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1 Introduction

The starting point of our research is the elegant explicit expression conjectured by B. Basso
and L. Dixon for a specific, conformal planar Feynman graph with square-lattice topology
(“fishnet”) [1], having N rows and L columns, and thus (N +1)(L+1)—4 loops. This graph
is presented on figure 1, and its expression — modulo a finite normalization constant — is

]BD($07$17~T67$/1) =
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(1.1)

where y1 , = 1 and yp v = x(. It was explained in [1] that this Basso-Dixon (BD) formula

takes the form of an N x N determinant of explicitly known “ladder” integrals [2—4], and it is
one of very few examples of explicit results for Feynman graphs with arbitrary many loops.

The Feynman integral (1.1) is relevant in the context of the four-dimensional Fishnet
conformal field theory [5]

1 1
Chicscatar = Ne Tt [—2%@%{ — 5 0u0" 0} + € ¢>§¢£¢1¢Q] , (12)

as it is the only planar and connected integral entering the perturbative expansion in the
coupling €2 of the four-point correlator

Gaplan, a1, ) = (Tr (612} (Ga(ah) HGL @) (@h@)] ). (13)

According to the conjecture of Basso and Dixon, which has been proven by direct compu-
tation in our last letter [6], the integral (1.1) can be expressed for any N and L as a sum
over N separated variables Y, € C
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where the variables z, z are conformal invariants expressed in terms of the cross ratios

2 2 2 2
u= 795%'033210’ and v = 733%1'37200/ , (1.6)
T10%110r T10%110r
as
u=zz, v=(1-2)(1-2). (1.7)

We call the expression (1.5) a separated variables representation in the sense of [7-10],
since for a graph with N rows the integrand in the r.h.s. of (1.5) is factorized into N



Q o o o] o (o]
X1 o o Xj
X1 (e o} Xl’
X o o Xi

(o} o o o o e}

Xo Xo Xo Xo Xo Xo

Figure 1. Graphic representation of the fishnet Feynman integral (1.1) for a size of the square
lattice bulk N x L with N = 3 horizontal and L vertical lines. Solid lines are the standard scalar
propagators 1/(z — y)? where 2 and y are the two endpoints of each segment. Intersection points
between two lines (black dots) are integrated over. The topology of the bulk is the one of a square-
lattice “fishnet”, and the boundary points are identified into four points (zo,z1,xj, 2}).

contributions, each depending on one of the variables Y%, and the non-factorizable part is
collected by the Plancherel measure

N

_ 2 2
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In this paper we provide in full detail the direct derivation of the BD formula (1.5) first
summarized in [6]. To start with, we interpret each column of (1.1), as highlighted in
figure 2, as a transfer matrix operator acting on N points in 4D, and which propagates a
wave function ®(z1,...,zy) throughout the bulk of the diagram, from right to left. This
propagation is parametrized by a spectral parameter u which plays the role of time interval,
and is set to u = —1. The Hamiltonian operator which defines this discrete evolution can,
as usual [8, 11, 12], be extracted from the evolution operator — the transfer matrix at
general u

4ur(2+u))N N

QB (.- = TT (=) 2 (1.9)

2T (—u) P
N
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k=1

by taking a logarithmic derivative in the parameter u. The resulting Hamiltonian turns
out to be equivalent to the 4D version of the open conformal spin chain introduced in 2D



by L. Lipatov [13, 14] for the study of the scattering amplitudes of high-energy gluons in
the multi-Regge-kinematics (MRK) in N' = 4 SYM theory.! Therefore, as we explain in
section 2 the hamiltonian is that of a chain of nearest-neighbor interacting states in the
quantum spaces Vj, = L?(zy, d*zy) for each site zt, all of whom carry the same irreducible
representation of the conformal group SO(1,5) defined by a scaling dimension A = 1 and

spins £ = 0 = 0
N-1
H=2Iln (x%x%?) e :L‘%VO> + x;vo In (p?v) 33?\/0 +In (p%) + kzz:l (x%;l) In (pi pi—i—l) 1’% k+1 -

(1.10)

In this context, formula (1.5) is nothing but the representation of (1.1) over a basis of
eigenfunctions of the spin-chain Hamiltonian (1.10), where

-1
]]_V[ (w’“ Z D + u,?) : (1.11)
k=1

is the eigenvalue of the transfer matrix (1.9) at w = —1, and Y, = (v, {x) are the quantum
numbers of the eigenfunction for the model of length N. The eigenfunctions of the model
with N sites can be regarded as bound states of the spin chain of N scalar particles of
scaling dimension A = 1; their construction and properties are presented in detail in
section 6. The relation (1.5) is obtained injecting a complete basis of eigenfunctions at
the point ) of the diagram and letting it evolve from z) to z1 by the action of transfer
matrices (1.9), where the Plancherel measure (1.8) is the overlap of two eigenfunctions,
and its computation is presented step-by-step in section 6.2.

The need to achieve deep understanding of formula (1.5) has two compelling reasons.
The first is that the spin chain magnet with four-dimensional conformal symmetry (1.10) is
an integrable model, as discussed in section 2, which is a rare example of exactly solvable
integrable model formulated in space-time dimension d > 2. In particular, the solution
of the open spin chain points towards the definition of Baxter operators and subsequent
separation of variables for the — harder — closed spin chain model, in the spirit of the
2D technique of [18]. In this context, the crucial formulae underling our results in [6], that
is the generalization of star-triangle integral identity [19] to propagators of non-zero spin
fields? in 4D, are presented in a handful graphical notation in section 4 and any detail of
their derivation can be found in appendix D.1.

The second reason lies in the fact that the Fishnet CFT can be derived as a strong
deformation limit [5, 21] of N/ = 4 SYM theory. In the paper [1] the formula (1.5) was
conjectured via the AdS/CFT correspondance, where the separated variables (v, fy) are
interpreted as rapidities v, and bound state indices £, labeling the mirror excited states of
the dual string theory. In this perspective our computations provide one of many checks

!The relation between Regge asymptotics and integrable model was first noticed in quantum chromody-
namics by [15-17].

20ther suggestive star-triangle identities for integrable lattice models in relation to conformal field
theories were studied in [20].
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Figure 2. On the left, we highlight a transfer matrix inside the square-lattice of the fishnet
integral (1.1). On the right, we represent it separately, as the kernel of an integral operator, where
the black dots are the integration point, according to formula (1.9). The transfer matrix makes a
function propagate throughout the bulk of the diagram, from right to left.

of the correspondence in the Fishnet CFT limit of N' = 4 SYM (see [5, 22-24] for other
examples) and may be developed to provide similar checks and new results in the realm of
the recently developed techniques for the exact computation of planar n-point conformal
correlators by decomposition in polygonal building blocks [25-34] — and its application to
the Fishnet theory [35].

It is worth to mention here that the integrability of N' = 4 SYM theory is based
on the conjectured holography, and it is realized by very sophisticated techniques of inte-
grability (see [36] and references therein) which are still partially obscure as they lack a
rigorous derivation. Therefore, the Fishnet CFT — where the integrability can be realized
at the same time by the deformation of the Quantum Spectral Curve of ' = 4 SYM
(see [22, 37, 38] and references therein) and by direct, clear, spin chain methods — is a
perfect playground to start the unveiling of the integrability of N' = 4 SYM theory. A
recent example in this direction is the formulation of the Thermodynamic Bethe Ansatz
(TBA) [39] for the Fishnet CFT defined in arbitrary spacetime dimension [40]. The form
of the S matrix of Fishnet CFT — equal to Zamolodchikov’s R matrix [41, 42] modulo
a phase factor — is conjectured starting from the form of the eigenfunctions of the spin
magnet (1.10) at N = 2. In sections 4.2 and 6 we provide, for the 4D model, a rigorous
derivation of the R matrix by direct, systematic computations via star-triangle identities.

The large amount of results obtained in the last few years in Fishnet CFT, demands
the exploration to go on and take a first step towards the superconformal theory, i.e. to
study the integrability features of the general double scaling limit of y-deformed N = 4
SYM — dubbed as xCFTy -rather than its bi-scalar reduction (1.2). In this spirit, this
paper continues the program of [43], exploring another class of exactly-solvable four-point
functions which generalizes (1.3). The integraction Lagrangian of the yCFTy is

Ling = Ne Tr [5% Db Pl dada+E3 PLol dadi+E2 Bl dhd1da+ivEaEa(Yadrta + Padlide)

B ~ B B (1.12)
+iVEE (V1203 + Pr1d5s) + iV E1E (Yot + Padii) } ,
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Figure 3. Graphic representation of the Feynmann integral I, (zo, z1, z(, ] ) for a size of the square
lattice bulk N x (L1 + Ls) with N = 3 horizontal and L; 4+ Lo vertical solid lines, and a Yukawa
lattice of size N x (M; + Ms), where My + My is the number of fermionic (dashed) vertical lines
appearing on the right part of the graph and corresponding to the M insertions of g ()1 (x0)
and the M, insertions of 9)3(x})ws(xo). Every dashed segment along a line is alternatively given
by otz,,/(x?)* or 6"z, /(2?)?, and the arrows define the order of matrices o* and &" along a line.
At the boundary the points are identified into four points (zg, z1, 2, }).

where the summation over j = 1,2,3 is assumed. This class of planar exactly-solvable
correlators of YCFTy is obtained by admitting also fermionic fields at the points x5 and x4

Gl at) = (T [(61(00))" Oy st 0b) (@00 OF, 1 a1 o) ] ).
(1.13)

where

O, 10,001,005 (%) = (d2(2)) " (84 ()" (W2 ()M (3 ()2 (1.14)

As for the scalar correlators (1.1) in the bi-scalar theory (1.2), also the correlators of
type (1.13) receive a single contribution in the weak couplings expansion, given — modulo
a finite normalization constant — by the Feynman integrals I, (zo, 1, x(, ) which are
depicted in figure 3 and whose simple topology is a mixture of a square-lattice of scalar
vertices and an hexagonal lattice of Yukawa vertices. Extending the logic of the bi-scalar
case, in section 5 we explain how the computation of such Feynman integrals is mapped
to the diagonalization of the same spin chain magnet (1.10). The main result of our paper
is given by the representation over separated variables for the correlator of YCFT,4 theory



defined in (1.13) for any choice of positive integers N and Ly, Lo, My, Mo:

1
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are the eigenvalues of the scalar and fermionic transfer matrices at N = 1 and are computed
in section 7. The functions W, are polynomials carrying the spinor indices of fermionic
fields in the correlator (1.13). In order to deliver a compact expression for Wy, we shall
already introduce the notations

i (0 — ),

, X=Y)i = (1.17)
together with the harmonic polynomials [(x — y)]¢, [(X — y)]¢ defined as

1 |
[(x —y)laia: = ,Z e (x—y)ar? = *,Z Yty (X =¥)el,
€Sy

T oeSy

(1.18)
and two solutions of Yang-Baxter equation acting on the symmetric spinors of degree ¢ and
1 (see appendix C and sections 4 and 8)

(Ritk)(::h (il---"iék) ’ (R;kyn (r1...re,) ‘ (1.19)

an ($1---8¢,) an (s1..-5¢;)

It follows that the polynomials W, are given by a trace over the space of symmetric
spinors of degrees ¢1,...,{y, of a combination of harmonic polynomials (1.18) and R ma-
trices (1.19)

4 Bl,...,le,b1,...,bM2 / /
(We)al,,..,a]ul ,dl,...,djuz (.T}O,.’L'l,xo, ‘rl) =

— — — —
N Mo . N My .
=Tre,, en | | [T 1xon%10)] [] (oo R e | | TTI(xvroxion)™ [T (R, 1 [xo0 )2z
k=1 h=1 k=1 n=1

(1.20)

The latter formula simplifies in the scalar case My = M = 0, when the integral I, reduces
to the Basso-Dixon integral of size N x (L1 + Lo) and (1.15) reduces — a part a finite
normalization constant — to formula (1.5).

The paper is organized as follows: in section 2 we introduce in detail the spin-chain
hamiltonian (1.10), its relation with the fishnet graph (1.1) and the quantum integrability
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Figure 4. Graphic representation of the integral kernel of fermionic graph-building operators
appearing in the general Feynman integral of figure 3. These two operators commute with each
other as explained in section 5 and with the scalar transfer matrix depicted in figure 2. In particular,
their expansion over the basis of eigenfunctions of the model (1.10) has a relatively simple form
worked out in section 7.

of the model. In section 3 we find the spectrum and eigenfunctions of the spin chain in the
simplest case N = 1, and compute the integrals (1.1) for N = 1 and any L — that is the
ladder diagrams of length L [2, 3] — bringing them into the form (1.5). In section 4 we
derive the chain-rule and star-triangle identities in 4D which generalizes the well-known
scalar relation [4, 19, 44] to massless propagators of fields with non-zero spin. In particular,
in the subsection 4.2 we show how the fused Yang R matrix which mixes spinor indices in
the star-triangle identity is related to the Zamolodchikov’s R matrix for the O(4) model.
Section 5 deals with the introduction of the generalization of (1.9) to any spin, including
the graph-building operators depicted in figure 4 for spin 1/2. In section 6 we present the
construction for the eigenfunction of the spin chain model for any size N, the symmetry
properties of the eigenfunctions respect to permutation of their quantum labels (separated
variables) (section 6.1) and we compute the overlapping of two functions obtaining the
Plancherel measure (1.8) in section 6.2. In the last two sections 7 and 8 we find the
expansion of the graph-building operators introduced in section 5 over the eigenfunctions
of the spin chain. We apply these representations to the computation of the Feynman
integral contributing to the single trace correlators (1.3), delivering our final results.

Our aim in this paper is to present every computation in a rather explicit and easy-to-
check way, both via analytic computations or via graphical techniques developed through-
out the paper starting from the star-triangle identities. Nevertheless, we left several cum-
bersome calculations to the appendices A-E, to which we refer along the main text.

2 Integrable hamiltonian and ladder diagrams

In this section we introduce the spin chain model which underlies the computation of the
four-point functions under study in this paper. Namely, we start from the definition of



the Hamiltonian operator acting on a collection x1, ..., xn of nearest-neighbor interacting
sites, each of them carring the representation of zero spins ¢ = ¢ =0 and scaling dimension
A = 2 — i) of the group SO(1,5) of Euclidean conformal transformation in 4d. The
Hamiltonian operator acts on the tensor product of Hilbert spaces V;, = L?(z, d*z;) and
has the following expression in terms of coordinates x; and momenta py = —i0k
1 ' N-1 '
H=2In (95%296'%3 - '93?\/0) +—xn (P?v) 2o +1n (P%) +> ~ n (pzpiﬂ) TR
TNo k=1 (‘xikz-i-l)

(2.1)

where Tpri1 = Tp — Tir1, p% = —0; -0 and xnyy+1 = zo. All 2, and pj are vectors
in the 4-dimensional Euclidean space and z? = x#x,. The point z¢ is effectively a pa-
rameter for the model, and we will always omit it from the set of coordinates. The spin
chain (2.1) is the four-dimensional version of the open SL(2, C) Heisenberg magnet which
describes the scattering amplitudes of high energy gluons in the Regge limit of N' = 4 SYM
theory [45, 46], and for periodic boundary conditions it was studied in [47]. The quantum
integrability of (2.1) is realized by the commutative family of operators Q(u) labeled by
the spectral parameter u € C

Qu)Q(v) = Q(v)Q(u), HQ(u) = Q(uv) H, (2:2)

where
Q(u) = Q12(u) Qa3(u) - - - Qno(u), (2.3)
Qij(w) = (23;) 7 PF) (23" = (p) "+ @) ()~ (2.4)

The equivalence of the two representations for the operator Q;;(u) follows from the star-
triangle relation [4]

(@) (") (2?)” = ()" (=) (p%)° . (2.5)

The explicit expression for the Q-operator

Qu) = (%03 -a%0) (1) ()" (1) (3) " (03)" (23) " (26)
clearly shows that there are two special values of spectral parameter u = 0 and v = —iA
for which the operator simplifies. At the point v = 0 we have the reduction to the identity
operator, while at the point © = —i\ we obtain the graph-building operator represented in
figure 5

—iA —iA
Q(=iN) = (ahyads---aho)  (PRB--ph) (2.7)
which is an integral operator whose kernel is a portion of square lattice “fishnet” Feynman
integral The Hamiltonian can be obtained as the sum of the logarithmic derivatives of the
operator Q(u) at these special points [8, 11, 12]

H=Q(0)7'Q'(0) + Q(=iN)~'Q'(—iA) . (2.8)
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Figure 5. Graphical representation of the kernel Q(z1,...,zN, Zo|y1,- - ., yn; —iA) of the operator

Q(—i)) at the size N = 4. The lines are functions 1/z2 to the power written aside; integration
points y;, are marked by black dots and external points zj are marked by grey dots. For A = —i
the kernel is a proportional to a portion of scalar Feynman integral in 4d.

It is simple to check that the expansion around v = 0 in (2.6) gives
Qe) = 1+ eH; + o(e),

L) (e2)” () (o)

Hy = In (23,233 - 2%) +
( ) (2%5) (2%0)"

(2.9)

Similarly, the expansion around the point © = —i\ can be performed after some transfor-
mations based on star-triangle relation (2.5)

Q™ (=i)) Q(u)
= (3-03)" ()" (o) (3)" (2) T (03) ()
= ()" ()" ()" (#82) - (o3ean) " (2) (o) (a20)
and therefore it reads
Q N (—iNQ(—iA +¢) = 1+ eHa + ofe),

Hy = In (x%ngg e x?\,o) + 7332’; In (p?v) x%’llN + ...+ 33%1’2)‘ In (p%) :L‘%’QA + In (p%) .

N-1N
(2.10)
Finally the sum H = H; + Hy coincides with (2.1).
In explicit form, the action of the operator Q(u) on a function ®(z1,...,x2x) can be
expressed as an integral operator
4r2+u)\ Y & o
Q)] (1,....an) = (71'2I‘(—u)> lg(xk_xkﬂ) Xy (2.11)
N -
x/d4w1-~d4wN H(wk—xk)72(2+”)(wk—azkH)Q(“H)‘)@(wl,...,wN),
k=1
where by definition zy41 = xg and (2)** = (2#x,)" and we consider 4-dimensional vector

z in Euclidean signature. Note that the operator @(u) maps the function of N variables
to the function of N variables and the z plays some special role of external variable.
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Figure 6. Graphical representation of the kernel Q(z1,...,2n,Zo|y1,...,yn;u) of the operator

Q(u) for the size N = 4. The lines are functions 1/2? to the power written aside; integration points
yi are marked by black dots and external points x; are marked by grey dots.

We shall use the standard Feynman diagram notations in the coordinate space from
the quantum field theory. It is very useful because some nontrivial transformations of the
integrals can be visualized graphically in this way. The diagrammatic representation for
the kernel of the integral operator Q(u) is shown schematically on the figure 6.

Relations between operators are equivalent to the corresponding relations between
operator’s kernels. The most convenient way to check such relations is to prove the equiv-
alence of the corresponding diagrams (kernels). It can be done diagrammatically with the
help of several simple identities — integration rules. Below we give some of these rules
(see also refs. [18, 44, 47, 48]) which are also implemented in a Wolfram Mathematica
package [49, 50]. All internal vertices contain the integration with respect to the variable
attached to this vertex.

o The function (z —y)™2* = ((z — y)*(z — y),)~“ is represented by the line with index
a connecting points x and y:

X0 oy
e Chain rule
/d4 : =nla(a, 8,4 — a — f) . (2.12)
MR e |
where a(a) = % and a(a, B, ,v)=a(a)a(B)---a(y). Its diagrammatic form is
z -
X o a . oy = ma(a,B,4-a-B) xo oa+p-2 oy
For the special case § — 4 — a one gets
d* ! = mta(o, 4 — o) 6W(z — 2.13
Z(m (e — )T ma(a, a) (x —y) (2.13)

~10 -



o Star-triangle relation o+ 8+ vy =4

. L _ m*a(o, 5,7)
/d w(m—w)2a<y_w)2,3(z—w)27 T (y—2)2@-a) (z—1)2@B) (z —y)22—) (2.14)
k X
2-p
= T[Z a(a,B,y) 2-y Z
2-a

e Cross relation

B-B’ = B-B'
Xy o at 8'2 Xy O Xy

where a+ 3 =o' + f'.

The proof of the commutativity Q(u)Q(v) = Q(v)Q(u) is equivalent to the proof of
the corresponding relation for the kernels which is demonstrated, in more general form, in
section 5. The proof is presented there diagrammatically, with the help of cross relation.

The transformation from representation (2.6) to the representation (2.11) is based
on the fact the operator (pQ)u can be expressed as an integral operator in coordinate
representation

()" ] @) = 475;2( _+uz)0 / Fy— yl)mw B(y),

and this formula is derived from the standard Fourier transformation

Y e mTr2-a) 1
/ p2a - 4a72r(a) r2(2—a)’

The kernel of the arbitrary power of the graph-building operator Q¥(—i)) is shown
schematically on the figure 5 and coincides essentially with the diagram of the BD type.

Due to integrability of the model, that is the existence of the commuting family @Q(u),
the diagonalization of the Hamiltonian (2.1) and the calculation of the diagram of BD type
are reduced to the problem of the diagonalization of the operators Q(u).
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3 Conformal ladder integrals

Now we are going to study the spectral problem for the operator Q(u) in the simplest case
of length N = 1, namely

@) (2) = 7 o) P [ - 2) 2 0 = P ). (3.1

For simplicity in this section we put o = 0. Due to evident translation invariance of Q(u)
this choice does not lead to the loss of the generality and xy can be restored in any final

formula.

3.1 Eigenfunctions in tensor notations

In this section we shall use some standard formulae from the so-called Gegenbauer polyno-
mial technique for the evaluation of Feynman diagrams [51, 52]. Let us introduce a class
of symmetric traceless tensor z#1"'#» connected with the usual product x*1x#2 - .. zH» by
the following relation

M1 fn HM17 S Mn . — ) 5”’1M2 e 5“21)—1“21’ 2p H2p+1 | -Hn
x x¥ = xPx x
V1,..sVn Z>: n _ 2p> )
(3.2)
where S is the symmetrization over all indices
A 1
H1fn — Hp (1) "Hp(n)
S > ® : (3.3)
PESn
By construction this tensor is symmetric and traceless d,,,, ©#1"#™ MeBn = (), The basic

formula [51, 52] for the convolution of the tensor propagator

e ML b ZH1 " Py A
v () = L2024+ 2) 21+ 2 tiv) T2 (3-4)
with a scalar propagator 1/2%? is given by
’ ghrn L1 i
where
an(@) am(5) r2—a+n)
AV, B) = n i apla) = ————F 3.6

Using (3.5) it is easy to check that (3.4) is eigenfunction of the operator Q(u) =
—2iX\ 2u .2(u+tiN)

ptx and to calculate the corresponding eigenvalue. We have
qu . 1 yH1hin
1 — —2iA 4 . =
[Q(U)\If } (x) 2 aO(QTU) x /d y(x_y)2(2+u)y2(—u—i>\) y2(1+%+iy+%)

an (1—u—%—|—z’1/+%> pHL pHLHn

=4" : o =T ) s

an (1—%4—204—%) 2+ g +w+3) 220+ 8 +iv+5)

(3.7)

- 12 —



We see that eigenvalue 7(u,v,n) depends on v and n so that the corresponding
eigenspace is (n + 1)2-dimensional, where (n + 1)? is dimension of the space of symmetric
and traceless tensors x#1"# of the rank n. This degeneracy of the spectrum is dictated by
the SO(4)-symmetry and each eigenspace coincides to the (n + 1)2-dimensional irreducible
representation of the group SO(4).

The system of functions ¥, .., (x) is orthogonal and complete: the orthogonality
relation has the following form

rH1 e Hn €T
dx L — = Cp Opn HHL Hn (3.8)
1+1>‘+W+ ) 2(1— Q71'11’+"7) o

and the completeness relation is
21—nﬂ.3

=5tz —y); cn= e (3.9)

/ pHL b kL Hn
2(1+ 2 +iv+2 )y (1-2—iv+2)

n>0 e
Relations (3.8) and (3.9) can be proved in a straightforward way but we should note that
in fact they are consequences of Peter-Weyl theorem for the group SU(2) (see appendix B).
Moreover, the connection to the representation theory explains in a natural way the ap-
pearance of the factor n + 1 in ¢,: it is dimension of the irreducible representation of the
group SU(2).

Finally, we obtain two equivalent representations for the kernel @, (x,y) of the integral
operator Q(u)

B 44 1 1 1 B
Qulz,y) = 72 ao(2 4 u) a2 (:): — y)2@Fu) g2(-u=id)
oL yH1hn
2"( 1) / d . . 3.10
2773 n§>:o (n+ v(u,v,n) P23 Firtg) 205 —ivtg) (3.10)

The first expression for the kernel is by definition of the operator Q(u) and the second
expression is the spectral decomposition obtained by inserting of the resolution of the unity.

3.2 Diagrams computation

Now it is possible to use the spectral representation of the operator Q(u) and reduce
the generic ladder diagram to the expression containing only one integration over v and
summation over n.

The kernel Qy,...u;,, (x,y) of the integral operator Q(u1)---Q(ur+1) is given by the
convolutions of the kernels of the integral operators Q(uy)

1 £ Aur . 1 1 1 1
Qul...uL+1(1U,y) = 22iA I};Il 72 ao(?—i—uk) / Tk l’i(_zf;:k) $1:2uk (:EL—y)Q(Q"‘“LH) yQ(_uLH_M)

where x;;, = x; — x, and we put xy = x. The functions (3.4) are common eigenfunctions of
all commuting operators Q(ug)

[Qup)¥H 0] () = 7 (up, v, n) W (),

~13 -



so that the conformal ladder integral

1 1 1 1
— d*zy, -
121 kl;[l/ xi(ff;:k) x}:2uk (xL _y)2(2+uL+1) y2(—uL+1—z/\)

can be calculated by inserting of the resolution of identity

phbn yH1in

E 2"(n+1) / dv
3 i
273 21+ 3 +ivt§) o2

=6 (z—vy),

(1-2—iv+2)

and after transition to the unit vectors z# = |z| 2* and y* = |y| §* we obtain the following

expression
TP L+1
xﬂl Hn y/‘/l Hn
(n+1) dv ||4“’“au—|—2 T(ug, v,n).
= / 1 zk ’Ll/) 2(171A7”/ Pt 0( k ) ( ks Vs )
n

The convolution g#1#rgHiFn can be calculated explicitly. We use evident formula

j#l"'#n@ﬂl"'#n — j‘j/»ll . :’fﬂngﬂl"'ﬂn — i#l"'#ny‘ﬂl - g#n ,

and the explicit expression (3.2) to get

sin ((n + 1)0)

—1)P(n — p)!
= A R e 1 R i tuns

¢ 4rpl(n — 2p)!
(3.11)

where C! (z) is Gegenbauer polynomial and it is useful to express everything in terms of
angle 6 between two unit vectors & and §: (Z,4) = cosf.

Collecting everything together we obtain the following generalization of the
relation (3.10)

1 1 1
d'z — = 3.12
x21/\ H/ k iQEuk kQuk ($L—y)2(2+uL+1) yQ(*UL+1*Z>\) ( )
grakm g LA sin ((n+1)0)
n+1 / dv . 47Uk 2 ,wn) ————=
n>0 2(1+%+iu) y 21— —iv) kl_Il ao(uk+ ) (uk v n) sin 6
A particular case of the general ladder integral is recovered for parameters A = 0, up = —1,

when the propagators become that of a bare massless scalar field. In this case the ladder
of lenght L coincides with the BD diagram of size 1 x L, that is

X . . . y

— 14 —



In this case the eigenvalue becomes

A=0,u=—1 1
") (3 +iv+1)

4 % ag(u+2) 7(u,v,n)

and the ladder integral is reduced to the form

L
1 1 1
H /d4mk 2 2 2 =
k=1
201

i 1 Tk (L —Y)

T e 2\ % 1 sin ((n +1)0
972 Z(n—l—l) /dV <?;2> (n i )L+1( )L+1 (ot )):

>0 5 — v 5 +iv+1 sin 6

—0o0

400 i
m2l-1 y? 1 sin (nd)
onZ Z n / dv <x2 ( =

L+1 I g
n>0 %—%—iy> (%+%+iu) .
. ,
n2l-1 Z " /Oodl/ yj v 1 sin (nf)
422 = 2 A2 2\ sind
o (V - 5) T

where we used the shift n — n — 1 and then symmetry with respect to n — —n.
After the last transformation: change of variable v — v + % and deformation of the
integration contour to the initial position we obtain

4 .
L A 1 1 1 e ood y2\"” 1 sin (nf)

11 R (xr, —Y)2 4 (p22)3 2 n Y22 2\ Ll ging -
1 k—1k Tk \ZL — Y 4(22y%)? pez (1/2—|— nT)

—0o0

(3.13)

The initial Basso-Dixon integral is produced by the shift * — r —xzg and y — y—x¢ but the
angle remains the same. It is important to note that all previous formulae are not specific
for the four dimensional case but can be generalized to d dimensions, as the formula (3.5)
can be immediately generalized.

The peculiarity of the four-dimensional case lies in the fact that it is possible to convert
tensors to spinors and back. As we shall show in the rest of the paper the expression for
eigenfunctions in a spinor form admits generalization to any number of sites N in model
with Hamiltonian (2.1).

3.3 Eigenfunctions in spinor notations

In the rest of the paper we shall use the spinor representation for the eigenfunctions of
the Q-operator. Now we are going to illustrate the main notations and tricks using the
simplest example N = 1.

Let us convert the tensor z#!#» to the spinor

G = (O g (T, g (3.14)

Qn

This spinor is symmetric with respect to aj...a, and a; ...a, independently. Note that
our metric is Euclidean and we shall use notation from appendix A.
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It is useful to introduce a generating function using the convolution with two external
spinors

Yataratt o at By - By, = M alz]B)" (3.15)

where we introduce the notation

8!

T =0o'd,, &=, o=, (3.16)

x is the two-dimensional matrix and (a|z|3) = a®x?B;. Note that this quantity can be
represented in the equivalent form (a|x|8) = ztc,, where the vector ¢, = (alo,|B) is
automatically a null-vector (¢, c) = 0 due to the Fierz identity o, ® o = 2(1 —P). The
spinor wal g" can be reconstructed from the generating function via differentiation

O S S D5, - Dp,, (alz|B)" (3.17)

ay...an (n,)g
and we shall consider the components of these auxiliary spinors as generic independent
variables. Note that initial spinors have lower indices «, and [; and the index raising
operation is defined as complex conjugation a® = (ag)* = @, and 8% = (f4)* = B so that
the rules of hermitian conjugation are

= a

ol =7, a®=du; =B (aloulB) = (Bl ,la) (3.18)

in agreement with usual transition (a| = |a) which means transposition and complex

conjugation.
The orthogonality relation (3.8)

4 pHiEn V1 Vn! 2177171.3
d*z =
/ 1+”\+w+ ) 2(1— ﬂ72‘1/Jr%/) n—+1

/
O Opy o 10 O(V = V')

has the following spinor counterpart

Has| A\ 3
[t O T 2T ooy (5 15)" S 0~ ). (8.19)

1+1A+“/) (1 zk iV') n 4+ 1

The previous Lh.s. is an integral of the type

. (A" (B.o)" - "
/d 1+”+w+ 5) p2(1- 2 —iv/+2%) = 0y = V) Oun (4, B)

where in our particular case A, = (a|o,|B), B, = (6'[64|¢) so that A*A, = B¥B, =0
and A*B,, = (A, B) = 2(a|a/)(#|3). Indeed, in components we have

(4,B) = a® (@)% 5a 8" (@) 0 = 2 (a® aa) (8" 5a) = 2(ale’)(88).
due to Fierz identity

0,06, =2P <= (0,)"(F.); =260, (3.20)
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and the pairing between spinors is the standard scalar product in C?
(ald') = a®d), = aqdly,, (B'18) = BBy = BB . (3.21)

As explained in appendix A the dotted and un-dotted indices distinguish spinors that
are transformed according to representations of two different copies of SU(2) in our Eu-
clidean case.

In many situations it will be useful to adopt more condensed notations. Let A : CZ —
C? be some two by two matrix. We denote A® ---® A by [A]™ — it is the operator acting
in the space SymC? ® --- @ C? = Sym C*" accordlng to the notation

A =A®-- 84,
[A]”l [B]W:A@...@A@B@...@B’

and clearly the matrices with enclosed in different brackets [. . .| are acting on the symmetric
spinors of different spaces. Using these notations we can rewrite relation (3.19) in the
following way

4 mn [m]n __9n )
/d 1+“+w) 2= —i) = 2" en du Ol — V)P, (8.22)

where IP is operator of permutation: P|3)®" @ |a)®" = |a)®" @ |3)®". For full clarity, we
should write here for once the explicit spinor indices:

nya n a ~~-an — n/ fn’ b "'bn/
(i = (2l 5 (@)")E = (@),
X nja ([f]n/)b n a
/ d'z QEE—F]M)—ZV) 2(1-%2 l;u ") = 2" e O (v — V/) 65 6:: : (3.23)

In order to transform the completeness relation in tensorial form (3.9) to the spinorial
form, we exploit the property (o-u). (6,); = 20,,, on the first stage, then transform the
convolution with respect to spatial indices to the convolution with respect to spinor indices
and on the last step to use Gaussian integration for substitution of convolution with respect
to spinor indices

1
xﬂl"'ﬂn ymmun — 27 ( ﬂl)al . (Uun)an xltl ‘Hn (o.yl)tn (a_yn)an ym-"un —
I:v\” IyI"

e | DaDs (alels)" (3lgla)".
This substitution is based on the standard Gaussian integration [53-55] over « and
/Da = % /d2a1d2a2 e~loal?~lazl* (3.24)
We have the following Gaussian integrals
/Daa‘“ e g, = /Dozda1 C Qg Qey t ot O, = n!S‘dg; 02 ---0gm,  (3.25)

/D55d1~-ﬁ“‘"ﬁel B, = /Dﬁﬁm---ﬁdn Ber - Bey = nl 5601 582500 (3.26)
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where S is the symmetrization over all spinor indices

§paran — — Z H) T p(n) (3.27)
pGSn

Finally, after all transformations one obtains the completeness relation in spinor form

> cln 7 ()2 1 /dV/D pp (AN WAl g1y (3.28)

n>0 (n!) L2053 +iw) 2015 —i)

4 Star-triangle identity in four dimensions

The computation of the spectrum of (2.1), or equivalently of (2.6), can be done exactly
constructing first a basis of eigenfunctions and then obtaining the eigenvalues by direct
application of the operator to the eigenfunctions. The recipe needed to do all this procedure
follows closely the one elaborated for the 2d analogue of the model under study in [18, 56],
which is ultimately based on the chain-rule identity (or its equivalent star-triangle form)

/ P CTa-ar(1-b)r(a+b-1) 1 @)
[21

—uwltfn—wl " D(@LDOT(2—a-b) [z 2D’
where a,b, @,b are complex numbers subject to the constraint a — a, b — b € Z, and we
used the notation for two-dimensional conformal propagator

1 1
— = 7*, 5 (4.2)
[0 (2)2(z%)e
where A = (a + a)/2 is the scaling dimension and ¢ = a — a is the spin. The analogue

of (4.2) in 4d is given by
()"
ﬁ . P, =0, (4.3)

and the null vector n can be constructed by means of auxiliary spinors, as explained in
appendix A

ny = (alou|B), or ny = (Bloula). (4.4)
Now, for the case of £ =0 the formula (4.1) can be immediately generalized to any space-
time dimension d as

/ dy JLE-r(E-t)P(atb-g) (4.5)
(x1—y)

(g —yy2b " T@IMT(d—a-1b) 2t

12
Nevertheless, it is crucial for us to deal with the general case (4.3), as made evident by the
discussion about the spin chain model (2.1) at N = 1 of section 3. For this reason the rest
of the section is devoted to the computation of (4.5) for d = 4 generalized to the case of
any spins ¢ and ¢’

/ iy alloulfh)(m — )" [(Balvloa) (2 — )] (4.6)

y)2(@t+/2) (g — 4)20+0/2)
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In order to formulate a generalization of the chain-rule identity and star-triangle rela-
tion (2.14) which includes spin degrees of freedom, we should take into account that two-
components spinors can undergo linear transformations by means of matrices. In particu-
lar, we will see in the next section that the spinorial degrees of freedom in the generalized
star-triangle relation are mixed by an R-operator.

4.1 Spinors mixing

The R-operator is a solution of the Yang-Baxter equation (YBE) [57, 58]
Ri2(u)Ri3(u + v)Ra3(v) = Raz(v)Riz(u + v)Ria(u) , (4.7)

and it is function of a spectral parameter u. We recall that the YBE is defined on the
tensor product of three vector spaces Vi ® Vo ® V3, and the indices show that Ris(u) acts
nontrivially in the space V3 ® V5 and is the identity operator on V3. In order to fix the
ideas let us set Vi = Vo = V3 to be the space of two-spinors V = C2. Then the solution of
the YBE is the so-called Yang R-matrix

Ref(u) = —— (ud o) +a365) | (4.8)
where a, b, c,d = 1,2. In the following sections we will need to pick Vj, to be the space of the
symmetric spinors ‘ll(aln-ank) that is the space of the (ny + 1)-dimensional representation
of the group SU(2), corresponding to spin % and (...) is the standard notation for the
symmetric structure

(@1...a;...a5...an,) =(a1...05...0;...0n,). (4.9)

Thus, the general operator Ri2(u) acts in a tensor product of two representations with spins

5t and 2, namely the space of spinors \Ij(al---anl)(bl---an)' In the matrix notations we have

. (cl..-Cnl)(dl---dnz)(u)

[B12() W] 4y an, )01 bny) = Blarams ) b1y (8 et ey )(di ) (4.10)

where the summation over repeated indices is assumed. For simplicity we skip indices 12 in
the matrix of operator Rj2(u). The standard procedure for constructing finite-dimensional
higher-spin R-operators out of the Yang R-matrix is the fusion procedure. Following the
recipe of [59, 60] we form the product of the Yang R-matrices

R (w2450 ) = Sym RO (u) B2 (u 1) - B (wtm = 1), (411)

(a1...any)b as dy an

where Sym implies symmetrization with respect to groups of indices c; ... ¢p,. The symme-
try with respect to groups of indices aj; . .. ay, then follows from the Yang-Baxter relations
for the Yang R-matrix. In such a way one obtains an operator acting on the space of
symmetric rank n; spinors, i.e. on the space of spin % representation, and on the two-
dimensional space of spin % representation. Next the R-operator (4.11) is used as building
block and repetition of the same procedure increases spin of the representation in the

1 ng
second space from 3 to 2,

(c1.-ny) (d1.e-dny) (c)echy)dr (¢].cpy) da

-1 (c1..tny)dn
Ry ) (b1.bns) (“ + %5 ) =SymR, 4 (W) R et )ba (u+1)--- R(all.__anll)bnz (u+mng —1).
(4.12)
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In a more compact notation we will refer to the fused R-matrix acting on symmetric spinors
of rank n; and ng as Ry, p, (u) or R((le'.'.'.‘;z))((ill ‘Z:zi R¢¢ in the case when we will need
explicit indieces. In appendix C we derive explicit compact expression for the genearal R-
matrix Ry, n,(u) in a form which is especially adapted to the calculation of the Feynman
diagrams.

Note that all formulae in this section are written for the spinors with un-dotted indices.
Of course there are analogous formulae for the spinors with dotted indices — in all formulae
one should change un-dotted indices by the dotted ones. We do not write all that explicitly
just to avoid the non informative doubling. In the next section we will work with all spinors

with dotted and un-dotted indices.

4.2 Zamolodchikov’s R-matrix

The Yang R-matrix (4.8) can be used to define solutions of the Yang-Baxter equation
acting on a couple of space-time indices pu,v =0,...,d — 1. Indeed (as explained in detail
in the appendix (A.5)—(A.6)) an arbitrary tensor of rank two t*” can be converted into a
spinor of rank four according to the isomorphism defined by

Vi = (o) () 7, (4.13)

whose inverse formula, transforming a rank-four spinor to the corresponding rank-two
tensor, reads

1 . b T
o = L (@) @)} ik (4.14)

It follows from (4.14) that the action of the Yang R-matrix on the space of rank-two spinors

R(u)

Pab —— By = REL(u) bea » (4.15)

can be used to induce an action on the space of rank-two tensors t*”. Indeed, let the action
on rank-four spinors be the direct product of (4.15)

ab ab a
Ol = &'y = Rej(w) 9% RIS (w) (4.16)
then we can define Rl‘j‘f such that
b =, = R (W) tas (4.17)

imposing through relations (4.13) and (4.14) that

1 al ané d
t = Riis (Wtag = 7 (@4)5 (@) ¢y, and ¢ = (o) (o), tas- (4.18)
Finally we obtain that
RoB 1 d pab ayd ﬁbRéd i1
w(w) = @05 (@5 Reh(w) (0%); (o7), Rij(w) (4.19)

—90 —



which is a solution of the Yang-Baxter equation on the rank-two tensors. The expression
on the r.h.s. of (4.19) can be computed explicitly
1 — \e(= \d b, sb ; bl césd, cécd
Tty (@)i@a)i [wordia263] (o5 (o) [udie] +453] =
1

u? - 1 B
= ) (4 tr(Uaa'u)tr(U,BUV)—FZtr(a'ao-l,)tr(a-Bo-M)

RO (u) =

u . u _
+ 1 tr(0,0,0,03)+ 1 tr (auaﬁayaa)> =

1 U
TSy <u SansB+ S 5a55,w) .

Note that in our Euclidean situation it is possible not distinguish lower and upper tensor
indices p,v,a,B ... The last formula can be rewritten in the standard form in terms of
identity 1, permutation P and contraction K operators

R(u)zwil)@mp—uilK) , (4.20)
and we recognize that it coincides with the R-matrix of the O(d) model by A. Zamolod-
chikov and Al. Zamolodchikov for the space-time dimension d = 4 [41, 42] (see also, in
relation to fishnet graphs: [61]).

The same fusion procedure used in order to define an R-matrix over the spaces of /¢
and ¢/ symmetric spinors starting from (4.8), can be applied in order to generalize the
Zamolodchikov’s R-matrix (4.19) to rank ¢ and ¢ symmetric tensors. The fused matrix
Ry (u) is given through the fused matrix Ry (u) over spinors (4.12), according to the
isomorphism (A.5)-(A.6), as

(Oé 7777 &2 )(6 7777 B ’) 1 — — — d — d[/
R(M;---,uf)(mlr--,v;/) (u) = U+ (@ )ey (UW)Z (aVl)di o (UW')JZ, '
(@1 y000300) (b1 sersbyr) ; ; b bt (e1,0e) (dryonnsdyr)
R e ) (W (Fa)a - (Tar)ay (@061 )p, - (%/)W R o) in o) (@)
(4.21)
which in more compact notation we will denote by

1 - o —

Rip (W) = gz T ([04)' [0 Ree(w)oal o) Ree(w) | (4.22)

and for £ = ¢’ = 1 coincides with (4.20).

To avoid misunderstanding we use in the last equation notation Ry (u) for R-matrix
acting on the un-dotted spinors and Ry (u) for R-matrix acting on the dotted spinors.
Note that below for the sake of simplicity we shall use universal notation Ry ¢ (u) for both
R-matrices because explicit indices can be restored unambiquously when needed.

4.3 Integral identities

In this section we prove the star-triangle identities which generalize the well-known scalar
relation (2.14) for a vertex of three scalar bare propagators, to the case of propagators in
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Figure 7. Chain rule for the convolution of two conformal propagators. The matrices & are
denoted by the barred line, and the arrows indicate the flow of matrices in the two spaces. The
action of the R-matrix is represented along the spinorial structure by a grey line.

the irreducible tensors representation. We shall use notation

x:a“@, i:&“m—“, (4.23)
x ]

so hat the propagators of two massless fields with bare dimension A; and As representation
of spins (£,€)= (0,n1/2), (na/2,0), apart from inessential constants are

s

(x —z|™ [z -y
(x—2)2217 (y—2)22

(4.24)

Such objects already appeared in the section 3.3 as eigenfunctions of the Q-operator for
N = 1. In order to introduce the eigenfunctions for any length N we follow the scheme
used in two-dimensions, thus we need the convolution of the two propagators (4.24), going
under the name of chain-rule (see figure 7)

/d4 (x—z]" [z Y]

3:' _ Z 2A1 (y 2)2A2

n2

anm,nz (2 — A — A2) [y - X]n2

ni,m [y — X]
= "M (Ar, Ag) (z — y)2(BrA2-2)

(4.25)

The explicit expression for the coefficient C"1""2(Aq, Ag) is given below (4.29). We should
note that there is some freedom in the representation of the right hand side due to invarianve
of R-matrix

[(x]"™ [X]™ Ry ny (0) = Ry iy (w) 3] [x]"2 (4.26)

and evident relation xX = 1. Using these relations it is possible to transform expression
[x]™ Ry iy [X]™? as follows

[x]"* Ry ng [X]™ = [X]"™ [x]™ [X]"* Ry iy (X]™ = [X]™ Ripy iy, [x]"™ [x]™2 [X]™ = [X]™ Ry my [x]™

It is instructive to represent (4.25) in a more explicit form using spinor indices in full
analogy with (3.23)

D" LTI ] _ o, 5 XA (21— ) (=)
/d4 (z— ZQ)AI(([@/ z};iﬁz) =" (A1 Ag) > (:cliy)2(A11+A222) Y a

(4.27)
This formula is the fundamental relation of this paper and appeared for the first time in
the work [6]. Its detailed derivation is provided in the appendix D.1.

It is useful to recast the chain-rule in the form of a star-triangle identity by means of
a conformal inversion respect to the point zfj = 0 followed by a translation of vector —t*.
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Figure 8. Star-triangle relations for “opposite flow” (left) and “same flow” (right), where the order
of matrices o, o in the product is given by the arrows and the position of & is denoted by the
barred lines. The action of the R-matrix is represented along the spinorial structure by a grey line.

Figure 9. Star-triangle relation (4.30). Differently from figure 8, there is no action of the R-matrix,
as there are no spinors to mix (ng = 0).

After a few manipulations (see appendix D.1), the star-triangle relation can be states in
the general form, under the uniqueness constraint a + b+ ¢ = 4, as

[ E D OME I _ i,

-

. _ o (4.28)
o [X=Y)(y = O] Ry g (€ = 2) [(8 = x)(x — y)]"™
(z — )2 (z — 1)2@=D)(y — 1)2C—0) ’
where the explicit expression for the coefficient C™"2(qa,b) has the following form
oI (2— ol 2—b+2)T (2—c+ 225 —1m
Cn1,n2 (CL7 b) — 7'(' ( a+ nl) ( n;’_ 2 ) ( i:__nl 2 ) ( )nﬁ_nZ ) (429)
Tlar BT 0+ BT (=17 555) (o= 1+ 25m)

We point out that in the case ny = 0 (and similarly for n; = 0), the identity (4.28) boils
down to
—z)(z—t)]" (x=y)y —t)]"
d [(x —z)(z — "% b
J @ oty e = D e g g
(4.30)

with coeflicient

Fr2-—a+3Tr2-0Tr2-c+3%)
F(a+5)T O (c+ %)

C™%a,b) = 7* (4.31)

and was first worked out in [47]. In the formula (4.28) the matrices o, & are ordered in the
product from x to ¢ in the ni-space and from ¢ to y in the no-space, and we refer to this
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relation as star-triangle with “opposite flow” of sigma matrices. It is possible to obtain
another star-triangle relation starting from the chain-rule, for which o, & matrices have
the “same flow” as the matrix products are ordered from z to ¢ in the ni-space and from
y to t in the no-space (see figure 8).

x—z)(z—t)|™ —z)(z —t)|™?

e O S = O )

[y —X|"" Ry n, (¢ —2) [y — t]" [(y — x)(x —t)]"
(z — )220 (z — £)2C2-b) (y — {)22-a) :

(4.32)

X

Following the lines of [18], we list a remarkable consequence of the star-triangle for-
mula (4.32) which we refer to as exchange-relation. It will be frequently used in the
study of the eigenfunctions of the operators (2.6). Under the constraint o’ +b' = a + b, the
exchange relation reads:

[ (0 — 2)(Z=%)(x — x0))'[(x0 ~ ¥)FT=2)(z — xp))” _
(z0 — )22~V (y — 2)2C=) (2 — 2)20(z — 2)P(z — 2)2C2V) (& — )22~)

_ / g R[(xo — ¥)(y = 2)(z — xp)]"[(%0 — 2)(z — x)(x —xp)]"R""
(0 — 52Dy — 2 (55 — 2)2 (z = 2)2 (= — 222z — )T
(4.33)
where R = Ry (b — V'), and the coefficient C is given by
r(2-b+4)r(2—a+ o +4)0(a/+4
LR L ) 13 (2 L CEE N

Fla+r(p+4rz-a+5)r2-v+4)

The identity (4.33) shows that the exchange of parameters (a,b,?), (a/,0,¢') between the
L.h.s. and the r.h.s. of the equation produces a coefficient and the mixing of external spinors
by the fused-R matrix. The graphical representation of this identity in a Feynman diagram
formalism is

X0 R1 x'

yi_\\ 1 y.\ \ " 0
D28 2 ' w2-a 2.4

g \/ e H E \/ L '

2-b" €z 2b = C 2-b | ¢z 2-b’

E a b R~ a’ b?

: A

Xo X xo( X

The proof of (4.33) is a simple consequence of the star-triangle relation (4.32), and it is
explained in detail in the appendix D.2. For completeness we write explicitly the reduction
of (4.33) to the case ¢/ = 0, as it is ubiquitous in the computation of the eigenvalues (see
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section 6)
/d4z [(x0 —2z)(z —x)(x — xi))]g _
20— WPy — 2Py — 2P — Pz — TP — 7D
[(x0 — ¥)(¥y —2)(z — xp)]*
- C/ o (w0 — y)?C~0)(y — 2)2(=a) ((9)00 — 2)2 (z — 2)% (oz — )220 (g — 2@V
(4.35)

and can be represented as

Y y . X0
2-a 2-b .
\\/\\ r"’
2-b’ =C 2-p’
S
) a b .
xo T Sx X

It can be useful to state (4.33) in a different form, such that there is no coefficient C
between the 1.h.s. and r.h.s. and is the direct generalization to 4d of the two-dimensional
identities of [18]:

1

1 /d4 [(x0—y)R " (y—2)(2—x()]" [ —%0) (x0—2) (z—x)]" _
(33 ﬂUD) (2—a—0) 330 y) (a’ —a)(y 2)2(2 a/)(1’0—Z)2a(ﬂf—z)2b(2—$6)2(2_bl)
/d4 [(x0—2) (z—x) (x—xp)]"[(y —2) (z—xp)R " (xp —x))*
T (y— ah)2@—a=b) (y—2)2 (w0 — 2) 2@ V) (3= 2)2@~@) (z— g )20 (g — ) 20-0)

(4.36)
v 0 < — i
RE=r 2-a" 207 b a R
i \/ o . N
a b 2b -
A -b’ 2-a'
o 2-a-b
Xo a x X04 vy

As it was for the star-triangle identity, also for the exchange relation it is possible to state it
for two different choices of the relative flow of o and & matrices. Therefore, while in (4.36)
both spinor structure go from the left (zg,y) to the right (x, ) of the picture, there exist
another exchange relation with opposite flows. This additional relation, valid under the
constraint a + a’ = b+ ¥/, reads

14

/d4 ~ )y —2)(z - xp))" [(x — 2)(z — x0)(x0 — ¥)]
( 71:0 (a'—a) y*Z) (2— al)(ZfiL‘ )2(276’)(27:5)2@)(27‘@0)2((1)
/d4 (%0 — 2)(z — x)(x — xp)]" [(x —xp)(xp — 2)(z — y))*
(x — x6)2(b v) (y — )2(2 a) (2 — 2))22=0)(z — 2)20) (2 — ()2

(4.37)
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where the coefficient C' is the same as (4.34).

X'y X'
)2 Il y‘\ ’
Hon2-a' 2-bls ~.2-a 2-b.Y:
2" Xz =C 2z b
E E a b \\\ T r
b a b \
Xo I ‘X XO( wg(

The proof of relation (4.37) is not a consequence of the star-triangle identity already in-
troduced, but it follows from a new, different identity of star-triangle type, as we explain
in detail in appendix D.3. It is possible to re-cast the equation (4.37) in an equivalent way
such that the factor C' defined in (4.34) disappears:

/d4z (30 = ) (v = 2)(z — x0)]"[(z — %) (z — x0) (%0 — ¥)|"
0 — CL’

)22=a=b) (g — y)2(a’=a) (y — 2)2(2=a") (2 — 2)2a(x — 2)20(z — )22~ B
_ /d4 [(x0 — 2) (2 — %) (x — xp)]" [(x — xp) (xp — 2) (z — y)]
0)2C2=a=b) (y — 2)2C2=0) (1 — 2)2¢ (& — 2)2 (2 — 2})2C0) (z — x}) 20—V
(4.38)
which we can represent graphically as
yAr\\ //4X’0 y‘ Z‘a'b /’IXIO
iin2-a'"  2-bl- b a . A
. iy e
X0 3ap T xo' e

and which will be the basic block for the computation of the scalar product between
eigenfunctions. The identity (4.38) is obtained starting from the multiplication by (z —
20)2(@t0=2) of both sides in equation (4.37). Then we move such line in the r.h.s. from
(x — x0) to (y — (), by means of triangle-star transformation in (zo,z, z) followed by
a star-triangle involving the star of vertices x(, and y. The coefficient produced by such
transformation is exactly C~1, and cancels with C in the r.h.s. of (4.37).

5 Q-operators with spin

In the section 3 we illustrated how to translate the computation of massless ladder Feynman
integrals to the diagonalization of the family of operators Q(u) (2.6), which is the generating
function for the commuting operators including the Hamiltonian (2.1), and realize the
integrability of the model. The same technique can be applied to the computation of
massless Feynman integrals with the topology of a square lattice, which indeed can be
reduced to the diagonalization of the operators (2.6) at special value for the parameter
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A Xo

Xo X1 X2 X3

Xo r: 15 &

., \\‘
X1 Xz X3 Xo

Figure 10. Graphic representation of the integral kernels Q, ¢(x|y) (up) and Q, ¢(x|y) (down)
for the length N = 3. The solid lines stand for scalar propagators ((zp — z5)?)~ 2", the dashed
lines denotes the numerators [x — y]*/((z —%)?)'~**~* while the dashed lines with a bar stand for
x —y]/((x —y)?) =+ The arrows denote the order of the matrices o, & in the product.

u = —tA. Moreover, this logic can be extended to the more general situation including
fermions or other fields with higher spin in the theory, provided that the topology of
massless Feynmann integrals is still the one of a regular lattice with conformal symmetry
(dimensionless vertices). In order to do so we must consider a more general class of integral
operators for any spin, which in the scalar case reduce to the operators introduced in (2.6).
Therefore we define two families of operators

(Qu)d: LA (d*xy - d*ay) — LA (d 2 - d*ay),

d(x1,...,xN) — /d4y1-‘-d4yN(Q,,’g)2(x6,a:1,...,a:N,a;0|y1,...,yN)-qﬁ(yl,...,yN),
(5.1)
and
(Que)d: L2(dYay - d*en) — L2(d*zy - dizy),

é(z1,...,oN) — /d4y1'"d4yN(Qu,£)g($6,$1,-~-,33N,550|?/1,-~-aZ/N)'¢(yla--wyN)~
(5.2)

For full clarity, we should write here for once the explicit spinor indices of the operators
under study:

(Quoa = (Quon sy and (Quoli = (Quoia ) (5.3)
where the (...) notation means the symmetry respec to any exchange a; <+ a;j or a; <+ a;.
In the following we will always omit the spinor indices since we will the state relations valid
for any choice of a and a, i.e. for the full matrix. Moreover we will add the superscript N
as in Q(VJ’Z) or Q%) only in the relations which involve at the same time the @Q-operators

for the model at different sizes. The kernel functions in the r.h.s. of (5.1) and (5.2) are
respectively given, in matrix form, by

N-1
N 1

/ . _
Que(T0:T1,- -, TN, To|Y1, - YN) = k|:|0 (20 —2p g 1) 2N

5.4
[(xp—y1)(y1—x1)(X1—y2) - (yN—%xN) (XN —x0)]" (54)

X
(w67y1)2(17i%+i1/) (1 7331)2(171%41/) e (yn 71,N)2(172%7i1/) ($N7$0)2(1+ig+z’u)

)
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Y1 Y2 Y3

X X, X5 X3 Xo

Figure 11. Graphic representation of the integral kernel Ql/2 Xly) = Q71/2 oXly) at A = —i.

The solid lines stand for the standard scalar propagators (xj — x5,) "2 and (x5 — yi) 2.

and
N 1
. , B
Qv,f(anxla' . ,-TIN,xO‘yl,- . 7yN) _IJ:II ($k*$k+1)2(i/\) X

" [(xo—x1)X1—y1)(y1—x2) - (XN —yN) (yn—%0)]* |

() _x1)2(1+i§—w) (z1 _y1)2(1—i%+iu) . (xN_yN>2(1—ig+iu) (yN_xO)z(l—ig—w)

(5.5)

where xn4+1 = x9. The spinor indices described in (5.3) are evident in formulas (5.4)
and (5.5) due to the matrices 0% and ¢, and the symmetry in the exchange of spinor
indices is encoded in the notation [-- -] introduced in section 3.3. Such integral operators
scale respectively with dimension A =1 + z% +ivand A =1+ z% —qv. It is possible to
recover from (5.4) or (5.5) more familiar objects in the realm of Feynmann integrals fixing
A = —i. Indeed, setting (v,¢) = (i/2,0) in (5.4) or, respectively, (—i/2,0) in (5.5) those
two formulas simplify to a portion of square-lattice graph (see figure 11) with external fixed
points zo and x:

1
(xp — $k+1) (xk - yk)2

Qi/o.0(x[y) = Q_ija0(xly) = (5.6)

N

Similarly, in order to obtain spin—% fermionic propagators, we fix (v,¢) = (0,1) bot
n (5.4) and (5.5), so that they reduce to a row of planar Yukawa (hexagonal) lattice (see
figure 12 and figure 13)

A (X()*Y1)(Y1*X1) (YN XN)(XN Xo
X = =
Qo,1(x[y) (@ —91)° B (g1 —21)°B) - (yn —n ) 2D (e —20)2 D) H (Th—Thp1)?
L 4 4 (xo—21)(z1—x%1) - (zZn —XN) (XN —Xo0)
= d A -d ZN
1“(% 2N/ (z 6—21)2(%)(zl—1’1)2(%) (en—zn)2 D) (2 —20)2(3) H (z—yx)?’
(5.7)
. (XB—Xl)(Xl—)ﬂ)"'(XN—YN)(.YN Xo)
0,1 X = =
Qo1 (x]y) (zh—21)23) (21 —11)2E) -+ (wn —yn )23 (yn —20)2(2 >H (xh—Tre1)?
T 4 4 (xp—x1)(x1—21) - (XN —2N) (2N —Xo0)
= d*z1---dzy
p(% 2N/ (I,Q_ZI)Q(%>(Z1_SUI)2<%) (zn— xN)?( ) (zn —0) 2( )H (zk —yk)?
(5.8)
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~Xo

W

Xo X1 X2 X3

Figure 12. Graphic representation of the integral kernel Q(()B% (x]y) for A = —i. The solid lines
stand for scalar propagators 1/(z — yx)?, the dashed lines stand for (6#(z —z),)/((z — z)?)? while
the dashed lines with a bar stand for (6" (z — 2),,)/((xz — 2)?)2. The arrows denote the order of the
matrices o, o in the product.

X4 X5 X3 Xo

Figure 13. Graphic representation of the integral kernel Q(()Si (x]y) for A = —i. The solid lines
stand for scalar propagators 1/(z — yx)?, the dashed lines stand for (o (z —y),)/((x —y)?)? while
the dashed lines with a bar stand for (6" (x —y),)/((z — y)?)?. The arrows denote the order of the
matrices o, o in the product.

We can use the formula (4.33) to compute the commutator of two Q—operators at
the same value of the parameters A and N. Starting from the composed operator
(Qu,é)g(Qy’,Z/)E represented in the left picture, we want to commute the two operators
by means of the integral identity (4.33). The first step is to open the triangles containing
a vertex yy into star integrals by means of (4.30) (right picture)

Y1 Y2 Y3
, ” , ) L., L., [ .
o~ . x 0 x. P
x x N X i x x X
Xo i
;b P H » L
. N < «
X X X ! S
o o > »
,
X0 X, X3 X3 Xo X1 X2 X3

Then we insert a couple of lines for each & < N odd [(Wi — xi)(wy — x)]¢ = 1 and for
each k < N even [(wi — xi)(wi — xi)]* = 1 (left picture). Then it is possible to apply
the exchange identity (4.33) to each square of vertices (zj, Tg41, Wgt+1, Wrt2), SO that the
labels (v,¢) and (v, /') are interchanged and there appear the matrix R = Ry ¢ (iv — i)

~ 99 —



(right picture).

X3

Finally we notice that all the R-matrices at vertices wy or z; cancel, RR™! = 1, and we
remove the extra lines [(wy — x ) (W — xx)] = 1 (left picture). As a last step we integrate
the points wy by means of the star-triangle identity (right picture).

| | [ g ’ & o
« N « b X X X X Rt
& 1)(0
R ‘ ~ X X R \ X X X
- \ :(1, X; X2 X3
The result of the procedure is that we obtained the algebra of Q-operators
(Quo)a(Qua)f = RE (@ = iv) (Qure)§(Quo)s RE (i — iv') (5.9)
or in more compact notation
Qu,f 029 QV’,E’ = Ril QV’,Z’ ® QU,E R. (510)

Note that sign of the tensor product indicates the tensor product with respect to spinor
indices and we use the important property of R-matrix: R~!(u) = R(—u) (see appendix C).

The same relation holds for Q-operators, and the proof follows the very same lines of
the previous one

N

(Qu,0)2 (Qur )8 = R (i — iv) (Qur )3 () RER (i — i) (5.11)
Ql/,é & Qz/,é’ = R_ Qz/’,f’ ® Qu,é R. (512)

A straightforward consequence is that for £ = 0 or ¢ = 0 the equations (5.11) and (5.10)
boil down to the commutation relations

QV,O QV’,Z/ = QV’,K’ QV,O 5 QV,O Ql/’,f’ = QV’,E’ QV,O ; (513)

and in particular the scalar fishnet kernel (5.6) commutes with both Yukawa kernels (5.7)
and (5.8). Finally, in order to complete the algebra of Q-operators we can state the
commutation

Q)2 Qv )2 = (Qur ) (Qu )2 (5.14)
QVE X Ql/ 0 = Ql// YA ® QVE (515)
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Let us start from the graphical representation of QAM ® Qyw on the left picture. As a first
step we open the triangles containing a vertex yj into star integrals, according to (4.30).

. r r r L L [

W

" Xo

Xo X3 X X3 X0 X; X5 X3

Then we integrate the point z; by means of star-triangle identity obtaining a pair of vertical
lines [(w1 — x1)]’ ® [(w1 —x1)]" (left picture). We can move vertical lines from k = 1 to
k = 2 by means of the exchange relation (4.33) (middle figure). The procedure can be
iterated further, moving the lines to k = N (right figure).

Y2 VE]

¥ Xo
~
X x N
Xo X; X2 X3 X; X2 X3 Xo

The result of the procedure is that we obtained the algebra of Q and Q—operators.
We can also dress the operators (5.4) and (5.5) with symmetric spinors a® and 5%

(B1Quela) = 67+ B (Qua)(it ¢ ey
(OZ|QV,€|B> = afl...q% (QV,OEEZ% Bey By -

(5.16)

The kernel of the operators (5.16) are invariant under SO(4) rotations and covariant respect
to scaling of coordinates. The numerator of (5.4) after dressing becomes

(Bl(xp —y1)(y1 —x1)(x1 —y2) -+~ (yN — XN) (XN — X0) )" (5.17)

This expression depends on all unit vectors a!' = (y; — z;)*/|y; — z;| and b = (y; —
x;i—1)"/|yi — x;—1| and is an harmonic polynomial of degree ¢ in each of them. For example,
let us extract some reference vector b and then it is easy to see that the general structure

of our expression has the following form
bt B O O = BBl Ot = Bl B O = iR Ol Ok (5.18)

where we use notation (3.2) for the traceless symmetric tensor and introduce vector C*
which has the general form C* = (5|A&* Bla) with some matrices A and B absorbing
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all not important for us at the moment products of matrices from initial expression. All
transformations in (5.18) are evident and based on the property C*C), = 0 which is a
consequence of the Fierz identity 6 @ 6 = 2(1 — P)

(845" Bla)(8|A &, Bla) = 2(8|A® (B|A (1 — P) Bla) ® Bla) = 0.

Relation (5.18) shows that all dependence on the vector b! accumulated in an symmetric
and traceless tensor b/"** that gives harmonic polynomial of degree ¢ after convolution
with CH1...(CHe,

Relations (5.10), (5.11), (5.14) can be rewritten by inserting spinors as

(B1Quela) (B'Qur ey = (B, BIR™ Qe ® Que R, ),

(| QuelB) (& 1Quer|B') = (&, aRT' Qurp @ Que |8, ),

(B1Qu,ela) (1Quer|B') = (/|Qur e/ |B") (BIQuelcx).
In the choice v = v/ and ¢ = ¢’ we check that Ry ¢(0) = Py and the first two formulas
simplify as

<6|QV,Z|Q> <ﬁ/|Qu,€|a/> = <6,7 5|PQV,Z b2y Qu,€ P|O/> O‘> = <ﬁ|@u,£|a> <B,|QV,Z |O/> ;
<04|Qu,€’/6> <al|Qu,€ /8/> = <O/704|]P) Qu,é & Qu,f ]P)’/BI7IB> = <a’QV,€|ﬁ> <O/‘QV,£ /Bl> )

which stand as a consistency check for (5.10) and (5.11).

6 Eigenfunctions

The construction of the eigenfunctions for the spin chain of length N follows the same
iterative technique explained in [56] for the two-dimensional case. First of all we introduce
the integral kernels

Al(/{\é) (X‘y) = T’(V, K)Nil Q,(/]’Z_l) ($1, L9y y TN, x0|y1, ceny yN_l) y (61)
" r(1+id+iv+5)r(1+i3 —iv+5)
rv, =

r(i-ig—iv+5)r(1-id+iv+f)’

which carry symmetric spinor indices (A,,g)ggizg = (A, )2 and Q-kernel is defined in (5.4).

The corresponding integral operator is defined as follows

[A%)(ﬂ (xl,maiﬂN)Z/d4y1"'d4yN—1 Ql(,{\é_l)(th%‘-~axN’xO‘yly~~-ayN71)¢(y1»~-ayN—1)a

The integral operator and its kernel carry symmetric spinor indices, therefore for each choice
of indices a and a the operator (A, ()2 maps a function of N — 1 variables z1,--- ,zn_1 to
a function of N — 1 variables x1,--- ,xny which carry additional symmetric spinor indices
a and a. In analogy with the particle creation operator in quantum field theory, the
operator (A, ¢)3 creates the dependence on a new variable z and symmetric spinor indices

a and a. The operator A,(/Ag) is a close relative of the Q—Operator. The integral kernel
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QI(JA;) (x4, 1y .-, TN, To|Y1, - - -, yn) is defined in (5.4) and after corresponding changes it is

easy to obtain explicit form of the integral kernel of the operator Al(lj\g). For simplicity we
present it here

N-1
A(N-1) 1

T1,22, .-, TN Toly1, ..., YN=-1) = X
Q. (z1, 22, N> oY1 YnN-1) kHZO (2h — Tpe1) 2N

(1 —y1)(y1 — x2)(X2 — y2) -+ (yN-1 — XN) (XN — X0)]*

(21— y1)2(1—i%+w) (y1 — xz)z(l—ig—iu) o (yN—1 — xN)Q(l—z%—iu) (n — z0)2(1+ig+w) :
(6.2)

X

The fundamental observation in order to construct iteratively the eigefunctions of the
model (1.10) is that the generators of commuting charges @(u) at lengths N and N — 1
are intertwined by the operator A, of length N

QM () AYY = 7(u, v, ) ATY QN D (), (6.3)

where

:4ur(1+§+iu—g/\)r(1+§—z‘y+u+§A)

(w1, 6) Pts -t AP (145 +iv—u=5))

(6.4)
The proof of this relation can be given graphically, and makes essentially use of the star-
triangle relation (4.32). Starting from the L.h.s.of equation (6.3) (left picture), we open the
triangles of vertex yj, into star integrals (right picture) by means of (4.30)

Y1 Y2
Y1 Y2 ‘ l
A X A 422
X N X7 ~ X
.
/\/v )
X1 X2 X3 Xo X X3 X3 Xo

The next step is to integrate the star-integral of vertices (z2,xo,x3) in order to obtain a
vertical line (2o — x3) (left picture), which can be moved leftwards to (z2 — z1) by means
of the exchange relation (4.36) (right picture)

Y1 Y2

»Z1 22

} Z — }
X1 X2 X3 Xo X1 X X3 Xo

Finally, the triangle of basis z; —x9 in the previous picture is opened into a star integral (left
picture) and chain-rule integration in z and star-integrals in z; are performed, obtaining
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the r.h.s. of (6.3) represented in the right picture.

Y1 Y2

X1 X2 X3 Xo X1 X2 X3

The coefficient 7(u,v,£) results from the collection of the star-triangle coefficients (4.29)
produced step by step along the proof. The condition (6.3), connecting the operator @) at
lengths N and N — 1, allows to have a recursive relation which reduces the problem to the
diagonalization of the operator @ of length one. The condition N = 1 of the recursion (6.3)
consists indeed in the eigenvalue equation

QW (u) AVQ (z1,20) = 7(u,v, L) Az(jl? (1,x0), (6.5)

where we notice that the kernel A, 4 at length one reduces to a function of x only, according
to (6.1)

(1 —%0)I
)2(1+z‘g+w) '

A;g (.’El,l‘o) = (66)

(21 — 20
Note that it is the same eigenfunction (3.4) from the section 3 in spinor form and restored

dependence on xg.
The proof of (6.5) is simple and follows from the chain rule (4.25) at ¢ = 0.

X1 ~)(0 X1 Xo
Of course it is the same explicit calculation (3.7) of the eigenvalue 7(u, v, £) in the section 3.
As a consequence of (6.3) and (6.5), the function
— AW AN=D A (@) A D) (6.7)

\Ilul,...,I/N,Zl,...,EN (xlv -y TN, Cl','()) vN AN YN N1 vo oty by 0

is an eigenfunction of the operator Q(u) at length N, the eigenvalue being [Ta_; 7(u, vk, 1)

N
N (N) (N-1) (2) 1 (N) (N-1) (2) A (D)
Q( )(u) AVN,ZNAVN—th—l o .AV27€2AV1751 - kl_[ T(U,Vk,ﬂk) AVN7@NAVN—17€N—1 o 'AV2752AV1,K1 :
=1
(6.8)

The formula (6.8) shows that the spectrum of the spin chain (1.10) at length N is factorized
into IV identical contributions, each depending on a couple of quantum numbers (¢, k)
or, alternatively, on a complex variable Y;, with the quantization condition

0
Y+ Y ezt :>Yk:5k+iuk. (6.9)
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The equivalence stated by (6.8) between a length-N model and N length-1 models realized
a separation of variables at a quantum level, being {Y}} the eigenvalues of the quantum sep-
arated variables. According to the parametrization (6.9) we will use the compact notation
for the eigenfunctions

N
U () = Wor o tatn (T15 - T, 20) (6.10)
where Y = (Y1,...,Yy). It is important to notice that the functions (V) are not scalar

objects but have spinorial indices, inherited from the ones of each layer Ag; ), namely

(0o o = () = () (M) () @)

Despite that, the eigenvalue (6.8) does not depend in any way on the spinor indices, due
to the invariance of operators Q™) (u) under the SO(4) rotations. As it was done in (5.16)
for the operators Q and Q, we can dress the eigenfunction (6.7) with a couple of symmetric
spinors (ay, Bi) of degree ¢y, for each layer k =1,..., N:

N N N— 1
(B ) = (Bn[AY lon) (By-a Ay, law—a) -+ (BrlAY jar),  (6.12)
and ( :
k é é k Ci...C
(BrIAS L) = (B -+ (B ™ (AY) @ ert) (@b)er -+ (e,
6.1 Symmetry of the eigenfunctions

The eigenvalue (6.8) does not depend on the order in which the variables Y} appear in the
eigenfunctions, namely any permutation s € Sy

S(Yla---)YN) = (YVS(I)v,YVs(N)> ’ (613)

in the definition (6.10) leads to the same eigenvalue. At the level of the eigenfunctions this
reflects in the fact that any such permutation is equivalent to a mixing of the spinorial in-
dices only, and the operators QQ(u) are insensitive to the spinor structure. Any permutation
s can be decomposed into a product of elementary exchanges

sk (Y1y oo Y Yiert, o YN) = (1, o Yert, Vi oo Y (6.14)

which is interchange of two adjacent layers for the eigenfunction. This interchange can be
compensated by the corresponding transformations of the spinors as stated by the following

identity
(E+1)\2 (A ()\P _ ped ab (k+D\D [, (k)
(AE) (A1) = RE OV, Vi) R Ve, Vi) (M) (A% )0, (6.15)
or in more compact form
Agﬁ) Ag;z) = Rk+1,k(Yk7 YkJrl) Agjj_l) Agizll Rk+1,k(Yk+1, Yk) R (6.16)

where for simplicity we denote R(Y,,,Y,,) = R(iv, —iv,,) and indices k+1 and k show that
R-matrix act nontrivially in the spaces of dotted symmetric spinors of the ranks ¢, and
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¢}, for the R-matrix and in the spaces of un-dotted symmetric spinors of the ranks ¢, and
¢}, for the R-matrix. Note that the spaces of the spinors are ordered rigidly from the right
to the left £y, ..., ¥l2, 1 in correspondence with the ordering of the layers in eigenfunction.

We provide a graphical proof which follows closely the steps of the proof given in
section 5 for (5.10). Starting from the Lh.s. of (6.16) (depicted for k¥ = 3 in the left
picture) we open the triangles of vertices yj into star integrals and insert identities in the
spinor space as vertical lines [(xp — zn_1)(Xn — 2n_1)]%* (right picture).

Then, we apply the exchange relation (4.33) to the squares of vertices (zx—1, Tk, 2k, Tk+1),
exchanging the weights (vg, lx) <> (Vk+1, lx+1) and producing the R-matrices (left picture).
Furthermore, we open the triangle of basis (z; — z2) into a star integral according to (2.5).

: R i
R ,7’»L( R \Y J’ J R '

\

e
A

Finally we take the star integrals in the points z and z, ending up with the r.h.s. of (6.16)

”’X),;‘ ‘\‘\\\ /,X//' “‘\\\ /,XI,,, \\5-1
“ R s e
,’l \\ ", \‘ "l ~“ "l\

L \\ /\’I \\ ,XI \\ ,\'l

<

Formula (6.16) is the statement of the invariance of the eigenfunction with respect
to interchange of layers and corresponding transformation of the spinors. Of course there
should be some self-consistency conditions like the Coxeter relations for the generators of
the permutation group Sy

Let us consider the simplest nontrivial examples N = 2 and N = 3 to show the appear-
ance of these relations. In the simplest case N = 2 we have the following representation
for the eigenfunction

ajaz _ (2))22 (A (O™
(‘IJY1,Y2)3132 - (AY2 )ég (AY1 )éu

and there exists only one permutation of the layers
Cc

(A2), (Ag/ll))z = R (v1,%) R (¥, 11) (A@)Z (a8 (6.17)
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The second application of this permutation returns everything back to the initial eigen-
function

() (050" o o meos v (45 () -

R (11, ¥2) RE (2, Y1) RE (2, v) R (1, v2) (A2) (A0 = (a2)7 ()

b

due to relations for the R-matrices (see appendix)
R{T(V1,Y2) R (Y2, V) = 65 0
R (V1,Y2) R (Y2, Y1) = 02 6F

For simplicity in the following we shall use more compact notations and as an example we
give the same formulae in compact notations

AZAL = Ror(v1, V) AP AL Ron (Y2, V1) =
Ro1 (Y1, Y2) Ro1 (Y2, Y1) A} )A§/1) Ro1 (Y1, Y2)Ro1 (Y2, Y1) = A(z)A%)

due to relations for the R-matrices
Ro1 (Y1, Y2) Ro1 (Y2, Y1) = 1; Rai(Y3,Ya)Roi (Yo, Y1) =1 (6.18)

In the case of N = 3 the eigenfunction is represented by the product of three layers
A%)A%)Ag}l) and there are six permutations. The permutation AQ)A%)A%) — A%,SI)A%)A%)
can be performed in two ways
APADAY = Roy (11, Vo) AVAY AL Roy (Y2, 1) =
Ro1 (Y1, Y2) Rai (Y1, Y3) A§fl)A§f3)A§}2) R31(Y3,Y1)Ro1 (Yo, V1) =
Ro1 (Y1, Y2) Ra1 (Y1, ¥3) Raa(Ya, Y?J)AQ)A%)A%) Ri2(Y3, Y2)Ra1 (Y3, Y1)Ro1 (Yo, Y1)
and
APADAY = R (o, ¥3) A ADAY Rio (Y3, 2) =
Rsa(Y2, Y3) Ra1(Y1,Y3) Agxg)Aél)A%) R31(Y3,Y1)Rs32(Y3,Y2) =
Ria(Y2, Y3) Rai (Y1, Y3) Ro1 (Ya, Yl)AQ)A%)A%) Ro1 (Y2, Y1)Rs1 (Y3, Y1) Rs2(Y3, Ya)

These two ways lead to the same result due to the validity of the Yang-Baxter relations
for the R-matrices
Ro1 (Y1, Ya) Ra1 (Y1, Y3) Raga(Ya, Y3) = Raa(Ya, Y3) Ry1 (Y1, Y3) Raa (Y3, Ya),
Rs2(Y3,Y2) Ra1(Ys, Y1) Ro1 (Y2, Y1) = Ro1 (Y2, Y1) Ra1 (Y3, Y1) R3a(Y3,Y3) .

Now we define the natural representation of the symmetric group Sy on the eigenfunctions.
First of all we define in explicit form the action of the generators

SN AETIAR AR =Ry (V0 Vi) AR - ATV ALY

1
Yis1 Vit "‘Ag/l)RkH,k(YkH,Yk),

— 37 —



or in explicit index notations

5 (A%))M . (A(k+1))ak+1 (A(k))ék . (A(1))a1 _ (6.19)

ay Yerr Ja oy UV )4y Y1/a,

Cr41€ agpy1a N)\anN k—+1)\ €k k Ck+1 1)) a1
R (Ve Vi) REEE (e V) (M) - (M) (a2, ) - (a0))

In the most compact form we have defined the action of generators of the symmetric group
as follows
80y = S H(Y) Uy, vy S(Y), (6.20)

where Si.(Y) = Ris1.4(Yir1, i) and similarly Sg(Y) = Ry1.6(Yes1, Yx) and
sp(Y)=sp(Y1... Y5, Yir1...Yn) = (Y1 ... Y1, Y. .. YN)
More generally, for any element s € Sy we have
Wy =S71(Y) Uyv) S(Y). (6.21)
The composition of the transformations is defined in a natural way. For s = s1s2 we have
SWy = 818 Uy = 81 [S71(Y) Uyyy) Sa(V)] = S51(Y) [51 W] Sa(Y) =

S5 (Y) ST (52Y) Wy, (550w S1(52Y) S2(Y) = STHY) Uyv) S(Y)
so that

s =515 = S(Y) = S1(52Y) S2(Y) ; S(Y)=81(52Y)S5(Y)

In a general case a permutation
S = SpSkL " SpSy, (6.22)

is represented by
S(Y) = Sh(sk T SKSTY) T SE(STY) S, (Y) . (623)

As we have demonstrated on the simple examples N = 2 and N = 3 the needed
Coxeter relation are fulfilled due to the special properties of R-matrix. In the general case
the unitarity of the R-matrix (6.18) ensures the involutivity 7 = 1

Sk(56(Y))Sk(Y) = Ri1, 6 (Ya, Yt 1) Rip 1, (Y1, i) =1, (6.24)

and the Yang-Baxter equation (4.7) ensures the satisfaction of the most complicated qubic
Coxeter relations 8x8x5415r = Sk+15k5k+1 which have the following explicit form

Sk(sk+15kY) Ser1(5kY) Se(Y) = Spy1(sk5k+1Y) Sp(s5x41Y) Spy1(Y), (6.25)
or in terms of R-matrices
Rir2k+1(Yet2, Yir1)Rigok (Yiro, Vi) Rig1x(Yig1, Ya) =
Rit16(Yet1, Yi) Rtk (Y2, Yi ) Rig2. k41 (Yigo, Yit1)

Of course all similar formulae are valid for R-matrices also.
In the most general form the formula (6.16) states that our eigenfunction is invariant
with respect to the action of the symmetric group Sy: for any element s € Sy we have

§Wy =STHY) ¥y S(Y) = ¥y (6.26)
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6.2 Scalar product

In order to complete the study of eigenfunctions we need to compute their scalar product,
therefore the spectral measure over the variables Y. First of all we recall that the Hilbert
space under consideration is L?(d*z1,...,d*zy) and therefore for each two functions f, g
the scalar product is defined by

(f,g) = /d4x1 e d ey (f(2n, . an)) g(@, ) (6.27)

In this context we must consider the functions (8|Wy|a), where the dressing (5.16) hides
the spinor indices, and the auxiliary spinors aj and (i can be regarded as additional
continuous quantum numbers describing the degeneracy of the spectrum (6.8). According
to (6.27) the conjugate eigenfunction is

(B|¥yla)* = (a¥l|8), (6.28)

where \Ilg( is obtained from W+ by transposition of spinor indices and complex conjugation.
As is it for the eigenfunctions in (6.10), also the scalar product of two eigenfunctions
can be written in an operatorial form as

Mgy AOFE@ AW AN 42,0
(WP [0y = ARAZ) - AT AL ARAG), (6.29)

(@1,..50¢)

(a1 ap) = (Ay)2 is defined as an integral operator

where each layer (Ay)

[]\g/N)ﬁb} (xl""axN—l):/d4y1"'d4yNA§/N)(xla"'7:1/‘N—1a$0|y1a"'7yN)'¢(y1>"'ayN)>
(6.30)

and its kernel being defined as

N
) _ 1
AY (:1;17 L 7:1:N—17‘T0’y17 e 7yN) - krzll (yk _ yk+1)2(77»\) X
[(yN — %0)(yN — XN—1) - (X1 — y2)(y1 — x1)]*
S N - S N N
(y1 — 21)2IH2 70 (g — o) 2AHSHW) (g — oy ) A (g )20 05 =)
(6.31)

X

Integral operator and its kernel carry symmetric spinor indices but these indices play passive
role and operator (Ay)2 maps function of N variables x1,--- ,zy to the function of N — 1
variables x1,--- ,xn_1 which carry additional symmetric spinor indices a and a. There
is analogy with annihilation operator in quantum field theory: operator (/_\y)i annihilates
dependence on variable .

The scalar product of two eigenfunctions in the simplest case N = 1 was calculated in
the section 3

WLy _ (RONE ()P _ 27 N b sa
(| vy) = (A7) (M) = g s0n Y 82 6 (6.32)

where §(Y,Y") =y p0(v — /).
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The computation of a complicated integral (6.33) can be carried out exactly thanks to

the following exchange relation, valid for any k= 2,..., N:
T (k))& K\ P A k—1)\% (7 (k—1)\¢
(A) (A7), =AY RENV V)R Y) (AFY)(AETY)", (633)

where the coefficient A(Y,Y”) has the following explicit form

7.{.4

(1= ) (i~ v+ )

Note the evident symmetry A\(Y,Y’) = A\(Y')Y).
The proof of this identity contains simple graphical steps based on the star-triangle

AY,Y') = (6.34)

relation (4.30) and on the exchange-relation (4.38). Let us start from the picture of the
kernel Ag,]\/f) (here for N = 3):

Yi Y2 Y3 Ya

\ 3 JaN i <«

X3 X2 X3

In order to prove the identity (6.33) we begin with the picture of its Lh.s. (on the left). We
apply the star-triangle identity in order to integrate the rightmost point, producing the

first Ry p-matrix and a pair of vertical dashed lines [(X3 — z3)]* [(x3 — 23)]. Moreover, we
insert on the right picture a scalar line of weight 0 = 2i\ — 2¢\ (right picture).

At this point we apply the exchange relation (4.38) as depicted, in order to move leftwards
the two dashed vertical lines, moving at the same time the scalar horizontal line of weight
—2i\ upwards (left picture). Finally, we compute the chain-rule integration at the leftmost
point, which produces the matrix RT}Z and cancels the two vertical lines.

v‘.

o]
X

<

As the exchange relation (4.38) has no extra coefficient, the overall coefficient produced
along the proof is given only by the star-triangle on the rightmost point and the chain-rule
on the leftmost point, matching with the coefficient in (6.34). We should to note that
during the derivation we tacitly assume that Y # Y.
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The exchange relation (6.33) allows to reduce the scalar product of two eigenfunction
for general N to the scalar products of simplest N = 1 eigenfunctions. The reduction
M for k=0,1,...,N — 2 with the

product of layers _/_\g/l,) e /_\g\,{*kﬂ) by means of (6.33)
k1 N

procedure amounts to the exchange of the layer A%Vv:

A 1@ RO NN NN 4 (2) (1)
AP AR ATADAR Y AR —

TN 7@ T (N-1) 4 (2) (1)
APIAL) AD) - ATVARY - AAY) —

TOAD FMAMD 7O FON=-2) )\ (N=2) 1 (2) 4 (1)
APV AUIAY) AT ATTPAGTY AR —

Yn_2
AL A@) A (M AA) x @) AD) AW A 2(D) (1) 2 (1) (1)
Ayl, AYN AY2, AYN,l AYs’ AYN72 .- -AY2, AY]\_1 AYI<]71AY2 AYI’\,AY1 (6.35)

All this procedure is very similar to the Wick theorem in free field theory which allows
to reduce calculation of N-point Green function to the product of N = 2 Green functions.

Let us consider the calculation of the scalar product in the simplest nontrivial example
N = 2. We have

2 2 NONROINOINE
<‘I'§f{),y2' 03y,) = A@;)Agg) AP ALY (6.36)

Using relation (6.33) it is possible to reduce calculation to the case N = 1. Schematically
we have

A AR AR AD) o A1) A1) 7 (1) 5 (1)
AyiAy; A Ay) — Ay Ay Ayy Ay,

or explicitly in index form

(357),, (A),. () (a0, =

aj a
A2, V) RS (7. V2 R, v9) (M) (a); (A) 7 (AD), =
1

6(Y1,Y3) 6(Ya, Y{) REZE (Y1, Y2) RO (Y2, Y1),

(Y1, Yz)

where on the last step we use formula (6.32) for the scalar product in the case N =1 and
denote

1 2n® 278
p(Y1,Y2) b +106+1

A(Y1,Ys).

This calculation of the scalar product is based on the exchange property (6.33) which is
derived under condition Y # Y’ ie. Y3 # Y in the present situation. Note that this
expression for the scalar product in N = 2 case cannot be the complete formula because it
is valid for Y5 # Y5 only and generally is not compatible with the symmetry properties of
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the eigenfunction. Indeed due to this symmetry we have

(50 (4592 (2% (4, -

Rczcl (Y YQ) RP2b1 (Y Y) (Ag/lll))al ([\g/))% (Agﬁ)zl (A%))CQ =

c2cy f

1 . .

Ty S0 YD (e, Y3) RZR (V1. Y2) Rez (Y2, Y)RES! (Y2, V) RZS (N1, Ya) =
1

— 5V, Y] §(Ys, Y. 5‘*25315'025'01

N(th/?) ( 1 1) (27 2) al

where on the last step we used unitarity of R-matrix R(Y7,Y2) R(Y2,Y7) = 1. This formula
is valid for Y7 # V3.

The complete symmetric expression should contain both terms and can be restored by
the symmetry in a unique way

(A5 (9, (A8 (a5 = (687

1

) ORI G a0 4601, YO0 YRR (M YDIRE (V2,1)].

asal

In order to achieve the formula for the scalar product at length N, one can proceed by
induction and compute the N = 3 case explicitly, as it is done in appendix E. The general-
ization is natural and formula for the scalar product for general N have the following form

(o) WY Z 5(Y ))S™HY)S(Y), (6.38)

sGS

where p(Y) is symmetric p(Y) = u(sY) and

N
S(Y' = s(Y)) = T 00 0,0, 0 Wi = Vsiy) - (6.39)
k=1
Let us check the symmetry for any s; € Sy
N)ja N S N S— N
(W5 w") = (v %ﬂs (Y wglgy) $1(Y)) =STH(Y) () |9 81(Y) =

Z —5(s1Y))STH(Y) S (s1(Y)) S(s1(Y))S1(Y) =
€SN

Z Y' - 55(Y))$71(Y) S2(Y) = (Wi |0 {”)
ESn

Effectively one obtains summation over elements so = ss; € Sy because

S9 = §81 — SQ(Y) = S(SlY) gl(Y) s SQ(Y) = S(le) Sl(Y)

To prove the general formula (6.38) it is enough to calculate one contribution and then
the whole answer is restored uniquely by the symmetry. We shall use the strategy outlined
n (6.35).
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First of all we have the following delta-function
(Y —-s(Y)=6(Y1—YX)d(Yo—Yi_1) - 6(YN— H 8¢, 01 (k)5(Vk us(k)) (6.40)

where §(Y —Y’) = §y p0(v — V') and s is the special permutation which reverse the order
of quantum numbers

S(Y):S(YiYkYk+1YN>=(YNYk+1YkY1>

Secondly, there appears the overall normalization factor

_ N 1
p(Y) = (20%) G A0

which shows that the measure over the quantum numbers (v, ¢) is not trivial. In explicit
form we have

N

2
wY)= H erg;\il H ( Ve —1p)? W) ((Vkuh)2+W>. (6.41)

k=1 h>k

The last ingredient is the nontrivial product of R-matrices. This operator can be con-
structed iteratively and we expect from the formula (6.38) that it has natural interpretation
as ST1(Y)S(Y) where s is the special permutation which reverse the order of quantum
numbers.

Finally, we have the following induction

(1)) (k) (B\Pr NP 1 _ 441 (v \ b1 by (v
(A () ()t (M) = gy Y~ s(YR) R & (VR R R (V)

where Y = (Y1...Y) and Y, = (Y{...Y)).

It is easy to check that iterative application of the relation (6.33) gives

(R0 (RE0) (R (M0)% = e

aj 2 k

¢iLb Ck—18k—1 C383

RIS (VL VRETI 2 (VL V) - RES (v, V) REE (v, vi) (AU (A)))
1/a; S1

_ _ ~ (1 é2 (2 é?, —(k—1 ék
RE (Ve YEVREEE (Vi ¥) - RIS 0 VORGS0V YD) (Ay)) *(AY)) - (A7)

so that using N = 1 formula for the scalar product and supposing the previous (k—1) step
of induction we obtain the following recurrence relations

0(Yi = s(Y})) = 0(Yy — Yio1) (Y — Yiema) -+ 0(Yy — Y1) 6(Y{ = Y3),
I 1 _ 1 23
w(Yi)  p(Yr, Ye)  p(Yr,oo Yioa) b + 1

(Y, Y1) - - (Y, Yio1)
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which reproduce the needed expressions for the k-th step of induction and the last recur-
rence relation defining the iterative construction of the appearing R-operators

Rta).kmél (Yi/v e aYk/) =

Ly
RIS (VL VRSS2 ¥) - RER (Y RER (YRS S (oY)
bi--b
Ra;-nalk (Yllv e aYk/) =
—1Sk— bi--by_
RO (V1 YR (VL Y5) - Ray i (VL Yo )RR, (VL YRy ey ™ (Vg V).
Of course the operators RETE (Y{,--+,Y{) and REL:Pe(Y/, - | Y/) should be connected

to the special permutation s(Y;...Y;) = (Yi...Y1) which reverse the order of quantum
numbers

AR ADAY =Ry (V1Y) APAYTY A Ry (V1 ).

In order to obtain this connection we consider the special permutation in more details. In
the simplest case N = 2 we have

APAY = Ry (v, Y2) AQAY) Roy (Yo, V7).
The case N = 3 was considered in the previous section

APADAY = Ro (1, V) Rt (Y, Y3) Raa (Yo, V) AYVAS ALY Ro (Y3, Ya)Raa (Y3, Y1) Ry (Ya, Y1) -

3

In the full analogy with the N = 3 case the permutation Agifc) e Ag}l) — Agfl) . -Ag,lk) can
be performed moving Y7 from the right to the left at the first stage

k) x (k—1 1
Rzl(lﬁ,Yé)Rm(lﬁ,Y},)~--Rk1(Y1,Yk)A§51)A§271)---A%)Rm(Yk,Yl)~--R31(1%,Y1)R21(Y2,Y1),

which results in the following recurrent formulae

Ry.o1 (Y1, , Y3) = Ro1 (Y2, Y2) Ra1 (Y3, Y3) - - - Ri1 (Y, Vi) Rio2 (Yo, -+, Y3)
Rio1(Y1,- -+, Ye) = Rpa(Yo, -+, Vi) Rt (Yi, Y1) - - - Rai (Y3, Y1) R (Yo, Y1) .

The simple comparison of two recurrent formulae and exact expressions in the case N = 2
leads to the needed identification of the product of R-matrices with the special permutation
reversing the order of the quantum numbers.

Let us now consider the scalar product between the functions dressed with auxiliary
spinors (here we omit the length N, obvious from the context)

(BITyla) = (Bu|AY Jan) - (B2l A [az) (B1|ASY o) (6.42)
and
([0, 18') = (1AL 181 {0k | A7 185) - (ol ALY 18Rv) (6.43)
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The expression (6.38) gets dressed accordingly, and reads

Z S(Y = s(Y)){Br,. ., BNISOY)TBL, . B ad, - alyIS(Y)]an, . an)
SESN
(6.44)
or in a compact form
1 / Q ’ /
M(Y)SEXS:N (Y — s(Y))(BIS(Y)T18")(«/|S(Y)|ex) . (6.45)

We can conjecture the completeness of the eigenfunctions (6.10), based on the observation
that at N = 1 they are indeed complete and that they are the four-dimensional analogue
of the complete basis for the 2d problem studied in [18, 56]. Therefore, we can write an
invertible transform from the space of coordinates to the space of quantum numbers (v, £)
and symmetric spinors «, 3, so that a generic function ¢(x) = ¢(z1,...,zy) is mapped
into its Fourier coefficient

Y. B) = [ o dtoy (B (x)18) 6(x). (6.46)
The inverse transform of (6.46) provides the expansion of ¢(x) over the basis of eigen-
functions
1
d0=x; Y [dvrdvy p(v,8) [ Dar-DayDprDy (Bl¥x(x)]) o(Y.cB).

L1, N

(6.47)
where the sums in ¢ run over N, the integrations dv; are defined on the real line and the
integration in the space of spinors Day, is defined in (3.24).

As a consistency check of the conjectured completeness, we can set ¢(x)=(B|Vy(x)|a)
n (6.46) so that

HY' o, B) = [ dx (B0 ()|} (BT (x) ). (6.45)

and according to (6.47) its inverse transform becomes

N,z [ [ Da'DB (B v )y 3 H[% o 8=V [S(Y) ) (BIS(Y)1|8')| =

SESN]C 1
N Z (BIS(Y) W (v (x)S(Y N Z (a|¥y(x)[8) = (a|¥y(x)|B) . (6.49)
'SGSN sESn

7 Spectral representation of Q,,,g and Q,,’g

In this section we will employ the integral transforms (6.46) and (6.47) to provide a rep-
resentation of the integral operators Q and Q over the separated variables (Y,a,B). As
it was shown in (5.6) and (5.7), (5.8), for A = —i and specific values of v, these operators
become the graph-building kernel of a scalar square lattice for £ = 0 or a Yukawa hexag-
onal lattice, for £ = 1. Therefore it is possible to apply the integral transform (6.47) in
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order to provide a representation of regular, planar Feynmann diagrams on the spectrum
of separated variables.

First of all we point out the functions of the basis (6.10) were obtained in order to
diagonalize the Q-operators with one reference point xg, while Q and Q have two reference
points zp and zf. The operators Q(u) can actually be recoverd as

Q(—1+i;\—|—iy)o< lim Q,,O (7.1)

|1'0|_>

More rigorously, the connection between Q,,o of Q A0 and Q. is given by a conformal
transformation. By means of a translation z# — z# — z(!" followed by an inversion z# —
ot /22, the operator Qy,o gets transformed as

N

. 2T (1 — Z% — il/) )
Quo — JETEeE (a) 1 E

_1+z%+w1-\(1 —I—Z'% +iV)

N 2(2+i)) —2(244i))
x(Ha:k )Q( 1+z+w><Hm ),
k=1

that is, a part from the external parameter xy and the constant pre-factor, the result is

(7.2)

a unitary conjugation of Q(u) depending only on . Having at our disposal a basis of
eigenfunctions for Q(u), we can transform all Q and Q operators according to (7.2) to
study their action on the eigenfunctions, and eventually transform back the result.

We define the operators Q;L,z by the transformation (7.2) applied for a general value of

¢ in QV,Z
% i N 2(2+i)) N —2(244))
Que — (xg) 27" <H T ) Qs ( [T ) [%o]" (7.3)
k=1 k=1
which leads to the kernel
[(x1—y1)(y1—x2) - (Xn—yN) (yn —x0)]*
(ml_yl)Q(l—i%Jriu)(yl_:CQ)Q(I—Z'%—'LV)”.(yN_:CO)Q(l—i%—iV)

N

< I (wr—2ps1)*™, (7.4)
k=1

Qi (a1, xn, xoly1, - yN) = X

and Q;L,o is simply related to Q(u) according to (7.2). The spinor indices of @, follow
from (7.4) as

(@) = @G =

(a1,...,a¢)
An equivalent representation for the kernel Q ¢ 18 obtained by opening the triangles
(g, Yk, xp + 1) for k =1,..., N into star integrals (see figure 14)

21"(172'*+i1/+z)l“(1fz%fw+ ) (z;+£)>
A)

+ _
QV,E(:El’""xN’xokyl"”’yN)_<7r (I-H +iv+ = ) (1+zf—w+ ) (2—1

X/d4zl---d4z1\[ [(x1—21)(z1—X2) - (Xn—2n) (2N —X0)]* e H 25— k) 2(iA-2)

(@1—20)2 (39 (2 — 243 0) L oy )
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X1 X2 X3 Xo X1 X2 X3

Figure 14. On the left, the kernel Q:e(xl,xg, x3,Zo|y1, Y2, ys) as in formula (7.6). On the right,
the kernel Q;e(xl, T2, T3, Zoly1,Y2,y3) as in formula (7.10).

The same transformation (7.3) can be applied to Qy,g

Que — (ad)tHiatw (H xi”“”) Q. ( x;“““’) N (7.7)
k=1

k=1

so to define the kernel

[(y1—x1)(X1—y2)- - (yn —%xn) (Xn—Xo0)]*
(1 _m1)2(1—i%—w) (21 _y2)2(1—i%+iu) L (xN_xO)Q(l—i%+iy)

Q;((xla"'axNa$0|y1;~--ayN):

N-1
< ] (wr—ws1) 2, (7.8)
k=1
whose spinor structure is
(@) = (@) (7.9)
villg vl (a1, ap) ’

The kernel @), , can be rewritten after star-triangle transformation as (see figure 14)

ST (i v T (i3 it D3 +5) )
U (14i3+iv+5) T (1+i5 —iv+5) [ (2—i)) 8
N

142 +iv) H (2k— K

oz —z0) X P

Qy_,ﬁ(xlw"a‘rN7w0‘y17"'ayN): <7T

—x1)(X1—22) - (Zn—%N) (XN —X0)]" iA—
x/d421--~d42N( [(z2—xa)( ) ( )( )l )2(>\ 2)

2 _1:1)2(14»1'%71'1/) (21 _22)2(1+ig+w)

(7.10)

Now we can compute the action of Q:g or Q;’ ¢ on the eigenfunctions of @, = QIO, so to de-
fine their spectral representation according to (6.47). Asusual the computation can be done
in a few graphical passages based on the identities of section 4. We are going to show that

QN = (v ) Rep(iv — i) A QY. (7.11)
that is, in explicit spinor notation:
¢ r . . o N r N— ¢

(@) (A), = mew b ) Rl — a8 (AP (@iNY)s (T2

where
T (1=i3+i/+5) T (143 —iv+§) T (iv—v)+ 51
[ (1+i3—iv/+5)T (1=i3 +iv+§) T (1+i(/ )+ 250)
(=1

(1+i(/—v)+252)

(v, 0,V 1) =2

(7.13)
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In relation to the reductions of @, defined in (5.6) and in (5.8) we point out that (7.13)
specializes to

472
—i/2 =—— .14
7—-0-( Z/ ?07V7€) 41/2+(£_'_1)27 (7 )
and, respectively, to
2
7(0,1,1,0) = sm (7.15)

(1—2iv+0)(1+2iv—0)(3+2iv+{)°

Let’s prove formula (7.11). Starting from its Lh.s., depicted on the left picture at N = 3,
we open the triangles in the layer A into star integrals (right picture).

We performed the star-triangle identity (4.32) in the rightmost integration point, obtaining
the left picture, containing two vertical dashed lines. The couple of vertical lines can be
moved leftwards by means of the exchange relation (4.33), ending up with the right picture.

. N N . e k
<€ U, S > < NI S, ommmmaeean f,

Finally, we opened the triangle with basis the couple of vertical lines into a star integral
(left picture). The leftover integrations can be performed by means of (4.30) and (4.32),
and we obtain the r.h.s. of (7.11) (right picture).

It follows from (7.11) that
H

N
Q:g Uy (x) = H (v, bvp, ) Ry
k=1

"oy (x), (7.16)

where Ry = RM;v (i), —iv). In a similar way one can prove that the application of @, to

the layer Ay delivers the result

Q, VALY = (v, e, YA QN T Ry (i) — i) (7.17)
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or in explicit spinor notation

(@) (A7), = -t 1) (A&’): (Q;}N‘”): Rep(iv/ —iv)eh,  (7.18)

where 7_ (v, 0,1/, 0') = 7. (—v, £, =V, ¢'). In particular for the reductions (5.6) and (5.7) of
QAl,,g the value of 7_ is given by

7(i/2,0,v,0) = 74-(—i/2,1,v,£), and 7_(0,1,v,¢) = 7(0,1,v,0)". (7.19)

As a consequence of (7.17), the action of (7.8) on the functions (6.10) reads
_>

N
Q0 Uy (x) = Uy (x) HT(V,K, vi, O ) Ry | - (7.20)
k=1

The formulas (7.16) and (7.20) show that the functions (6.10) are in general not eigenfunc-
tions of QT and Q~, due to the mixing of spinor indices by the matrices Ry. Nevertheless,
the result still has a completely factorized structure, for which the length- N case coincides
with the product of N length-1 systems. In other words, the eigenfunctions (6.10), via
the transform (6.47), realize a separation of variables for the operators Q:Z and Q; o and

therefore — after a conformal transformation — for Q%g and vag.

8 Conformal fishnet integrals

In this section we are going apply the spectral transform (6.47) to some planar Feynmann
diagrams with a regular bulk topology, consisting in portions of square lattice and hexagonal
Yukawa lattice. In particular the class of diagrams under study turns out to provide
the sole connected Feynman integrals which contribute to specific correlators in the four-
dimensional chiral conformal field theory (xYCFT,) arising as the double-scaling limit of
v-deformed N' = 4 SYM theory [21, 62]. We recall that the YCFTy theory involves three
complex massless scalar fields ¢y, and three left-handed fermions ¢, all of which are actually
N, x N, matrix fields transforming in the adjoint representation of SU(NN.). The Lagrangian
of the theory reads

1 R NN TANe"
Ly, =N.Tr —§aﬂ¢}au¢j+wj (620, o| + Lint » (8.1)

where the sum is taken with respect to all doubly repeated indices, including j = 1,2, 3,
and the interaction part is

Ling = Ne Tr[6} 0}l 6203+ 8ol b3 +63 0] dho16a+iv/Eaa(vsdrivn + Vgl )

o o (8.2)
+ iV (19203 + Pr1080s) + ivEiEa(Yadsts + Paolin) |.

The lagrangian (8.1), (8.2) is not UV complete and it should be supplied with double-
trace vertices. Remarkably, in the planar limit N, — oo [63], the couplings {1, &2, 3 do not
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receive quantum corrections and the double-trace couplings have fixed points of the Callan-
Symanzyk equation SBq(crit) = 0, which makes yCFT} a conformal invariant theory at the
quantum level (see the review [43] and references therein).? It has been showed in [43] that
this conformal theory it preserves several features of integrability and exact-solvability of
the bi-scalar fishnet theory obtained setting £ = & = 0 in (8.2)

1 1
Lot = Ne Tr | =30,010%] — 30,0006} + @ ololonen] . (83)

In our previous work [6] we used the methods explained in this paper for the computation
of the four-point functions of the Fishnet Basso-Dixon type at finite coupling

(10 [(@1(00)" (@nla) (@] () (@h(an))] ). (8.4)

for any number of fields N and L. We recall that such a correlator in the bi-scalar CFT,
there is only one connected Feynman diagram entering the perturbative expansion in the
coupling &2 = £2. Tt is represented for N = 3 and generic L in figure 1 and coincides with a
square lattice of size L x N where the external legs are pinched to the four points of (8.4).
First of all we observe that the correlator (8.4) in the planar limit of yCFTy theory still
receives contributions only from the fishnet diagrams of figure 3, and the same is true for
the more general correlator

<T1“ [(61(@0))N O, 1, (@) (61(21)V O, 1, (0)| > ; (8.5)

where

Ory 1, (x) = (d2(2) 1 (9] (2)) 2, (8.6)

or any other permutation of fields ¢ and ¢;§. Secondly, we can formulate a generalization
of (8.4) and (8.5) including fermionic fields in the correlator

<T‘I‘ {(qbl (wl))N OL1,L2,M1,M2 (33‘6) (d)];(ljl))N 021,L27M17M2 (.CC(])} > ) (87)

where

O, 10,041,045 (%) = (d2(2)) " (84 ()" (W2 ()M (P ()2, (8.8)

and all the considerations we are going to make are actually valid for any permutation of
the fields in the r.h.s. of (8.8).

The perturbative expansion of correlators (8.7) in the couplings &7 in the planar
limit of (8.5) contains only one connected Feynman diagram, appearing at the order

3In this paper we will never need to take double-trace vertices into account, as they are sub-leading
contributions in the planar limit of the correlators under study.
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§iV(M1+M2)§éV(M1+2L1)§éV(M2+2L2) which has the simple topology (here depicted for N = 3)

Xo
Y Y Y M
+ — e
3 3 3 3 '
X; : - : Xi
—_— — —
1 ] ] ]
3 : . :
v v v v
Xo

that is consists of a portion of square lattice, coinciding with the region where at xo and
x4 there are fields ¢ and ¢3, and portions of Yukawa hexagonal lattice corresponding to
external ¥y and 3. As explained in section 5, such portions of diagrams can be realized
by means of the operators (5.4) or (5.5) for the specific choice of A = —i and ¢ = 0 or
¢ = 1. More precisely, the diagrams corresponding to the correlator (8.7) is obtained by
L1+ Lo+ 1 copies of the operator QZ /2,0 at length L, responsible for a square lattice of size
L x (L1+ Ls), by M copies of Q)91 and by M, copies of ()g 1, responsible for the hexagonal
Yukawa lattice. Moreover, the in-coming external legs in x; can be written as

N
. 2\ A
i (kl_[o(xk — Tky1) > Qi/2,0 ;

adding another copy of the scalar operator QZ /2,0, While the external out-coming legs should
be pinched together in z, making the last scalar operator act on a bunch of Dirac deltas

N
Qi/20 (H 8y, — xﬁ)) - (8.9)

k=1

Finally, the operatorial expression for the diagram, a part from normalization constants,
reads

N N
G(xg, 11, 1), 7)) = lim (H (xg — wk+1)2> Qf/lgijQHQé\flfQéflf (H 6 (z, — mﬁ)) )

S i =1
(8.10)
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A

where in general G has a spinorial structure inherited from the fermionic operators (Qo 1)%
and (Qo,1)q

o (2,31, 7, 24) (8.11)
which encodes the spinor indices of fermionic fields in (8.7). The order in which the graph-
building operators appear in (8.10) is irrelevant — in agreement with the invariance of
the correlator under any permutation of fields in the definition (8.6). Indeed, it follows
from (5.13) that any portion of Yukawa lattice commutes with any portion of square lattice,
and also as a consequence of the relation (5.14), fermionic lines emitted by 2 and 3 can
be exchanged without producing any effect. For convenience we fix the order as in (8.10).

In order to use the formula (6.47), we should first apply to (8.10) the transforma-
tion (7.3)(7.7), so to amputate the external lines to (. Thus, we perform the computation
of the transformed graph,

N N
F(zg,21,7}) = lim (H(ﬂvk - $k+1)2> (Qf/g,o)LﬁLQH(Q&DMl(Qar,1)M2 H 5 (21,

T—T1
* k=0 k=1
(8.12)
whose graphical representation is
¥ R T
x N X

—
— ; —
A\ ; \J v

m
Xo

and the spinor structure are inherited from the operators (Q~)¢ and (Q%)$ and reads

1 \CLsesCM 7 5CL5e5C My
F(x07xl?wl)ah...,a]wl,('11,...,6'LM2 : (813)

It is possible to expand the diagram (8.12) over the spectrum separated variables by in-
serting a full basis (8|Vy (x)|a) = (B1,..., B8Py (21,...,2N)|0q,...,an) before the first
Qi_/Q o and after the last Qafl. As a result (8.12) is cut into three pieces:

e the incoming legs

N
lim ( (xg — xk+1)2> (B ¥y (x)|a) (8.14)
k

Tp—T1
=0
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e the regular bulk of the diagram

/d4501 cdhan (B Py (x) ) (Qi_/ZO)LlJrLQH(Q(h)MI Q)™ (BT (x)|cr) .
(8.15)

¢ the outgoing legs
L
/d4$1 e dr ey (B Ty (%))t <H 59 (xy — x&)) = lim (B|¥Yy(x)|la)*.  (8.16)
el Tp—T)

In this section we will make use of the shortened notation
74(0,Y) =74(—1/2,0,1,0), 74(1,Y)=74(0,1,v,0), (8.17)

where in 74 (n,Y) the letter Y = (v, ¢) is the separated variable, and n/2 is the spin of
the field propagating in the graph, n = 1 for scalar fields (square lattice) and n = 1 for
fermionic fields (Yukawa lattice).

8.1 SoV representation of the bulk

Let us start from the separated variables representation for the bulk. First we introduce
the shortcut notations for R matrices

Ry =Rug (—ivk), Ry, =Ry, (in), (8.18)
where the k=1,...,N, h=1,...,Ms and n =1,..., M; and the spinor indices of the R

matrices are o (Frofes) ( )
Ch (T1...79 _ cn (r1...1¢
(R) “ (R e (8.19)

an ($1.--8¢,) an (s1...5¢;)
where ay,, ¢, and ¢, a,, are the spinor indices of fermionic fields as in (8.11), that is the index
h runs over the operators Q1 and the index n runs over @~ in (8.15). It follows from (7.16)
and (7.20), that the operators Qiﬁ in (8.15) can be substituted by the corresponding
eigenvalues (see (7.13))

N Li+La+1 L
(H TJr(Ova)) (H 7_+(17Yk‘)>

k=1

Mo

L M,
<H 7(1,Yk)> , (8.20)
k=1

leaving us with the scalar product

[t dtan (vl (IR By ()R o), (8.21)
where we introduced the shortcut notation
—— ——
My N M; N
RY=1I1IR: ., R =111IRnx- (8.22)
h=1k=1 n=1k=1

The scalar product (8.21) can be straightforwardly computed by means of (6.38), and the
result reads

H (Y = sY')(BIR* S(Y)'|8') (&/|S(Y) R |e). (8.23)

SESN
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8.2 Incoming legs: amputation and reduction

The computation of (8.14) can be done graphically step-by-step. Let us start from the func-
tion (H,]gvzo(xk - :UkH)Q) Qi/20 (B'|¥y/(x)|a’) (left picture). We take the limit lim,, s,
which makes the matrices o and & of the first row to simplify, as a consequence of
(x1 —yk)(ykx —x1) = —1 (right picture).

Pl Y P
. . i i
X1 X1 X1 X1 X1

Then we open the triangles in the eigenfunction by means of the identity (4.30) (left picture)
and we perform the integrations in all the points denoted by empty bullets, ending up with
the right picture.

X1 X1 X4 X1

The coefficient produced by these steps (depicted for N = 3) according to (4.30) is

k=1 L'(2—4d\T <1+Z§—2Vk+2>F(1+22+zyk+2)

and we recognize that the last picture is the same as the initial stage, but with one row
less (N = 2). Repeating the steps until the length N of the eigenfunction is reduced to
one, we are left with

(Br|(x1 — X0) | )
)2(1+7, +ivy,)

N
H (Br| Py, (z1)|owk) (8.25)

||::]2

:L'l — X0
together with the coefficient produced by the integrations and by the normalization (6.1)

ﬂ (Vi) (7;2 LT (1 —ip it %k) r (1 —ig +iv + %k> ))Nk . (8.26)

D2 =i\ (1433 — vk + §) T (1433 +ive+ §

k=1
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Finally, specializing to the case under study A = —¢, we recognize that the last expression

becomes
N

I r(Ve)f e (0, i) V. (8.27)
k=1

8.3 Outgoing legs: reduction

Let us consider the out-coming legs. In order to compute the term (8.16) depicted on
left with dirac deltas as dotted lines, we open the first row of triangles into star integrals
according to (4.30) and integrate out the deltas (right picture)

o S

; ("' s e
X1 X1 X1 X1

As for the incoming legs, the o and o matrices in the first row get paired and simplify as

(x1 — ¥k)(ykx —x1) = —1 (left picture). In the middle picture we notice that we need to

apply a chain rule with powers 2+ i\ and 2 — i\, and recalling formula (2.13) we recognize

that this generates delta functions (right picture).

A

B « -
. < X
,":: R4
. S N . g e « ,":: P
X X X N
2-2iA
H 11 *
¥ i s 3 5
i s 242iA E
a i
x1 X1 X1 0 T S— PR -
X1

The coefficient produced by the steps depicted so far (for N = 3) is

( ; F(i/\)F(l_i%_iVN+£7N)F(1—i%+in+57N) >N1
7T .
) )

(8.28)
(2N (1433 —ivy + %) T (143 +ivy + &

Finally, we notice that the last picture is the same as the initial one but with the length
of the eigenfunction reduced by one (from N = 3 to N = 2). Therefore, the procedure can
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iterated until we are left with

N {on] (x4 — xo |5k N
( )2(1 Zf—zyk H 6 ’\Ilyk ml ‘Oék> (829)
k=1 (21 — To el

together with the coefficient produced by the integrations and the normalization (6.1)

ﬁ (r(Vi)*)F (ﬂ (F(M)F <1 —ig vt %) I (1 —ip i+ %k> ))kl . (8.30)
k=1

2—1'/\)T(1+i%—in+%)F(1+ig+iuk+%

Finally, specializing to the case under study A = —¢, we recognize that the last expression
becomes
N
[T (0, i)t (8.31)
k=1

8.4 Final results

At this stage we can glue together the three pieces (8.23), (8.25) and (8.29) by a sum over
the separated variables. First the sum over primed variables (v/,£') is easily performed,
and leads to the simple replacement of Y’ with Y according to delta functions in (8.23).
Let us consider the integration over the auxiliary spinors

/DaDa’DBDB’: /Dal---DaN DBy -+ Dfx /Do/l---DQQV DB} ---DBy, (8.32)

which involves the integrand

N
(af H Ul (20)[8)(8'] [T Ty (#D)]) D (BIRT S(Y)T|B') (o/|S(Y) R |v)
k=1

SESN
and results in
—
N M
Tro, .o tn H\Ifyk 1 HR [T GED IR | (8.33)
k=1 n=1

as a consequence of the completeness [53-55]

/Da la) (o] = 1, (8.34)

and of the identity

N N
k=1 = k=1
The dependence over the coordinates of the diagram is described by (8.33). Now that
dependence over coordinate is set, let us collect the coefficients produced along the com-
putation; putting together (8.27), (8.31) and (8.20), we get

N

[T 7+ (0, i) Nt Etle o (1, Yi) M 7o (1, Vi) M2 (8.36)

k=1
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The resulting expression for (8.12) is then given by the sum over separated variables (v, £)
of (8.33) and (8.36)

1
(z1—20)2N (2] —20)2

o5 famtntr, o |([lms-sar ) (L) -]

k=1

F(zg,11,7)) =

X

(2} —x0)*™

Lm0 (L) M (LY M

k=1

(8.37)

2 2
In addition we can express the result via the conformal invariant cross ratios u = #
10%17¢7

2 2
T x . . .
and v = W, which are amputated after sending z(, — oo according to the transorma-
10170/

tion (7.3)(7.7) which as

2 2
Ty, i1

wu="2, v="k, (8.38)
Z10 10

through the complex parameters (z, Z) solving the equations
u=zz, v=>1-2)(1-2). (8.39)

Therefore we recognize that '
(xll _ IE())QZV"

($1 _ .’Eo)Zil’k

= (22)"* (8.40)

moreover the spinor indices of the graph are carried by a scale-invariant function Wy of the
unit vectors (2] — xo)H* /|x} — xo| and (z1 — x0)"* /|21 — 20|

ClyeeesCM CL5e-sC My

Wy (X10,X1'0)a1, SAM OO0y

r N C17...,CM1 ,él,...,c']\/[2
= Tro, . on (H[(Xl —x0)] ) RT (H —xo)] ) R‘] =

k=1

A1,y @M O 5B Mo

ro/— — — — ClyeesCMy sC15-sC My
N Mo N My
V4 7 _\\/ _
=Trey, oy || [TIxe = x))* [T R, | | TTIGR — %01 [T Rk
k=1 h=1 k=1 n=1 o
L Q155G 0 A1 50,0 My
(8.41)
The r.h.s. of (8.41), after factoring out the coordinate dependence reads
— — — — Clyee,CMy €150, C My
N Mo N My
Trey, oy | | [[l0" @00 [[RS, | | [[[6" ©--@a"] [[R,, \
k=1 h=1 k=1 n=1

ALyee s M A 5O M

(8.42)

and can be computed explicitly for any N, My, My and ¢1,...,¢xN given the explicit form
of R-matrix (see appendix C) and the simple properties of matrices o, & under trace.
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We point out that our result for My = Ms = 0 specializes to the scalar Basso-Dixon
diagram contributing to the correlators (8.4) and (8.5). In this case, we notice that for-
mula (8.33) can be worked out more explicitly as the R matrices disappear and the function
Wy simplifies:

Te([(G—%0)] [() —%0)]) = Tr(G 1, 7p,) -+ TH(5 1, 7, ) (1 — o)t He (2 — )" _

|2} —zof|w1 —20]
ot (561 _xo)m Mo (1,1 —330)

|113/1—1E0|Z|331—$0|£

pte — ol (cosf), (8.43)

where O} (cosf) is a Gegenbauer polynomial of degree ¢ in the variable cosf = (z1 —
xo)H (2} — x0)u/|T1 — x0||2) — 20|, and we recall that

sin((¢ 4 1)0) .

C} (cosf) = 8.44
l (COS ) sin(@) ( )

In the variables (z, z) such Gegenbauer polynomials read
C} (cosb) = (Z/E)HTl — (Z/E)J%l , 8.45

l _

We(z/2) = ﬂ (22)} [C)“ - <z>l+] , (8.46)

Finally, we can write the result for (8.12) as

1
Iy
F($07$1ax1) - (-751 — xO)QN(fLJl _$O)2Nx
N
X Y We (x10,%170) / dv p(v, £) [](22)"Fr1 (0, Vi) M+ E2 o (1, Vi) M 7 (1, v3) 2
£ k=1

(8.47)

In the case M; = My = 0, it follows from (8.46) that formula (8.47) takes the simple form

£ +1 £ +1
231 N (22)"|(2/2)72 = (2/2)
1 (z2)2 Z/di/ (v.0) H
(w1 —20)?N (2} — )N | 2—2| 4 Y P! ((ekzl)z N y,%)N+L1+L2 :
(8.48)
Furthermore, as a consequence of the properties
/L(I/,gl,...,—ek — 2,...,@]\7) = —M(V,el,.. . ,Kk,...,ZN), (8 49)

M(Vaela"'a_la"wéN):Oa
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it is possible to rewrite (8.48) extending the summation of ¢, over Z as

el gl
2 ZWEkT T3

L [ = %] /d 0 ° (8.50)
vu(v, ) .
(xl _ xO)QN(wll _ $0)2N _ = k ] ((@kzl)Q n yg)N+L1+L2

. L
Wi+

which explains our previous findings [6] and reproduces the conjecture of Basso and
Dixon [1].

In order to deliver the formula for (8.7), we need to perform on (8.47) the inverse of
transformations (7.3)(7.7), from F(xo,z1,2}) to G(xo, z1,x(, 2})

1

AN
G(xo,x1,20,71) = (xl_xo)zN(lJl_$0)2N(x0_xlo)2(N+L1+L273/2(M1+M2)) X

XZ We (mo,xl,xf),:cll)/duu(u £) H 22) e (0,Y;) Nt (1 v )Mo (1,Y) M2,
I4 k=1

(8.51)
where the polynomial W, gets transformed into Wy according to
~ b1, b b1,
(We)all,...,aﬁj/fll ,al,...,év][fb (x07x1v$6’$/1) =
ERRRE} 3C1 5000y b b S b
= WK (X0/1X10X00/ X0/1/X1/0X00/)2117 ’Z]Z;l ,Calh 76332 [XOO }21 [XOO’]CM [XOO’]b e [XOO’]éﬁz =
— — —
N M N M .
=Try . on H X0'1X10)] H Xo0'|R. hk ah H[(Xl/oxlof)]é’“ H(R;k[XOO'])gZ
k=1 h=1 k=1 n=1
(8.52)

9 Conclusions

In this paper we studied a class of exactly-solvable planar four point correlators in the
doubly-scaled 7-deformation of N/ = 4 SYM (also dubbed y CFTy) [5]. The structure
of SU(N,) indices of such correlators is that of a single trace which contains N complex
scalar fields ¢ propagating from the point z; to 2} which cross — along their propagation
— a number of fields ¢9, @3, 12,13 propagating from zo to z(,. The planar limit of such
correlators is dominated by only one Feynmann integral which can be regarded as the
generalization of Basso-Dixon fishnet integrals [1, 6, 64] by the introduction of fermionic
fields 12,13 at the points z¢ and xf of the diagram. Here we point out that for the
choice of only fermionic fields 1,13 at the points zg and z{,, the Feynmann integrals we
computed are the dominant contribution in the planar limit of the same correlators of the
“fermionic” fishnet theory studied in [65]. We have showed that the computation of such
Feynman integrals can be mapped to the diagonalization of an integrable spin magnet with
SO(1,5) conformal spins with open boundary conditions and a number of sites NV equal to
the number of fields ¢; in the correlator.

The map between Feynmann integrals and spin magnet follows from the observa-
tion [5, 61] that a square-lattice fishnet can be regarded as the result of iterative appli-
cations of an integral kernel (graph-building operator) which happens to be a commuting
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Hamiltonian of the integrable spin magnet. In the presence of fermionic fields the same
logic can be repeated for the Yukawa hexagonal lattice built by an integral kernel which
— modulo mixing of spinor indices — is “diagonalized” by the same eigenfunctions of the
square-lattice kernel. In this paper we give a detailed explanation of how to construct the
eigenfunctions of the spin chain and prove their orthogonality, extending the logic of [18, 56]
from 2D to 4D euclidean spacetime. Our results — derived for a spin chain in the principal
series representation of SO(1,5) can be analytically continued from the representation of
the principal series to real scaling dimensions, recovering the graph-building operator —
introduced in 2D by the authors and V. Kazakov [64] — for the Feynmann diagrams of
Fishnet CFT [5, 21] — as well as its fermionic counterpart which builds portions of Yukawa
hexagonal lattice.

The construction of the spin chain’s eigenfunctions, first appeared in our letter [6],
is explained in this paper via the detailed introduction of a light and handy graphical
computational technique, ultimately based on the star-triangle relation of section 4. A
nice feature in this respect is that the star-triangle identities for propagators with spins
¢/2 and ¢'/2 differs from the previously known scalar identity [19] by the appearance
of a solution of the Yang-Baxter equation Ry, obtained by fusion in two channels of
the SU(2) Yang R matrix, responsible for mixing the spinor indices. The technique we
developed should provide an extension of integration-by-parts and Gegenbauer polynomial
techniques [52, 66, 67] to the computation of multi-loop massless Feynmann integrals which
contain also fermionic propagators. Moreover it would be interesting to develop an analogue
formalism in any space-time dimension d > 4 and generalize our results to the computation
of correlators in the d-dimensional fishnet theory proposed in [40].

In our letter we conjectured [6] that the eigenstates of the spin chain magnet should
be used for a first-principle derivation in the bi-scalar Fishnet CFT (or in the more general
XCFTy) of the cutting-and-gluing procedures based on decomposing correlators of N' = 4
SYM into exactly-solvable polygonal building blocks labeled by a set of mirror excitations
of the dual string theory [25-29, 35]. In our formalism the mirror excitations labels are
replaced by the quantum number of the spectrum of the SO(1,5) spin chain, which at size
N is factorized into N equal contribution — one for each separated variable. In this respect
it would be interesting to see if, in the bi-scalar fishnet reduction, the separated variables
label the mirror excitation of the string-bits model proposed in [68-70] as the holographic
dual of the Fishnet CFT. More generally, it would be interesting to use the basis of
eigenfunctions for the SO(1,5) spin magnet to derive the YCFT4 version of several N' = 4
SYM quantities computed recently by the aforementioned decomposition procedures, with
the task of unveiling details on the double-scaling limit behaviour of N' =4 SYM theory,
in relation to its integrability features. In this respect we point out that, despite the
correlators under study are not well defined in N' = 4 SYM theory due to the lack of
gauge invariance, collecting the same elementary fields in four traces (each for each point),
one obtain a gauge invariant function whose perturbative expansion is essentially made by
Basso-Dixon integrals.*

4This observation was suggested by P. Vieira.
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Finally, inspired by the 2D results of [18], we believe that the eigenfunctions discussed
in this paper are closely related to the transformation to quantum separated variables of
the periodic conformal SO(1,5) spin chain which underlies the integrability of the Fish-
net CFT. The separation of variables for non-compact spin magnets is a topic which
recently attracted great attention [71-77], and SoV features appear in remarkable results
of AdS/CFT integrability, for instance [31, 78]. It has not escaped our notice that the
properties of the proposed eigenfunctions immediately suggest their role in the SoV of the
periodic SO(1,5) spin chain [47] and that, in full analogy with [18], the operators Qy,g(u)
or Q,,,g(u) introduced in 5 must be close relatives of the Baxter QQ-operators.
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A Transformation from tensors to spinors

The standard Pauli matrices oy, where k = 1,2, 3 have the form

o1y, (o). (10
o) o) P T Lot

To convert the tensors to the spinors and back we shall need 2-dimensional matrices o,

and o, where p =0,1,2,3 and 0g =09 =1 ,04 = —0} = i0}, so that a’L =0y
o, = (1,i01,i09,103) , T, = a’L = (1, —ioy, —iog, —io3) . (A1)

The important relations are

tro, o, =tro,o, =20, (A.2)
G,0,+06,0,=20,1, 0,0, +0o,0,=2,1 (A.3)
o, ®0,=2P, o, ®0,=2(P—-1) (A.4)

where we suppose summation over repeated index and do not distinguish upper and lower
v, v-indices because metric ¢, is Euclidean. The relations in the last line are Fierz iden-
tities: P and 1 are the permutation and identity operators in the tensor product of two-
dimensional spaces C? ® C?. In full analogy with formulae from the spinor representations
of the usual Lorentz group [55] it is possible to write everything in explicit index form with
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dotted and un-dotted spinor indices o, = ||(0,)aa|| and &, = ||(F )|

(Eu)dc (o) + (ﬁu)dc (O ey =20 ‘51? S (Ev)éb +(00)qe (Eu)éb =20 5
(U,u)aa (5u)bb =2 52 52 ; (Eu)aa (Uu)bl} =26, 65
(Eu)[m (Eu)bb =2e% et ; (Uu)ad (Uu)bb =2¢cab €4

Arbitrary tensor t,,. ,, can be converted to the spinor Yoy oanbr. o

wal...anl}l‘..l‘;n - (Uﬂl)ali)l e (Uﬂn)ani)n tﬂl---ﬂn <A5)

and there is formula for the inverse transformation

—n (= b —  \bnan
by oo, = 27" (U,Uq) R (O-Mn) ¢ ¢a1...an51~-5n (A'G)

Let us consider the spinor which is symmetric with respect to any permutations of indices
in the group a; . .. a, and by . . . b, independently w(al...an)(l}l...bn) and convert it to the tensor
using (A.6)

t,U«l..-,Un =2"" (Em)blal tee (Eun)bnan ¢(a1--.an)(131...6n) (A-7)

Then from the symmetry ¢( by ) follows that ?,, .., is symmetric and traceless: the

at...an)(
relation 6., tu,..u, = 0 is the consequence of the Fierz identity (Eu)da (Eﬂ)bb = g gab,
We should note that meaning of dotted and un-dotted indices and upper and lower
indices in Euclidean space are different from the Minkovski space.
In Minkovski space-time the symmetry group is the Lorentz group Ll and there is
isomorphism L1 ~ SL(2,C)/Zy. The matrices o, and @, in Minkovski space-time are
different from their Euclidean version (A.1)

o, = 1,01,02,03), o, = (1,—-01,—02,—03)

and they connected as follows

T,=—-<c0'c; &= 01
S . )

where * is complex conjugation. The same formula in index notations is
— \aa __ ab_ab A\ *
(@)" =™ ((Tu)y)

so that the index raising and lowering operations are carried out using two dimensional
Levi-Chivita tensors €% and €* and complex conjugation interchanges dotted and un-
dotted indexes. Each matrix U € SL(2,C) defines matrix A € L1 by the formula

Uo, Ut = o, — UL (U) (0 = (@0)0 A (A8)
so that the tensor t#1#» with standard law of transformation

f1ep R VA 2R
L Ry R L
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is transformed by (A.5) to the spinor with law of transformation

c Cn *\ d %\ dn
wal...anbl..‘i)n — Uall . Uan (U )611 .. (U )i?n wcl...cndl...dn (A.g)

and dotted and un-dotted indices correspond to spinors that are transformed according to
nonequivalent complex conjugated representations of SL(2,C).

In Euclidean space-time symmetry group is the rotation group SO(4,R) and there
is isomorphism SO(4,R) ~ (SU(2) x SU(2)) /Z2. The matrices o, and &, in Euclidean
space-time are

o, = (1,i01,i09,i03) , o, = (1, —ioy, —iog, —io3)

and they connected by hermitian conjugation o, = UL where t is complex conjugation and
transposition. The same formula in index notations is

NG t \* *

@)™ = ((@w)ha) = (F4)4)
so that now the index raising and lowering operations are carried out using complex con-
jugation. Each pair of matrices U,V € SU(2) define matrix A € SO(4,R) by the formula

Uo, V= o N, — U (V)L (0 = (02) e A, (A.10)

so that the tensor t#1#n with standard law of transformation
Ry AL AR g1 Vn
1 n
is transformed by (A.5) to the spinor with law of transformation

n d d o
way..anbl...i)n - Uafl e Uach (V*)bll e (V*)bnn ¢Cl...cnd1...dn

so that dotted and un-dotted indices correspond to spinors that are transformed according
to representations of two different copies of SU(2).

Important note. Everywhere in the paper we work with Euclidean metric and it is not
useful for our purposes to distinguish carefully the upper and lower tensor indices like y ,v.
For the sake of simplicity for the cumbersome formulae we adopt the following notation
in the paper for spinor indices o, = ||(¢,)%|| and &, = ||(@,)%||. The dotted and un-
dotted indices distinguish spinors that are transformed according to representations of two
different copies of SU(2) and the rules of conversion of tensors to spinors an back have the
following form

gifffgz = (0-/1«1)21 e (Uun)gz buyepin s tpgopm =27 (Em)gi (Eun)gz gigz (A.11)
The auxiliary spinors in paper have lower indices o, and S, and the index raising operation
is defined as complex conjugation a® = (a,)* = @, and 3% = (8;)* = fB4 so that the rules
of hermitian conjugation are (appendix A)

ol =0, a"=a.; B*=Pa; (olouB) = (BlF,le) (A.12)
and the pairing between spinors is the standard scalar product in C?
(o) = a%al, = @galy, (B|8) = B"Ba = Biba. (A.13)

Note that vector ¢, = (a|o,|B) is automatically a null-vector (c,c) = 0 due to the Fierz
identity o, ® o* = 2(1 - P).
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B Relation with representation theory of SU(2)

Here we would like to demonstrate that orthogonality and completeness relations for the
eigenfunctions in the case N = 1 are closely related with the orthogonality of the ma-
trix elements of the irreducible representations of the group SU(2) and the Peter-Weyl
theorem [55].

B.1 Orthogonality

Let us start from the orthogonality relation (3.19) and separate from the very beginning
the radial part in our integral z = px,x%> =1

[ oo BT [T 8 [ i - 1) a5 ) =
0

Stiv+2) 2(%—iu’+%) 1)

2 ° nn / n ’
n11<ala> (B'18)" S 6(v — V)

so that this formula is equivalent to the formula for integral over sphere x2 =1

272

:n—l—l

[t = 1) (alxl5) (9l () (B18)" b (B.1)

We shall show that this relation is nothing else as the orthogonality relation for the matrix
elements of irreducible representations of SU(2). The standard parametrization of the

matrix from SU(2)
g= ( @ [_)> , aa+bb =1
-ba

in terms of two complex numbers a and b is equivalent to the parametrization in terms of
unit four-dimensional vector x = (zg, ¥) , x> = 23 + 23 + 23 + 23 = 1

( To+ixy T2+ ixy

) ) = z9 1 + 21401 + 22009 + 23103 = T,0, .
—Zo +1X1 Tg— 13

In this parametrization the normalized invariant integral over the group SU(2) is exactly
the integral over the sphere

/dg _ 2;/ dx6(x2 — 1) (B.2)

The orthogonality theorem for the matrix elements of operators acting in irreducible rep-
resentations of the compact group G states: let T(® irreducible unitary representations of
the group G and dim T(® = d,, then we have for the matrix elements

1
| 4T 9 10) =

T 03 01 O (B.3)

In our case G is SU(2) and the irreducible representation T(™ with dimension d,, = n + 1

is realized by restriction of the n-th tensor power of the defining two-dimensional represen-
tation g®" to the space of symmetric spinors of the rank n. The quantity (a|g|8)™ is the
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generating function for the matrix elements TEZ) (g) so that the relation (B.1) contains all
relations (B.3).

Now we are going to the explicit formulae and first of all introduce the generating
function for the basis |e;) in the space of the symmetric spinors of the rank n

a0l =3 (1) Bark =S @ 19 = () =ain a1
1=0

1 . .
where 9, i(6) = ()2 85 57 ". By construction (eg|e;) = djx, the matrix element of operator

(n)(

of representation is defined in a usual way T}, (g9) = (e;|g®"|ex) so that we have

(alg|B)" zqzzm k(BT (9): (Bl )" Zwm Vb 3 (@) T4 (g)

1,k=0 7,0=0

Now it is easy to calculate the integral (B.1) using the orthogonality of the matrix ele-
ments (B.3)

[ dgtalgly (g o'y =
Z Q;Z)n,z wnk Z "Z}n’l Q;Z)n ] /dg le Jl )( ) =
i,k=0 4,1=0
- 1
Z wn,z wn k Z wn’ l wn ,]( ) n+1 5nn’5ij 5kl =
i,k=0 7,0=0
i~ yn—i e (7 2o \E (g a \VF
n+1 Onn’ Z ( > anah)’ (anal) kz:% (k) (52ﬁ2) (51ﬂ1> —
1 n (2 oll n 1 N ol a\n
] Ot (@107 + Q0y) (5151 + 3252) a1 Sy (a|a)™ (B]B)

B.2 Completeness and Peter-Weyl theorem

Now we are going to the completeness relation (B.5) and again separate from the very
beginning the radial part x = p1x,y = poy, x> =y? =1

1 n—i—l
/d 1+7'/\+le) p2(1**721/) Z 27_[_3 /DO[.D/B a‘w|ﬁ> <ﬁ’y’a>

p%(s(pl—m) > 2:3“ | DaDB talel) (Blgla)" = 5" (w ~y)

After extraction of the radial part from the four-dimensional J-function

1
5 (o~ ) = 3 3(pn — pa) x — ) (B.4)
1
we reduce the completeness relation to the form
n —|— 1
> ez e | DB (alal8) (Blgla)” = ax ). (B5)
nZO
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which has the natural SU(2) counterpart. The orthogonality relation

/ d T(a) )( ) df 6a,{3 61] 5kl

(a)

shows that matrix elements T’ (g) of all irreducible representations form an orthogonal
set of functions on the compact group G. Peter-Weyl theorem states that this basic is
complete for any compact group and this statement can be reformulated using Fourier
transformation. Let us expand f(g) — function on the group G over considered basis (we
assume summation over i and k)

Zd sz zk )

where coefficients Fl.(f) can be obtained from the orthogonality relation

Fy) = /G dg f(9) T\ (g)

The set of coefficients F| (k ®) contains all information about the function f(g) and the Fourier
transformation is defined as a map

1) = ) = [ dg f@) T (0 (5.6)
so that Fourier-transformation maps f(g) to operator ()
19) = F@ = [ dg f(9) T(g) (B.7)
and inverse transformation is given by
Zd FO T (g Zd tr (FET@ (g71)) (B.8)

T

where we used the unitarity of the representation TE,?) (9) = (T(O‘)>k‘ (9) = T,(c?) (g7h).

In explicit notations we have
— (o) (@) (-1
/G dh f(h) %:da tr (T ()T (371)) (B.9)
so that we obtain the completeness relation
9) =" da tr (T ()T (7)) = Zd tr (1) (hg™")) (B.10)

where d-function 0(h, g) is defined by the standard relation f(g) = [, dh f(h)d(h, g).
The last relation in the case of SU(2) is exactly the relation (B.5)

S ot [ DaDs talels) (Gigla)” = 5(x-¥).

nZO
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where h = ¢ = x,0, ,9' =g ' =7y = y,0u and 6(h,g) = d(x —y). To show the
coincidence of two relations one has to calculate Gaussain integrals using relation

‘/Dawmx®¢%ﬂa):nmw (B.11)

We have

n

[ aDsalnig)"(Blg~ )" = [ DaDB 3" bni(@)inr(8) 3 bualBiins(@) T W T (g™ =
i,k=0 4,1=0

()2 Y T T (971 = () tr (T ()T (671))
i,k=0

C R-matrix and fusion procedure

The Yang-Baxter equation has the following form
Rio(u)Ri3(u + v)Raz(v) = Rasg(v)Ris(u + v)Ria(u) (C.1)

All operators act in a tensor product of three spaces Vi ® Vo ® V3. Indices show that
R12(u) acts nontrivially in the space V; ® V; and is identity operator in the space V3. The
meaning of another indices is the same. The space V}, is the space of the symmetric spinors

Y(ar...an,)
The general operator Rj2(u) acts in a tensor product of two representations with spins

and it is (ng + 1)-dimensional representation of the group SU(2) with spin =E.
ny
2

and %2. It is the space of the spinors ‘Il(a1~~-a«nl)(bl--~bn2) which are symmetric with respect
to any permutations inside two groups of indices separately and in the matrix notations
we have
_ plereng)(dr..dny)

[Br2(w)¥] (0, ap ) (b1.bny) = (al...anll)(bl,._bnz)(u> Wiey...cny)(dr.dny) > (C.2)
where the summation over repeated indices is assumed. For simplicity we skip indices 12
in the matrix of operator Rja(u). The simplest solution of Yang-Baxter equation is Yang
R-matrix which acts in the tensor product of two-dimensional representations of the spin %

1
Rif(u) = (6] +6147) (C.3)
The standard procedure for constructing finite-dimensional higher-spin R-operators out of
the Yang R-matrix is the fusion procedure. Following the recipe from [59, 60] we of the
product of the Yang R-matrices

R0 (44 m21) — SymRES (RS (u+ 1) - R

(a1...any) b a1 b as di

1l (udng—1),  (Cd4)

anl

where Sym implies symmetrization with respect to groups of indices a; ...ap, and ¢y ...cp,.

In such a way one obtains an operator acting on the space of symmetric rank nj spinors,

i.e. on the space of spin % representation, and on the two-dimensional space of spin %

representation. Next the R-operator (4.11) is used as building block and repetition of the
same procedure increases spin of representation in the second space from % to 2.
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In realization of this program we prefer not to deal with a multitude of spinor indices
but rewrite everything using holomorphic representation [53-55]. The usual matrix-like
action of operators in a space of symmetric spinors W4, 4,) has the form

by...bn
[A ql](al---an) = Agall...an)) Vipy.bn) > (C.5)

where the summation over repeated indices is assumed. We introduce auxiliary spinors
a = (a1,a9), B = (01,P2) and contract them with the tensors

\Ij(a) = \Il(al.“an) at .. aanv A(avﬁ) =a"-.a™ A (b1-bn) ﬁ by ° '/an ) (CG)

(a1 an

where in fact the contraction of a-indices is performed with complex conjugate spinor due
to our convention about index raising operation as complex conjugation a® = (a,)* = @g.

The symmetization over spinor indices is taken into account automatically. Henceforth,
in place of the tensors we work with the corresponding generating functions which are
homogeneous polynomials of degree n of two variables

V(o) = U(ar,as) , T(Aai, \az) = \" U(ay, as) . (C.7)

In this way formula (C.5) acquires a rather compact form

4] (@)= [ DB Al 5) w(9) (€38)

due to Gaussian integral (3.25)

[ BBy G, 5 5 =l S o (C.9)

so that operator A is described as an integral operator with the kernel A(a, 8). We should
note that the left argument in the kernel is spinor with upper index a® so that in fact it
is complex conjugate spinor a® = a,. The kernel of the product of operators A and B is
given by the convolution of the kernels

AB)(a,8) = = [ DyA@]) BG15) (€10

The kernel of identity operator is («|5)", where («|5) = &[4

w(a) = - [ DB alg)" w(H) (C11)

There are two equivalent formulae for the kernel of the general R-operator acting in a

tensor product of two representations with spins - and

(1,00 Ron, 1y (1) B, B2) = plu) {raB) =52 01012 (0o + 10| By +52) 5
(C.12)

1+2 ni+no

= p(u) (o |B2) ™" 052 (o1 +s2002| Ba+5181) T2
(C.13)
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The normalization is fixed by requirement R(u) R(—u) =1

1
p(u) = — — (C.14)
(0 + 24 0),, (22 D),

where (a),, is Pochhammer symbol: (a),, = a(a+1)--- (a+n—1). Above and in the following
we agree that in all formulas of such type one should put s; = s9 = 0 after all differentia-
tions. The formula (C.13) is obtained from (C.12) by rescaling s, — sy, {(@2|B81) (a1|B2) ~*
and there are useful representations for R-operator

<O‘170‘2|Rn1,n2(u)‘51aﬁ2> =
1 ut 1
(6%
(U+ n25n1 +1)n1 < 2‘/61>

1 _u+"1+n2
(6%
(U+ nlgnz +1)n2 < 2‘51>
1
(wr B3804,
1 u+"1+ )

v,

9 (a1 (5)|81)“ T2 (0 (5)|B2)"™ =

8?2 <a1 |/812(5)>n1 <O£2|B12(S)>u+% =

1

07 (| Baa ()77 (o] Baa (5))™

ni+n
N

1

2 ara(s)]B1)™ (ona(s)|Ba) T

where we use compact notations a;x(s) = a; + sag, Bi(t) = Bi + tfB for simplicity. It
is easy to check that for n; = no = 1 this expression coincides with the kernel of Yang
R-matrix (4.8)

(o1, az|Ry 1 (u)|Br, B2) = (u(1|Br) {az|B2) + (a1[B2) (@2|B1)) -

u+1

In our knowledge this compact expression for the kernel of R-operator is new; the most
similar representation is obtained by E.K. Sklyanin in [79]. Let us perform the first step
of the fusion procedure according to (4.11)

[ D8t colRa(w) 1, ) (o, SR (w4 1)1, o)

0l A1)+ O, (umn (5)|B1)" / DB (a21(5)18) (a1, BIR w1 (u + 1)|B1, Ba) =

( )

(oz| )~ a (a21(8)|B1)" (e, a1 (s)|Rap(u + 1)|B1, B2) —

(o] B1) T O (021 (5)[B1) ™ (0021(8)B1) ™" O, Oy (v + (s + t1)an | By + ta )" +? =
( )

as|Br) v 07 ' Opy (2 + tran|Br + t232)" " — (a1, a2|Ras (u + ) 51, B2) ,

where we ignore all overall constants for simplicity. All calculation is based on the explicit
formula (C.11) for the kernel of identity operator and crucial simplification of the marked
product. The general procedure is clear and in this way we construct

ni+1

5o (o + s101|B1 + s282) "t 2

(a1, aa|Ry, 1(u)|B1, B2) — (aa|Br) " B
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For the fusion procedure increasing spin in the second space we shall use the equivalent
formula

R —ur i m
<Oé17 062| nl,l(u)\ﬁb B2 — (041\52> s<a1 + sa2!52> (041 + sa2|51>

and again for example we perform the first step of the fusion procedure

[ DB (ar,0alRas s (w]5.52) (B ol a0+ 1))
(1] Ba) ™2 B (a2 (s)]Ba) (5)18)™ (8, 02| Rony 1 (u+1) |1, B) =

(] Ba) ™2 By (na(s) |8 2>“+“T”<am<s>,a2|Rm, (uDlB1,52) =
(1] Ba) ™2 B, (02 (s)[Ba)" 2 (ana(s)]B) " 5t"113m(061+(8+t2)042|/32+t151>"+

nytl ni1+3
(Qn|B2) 875 9192 (a1 +taan|Batt1B1) T = (| Ry (U+2> |81, B2)

ni

We provide the proof of the identity R(u) R(—u) = 1, where for simplicity reasons we
ignore all coefficients:

[ DD (1,2 R () 11.72) (172 R (1) |81 ) >

[ D aabe) 5 0 ana(9)la) T [ Dy anas) )™ (1,72 Ry () B, ) =

[ D abng) 5 0 ana()a) ™ (0as), 20 R (<) 81, Be) —

/Dw (o |92) T O (ana(s) e) TR (aa(s)[B2) T O (ua(s) [ Ban (1) 7T (0l B ()™ —

207 (|Bar (1)) ™ (an2(8)]Baa ()T (s (s)]B2) T (s (s)| B (8) T

P20 (0Bt (£)) T2 (auaa(s)|B2)" T > 0 |B1)™ (o B2)™

12—

l

ni+ 1 nj—ng

All the ignored coefficients can be restored as they are presented in the various explicit
representations for the kernel of R-operator listed in the beginning of this section. Note
that in this section we present the formulae for the un-dotted spinors and of course there
exists corresponding analogues for the dotted spinors. We skip all such evident formulae for
simplicity. Moreover during the whole paper we use a-spinors as undotted and S-spinors
as dotted but in this sections all a, 5,7, ... spinors are un-dotted. We hope that will not
leads to any misunderstanding.

D Derivation of the integral identities

D.1 Derivation of the chain-rule (4.25) and star-triangle identities (4.32)(4.28)

In this section we provide a detailed derivation of the formulae (4.25), (4.32) and (4.28),
which lye at the basis of most of our results. In order to do so, we write the propagators of
formula (4.24) by an explicit projection of ¢®"1, %" matrices over the space of symmetric
spinors, and fix a = Ay + 5F, b= Ay + 22

(1]x —z|B1)"  (Ba|z —ylaz)™?
(.%' _ Z)Z(a—n1/2) ’ (y _ Z)Q(b—n2/2) )

(D.1)
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where |ay) and |fg) are the left-handed and right-handed auxiliary spinors introduced in
appendix A

(ak)av (Bk’)ila k= 1327 (I,d = 172 (D2)

First of all we represent such propagators in a suitable form

<041|X—Z|51> I'(a—mn1) 1

- 1 t = D.
(a— e~ nl(a) ¥ Gz ifmlelgype =0 (DY
(Balz —ylag)™ _ T'(b—n2) o, 1 _
(y — 2)2(b_”2/2) - 2n2T(b) to (y—z—+ t2<ﬂ2|&’a2>)2(b—n2) , ta=0. (D.4)

Secondly, we compute the convolution of propagators in such representation by the standard
chain rule for scalar propagators

,T(2—a)(2—b(a+b—2) 1

[t =™ TG ey G e

The computation reads as follows:

[ s b e Tt
2(a n1/2)( )2(b7n2/2) 2”1+”2P(a)F(b)

x Ot ”2/ d'z =
(z =z — ti{aa|a] 1)) (y — 2 + t2(B2| G| az))2(—n2)
2 T2—a+n)l(2—-b+n)l'(a+b—2—n; —ng)
oD@ (4 —a—b+ni +ng)
X L0 (x — y — ti{au|o|Br) — ta(Ba|F|ag)) >t Hn2),

Furthermore we can compute explicitly the following square

(z—y—t1{on|o|B1) —t2(Ba|E|a2))? =
= (z—y)* =2t |z —y[{on[x—y|B1) — 22|z —y|(B2[x—y|a2) +4t1ta (a1 |az)(B2] 1) . (D.6)

After the change of variables

R
we can rewrite the result of the integration as

o I'(2—a+n1)I'(2—b+n2)'(a+b—2—n1—no) 1 y
F(a)F(b)F(4—a—b+n1+n2) (J,‘—y) <a+b 9_ n1+n2)

X 0102 (1—t (o [x—y|B1) —ta(BolX—y|a2) +t1ta(Ba| B1) (a1 |az)) B~ bTmtm2) (D g)

™

We can conveniently redefine the spinors « in order to get a more compact expression

o) = (y = x)[8') - (D.9)
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So that
/d4 (Brl(y—x X(X z)|1)" (B2l (z—y) (y —x)|53)"
iL' Z)Z(zz n1/2)(y Z) (b—n2/2)
oy T(2—a+n1)T'(2—b+n2)(a+b—2—n1—n2) 1

- [ (a)T (BT (A—a—bn1na) gy IR

X O O)22 (1+11 (B |B1) +ta(Bal By) +tata (B2| Br) (B ] By)) o brmatna)

The last formulation of the star-triangle relation can be recast in an even more compact
form by use of the fused R-matrix of Y (su(2)). The result is the fundamental relation that
we use through the paper

/d4 (B1l(y— X(X z)|81)™ (B2|(z—y)(y —x)|5)™
(x—2)2a=n1/2) (3 — z)2(b-12/2)

o, I'(2—a+n1)T'(2—b+n2)(a+b—2—n1—n2) 1

D.11
T'(a)L(b)T(4—a—b+ni+ns) 2y 2loro2- 1) x (D.11)
I'(3—a—b+ni+n2)T'(3—a—b+n1+ns), , ( nl—l—nQ)
R, n (2—a—b ,
F(3—a—b+n1)F(3—a—b+n2) <61762| 1,m2 a + |ﬂl 52>
We can rewrite it shifting a — a +n1/2, b — b+ ny/2 as
/d4 (B —x)(x — 2)|81)" (Ba| (2 — y) (y — x)[55)"* _
(x —2)%(y — 2)?
Fr2-—a+2)T(2-b+2% b—2— mine
_ 2 ( CH‘Q) ( +2) (a + . 2 ) 1 y (D.12)
Pa+%)T(b+ )T (4—a—0b+ m5™2) (v — y)2atd=2)

FB—a—b+™m2)0 (3 —a—b+ mf02)
X
T(3—a—b+™5%2)T (3—a— b+ 250)

<ﬁ37/62’Rn17n2 (2 —a- b) ’ﬁl)ﬁ@ :

It is possible to simplify the I'-functions containing a + b which appear in the r.h.s. of the
chain-rule identity (in such a way the symmetry (a,b,n1,n2) — (b,a,n2,n;) is not anymore

manifest):

(_1)n2 F((I—I—b—Q—I— nzgnl)
B—a—b+™2f2)T (3—a—b+225™M)"

So, finally
/d4z< Uy =x)(x = 2)[61)" (Bal(z — y)(y —%)[85)"™ _

(&= 2%y — =)
ST (2—a+3)T(2-b+%2)T (a+b—24 225 (—1)m2
Dt 5T (0+ 5T (3 —a— bt mym) (- y)2esD
<517/82’Rn1 ng ( —a- b) ’/817/82>
(3 b+n1+n2)

x  (D.13)

We introduce some notation:
F2-a+%)T(2-b+%)T (a+b— 1+ 225M)
Fla+%)T(b+ %)L (3—a—b+ 2250

An1,n2 (a, b) = (D.14)
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It is useful for our scopes to recast the uniqueness identity in the star-triangle form following
a conformal inversion respect to the origin xf] = 0 followed by a translation of vector —t*.
First we notice that

xh _
I(z*)= Pl I(x—y)=—x(x—y)y=y(y—x)x, and we recall that (x—y)(x—y)=1.
(D.15)
We can redefine the spinors and write

/d4 (Bil(x— Z(Z t)[81)" (Ba|(t—2)(z—y)[B5)"
(z—2)20(y—2)2b(z—t)2(4—a=b)
L@t 3T R-b4 )L (atb-24 55) -y

T(at )T (04 2)T (B-a bim50)  (z—y)2att2)(z_t)2CD(y_1)2Ca <
(P1xX=Y)(y =), B Ry np (2—a=b) |61, (€ =) (x—y)B5)
X (oo b—|—”1J2r"2) (D.16)
It follows that
/d42 (B1l(E—y)(y—x) (x=2)(z—1)|81)™ (Ba| (t—2) (z—y) (y = %) (x— ) |55)"* _
(x—2)24(y—2)2b(z—t)2(4—a=b)
oL (2—a+% )T (2-0+ %) T (a+b—2+412511) (—1)™
Tt )T (o )T (mabr 557) (g P (o P (=20
</81 /82|Rﬂ1,n2(2 a— b)|61a52> (D.17)

(3—a— b—{—”1+"2)

We can redefine the spinors and write
/d4 (Bil(x— Z(Z t)[61)" (Ba|(t—2)(z—y)|B5)"
—z)%(y—z)P(z—t)21-a=b)
2F(2—a+%) (2—b4+22)T (a+b—2+"25™) (—1)m y
I‘(a+m)r(b+@) (3_a_b+w) (x_y)Q(a+b72)(l,_t)2(27b)(y_t)2(2fa)

o BLE=Y) (Y —t), B2 Ry ny (2—a=0) | B, (E—X) (x =) B3)
(3—a— b+”1+”2)

(D.18)

We notice that in the numerator of the integrand the flow of o matrices is opposite in the
two tensors: the one of degree n starts from z to ¢, while the other (of degree ny) flows
from t to y. We can actually derive an identity for flows in the same direction, after a
redefinition of spinors

|B2) = (x=¥)laz), |Bz) = (x=y)la3), (D.19)
in the chain rule identity (D.13), so to obtain
[ s GT=Rx =D x5 =B

(=27 — " )

T(2—a+ )T (2—b+ )T (atb—2+m25m
_pl2at H)T@-b+ ) Datb-2+ B5H) = x  (D.20)
F(a+%)F(b+m)F(3—a—b+7n22”1) (v — y)2atd=2)
« (Biaaé(x_y”Rm,nz( )|ﬂla( _X)O‘2>'

(3—a—b+@%@)
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and the star-triangle follows by the usual inversion and translation

/d4 (Bil(E—y)(y —x)(x=2)(z—t)[51)" (a5 (t —x) (X —y) (y —2) (2—t) [ 0r2)"
(fv 2)2(y—2)P(z—t)24-ah)

— F(2 a+n1) ( ) (CL+b 2+n2 nl) (_1)n1+n2 y

= T e e e
y)(y—

o P15 (t=3)(X=Y)(y =) Ry, (2—a=0) |61, (A —y) (y =x) (x —t)az)
(3—a—b+mdn2)

(D.21)

By redefinition of spinors |3]) — (t —y)|a1) and |af) — (t — x)(X — y)|ab) we can re-write
the last identity as

/d4 {n|(y =x)(x=2)(z—1)|51)" (a3|(y —2)(z—t)| B2)™
(iC Z) (y Z)2b<Z t)2(4—a—b)

,T (2—a+%) T (2—b+12) T (a+b—2+125m1) 1 y

(et 2T (0+ )T (B—a—bt 50 ) (2 y)2@rt-D (g )20 (5 1)2C-a)

</617a2|Rn1,n2(2 a— b)|(y t)ﬂl’(y_x)(ﬁ)ﬁ2>

Ba—brmim) |

(D.22)

Finally we consider some particular case for which the uniqueness and star-triangle relations
simplify. First we set ng = 0 (or n; = 0) in (D.16), obtaining the relation for one single
polynomial in the numerator

e T
(z — 2) )Qb(ziw (4—a—b)
(
(b)

-z
_ 2l a+n1)F 2-b)T(a+b—-2+3) (Bil(x = y)(y — t)[81)™
e T a Tr ) Gy T Sy — g
(D.23)
and setting further n; = 0 one recovers the well-known scalar star-triangle relation
/ d*z B
(x _ Z)2a(y _ z)%(z _ t)2(4—a—b) o
T2-a)T(2-b)T(a+b—2) w2 (D.24)
T T@IOTE—a—b)  (o—y2et (a0 (y—gpea
D.2 Derivation of the exchange relation (4.33)
[ (0~ 2) (5= (x=xp))[(x0—y) (Y =2) (2%} )| oo
(@0=9)?P (g2 (ag—2 P (a—2 PP (z= )P (=) |

( +§)F(2 a+) (b’+%)r(a'+g>

(et )T ()T -0+ )T (204 5)
xzzxx—x’glx_fzz_xlﬁ—l

/ L i b)O(y )Z()( )>((x0_Z))]W[Exo—z;;)bgzz—92{5)2(2‘2))2;;6)2(2‘”)’ (D.26)
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Figure 15. Star-triangle relations for “opposite o flow” and “same o flow”, where the order of

matrices o, o in the product is given by the arrows. The action of the R-matrix is represented

along the spinorial structure by a grey line.

where R = Ry (b — b'). The proof goes as follows: first we can focus on the contribution

given by the triangle (z, z, x(), which according to the uniqueness identity can be rewritten

as a star integral:

(z=x)(x—xp)['[(z—xp)]" _  [Z=x)(x—xp)['[(z—xp)]"RR""
(z—a()2C=V) (z—2)2 (z—})2CD) — (2—a})2C) (z—x)2(z—a)) ) 20/ —b+2-V)

_ & )/d4z,[(Z—Z/)(Z’—Xi))]f[(Z—Z’)(Z’—X)(X xp)]" R~

B (x_$6)2(2—b/ (Z_Z/)2(2+b—b’)(Z/_x)%’(z —3:0)2(2 b) ’

at this point we can consider the star integral in z:

/d4 xo —2)(z—2)(x0 — y)y —2)(z — 2)]* _
(2 — 20)20(z — y)2@=a)) (5 — 2/)2@H0=) (35 — 322V +b-b)
R [(x0 — y)57 =)0 — )"
(y — 20)?70 (2 — y)22= ) (zg — 2)2

— Oy

The coefficients C7 and Cy are given by the star-triangle as

m(=1)" Agp (b,2-V) w2 (=1)* Ay p(a,2—d’)

Cl_1 , and Co=

(bt 5 (b )

so the resulting coefficient is

0102:F(2";+5)F(2—a+é)r(b'fg’)r(mg:)‘
F(af‘f‘i)F(b—i—g)F(2—@’+%)I‘<2_b/+%)

Finally, putting all pieces together, we are left with the r.h.s. of (D.25)

(D.27)

(D.28)

(D.29)

(1—a+a’+£%/> (a—a’—l—%) 7

(D.30)

(D.31)

0102 / A R[(x0—y)(y—7)(2'—xp)]‘[(x0—2') (7 —x) (x—xp)] "R
2(2 V) (y—o)
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Figure 16. The four steps of the proof of the exchange relation (D.25), from the left to the right.
Initial expression (1); insertion of identity in the space of spinors as Ry ¢ (b — b )Ry e (b — 1) (2);
opening of the triangle on the right side into a star with integration in 2’ (3); computation of the
star integral in z (4).

D.3 Derivation of the exchange relation (4.38)
D.3.1 A new type of star-triangle identity

In this section we provide the proof of another, not equivalent to (4.32) or (4.28), star
triangle relation which plays a crucial role in the proof of the exchange relation (4.38). The
integral identity we are going to prove holds under the uniqueness constraint (a+b+c = 4),

and reads
[aty e i) o=t Tl i T2cr )
(x—v)Q(a"'n;m)vQ(b"'%)(v—z)2(0+%) vt Dla+m5")  TO+3)  Dlet+3)
1
oo —
L2(2-at+3) 2(2-c+ 1) t (x—ABz)Q(%b*i)
(D.33)
where
Ay = 6 + s( Moo ) ; By = 6 + t(p2|z6,0,4|N2)

and these matrices are orthogonal up to normalization
AAt=al; A'=atA" detA=0a%; a=1+2s(\|p)
BB'=p1; B '=p""'B"; detB=p% f=1+2t(\z|u2)

As usual we can represent the numerators through derivatives, so that the Lh.s. of (D.33)
can be rewritten as

/d4 ul( x—v) )" a0 =)™ Tle— %) Tlat "5)
P59 204 ) (o — 2)2(e+5)  27T(e+ §) 2T (a+ 25)

oo / d4v __ __
' (x —v— sa)Q(a+ ) p2(0+3) (v—2z— tb)2<c_7)
where

ap = (Mlopolpa) s by = (ualoulA2) .

— 76 —



Then we notice that
_ 2 -1 2
(x —v)y — s(M|oy0lm) =2, — Apvy;  (x—Av)" =« (A x — v) ,
and now it is possible to use the standard scalar star-triangle relation

[t ! T(2-at"g™) T2-b-§) T(2—ct%)
(A_lx—'l))Q(a+m2_n)'U2(b+%) ('U—Z—tb)2(c_%) F(a+m2—n) F(b—i-%) F(C—%)
% 1
(A—1I)2(2—C+%) (Z+tb)2(2—a+"—2

") (2 th— A1) 078)

so that
2T (e+ % )2nr( +m2n) e att® Tt (A*lx—v)g(aw;")u?(”%)(v—z—tb)Q(c—%)
2 I'2—a+252)I(2-b—-5)T(2—c+%)
ontm F(a—i—”gm) re+3s) TI(c+%)
2—a—c+2
x "o a :

222—ct+7) (Z+tb)2(2—a+";m) (Z—A71I)2(27b7%) ’

Finally, we can re-write
(+th-A7"2) = A0 (= A(tD), = A (w0 Aus (357112 ale05100)) 21 )
and
(2 +10)* = (2 + Hpizloul Ao))* = 22 (14 2|2~ (pualz|A) )
so that after the re-scaling t — t|z| we are left with the r.h.s. of (4.38).

D.3.2 Proof of the exchange relation

In order to give a proof of the exchange relation (4.38) we need to start from the star-
triangle (D.33) proved in the previous section

L
) 2(045) (p—2)2(e+%) 27T D(a+™5™)  T(b+3)  Dlet+)
1 6(1—2—}—’"2_“
oy

(2 a+) (2 c+ 2 )

where
Ay =6 + s(Ai|ouou| ) ; By = 0y + t(p2|z0,0,]\2) -

We can rewrite the last integral identity in a different form, using the following integral

4 @) (z — Bv) _
/d 2(2-ety ( — Az) 2(2-b-%)  p2(2-etY) (x_ABz)2(2—b—g) ’ (D-34)

which is based on the general formula for the §-function

6@ (z — Bv) = W (Bx —v) |

det B
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where we recall that det B = 2, and B is an orthogonal matrix BT = B~! for which
AB = BA:

)(Bv — ) 6@ (v — B~ 1x) B
/d4 2(2—c+2 ( Az —b—12) /d4 2(2—c+2 ( _AZ)Q(Q—b—g) o

ﬁ_Q IBZ b— C+m n

(B2 et B) (B1g - 42227078 2ot ) (o - pas)XemE)

Thus, the star-triangle rewritten with the replacement (D.34) reads

/d4v Ml(@—)vlu)" (pol(v=2)A2)™ _ 7* T(R—at+"5")F(2-b-3)T2-c+3)
(z—v) 2@ 552)2(045) (y _)2(e+3) 277 T(a+"4™)  T(b+5) T(et%)
1 6@ (z—Bw)

ﬁanﬁt /d4 2(2-ct+% )(v—Az) (2-0-3)

The next step is the convolution with an arbitrary propagator: we multiply both sides of
obtained equality by (y —x)~27 and integrate over x. In the right hand side the integral is
easily calculated due to delta-function and in the left hand side one should use the chain
rule (4.25), which in this case reads

4 (Ml(z = v)v[p)"”
/d y— ) 27 —0) ( Hm)

2)

Wzm - >r<
IG) Tlat "3’")

(a+y+"5" =2) (Mil(y — v)vlp)"
(4—a—~ + B (y — w)2atrtEgm-2)

r
r

After this convolution we have

T(2—7)F(a+7+”§m—2)/ 4, Qul(y—v)vlpn)"{po|(v—2)[A2)™
L(y) T'(d—a—vy+257) (y—uv)2(atrt 252 -2) 2(045) (, _ )2(c+5)
1

1 T2-b-5)T(2—c+%) 1
on+m p(b_,_%) 1“(04_%) 2(2 a+2 (y— BU)2WU2(2—0+%)( —A2) 2(2-b-2%) "

L / dh

Now we calculate derivatives using the rule

1 2"TI"(A+n) (x—y,a)"

o~y —ta)PA| T D.
"o —y—ta)?A],_, L(A) (z—y)2Atn)’ (D.35)
so that
_ — m 1 . QWF('y+m) <ﬂ2‘z@(y71})|)\2>m
(y_Bv)“ - (y_"))u—t</i2\z’l)0u\)\2) - (y—Bv)*" t=0 - T(y) (y—v)20tm)

1
(v—Az)Q(g_b_%)

_ 2T (2-b+3) (Ml(v—2)zlu)"
F(2-b-%) (z—y)?C0r8)

(v=Az), = (v=2)u—s(Ailoyz|p1) = O

t=0
and we obtain
I'(2—9) [(a+y+ 5" —2) /d4v (Al(y — v)0|pn)™ (p2|(v — 2)[A2)™ _
I(v+m)T'(4—a-— ) (y — ) 2(aty+ 24 -2) (H%)(U _ Z)Z(c—&-%)

r2—-ov+34)T2 - c+ /d4 1] (v = 2)Z|p)™ (po|zo(y — v)|Ao)™
reo+3%) Llc+% 2(2—a+3 2(7+m) 22—t )( _2)2(2_b+g)’
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We can rewrite the last formula normalizing the numerators as

/d4 (M(y— VV|M1> (p2|(v—2)|A2)™ / )\1 v—2)Z|p1)" (p2|zv(y —v)[Xo)™
a+7+m—2) 20) (p— 2)2(©) 22(2 a) 2(7+m/2) 02(2— c)(v 2)2(2 b

where

F2-b+5T2—c+ ) T(y+m)T (4—a- ) (D.36)

C =
Fb+%) T(c+%) TER-7) TI'(a+y+ 252 -2

As a last step, we have to perform some conformal transformations in order to bring the
exchange relation to its final form. Firstly we translate the points (y, z,v) by x, that is

/d4 My = v)(v =x)[p1)" (p2|(v — 2)[A2)™
2(aty+3-2) (v — 2)20) (v — 2)2()

/ (A1 ( V-Z)(Z-X)\m) (p2|(z —x)(v = x)(y — v)[A2)"
2(2 a) )2(7+m/2) (v — 2)2(2=9) (y — 2)2(2-)

)
Z

and secondly we perform the inversion of y, z, v, x around the origin

/d4 Ally Yy —V)(v = x)R|p)" (pe|z(v —2)v[A)™ 504
2(at7H 5 =2) (y — 2)20) (p — 2)2()2(2—7-m/2)

C /d4 (Av(v —2)(z — x)X|pu1)" (p2|z(z — x)(v — x)(y — v)y|A2)

(z — 2)2(2-9) (y — 0)20Fm/D) (3 _ 2)202=0) (y — 2)2(2-b)y2

We can rewrite the last relation without explicit spinors, and perform a last translation of
all points by the vector w, so to obtain

Z-—Vv)v-w)(w-y)|" _
(

v — )2(0 (’U _ w)2(2—'y—m/2)

C/d“v (w—v)(V—2)(z - x)]" [z —x)(x — V)V _y)]™
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1 (Ww—=y)y —v)(v—x)]"]
S— ) Y
/ (y )

_0)2(a+~/+m 2)( )20

E Orthogonality at N =3

In the case N = 3 the iterative application of the relation (6.33) and then use of the
formula (6.32) gives

(A7) (2 (859, (A5, =099 A ()

s, 05 Y R 05,9 () (a0) (W) (A9).,

Rij}ig (Y?:/a Y3) Ra251 (Y27 Y3) R

273
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A3 cas c AW\ (7 (2))3
RE‘E (VY RED (VYD R, (. YO R (,3) (AY)) (A7)

- 79 —



We see that everything is reduced to the case N = 2 so that it is possible to use the N = 2
orthogonality to obtain

(A)2 ()% () ()5 (2 () -

o273
A (Y3,Y5) A (Y3,Y7) Gl dgy,0r O(v3 — 17)
RS (V4 V) REL (1, Y]) RS, (Y], V5) RE* (Y], Y5)

Oty,0,00, 01,
(L1 + 1)l +1)
Ors,01 0, 01,01, 01,

(b1 + 1)l +1)(l3+ 1)
Rig; (Y4, Y]) RE3 (Y3, Y]) Rﬁﬁz (Y4, Y3) RS, (Y, YV3) RSP (Y], V4) RID2 (Y3, YY)

C2S asaj ass Cc3C2

(2m°)?

C3C2

8(va = V3)6(1 — V) MY, Y1) RESE (Y4, Y3) RO (V3. Y4) =

(27°)° O(vs —v1)d(va — 15)d(v1 — v5) A (Y3, Y1) A (Y3,Y2) A(Y2, Y1)

These examples demonstrate the general structure of the final expression and suggest the
clear iterative construction of eigenfunction for any size N of the system.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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