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1 Introduction

In recent years, the class-S construction [1, 2] has yielded a wealth of information about 4D
N = 2 supersymmetric field theories and their superconformal fixed points. Generically,
N = 2 SCFTs come in families, where the exactly-marginal deformation corresponds to
varying a complex gauge coupling (whose β-function vanishes). If we turn off the gauge
coupling(s), these theories decompose into a product of free vector multiplets with an
isolated SCFT, a subgroup of whose global symmetry we had previously gauged.

So, to classify such theories, it suffices to classify the isolated theories and their pos-
sible gauging. In class-S, the isolated theories further decompose into products of SCFTs
associated to 3-punctured spheres (“fixtures”), on which one performs a partially-twisted
compactification of a 6d (2, 0) theory. The fixtures fall1 into three broad types: free hy-
permultiplets, an isolated interacting SCFT, or a mixture of both.

For any given (2, 0) theory, the list of fixtures is finite, permitting a complete classifi-
cation of the resulting 4D SCFTs [3–14]. It turns out that the same isolated 4D SCFT can
have many different realizations as fixtures in (different) (2, 0) theories. That redundancy
is not too difficult to keep track of. More serious is the possibility that some (many? most?)
fixtures could themselves correspond to product SCFTs, introducing a further (unexpected)
level of redundancy.

This has already been noted, in examples, in [3, 5, 9, 11, 14], where the fact that one
has a product SCFT can be seen by doing some gauging and then using S-duality (see,
e.g., the discussion in section 7 of [5]). But how prevalent the phenomenon — of a fixture
corresponding to a product SCFT — is, was unknown.

1This is not quite true in the twisted compactifications of the (2, 0) theories with outer-automorphisms.
There [3–6], one encounters a fourth type of fixture, with a hidden marginal deformation, which we called
a “gauge theory fixture”. Some of these also turn out to be product theories, as we shall see below.
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The purpose of the present paper is to develop a technique for deciding the issue, and
applying it to a large (but far from exhaustive) subset of the class-S theories which have
been catalogued so-far. The technique will involve using (certain limits of) the superconfor-
mal index to compute the number of N = 2 stress tensor multiplets (after suitably removing
the contribution to the index from any free hypermultiplets that might be present).

For the AN−1 and DN (2, 0) theories (at least for low N), the number of known product
theories is very small. We verify that these are indeed product theories and that there are
no additional ones.

We then turn our attention to the E6 (2, 0) theory. In the untwisted theory [11], there
were 10 fixtures which were known to be products. We checked all 881 fixtures and found
no additional product theories. In the twisted sector of the E6 (2, 0) theory [5], the fixtures
were known to include 12 corresponding to product SCFTs. We checked that these were,
indeed, product theories and found that there is only one additional previously unknown
product theory among the 2078 fixtures in the twisted sector of E6.

From this large, but admittedly still limited sample, we seem to be led to two
conclusions.

• Fixture that are product SCFTs are relatively rare (at most, a few percent of the
total).

• In all of the examples we have found, whenever you do find a product SCFT, one of
the factors in the product is always a (rank-k) Minahan-Nemeschansky theory [15, 16]
(the SCFT whose Higgs branch is the k-instanton moduli space of E6,7,8). Why this
should happen to be the case is a mystery.2

It would, of course, be of interest to extend this analysis to the much-larger collection
of fixtures in the (2, 0) theories of type E7 [14] and E8 [17]. We leave that to future work.3

2 Counting stress tensors

The unrefined superconformal index of a 4d N = 2 SCFT is defined as [20, 21]:

I(p, q, t) = TrH(−1)F p
1
2 (∆+2j1−2R−r)q

1
2 (∆−2j1−2R−r)tR+r. (2.1)

Here p, q, t are the three superconformal fugacities, ∆ is the dilatation generator (conformal
Hamiltonian), j1 and j2 are the Cartan generators of the SU(2)1×SU(2)2, R and r are the
Cartan generators of the SU(2)R×U(1)r R-symmetry. The trace is taken over the Hilbert
space H on S3 in radial quantization. We will be interested in two specializations of the
superconformal index: the Schur index, defined as

ISchur = TrHp∆−R(−1)F (2.2)
2Later on this phenomenon could be understood using the unitarity bound criterion, which is also an

effective way to identify product theories [17–19].
3More recent study of product SCFTs in class-S theories of type E7 and E8 has been conducted in [17, 18].
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Short Multiplet ISchur(p) IHL(τ)

ĈR(j1,j2) (−1)2(j1+j2) pR+j1+j2+2

1−p 0

B̂R
pR

1−p τ2R

DR(0,j2) (−1)2j2+1 pR+j2+1

1−p (−1)2j2+1τ
R+j2+1

2

DR(j1,0) (−1)2j1+1 pR+j1+1

1−p 0

Table 1. Contributions from short multiplets to ISchur and IHL.

and the Hall-Littlewood index,

IHL = TrHHLτ
2(∆−R)(−1)F (2.3)

where HHL is the subspace of H defined by ∆−2R−r = j1 = 0. The superconformal index
does not receive contributions from generic long multiplets of the 4d N = 2 superconformal
algebra (or from combinations of short multiplets that can recombine into long multiplets).

In the notation of [22], the Hall-Littlewood index receives contributions from the short
multiplets B̂R (whose superconformal primary contributes τ2R) and DR(0,j2) (whose first
superconformal descendent contributes τ2(R+j2+1)(−1)1+2j2). The Schur index receives
contributions from ĈR(j1,j2), B̂R, DR,(0,j2) and DR(j1,0). The contribution from each of
these short multiplets is listed in table 1.

The representation B̂1/2 is the free half-hypermultiplet. If there are free hypermul-
tiplets present, we want to remove their contribution by hand. Concretely n free half-
hypermultiplets contribute a factor of

ISchur =
(
PE

[
p1/2

1− p

])n
=
∞∏
k=0

( 1
1− pk+1/2

)n
IHL = (PE[τ ])n = 1

(1− τ)n

(2.4)

to the index.
After removing the free hypers, we have an isolated interacting SCFT. As such, there

should be no higher-spin conserved currents in the spectrum. Various DR,(0,j2) and DR(j1,0)
multiplets contain such higher spin conserved currents and hence must be absent from the
spectrum.4 In particular,

#D1/2(0,1/2) = #D1/2(1/2,0) = #D0(0,1) = #D0(1,0) = #D1/2(0,0)

= #D1/2(0,0) = #D0(0,1/2) = #D0(1/2,0) = 0
(2.5)

4The particular case of D1/2(0,0) and D1/2(0,0) is special; we thank the referee for pointing this out.
These multiplets contain additional supercurrents, enhancing N = 2 to N = 3 or N = 4. The enhanced
superconformal invariance requires a = c (or nh − nv = 0) and hence is excluded in essentially all of our
fixtures. Even when nh − nv = 0, N = 4 is excluded since our fixtures are isolated. N = 3 is incompatible
with continuous global symmetries which are not (N = 3) R-symmetries [23] and hence is compatible with
there being precisely one B̂1 multiplet — a special case we can check for separately.
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Indeed, the isolated SCFTs corresponding to fixtures (compactifications on 3-punctured
spheres) are generalizations of acyclic quivers and in such theories, it is believed that there
are no D and D type multiplets at all in the spectrum [21, 24, 25].5 From now on we
assume this is true, but we will continue keep the relevant multiplets visible and provide
further arguments below as to why we assume the absence of specific multiplets.

The remaining contributions to the Schur and Hall-Littlewood indices can be written
as follows

ISchur = 1 + s1p+ s3/2p
3/2 + s2p

2 + . . .

IHL = 1 + h1τ
2 + h3/2τ

3 + h2τ
4 + . . .

(2.6)

where

h1 = s1 = #B̂1

h3/2 = s3/2 = #B̂3/2

h2 = #B̂2 −#D1(0,0)

s2 = #B̂1 + #B̂2 −#D1(0,0) −#D1(0,0) + #Ĉ0(0,0)

(2.7)

Rearranging these, we obtain

#Ĉ0(0,0) = s2 − h1 − h2 + #D1(0,0) (2.8)

In general, this gives us only a lower bound

#Ĉ0(0,0) ≥ s2 − h1 − h2 (2.9)

Because of the following recombination formula

Ĉ0(0,0) +D1(0,0) +D1(0,0) + B̂2 = long multiplet, (2.10)

the superconformal index cannot do better than this lower bound. We need some dynamical
information. The key point is that D1(0,0) +D1(0,0) is the multiplet containing an (N = 1)-
preserving (but (N = 2)-breaking) marginal perturbation (exactly-marginal, if it’s a flavour
singlet [26, 27]). If such an operator is present in our product theory, then one of the factors
in the product is actually a special point of enhanced N = 2 superconformal symmetry in a
family of N = 1 superconformal theories. While this is certainly possible, it seems unlikely
in the cases at hand. Based on this argument and the belief that there should be no D
and D type multiplets for fixture theories, we take #D1(0,0) = 0 and (2.9) is an equality.
Ĉ0(0,0) is the N = 2 stress tensor multiplet and computing the r.h.s. of (2.9) allows us to
count them.

3 Superconformal index for class-S theories

In this section, we’ll recall some facts about class-S theories and their superconformal
indices. A class-S theory of type j is obtained by a partially-twisted compactification of a

5We thank the referee for mentioning this point to us.
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6d (2, 0) theory of type j, where j is a simply-laced Lie algebra, on a genus-g, n-punctured
Riemann surface Cg,n. The punctures are the locations of codimension-2 defects and are
labelled by nilpotent orbits in j, or equivalently, embeddings ρ : su(2)→ j up to conjugation.
The global symmetry associated to a puncture is then the centralizer f of ρ(su(2)) ⊆ j [10].

For a fixture, i.e. a 3-punctured sphere, the Schur and Hall-Littlewood limits of the
unrefined superconformal indices have the following form [21, 28]

ISchur(p) =
∑
Λ

∏3
i=1KS(ai)χΛ(ai)
KS({p})χΛ({p})

∣∣∣∣∣
ai→1

(3.1)

IHL(τ) =
∑
Λ

∏3
i=1KHL(ai)PΛ(ai)
KHL({τ})PΛ({τ})

∣∣∣∣∣
ai→1

(3.2)

where

1. The sum is over highest weights Λ labeling the finite dimensional irreducible repre-
sentations of j.

2. Flavor fugacities ai associated to the ith puncture are determined by decomposition
of the fundamental representation of j as a representation of ρi(su(2)) × fi. There’s
some freedom in assigning these but the choices are equivalent under the action of
the Weyl group W of j. {p} and {τ} are the fugacities for the trivial puncture.

3. The K-factor associated to the ith puncture is determined by the restriction of the
adjoint representation adj of j to ρi(su(2))× fi as

adj =
⊕
n

Vn ⊗Rn,i (3.3)

where Vn is the n-dimensional irreducible representation of su(2) and Rn,i is the
corresponding representation of fi, possibly reducible. Upon this decomposition, the
K-factors are

KS(ai) = PE
[∑
n

p
n+1

2

1− pχ
fi
Rn,i

(ai)
]

(3.4)

KHL(ai) = (1− τ2)
rank(j)

2 PE
[∑
n

τn+1χfi
Rn,i

(ai)
]

(3.5)

4. The polynomials appearing in the index χΛ and PΛ are characters and Hall-Littlewood
polynomials for the representation labeled by Λ respectively. The formula for HL
polynomials is

PΛ(ai) = 1
WΛ(τ)

∑
w∈W

ew(Λ) ∏
α∈Φ+

1− τ2e−w(α)

1− e−w(α) (3.6)

WΛ(τ) =
√ ∑
w∈StabW (Λ)

τ2l(w) (3.7)

where Φ+ are the positive roots of j and flavor fugacities {ai} can be assigned once
we choose a basis for the weight lattice for j.
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In the twisted sector, some of the defects might have the action of an outer automor-
phism o ∈ Out(j). Let g ⊂ j be the invariant subalgebra. Twisted defects are labeled
by, up to conjugation, homomorphisms ρ : su(2) → g∨ where g∨ is Langlands dual of g.
As in the untwisted case, the flavor symmetry is the centralizer of the image of ρ [10].
Twisted-sector fixtures have 2 twisted punctures and 1 untwisted puncture. Unrefined su-
perconformal indices for such fixtures have almost the same form as before but are slightly
modified as [4, 5, 28]

ISchur(p) =
∑
Λ′

KS(b)χj
Λ(b)

∏3
i=2 K̄S(ai)χg∨

Λ′ (ai)
KS({p})χj

Λ({p})

∣∣∣∣∣
ai,b→1

(3.8)

IHL(τ) =
∑
Λ′

KHL(b)P j
Λ(b)

∏3
i=2 K̄HL(ai)P g∨

Λ′ (ai)
KHL({τ})P j

Λ({τ})

∣∣∣∣∣
ai,b→1

(3.9)

where the sum is now over the weights Λ′ of g∨, extended6 (in the case of the untwisted
puncture) to weights of j (denoted as Λ in the formulas). The K̄ and flavor fugacities ai
for twisted punctures are determined as in the untwisted case but with j replaced by g∨.

The main computational bottleneck is computing and evaluating the Hall-Littlewood
polynomials, which requires a sum over the elements of the Weyl group. For low rank
classical algebras AN and DN , the Weyl groups are rather small and the HL polynomials
can be evaluated with ease. However, |WE6 | = 51840, which makes the evaluation of HL
polynomials very tedious. And we need to compute them for every representation that
contributes to a given order in τ . Fortunately, one can exploit the freedom in the choice of
flavor fugacity assignments to deduce whether or not a given representation will contribute
to a desired order.

For the untwisted E6 theory, it turns out there are 71 representations that contribute
to the order p2 and τ4. The highest dimensional representation that occur has Dynkin
labels [0, 0, 1, 0, 0, 2]e6 and dimension = 1911195. In the twisted E6 case, there are 30
representations that contribute, 15 of which already appeared in the untwisted case. The
largest f4 and e6 representations that appeared to order p2 and τ4 have dim[1, 1, 0, 1]f4 =
379848 and dim[2, 1, 0, 1, 2, 0]e6 = 688740975.

4 Examples

As a simple example, consider an interacting fixture in the D4 theory as given in figure 1.
The corresponding 4d N = 2 SCFT was identified as the product of two copies of rank-1
Minahan-Nemeschansky E6 SCFT in [9]. The unrefined Schur and Hall-Littlewood indices
for this fixture to the order of p2 (τ4) are

ISchur = 1 + 156p+ 11102p2 + . . .

IHL = 1 + 156τ2 + 10944τ4 + . . .
(4.1)

6For the main case of interest here, namely g∨ = f4 and j = e6, the precise extension can be found in
section 4.1 of [5].
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Figure 1. An interacting fixture in the D4 theory which corresponds to the product of two copies
of rank-1 Minahan-Nemeschansky E6 SCFT.

We read off h1 = s1 = 156, which equals the dimension of e6 ⊕ e6. The lower bound
on #Ĉ0(0,0),

s2 − h1 − h2 = 11102− 156− 10944 = 2 (4.2)

is clearly saturated in this example.
At least for low N , there are not too many further examples of product SCFTs among

the (twisted or untwisted) fixtures of the AN or DN theories. For most of the interacting
fixtures the lower bound on #Ĉ0(0,0) is equal to 1. However, there are more interesting
product SCFTs in theories of type E6.

In the untwisted E6 case, our results can be summarized in table 2 below. We find
10 product theories among the 881 good fixtures (the numbering is the one used in [11])
with regular punctures. The first 7 were known to be product theories in [11]. The last 3
were not.

Those three fixtures,

D5(a1)

0D5(a1) , D5(a1)

0D4 , D4

0D4

(respectively, #59, 61 and 99 in the table of interacting fixtures in [11]) were later identi-
fied as product theories in [5] by gauging a subgroup of the flavour symmetry and using
S-duality.

In the twisted E6 case, we identify 13 product theories among 2078 good fixtures with
regular punctures. Only one interacting fixture, namely fixture #91, was not previously
listed in [5] as a product theory. We also find that three gauge theory fixtures are product
theories. One was explicitly noted as such in section 3.6 of [5]. We discuss the other two
below. Our results can be summarized in table 3.
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#type Fixture ISchur(p) IHL(τ) #Ĉ0(0,0) Theory

1int A2

0E6(a1) 1+496p+
+116002p2+. . .

1+496τ2+
+115504τ4+. . .

2 [(E8)12SCFT]2

8int D5

0A3 1+222p+216p
3
2 +

+23880p2+. . .

1+222τ2+216τ3+
+23656τ4+. . .

2
[(E7)8SCFT]

×
[(E6)16×Sp(2)10×U(1)SCFT]

6int D5

0A3 + A1 1+269p+266p
3
2 +

+35045p2+. . .

1+269τ2+266τ3+
+34774τ4+. . .

2
[(E7)8SCFT]

×
[(E7)16×SU(2)9SCFT]

39int A5

0D4 1+329p+156p
3
2 +

+50739p2+. . .

1+329τ2+156τ3+
+50408τ4+. . .

2
[(E8)12SCFT]

×
[(E6)12×SU(2)7SCFT]

11mix E6(a3)

0D5(a1)
1+54p

1
2 +1641p+

+36198p
3
2 +

+640688p2+. . .

1+54τ+1641τ2+
+36144τ3+
+637614τ4+. . .

2 [(E6)6SCFT]2+1(27)

5int D5

0D4(a1) 1+399p+
+75582p2+. . .

1+399τ2+
+75180τ4+. . .

3 [(E7)8SCFT]3

18int E6(a3)

0D4 1+404p+
+77039p2+. . .

1+404τ2+
+76632τ4+. . .

3
[(E8)12SCFT]

×
[(E6)6SCFT]2

99int D4

0D4 1+172p+
+14886p2+. . .

1+172τ2+
+14712τ4+. . .

2
[(E6)6SCFT]

×
[(E6)18×SU(3)2

12SCFT]

61int D5(a1)

0D4 1+165p+164p
3
2 +

+13451p2+. . .

1+165τ2+164τ3+
+13284τ4+. . .

2
[(E6)6SCFT]

×
[(E6)18×SU(3)12×U(1)SCFT]

59int D5(a1)

0D5(a1) 1+212p+112p
3
2 +

+22273p2+. . .

1+212τ2+112τ3+
+22059τ4+. . .

2
[(E6)6SCFT]

×
[(E7)18×U(1)SCFT]

Table 2. Product theories corresponding to fixtures in the untwisted E6 theory.
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#type Fixture ISchur(p) IHL(τ) #Ĉ0(0,0) Theory

111int B2

E6(a1)0 1+136p+104p
3
2 +

+9036p2+. . .

1+136τ2+104τ3+
+8898τ4+. . .

2
[(E6)6SCFT]

×
[(F4)12×SU(2)2

7SCFT]

103int C3(a1)

E6(a1)0 1+159p+156p
3
2 +

+12229p2+. . .

1+159τ2+156τ3+
+12068τ4+. . .

2
[(E6)6SCFT]

×
[(E6)12×SU(2)7SCFT]

99int F4(a3)

E6(a1)0 1+234p+
+25779p2+. . .

1+234τ2+
+25542τ4+. . .

3 [(E6)6SCFT]3

91int B3

D50 1+186p+
+16142p2+. . .

1+186τ2+
+15954τ4+. . .

2
[(E7)8SCFT]

×
[(F4)10×U(1)SCFT]

14int F4

2A20 1+326p+
+49102p2+. . .

1+326τ2+
+48774τ4+. . .

2
[(E8)12SCFT]

×
[(E6)6SCFT]

5int F4

0Ã2 1+170p+
+14601p2+. . .

1+170τ2+
+14429τ4+. . .

2
[(E6)6SCFT]

×
[(E6)18×(G2)10SCFT]

4int F4

0B2 1+162p+312p
3
2 +

+13365p2+. . .

1+162τ2+312τ3+
+13201τ4+. . .

2 [(E6)12×SU(2)7SCFT]2

3int F4

0Ã2 + A1 1+159p+160p
3
2 +

+12464p2+. . .

1+159τ2+160τ3+
+12303τ4+. . .

2
[(E6)6SCFT]

×
[(E6)18×SU(2)20SCFT]

2int F4

0C3(a1) 1+237p+156p
3
2 +

+27140p2+. . .

1+237τ2+156τ3+
+26900τ4+. . .

3
[(E6)6SCFT]2

×
[(E6)12×SU(2)7SCFT]

1int F4

0F4(a3) 1+312p+
+46540p2+. . .

1+312τ2+
+46224τ4+. . .

4 [(E6)6SCFT]4
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#type Fixture ISchur(p) IHL(τ) #Ĉ0(0,0) Theory

n/agauge F4(a1)

A50 1+133p+52p
3
2 +

+8446p2+. . .

1+133τ2+52τ3+
+8311τ4+. . .

2

n/agauge F4(a1)

E6(a3)0 1+156p+
+11830p2+. . .

1+156τ2+
+11672τ4+. . .

2

2gauge F4(a1)

0F4(a1) 1+326p+
+12558p2+. . .

1+326τ2+
+12400τ4+. . .

2

Table 3. Product theories corresponding to fixtures in the twisted E6 theory.

5 Gauge theory fixtures

The F4(a1) puncture, in the twisted sector of the E6 theory, is “atypical” (in the nomen-
clature of [3]). That is, it carries a “hidden” marginal deformation. To access the full space
of marginal couplings, we should resolve it to a pair of punctures: F4 (the simple puncture
from the twisted sector) and E6(a1) (the simple puncture from the untwisted sector). The
coincident limit of those two punctures does not imply any gauge coupling becoming weak;
instead, we simply obtain F4(a1).

A fixture with an F4(a1) puncture is thus, really, a 4-punctured sphere in disguise:

F4(a1)(F4(a1), ∅)

0

E6(a1) A5

F4

∅

empty gauge theory fixture

where the gauge theory is at a strong coupling point in the interior of the conformal
manifold. We computed that the theory has two stress tensors, and is thus a product
SCFT. That is indeed the case, as we can see by examining the other degenerations of the
4-punctured sphere which is its resolution:

(B2, SU(2)1)

0

E6(a1)A5

F4

SU(2)

1
2(2) [(E6)6 SCFT ] × [(F4)12 × SU(2)7

2 SCFT ]

B2
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where one of the SU(2)s of the (F4)12 × SU(2)2
7 SCFT is gauged, and

2A2

0 E6(a1)

A5F4

G2

1(7)[(E6)6 SCFT ] × [(E8)12 SCFT ]

(2A2, (G2)4)

where a G2 subgroup of the E8 is gauged. In each case, there is a decoupled Minahan-
Nemeschansky (E6)6 SCFT, as anticipated.

The same remarks apply, mutatis mutandis, to

F4(a1)(F4(a1), ∅)

0

E6(a1)

F4

∅

empty gauge theory fixture

E6(a3)

(see section 8.1 of [5], where this and the third gauge-theory fixture are discussed in detail)
whose S-dual frames are

(C3(a1), SU(2)1)

0

E6(a1)E6(a3)

F4

SU(2)

1
2(2) [(E6)6 SCFT ] × [(E6)12 × SU(2)7 SCFT ]

C3(a1)

and

2A2

0 E6(a1)

E6(a3)F4

SU(3)

empty[(E6)6 SCFT ] × [(E8)12 SCFT ]

(2A2, SU(3)0)

Here, too, there is a decoupled (E6)6 SCFT.
This is a nice check that our formalism works, even when the SCFTs are not isolated.
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6 The new product SCFT

The fixture
0

B3

D5

[(E7)8 SCFT ] × [(F4)10 × U(1) SCFT ]

is a product SCFT that hasn’t been identified previously.7 Since it has rank-3, it must be
a product of a rank-1 and a rank-2 theory. The possibilities for rank-1 N = 2 SCFTs are
very limited [29–32]. The only one consistent with the global symmetries and R-charges
of the Coulomb branch parameters is the Minahan-Nemeschansky (E7)8 SCFT. The other
factor in the product is, then, a new rank-2 SCFT, with global symmetry (F4)10 × U(1),
n4 = n5 = 1 and (nh, nv) = (32, 16). So far, we are not aware of an alternative class-S
construction of this theory.
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