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1 Introduction

In the last few years, an influx of concepts from quantum information theory has led
to exciting new insights about quantum gravity, especially within the framework of
gauge/gravity duality [3]. One of these concepts that has been a topic of much research is
the quantum circuit complexity [4], which quantifies how difficult it is to prepare a target
state from a simple reference state, given a particular set of elementary gates. Among
the various conjectured holographic duals to circuit complexity, the two most extensively
studied are the complexity=volume (CV) [5, 6] and the complexity=action (CA) [7, 8]
proposals. The CV conjecture states that the complexity of the state in the boundary
theory defined on a time slice S is dual to the volume of the maximal codimension-one
bulk surface anchored to S on the asymptotic boundary,

CV(S) = max
∂B=S

[
V (B)
GN `

]
, (1.1)
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where GN is the Newton’s constant of bulk gravity theory and ` is some undetermined
length scale. Various aspects of the CV proposal have been studied on the gravitational
side of the duality, e.g., see [9–25]. The above conjecture assumes that the state in ques-
tion is a pure state defined on a global time slice, i.e., the time slice S spans the entire
asymptotic boundary.

Motivated by entanglement wedge reconstruction [26–31], the CV proposal was also
extended to mixed states produced by reducing a global pure state down to a subregion
of the boundary [9, 32]. The subregion-CV conjecture proposes that the complexity of
the quantum state defined on a boundary subregion R is given by the volume of a max-
imal codimension-one bulk surface extending from R on the asymptotic boundary to the
corresponding Ryu-Takayanagi (RT) surface ΣR in the bulk,

Csub
V (R) = max

∂B=R∪ΣR

[
V (B)
GN `

]
. (1.2)

For example, see [32–54] for more recent explorations on the subregion-CV proposal. From
the viewpoint of circuit complexity, a natural definition of mixed-state complexity is the
so-called purification complexity, which can be understood as the complexity of the optimal
purification. That is, one identifies the purification of the mixed state in question with the
smallest complexity, e.g., see [53–56] for recent studies. Let us add, however, that there
are other possible definitions of circuit complexity of mixed states which do not require the
concept of purifications [53, 54, 57].

Recently, information theoretic ideas have also produced exciting new insights for the
resolution of the black hole information paradox [58–60]. The latter can be quantified by
examining the von Neumann entropy of the Hawking radiation [60–62]. Hawking’s original
analysis indicated that this entropy increases throughout the evaporation of a black hole
since one is simply accumulating more and more thermal radiation. However, Page argued
that the entropy of the radiation must be bounded by the black hole entropy for a unitary
evolution, so the entropy must in fact decrease over the second half of the evaporation
process and reach zero in the final state where the black hole has disappeared. The Page
curve is then a plot of the entropy of the Hawking radiation as a function of time which
exhibits this qualitative behaviour [60, 61].

Recent progress [63–66]1 into understanding the Page curve builds on insights coming
from holographic entanglement entropy [105–110] and its extension to include quantum
contributions [111, 112]. For simplicity, one assumes that the Hawking radiation is absorbed
by a non-gravitational reservoir (the bath), which is coupled to the asymptotic boundary
of the gravitational region containing the black hole. One finds the entropy of the Hawking
radiation in a bath subregion R is given by the island rule [63, 66]

SEE(R) = min
{

ext
islands

(
SQFT(R ∪ islands) + A(∂(islands))

4GN

)}
. (1.3)

That is, SEE(R) is not just given by the entropy of the quantum fields in the bath region,
but rather one also considers R together with subregions (i.e., islands) in the gravitating

1These calculations were subsequently applied in a broad variety of situations, e.g., see [1, 2, 67–104].
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region to minimize the entanglement entropy of the combined subregion. Further, the
Bekenstein-Hawking entropy appears as an additional gravitational contribution at the
boundary of the islands.

Initially, for an evaporating black hole, eq. (1.3) is minimized without any islands and
the calculation matches Hawking’s evaluation of the entropy. However, at late times, a
new saddle point involving a nontrivial island dominates because the Hawking radiation
shares a large amount of entanglement with the quantum fields behind the horizon. In
this Page phase of the time evolution, the entropy is controlled by the black hole entropy,
which appears in the second term in eq. (1.3), and in this way, the island rule yields the
expected unitary Page curve.

The island rule has a simple interpretation within certain “doubly-holographic” models
in [1, 2, 66, 68]. Of course, the physics can be described with the usual bulk and boundary
perspectives of a holographic system. In this case, the boundary perspective consists of a d-
dimensional CFT coupled to a codimension-one conformal defect, and the bulk perspective
then becomes (d+1)-dimensional gravity on an asymptotically AdS spacetime containing
a codimension-one brane, which is anchored at the conformal defect on the asymptotic
boundary. This brane back reacts on the bulk spacetime and in an appropriate parameter
regime, a third perspective emerges through the Randall-Sundrum mechanism [113–115].
In this brane perspective, the brane supports a theory of d-dimensional gravity coupled
to (two copies of) the holographic CFT, and is connected to the CFT on the asymptotic
boundary (which becomes the bath) at the position of the defect. We refer the interested
reader to [1, 2] for further details on these three perspectives.

A key advantage of this framework is that entanglement entropies in eq. (1.3) are calcu-
lated purely geometrically from the bulk perspective, using the usual rules of holographic
entanglement entropy [105–110]. In particular, the entanglement entropy for a bath or
boundary region R becomes

SEE(R) = min
{
ext
ΣR

(
A(ΣR)
4Gbulk

+ A(σR)
4Gbrane

)}
, (1.4)

where ΣR is the usual bulk RT surface, while σR = ΣR ∩ brane is the intersection of the
RT surface with the brane. The second term in eq. (1.4) is the Bekenstein-Hawking area
contribution that is included when an intrinsic gravitational action (i.e., a DGP term [116])
is included in the brane action [1, 2]. From the brane perspective then, islands simply arise
when the minimal RT surfaces in the bulk extend across the brane, as illustrated in the
right panel of figure 1. Further, the transition between the island and no-island phases
(e.g., between the Page and Hawking phases of an evaporating black hole) corresponds
to a conventional transition found in holographic entanglement entropy between different
classes of RT surfaces, e.g., [117–120]. Let us add that carefully examining eq. (1.4) near
the brane shows that the gravitational contribution in the island rule (1.3) expands to the
Wald-Dong entropy [121–124] for the higher-curvature gravitational action induced on the
brane [1].

In this paper, we extend the examination of the model constructed in [1, 2] to consider
holographic complexity, and in particular, the subregion-CV proposal (1.2). In particular,
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B̃

Figure 1. The choice of RT surfaces for the boundary subregion R = RL ∪RR on a constant time
slice in the presence of the brane (coloured green), showing the island and no-island phases in the
right and left panels, respectively. The complexity Csub

V (R) in eqs. (1.2) and (1.5) is determined by
the extremal surface B = BL ∪ BR. In the island phase, the intersection of this surface with the
brane defines the ‘island’ B̃ = B∩ brane.

we focus on the island phase (i.e., the right panel of figure 1) in which case the extremal
bulk surface B also crosses the brane. Following an analysis similar to that of [1] for the
holographic entanglement entropy, we employ the FG expansion of the subregion-CV in
the vicinity of the brane to recast it as an integral of geometric quantities over the island,
i.e., B̃ = B∩ brane. Then to leading order, eq. (1.2) yields

Csub
V (R) ' max

[
d− 2
d− 1

V (B̃)
Geff `

+ · · ·
]
, (1.5)

where Geff is the induced Newton’s constant for the gravitational theory on the brane.2
Setting aside the dimension-dependent prefactor, the geometric integral over B̃ is naturally
interpreted as the holographic complexity of the island region.

However, beyond the volume term, the ellipsis in eq. (1.5) also includes higher curvature
corrections. By examining these contributions, we are lead to a generalized CV formula
derived from the induced higher-curvature gravity action on the brane. That is, we propose
to generalize the complexity=volume conjecture for an arbitrary (d+1)-dimensional higher-
curvature gravity theory in the bulk as

CV(R) = max
∂B=R

[
Wgen(B) +WK(B)

GN `

]
. (d > 2) (1.6)

where Wgen is called the generalized volume because this expression reduces to the vol-
ume term V (B) for Einstein gravity, and WK introduces extra corrections involving the
extrinsic curvature Kµν of the hypersurface B. Explicitly, our analysis determines these

2Note that here we are ignoring the UV divergent contributions coming from where B approaches the
asymptotic boundary. This result also assumes there is no DGP term on the brane.
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two contributions as

Wgen(B) = 2
(d− 1)(d− 2)

∫
B
ddσ
√

deth
(

1 + (d− 3) ∂Lbulk
∂Rµνρσ

nµhνρnσ

)
,

WK(B) = 4(d− 3)
(d− 1)2(d− 2)

∫
B
ddσ
√

deth ∂2Lbulk
∂Rµ1ν1ρ1σ1∂Rµ2ν2ρ2σ2

× [Kν1σ1 (hµ1ρ1 + (d− 2)nµ1nρ1) Kν2σ2 (hµ2ρ2 + (d− 2)nµ2nρ2)] + · · · .

(1.7)

For these expressions, we have rescaled the gravitational Lagrangian so that the gravita-
tional action carries an overall factor: Igrav = 1

16πGN

∫
dd+1x

√
−gLbulk. Further, B denotes

a spacelike codimension-one bulk hypersurface with unit normal nµ, induced metric hµρ,
and extrinsic curvature Kµν . The generalized subregion-CV functional is maximized sub-
ject to the constraint that the codimension-one hypersurface B is anchored at the boundary
subregion R and the corresponding RT surface ΣR, i.e., ∂B = R ∪ ΣR.

Our proposal to the generalized CV contains two contributions, in a similar spirit to the
Wald-Dong entropy [121–124]. The generalized volume Wgen was first conjectured in [125],
which left the precise coefficients of various contributions undetermined. This expression
is analogous to the original Wald entropy, which is derived for stationary event horizons on
which the extrinsic curvature terms vanish. We fix the coefficients, as shown in eq. (1.7),
by carefully examining the higher-curvature corrections in eq. (1.5). The term WK in
eq. (1.6) generalizes the results to surfaces where the extrinsic curvature is non-vanishing,
in analogy to Dong’s extrinsic curvature corrections to the Wald entropy [124]. These
corrections naturally arise here in matching the subleading terms in the FG expansion of
the volume of B in the bulk Einstein gravity case. However, as indicated in eq. (1.7), we
have only matched the corrections which are quadratic in Kµν and as indicated by the
ellipsis, this is only the first term in a longer expansion just as is found in the Wald-Dong
entropy [124]. We must also admit that even for the quadratic corrections, there is a high
degree of ambiguity and the expression in eq. (1.7) is only the simplest ansatz consistent
with our analysis.

The full analysis leading to these results is presented as follows: in section 2, we
exploit the Fefferman-Graham expansion near the brane to show that the leading-order
contribution to holographic complexity coming from the island is given by the expression
in eq. (1.5). In the process, we derive the generalized complexity (1.6) for the effective
higher-curvature theory of gravity on the brane. We also argue that the surface B̃ on which
the complexity is evaluated corresponds to the maximal complexity island. In section 3,
we test our conclusions by beginning with a higher-curvature gravity theory in the (d+1)-
dimensional bulk, i.e., Gauss-Bonnet gravity and f(R) gravity, and explicitly show our
proposal (1.6) consistently yields the same holographic complexity of islands as that derived
from the effective gravitational theories on the brane. We present a discussion of our
results and future directions in section 4. In particular, we consider the quantum field
theory corrections that implicitly appear when eq. (1.5) is interpreted from the brane
perspective. Appendix A contains some technical details that arise when studying the
doubly holographic model in lower dimensions, i.e., d = 2, 3.

– 5 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

2 Holographic complexity on the island

In this section, we examine the subregion-CV conjecture in the context of the holographic
model constructed in [1, 2]. So we begin by reviewing some of the salient points of the
model: as usual, the bulk gravity theory is described by

Ibulk = 1
16πGbulk

∫
bulk

dd+1y
√
−g

(
d(d− 1)
L2 +R[gµν ]

)
, (2.1)

where L becomes the radius of curvature for the vacuum AdSd+1 spacetime. Here, the bulk
theory also includes a codimension-one brane with the action3

Ibrane = −To
∫
ddx

√
−g̃ , (2.2)

where To is the tension and g̃ij is the induced metric on the brane.
Following [1, 2], we foliate of the bulk geometry with AdSd slices as in

ds2
AdSd+1 = L2

sin2 θ

(
dθ2 + ds2

AdSd

)
, (2.3)

where the AdSd metric has unit curvature. The solution with the brane is constructed
by cutting the above geometry along an AdSd slice at some θ = θB near the asymptotic
boundary. Joining together two copies of this geometry, as in figure 2, the brane is then
represented as the interface between the two. That is, the brane is considered a shell
of zero thickness and it’s position the spacetime is determined using the Israel junction
conditions [126]

∆(KB)ij − g̃ij∆KB = 8πGbulk Sij = −8πGbulk To g̃ij , (2.4)

where Sij is the boundary stress tensor introduced by the brane and ∆(KB)ij ≡ KL
ij −KR

ij .
The brane position can be written as

sin2 θB = L2

`2B
= 2 ε (1− ε/2) where ε ≡

(
1− 4πGbulkLTo

d− 1

)
, (2.5)

and `B is the curvature scale on the brane.
Now by construction, the bulk geometry locally takes the form of AdSd+1 spacetime

away from the brane. However, the brane’s backreaction expands the bulk and with θB � 1,
the brane is pushed towards the asymptotic boundary of eq. (2.3). Of course, this boundary
(at θ = 0) is cut out of the construction, but we may still use the usual Fefferman-Graham
(FG) expansion [127, 128] to examine the geometry in the vicinity of the brane. While
the explicit construction described above is for the maximally symmetric ground state
configuration, in the following, we consider more general configurations where the brane
geometry may deviate slightly from the AdSd geometry.

3We consider the addition of a DGP term below in section 2.2.3.
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Figure 2. The holographic setup with islands in AdSd+1. The two AdSd+1 geometries are cut off at
θ = θB (or z = zB) and glued together with the brane at the junction between the two. The island
region emerges on the brane when the RT surfaces ΣR of the boundary subregion R = RL ∪RR
cross the brane. The maximal volume bulk slice B = BL∪BR crosses the brane, and the intersection
of these two surfaces determines the island B̃ = B ∩ brane = BL ∩ BR.

We begin by writing the metric on an asymptotically AdSd+1 spacetime as4

ds2 = gµν dy
µ dyν = L2

z2

(
dz2 + gij(z, xi)dxidxj

)
. (2.6)

In these coordinates, we approach the asymptotic boundary for z → 0, and the brane
is located at z = zB � L. Around the asymptotic boundary, the Fefferman-Graham
expansion provides the a series expansion of the metric gij(z, xi) in terms of the boundary
metric

(0)
g ij and the boundary stress tensor

(d/2)
g ij ∝ 〈Tij〉 [129, 130], i.e.,

gij(z, xi) =
(0)
g ij

(
xi
)

+ z2

L2
(1)
g ij

(
xi
)

+ · · · z
d

Ld

(
(d/2)
g ij(xi) + fij(xi) log

(
z

L

))
+ · · · , (2.7)

where the logarithmic term is present only when d is even. Now zB/L � 1 emerges as
a natural expansion parameter, which we can apply in the FG expansion to study the
geometry near the brane.

Applying the bulk Einstein equations in the FG expansion (2.7) fixes the expansion
coefficients

(n)
g ij (with 0 < n < d

2) in terms of the boundary metric
(0)
g ij [129, 130]. For

example, the first term in the expansion is given by the Schoutten tensor Pij (for d > 2),

(1)
g ij

(
xi
)

= −L2Pij [
(0)
g ] = − L2

d− 2

Rij [(0)
g ]−

(0)
g ij

2(d− 1)R[
(0)
g ]

 , (2.8)

4Our notation will be: greek indices µ, ν denote tensors in the bulk spacetime and run from 0 to d. Latin
indices i, j from the middle of the alphabet denote tensors on codimension-one hypersurface at fixed z, and
run from 0 to d− 1. For example, the bulk coordinates are yµ = {z, xi}. Further, we will denote the bulk
metric gµν = gbulk

µν in situations where there may be confusion.
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where Rij and R denote the Ricci tensor and Ricci scalar calculated with
(0)
g ij , respec-

tively. We further note the above expression can also be derived by examining the effect of
Penrose-Brown-Henneaux transformations [131], which implies that

(1)
g ij

(
xi
)
is completely

determined by the conformal symmetries on the boundary and therefore it is independent
of the bulk gravity theory. In contrast, the next term

(2)
g ij in the expansion depends on

the details of the bulk gravity theory, e.g., see [132, 133]. More precisely, it depends on
whether the gravitational action contains interaction with the Riemann tensor squared, as
we will see in section 3.

With the assumption that θB � 1, one application of the FG expansion [127, 128] is
to derive the effective action for the gravity theory on the brane [1]

Ieff = 1
16πGeff

∫
ddx

√
−g̃

[
(d− 1)(d− 2)

`2eff
+ R̃(g̃)

]
(2.9)

+ 1
16πGeff

∫
ddx

√
−g̃

[
L2

(d− 4)(d− 2)

(
R̃ijR̃ij −

d

4(d− 1)R̃
2
)

+ · · ·
]
,

where 1
Geff

= 2L
(d− 2)Gbulk

,
1
`2eff

= 2
L2 ε , (2.10)

and g̃ij is the induced metric on the brane. The UV cutoff in this effective theory is given
by δ̃ = L, and this controls the contributions of the higher curvature terms appearing in the
second line of eq. (2.9).5 Hence we are naturally lead to consider θB � 1 (or equivalently,
L2/`2eff � 1 or ε� 1) as this corresponds to the regime in which the induced brane theory
is well approximated by Einstein gravity with a negative cosmological constant.

Similarly, the FG expansion can be applied to understand the contributions of the
holographic entanglement entropy (1.4) in terms of the brane theory, e.g., one finds that
the gravitational contribution in the island rule (1.3) corresponds to the Wald-Dong entropy
for the induced action (2.9) evaluated on the boundaries of the island [1]. In the following,
we follow a similar strategy applying the FG expansion to examine the bulk holographic
complexity (1.2) evaluated in the vicinity of the brane and reinterpret the result in terms
of the brane theory. In particular, we will find the geometric contributions in the ‘island’
complexity, and provide a prescription to derive these from the effective action (2.9).

2.1 Extremal surfaces near the brane

Eq. (1.2) gives the complexity=volume proposal for a boundary subregion R as,

Csub
V (R) = max

∂B=R∪ΣR

[
V (B)
Gbulk `

]
. (2.11)

In particular, one extremizes the volume of codimension-one hypersurface B anchored on
the subregion R on the asymptotic boundary and on the RT surface ΣR in the bulk. Since
we are interested in reinterpreting the bulk results in terms of the brane theory, we will
assume that we are in the island phase, i.e., the RT surface ΣR crosses the brane, as shown

5The ellipsis in eq. (2.9) indicates a further series of terms with higher powers of L2× curvature.
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gμν(z, xi)

(0)g ij(xi)
Virtual


Boundary

Brane
g̃ij(xi)

S

AAdSd+1

hαβ(z, σa)

(0)
h ab(σa)
z = 0

z = zB
h̃ab(σa)

Time Slice
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B̃

Figure 3. The full asymptotically AdSd+1 geometry from the right side of the construction in
figure 2. The time slice S is introduced in the left panel and detailed in the right panel. We
explicitly show various metrics for the different regions.

in figure 2. Then, as shown, our boundary subregion R will generally have components
RL and RR on either side of the conformal defect in the boundary theory. Similarly,
we decompose the bulk surface in terms of components on either side of the brane, i.e.,
B = BL ∪ BR. We also remark that in applying the FG expansion, we extend the left or
right geometry to a ‘virtual’ asymptotic boundary at z = 0, so that the ‘boundary metric’
(0)
h ab and other boundary quantities are evaluated at the region R′R (and similarly a region
R′L for the left AdS region) at this virtual boundary, as shown in the right panel of figure 3.

To facilitate our analysis, we introduce d-dimensional coordinates σα in B with letters
from the beginning of the Greek alphabet, i.e., α, β, γ which run from 1 to d. Further,
we use Gaussian normal coordinates with respect to the intersection B̃ = B ∩ brane, with
ζ = σd being the coordinate normal to the brane. Latin indices a, b, c from the beginning of
the alphabet denote the other directions running from 1 to d− 1, i.e., σα = (ζ, σa). Taking
the parametrization of the bulk hypersurface B as yµ (ζ, σa), we can define the induced
metric on this surface by

hαβ = ∂yµ

∂σα
∂yν

∂σβ
gµν [y] . (2.12)

As a bulk tensor, we may also write the induced metric as

hµν = [gµν ]B + nµnν , (2.13)

where nµ is the unit vector normal to B, i.e., nνnµgµν = −1 and hµνnν = 0. Further, it
will be convenient to make the following gauge choices:

ζ = σd = z and hza = 0 . (2.14)

In order to consider holographic complexity for (d + 1)-dimensional bulk theory, we
are interested in the codimension-1 bulk surface B with extremal volume in the bulk.
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Extremizing the volume of hypersurface B leads to a local equation

EOMµ = 1√
h
∂α
(√

hhαβ∂βy
µ
)

+ hαβ∂αy
ν∂βy

σ Γµνσ = 0 , (2.15)

where h = dethαβ and Γµνσ is the Christoffel symbol associated with the bulk metric gµν .
As a vector, the above expression is orthogonal to B and taking the inner product with nµ
leaves a simple expression in terms of the extrinsic curvature Kαβ of the submanifold (see
eq. (2.20)),

K = hαβ Kαβ = 0 . (2.16)

Since we are interested in the geometry near the asymptotic boundary, above equation
can be solved order by order in a Fefferman-Graham expansion for xi (z, σa)

xi (z, σa) =
(0)
xi (σa) + z2

L2

(1)
xi (σa) +O

(
z4

L4

)
. (2.17)

Noting that the leading contribution in eq. (2.15) involves the terms with two z derivatives,
we see that the extremization condition does not fix the leading coefficients

(0)
x i, i.e., the

profile of the surface at z = 0. Alternatively, we can think of this indeterminacy as the
profile of the intersection of the extremal surface B and the brane, which we will refer
to as the island B̃ = B∩ brane. As we will emphasize in section 2.3, solving eq. (2.15)
or (2.16) ensures that the volume of B is extremized in the bulk, i.e., away from the brane.
Producing the correct maximal volume surface in eq. (2.11) requires a second step where
we vary the island profile B̃ which maximizes complexity functional on the brane — see
eqs. (2.34) and (2.57).

Following the analysis in, e.g., [1, 9, 131], the leading order terms in eq. (2.15) are

z2

L2

2(1− d)
L2

(1)
xi + 1√

(0)
h

∂a


√

(0)
h

(0)
hab∂bx

i

+
(0)
habΓiik∂a

(0)
xj∂b

(0)
xk

+O(z4) = 0 . (2.18)

Thus the first order term in the FG expansion for xi is given by

(1)
xi (σa) = L2

2(d− 1)

 (0)
Da(∂a

(0)
xi) +

(0)
hab∂a

(0)
xj∂b

(0)
xjΓijk

 = L2

2(d− 1)K
(0)
ni , (2.19)

where
(0)
Da denotes the covariant derivative associated with induced metric

(0)
hab on the (im-

plicit) boundary time slice at z = 0, K is the trace of extrinsic curvature for this time slice

(i.e., K =
(0)
gijKij), and

(0)
ni denotes the timelike unit normal to the same time slice (i.e.,

(0)
ni

(0)
ni

(0)
g ij = −1). In order to get the second equality in eq. (2.19), we have used the trace

of Gauss-Weingarten equation, which reads

ejb∇j(e
i
a) = Γcabeic + Kabn

i , (2.20)
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after taking eia ≡ ∂a

(0)
xi . The above result is very similar to the solutions for the extremal

RT surface in a (d + 2)-dimensional bulk model, although in this case, we are working
with a codimension-one hypersurface. With the asymptotic solutions, we find the induced
metric components on the extremal surface B read

hzz = L2

z2

1 + z2

L2
4

(1)
xi

(1)
xj

L2
(0)
g ij + · · ·

 = L2

z2

(
1− z2

(d− 1)2 K
2 + · · ·

)
,

hab = L2

z2

(
(0)
h ab + z2

L2

(1)
h ab + · · ·

)
,

(2.21)

with

(0)
h ab =

(0)
g ij ∂a

(0)
xi∂b

(0)
xi ,

(1)
hab =

(1)
gab + L2

d− 1KKab , (2.22)

where the tensors with indices a, b are associated with those with i, j by using the projection

∂a

(0)
xi ≡ eia.
Following the subregion-CV proposal (2.11), our goal is to find the maximal volume

hypersuface B anchored on the boundary subregion R and the bulk RT surface ΣR, i.e.,
∂B = R ∪ ΣR, and then evaluate

Csub
V (R) = V (B)

Gbulk`
= 1
Gbulk`

∫
B
dd−1σdz

√
dethαβ . (2.23)

In the present calculation with the brane positioned at zB � L, we are particularly inter-
ested in the contributions to the maximal volume coming from the region in the vicinity
of the brane.6 Approaching z → 0, the volume measure reduces to

√
dethαβ =

√
det

(0)
h ab

(
L

z

)d1− z2

2(d− 1)2K
2 + z2

2L2

(0)
hab

(1)
hab + · · ·

 , (2.24)

where we have ignored the contributions from higher order zB/L terms. Performing the

z-integral explicitly and introducing Raa[
(0)
g ] =

(0)
habRab[

(0)
g ], we can find the leading contri-

butions of the holographic subregion-complexity near the brane

Ld

Gbulk`

∫
B̃
dd−1σ

√
det

(0)
h ab

[
1

(d−1)zd−1
B

+ 1
(d−3)zd−3

B

(
d−2

2(d−1)2K
2−

Raa− 1
2R

2(d−2)

)
+ · · ·

]
,

(2.25)
where the extrinsic curvature and Ricci tensor are all related to boundary geometry
at z = 0.

6Note that we ignore here the UV-divergent contributions coming from the asymptotic boundary [9].
These are less interesting for our purposes and might be eliminated by considering the mutual complexity [54,
134] — see the discussion section.
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We can also evaluate the volume of the island region

V (B̃) =
∫
B̃
dd−1σ

√
det h̃ab ,

= Ld−1
∫
B̃
dd−1σ

√
det

(0)
h ab

[
1

zd−1
B

+ 1
zd−3
B

(
K2

2(d− 1) −
Raa − 1

2R

2(d− 2)

)
+ · · ·

]
.

(2.26)

with h̃ab ≡ hab(z = zB) as the induced metric on the intersection B̃ = B∩ brane. Comb-
ing eqs. (2.25) and (2.26), it is straightforward to rewrite the holographic subregion-
complexity (2.25) as

Csub
V (R) = V (B)

Gbulk`

' 2LV (B̃)
(d−1)Gbulk`

+ 2
Gbulk`

∫
B̃
dd−1σ

√
det

(0)
h ab

Ld

zd−3
B

(
K2

2(d−1)2(d−3)−
Raa− 1

2R

(d−1)(d−2)(d−3)

)
+· · ·

' 2LV (B̃)
(d−1)Gbulk`

+ 2L3

Gbulk`

∫
B̃
dd−1σ

√
det h̃ab

(
K̃2

2(d−1)2(d−3)−
R̃ij ñ

iñj+ 1
2 R̃

(d−1)(d−2)(d−3)

)
+· · · .

(2.27)

where the factor of 2 above originates from the fact that we are integrating over both sides
of the island, i.e., we are including the contributions from both BL and BR. Furthermore,
we note that we do not need to require a symmetric setup7 because the near-brane regions
from BL,BR have the same leading order contributions, despite the fact that the full volume
of the subregions BL,BR may be different. Of course, while the surfaces BL and BR are
independent away from the brane, their profiles on the brane coincide, i.e., B̃ = BL ∩ BR.
Let us also note here that B̃ is anchored to the intersection of the RT surface ΣR with
the brane, i.e., ∂B̃ = σR = ΣR ∩ brane, but this is precisely the quantum extremal surface
(QES) in the brane theory [1, 2].

To arrive at the last line of eq. (2.27), we recast the boundary terms into terms re-
lated to the brane geometry following [1]. First we note that the induced metric on the
brane reads

g̃ij(xi) ≡ gbulkij (zB, xi) = L2

z2
B
gij(zB, xi) ≈

L2

z2
B

(0)
gij(xi) +O

(
z0
B

)
,

h̃ab ≡ hab(z = zB) ≈ L2

z2
B

(0)
hij(xi) +O

(
z0
B

)
,

(2.28)

as well as using h̃ij = g̃ij + ñiñj , where ñi denotes the unit time-like normal to island in
the brane. We therefore find

z2
B
L2

(0)
habeiae

j
b

Rij [(0)
g ]−

(0)
g ij

2(d− 1)R[
(0)
g ]

 ≈ h̃ab(R̃ab[g̃]− h̃ab
2(d− 1)R̃[g̃]

)

≈ 1
2R̃[g̃] + R̃ij [g̃]ñiñj ,

(2.29)

7That is, we do not require an Z2 symmetry about the brane, as was imposed in the explicit calculations
performed in [1, 2].
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by keeping track of the leading contributions in the zB/L expansion. As expected, the
leading term in Csub

V (R) is the volume of island region. Interestingly, the result in eq. (2.27)
shows that the subleading terms include intrinsic geometric quantities on the brane but
also include the extrinsic curvature of the island region B̃, i.e., the term proportional to
K̃2. This feature is also found in a similar analysis for holographic entanglement entropy
in section 4.3 of [1].

Now examining eq. (2.27), we see to leading order that we have

Csub
V (R) = V (B)

Gbulk`
= 2LV (B̃)

(d− 1)Gbulk`
+ · · · = d− 2

d− 1
V (B̃)
Geff `

+ · · · , (2.30)

where 1
Geff

= 2L
(d−2)Gbulk

is the effective Newton’s constant for the brane gravity, as given in
eq. (2.10). That is, the complexity=volume formula in the bulk yields a complexity=volume
formula on the brane, up to an inconvenient numerical factor. Now this factor could be
easily absorbed if we modify the length scale for the CV proposal on the brane, i.e.,

`′ = d− 1
d− 2 ` . (2.31)

However, beyond the volume term, eq. (2.27) also contains higher-order corrections involv-
ing the curvature on the brane and the extrinsic curvature of the surface B̃. By examining
these contributions more carefully in the next subsection, we will be able to interpret them
in terms of a generalized CV formula derived from the induced higher-curvature grav-
ity action (2.9) on the brane. The emergence of this generalized CV expression in the
brane theory is then analogous to the appearance of the Wald-Dong entropy in the island
rule (1.3) on the brane discussed in [1].

2.2 Holographic complexity on the brane

In this subsection, we show that the sub-leading contributions in eq. (2.27) can be con-
sistently derived from the induced gravity action in eq. (2.9) with a simple generalization
of the complexity=volume prescription in eq. (2.11). The question of extending the CV
proposal to higher curvature theories of gravity was first considered in [125]. For a grav-
itational theory in d + 1 dimensions, their proposal was that the usual volume functional
should be replaced by a generalized volume of the following form

Wgen(B) =
∫
B
ddσ
√
h

(
∂L

∂Rijkl
hjk (αd+1ninl + βd+1hil) + γd+1

)
(2.32)

where αd+1, βd+1 and γd+1 are numerical constants (depending on the boundary dimen-
sion d).

However, this suggestion by itself can not provide the extrinsic curvature terms in
eq. (2.27). A similar issue was encountered in extending holographic entanglement entropy
to higher curvature theories. In particular, it was shown that replacing the Bekenstein-
Hawking entropy with the Wald entropy [121–123] in the RT prescription will not produce
the expected entanglement entropy for the boundary theory [135]. Instead, the correct
extension required the addition of ‘corrections’ involving the extrinsic curvature of the
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extremal surface in the bulk [124]. Hence we propose the generalized CV prescription for
higher curvature gravity theories must include additional K-terms. Explicitly, we suggest
that the leading contributions take the form

WK(B) =
∫
B
ddσ
√
h

[
∂2L

∂Rijkl∂Rmnop
Kjl (Ad+1hik +Bd+1nink)

× Knp (Ad+1h
mo +Bd+1n

mno)
]
,

(2.33)

where again Ad+1 and Bd+1 are numerical constants.
Correspondingly, we propose that the holographic complexity for the island region on

the brane can be derived from

CIsland
V = max

∂B̃=σR

[
W̃gen(B̃) + W̃K(B̃)

Geff `′

]
, (2.34)

where σR = ΣR ∩ brane is the quantum extremal surface on the brane — see figure 2.
We have introduced the notation W̃gen, W̃K to indicate these are quantities defined for
the d-dimensional gravity theory on the brane. In the following subsections, we seek to
compare CIsland

V with the leading terms in the holographic CV found in eq. (2.27) to fix
the numerical coefficients in eqs. (2.32) and (2.33). This proposal also requires that we
maximize the new functional over all profiles B̃ anchored to the QES σR, but we leave the
discussion of this point to section 2.3.

2.2.1 Generalized volume on the island

Substituting eq. (2.10) for effective Newton’s constant and eq. (2.31) for the CV length scale
on the brane into the last line of eq. (2.27), the leading contribution to the holographic
complexity becomes

Csub
V (R) = V (B̃)

Geff `′
+ L2

Geff `′

∫
B̃
dd−1σ

√
h̃

(
K̃2

2(d−1)(d−3)−
1
2R̃[g̃]+R̃ij [g̃]ñiñj

(d−2)(d−3) +· · ·
)
. (2.35)

Now our aim is to show that these results can be derived from our proposal for the com-
plexity of the island in eq. (2.34) applied to the effective gravitational action (2.9). In
particular, to make this match, we must choose the appropriate numerical constants αd,
βd, γd, Ad and Bd for the d-dimensional brane theory. Here, we focus on the first three
coefficients appearing in the generalized volume W̃gen(B̃).

To begin with, we consider a general quadratic Lagrangian as

Leff ≡ 16πGeffL = R̃− 2Λ + λ1R̃
2 + λ2R̃ijR̃

ij . (2.36)

We want to evaluate the generalized volume for the complexity CIsland
V in eq. (2.34). Using

the Kronecker delta of rank-two (i.e., δijmn = δimδ
j
n − δinδjm), the derivative with respect to

Riemannian tensor is explicitly written as [136]

∂R̃mnop

∂R̃ijkl
≡ (∂R̃)ijklmnop = 1

12

(
δijmnδ

kl
op−

1
2δ

ik
mnδ

lj
op−

1
2δ

il
mnδ

jk
op +δijopδ

kl
mn−

1
2δ

ik
opδ

lj
mn−

1
2δ

il
opδ

jk
mn

)
.

(2.37)
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It is then straightforward to get the tensor

∂Leff
∂Rijkl

=
(1

2 + λ1R̃

)
2g̃i[kg̃l]j + λ2

(
R̃i[kg̃l]j + R̃j[lg̃k]i

)
, (2.38)

where Z [ij] = 1
2
(
Zij − Zji

)
. One can explicitly evaluate the needed contractions to find

∂Leff
∂Rijkl

h̃jk
(
αdñiñl+βdh̃il

)
+γd = γd+

(1
2 +λ1R̃

)
(d−1)(αd−(d−2)βd) (2.39)

+λ2
2
(
R̃(αd−2(d−2)βd)−R̃ijñiñj(αd+2βd)(d−2)

)
.

Comparing the above results with eq. (2.35), and taking the effective action (2.9) on the
brane, i.e., choosing the two coupling constants as

λ1 = − dL2

4(d− 1)(d− 2)(d− 4) , λ2 = L2

(d− 2)(d− 4) , (2.40)

one finds that the three coefficients in the generalized volume should be fixed to

αd = 2(d− 4)
(d− 2)(d− 3) , βd = 0 , γd = 2

(d− 2)(d− 3) . (2.41)

As a recap, the comparison between the leading contributions to the volume of the
extremal surface B in the vicinity of the brane for (d+ 1)-dimensional bulk gravity theory
in eq. (2.35) and the generalized volume on the brane determines the numerical coefficients
in the latter as in eq. (2.41). Hence, the resulting generalized volume reads

W̃gen(B̃) = 2
(d− 2)(d− 3)

∫
B̃
dd−1σ

√
det h̃ab

(
1 + (d− 4) ∂Leff

∂R̃ijkl
ñih̃jkñl

)
. (2.42)

Furthermore, we propose that this result of the generalized volume can be used in extending
the holographic complexity=volume conjecture for higher curvature gravity theories in
general, as in eqs. (1.6) and (1.7). In section 3, we will test this proposal further by
considering higher curvature gravity in the bulk of our holographic model.

2.2.2 K-term on the island

As discussed above, the generalized volume (2.32) by itself fails to provide the full holo-
graphic complexity on the island due to the appearance of terms involving the extrinsic
curvature K̃ on the brane. Inspired by the Wald-Dong entropy, we suggested the addition
of K-terms to the generalized volume. At the second-order, we can produce a covari-
ant quantity by contracting the tensor ∂2Leff

∂R̃ijkl∂R̃mnop
, with the tensors built from the three

independent symmetric tensors K̃ij , h̃ij , ñiñj . The simplest choice is the following

W̃K(B̃) =
∫
B̃
dd−1σ

√
h̃

∂2Leff

∂R̃ijkl∂R̃mnop
K̃jl

(
Adh̃ik +Bdñiñk

)
K̃np

(
Adh̃

mo +Bdñ
mño

)
,

(2.43)
where as before, Leff = 16πGeffLeff . Our goal is then to fix the two numerical coefficients
Ad, Bd.
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To compute ∂2Leff
∂R̃ijkl∂R̃mnop

, we need to use the second derivative

∂2(R̃2)
∂R̃ijkl∂R̃mnop

= 1
2
(
g̃ikg̃jl − g̃ilg̃jk

)
(g̃mog̃np − g̃mpg̃no) , (2.44)

∂2(R̃i1j1R̃i1j1)
∂R̃ijkl∂R̃mnop

= 1
2 g̃rs

(
(∂R̃)irksmnop g̃

jl − (∂R̃)irlsmnop g̃
jk − (∂R̃)jrksmnop g̃

il + (∂R̃)jrlsmnop g̃
ik
)
,

where the tensor (∂R̃)ijklmnop is the first derivative defined in eq. (2.37).
Applying the second derivative (2.44) to the effective action in eq. (2.9), one finds that

the proposed W̃K reduces to

W̃K(B̃) =
∫
B̃
dd−1σ

√
h̃

[
λ1K̃

2

2 ((d− 2)Ad −Bd)2 (2.45)

+ λ2
8
(
K̃2

(
B2
d − 2AdBd + (3d− 7)A2

d

)
+ K̃ijK̃

ij((d− 3)Ad −Bd)2
) ]

.

Noting the absence of K̃ijK̃
ij term in eq. (2.35), we can fix

Bd = (d− 3)Ad . (2.46)

Further, comparing eqs. (2.35) and (2.45), the last parameter is fixed as

A2
d = 4(d− 4)

(d− 2)2(d− 3) . (2.47)

Finally, we can write the K-term (2.43) as

W̃K(B̃) = 4(d− 4)
(d− 2)2(d− 3)

∫
B̃
dd−1σ

√
h̃

∂2Leff

∂R̃ijkl∂R̃mnop
(2.48)

× K̃jl

(
h̃ik + (d− 3)ñiñk

)
K̃np

(
h̃mo + (d− 3)ñmño

)
.

Although we have a successful match here, we should point out that the K-term
defined in eq. (2.33) was chosen for its simplicity and in a similar spirit to the analogous
term appearing in the Wald-Dong entropy. However, it is easy to find many other ways in
contracting all the indexes in ∂2Leff

∂R̃ijkl∂R̃mnop
with two extrinsic curvatures and combinations

of h̃ij and ñiñj . Some examples would include

∂2Leff

∂R̃ijkl∂R̃mnop
K̃ikK̃jl (A1 g̃

mo +B1 ñ
mño) (A1 g̃

np +B1 ñ
nñp) ,

∂2Leff

∂R̃ijkl∂R̃mnop
K̃m
i K̃

n
j (A2 g̃kl +B2 ñkñl) (A2 g̃

op +B2 ñ
oñp) .

(2.49)

Note that in the first case, both extrinsic curvatures are contracted with the indices of a
single variation with respect to the Riemann tensor, while in the second, the two indices of
each individual extrinsic curvature are contracted with different variations. Note that no
terms with these structures appear in the K corrections of the Wald-Dong entropy [124].
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However, at present, we do not have a strong reason to rule out these expressions or their
linear combinations. This means that in general, there is much more ambiguity in defining
W̃K(B̃) than indicated in eq. (2.43) and the numerical coefficients can not be completely
fixed. This stands in contrast with the Wald-Dong entropy, for which a unique extrinsic
curvature term is derived from the replica trick [124]. Unfortunately, we do not have a
proper derivation of the complexity=volume proposal, which we might extend to probe the
complexity of theories dual to higher derivative gravity. However, we will test our simple
ansatz in section 3 by continuing to show that our calculations are consistent with higher
curvature gravity in the bulk.

We should also add that we expect that eq. (2.48) is only the first in an infinite series
of corrections involving the extrinsic curvatures, as appears in the Wald-Dong entropy.
Here, we have limited ourselves to the terms quadratic in K̃ because we only evaluated the
effective action (2.9) to include the terms which are quadratic in the curvatures. It may
be interesting to extend our calculations to third order, from which we expect to find K̃3

contributions to W̃K .
In summary, we find that the leading contributions from the geometry in the vicinity

of the brane from usual subregion-CV proposal for the bulk Einstein gravity suggests a
generalized CV formula for the induced gravity theory on the brane, i.e.,

ext
[
V (B)
Gbulk `

]
'
W̃gen

(
B̃
)

+ W̃K(B̃)
Geff `′

, (2.50)

where the generalized volume W̃gen and W̃K term are fixed in eqs. (2.42) and (2.48),
respectively. Further, the scales, ` in the bulk and `′ on the brane, are related by eq. (2.31).
We should stress that the above identification relies on the extremality of the bulk surface
B, which was required in deriving eq. (2.27). As commented above, we propose that these
results can be used to generalize the holographic complexity=volume conjecture for higher
curvature gravity theories in general, as in eqs. (1.6) and (1.7). Further, we will test this
proposal in section 3, by examining our holographic model with higher curvature gravity
in the bulk.

2.2.3 DGP term on the brane

In a construction analogous to that of Dvali, Gabadadze and Porrati (DGP) [116], one can
also add an intrinsic Einstein term to brane action as follows — for details see [1]

Ibrane = −(To −∆T )
∫
ddx

√
−g̃ + 1

16πGbrane

∫
ddx

√
−g̃ R̃ , (2.51)

which yields the new effective gravitational action on d-dimensional brane as

Ieff = 1
16πGeff

∫
ddx

√
−g̃

[
(d− 1)(d− 2)

`2eff
+ R̃(g̃)

]

+ 1
16πGRS

∫
ddx

√
−g̃

[
L2

(d− 4)(d− 2)

(
R̃ijR̃ij −

d

4(d− 1)R̃
2
)

+ · · ·
]
.

(2.52)

– 17 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

In the first line of this action, the new effective Newton constant associated with Einstein
term is given by

1
Geff

= 2L
(d− 2)Gbulk

+ 1
Gbrane

, (2.53)

while in the second line, GRS = (d− 2)Gbulk/(2L).
This provides an interesting framework to extend our generalized proposal for com-

plexity=volume. In the case of holographic entanglement entropy, one can clearly argue
that the DGP term introduces a brane contribution in eq. (1.4) by simply following the
derivations in [108, 137]. Unfortunately, such a derivation is lacking for the CV formula,
and so we will simply say that it is natural to expect that with a DGP term, the CV
proposal should have a similar extension to include a contribution proportional to the vol-
ume of B̃ = B∩ brane. More precisely, if the extremal surface crosses a DGP brane, then
eq. (2.11) would become

Csub
V (R) = max

∂B=R∪ΣR

[
V (B)
Gbulk `

+ V (B̃)
Gbrane `′

]
, (2.54)

where ` and `′ are the independent ‘unknown’ length scales for the bulk and brane, as are
expected for the CV ansatz.

Now if we examine the leading contributions from the bulk geometry in the vicinity of
the brane, as in eq. (2.30), the above expression yields

Csub
V (R) = 2LV (B̃)

(d− 1)Gbulk`
+ · · ·+ V (B̃)

Gbrane `′
= V (B̃)
Geff `′

+ · · · (2.55)

where to produce the second equality, we have used eq. (2.31) to relate the two length
scales, ` and `′, and then eq. (2.53) applied for effective Newton’s on the brane. Hence,
we see that combining eqs. (2.31) and (2.54) produces a consistent framework with which
to understand complexity=volume for the brane theory. While we have ignored the higher
curvature terms above, it is clear that including the DGP term on the brane leads to
the same results as eqs. (2.42) and (2.48) with the same dimensionless coefficients for
the new gravity theory (2.52) on the brane. It would be interesting to examine if this
approach continues to succeed if one were to extend the brane action (2.51) with higher
curvature terms.

2.3 Maximal islands

Up to this point, we have shown that with the usual subregion-CV proposal (2.11)8 and
applying the FG expansion for extremal surfaces in the bulk, integrating the leading con-
tributions in the vicinity of the brane produces a generalized CV formula for the induced
theory on the brane. In particular, the new complexity functional (2.34) is easily derived
from the higher-curvature gravity action on the brane (2.9) using eqs. (2.42) and (2.48).
We stress that the above identification relies on the extremality of the surface B in the

8Or using eq. (2.55) for the case of a DGP brane.
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bulk, which was required in deriving eq. (2.27). However, at this point, we want to turn to
the appearance of the maximization that appears in eq. (2.34).

Here it is enlightening to return to the relation between the island rule (1.3) on the
brane and the RT prescription (1.4) in the bulk — see discussions in [1, 2]. Our first
observation is that analogous to our analysis above, carefully examining the extremal RT
surfaces near the brane shows that the Bekenstein-Hawking formula in the island rule (1.3)
actually expands to the Wald-Dong entropy for the gravity action induced on the brane [1].
As in the above, this requires that we solve the local equations in the bulk which extremize
the RT surfaces away from the brane, but in doing so, one produces a family of solutions
that are extremal in the bulk (and have the fixed boundary conditions on the asymptotic
AdS boundary) but which have different profiles on the brane. Finding the correct solution
amongst this family can be characterized in terms of satisfying a particular boundary
condition at the brane — see eq. (4.17) in [1]. However, a more pragmatic approach is to
simply find the correct solution by varying over the possible profiles on the brane to see
which one actually minimizes the entropy functional in eq. (1.4). This second stage is then
precisely the extremization appearing in the island rule (1.3).

Of course, the same narrative applies here to the holographic complexity. Recall that
our boundary state was defined on a region R = RL ∪RR, where the subregions RL,R sit
to either side of the conformal defect in the asymptotic boundary, as shown in figure 2.
Similarly, we divide the bulk surface B = BL ∪ BR into the two components on either side
of the brane. For both of these components, we demand that these surfaces are extremal
away from the brane by solving eq. (2.16), subject to the boundary condition that BL,R are
anchored at the corresponding RL, R on the asymptotic boundary, the RT surface ΣR in
the bulk, and the island B̃ on the brane, i.e., ∂BL = RL∪ΣR∪B̃ (and similarly for the right
side). In particular, both surfaces BL,R intersect the brane along with the common profile
B̃, however, this profile is left undetermined at this stage. Hence we find a wide family of
codimension-one surfaces which are extremal in the bulk, i.e., away from the brane. Then,
to find to correct extremal surface, we must finally maximize that volume by varying over
the possible profiles. That is, we have decomposed the extremization of B into two steps:

Csub
V (R) ≡ max

∂B̃=σR

(
ext
BL,BR

[
V (BL) + V (BR)

Gbulk`

])
. (2.56)

Combined with the near-brane contributions in eq. (2.50), this equation then becomes

Csub
V (R) = max

∂B̃=σR

[
W̃gen(B̃) + W̃K(B̃)

Geff`′
+ · · ·

]
, (2.57)

using the generalized volume and K-term in eqs. (2.42) and (2.48), respectively.
The ellipsis in eq. (2.57) indicates the contributions coming far from the brane, i.e.,

from regions with θB � θ ≤ π with the coordinates in eq. (2.3). It is interesting to
note that the analogous contributions for the holographic entanglement entropy (1.4) pro-
vide the quantum contributions when interpreted in terms of the effective d-dimensional
brane perspective, i.e., SQFT(R ∪ islands) in eq. (1.3). Hence it is natural to expect that
the corresponding contribution in the holographic complexity constitutes a (semiclassical)
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contribution in the bath region R combined with the island B̃ on the brane. We return to
discuss this point in section 4.

3 Higher curvature gravity in the bulk

In the previous section, we showed how holographic complexity naturally arises for the
induced gravity theory on the brane in the doubly holographic model of [1, 2]. However,
beginning with the usual complexity=volume conjecture (1.2) for ordinary Einstein gravity
in the bulk, we were lead to a generalization of the CV proposal suitable for higher curvature
gravity, such as the induced theory (2.9) on the brane. Our proposal is that the new
functional appearing for the holographic complexity on the brane should in fact serve to
provide a generalized complexity=volume conjecture for any higher curvature theory

Csub
V (R) = max

∂B=R∪ΣR

[
Wgen(B) +WK(B)

GN `

]
, (3.1)

with the functionals given in eq. (1.7). As indicated, the maximization is performed over
all possible codimension-one surfaces B anchored at the subregion R on the asymptotic
boundary and the corresponding RT surface ΣR in the bulk. Of course, this proposal
reduces to the standard CV conjecture (1.2) when the bulk theory is Einstein gravity.

In this section, we examine a new consistency check for our new proposal by considering
higher curvature gravity in the bulk. That is, we start by considering a theory of higher
curvature gravity in the (d + 1)-dimensional bulk and apply eq. (3.1) for the holographic
complexity. Then following the analogous calculations as in section 2, we show that the
holographic complexity for the induced theory on the d-dimensional brane takes the same
form, i.e.,

Csub
V (R) ' CIsland

V = max
∂B̃=σR

[
W̃gen

(
B̃
)

+ W̃K(B̃)
Geff `′

]
, (3.2)

where the functionals W̃gen and W̃K are adapted to the new spacetime dimension and the
induced gravity action on the brane.

Our calculations will refer to several different hypersurfaces and the corresponding
extrinsic and intrinsic curvatures associated with these surfaces — see figure 4. In order
to clarify the notation, we list the different curvatures here:9

• the (d+ 1)-dimensional bulk, with intrinsic curvature R[gbulkµν ];

• the spacelike surfaces B embedded in the (d + 1)-dimensional bulk, with timelike
normal nµ, extrinsic curvature Kµν and intrinsic curvature RB[hαβ ];

• the brane embedded in the (d + 1)-dimensional bulk, with spacelike normal tµ, ex-
trinsic curvature (KB)µν and intrinsic curvature R̃[g̃ij ];

9One may keep in mind that generally, we use K to denote the extrinsic curvature of a d-dimensional
hypersurface embedded in (d+1)-dimensional bulk, while K designates the extrinsic curvature for a (d−1)-
dimensional hypersurface embedded in a d-dimensional submanifold. We also adopt a similar notation for
the intrinsic curvatures.
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R0
R

Figure 4. Different hypersurfaces in the doubly holographic system and their corresponding ex-
trinsic curvatures.

• the island region B̃ = B∩ brane (with B = BL∪BR) thought of as being embedded in
the surface BR, with spacelike normal tαR and extrinsic curvature (KR)αβ ; similarly
for B̃ embedded in the surface BL, we have the spacelike normal tαL to the island and
extrinsic curvature (KL)αβ ;10

• the island region B̃ thought of as being embedded in the brane, with timelike normal
ñi and extrinsic curvature K̃ij ;

• the subregion R′ (where BL,R would meet a virtual asymptotic boundary at z = 0)11

embedded in the asymptotic boundary, with timelike normal
(0)
n i, extrinsic curvature

Kij and intrinsic curvature RΣ[
(0)
hab];

• the virtual asymptotic boundary (see above) with intrinsic curvature R[
(0)
gij ].

10Note that in general, we will consider surfaces B which are not smooth where they cross the brane, e.g.,
before extremizing the profile of B̃ on the brane — see discussion in section 2.3. Hence we must consider
embedding B̃ in BR and BL separately.

11Recall that the brane cuts off the geometry at some zB � L, but to employ the FG expansion, we
consider extending both the left and right geometries beyond the brane to a virtual asymptotic boundary
at z = 0 — see discussion in section 2.1. In principle, all of these quantities should also carry a subscript
L or R to indicate quantities associated with the geometry on the left or right of the brane.
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3.1 Holographic complexity for Gauss-Bonnet gravity

Our first consistency check with higher curvature gravity consists of having Gauss-Bonnet
gravity in the bulk. The bulk gravitation action is therefore given by

IGB
bulk = 1

16πGbulk

∫
dd+1y

√
−g

[
d(d− 1)
L2 +R[gµν ] + λGB LGB

]
+ IGB

surf , (3.3)

with the Gauss-Bonnet term defined by

λGB = L2λ

(d− 2)(d− 3) , LGB = RµνρσRµνρσ − 4RµνRµν +R2 . (3.4)

Here, we have explicitly included the boundary term IGB
surf to emphasize that GB gravity

has a well-posed variational principle with Dirichlet boundary conditions δgµν = 0 [138].
Similar to the standard Gibbons-Hawking-York term, the extended boundary term is given
by [139]

IGB
surf = 1

16πGbulk

∮
ddx

√
−g̃

[
2KB + 4L2λ

(d− 2)(d− 3)
(
R̃KB − 2R̃ijKijB + J

)]
, (3.5)

where R̃ij and Kij denote the Ricci tensor and extrinsic curvature associated with the
boundary geometry, and J is the trace of

Jij ≡
1
3
(
2KKik Kkj +KklKklKij − 2Kik KklKlj −K2Kij

)
. (3.6)

The presence of the Gauss-Bonnet term modifies the Israel junction conditions (2.4)
determining the position of the brane as [140, 141]

∆(KB)ij − g̃ij ∆KB + 2λGB ∆
[
ẼikljKklB + 3Jij [KB]− J g̃ij

]
= 8πGbulk Sij , (3.7)

where the tensor Ẽijkl is defined as

Ẽijkl = 2R̃ g̃i[kg̃l]j − 4
(
R̃i[kg̃l]j + R̃j[lg̃k]i

)
+ 2R̃ijkl . (3.8)

This generalized Israel junction condition can be derived by considering a thin shell and
taking the thickness of the shell δz → 0 — see [141] for details. Similar to the derivation of
the Israel junction condition for Einstein gravity, one can also obtain the generalized Israel
junction condition by considering the gravitational action on either side of the brane with
the boundary term in eq. (3.5) at the brane [140]. That is, with these boundary terms,
we solve the gravity equations in the bulk away from the brane with some fixed boundary
condition for gµν at the brane (as well as asymptotic infinity, of course). Then we solve the
full system by allowing gµν at the brane surface to vary and gluing the two surfaces together
while demanding that the generalized Israel boundary condition in eq. (3.7) is satisfied.
We should note that the latter approach is implicitly adopted in deriving the induced
gravity action in eq. (3.10) — see appendix A of [133]. More specifically, in evaluating the
bulk action in the vicinity of the brane, it is essential to include the contribution of the
boundary term.12

12The same approach was applied in deriving eq. (2.9) with Einstein gravity in the bulk [1].
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While the length scale L defines the cosmological constant in the action (3.3), the
curvature scale L̃ of the AdS vacuum solution in the Gauss-Bonnet gravity is13

L̃2 = L2

f∞
, with f∞ = 1−

√
1− 4λ

2λ . (3.9)

The induced gravitational action on the brane is given by [133]

IGB
eff = 1

16πGeff

∫
brane

ddx
√
−g̃

[(d− 1)(d− 2)
`2eff

+ R̃[g̃] (3.10)

+ κ1

(
R̃ijR̃

ij − d

4(d− 1)R̃
2
)

+ κ2C̃ijklC̃
ijkl + · · ·

]
,

where the effective Newton constant and coupling constants are

1
Geff

= 2L̃
d− 2

1 + 2λf∞
Gbulk

, (3.11)

κ1 = L̃2

(d− 2)(d− 4)
1− 6λf∞
1 + 2λf∞

, κ2 = L̃2

(d− 3)(d− 4)
λf∞

1 + 2λf∞
,

and C̃ijkl denotes the Weyl tensor on the brane. We also note that the expression for the
scale `eff in eq. (2.10) is replaced by

1
`2eff

= 2
L̃2(1 + 2λf∞)

(
1− 2

3λf∞ −
4πL̃GbulkTo

d− 1

)
. (3.12)

In the following, we adopt our proposal (3.1) to evaluate the holographic complexity for
(d + 1)-dimensional GB gravity in the bulk and compare the leading terms in the FG
expansion near the brane to the complexity of the island in the d-dimensional effective
higher-curvature gravity on the brane. As we will see below, the leading terms in the
generalized holographic CV for the boundary subregion agree with the proposed com-
plexity (3.2) of the island. We see this consistency as extra support for our proposal for
holographic complexity for higher-curvature gravity theory.

In evaluating the holographic complexity for (d+1)-dimensional bulk theory, we con-
sider a codimension-one slice B, with time-like normal nµ and induced metric hµν =
gµν + nµnν . Following the analysis in the previous section, our first step is to extrem-
ize the complexity functional on B away from the brane, while leaving the profile B̃ on
the brane undetermined. In order to ensure that this involves a well-defined variational
principle, we actually extend eq. (3.1) to include a surface term

Csub
V (R) = max

∂B=R∪ΣR

[
Wgen(B) +WK(B) +Wbdy(∂BL ∪ ∂BR)

Gbulk`

]
. (3.13)

Of course, the generalized volume Wgen and the K-term are defined in eq. (1.7). We do not
specify the details of Wbdy but its form will become evident in the following. Further, we
note that we are evaluating this expression on ∂BL ∪ ∂BR. In particular, this contribution

13We only consider the solution here which yields L̃→ L in the limit λ→ 0.
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appears on (either side of) B̃, which is not really a boundary of the full surface B = BL∪BR.
Hence we are treating Wbdy in a manner to the gravitational surface (3.5), which appears
on either side of the surface defined by the brane — see discussion below eq. (3.8).

Let us begin by evaluating Wgen for the GB theory. It is straightforward to obtain

αd+1
∂(R+ λGBLGB)

∂Rµνρσ
nµhνρnσ + γd+1

= 2(d− 3)
(d− 1)(d− 2)

(
d

2 + λGB(d− 2)(R+ 2Rµνnµnν)
)

+ 2
(d− 1)(d− 2)

= 1 + λGB
2(d− 3)
(d− 1) (R+ 2Rµνnµnν) ,

(3.14)

where the values of αd+1, γd+1 are given using eq. (2.41). Now using eq. (2.44), the WK

term yields

A2
d+1

(
∂2(R+λGBLGB)

∂Rµ1ν1ρ1σ1∂Rµ2ν2ρ2σ2
Kν1σ1 (hµ1ρ1 +(d−2)nµ1nρ1)Kµ2σ2 (hµ2σ2 +(d−2)nµ2nσ2)

)
,

= 4λGB(d−3)
(d−1)2(d−2)

(
K2

2 −
K2

2 ((d+1)(d−4)+8)+ 1
2
(
K2+(d−1)(d−2)KµνKµν

))
,

= 2λGB(d−3)
(d−1)

(
KµνKµν−K2

)
, (3.15)

where A2
d+1 was replaced using eq. (2.47). Noting Gauss’s “Theorema Egregium” for the

hypersurface B with the induced metric hαβ and intrinsic curvature RB, i.e.,

RB[hαβ ] = R[gµν ] +
(
2Rµνnµnν −K2 +KµνKµν

)
, (3.16)

we can recast the λGB-terms into the intrinsic geometric quantities of hypersurface B, i.e.,

Wgen(B) +WK(B) =
∫
B
dd−1σdz

√
dethαβ

(
1 + 2L2λ

(d− 1)(d− 2)RB
)
. (3.17)

Given the above result, it is straightforward to derive the desired Wbdy.14 Namely,
extremizing this generalized volume functional will have a good variational principle if we
add the usual ‘Gibbons-Hawking’ term on the boundary. The island contribution on the
brane is then given by

Wbdy(B̃) = 4L2λ

(d− 1)(d− 2)

∫
B̃
dd−1σ

√
det h̃ (KL +KR) , (3.18)

where KL,KR denote the trace of the extrinsic curvature of B̃ embedded in BL,BR, re-
spectively.15 Similar to the extremizing condition for entanglement entropy in GB gravity

14It would also be natural to deriveWbdy from the surface terms IGB
surf in the gravitational action appearing

on either side of the brane. However, our initial attempts were unsuccessful and indicate that there are
subtleties in this approach.

15We may note the importance of this term by observing that the GB contribution in eq. (3.17) is negative
for λ > 0 because RB is negative. On the other hand, in eq. (3.11), we see the effective Newton constant
on the brane has a positive contribution from the Gauss-Bonnet term. Hence for the corrections of the GB
term to the coefficient of the volume term in the holographic complexity on the brane to match, there must
be an additional contribution beyond eq. (3.17). Indeed, we will find the extra contribution from eq. (3.18)
yields the desired match.
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(e.g., see [142, 143]), it is straightforward to find that the generalized CV functional (3.13)
for GB gravity is extremized by the following local equation

K + 2L2λ

(d− 1)(d− 2)
(
RB K − 2RαβB Kαβ

)
= 0 . (3.19)

This extremizing condition generalizes eq. (3.17) for Einstein gravity to GB gravity in the
bulk and ensures that B is extremal away from the brane.

In summary, applying our proposal (3.13) to GB gravity in the bulk, the generalized
holographic complexity becomes

Csub
V (R) = max

∂B=R∪ΣR

1
Gbulk`

[
V (B) (3.20)

+ 2L2λ

(d− 1)(d− 2)

(∫
B
dd−1σdz

√
dethRB + 2

∫
B̃
dd−1σ

√
det h̃ (KL +KR)

)]
,

and the resulting condition for extremality of B in the bulk is given by eq. (3.19).

3.1.1 Holographic complexity from induced gravity

Our goal is to compare the near-brane contributions of eq. (3.20) to the proposed holo-
graphic complexity (2.34) on the brane. Hence taking the effective action on the brane in
eq. (3.10), we must evaluate

CIsland
V ≡ max

∂B̃=σR

[
W̃gen

(
B̃
)

+ W̃K

(
B̃
)

Geff `′

]
, (3.21)

where the generalized volume and K-term are defined in eqs. (2.42) and (2.48). The
boundary term W̃bdy does not affect the calculation of the complexity of the island. In
fact, most of CIsland

V is the same as that found in section 2 (see eq. (2.35)) except for the
contributions from C̃ijklC̃

ijkl term in (3.10). Noting the square of Weyl tensor reads

C̃ijklC̃
ijkl = R̃ijklR̃

ijkl − 4
d− 2R̃ijR̃

ij + 2
(d− 1)(d− 2)R̃

2 , (3.22)

and using eq. (2.37) again, the following tensor contraction gives

∂(C̃ijklC̃ijkl)
∂R̃ijkl

ñih̃jkñl =
(
−2R̃abñañb−

4
(d−2)

1
2
(
R̃−R̃abñañb(d−2)

)
+ 2

(d−1)(d−2)R̃
)

= 0 , (3.23)

where we show the individual contributions from R̃ijklR̃
ijkl, R̃ijR̃

ij and R̃2, respectively,
on the second line. Although the Weyl tensor term does not contribute to the generalized
volume, it still plays a role in the K-term. Using eq. (2.44) and also

∂2(R̃i1j1k1l1R̃
i1j1k1l1)

∂R̃ijkl∂R̃mnop
= 2∂R̃mnop

∂R̃ijkl
≡ 2(∂R̃)ijklmnop , (3.24)
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we find the new contribution to W̃K̃ from the Weyl-tensor-squared term in the induced
action is given by

κ2A
2
d

∂2(C̃ijklC̃ijkl)
∂R̃i1j1k1l1∂R̃i2j2k2l2

K̃j1l1

(
h̃i1k1 + (d− 3)ñi1 ñk1

)
K̃j2l2

(
h̃i2k2 + (d− 3)ñi2 ñk2

)
= κ2A

2
d

[
1
2
(
K̃2 + (d− 2)(d− 3)K̃ijK̃

ij
)
− 4

(d− 2)
K̃2

8 (d(d− 5) + 8) + K̃2

(d− 1)(d− 2)

]

= 2λf∞L̃2

(d− 2)(d− 3)(1 + 2λf∞)

(
K̃ijK̃ij −

K̃2

d− 1

)
. (3.25)

Collecting these results, we finally find that the holographic complexity on the island takes
the following form

CIsland
V = max

∂B̃=σR

1
Geff`′

[
V (B̃)

+ L̃2

2
1− 6λf∞
1 + 2λf∞

∫
B̃
dd−1σ

√
h̃

(
K̃2

(d− 1)(d− 3) −
R̃[g̃] + 2R̃ij [g̃]ñiñj

(d− 2)(d− 3)

)

+ 2L̃2

(d− 2)(d− 3)
λf∞

1 + 2λf∞

∫
B̃
dd−1σ

√
h̃

(
K̃ijK̃ij −

K̃2

d− 1 +O(z4
B)
)]

.

(3.26)

Of course, the above result reproduces the holographic complexity derived from Einstein
gravity in the bulk, i.e., eq. (2.35), after setting λ = 0.

3.1.2 Holographic complexity from near-brane region

To compare eq. (3.26) with eq. (3.20), we must integrate the latter over the bulk region
near the brane. Hence as in the previous section, we turn to the FG expansion and evaluate
quantities for z = zB � L.

From the FG expansion of the induced metric hαβ on the time slice B, i.e.,

hzz = L̃2

z2 + δhzz , hab = L̃2

z2

(0)
hab + δhab , (3.27)

one can derive the FG expansion of the Ricci tensor on B as

(RB)zz = −(d− 1)z2

L̃4 + · · · , (RB)ab = −(d− 1)z2

L̃4

(0)
hab + z4

L̃4 (RΣ)ab
[(0)
h
]

+ · · · . (3.28)

We can see that these curvatures correspond very nearly to those of AdSd with a curvature
scale L̃. Hence, the extremality condition (3.19) for GB gravity simply reduces to(

1− 2λGB
(d− 1)(d− 2)

L̃2 +O(z2)
)
K = 0 . (3.29)

Using the expansion of K in eq. (2.18), we find the leading order terms in the FG expansion
of the embedding of B

(1)
xi (σa) = L̃2

2(d− 1)Kn
i , (3.30)
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which is essentially the same as for Einstein gravity. Similarly, we can find the expansion
of the induced metric on B

δhzz =
(1)
hzz +O(z2) = − L̃2

(d− 1)2 K
2 +O(z2) ,

δhab =
(1)
hab +O(z2) =

(1)
gab + L̃2

d− 1 KKab +O(z2) .
(3.31)

To find the subleading contributions in RB, we consider the FG-expansion as a perturbation

on the metric
(0)
hαβ and calculate the perturbation of the Ricci scalar by

δRB = −(RB)αβδhαβ +∇α∇βδhαβ −∇α∇αδhββ . (3.32)

Keeping in mind that the terms with more z-derivatives dominate in the small z expansion,
one can get the expansions of the Christoffel symbols as

Γzzz ≈ −
1
z

Γzab ≈
1
z

(0)
hab Γabz ≈ −

1
z
δab . (3.33)

The Ricci scalar near the asymptotic boundary is given by

RB[hαβ ] = −d(d− 1)
L̃2 + z2

L̃2RΣ[
(0)
hab] + δRB

= −d(d− 1)
L̃2 + z2

L̃2

RΣ + (d− 1)(d− 2)
L̃2

(1)
hzz + 2(d− 2)

L̃2

(0)
hab

(1)
hab

+O(z4)

≈ −d(d− 1)
L̃2 + z2

L̃2

RΣ[
(0)
hab]− 2

(0)
habRab +R+ (d− 2)

(d− 1)K
2

 ,
(3.34)

with Ricci tensor Rab associated with boundary metric
(0)
gij . We can use the Gauss-Codazzi

equation
(RΣ)abcd = Rabcd −KacKbd +KadKbc , (3.35)

to rewrite the expansion of RB[hαβ ] as

RB[hαβ ] ≈ −d(d− 1)
L̃2 + z2

L̃2

(
KabK

ab − 1
(d− 1)K

2
)

+O(z4) . (3.36)

Note that the Ricci tensor terms in RB[hαβ ] at order O(z2) are absent, which is similar to
the contributions of the Weyl tensor term on the brane as shown in eq. (3.23).

Lastly, we deal with the extrinsic curvature term associated with KR in eq. (3.20).
The unit normal (tR)α to the island B̃ embedded on the hypersurface BR is

(tR)α = −
√
hzz(zB)δzα . (3.37)
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From the definition of the extrinsic curvature, i.e., (KR)ab = Da(tR)b, its trace (in Gaussian
normal coordinate) is given by

KR = − hab

2
√
hzz

∂hab
∂z

∣∣∣∣
z=zB

≈ hab(zB) L̃
z2
B

(
1− z2

B
2L̃2

(1)
hzz

)
(0)
hab +O(z4

B)

≈ (d− 1)
L̃

(
1− z2

B
2L̃2

(1)
hzz

)
− z2

B
L̃3

(0)
hab

(1)
hab

≈ (d− 1)
L̃

− L̃

2

(
K̃2

(d− 1) −
R̃+ 2R̃ijñiñj

(d− 2)

)
+O(z4

B) ,

(3.38)

where we have recast all geometric quantities as the ones living on the brane in the last
line by using eq. (2.28) again. Of course, we also find a similar result for KL.

Finally, substituting eqs. (3.38), and (3.34) into the proposed generalized CV for GB
gravity, i.e., eq. (3.20), we can explicitly perform the z-integral with lower bound zB and
obtain the leading contributions as

Csub
V (RL∪RR)≈ max

∂B̃=σR

[
2L̃V (B̃)

Gbulk`(d−1)(1+2λf∞) (3.39)

+ L̃3(1−6λf∞)
(d−1)(d−3)Gbulk`

∫
B̃
dd−1σ

√
h̃

(
K̃2

(d−1)−
R̃[g̃]+2R̃ij [g̃]ñiñj

(d−2)

)

+ 4λf∞L̃3

(d−1)(d−2)(d−3)Gbulk`

∫
B̃
dd−1σ

√
h̃

(
K̃ijK̃ij−

K̃2

d−1 +O(z4
B)
)]

.

However, we see this is exactly the expression in eq. (3.26) derived for the induced action
on the brane, by noting the relation `′ = d−1

d−2` and
1
Geff

= 2L̃
d−2

1+2λf∞
Gbulk

. Note that we have
counted the double contributions from both sides of the bulk surface B = BL ∪ BR which
give rise to the same contributions around the island region. Therefore, our generalized
CV proposal for higher-curvature gravity theory produces consistent results between the
bulk gravity theory and brane gravity theory, i.e.,

CIsland
V ' Csub

V (R) , (3.40)

where the maximization of the same functionals over the island region B̃ is considered on
both sides as discussed in section 2.3.

3.2 Holographic complexity for f(R) gravity

In this subsection, we apply the same consistency test with f(R) gravity in the bulk to
check our proposal. In contrast to the GB theory in the previous subsection, there are
extra propagating degrees of freedom in this higher curvature theory [144–147], i.e., f(R)
gravity is properly referred to as a higher derivative theory. We must emphasize the
importance of this feature since we saw in the previous section that to properly treat our
brane in the limit of zero thickness, the bulk gravity theory should have a good boundary
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value problem. However, this issue is easily resolved for f(R) gravity by recasting it as a
scalar-tensor theory — see below.

We consider the (d+1)-dimensional bulk theory with the action

Ifbulk = 1
16πGbulk

∫
dd+1y

√
−g

(
d(d− 1)
L2 + f (R)

)
. (3.41)

In principle, one should consider adding a surface term to this action (e.g., see [148]) but
we will not need to consider the details of this contribution here. Given the above action,
it is straightforward to find the equation of motion:

f ′(R)Rµν + (gµν∇σ∇σ −∇µ∇ν) f ′(R)− gµν
2

(
f(R) + d(d− 1)

L2

)
= 8πGbulkTµν . (3.42)

In the absence of matter (i.e., with Tµν = 0), we will assume that this equation is solved
by an AdSd+1 spacetime whose curvature scale L̃ is related to L by

− d(d− 1)
L2 = f(R0) + 2d

L̃2 f
′(R0) where R0 = −d(d− 1)

L̃2 . (3.43)

As emphasized above, f (R) gravity is a fourth-derivative theory but is classically
equivalent to a second-derivative scalar-tensor theory e.g., [145, 146]. To be precise, by
introducing a scalar field Φ, we can define the classically equivalent scalar-tensor theory
with action

Istbulk = 1
16πGbulk

∫
dd+1y

√
−g

(
d(d− 1)
L2 + f (Φ) + f ′(Φ) (R− Φ)

)
+ 1

8πGbulk

∮
ddx

√
−g̃KBf

′(Φ) .
(3.44)

Here, we have explicitly introduced the surface term here which produces a well-posed
variational principle with Dirichlet boundary conditions i.e., δΦ = 0 = δgµν . The equation
of motion for the scalar field reads

f ′′(Φ) (R− Φ) = 0 . (3.45)

Imposing the on-shell condition Φ = R (assuming f ′′(R) 6= 0), the action in eq. (3.44)
obviously reduces to eq. (3.41) for f(R) gravity. On the other hand, varying the metric
yields the field equations

Rµν −
1
2Rgµν = 1

f ′(Φ)

[
∇µ∇νf ′(Φ)− gµν�f ′(Φ)− 1

2gµν
(

Φf ′(Φ)− f(Φ)− d(d− 1)
L2

)]
+ 8πGbulk

f ′(Φ) Tµν . (3.46)

Upon substituting the on-shell condition Φ = R, these equations of motion reduce to
the fourth-order equations (3.42) derived by varying the original f(R) action. Noting the
coefficient associated with the matter stress tensor Tµν , we introduce the “effective Newton
constant” for the (d+ 1)-dimensional scalar-tensor theory as

1
Ĝeff

= f ′(Φ)
Gbulk

, (3.47)
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due to the coupling between gravity and the scalar field Φ. When the matter terms are
absent, the bulk spacetime remains the same AdSd+1 as above with Φ0 = R0, and in the
case, the “effective Newton constant” is actually a constant

1
Ĝeff

= f ′(Φ0)
Gbulk

= f ′(R0)
Gbulk

. (3.48)

More generally, we can considering an asymptotically AdSd+1 spacetime and one finds
that the FG expansion for the Ricci scalar R up to the fourth order takes the form

R [gµν ] = R0 +O(z6
B) , (3.49)

by doing a similar calculation to those in the previous subsection. Hence with the on-shell
condition, we have Φ = mR = R0 + O(z6

B). Further the trace of the extrinsic curvature
KB at the brane is given by

KB = 1
L̃

[
d+ L̃2

2(d− 1)R̃+ L̃4

2(d− 1)(d− 2)2

(
R̃ijR̃

ij − d

4(d− 1)R̃
2
)]

+O
(
z6
B

)
. (3.50)

Now integrating out the radial direction in the bulk action in the vicinity of the brane, we
obtain the induced gravitational action on the brane as [149]

Iind = 1
16πGeff

∫
brane

ddx
√
−g̃
[

(d−1)(d−2)
`2eff

+R̃+κ1

(
R̃ijR̃

ij− d

4(d−1)R̃
2
)

+O
(
z6
B

)]
,

(3.51)
where the various coupling constants are given by

1
`2eff

= 2
L̃2

(
1− 4πL̃ĜeffTo

(d− 1)

)
= 2
L̃2

(
1− 4πL̃GbulkTo

(d− 1)f ′(R0)

)
,

1
Geff

= 2L̃
(d− 2)Ĝeff

= 2L̃
d− 2

f ′(R0)
Gbulk

, κ1 = L̃2

(d− 2)(d− 4) .
(3.52)

In producing this result, we have introduced the surface term on either side of the brane, as
discussed below eq. (3.8). The induced action on the brane from f (R) gravity in the bulk
is similar to that from Einstein gravity on the bulk in eq. (2.9) except for the corrections
on the coupling constants from f ′ (R0).

3.2.1 Equivalence of the holographic complexities

Our goal is to show that the relation

Csub
V (R) ' CIsland

V ≡ max
∂B̃=σR

[
W̃gen

(
B̃
)

+ W̃K

(
B̃
)

Geff `′

]
, (3.53)

also holds for f(R) gravity in the bulk and its induced gravity on the brane. Thanks to
the similarity between the induced action in eq. (3.51) and that for Einstein gravity in
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the bulk, i.e., eq. (2.9), it is easy to find that the generalized CV on the brane with this
induced gravity theory is given by

CIsland
V = max

∂B̃=σR

[
V (B̃)
Geff`′

(3.54)

+ L̃2

2Geff`′

∫
B̃
dd−1σ

√
h̃

(
K̃2

(d− 1)(d− 3) −
R̃[g̃] + 2R̃ij [g̃]ñiñj

(d− 2)(d− 3) + · · ·
)]

.

We expect that our proposal can provide the same result as eq. (3.54) by considering the
generalized CV in (d+1)-dimensional bulk with f (R) gravity. However, due to the higher-
derivative terms, it is much easier to consider the holographic complexity directly in the
equivalent scalar-tensor theory (3.44) because the gravitational part is only described by the
Einstein gravity. Correspondingly, the generalized volume term reduces to a volume term
and the K-term simply vanishes. The one subtlety is that we apply our proposal (3.1) to the
scalar-tensor theory with the “effective Newton constant” Ĝeff = Gbulk/f

′(Φ). However,
noticing that Ĝeff may be a locally varying quantity on the asymptotically AdS spacetime,
we should put the factor 1

Ĝeff
inside the integrals for Wgen,WK . Then the generalized CV

complexity reads

Csub
V (R) = max

∂B=R∪ΣR

∫
B
ddσ

√
dethαβ

1
Ĝeff`

(
αd+1

∂Lbulk
∂Rµνρσ

nµhνρnσ + γd+1

)
,

= max
∂B=R∪ΣR

[∫
B
dd−1σdz

√
dethαβ

f ′(Φ)
Gbulk`

(
d

2αd+1 + γd+1

)]
,

(3.55)

where Lbulk ≡ 16πĜeffLbulk, both WK and Wbdy vanish due to the absence of higher
curvature terms in eq. (3.44). Substituting the values of αd+1 and γd+1 derived from
eq. (2.41), one can find that the expression in round parentheses reduces to one. Then
extremizing the holographic complexity in the scalar-tensor theory results in

ext
BL,BR

[ 1
Gbulk`

∫
B
dd−1σdz

√
dethαβ f ′(Φ)

]
(3.56)

' 2L̃df ′(R0)
Gbulk`

∫
B̃
dd−1σ

√
det

(0)
h ab

[
1

(d−1)zd−1
B

+ 1
(d−3)zd−3

B

(
d−2

2(d−1)2K
2−

Raa− 1
2R

2(d−2)

)]
,

where, once again B = BL∪BR and B̃ = BL∩BR and we also used the on-shell condition in
eq. (3.45) and the series expansion f ′(Φ) = f ′(R) ≈ f ′(R0) +O(z6

B). Using the geometric
quantities of the brane and noting the maximization over B̃, we can finally obtain the
generalized CV for the f(R) gravity in the bulk as

Csub
V (R) = max

∂B̃=σR

[
2L̃f ′ (R0)
Gbulk`(d−1)

(
V (B̃)

+ L̃2

2(d−3)

∫
B̃
dd−1σ

√
h̃

(
K̃2

d−1−
R̃[g̃]+2R̃ij [g̃]ñiñj

d−2 +O(z4
B)
))]

,

(3.57)
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Comparing eqs. (3.54) and (3.57), we also find the equivalence between the holographic
complexity derived from f(R) gravity and its induced gravity theory on the brane, i.e.,

CIsland
V ' Csub

V (R) , (3.58)

where we have used the relations `′ = d−1
d−2` and

1
Geff

= 2L̃
d−2

f ′(R0)
Gbulk

. Once again, this equiv-
alence supports that our proposed holographic complexity for higher-derivative gravity
theory produces consistent results.

4 Discussion and future directions

As discussed in section 2.3, there is an interesting identification between the island rule (1.3)
for the brane perspective and the RT prescription (1.4) for the bulk perspective in the
doubly holographic model of [1, 2]. One feature is that the RT surfaces in eq. (1.4) are
extremized in two stages: first, one finds surfaces that are extremal everywhere away from
the brane, and second, the intersection of the RT surfaces with the brane is extremized.
The latter corresponds to finding the quantum extremal surface in the island rule (1.3).
The on-shell bulk surfaces found in the first step describe the leading contributions to the
entanglement entropy in the large N limit of the boundary CFT, for different candidate
quantum extremal surfaces. These contributions may be divided into two classes: various
geometric contributions corresponding to terms of the Wald-Dong entropy [121–124] coming
from the various gravitational interactions induced in the brane theory by the CFT,16 and
the quantum contributions appearing as SQFT in the island rule (1.3). Of course, the first
set of contributions comes from integrating the bulk area of the RT surface near the brane,
while the second set comes from the bulk region far from the brane.17

As discussed in section 2.3, there seems to be a direct parallel between the above analy-
sis of the holographic entanglement entropy and of the holographic complexity using the CV
proposal. Hence beginning with the subregion complexity=volume proposal (2.11) in the
bulk,18 we arrive at the following description of the complexity from the brane perspective:

Csub
V (R) = max

∂B̃=σR

[
W̃gen(B̃) + W̃K(B̃)

Geff`′
+ CQFT(R ∪ B̃)

]
, (4.1)

where the geometric contribution is given by eqs. (2.42) and (2.48). Focusing on this
geometric contribution, this result leads us to propose eqs. (1.6) and (1.7) as the extension
of the CV proposal for holographic complexity in higher curvature theories. Our experience
with the Wald-Dong entropy suggests that WK provides an infinite series of corrections
involving higher powers of the extrinsic curvature [124], and eq. (1.7) only presents the first
K2 term in this series. Further, in section 2.2, we noted that the K-term in eq. (2.33) was
chosen for its simplicity and the similarity to the form of the K corrections in the Wald-
Dong entropy, but we cannot rule out the possibility that it involves more complicated
contractions than that in eq. (2.33).

16Of course, these must be combined with the brane contribution in eq. (1.4) to produce the full Wald-
Dong entropy of the effective gravity theory on the brane [1].

17These include both UV contributions from near the asymptotic boundary and IR contributions from
deep in the AdS bulk.

18Or alternatively, eq. (2.54) for a DGP brane.
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B̃

Figure 5. Different boundary subregions, R = RL ∪ RR and R′ = R′
L ∪ R′

R with the same
boundaries, i.e., ∂R = ∂R′. The entanglement entropy and the RT surface remains the same for
both subregions. However, the extremal surfaces B and B′ (denoted by the orange regions) are
different and hence they produce different islands B̃ and B̃′ on the brane (represented by the blue
slice). The QES on the brane is unchanged and hence ∂B̃ = ∂B̃′ = σR. The red shaded regions
on the asymptotic boundary represent the causal domain of R (B̃). The subregion R′ may be any
spacelike surface in this causal domain. Similarly, B̃′ will always lie within the causal domain of
the brane (denoted by the pink region).

Perhaps, equally interesting in eq. (4.1) are the ‘quantum’ contributions coming from
integrating the bulk volume of the extremal surface far from the brane. These contributions
can play an important role in determining the geometry of B̃. Recall that the boundary
of the extremal surface consists of ∂B = R ∪ ΣR. Hence the profile of B depends on the
full details of the geometry of the boundary subregion R. Hence any two R and R′ with
∂R = ∂R′ yield the same RT surface ΣR and the same quantum extremal surface σR on
the brane, but these different choices will produce different island surfaces B̃— see figure 5.
Of course, this reflects the fact that the holographic complexity is sensitive to the details
of the state that are not captured by the corresponding entanglement entropy.

A simple observation is that the holographic CV calculation picks out a special time
slice on the brane (i.e., B̃) for the island, in contrast to the corresponding entanglement
entropy calculation which only fixes the boundary of the islands (i.e., the quantum extremal
surface). It would be interesting to explore how B̃ is deformed by making variations of
the subregion R on the asymptotic AdS boundary, or perhaps by the insertion of extra
operators in this subregion. While in principle these deformations could fill the causal
domain of some canonical time slice with boundary σR, our intuition is that generally,
such variations will only produce perturbatively small deformations of B̃. If one examines
the FG expansion (2.17) for embedding surface near the brane more closely, one finds

xi (z, σa) =
(0)
xi (σa) +

(1)
xi (σa) + · · ·+ zd

Ld

(d)
xi (σa) +

(d)
yi (σa) log

(
z

L

)+O
(
zd+1

Ld+1

)
. (4.2)
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The coefficients
(n)
x i with n < d are completely determined by the boundary profile

(0)
x i

and the boundary metric
(0)
g ij , e.g., see [150]. The second independent coefficient in this

expansion is
(d)
x i. This is precisely the coefficient that is determined by the infrared physics

and the shape of R and so naively, its contributions on the brane are suppressed by the
power (zB/L)d � 1 in the regime of interest.

The above expansion also resolves a puzzle with eqs. (2.11) and (4.1). In the latter
equation, the brane perspective seems to treat CQFT as a higher-order term of the expansion
in Geff . However, both contributions arise at the same order in the GN expansion in the
bulk. There is no contradiction because the quantum corrections from the boundary CFT
are enhanced by a power of the central charge cT ∼ Ld−1/GN ∼ Ld−2/Geff — where we
use eq. (2.10) in the latter. However, the effect of the quantum contribution CQFT can still
be suppressed in the expansion on the brane in terms of powers of zB/L ∼ L/`B.

A fascinating aspect of the second term in eq. (4.1) is that while this contribution has
a geometric origin in our bulk calculations, it is interpreted as a quantum contribution
from the brane perspective, i.e., it is associated with the quantum fields on R ∪ B̃. The
interpretation follows the parallel with the holographic entanglement and the appearance
of SQFT(R ∪ islands) in the island rule (1.3). Of course, it points to an improved version
of our generalized complexity=volume proposal (1.6) of the form

CV(R) = max
∂B=R

[
Wgen(B) +WK(B)

GN `
+ Cbulk

]
, (4.3)

where Cbulk represents the contribution from the quantum field state in the bulk. This
would be analogous to the appearance of quantum corrections in the holographic entangle-
ment entropy [111, 112]. Of course, such additional contributions have long been expected
because the CV proposal (1.1) has the form of a saddle point approximation of some more
complete calculation. While eq. (4.1) is the first instance where these quantum correc-
tions can be explicitly calculated, unfortunately, our doubly holographic model does not
indicate what quantum calculation yields these contributions. Of course, it would be in-
teresting to further investigate the properties of CQFT in eq. (4.1) to gain further insight
into this question.

In this vein, one immediate observation from examining eq. (4.1) is the tension between
the maximization and the naive association of CQFT with circuit complexity — or rather
circuit depth. That is, if we associate CQFT with the size of the quantum circuit needed to
prepare the QFT state on the corresponding region (along the lines studied in, e.g., [151,
152]) then the complexity follows from minimizing this quantity rather than maximizing.
One simple resolution would be to consider our analysis with a Euclidean (rather than
a Minkowski) signature. Then the CV conjecture (1.1) would correspond to minimizing
the volume of the bulk surfaces and this minimization would naturally be inherited by
the generalized proposal in eq. (4.1) or (4.3). This tension may suggest that CQFT should
instead be associated with an alternative interpretation of holographic complexity, e.g.,
optimization of path integrals [153, 154], “quantum circuits” based on path-integrals [155]
or using the equivalence of bulk and boundary symplectic forms [156–158]. Our doubly
holographic model may also provide an interesting new forum to study these approaches.
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General higher curvature theories. While we are proposing that the generalized
expressions for holographic complexity in eqs. (1.6) and (1.7) should apply for general
theories of higher curvature gravity, we only applied our consistency tests in section 3 to
two very specific theories. The feature that distinguished these theories was their boundary
value problem. Namely, Gauss-Bonnet gravity can be solved with standard boundary
conditions applied to the metric, while f(R) gravity could be expressed in a form (i.e., as a
scalar-tensor theory) where the boundary conditions had a simple form. We note however
that this limitation was because of issues in dealing with infinitely thin brane in higher
curvature theories. Hence while this is a limitation of the doubly holographic model, we
do not believe that it limits the applicability of our generalized proposal for holographic
complexity. Certainly, the induced gravitational theories on the brane are outside this
limited class of higher curvature theories.

However, we must admit that there are aspects of our consistency tests in section 3 that
deserve further consideration. For example, one should better understand the appearance
of the “effective Newton constant” in the generalized volume for f(R) gravity. For the
Gauss-Bonnet theory, it would be interesting to understand how to derive the expression
for Wbdy in eq. (3.18) from the surface terms added to the gravitational action on either
side of the brane.

We hope our generalized extension of the CV proposal will encourage further inves-
tigations of holographic complexity in higher curvature gravity models. Many studies of
the CV proposal for higher derivative gravity (e.g., [159–162]) only consider the volume
term. Therefore it will be interesting to explore the differences between the CV and our
generalized CV approaches in various settings.

To close here, let us add that there is another interesting discrepancy in our approach
which deserves further study. Setting aside the doubly holographic model and considering
standard AdS holography for a moment, we observe that one finds logarithmic divergences
in evaluating the boundary counterterms and the holographic entanglement entropy when
the boundary dimension d is even. Of course, these divergences are related to the con-
formal anomaly of the boundary CFT. However, in evaluating the extremal volume for
the holographic complexity, one finds that there are logarithmic divergences when d is
odd. As a result, in the analysis of the doubly holographic model, one finds that one can
account for the log divergences in the entanglement entropy (coming from the bulk re-
gion near the brane) by straightforwardly applying the Wald-Dong entropy to the induced
gravitational action on the brane [1]. In contrast, there is no such match between the
logarithmic divergences in the CV complexity in the bulk and the geometric contributions
in our generalized complexity (4.3) on the brane (for odd d). Similarly, applying our geo-
metric formula to the logarithmically divergent terms in the induced action naively yields
contributions which do not appear in the CV complexity (for even d). In either case, one
can adopt an approach where these logarithmic terms are treated separately. However, an
alternative may be that the boundary between the geometric gravitational contributions
and the quantum contributions is different for the generalized CV complexity in eq. (4.3),
than say, for holographic entanglement entropy. This is certainly an issue that deserves
further consideration.
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While the above issue arises for all values of d when calculating corrections to suffi-
ciently high orders, let us add that it is immediately apparent in our analysis in section 2.2
for lower dimensions, e.g., the coefficients in eq. (2.41) diverge for d = 2 or 3. It arises
there because the logarithmic divergence appears in the leading or first subleading contri-
bution. We provide a detailed examination of these two cases in appendix A. However, we
emphasize again that the same issue arises in higher dimensions but only in higher-order
contributions.

Mutual complexity and island complexity. Much of our analysis focused on iden-
tifying the geometric terms in eq. (4.1) by looking at the contributions arising from the
region near the brane, i.e., the leading terms in the limit zB/L̃ → 0. However, we should
recall that the quantum term CQFT(R∪B̃) also includes the UV divergent terms associated
with the cut-off surface near the asymptotic AdS boundary. These are less interesting for
our purposes and so we point out that they can be eliminated by considering the mutual
complexity, e.g., [24, 53–55]

∆Csub
V = Csub

V (RL) + Csub
V (RR)− Csub

V (RL ∪RR) . (4.4)

The UV divergent terms, which only depend on the boundary geometry of RL and RR,
cancel in this combination of complexities, leaving a UV finite quantity.

We also remark that the transition between the no-island phase to the island phase
can also be diagnosed by the above mutual complexity. In particular, the latter vanishes in
the no island phase, in which the bulk RT surfaces are disconnected phase — see figure 1.
For the island phase, the mutual complexity jumps to a large negative value. In fact, we
expect that this is dominated by the island contribution, i.e.,

∆Csub
V ' −CIsland

V + · · · = − W̃gen(B̃) + W̃K(B̃)
Geff`′

∣∣∣∣
B̃ext

+ · · · . (4.5)

Even though the entanglement entropy is continuous at the transition between these two
phases, the complexity of the island state is much larger than that of the no island state.
This reflects the fact that one is able to reconstruct the island on the brane from the
asymptotic boundary state. Of course, similar discontinuities in the mutual complexity
are seen in more conventional holographic settings, e.g., [24, 48–52, 54, 103], but it would
interesting to further understand the implications for quantum extremal islands.

Length scale in holographic complexity. Both the holographic CV proposal (1.1)
and our proposed generalization (1.6) involve an undetermined length scale `. In most
previous studies, e.g., [9–22, 32–54],19 this length scale is simply chosen to be the AdS
curvature scale. However, our analysis was simplified by leaving ` undetermined, and
in particular, we found a simple relation (2.31) between the scales associated with the
holographic complexity in the bulk and on the brane. The AdS radius of the induced
gravity on the brane, i.e., `B ≈ L2/zB, is more or less independent of the bulk radius L,
i.e., the relation depends on the brane tension as shown in eq. (2.5). If one demands to

19See [24] for a more elaborate definition of this scale in the case of holographic black holes.
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identify the length scale in the complexity proposals to the AdS radius for the different
gravity theories, the generalized CV for boundary subregion and the island are given by

Csub
V ≡ max

B

[ 1
Gbulk L

(Wgen(B) +WK(B))
]
,

CIsland
V ≡ max

B̃

[ 1
Geff `B

(
W̃gen(B̃) + W̃K(B̃)

)]
,

(4.6)

and the two expressions do not agree, i.e., Csub
V /CIsland

V ' `B/L. Rather one would have to
introduce an additional ‘penalty factor’ to produce the desired equivalence, i.e.,

Csub
V ' P CIsland

V + · · · with P = d− 2
d− 1

`B
L
. (4.7)

In contrast to the simple relation in eq. (2.31), this additional factor has a complicated
dependence on the physical parameters of the underlying theory.

Maximal condition for holographic complexity. As we have stressed, the CV con-
jecture (1.1) and our generalized proposal (1.6) relies on maximizing the corresponding
geometric functional on bulk hypersurfaces B with the appropriate boundary condition
∂B = R∪ΣR. However, we only explicitly use the local equations, i.e., δCV

δXµ = 0 to find the
extremum. For eq. (1.1), we are guaranteed that the extremal volume will be a maximum.
However, with our generalization (1.6), we are no longer guaranteed that the corresponding
geometric functional will reach a maximum in situations where the higher curvature con-
tributions become important. That is, the solutions of the extremizing equation may be a
maximum, a minimum, or a saddle point. Maximizing the holographic complexity further
requires a necessary condition for the generalized CV functional to be a local maximum, i.e.,

δ2CV ≤ 0 , (4.8)

where the variation is defined with respect to perturbations of the extremal surface B.
Although, this condition is not necessary for the derivation of the results in this paper, it is
still interesting to explore the meaning of this constraint on second variations of generalized
complexity. From the viewpoint of holographic entanglement entropy SEE, its second
variations (with respect to deformations of the entangling surface) are also constrained by
strong stability, i.e., δ2SEE ≥ 0, due to the fact the RT surface is a local minimum of
its area. Similar strong stability should also be imposed on the generalized entropy Sgen
— see [27, 163] for more discussion. It is remarked that strong stability is a nontrivial
constraint independent of its extremality condition. As an important application, the
second variation plays a crucial role in defining quantum null energy conditions [164, 165].
So we expect that there will be interesting applications of the stability condition (4.8) for
holographic complexity.

Generalized first law for causal diamonds. By applying Wald’s Noether charge
formalism [121, 122], the authors in [166, 167] derived an extended first law of causal
diamond mechanics in Einstein gravity

δHmatter
ζ = − κ

8πGN
[δA− kδV ] , (4.9)
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where Hmatter
ζ is the matter Hamiltonian associated with the flow generated by the confor-

mal Killing vector ζ on the causal diamond, A is the area of the edge ∂Σ, and k denotes the
extrinsic curvature of ∂Σ embedded in the maximal slice. Connections to the first law of
holographic complexity were also developed in [17, 19, 157]. Furthermore, it was extended
to higher-curvature gravity in [125] as

δHmatter
ζ = − κ

2πGN
δSWald

∣∣∣
W

+
∫
∂Σ
δCζ , (4.10)

where δCζ = 0 are the linearized equations of higher derivative theory and the Wald
entropy evaluated on bifurcation surface ∂Σ varies while keeping the generalized volume
W fixed.20 Considering that our proposal suggests a new term WK depending on the
extrinsic curvature, it would be interesting to generalize the first law of causal diamond
mechanics by connecting the Wald-Dong entropy and our generalized volume.

Generalizing complexity=action? In the context of holographic complexity, the com-
plexity=action (CA) conjecture [7, 8] and its subregion version [9] have also been widely
studied. Generalizing our work to consider the CA proposal in the framework of our doubly
holographic model is an obvious future direction. However, in contrast to the CV proposal,
the CA approach already includes the corrections from higher-curvature terms due to the
explicit dependence of action on these terms. So the real question to verify is whether
the subregion-CA proposal in bulk theory produces the same complexity for the induced
gravitational theory on the brane, i.e., does one find

Csub
A ' CIsland

A + · · · ? (4.11)

If this is not the case, it may imply the need to consider a modified CA approach for
higher-curvature gravity theory. Of course, subtlety is that surface and joint terms play a
very important role in the CA approach [168], and determining the corresponding terms
for higher curvature theories is quite demanding, e.g., [169–172]. Let us also note that the
Csub
A approach has already been studied in the literature, e.g., [37, 51, 52], but the extension

to the present context is not obvious from these results.
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A Lower dimensions

In the discussion section, we commented on a discrepancy in our analysis related to loga-
rithmic divergences in the CV complexity and the induced gravity action on the brane. In
particular, for odd d, the CV complexity in the bulk contains a logarithmic contribution
but the latter is not generated by our generalized complexity proposal (2.34) applied to
the corresponding brane action. Similarly for even d, applying our geometric formula to
the logarithmically divergent terms in the induced action naively yields contributions that
do not appear in the CV complexity. Further, this issue becomes immediately evident in
lower dimensions, where the logarithmic divergences appear as the leading or first sublead-
ing contributions. Explicitly, one can see that our proposal to the generalized CV for a
d-dimensional gravity theory

CV (R) = max
∂B=R∪ΣR

[
Wgen(B) +WK(B)

GN`

]
, (A.1)

is only valid for d > 3 due to superficial divergences in the coefficients

αd = 2(d− 4)
(d− 2)(d− 3) , γd = 2

(d− 2)(d− 3) , Ad = 4(d− 4)
(d− 2)2(d− 3) , (A.2)

when d = 2 or d = 3. (Recall that βd = 0 for all dimensions.) Hence in this appendix, we
examine this issue by revisiting our analysis in section 2.2 for lower-dimensional gravity
theories.

A.1 Three-dimensional brane

We begin here with the case of d = 3.21 It is obvious that there is a problem for the
subleading contributions in eq. (2.27) coming from integrating the volume of the extremal
surface in the vicinity of the three-dimensional brane. The divergence in the corresponding
coefficients is a signal of the appearance of logarithmic terms. Explicitly, performing the
z-integral for d = 3, we find that the subregion complexity for four-dimensional bulk
gravity reads

Csub
V (R)≡ max

∂B=R∪ΣR

[
V (BL)+V (BR)

Gbulk`

]

' 2L2

Gbulk`

∫
B̃
d2σ

∫
zB
dz

√
det

(0)
h

(
L

z

)3
1− z

2

8 K
2+ z2

2L2

(0)
hab

(1)
hab+· · ·


' LV (B̃)
Gbulk`

+log
(
`IR
zB

)
L3

Gbulk`

∫
B̃
d2σ

√
det h̃

(
K̃2

4 −
1
2R̃−R̃ijñ

iñj
)

+O(z0
B) ,

(A.3)

21This is the case of three-dimensional gravity, i.e., d = 2 in eqs. (1.6) and (1.7).
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where `IR is some scale from deep in the bulk which makes the argument of the logarithmic
term dimensionless. Hence the leading term in Csub

V (R) still yields the expected volume
contribution for the brane gravity, i.e., V (B̃)/(Geff`

′) with `′ = 2` and Geff = Gbulk/(2L) as
before. However, the proposed functional for the generalized CV proposal must be modified
at higher orders to match the logarithmic divergence

Clog
V,d=3(B̃) = log

(
`2B
L2

)
L2

4Geff `′

∫
B̃
d2σ

√
det h̃

(
K̃2

2 − R̃− 2R̃ijñiñj
)
, (A.4)

where we have substituted `B = L2/zB and made the simple choice `IR = L. Recall that
`B and L correspond to the AdS curvature and the UV cutoff scales, respectively, in the
effective theory on the brane [1, 2]. Then, we arrive at the generalized CV expression for
the induced gravity on the three-dimensional brane,

Csub
V (R) ' CIsland

V,d=3 ≡ max
∂B̃=σR

[
V (B̃)
Gd`′

+ Clog
V,d=3(B̃)

]
(A.5)

where the logarithmic term is explicitly shown in eq. (A.4) and denotes the contributions
from curvature-squared terms in the gravitational action (2.9).

Following the approach in the main text, it is straightforward to extend eqs. (2.32)
and (2.33) to the present case if we allow for logarithmic coefficients. Explicitly, we obtain

CIsland
V,d=3 = 1

Geff`′

∫
B̃
d2σ

√
h̃

[(
1 + log

(
`2B
L2

)
− log

(
`2B
L2

)
∂Leff

∂R̃ijkl
ñih̃ikñl

)
,

−2 log
(
`2B
L2

)
∂2Leff

∂R̃ijkl∂R̃mnop
K̃jlh̃ikK̃

nph̃mo
]
.

(A.6)

That is, we are using the same functional W̃gen + W̃K as before but with new coefficients

α3 = − log
(
`2B
L2

)
, γ3 = 1 + log

(
`2B
L2

)
, A3 = −2 log

(
`2B
L2

)
, (A.7)

for a general curvature-squared gravity theories in three dimensions.
We emphasize that we included the first subleading contributions in eq. (2.27) and

so the issue of the logarithmic divergence in the holographic complexity became manifest
for d = 3. However, the same issue will arise for any odd d, i.e., with an even dimension
in the bulk. Carrying out the same calculations to a sufficiently high order will reveal
an extra logarithm in the holographic complexity. In particular, with d = 2n + 1, one
should only apply eqs. (1.6) and (1.7) for the generalized CV proposal for higher curvature
interactions up to R2n−1. It will be possible to include the R2n interactions if one adds an
extra contribution with a logarithmic coefficient, as in eq. (A.5). It would be interesting
to examine this issue in greater detail in higher dimensions.

A.2 Two-dimensional brane

Now turning to the case of d = 2,22 we expect to find a logarithmic divergence in the
induced action which is not reflected in the holographic complexity. Furthermore, we

22This is the case of two-dimensional gravity, i.e., d = 1 in eqs. (1.6) and (1.7).
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should stress that the generalized CV for d = 2 is more subtle because the usual relations
`′ = d−1

d−2` and Geff = (d− 2)Gbulk/(2L) break down for this dimension.
First of all, we recall the FG expansion for the metric with a three-dimensional bulk

becomes
gij(z, xi) =

(0)
g ij

(
xi
)

+ z2

δ2

(
(1)
g ij(xi) + fij(xi) log

(
z

L

))
+ · · · , (A.8)

where the subleading term
(1)
g ij(xi) is not completely fixed and fij(xi) depends on the stress

tensor on the boundary [129]. Similarly, the embedding function for the extremal surface
B in the bulk is given by

xi (z, σa) =
(0)
xi (σa) + z2

L2

(1)
xi (σa) +

(1)
yi (σa) log

(
z

L

)+O
(
z4

L4

)
. (A.9)

From this expansion, we see that the subleading terms are not fully geometric anymore
and depend on the details of the boundary state.

Explicitly, performing the CV integral in the vicinity of the brane with d = 2 yields

Csub
V (R) = max

∂B=R∪ΣR

[
V (BL) + V (BR)

Gbulk`

]
≈ 2LV (B̃)

Gbulk`
+O(z0

B) . (A.10)

Hence the leading term is still the volume of the island and the subleading contributions
are dominated by the upper bound in the radial z-integral, i.e., these should be included as
quantum contributions to the brane complexity. As a result, we will only need to consider
the leading contribution, i.e., the volume term.

Now the expression for the effective action given in eq. (2.9) does not apply for d = 2.
Rather after a careful examination of the FG expansion and integration over the radial
direction (see section 2.3 in [1] for more details), the induced action for the d = 2 brane
can be written as

Iinduced = 1
16πGeff

∫
d2x

√
−g̃

[
2
`2eff
− R̃ log

(
−L

2

2 R̃

)
+ R̃+ L2

8 R̃2 + · · ·
]
, (A.11)

where the two effective scales are(
L

`eff

)2
= 2 (1− 4πGbulkLTo) , Geff =Gbulk/L . (A.12)

The unusual logarithmic term can be understood as arising from the nonlocal Polyakov
action induced by the two-dimensional boundary CFT supported by the brane.

There is a certain degree of ambiguity in how to proceed at this point, but examining
our ansatz (2.32) for the generalized volume W̃gen(B̃) (with undetermined α2, β2, γ2),
we obtain

CIsland
V,d=2 = W̃gen(B̃)

Ĝeff`
' 1
Geff`′

∫
B̃
dσ
√
h

[
−α2

2 log
(
−L

2

2 R̃

)
+
(
0
)
β2 + γ2

]
. (A.13)

Here we have ignored any contributions from the R̃2 and higher terms (denoted by the
ellipsis) in eq. (A.11). We note that these contributions do not contain any UV divergences
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in the limit L/`B → 0, and so they can be included as part of the quantum contribution
to the complexity. Further, note that tensor contraction multiplying the coefficient β2
vanishes for d = 2. Now the following simple choice of the coefficients,

α2 = 0 , γ2 = 2 , `′ = ` , (A.14)

yields the desired identification for the two-dimensional complexity

Csub
V (R) ' CIsland

V,d=2 = W̃gen(B̃)
Ĝeff`′

= 2V (B̃)
Geff `′

. (A.15)

We again note that a similar mismatch from logarithmic divergences in the induced
action will appear for any d = 2n. In this case, no corresponding divergence appears in the
holographic complexity in the bulk, which is odd-dimensional. Hence one should only apply
eqs. (1.6) and (1.7) for the generalized CV proposal for higher curvature interactions up to
R2n−2. A logarithmic divergence will appear at the next order, i.e., R2n−1, and the corre-
sponding contribution to the complexity will have to be treated separately. Again, it would
be interesting to explicitly examine this question in greater detail for higher dimensions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum extremal islands
made easy, Part I. Entanglement on the brane, JHEP 10 (2020) 166 [arXiv:2006.04851]
[INSPIRE].

[2] H.Z. Chen, R.C. Myers, D. Neuenfeld, I.A. Reyes and J. Sandor, Quantum extremal islands
made easy, Part II. Black holes on the brane, JHEP 12 (2020) 025 [arXiv:2010.00018]
[INSPIRE].

[3] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[4] S. Aaronson, The Complexity of Quantum States and Transformations: From Quantum
Money to Black Holes, arXiv:1607.05256 [INSPIRE].

[5] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016)
24 [Addendum ibid. 64 (2016) 44] [arXiv:1403.5695] [INSPIRE].

[6] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90
(2014) 126007 [arXiv:1406.2678] [INSPIRE].

[7] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity
Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

[8] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action, and
black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

[9] D. Carmi, R.C. Myers and P. Rath, Comments on Holographic Complexity, JHEP 03
(2017) 118 [arXiv:1612.00433] [INSPIRE].

– 42 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP10(2020)166
https://arxiv.org/abs/2006.04851
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04851
https://doi.org/10.1007/JHEP12(2020)025
https://arxiv.org/abs/2010.00018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00018
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://arxiv.org/abs/1607.05256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.05256
https://doi.org/10.1002/prop.201500092
https://doi.org/10.1002/prop.201500092
https://arxiv.org/abs/1403.5695
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.5695
https://doi.org/10.1103/PhysRevD.90.126007
https://doi.org/10.1103/PhysRevD.90.126007
https://arxiv.org/abs/1406.2678
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2678
https://doi.org/10.1103/PhysRevLett.116.191301
https://arxiv.org/abs/1509.07876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.07876
https://doi.org/10.1103/PhysRevD.93.086006
https://arxiv.org/abs/1512.04993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.04993
https://doi.org/10.1007/JHEP03(2017)118
https://doi.org/10.1007/JHEP03(2017)118
https://arxiv.org/abs/1612.00433
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.00433


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[10] J. Couch, W. Fischler and P.H. Nguyen, Noether charge, black hole volume, and complexity,
JHEP 03 (2017) 119 [arXiv:1610.02038] [INSPIRE].

[11] D. Carmi, S. Chapman, H. Marrochio, R.C. Myers and S. Sugishita, On the Time
Dependence of Holographic Complexity, JHEP 11 (2017) 188 [arXiv:1709.10184]
[INSPIRE].

[12] B. Swingle and Y. Wang, Holographic Complexity of Einstein-Maxwell-Dilaton Gravity,
JHEP 09 (2018) 106 [arXiv:1712.09826] [INSPIRE].

[13] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes.
Part I, JHEP 06 (2018) 046 [arXiv:1804.07410] [INSPIRE].

[14] S. Chapman, H. Marrochio and R.C. Myers, Holographic complexity in Vaidya spacetimes.
Part II, JHEP 06 (2018) 114 [arXiv:1805.07262] [INSPIRE].

[15] Z. Fu, A. Maloney, D. Marolf, H. Maxfield and Z. Wang, Holographic complexity is nonlocal,
JHEP 02 (2018) 072 [arXiv:1801.01137] [INSPIRE].

[16] M. Flory and N. Miekley, Complexity change under conformal transformations in
AdS3/CFT2, JHEP 05 (2019) 003 [arXiv:1806.08376] [INSPIRE].

[17] A. Bernamonti, F. Galli, J. Hernandez, R.C. Myers, S.-M. Ruan and J. Simón, Aspects of
The First Law of Complexity, arXiv:2002.05779 [INSPIRE].

[18] B. Chen, B. Czech and Z.-z. Wang, Cutoff Dependence and Complexity of the CFT2 Ground
State, Phys. Rev. D 103 (2021) 026015 [arXiv:2004.11377] [INSPIRE].

[19] D. Sarkar and M. Visser, The first law of differential entropy and holographic complexity,
JHEP 11 (2020) 004 [arXiv:2008.12673] [INSPIRE].

[20] Y.-S. An, R.-G. Cai, L. Li and Y. Peng, Holographic complexity growth in an FLRW
universe, Phys. Rev. D 101 (2020) 046006 [arXiv:1909.12172] [INSPIRE].

[21] A.A. Balushi, R.A. Hennigar, H.K. Kunduri and R.B. Mann, Holographic complexity of
rotating black holes, arXiv:2010.11203 [INSPIRE].

[22] R.-G. Cai, S. He, S.-J. Wang and Y.-X. Zhang, Revisit on holographic complexity in
two-dimensional gravity, JHEP 08 (2020) 102 [arXiv:2001.11626] [INSPIRE].

[23] S.-K. Jian, B. Swingle and Z.-Y. Xian, Complexity growth of operators in the SYK model
and in JT gravity, arXiv:2008.12274 [INSPIRE].

[24] J. Couch, S. Eccles, T. Jacobson and P. Nguyen, Holographic Complexity and Volume,
JHEP 11 (2018) 044 [arXiv:1807.02186] [INSPIRE].

[25] Z.-Y. Fan and M. Guo, On the Noether charge and the gravity duals of quantum complexity,
JHEP 08 (2018) 031 [Erratum ibid. 09 (2019) 121] [arXiv:1805.03796] [INSPIRE].

[26] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a
Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[27] A.C. Wall, Maximin Surfaces, and the Strong Subadditivity of the Covariant Holographic
Entanglement Entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494]
[INSPIRE].

[28] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic
entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

– 43 –

https://doi.org/10.1007/JHEP03(2017)119
https://arxiv.org/abs/1610.02038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.02038
https://doi.org/10.1007/JHEP11(2017)188
https://arxiv.org/abs/1709.10184
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.10184
https://doi.org/10.1007/JHEP09(2018)106
https://arxiv.org/abs/1712.09826
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09826
https://doi.org/10.1007/JHEP06(2018)046
https://arxiv.org/abs/1804.07410
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07410
https://doi.org/10.1007/JHEP06(2018)114
https://arxiv.org/abs/1805.07262
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07262
https://doi.org/10.1007/JHEP02(2018)072
https://arxiv.org/abs/1801.01137
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.01137
https://doi.org/10.1007/JHEP05(2019)003
https://arxiv.org/abs/1806.08376
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08376
https://arxiv.org/abs/2002.05779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05779
https://doi.org/10.1103/PhysRevD.103.026015
https://arxiv.org/abs/2004.11377
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.11377
https://doi.org/10.1007/JHEP11(2020)004
https://arxiv.org/abs/2008.12673
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.12673
https://doi.org/10.1103/PhysRevD.101.046006
https://arxiv.org/abs/1909.12172
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.12172
https://arxiv.org/abs/2010.11203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.11203
https://doi.org/10.1007/JHEP08(2020)102
https://arxiv.org/abs/2001.11626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11626
https://arxiv.org/abs/2008.12274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.12274
https://doi.org/10.1007/JHEP11(2018)044
https://arxiv.org/abs/1807.02186
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.02186
https://doi.org/10.1007/JHEP08(2018)031
https://arxiv.org/abs/1805.03796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.03796
https://doi.org/10.1088/0264-9381/29/15/155009
https://arxiv.org/abs/1204.1330
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.1330
https://doi.org/10.1088/0264-9381/31/22/225007
https://arxiv.org/abs/1211.3494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.3494
https://doi.org/10.1007/JHEP12(2014)162
https://arxiv.org/abs/1408.6300
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6300


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[29] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk
relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[30] X. Dong, D. Harlow and A.C. Wall, Reconstruction of Bulk Operators within the
Entanglement Wedge in Gauge-Gravity Duality, Phys. Rev. Lett. 117 (2016) 021601
[arXiv:1601.05416] [INSPIRE].

[31] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement
Wedge Reconstruction via Universal Recovery Channels, Phys. Rev. X 9 (2019) 031011
[arXiv:1704.05839] [INSPIRE].

[32] M. Alishahiha, Holographic Complexity, Phys. Rev. D 92 (2015) 126009
[arXiv:1509.06614] [INSPIRE].

[33] R. Abt et al., Topological Complexity in AdS3/CFT2, Fortsch. Phys. 66 (2018) 1800034
[arXiv:1710.01327] [INSPIRE].

[34] E. Bakhshaei, A. Mollabashi and A. Shirzad, Holographic Subregion Complexity for
Singular Surfaces, Eur. Phys. J. C 77 (2017) 665 [arXiv:1703.03469] [INSPIRE].

[35] R. Abt, J. Erdmenger, M. Gerbershagen, C.M. Melby-Thompson and C. Northe,
Holographic Subregion Complexity from Kinematic Space, JHEP 01 (2019) 012
[arXiv:1805.10298] [INSPIRE].

[36] E. Caceres and M.-L. Xiao, Complexity-action of subregions with corners, JHEP 03 (2019)
062 [arXiv:1809.09356] [INSPIRE].

[37] S. Chapman, D. Ge and G. Policastro, Holographic Complexity for Defects Distinguishes
Action from Volume, JHEP 05 (2019) 049 [arXiv:1811.12549] [INSPIRE].

[38] B. Chen, W.-M. Li, R.-Q. Yang, C.-Y. Zhang and S.-J. Zhang, Holographic subregion
complexity under a thermal quench, JHEP 07 (2018) 034 [arXiv:1803.06680] [INSPIRE].

[39] A. Bhattacharya and S. Roy, Holographic entanglement entropy, subregion complexity and
Fisher information metric of ‘black’ non-SUSY D3 brane, Phys. Lett. B 800 (2020) 135032
[arXiv:1807.06361] [INSPIRE].

[40] S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black
Hole Microstate Cosmology, JHEP 07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

[41] A. Bhattacharya, K.T. Grosvenor and S. Roy, Entanglement Entropy and Subregion
Complexity in Thermal Perturbations around Pure-AdS Spacetime, Phys. Rev. D 100
(2019) 126004 [arXiv:1905.02220] [INSPIRE].

[42] S. Karar, R. Mishra and S. Gangopadhyay, Holographic complexity of boosted black brane
and Fisher information, Phys. Rev. D 100 (2019) 026006 [arXiv:1904.13090] [INSPIRE].

[43] R. Auzzi, S. Baiguera, A. Mitra, G. Nardelli and N. Zenoni, Subsystem complexity in
warped AdS, JHEP 09 (2019) 114 [arXiv:1906.09345] [INSPIRE].

[44] M. Lezgi and M. Ali-Akbari, Note on holographic subregion complexity and QCD phase
transition, Phys. Rev. D 101 (2020) 026022 [arXiv:1908.01303] [INSPIRE].

[45] R. Auzzi, G. Nardelli, F.I. Schaposnik Massolo, G. Tallarita and N. Zenoni, On volume
subregion complexity in Vaidya spacetime, JHEP 11 (2019) 098 [arXiv:1908.10832]
[INSPIRE].

[46] Y. Ling, Y. Liu, C. Niu, Y. Xiao and C.-Y. Zhang, Holographic Subregion Complexity in
General Vaidya Geometry, JHEP 11 (2019) 039 [arXiv:1908.06432] [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06431
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.05416
https://doi.org/10.1103/PhysRevX.9.031011
https://arxiv.org/abs/1704.05839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.05839
https://doi.org/10.1103/PhysRevD.92.126009
https://arxiv.org/abs/1509.06614
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.06614
https://doi.org/10.1002/prop.201800034
https://arxiv.org/abs/1710.01327
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01327
https://doi.org/10.1140/epjc/s10052-017-5247-1
https://arxiv.org/abs/1703.03469
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03469
https://doi.org/10.1007/JHEP01(2019)012
https://arxiv.org/abs/1805.10298
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.10298
https://doi.org/10.1007/JHEP03(2019)062
https://doi.org/10.1007/JHEP03(2019)062
https://arxiv.org/abs/1809.09356
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09356
https://doi.org/10.1007/JHEP05(2019)049
https://arxiv.org/abs/1811.12549
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.12549
https://doi.org/10.1007/JHEP07(2018)034
https://arxiv.org/abs/1803.06680
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.06680
https://doi.org/10.1016/j.physletb.2019.135032
https://arxiv.org/abs/1807.06361
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.06361
https://doi.org/10.1007/JHEP07(2019)065
https://arxiv.org/abs/1810.10601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.10601
https://doi.org/10.1103/PhysRevD.100.126004
https://doi.org/10.1103/PhysRevD.100.126004
https://arxiv.org/abs/1905.02220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.02220
https://doi.org/10.1103/PhysRevD.100.026006
https://arxiv.org/abs/1904.13090
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.13090
https://doi.org/10.1007/JHEP09(2019)114
https://arxiv.org/abs/1906.09345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.09345
https://doi.org/10.1103/PhysRevD.101.026022
https://arxiv.org/abs/1908.01303
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01303
https://doi.org/10.1007/JHEP11(2019)098
https://arxiv.org/abs/1908.10832
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10832
https://doi.org/10.1007/JHEP11(2019)039
https://arxiv.org/abs/1908.06432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.06432


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[47] S. Chakrabortty, S. Pant and K. Sil, Effect of back reaction on entanglement and subregion
volume complexity in strongly coupled plasma, JHEP 06 (2020) 061 [arXiv:2004.06991]
[INSPIRE].

[48] O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and Complexity,
JHEP 11 (2016) 129 [arXiv:1609.02514] [INSPIRE].

[49] E. Cáceres, J. Couch, S. Eccles and W. Fischler, Holographic Purification Complexity, Phys.
Rev. D 99 (2019) 086016 [arXiv:1811.10650] [INSPIRE].

[50] R. Auzzi, S. Baiguera, A. Legramandi, G. Nardelli, P. Roy and N. Zenoni, On subregion
action complexity in AdS3 and in the BTZ black hole, JHEP 01 (2020) 066
[arXiv:1910.00526] [INSPIRE].

[51] P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, JHEP 02
(2020) 051 [arXiv:1910.03489] [INSPIRE].

[52] Y. Sato and K. Watanabe, Does Boundary Distinguish Complexities?, JHEP 11 (2019) 132
[arXiv:1908.11094] [INSPIRE].

[53] C.A. Agón, M. Headrick and B. Swingle, Subsystem Complexity and Holography, JHEP 02
(2019) 145 [arXiv:1804.01561] [INSPIRE].

[54] E. Caceres, S. Chapman, J.D. Couch, J.P. Hernández, R.C. Myers and S.-M. Ruan,
Complexity of Mixed States in QFT and Holography, JHEP 03 (2020) 012
[arXiv:1909.10557] [INSPIRE].

[55] S.-M. Ruan, Purification Complexity without Purifications, JHEP 01 (2021) 092
[arXiv:2006.01088] [INSPIRE].

[56] H.A. Camargo, L. Hackl, M.P. Heller, A. Jahn, T. Takayanagi and B. Windt, Entanglement
and Complexity of Purification in (1+1)-dimensional free Conformal Field Theories,
arXiv:2009.11881 [INSPIRE].

[57] G. Di Giulio and E. Tonni, Complexity of mixed Gaussian states from Fisher information
geometry, JHEP 12 (2020) 101 [arXiv:2006.00921] [INSPIRE].

[58] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199
[Erratum ibid. 46 (1976) 206] [INSPIRE].

[59] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14
(1976) 2460 [INSPIRE].

[60] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743
[hep-th/9306083] [INSPIRE].

[61] D.N. Page, Time Dependence of Hawking Radiation Entropy, JCAP 09 (2013) 028
[arXiv:1301.4995] [INSPIRE].

[62] D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.
88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].

[63] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of
Hawking radiation, arXiv:2006.06872 [INSPIRE].

[64] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields
and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063
[arXiv:1905.08762] [INSPIRE].

– 45 –

https://doi.org/10.1007/JHEP06(2020)061
https://arxiv.org/abs/2004.06991
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06991
https://doi.org/10.1007/JHEP11(2016)129
https://arxiv.org/abs/1609.02514
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.02514
https://doi.org/10.1103/PhysRevD.99.086016
https://doi.org/10.1103/PhysRevD.99.086016
https://arxiv.org/abs/1811.10650
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10650
https://doi.org/10.1007/JHEP01(2020)066
https://arxiv.org/abs/1910.00526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00526
https://doi.org/10.1007/JHEP02(2020)051
https://doi.org/10.1007/JHEP02(2020)051
https://arxiv.org/abs/1910.03489
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03489
https://doi.org/10.1007/JHEP11(2019)132
https://arxiv.org/abs/1908.11094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.11094
https://doi.org/10.1007/JHEP02(2019)145
https://doi.org/10.1007/JHEP02(2019)145
https://arxiv.org/abs/1804.01561
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.01561
https://doi.org/10.1007/JHEP03(2020)012
https://arxiv.org/abs/1909.10557
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10557
https://doi.org/10.1007/JHEP01(2021)092
https://arxiv.org/abs/2006.01088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01088
https://arxiv.org/abs/2009.11881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.11881
https://doi.org/10.1007/JHEP12(2020)101
https://arxiv.org/abs/2006.00921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.00921
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C43%2C199%22
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.14.2460
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C2460%22
https://doi.org/10.1103/PhysRevLett.71.3743
https://arxiv.org/abs/hep-th/9306083
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9306083
https://doi.org/10.1088/1475-7516/2013/09/028
https://arxiv.org/abs/1301.4995
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4995
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.1103/RevModPhys.88.015002
https://arxiv.org/abs/1409.1231
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.1231
https://arxiv.org/abs/2006.06872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06872
https://doi.org/10.1007/JHEP12(2019)063
https://arxiv.org/abs/1905.08762
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08762


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[65] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, JHEP 09
(2020) 002 [arXiv:1905.08255] [INSPIRE].

[66] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation
from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[67] H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Information Flow in
Black Hole Evaporation, JHEP 03 (2020) 152 [arXiv:1911.03402] [INSPIRE].

[68] M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information
radiation in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836]
[INSPIRE].

[69] F.F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, Page Curve for an
Evaporating Black Hole, JHEP 05 (2020) 091 [arXiv:2004.00598] [INSPIRE].

[70] J. Sully, M. Van Raamsdonk and D. Wakeham, BCFT entanglement entropy at large
central charge and the black hole interior, arXiv:2004.13088 [INSPIRE].

[71] Y. Chen, Pulling Out the Island with Modular Flow, JHEP 03 (2020) 033
[arXiv:1912.02210] [INSPIRE].

[72] T. Anegawa and N. Iizuka, Notes on islands in asymptotically flat 2d dilaton black holes,
JHEP 07 (2020) 036 [arXiv:2004.01601] [INSPIRE].

[73] V. Balasubramanian, A. Kar, O. Parrikar, G. Sárosi and T. Ugajin, Geometric secret
sharing in a model of Hawking radiation, JHEP 01 (2021) 177 [arXiv:2003.05448]
[INSPIRE].

[74] T. Hartman, E. Shaghoulian and A. Strominger, Islands in Asymptotically Flat 2D Gravity,
JHEP 07 (2020) 022 [arXiv:2004.13857] [INSPIRE].

[75] T.J. Hollowood and S.P. Kumar, Islands and Page Curves for Evaporating Black Holes in
JT Gravity, JHEP 08 (2020) 094 [arXiv:2004.14944] [INSPIRE].

[76] M. Alishahiha, A. Faraji Astaneh and A. Naseh, Island in the Presence of Higher
Derivative Terms, JHEP 02 (2021) 035 [arXiv:2005.08715] [INSPIRE].

[77] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions,
SciPost Phys. 9 (2020) 001 [arXiv:1911.09666] [INSPIRE].

[78] K. Hashimoto, N. Iizuka and Y. Matsuo, Islands in Schwarzschild black holes, JHEP 06
(2020) 085 [arXiv:2004.05863] [INSPIRE].

[79] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438]
[INSPIRE].

[80] D. Bak, C. Kim, S.-H. Yi and J. Yoon, Unitarity of Entanglement and Islands in Two-Sided
Janus Black Holes, JHEP 01 (2021) 155 [arXiv:2006.11717] [INSPIRE].

[81] T. Li, J. Chu and Y. Zhou, Reflected Entropy for an Evaporating Black Hole, JHEP 11
(2020) 155 [arXiv:2006.10846] [INSPIRE].

[82] V. Chandrasekaran, M. Miyaji and P. Rath, Including contributions from entanglement
islands to the reflected entropy, Phys. Rev. D 102 (2020) 086009 [arXiv:2006.10754]
[INSPIRE].

[83] T.J. Hollowood, S. Prem Kumar and A. Legramandi, Hawking radiation correlations of
evaporating black holes in JT gravity, J. Phys. A 53 (2020) 475401 [arXiv:2007.04877]
[INSPIRE].

– 46 –

https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP09(2020)002
https://arxiv.org/abs/1905.08255
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08255
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.10996
https://doi.org/10.1007/JHEP03(2020)152
https://arxiv.org/abs/1911.03402
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03402
https://doi.org/10.1007/JHEP05(2020)004
https://arxiv.org/abs/1910.12836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12836
https://doi.org/10.1007/JHEP05(2020)091
https://arxiv.org/abs/2004.00598
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.00598
https://arxiv.org/abs/2004.13088
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13088
https://doi.org/10.1007/JHEP03(2020)033
https://arxiv.org/abs/1912.02210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02210
https://doi.org/10.1007/JHEP07(2020)036
https://arxiv.org/abs/2004.01601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01601
https://doi.org/10.1007/JHEP01(2021)177
https://arxiv.org/abs/2003.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.05448
https://doi.org/10.1007/JHEP07(2020)022
https://arxiv.org/abs/2004.13857
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13857
https://doi.org/10.1007/JHEP08(2020)094
https://arxiv.org/abs/2004.14944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.14944
https://doi.org/10.1007/JHEP02(2021)035
https://arxiv.org/abs/2005.08715
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.08715
https://doi.org/10.21468/SciPostPhys.9.1.001
https://arxiv.org/abs/1911.09666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.09666
https://doi.org/10.1007/JHEP06(2020)085
https://doi.org/10.1007/JHEP06(2020)085
https://arxiv.org/abs/2004.05863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05863
https://doi.org/10.1007/JHEP09(2020)121
https://arxiv.org/abs/2006.02438
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.02438
https://doi.org/10.1007/JHEP01(2021)155
https://arxiv.org/abs/2006.11717
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11717
https://doi.org/10.1007/JHEP11(2020)155
https://doi.org/10.1007/JHEP11(2020)155
https://arxiv.org/abs/2006.10846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10846
https://doi.org/10.1103/PhysRevD.102.086009
https://arxiv.org/abs/2006.10754
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10754
https://doi.org/10.1088/1751-8121/abbc51
https://arxiv.org/abs/2007.04877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.04877


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[84] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes
and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333]
[INSPIRE].

[85] R. Bousso and M. Tomašević, Unitarity From a Smooth Horizon?, Phys. Rev. D 102 (2020)
106019 [arXiv:1911.06305] [INSPIRE].

[86] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, arXiv:1911.11977 [INSPIRE].

[87] C. Akers, N. Engelhardt and D. Harlow, Simple holographic models of black hole
evaporation, JHEP 08 (2020) 032 [arXiv:1910.00972] [INSPIRE].

[88] Y. Chen, X.-L. Qi and P. Zhang, Replica wormhole and information retrieval in the SYK
model coupled to Majorana chains, JHEP 06 (2020) 121 [arXiv:2003.13147] [INSPIRE].

[89] I. Kim, E. Tang and J. Preskill, The ghost in the radiation: Robust encodings of the black
hole interior, JHEP 06 (2020) 031 [arXiv:2003.05451] [INSPIRE].

[90] H. Verlinde, ER = EPR revisited: On the Entropy of an Einstein-Rosen Bridge,
arXiv:2003.13117 [INSPIRE].

[91] H. Liu and S. Vardhan, A dynamical mechanism for the Page curve from quantum chaos,
arXiv:2002.05734 [INSPIRE].

[92] R. Bousso and E. Wildenhain, Gravity/ensemble duality, Phys. Rev. D 102 (2020) 066005
[arXiv:2006.16289] [INSPIRE].

[93] V. Balasubramanian, A. Kar and T. Ugajin, Entanglement between two disjoint universes,
arXiv:2008.05274 [INSPIRE].

[94] H.Z. Chen, Z. Fisher, J. Hernandez, R.C. Myers and S.-M. Ruan, Evaporating Black Holes
Coupled to a Thermal Bath, JHEP 01 (2021) 065 [arXiv:2007.11658] [INSPIRE].

[95] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].

[96] D. Marolf and H. Maxfield, Transcending the ensemble: baby universes, spacetime
wormholes, and the order and disorder of black hole information, JHEP 08 (2020) 044
[arXiv:2002.08950] [INSPIRE].

[97] T. Hartman, Y. Jiang and E. Shaghoulian, Islands in cosmology, JHEP 11 (2020) 111
[arXiv:2008.01022] [INSPIRE].

[98] S.B. Giddings and G.J. Turiaci, Wormhole calculus, replicas, and entropies, JHEP 09
(2020) 194 [arXiv:2004.02900] [INSPIRE].

[99] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared
states, JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[100] M. Van Raamsdonk, Comments on wormholes, ensembles, and cosmology,
arXiv:2008.02259 [INSPIRE].

[101] W. Sybesma, Pure de Sitter space and the island moving back in time, arXiv:2008.07994
[INSPIRE].

[102] V. Balasubramanian, A. Kar and T. Ugajin, Islands in de Sitter space, arXiv:2008.05275
[INSPIRE].

[103] A. Bhattacharya, A. Chanda, S. Maulik, C. Northe and S. Roy, Topological shadows and
complexity of islands in multiboundary wormholes, arXiv:2010.04134 [INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.12333
https://doi.org/10.1103/PhysRevD.102.106019
https://doi.org/10.1103/PhysRevD.102.106019
https://arxiv.org/abs/1911.06305
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06305
https://arxiv.org/abs/1911.11977
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11977
https://doi.org/10.1007/JHEP08(2020)032
https://arxiv.org/abs/1910.00972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.00972
https://doi.org/10.1007/JHEP06(2020)121
https://arxiv.org/abs/2003.13147
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.13147
https://doi.org/10.1007/JHEP06(2020)031
https://arxiv.org/abs/2003.05451
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.05451
https://arxiv.org/abs/2003.13117
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.13117
https://arxiv.org/abs/2002.05734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05734
https://doi.org/10.1103/PhysRevD.102.066005
https://arxiv.org/abs/2006.16289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.16289
https://arxiv.org/abs/2008.05274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05274
https://doi.org/10.1007/JHEP01(2021)065
https://arxiv.org/abs/2007.11658
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.11658
https://arxiv.org/abs/2008.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.08570
https://doi.org/10.1007/JHEP08(2020)044
https://arxiv.org/abs/2002.08950
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08950
https://doi.org/10.1007/JHEP11(2020)111
https://arxiv.org/abs/2008.01022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.01022
https://doi.org/10.1007/JHEP09(2020)194
https://doi.org/10.1007/JHEP09(2020)194
https://arxiv.org/abs/2004.02900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02900
https://doi.org/10.1007/JHEP02(2021)009
https://arxiv.org/abs/2007.16091
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.16091
https://arxiv.org/abs/2008.02259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02259
https://arxiv.org/abs/2008.07994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.07994
https://arxiv.org/abs/2008.05275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.05275
https://arxiv.org/abs/2010.04134
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.04134


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[104] Y. Ling, Y. Liu and Z.-Y. Xian, Island in Charged Black Holes, arXiv:2010.00037
[INSPIRE].

[105] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)
045 [hep-th/0605073] [INSPIRE].

[106] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[107] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement
entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[108] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090
[arXiv:1304.4926] [INSPIRE].

[109] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,
JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[110] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, vol. 931, Springer
(2017), [DOI] [arXiv:1609.01287] [INSPIRE].

[111] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic
entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[112] N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement
Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

[113] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.
Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[114] L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999)
4690 [hep-th/9906064] [INSPIRE].

[115] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156]
[INSPIRE].

[116] G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space,
Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

[117] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)
126010 [arXiv:1006.0047] [INSPIRE].

[118] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT,
arXiv:1303.7221 [INSPIRE].

[119] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

[120] A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of
large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].

[121] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427
[gr-qc/9307038] [INSPIRE].

[122] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical
black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[123] T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587
[gr-qc/9312023] [INSPIRE].

[124] X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP
01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

– 48 –

https://arxiv.org/abs/2010.00037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00037
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0605073
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603001
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0016
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4926
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07506
https://doi.org/10.1007/978-3-319-52573-0
https://arxiv.org/abs/1609.01287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.01287
https://doi.org/10.1007/JHEP11(2013)074
https://arxiv.org/abs/1307.2892
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.2892
https://doi.org/10.1007/JHEP01(2015)073
https://arxiv.org/abs/1408.3203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3203
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9905221
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://arxiv.org/abs/hep-th/9906064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906064
https://doi.org/10.1088/1126-6708/2001/05/008
https://arxiv.org/abs/hep-th/0011156
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0011156
https://doi.org/10.1016/S0370-2693(00)00669-9
https://arxiv.org/abs/hep-th/0005016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005016
https://doi.org/10.1103/PhysRevD.82.126010
https://doi.org/10.1103/PhysRevD.82.126010
https://arxiv.org/abs/1006.0047
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0047
https://arxiv.org/abs/1303.7221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.7221
https://arxiv.org/abs/1303.6955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1303.6955
https://doi.org/10.1088/1751-8121/aa8a11
https://arxiv.org/abs/1704.08250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08250
https://doi.org/10.1103/PhysRevD.48.R3427
https://arxiv.org/abs/gr-qc/9307038
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9307038
https://doi.org/10.1103/PhysRevD.50.846
https://arxiv.org/abs/gr-qc/9403028
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9403028
https://doi.org/10.1103/PhysRevD.49.6587
https://arxiv.org/abs/gr-qc/9312023
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9312023
https://doi.org/10.1007/JHEP01(2014)044
https://doi.org/10.1007/JHEP01(2014)044
https://arxiv.org/abs/1310.5713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.5713


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[125] P. Bueno, V.S. Min, A.J. Speranza and M.R. Visser, Entanglement equilibrium for higher
order gravity, Phys. Rev. D 95 (2017) 046003 [arXiv:1612.04374] [INSPIRE].

[126] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B
(1965-1970) 44 (1966) 1.

[127] C. Fefferman and C.R. Graham, Conformal invariants, in The Mathematical Heritage of
Élie Cartan (Lyon, 1984), Astérisque, Numero Hors Serie (1985) 95.

[128] C. Fefferman and C.R. Graham, The ambient metric, Ann. Math. Stud. 178 (2011) 1
[arXiv:0710.0919] [INSPIRE].

[129] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

[130] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)
5849 [hep-th/0209067] [INSPIRE].

[131] A. Schwimmer and S. Theisen, Entanglement Entropy, Trace Anomalies and Holography,
Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].

[132] C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms and
holographic anomalies, Class. Quant. Grav. 17 (2000) 1129 [hep-th/9910267] [INSPIRE].

[133] R.C. Myers, R. Pourhasan and M. Smolkin, On Spacetime Entanglement, JHEP 06 (2013)
013 [arXiv:1304.2030] [INSPIRE].

[134] M. Alishahiha, K. Babaei Velni and M.R. Mohammadi Mozaffar, Black hole subregion
action and complexity, Phys. Rev. D 99 (2019) 126016 [arXiv:1809.06031] [INSPIRE].

[135] L.-Y. Hung, R.C. Myers and M. Smolkin, On Holographic Entanglement Entropy and
Higher Curvature Gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[136] R.-X. Miao, A Note on Holographic Weyl Anomaly and Entanglement Entropy, Class.
Quant. Grav. 31 (2014) 065009 [arXiv:1309.0211] [INSPIRE].

[137] R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011)
125 [arXiv:1011.5819] [INSPIRE].

[138] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498
[INSPIRE].

[139] R.C. Myers, Higher Derivative Gravity, Surface Terms and String Theory, Phys. Rev. D 36
(1987) 392 [INSPIRE].

[140] S.C. Davis, Generalized Israel junction conditions for a Gauss-Bonnet brane world, Phys.
Rev. D 67 (2003) 024030 [hep-th/0208205] [INSPIRE].

[141] N. Deruelle and T. Dolezel, Brane versus shell cosmologies in Einstein and
Einstein-Gauss-Bonnet theories, Phys. Rev. D 62 (2000) 103502 [gr-qc/0004021]
[INSPIRE].

[142] B. Chen and J.-j. Zhang, Note on generalized gravitational entropy in Lovelock gravity,
JHEP 07 (2013) 185 [arXiv:1305.6767] [INSPIRE].

[143] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher
derivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].

– 49 –

https://doi.org/10.1103/PhysRevD.95.046003
https://arxiv.org/abs/1612.04374
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04374
https://arxiv.org/abs/0710.0919
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.0919
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0002230
https://doi.org/10.1088/0264-9381/19/22/306
https://doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0209067
https://doi.org/10.1016/j.nuclphysb.2008.04.015
https://arxiv.org/abs/0802.1017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1017
https://doi.org/10.1088/0264-9381/17/5/322
https://arxiv.org/abs/hep-th/9910267
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9910267
https://doi.org/10.1007/JHEP06(2013)013
https://doi.org/10.1007/JHEP06(2013)013
https://arxiv.org/abs/1304.2030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.2030
https://doi.org/10.1103/PhysRevD.99.126016
https://arxiv.org/abs/1809.06031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06031
https://doi.org/10.1007/JHEP04(2011)025
https://arxiv.org/abs/1101.5813
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.5813
https://doi.org/10.1088/0264-9381/31/6/065009
https://doi.org/10.1088/0264-9381/31/6/065009
https://arxiv.org/abs/1309.0211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1309.0211
https://doi.org/10.1007/JHEP01(2011)125
https://doi.org/10.1007/JHEP01(2011)125
https://arxiv.org/abs/1011.5819
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1011.5819
https://doi.org/10.1063/1.1665613
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C12%2C498%22
https://doi.org/10.1103/PhysRevD.36.392
https://doi.org/10.1103/PhysRevD.36.392
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD36%2C392%22
https://doi.org/10.1103/PhysRevD.67.024030
https://doi.org/10.1103/PhysRevD.67.024030
https://arxiv.org/abs/hep-th/0208205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0208205
https://doi.org/10.1103/PhysRevD.62.103502
https://arxiv.org/abs/gr-qc/0004021
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0004021
https://doi.org/10.1007/JHEP07(2013)185
https://arxiv.org/abs/1305.6767
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.6767
https://doi.org/10.1007/JHEP10(2014)130
https://arxiv.org/abs/1405.3511
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.3511


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[144] Y. Ezawa, M. Kajihara, M. Kiminami, J. Soda and T. Yano, On the canonical formalism for
a higher curvature gravity, Class. Quant. Grav. 16 (1999) 1127 [gr-qc/9801084] [INSPIRE].

[145] T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451
[arXiv:0805.1726] [INSPIRE].

[146] N. Deruelle, Y. Sendouda and A. Youssef, Various Hamiltonian formulations of f(R) gravity
and their canonical relationships, Phys. Rev. D 80 (2009) 084032 [arXiv:0906.4983]
[INSPIRE].

[147] N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of
f(Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679]
[INSPIRE].

[148] E. Dyer and K. Hinterbichler, Boundary Terms, Variational Principles and Higher
Derivative Modified Gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].

[149] R. Pourhasan, Spacetime entanglement with f(R) gravity, JHEP 06 (2014) 004
[arXiv:1403.0951] [INSPIRE].

[150] L.-Y. Hung, R.C. Myers and M. Smolkin, Some Calculable Contributions to Holographic
Entanglement Entropy, JHEP 08 (2011) 039 [arXiv:1105.6055] [INSPIRE].

[151] R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP 10 (2017)
107 [arXiv:1707.08570] [INSPIRE].

[152] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of
Complexity for Quantum Field Theory States, Phys. Rev. Lett. 120 (2018) 121602
[arXiv:1707.08582] [INSPIRE].

[153] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space
from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett. 119
(2017) 071602 [arXiv:1703.00456] [INSPIRE].

[154] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as
Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP 11
(2017) 097 [arXiv:1706.07056] [INSPIRE].

[155] T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP
12 (2018) 048 [arXiv:1808.09072] [INSPIRE].

[156] A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form,
Phys. Lett. B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].

[157] A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time
story, JHEP 03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

[158] A. Belin, A. Lewkowycz and G. Sarosi, Gravitational path integral from the T 2 deformation,
JHEP 09 (2020) 156 [arXiv:2006.01835] [INSPIRE].

[159] M. Alishahiha, A. Faraji Astaneh, A. Naseh and M.H. Vahidinia, On complexity for F(R)
and critical gravity, JHEP 05 (2017) 009 [arXiv:1702.06796] [INSPIRE].

[160] Y.-S. An, R.-G. Cai and Y. Peng, Time Dependence of Holographic Complexity in
Gauss-Bonnet Gravity, Phys. Rev. D 98 (2018) 106013 [arXiv:1805.07775] [INSPIRE].

[161] R. Nally, Stringy Effects and the Role of the Singularity in Holographic Complexity, JHEP
09 (2019) 094 [arXiv:1902.09545] [INSPIRE].

– 50 –

https://doi.org/10.1088/0264-9381/16/4/003
https://arxiv.org/abs/gr-qc/9801084
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9801084
https://doi.org/10.1103/RevModPhys.82.451
https://arxiv.org/abs/0805.1726
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.1726
https://doi.org/10.1103/PhysRevD.80.084032
https://arxiv.org/abs/0906.4983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.4983
https://doi.org/10.1143/PTP.123.169
https://arxiv.org/abs/0908.0679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0908.0679
https://doi.org/10.1103/PhysRevD.79.024028
https://arxiv.org/abs/0809.4033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0809.4033
https://doi.org/10.1007/JHEP06(2014)004
https://arxiv.org/abs/1403.0951
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.0951
https://doi.org/10.1007/JHEP08(2011)039
https://arxiv.org/abs/1105.6055
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.6055
https://doi.org/10.1007/JHEP10(2017)107
https://doi.org/10.1007/JHEP10(2017)107
https://arxiv.org/abs/1707.08570
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08570
https://doi.org/10.1103/PhysRevLett.120.121602
https://arxiv.org/abs/1707.08582
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.08582
https://doi.org/10.1103/PhysRevLett.119.071602
https://doi.org/10.1103/PhysRevLett.119.071602
https://arxiv.org/abs/1703.00456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.00456
https://doi.org/10.1007/JHEP11(2017)097
https://doi.org/10.1007/JHEP11(2017)097
https://arxiv.org/abs/1706.07056
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.07056
https://doi.org/10.1007/JHEP12(2018)048
https://doi.org/10.1007/JHEP12(2018)048
https://arxiv.org/abs/1808.09072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.09072
https://doi.org/10.1016/j.physletb.2018.10.071
https://arxiv.org/abs/1806.10144
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10144
https://doi.org/10.1007/JHEP03(2019)044
https://arxiv.org/abs/1811.03097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.03097
https://doi.org/10.1007/JHEP09(2020)156
https://arxiv.org/abs/2006.01835
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.01835
https://doi.org/10.1007/JHEP05(2017)009
https://arxiv.org/abs/1702.06796
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.06796
https://doi.org/10.1103/PhysRevD.98.106013
https://arxiv.org/abs/1805.07775
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.07775
https://doi.org/10.1007/JHEP09(2019)094
https://doi.org/10.1007/JHEP09(2019)094
https://arxiv.org/abs/1902.09545
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09545


J
H
E
P
0
2
(
2
0
2
1
)
1
7
3

[162] J. Jiang and B. Deng, Investigating the holographic complexity in Einsteinian cubic gravity,
Eur. Phys. J. C 79 (2019) 832 [INSPIRE].

[163] N. Engelhardt and S. Fischetti, Surface Theory: the Classical, the Quantum, and the
Holographic, Class. Quant. Grav. 36 (2019) 205002 [arXiv:1904.08423] [INSPIRE].

[164] R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys.
Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

[165] R. Bousso, Z. Fisher, J. Koeller, S. Leichenauer and A.C. Wall, Proof of the Quantum Null
Energy Condition, Phys. Rev. D 93 (2016) 024017 [arXiv:1509.02542] [INSPIRE].

[166] T. Jacobson, Entanglement Equilibrium and the Einstein Equation, Phys. Rev. Lett. 116
(2016) 201101 [arXiv:1505.04753] [INSPIRE].

[167] T. Jacobson and M. Visser, Gravitational Thermodynamics of Causal Diamonds in (A)dS,
SciPost Phys. 7 (2019) 079 [arXiv:1812.01596] [INSPIRE].

[168] L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null
boundaries, Phys. Rev. D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

[169] P.A. Cano, R.A. Hennigar and H. Marrochio, Complexity Growth Rate in Lovelock Gravity,
Phys. Rev. Lett. 121 (2018) 121602 [arXiv:1803.02795] [INSPIRE].

[170] P.A. Cano, Lovelock action with nonsmooth boundaries, Phys. Rev. D 97 (2018) 104048
[arXiv:1803.00172] [INSPIRE].

[171] S. Chakraborty and K. Parattu, Null boundary terms for Lanczos-Lovelock gravity, Gen.
Rel. Grav. 51 (2019) 23 [Erratum ibid. 51 (2019) 47] [arXiv:1806.08823] [INSPIRE].

[172] J. Jiang and H. Zhang, Surface term, corner term, and action growth in F (Rabcd) gravity
theory, Phys. Rev. D 99 (2019) 086005 [arXiv:1806.10312] [INSPIRE].

– 51 –

https://doi.org/10.1140/epjc/s10052-019-7339-6
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC79%2C832%22
https://doi.org/10.1088/1361-6382/ab3bda
https://arxiv.org/abs/1904.08423
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08423
https://doi.org/10.1103/PhysRevD.93.064044
https://doi.org/10.1103/PhysRevD.93.064044
https://arxiv.org/abs/1506.02669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02669
https://doi.org/10.1103/PhysRevD.93.024017
https://arxiv.org/abs/1509.02542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.02542
https://doi.org/10.1103/PhysRevLett.116.201101
https://doi.org/10.1103/PhysRevLett.116.201101
https://arxiv.org/abs/1505.04753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.04753
https://doi.org/10.21468/SciPostPhys.7.6.079
https://arxiv.org/abs/1812.01596
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01596
https://doi.org/10.1103/PhysRevD.94.084046
https://arxiv.org/abs/1609.00207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00207
https://doi.org/10.1103/PhysRevLett.121.121602
https://arxiv.org/abs/1803.02795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.02795
https://doi.org/10.1103/PhysRevD.97.104048
https://arxiv.org/abs/1803.00172
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.00172
https://doi.org/10.1007/s10714-019-2502-9
https://doi.org/10.1007/s10714-019-2502-9
https://arxiv.org/abs/1806.08823
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.08823
https://doi.org/10.1103/PhysRevD.99.086005
https://arxiv.org/abs/1806.10312
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.10312

	Introduction
	Holographic complexity on the island
	Extremal surfaces near the brane
	Holographic complexity on the brane
	Generalized volume on the island
	K-term on the island
	DGP term on the brane

	Maximal islands

	Higher curvature gravity in the bulk
	Holographic complexity for Gauss-Bonnet gravity
	Holographic complexity from induced gravity
	Holographic complexity from near-brane region

	Holographic complexity for f(R) gravity
	Equivalence of the holographic complexities


	Discussion and future directions
	Lower dimensions
	Three-dimensional brane
	Two-dimensional brane


