
] −

√
2RTt cos θπ

Re[A⊥tAT∗‖0 ] −
√

2αΛcR
T
t cos θΛ cos θπ

Re[A‖tA∗⊥1
] −αΛcRt sin θΛ sin θπ cosφπ

Re[A‖tA∗⊥0
] −

√
2αΛcRt cos θΛ cos θπ

Re[A‖tA∗‖0 ] −
√

2Rt cos θπ

Re[A‖tAT∗⊥1
] −αΛcR

T
t sin θΛ sin θπ cosφπ

Re[A‖tAT∗⊥0
] −

√
2αΛcR

T
t cos θΛ cos θπ

Re[A‖tAT∗‖0 ] −
√

2RTt cos θπ
Re[A⊥1A∗‖1 ] 2S2 cos θπ + 2αΛc cos θΛ(S1 + S3 cos 2θπ)

Re[A⊥1A∗⊥0
]

√
2αΛcS2 sin θΛ sin θπ cosφπ

Re[A⊥1A∗‖0 ] −2
√

2αΛcS3 sin θΛ sin 2θπ cosφπ

Re[A⊥1AT∗⊥1
] R1 + αΛcR2 cos θΛ cos θπ +R3 cos 2θπ

Re[A⊥1AT∗‖1 ] R2 cos θπ + αΛc cos θΛ(R1 +R3 cos 2θπ)

Re[A⊥1AT∗⊥0
] (αΛcR2/

√
2) sin θΛ sin θπ cosφπ

Re[A⊥1AT∗‖0 ] −
√

2αΛcR3 sin θΛ sin 2θπ cosφπ

Re[A‖1A∗⊥0
] 2

√
2αΛcS3 sin θΛ sin 2θπ cosφπ

Re[A‖1A∗‖0 ] −
√

2αΛcS2 sin θΛ sin θπ cosφπ

Re[A‖1AT∗⊥1
] R2 cos θπ + αΛc cos θΛ(R1 +R3 cos 2θπ)

Re[A‖1AT∗‖1 ] R1 + αΛcR2 cos θΛ cos θπ +R3 cos 2θπ

Re[A‖1AT∗⊥0
]

√
2αΛcR3 sin θΛ sin 2θπ cosφπ

Re[A‖1AT∗‖0 ] −(αΛcR2/
√

2) sin θΛ sin θπ cosφπ
Re[A⊥0A∗‖0 ] 2αΛc cos θΛ(S1 − S3 − 2S3 cos 2θπ)

Re[A⊥0AT∗⊥1
] (αΛcR2/

√
2) sin θΛ sin θπ cosφπ

Re[A⊥0AT∗‖1 ]
√

2αΛcR3 sin θΛ sin 2θπ cosφπ

Re[A⊥0AT∗⊥0
] R1 −R3 − 2R3 cos 2θπ

Re[A⊥0AT∗‖0 ] αΛc cos θΛ(R1 −R3 − 2R3 cos 2θπ)

Re[A‖0AT∗⊥1
] −

√
2αΛcR3 sin θΛ sin 2θπ cosφπ

Re[A‖0AT∗‖1 ] −(αΛcR2/
√

2) sin θΛ sin θπ cosφπ

Re[A‖0AT∗⊥0
] αΛc cos θΛ(R1 −R3 − 2R3 cos 2θπ)

Re[A‖0AT∗‖0 ] R1 −R3 − 2R3 cos 2θπ

Re[AT⊥1
AT∗‖1 ] 2ST2 cos θπ + 2αΛc cos θΛ(ST1 + ST3 cos 2θπ)

Re[AT⊥1
AT∗⊥0

]
√

2αΛcS
T
2 sin θΛ sin θπ cosφπ

Re[AT⊥1
AT∗‖0 ] −2

√
2αΛcS

T
3 sin θΛ sin 2θπ cosφπ

Re[AT‖1A
T∗
⊥0

] 2
√

2αΛcS
T
3 sin θΛ sin 2θπ cosφπ

Re[AT‖1A
T∗
‖0 ] −

√
2αΛcS

T
2 sin θΛ sin θπ cosφπ

Re[AT⊥0
AT∗‖0 ] 2αΛc cos θΛ(ST1 − ST3 − 2ST3 cos 2θπ)

Table 4. The enumeration of NR
i,jRe[AiA∗j ] pieces of eq. (A.51).
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Im[A⊥tA∗⊥1
] −αΛcRt sin θΛ sin θπ sinφπ

Im[A⊥tAT∗⊥1
] −αΛcR

T
t sin θΛ sin θπ sinφπ

Im[A‖tA∗‖1 ] αΛcRt sin θΛ sin θπ sinφπ

Im[A‖tAT∗‖1 ] αΛcR
T
t sin θΛ sin θπ sinφπ

Im[A⊥1A∗⊥0
] 2

√
2αΛcS3 sin θΛ sin 2θπ sinφπ

Im[A⊥1A∗‖0 ] −
√

2αΛcS2 sin θΛ sin θπ sinφπ

Im[A⊥1AT∗⊥0
]

√
2αΛcR3 sin θΛ sin 2θπ sinφπ

Im[A⊥1AT∗‖0 ] −(αΛcR2/
√

2) sin θΛ sin θπ sinφπ

Im[A‖1A∗⊥0
]

√
2αΛcS2 sin θΛ sin θπ sinφπ

Im[A‖1A∗‖0 ] −2
√

2αΛcS3 sin θΛ sin 2θπ sinφπ

Im[A‖1AT∗⊥0
] (αΛcR2/

√
2) sin θΛ sin θπ sinφπ

Im[A‖1AT∗‖0 ] −
√

2αΛcR3 sin θΛ sin 2θπ sinφπ

Im[A⊥0AT∗⊥1
] −

√
2αΛcR3 sin θΛ sin 2θπ sinφπ

Im[A⊥0AT∗‖1 ] −(αΛcR2/
√

2) sin θΛ sin θπ sinφπ

Im[A‖0AT∗⊥1
] (αΛcR2/

√
2) sin θΛ sin θπ sinφπ

Im[A‖0AT∗‖1 ]
√

2αΛcR3 sin θΛ sin 2θπ sinφπ

Im[AT⊥1
AT∗⊥0

] 2
√

2αΛcS
T
3 sin θΛ sin 2θπ sinφπ

Im[AT⊥1
AT∗‖0 ] −

√
2αΛcS

T
2 sin θΛ sin θπ sinφπ

Im[AT‖1A
T∗
⊥0

]
√

2αΛcS
T
2 sin θΛ sin θπ sinφπ

Im[AT‖1A
T∗
‖0 ] −2

√
2αΛcS

T
3 sin θΛ sin 2θπ sinφπ

Table 5. The enumeration of N I
i,jIm[AiA∗j ] pieces of eq. (A.51).

and

Rt =
√

2 (ωπ − 1)κτ
(
2ωπκ2

τ − κ4
τ − κ2

π

)√
ω2
π − κ2

π

, (A.60)

RTt = 2
√

2
[
κ2
π

(
−2ωπκ2

τ + κ4
τ − ωπ

)
− ωπκ2

τ

(
κ2
τ − 2ωπ

)
+ κ4

π

]√
ω2
π − κ2

π

, (A.61)

R1 = κτ
2 (κ2

π − ω2
π)
{
κ2
π

[
(ωπ + 2)κ4

τ +
(
4ω2

π + 8ωπ − 6
)
κ2
τ − 4ω2

π + ωπ
]

+ κ4
π

(
−6κ2

τ + ωπ + 2
)

+ ωπκ
2
τ

[
(1− 4ωπ)κ2

τ − 4 (ωπ − 1)ωπ
] }
, (A.62)

R2 = 2κτ
(
κ4
τ − κ2

π

) (
κ2
π − 2ωπ + 1

)√
ω2
π − κ2

π

, (A.63)
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R3 = κτ
2 (κ2

π − ω2
π)
{
κ2
π

[
(3ωπ − 2)κ4

τ +
(
−4ω2

π + 8ωπ − 2
)
κ2
τ + (3− 4ωπ)ωπ

]
+ κ4

π

(
−2κ2

τ + 3ωπ − 2
)

+ ωπκ
2
τ

[
(3− 4ωπ)κ2

τ + 4 (ωπ − 1)ωπ
] }
. (A.64)
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