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1 Introduction

Accurate measurements of high-energy observables are powerful probes of new physics, and
arguably one of the most promising avenues for the continuation of the LHC experimental
program. The study of neutral (l+l−) and charged (lν) Drell-Yan differential cross-section
measurements offers a clear illustration of this potential [1], which however has also been
demonstrated for several other processes, including diboson and boson-plus-Higgs [2–17]
and di-quark [18, 19] production, and at future colliders (see ref. [20] for a summary). The
main goal of the present paper is to produce the theoretical tools needed to exploit the
Drell-Yan (DY) measurements potential. While our results and methodologies are specific
of the DY process, the challenges we face are of general nature. Some of the elements
presented here could thus also be of help for the study of high-energy measurements in
more complex final states.

The competitive advantage of high-energy measurements stems from the fact that the
effects of heavy new physics, at a scale Λ, increase with the energy E of the process as a
(positive) power of E/Λ. Given finite measurements accuracy, new physics could thus be
visible only at high enough E. The growing-with-energy behavior is easily understood by
dimensional analysis in the Effective Field Theory (EFT) description of heavy new physics.
Restricting as customary to dimension-6 operators, with Wilson coefficients G ∝ 1/Λ2 of
dimension −2, we immediately identify possible contributions to the scattering amplitudes
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of order G · E2 relative to the Standard Model. Such quadratically enhanced terms, and
in turn the corresponding Wilson coefficients, are the target of high-energy measurements.

Only four fermion operators involving leptons and light quarks produce quadratically-
growing tree-level terms in the DY amplitudes.1 We can thus focus on these operators
and ignore the others, whose non-enhanced effects are much smaller at high energy if their
Wilson coefficients are comparable with the one of the enhanced (lepton-quark four fermion)
operators. Moreover the non-enhanced operators are most likely probed more effectively
in low-energy measurements, which are more precise than the high-energy ones due to the
larger statistics. Therefore it would not be worth including the non-enhanced operators in
the high-energy DY interpretation even if their Wilson coefficients were anomalously large.

Among all possible lepton-quark operators (see [22]) we can further restrict our atten-
tion to those of the “current-current” type, namely to the interactions of the form Jµl Jq, µ,
with Jµl (q) any of the lepton (quark) chiral currents. This is because the fermion chirality
structure of the other operators forbids them to interfere with the Standard Model (SM)
amplitude.2 Therefore the O(GE2) term they produce in the amplitude results in an
O((GE2)2) contribution to the cross-section relative to the SM one. Since we are inter-
ested in probing new physics at scales Λ that are higher than the available energy, so that
GE2 � 1, we can neglect non-interfering operators compared with the interfering (current-
current) ones that do instead produce a genuine O(GE2) contribution to the cross-section.
The above argument of course fails, and non-interfering operators should be included, if
their Wilson coefficients are enhanced relative to the current-current ones. However we
are not aware of any concrete new physics scenario where this enhancement is structurally
motivated, while it is easy to find scenarios where the converse happens and non-interfering
operators are suppressed. Moreover when targeting quartically energy-growing effects (from
the square of the new physics amplitude) one should also worry about the contribution of
dimension-8 operators, that can produce similar effects at the interference level. We can
thus regretless ignore non-interfering operators and focus on the current-current ones. This
could of course be reconsidered at a more advanced stage of the global EFT interpretation
of LHC data.

The methodology we develop in the present paper applies to any current-current op-
erator involving light quarks (including the bottom) and leptons, with arbitrary current
chirality and flavor structure. Concrete results are however only provided for two specific
operators (i.e., O′2W and O′2B, as defined in ref. [1] and in the following section), whose
Wilson coefficients correspond to the W and Y oblique parameters [24]. This choice is mo-
tivated in the first place by clarity, which we value at this stage more than completeness.
Namely, the expected sensitivity and the impact of the various sources of uncertainties is
much more effectively illustrated in a 2-dimensional parameter space rather than in the
large multidimensional space that corresponds to the entire set of current-current operators.

1This holds at dimension-6, where in particular no gluon-lepton contact operator is present, and in an
operators basis such as the Warsaw one [21] where the operators O2W and O2B (defined in section 2) are
eliminated by the equations of motions in favor of four-fermions operators.

2Also Flavor-Changing Neutral Current (FCNCN) current-current operators, which are in any case
irrelevant because of the strong flavor constraints (see however [23]), do not interfere with the SM.
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Second, measuring (or bounding) the W and Y parameters in DY is sufficient for the global
analysis of certain classes of EFTs. Namely for those of the “universal” [25] and (since the
top quark plays no role here) “top-philic” [26, 27] type, that include motivated new physics
scenarios such as Higgs (and Top) Compositeness [28]. Of course many more operators than
O′2W and O′2B are present in these EFTs. However O′2W/2B are the only relevant ones in
the DY process and thus the only ones to be included in this channel in view of a global fit.
The “W&Y interpretation” of DY measurements is thus an ideal (simple and informative)
benchmark target for experimental analyses in this channel. Therefore we focus on these
two operators, taking however into account that a larger set of current-current operators
will have to be included at a second stage of the DY measurements interpretation. The
reweighting strategy we develop in the paper will play in this extended analysis an even
more vital role than what it does in the W&Y case. We will return to this point later.

The search for EFT effects in DY data will be most likely based on unfolded differential
cross-section measurements, similar to those in refs. [29, 30] and [31] for 8TeV and early
run-1 data, to be compared with the corresponding EFT predictions.3 We should then
provide such predictions as accurately as possible and, equally importantly, provide reliable
estimates of the associated parametrical and theoretical uncertainties. The target accuracy
is dictated by the experimental error on the corresponding measurement, which is going to
be vastly different in different energy regions. At very high energy the error will unavoidably
get large, because of the limited statistics. This reduces the needs for theoretical accuracy,
potentially allowing us to cope with the limited knowledge of Parton Distribution Functions
(PDF), with the lack of Electroweak (EW) logs resummation, and with other effects that
enhance the uncertainties at very high energy. Verifying to what extent this is indeed the
case is one of the goals of the present paper. A lot of data are instead available at lower
energy, and the measurement error will be dominated by systematic uncertainties. While
we are unable to quantify them, based on refs. [29, 30] we expect experimental systematics
of order few percent in the energy range from 300GeV to 2TeV. We will see if this accuracy
goal can be met given state-of-the-art calculations and PDF uncertainties.

It should be noted that the growing-with-energy nature of our signal is very well com-
patible with the hierarchical structure of the experimental and theoretical errors described
above. At very high energy, where the error is larger, the signal is also larger, hence po-
tentially visible. At lower energies the signal gets smaller, but still it is potentially visible
because the error shrinks. We thus end up in a situation where the sensitivity to the signal
comes from a wide range of energies, rather than from a single energy bin. This is ideal
from two viewpoints. First, because we have the opportunity to improve the sensitivity by
enlarging this range either on the high energy side, by collecting more luminosity, or on
the low energy one by reducing the experimental systematic and theoretical uncertainties.
Second, because the observation of a tension with the SM in multiple bins would be a very
convincing evidence of new physics.

3The alternative is to compare the EFT predictions directly with the data distributions at the observed
level. If this strategy is adopted, accurate Monte Carlo events generators are needed, and not only dif-
ferential cross-section predictions. The reweighting strategy we propose does also provide accurate event
samples.
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Current state-of-the-art EFT predictions for DY, at Next-to-Leading Order (NLO)
in QCD and consistently interfaced with parton shower, are implemented in POWHEG [32].
The practical applicability of this tool however is limited by the fact that NLO simulations
are long and demanding, and they should be run several times in order to extract, for
each bin, the dependence of the cross-section on the EFT parameters. Of course the task
is simplified by the fact that the cross-section is a quadratic polynomial in the Wilson
coefficients. However extracting the polynomial coefficients (in particular, the linear ones)
requires very accurate simulations, to be sensitive to the small correction due to the EFT
on top of the SM. Moreover it requires a careful choice of the simulation parameters, which
should be such that neither the SM nor the quadratic terms dominate by too many orders
of magnitude. Since this parameters choice depends strongly on the bin, a large number
of accurate simulations is required. While this approach might perhaps still work in the
two-parameters W&Y case, it would definitely be unfeasible in the large parameter space
of generic current-current operators.

To solve the problem, in this paper we adopt a different methodology, based on event
reweighting. Namely we notice that the Born, the virtual, and the real helicity ampli-
tudes are all affected by current-current operators through a common multiplicative fac-
tor. This factor is a linear polynomial in the Wilson coefficients (which enters squared
in the cross-section), with constant term equal one corresponding to the SM contribution
and coefficients that depend on the dilepton center-of-mass energy. The coefficients of the
polynomial are readily computed for each combination of helicities and of quarks and lep-
ton flavors, and they allow us to model the entire EFT parameter space, at exact NLO
accuracy, by reweighting the events of a single Monte Carlo simulation. Namely, for each
simulated event we compute the coefficients and we store them in the events file. Once
a cross-section binning is defined, the events are binned accordingly and the stored infor-
mation is used to compute the coefficients of the quadratic polynomial that describes the
dependence on the EFT parameters of the cross-section in each bin. Reweighted Monte
Carlo events can also be used for the direct comparison of the EFT with the data, or
in order to check the possible impact of the EFT effects on the unfolding procedure by
which the cross-sections are measured. Notice that the obvious virtues of the reweighting
methodology (whenever applicable) are well-recognized in the literature, to the point that
reweighting has been automated in MadWeight [33]. However we cannot use MadWeight
for our analysis because quark-lepton four-fermion operators are not yet included in the
EFT MadGraph [34] model at NLO [35]. We produced our own implementation based
on the SM POWHEG DY generator [36].

Analytic reweighting is not only more efficient in providing state-of-the-art (NLO QCD)
EFT predictions, but it also allows one to improve the accuracy of the predictions by
including new effects. We consider in particular the EW single and double logs, which
are enhanced at high mass and constitute the dominant NLO EW effects, and we include
them in the EFT prediction. We also use reweighting to estimate the effect (on the SM
prediction, most importantly) of Sudakov logs of higher orders in the loop expansion.

The paper is structured as follows. In section 2 we introduce our reweighting strategy
and its implementation and show how to obtain EFT cross-section predictions and to
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estimate the corresponding uncertainties. As mentioned, our EFT predictions are accurate
at the NLO in QCD and include NLO EW logs. Corrections due to QCD at NNLO and
the complete NLO EW corrections can be straightforwardly added to the SM term using
FEWZ [37] and POWHEG [38, 39]. In sections 3 and 4 we present LHC sensitivity projections,
focusing on integrated luminosities of 100 fb−1, 300 fb−1, and 3 ab−1. These are obtained
by a likelihood fit that includes all the relevant sources of theoretical uncertainties, allowing
us to quantify their impact. Experimental systematic uncertainties are assumed at the few
% level. We report our conclusions in section 5.

2 Reweighting strategy

We start, in section 2.1, by discussing how fixed-order QCD NLO predictions, in the pres-
ence of quark-lepton current-current new physics interactions, can be obtained by analytic
reweighting. Next, in section 2.2, we illustrate our POWHEG implementation and we show
that reweighting is fully compatible with the POWHEG master formula, ensuring that show-
ering effects are consistently included in our reweighted Monte Carlo events. We address
in section 2.3 the slightly more technical problem of including EW logarithms of IR and
UV (RG-running) nature.

2.1 Fixed-order QCD corrections

We first consider neutral DY, i.e. the process

p p → l+l− +X , (2.1)

with l = e, µ or (possibly) a τ . We are interested in the high energy regime of the process,
with a lower threshold on the dilepton center-of-mass energy that we set for definiteness at√
s > 300GeV. In all the amplitudes that contribute to dilepton production, at the leading

order in the EW and in the new physics couplings but at all orders in QCD, it is possible
to isolate a common subdiagram, displayed in figure 1 with its corresponding Feynman
rule. In the figure, χq = L, R and χl = L, R denote the chirality of the quark and of
the lepton legs, and Pχq,l the corresponding chirality projectors acting on the quarks and
leptons spinor indices, respectively. Notice that only same-chirality q/q and l+/l− pairs
can interact in the SM (Higgs interactions are of course totally negligible), and the same is
true for the current-current effective vertices. Also the flavor (q = u, d, s, c, b) of the quark
must be the same of the anti-quark since we are excluding FCNC new physics interactions
as explained in footnote 2.

The effective coupling C0 depends on the quarks and leptons chirality and flavor, and
it reads

C0(qχq , lχl) = C0
SM(s; qχq , lχl) +K0

qχq , lχl
, (2.2)

where K0 are constants that denote the coefficients of the effective neutral current
interactions

K0
qχq , lχl

(qχqγ
µqχq)(lχlγµlχl) . (2.3)
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]q[γ

µPχl
]l

<latexit sha1_base64="f608byY5dcdO1skw/S7aj/8D9gY="></latexit>

Figure 1. Effective Feynman vertex for neutral DY, including SM EW and the new contact
interactions.

The SM contribution depends on the dilepton invariant mass and it can be concisely writ-
ten as

C0
SM(s; qχq , lχl) =

g2T 3(qχq)T 3(lχl) + g′ 2Y (qχq)Y (lχl)
s−m2

Z

+ e2Q(q)Q(l)m2
Z

s(m2
Z − s)

, (2.4)

where g and g′ denote the SU(2)L and U(1)Y couplings, e is the electric charge, T 3 is the
third SU(2)L generator, Y and Q are the hypercharge and the fractional charge.4

Based on the above discussion, it is obvious that at tree-level the dependence on the new
physics parameters K0 can be obtained by reweighting the SM (K0 = 0) predictions. The
dilepton production cross-section (fully differential in the dilepton 4-momenta) is the sum
of the polarized qq → l+l− partonic cross-sections convoluted with the corresponding PDF.
The quarks and the leptons being effectively massless, each term in the sum depends on new
physics through the square of the corresponding C0(qχq , lχl) coefficient. The differential
cross-section is thus the sum of the SM cross-sections in each helicity and quark flavor
channel, each weighted by the factor

ρn(s, K0; qχq , lχl) =
(
C0(qχq , lχl)
C0

SM(s; qχq , lχl)

)2

=

1 +
K0
qχq , lχl

C0
SM(s; qχq , lχl)

2

. (2.5)

Starting from a SM Monte Carlo simulation where quark and lepton flavors and helicities
are stored in the events file (or, equivalently, from simulations of the individual channels),
Monte Carlo events implementing the differential cross-section calculation are readily ob-
tained by assigning to each event its reweighting factor ρ as defined above. Of course we
do not need to commit ourselves to a specific value of the K0 parameters and reweight
the SM sample as the first step. Since ρ is merely a linear polynomial (squared) in K0,
with unit constant term, we just need to compute and store its coefficient 1/C0

SM (plus the
information of the helicity and flavor channel of the event) in the events file. The actual
reweighting can be performed at a later stage, or one can use eq. (2.5) to compute the
dependence on K0 of the cross-sections in the analysis bins.

The reweighting formula in eq. (2.5) also holds at NLO in QCD, because the gluon-
quark coupling preserves the quark flavor and chirality. Therefore the one-loop qχqqχq →
l+χl l
−
χl

amplitude is proportional to the same C0(qχq , lχl) factor as the tree-level one, and
4We follow the exact same conventions as in ref. [21], apart from the sign (irrelevant in the above

equation) of the coupling in the covariant derivatives and in the field-strengths definition.
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uL

dL

νl,L

l+L

W
+

uL

dL

νl,L

l+L

= i C+({u, d}, l)[γµPL]q[γ
µPL]l

<latexit sha1_base64="581RiMmn1SGrHaqLTLeLeBtBveg="></latexit>

Figure 2. Effective Feynman vertex for charge plus DY. The subscript “L” denotes chirality, not
helicity.

the same is true for qχqqχq -initiated real emission amplitudes with one final gluon and for
g qχq– and g qχq -initiated real emissions. The dilepton differential cross-section is thus the
linear combination, with ρ reweighting coefficients as in eq. (2.5), of Born plus virtual plus
real contributions in each individual channel labeled by the flavor and chirality of the initial
quark or anti-quark and by the ones of the leptons. Notice that the IR divergencies con-
sistently cancel in each channel. The UV divergencies also cancel, with no renormalization
needed for the new physics coupling because the new interaction involves a QCD-neutral
vector current. Monte Carlo events reweighting can thus be carried out at NLO in the
exact same way described above for the tree level case. It should be possible in principle
to extend the reweighting approach also to NNLO accuracy. The main difference is that
at NNLO new channels appear (like for instance the ud → ud l+l− real correction) whose
amplitude is not proportional to one specific C0(qχq , lχl) effective coupling, but to a linear
combination of them. New reweighting factors should thus be computed and used to deal
with these new channels. We do not explore this possibility because NLO accuracy will
turn out to be more than sufficient for our purposes. NNLO corrections to the SM contri-
bution are instead important, but those are easily added on top of our NLO new physics
predictions.

Analogous considerations hold for the charged DY process

p p → l± νl
( ) +X . (2.6)

The effective Feynman diagram is reported in figure 2 for charge-plus dilepton production,
with u = u, c and d = d, s, b representing up- and down-type quark flavor indices. The
effective coupling C±({u, d}, l) depends now on a pair of quark flavor indices denoted as
“{u, d}”, and on the lepton flavor. It does not instead depend on the chirality, because all
fermions are left-handed as indicated in the figure. This is obviously the case in the SM,
but also for new physics since the only relevant operator (i.e., Olq(3), see table 1) is purely
left-handed. We readily obtain the reweighting factors

ρc(s, K0; qχq , lχl) =
∣∣∣∣∣ C+({u, d}, l)
C+

SM(s; {u, d}, l))

∣∣∣∣∣
2

=

∣∣∣∣∣∣1 +
K+
{u,d}, l

C+
SM(s; {u, d}, l)

∣∣∣∣∣∣
2

, (2.7)

for both charge plus and minus DY processes. Explicitly, the SM effective coupling reads

C+
SM(s; {u, d}, l) = g2

2
V ∗u d

s−m2
W

, (2.8)
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Generic current-current

O
(3)
lq = (̄lLσIγµlL)(q̄LσIγµqL) ,

O
(1)
lq = (̄lLγµlL)(q̄LγµqL) ,

Oeu = (ēRγµeR)(ūRγµuR) ,

Oed = (ēRγµeR)(d̄RγµdR) ,

Olu = (̄lLγµlL)(ūRγµuR) ,

Old = (̄lLγµlL)(d̄RγµdR) ,

Oqe = (q̄LγµqL)(ēRγµeR)

W&Y current-current

O′2W = Ja,µL JaL,µ , Ja,µL =
∑
f

fγµT af ,

O′2B =JµY JY,µ , JµY =
∑
f

fγµY f ,

G
(3)
lq = 1

2G
′
2W ,

G
(1)
lq = − 1

6G
′
2B , Geu = − 4

3G
′
2B ,

Ged = 2
3G
′
2B , Glu = − 2

3G
′
2B ,

Gld = 1
3G
′
2B , Gqe = − 1

3G
′
2B

Table 1. Left: Generic current-current operators in the notation of refs. [21, 22]. Right: The two
operators associated with the W and Y parameters. Operator couplings are denoted with “G”.

where V is the CKM quark mixing matrix. New physics is encapsulated in the couplings
of the effective charged current interactions

K+
{u,d}, l(dLγ

µuL)(νl,LγµlL) + h.c. . (2.9)

Charged DY NLO events reweighting can be performed, using eq. (2.7), with the exact
same logic we described in the neutral case. Notice that we can regretless apply the charged
reweighting factor to all the events in the simulation, in spite of the fact that it was derived
for the Left-Left (LL) chirality subprocesses, because all the SM events are indeed of the
LL type. The only (very minor) subtlety with charged DY reweighting is associated with
real NLO corrections producing a top quark in the final state, through for instance the
SM b g → t l−νl subprocess. Given that the top is massive, and since we are excluding
effective interactions involving the top quark, we cannot deal with this process with our
strategy. However its contribution is totally negligible in the SM and we do not expect
that new physics effects in the top sector could be large enough to make it detectable.
Otherwise, the final states with an extra top quark could be isolated experimentally and
studied separately.

We now specialize the general reweighting formulas to the subset of operators that are
selected for the W&Y interpretation. The W and Y parameters are defined in this paper
as the coefficients of the four-fermion operators O′2W and O′2B reported in table 1. More
precisely, we write

G′2W = − g
2W

2m2
W

, G′2B = − g
′ 2Y

2m2
W

. (2.10)

By performing a field redefinition (i.e., by using the equations of motion), O′2W and O′2B can
be traded for the gauge/gauge operators O2W and O2B of ref. [28]. In turn, O2W and O2B
generate “oblique” corrections to the Z and photon propagators that can be encapsulated
in the phenomenological parameters Ŵ and Ŷ probed at LEP [24]. The normalization
is chosen in eq. (2.10) such that Ŵ =W and Ŷ =Y at tree-level. The relevance of O2W
and O2B (and in turn of O′2W/2B) stems from the fact that they are the only dimension-6
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operators that grow with the energy in DY to be generated by a new physics scenario where
the light quarks and the leptons communicate with the new physics sector only through
the SM gauge interactions. For more details, also on the correspondence between O2W/2B
and O′2W/2B, see ref. [1].

By employing eq. (2.10), table 1, and the almost direct correspondence between the
K0,+ couplings and the Warsaw basis operator coefficients, we immediately derive the
neutral and charged DY reweighting factors for the W&Y interpretation

ρn(s,W, Y ; qχq , lχl) =
(
1 + an

W (s; qχq , lχl)W + an
Y (s; qχq , lχl)Y

)2
,

ρc(s,W ) = (1 + ac
W (s)W )2 , (2.11)

where the neutral and charged an,c coefficients are

an
W (s; qχq , lχl) = −

g2T 3(qχq)T 3(lχl)
m2
WC0

SM(qχq , lχl)
, an

Y (s; qχq , lχl) = −
g′ 2Y (qχq)Y (lχl)
m2
WC0

SM(qχq , lχl)
,

ac
W (s) = −s−m

2
W

m2
W

, (2.12)

with C0
SM as in eq. (2.4). The neutral DY reweighting coefficients are independent of

the lepton flavor and of the quark family, because O′2W/2B are quark- and lepton-family
independent. The an

W and an
Y coefficients can thus be computed for each SM Monte Carlo

event based on the quark type (u or d) and on the quark/lepton (LL, LR, RL or RR)
chirality combinations, for a total of 8 options. Actually an

W is non-vanishing only for
LL-chirality events, which are thus the only ones bringing the dependence on W. This is
because O2W can be viewed as a modification of theW3/W3 component, which only couples
to left-handed fermions, of the neutral vector bosons propagators. By similar considerations
it is easy to understand why the charged DY reweighting does not depend on Y (O2B does
not affect the charged W -boson propagator) and why ac

W is flavor-independent (i.e., the
CKM factor drops). Notice that these features make reweighting for charged DY trivial, in
the sense that all events have to be scaled with the same (but dependent on the dilepton
mass) factor. Namely the charged dilepton differential cross-section is equal to the SM
one, summed over all channels, times the overall factor ρc(s,W ) that brings the entire
dependence on new physics. This is of course not the case for neutral DY, where different
flavor and helicity channels are weighted by different W&Y-dependent factors.

2.2 Reweighting POWHEG

We applied our reweighting strategy to the POWHEG SM DY generator [36]. For the charged
process, our procedure merely consists in computing and storing the reweighting coefficient
ac
W (s) in eq. (2.12) for each SM Monte Carlo event. The invariant mass s = (pl + pν)2

is obtained from the lepton and neutrino momenta before the showering Monte Carlo
(Pythia 8 [40], in our case) is applied to the event. The augmented SM Monte Carlo
sample can be used to produce histograms, with the cross-section (or, more generally, the
total weight) of each bin obtained as the (positive or negative) SM weight of the event,
times the reweighting factor (2.11), summed over the events that fall in the bin. Notice
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that the cross-section in the bin can be evaluated as a function of W. Namely one can
expand ρc in W, evaluate the coefficient of the linear and of the quadratic term and sum
them up (with the appropriate SM weights) separately over the events in the bin. We
thus obtain the linear and quadratic coefficients of the polynomial that describes the cross-
section in the bin as a function of W. The constant term of the polynomial is of course the
SM prediction for the cross-section.

The procedure is only slightly more complicated in the neutral DY case, because
subprocesses with different quark and lepton helicities must be reweighted with different
factors, while the SM Monte Carlo collects them in a single (one for each quark flavor)
unpolarized channel. This is not a problem for charged DY because the amplitudes are
non-vanishing only for the LL polarization subprocess as previously explained. Therefore
even if the Monte Carlo evaluates unpolarized cross-sections, the result is effectively the
polarized one. Fortunately in the code implementing the SM neutral DY calculation of
ref. [36] it is easy to access and modify the Z and the photon chiral couplings to quarks
and leptons. We can thus produce four SM generators, labeled as LL, LR, RL and RR, in
which only the corresponding quark/lepton chiral couplings are present (and set to the SM
value) while the others are set to zero. POWHEG evaluates the unpolarized cross-sections in
each of the four cases, however the results are effectively polarized as discussed above for the
charged process. The four Monte Carlo samples obtained by the four generators represent
the contribution of the four helicity subprocesses, to be reweighted with the corresponding
factor. For each event in each sample we compute an

W (s; qχq , lχl) and an
Y (s; qχq , lχl) as in

eq. (2.12), using the information of the quark flavor in the event. Finally we combine the
four samples in the calculation of the cross-section as a function of W and Y similarly to
what previously explained for the charged case.

The procedure outlined above is exact (in the limit of massless leptons and quarks)
from the viewpoint of a fixed-order NLO QCD calculation. However POWHEG [41] also
describes the hardest parton showering emission, producing events that can be further
showered without introducing double-counting. It is thus legitimate to ask if and how
our procedure interferes with the POWHEG approach, possibly invalidating its consistency.
In order to answer, we sketch below the implementation of the POWHEG method, in the
presence of new physics, on each individual helicity subprocess. This is a trivial extension
of refs. [36, 41], from which we borrow all notations.

The Born (B), the real (Rqq,g, Rgq,q and Rqg,q, summed/averaged over the gluon
helicity) and the “bare” virtual (Vb) contributions, for given helicities, are equal to the
appropriate ρ factor times the corresponding SM expressions. The same applies to the
bare factorization counterterms G⊕,b and G	,b, since they emerge from the bare parton
distribution functions in the tree-level term and are therefore proportional to B. The
Catani-Seymour counterterms are also equal to ρ times their SM expressions, again be-
cause they are proportional to the Born term. One might want to cross-check the latter
statement because the Catani-Seymour formalism was developed [42] to deal with unpolar-
ized processes, while here we are considering a polarized one. The statement can be readily
verified by direct calculation or by noticing that the Catani-Seymour formulas hold for a
completely generic unpolarized process with arbitrary Born term, and that our polarized
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Figure 3. Dilepton invariant mass (mll, left panel) and total transverse momentum of the dilepton
pair (PT,ll, right panel) distributions. δ is the ratio between our prediction and the one of ref. [32]
minus one, with its error obtained by combining the Monte Carlo errors of the predictions.

cross-sections are effectively the unpolarized cross-sections as computed in a theory where
the Z and the photon only couple to specific quark and lepton chiralities. The Catani-
Seymour formulas must thus apply. A last potential subtlety is associated with the fact
that the ρ reweighting factor depends on the dilepton invariant mass

√
s and that the

Catani-Seymour counterterms are evaluated on an “underlying-Born” 2 → 2 kinematics
that is obtained from the true 2→ 3 kinematics by a prescription that is, to some extent,
arbitrary. Fortunately with the choice of ref. [36] the underlying Born dilepton invariant
mass is identical to the true one, therefore the exact same ρ(s) factor appears in the Born,
virtual and real contributions and in all counterterms. The dilepton invariant mass is of
course also consistently preserved in the reconstruction of the 3-body kinematics out of the
underlying Born 2-body variables.

We conclude that the elements that appear in the POWHEG master formula (see eq. (4.17)
of ref. [41]), including the subtracted virtual and the real contribution decomposition in
the two singular regions, all depend on new physics through the same ρ(s) multiplicative
factor. The same thus holds for the B term, which is a linear combination of the latter
terms. The rescaling instead cancels in the Sudakov exponent, which contains the “R/B”
ratio of real over Born, and in the real radiation term of the formula for the same reason.
Consequently, the POWHEG master formula for the cross-section is also equal to ρ(s) times
the corresponding SM object. Each of the LL, LR, RL and RR generators described above
implements the POWHEG formula for the corresponding helicity subprocess with ρ = 1 (i.e.,
in the SM), and in each of them the contributions from different quark flavors are treated
separately. By reweighting based on the quark flavor of each event and joining the four
helicity samples we thus obtain events that rigorously implement the POWHEG calculation
of the Drell-Yan process in the presence of new physics. After passing them through a
showering Monte Carlo program, these events consistently include showering effects at the
NLO in QCD.

Our reweighting strategy is one consistent implementation of the POWHEG method for
the Drell-Yan calculation, but it is slightly different from the one of ref. [32] (where SM
EFT effects are included), and from the SM calculation [36]. This is because in these
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implementations, different helicity subprocesses are grouped into unpolarized channels as
previously mentioned. Of course we eventually sum the four helicity contributions, but this
is not sufficient to make our implementation identical to the other ones, because of the R/B
ratio that appears in the Sudakov and in the real radiation term of the master formula.
Our R/B is the ratio of real and Born terms where the external quarks and leptons have
fixed helicity, while those of refs. [32, 36] are summed over the helicities. On inclusive
observables the two implementations (after we sum over helicites, of course) give the same
prediction at NLO, owing to the NLO accuracy of the POWHEG formula. The predictions
are also identical at the leading log order where the real term in the Sudakov exponent
and the real radiation term (for low-kT emissions) factorize as the product of the Born,
which drops in the R/B ratio, times the appropriate splitting functions. Since the splitting
functions are the same (notice that the gluon helicity sum is performed also in our case),
the same expressions are found for R/B in the two implementations. The latter property
clearly follows from the fact that the first POWHEG showering emission is consistent at the
leading log level. The residual difference between the two implementations is thus beyond
NLO and leading log accuracy, and too small to be appreciable in practice, as the results
below demonstrate.

A validation of our reweighting is readily obtained by comparing with ref. [32], as in
figure 3 and in table 2. The left panel of the figure shows the neutral dilepton invariant
distribution at four selected points in the W and Y parameter space as computed with our
strategy, compared with those obtained with the code of ref. [32], represented as points. One
minus the ratio between our prediction and the one of ref. [32], denoted as δ, is displayed
below the plot with the corresponding Monte Carlo error. A similar comparison is shown in
table 2 for 9 bins of the double-differential invariant mass and cos θ∗ (with θ∗ the dilepton
center-of-mass angle) distribution. The relative discrepancy δ is in all cases compatible with
zero within the error. Notice that the error on δ is tiny in the invariant mass distribution
plot because the cross-sections result from dedicated simulations in each bin. The error
is larger in the doubly-differential distribution comparison because the cross-sections are
obtained in this case by cutting the dedicated simulation events (of 105 events each) in the
3 cos θ∗ bins. In the right panel of the figure we consider instead the transverse momentum
of the dilepton pair, integrated over the dilepton mass above 300GeV and over the angles.
Although measuring this distribution is not relevant to probe W and Y, the comparison is
interesting because of the slightly different implementation of the POWHEG radiation emission
in the two approaches. Also in this distribution, no difference is found within the Monte
Carlo error. Notice that the PT,ll distribution includes showering with Pythia 8 [40], while
the other results described above are obtained with pure POWHEG events before showering.
Other comparison plots were made, also for charged DY production, and no significant
difference was found.

2.3 Electroweak logarithms

High-energy DY measurements target growing-with-energy new physics effects. Thus it
is imperative to keep under control any SM contribution that might result in a similar
behavior, such as EW double and single logarithms of both IR and UV (RG-running)
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c∗ bin
[−1,−0.33] [−0.33, 0.33] [0.33, 1]

m
ll
bi
n
[G

eV
]

[330, 365]

(−2± 8)10−3

(−4± 8)10−3

(−2± 8)10−3

(0± 8)10−3

(4± 8)10−3

(3± 8)10−3

(0± 8)10−3

(4± 8)10−3

(0± 6)10−3

(0± 6)10−3

(0± 6)10−3

(0± 6)10−3

[910, 1070]

(−6± 8)10−3

(−12± 8)10−3

(−15± 8)10−3

(−6± 8)10−3

(7± 8)10−3

(6± 8)10−3

(0± 8)10−3

(6± 8)10−3

(6± 5)10−3

(8± 5)10−3

(6± 5)10−3

(6± 5)10−3

[2620, 3200]

(−8± 8)10−3

(3± 8)10−3

(2± 7)10−3

(−6± 9)10−3

(2± 7)10−3

(0± 8)10−3

(−9± 7)10−3

(8± 8)10−3

(2± 5)10−3

(−1± 5)10−3

(4± 5)10−3

(−2± 6)10−3

Table 2. Comparison with ref. [32] in 9 bins of the doubly-differential mll and c∗ = cos θ∗ distri-
bution. The relative discrepancy δ is reported for the four values of the W&Y parameter employed
in figure 3.

origin. One-loop EW NLO corrections, including in particular the corresponding EW logs,
are present in the neutral DY SM predictions of FEWZ [37] (together with QCD at NNLO),
and in POWHEG both for charged and for neutral DY [38, 39]. New physics must also be
modeled correctly if we want to discover it by exploiting correlated deviations from the SM
of the measurements in multiple bins. Clearly the new physics term is itself a correction
to the SM, therefore it needs not to be predicted as accurately as the SM one. However
one should still carefully monitor the impact of high-order corrections on the new physics
contribution and include them if possible, as we did above for the NLO QCD corrections.
We now show how to add, again through reweighting, EW logs at the one-loop order in
the EW coupling expansion.

The relevant IR logs have been computed in ref. [43] (see also refs. [44–47]) up to two
loops, and they have been recently implement in Sherpa [48] (at one loop). Restricting to
one loop, and defining

L = log s

m2
W

, Lt(u) = 2L log −t(u)
s

+ log2 −t(u)
s

, (2.13)

the Feynman amplitudes for the fully exclusive 2 → 2 Drell-Yan processes at Next to
Leading Logarithm (NLL) accuracy read5

Muu→l−l+
1l,NLL = FDMuu→l−l+

B + g2

(4π)2Lu<
[
Vud′Mud′→νll+

B

]
, (2.14)

Mdd→l−l+
1l,NLL = FDMdd→l−l+

B − g2

(4π)2Lt<
[
Mu′d→νll+

B Vu′d
]
,

5The equations that follow assume that the charge-minus amplitude is the conjugate of the charge-plus
amplitude, as it is the case in the SM and for generic current-current New Physics operators. The sum over
the u′ and d′ flavor indices is understood. Log-enhanced terms with imaginary coefficient are not reported
because they do not interfere with the Born amplitudes.
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Mud→νll+
1l,NLL = FDMud→νll+

B + g2

2(4π)2Lu
(
Muu′→l−l+

B V ∗u′d + V ∗ud′M
d′d→νlνl
B

)
− g2

2(4π)2Lt
(
V ∗ud′Md′d→l−l+

B +Muu′→νlνl
B V ∗u′d

)
.

In the equation, MB denote the Born (tree-level) amplitudes, including their dependence
on new physics encapsulated in the C0 and C± = (C∓)∗ effective couplings defined in
section 2.1. The charged process amplitudes are of course only non-vanishing for the LL
chirality process. Neutral amplitudes for uu′ → νlνl are equal to those for dd′ → l−l+ and
similarly for down-initiated neutrino production. We denote as q1, q2, l1 and l2 the four
particles involved in the scattering with the corresponding chiralities, such that the generic
Drell-Yan partonic subprocess is

q1q2 → l1l2 . (2.15)

With this notation, the Mandelstam variables are defined as

s = (pq1 + pq2)2 , t = (pq1 − pl1)2 , u = (pq1 − pl2)2 . (2.16)

The “diagonal” FD factors in eq. (2.14) depend on the fermion species and chiralities.
They contain angular independent (a.i.) and angular dependent (a.d.) contributions. The
latter ones emerge, together with the other angular-dependent terms in eq. (2.14) (those
proportional to Lt and Lu), from the double logarithms of t/m2

W and of u/m2
W rewritten

in terms of L = log s/m2
W . The a.d. contributions which are not proportional to L (e.g.,

the last term in eq. (2.13)), are normally not retained at the NLL accuracy. We do include
them because they are enhanced in the forward and backward regions. We have verified
that they considerably improve the quality of the NLL approximation, not only in the
angular but also in the invariant mass dilepton distribution.

We write FD as

FD = fa.i. + fa.d.(t/s, u/s) + fqed
a.i. + fqed

a.d.(t/s, u/s) , (2.17)

where the (IR-divergent) angular-independent and angular-dependent contributions from
soft and collinear photon loops have been isolated in the corresponding fqed terms, to be
discussed later. The others can be written concisely as

fa.i. = 1
2(4π)2

∑
f=q1,2,l1,2

[
(−L2 + 3L)

(
g2Cf + g′ 2y2

f − e2q2
f

)
+ 2Lg2

Z,f log m2
Z

m2
W

]
,

fa.d. = 1
(4π)2

[
(gZ,q1gZ,l2 + gZ,q2gZ,l1)

(
Lu + 2 log(−u/s) log m2

Z

m2
W

)

−(gZ,q1gZ,l1 + gZ,q2gZ,l2)
(
Lt + 2 log(−t/s) log m2

Z

m2
W

)]
,

in terms of the T 3 eigenvalue (t3f ), the Casimir (Cf = 0, 3/4), the charge and hypercharge
(yf and qf ) of each of the four fermions f = q1, q2, l1, l2. The coupling of the Z boson
gZ,f = g(t3f − s2

wqf )/cw is used in place of t3f for more compact expressions.
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The results above are in D = 4−2 ε dimensions and the UV singularities are subtracted
in the MS renormalization scheme. The photon and the fermions are exactly massless,
therefore soft and collinear divergences appear in the fqed terms

fqed
a.i. = − e2

2(4π)2

( 2
ε2

+ 3
ε

) ∑
f=q1,2,l1,2

q2
f , (2.18)

fqed
a.d. = 2e2

(4π)2
1
ε

[
(qq1ql1 + qq2ql2) log(−u/s)− (qq1ql2 + qq2ql1) log(−t/s)

]
.

Notice that the fqed terms diverge, but they do not depend on L = log(s/m2
W ). This is

because they are defined as the contribution to the loop integrals from the region where the
virtual photon is soft and/or collinear to an external leg, and these regions are insensitive
to mW/Z up to m2

W/Z/s power corrections.
The ε poles get canceled by real corrections and by PDF renormalization in the cal-

culation of the dilepton differential cross-section, provided extra emissions are allowed and
provided the charged leptons momenta are defined by recombining collinear photons. If the
energy (or pT ) threshold for extra photons, the krec

T transverse momentum threshold for
recombination, and the factorization scale are a considerable fraction of

√
s, no large finite

contributions emerge from the cancellation and the fqed terms can simply be dropped in
the cross-section calculation. We construct our reweighted Monte Carlo samples targeting
the “fully-inclusive” differential cross-section as defined above. More exclusive results, in-
corporating in particular the effect of a lower (or absent) krec

T threshold (or of a small ∆Rrec

recombination cone), are easily obtained by passing the events through a QED showering
Monte Carlo code.

Reweighted Monte Carlo samples implementing the calculation described above are
easily obtained from a LO generator, which employs the SM Born matrix elementMB,SM.
Provided of course that the fermion chirality channels are treated separately, or based on
LL, LR, RL, and RR polarized generators constructed as in section 2.2, one can compute
the reweighting factor

ρ
q1q2→l1l2
NLL (s, t, u) = |M

q1q2→l1l2
B |2

|Mq1q2→l1l2
B, SM |2

+
2<

[
Mq1q2→l1l2

1l,NLL (Mq1q2→l1l2
B )∗

]
|Mq1q2→l1l2

B, SM |2

≡ ρq1q2→l1l2
n(c) + ∆ρq1q2→l1l2

NLL , (2.19)

for each event, as a function of the new physics couplings, and use it in a way similar
to that described in the previous sections for the NLO QCD reweighting. Up to running
effects, to be discussed below, the first term on the first line of the equation coincides with
ρn,c in eqs. (2.5) and (2.7) for the neutral and charged processes, respectively. Namely, it
can be expressed in terms of the C0 and C± neutral and charged amplitude coefficients and
the corresponding SM expressions. It is a perfect square and, restricting to the W&Y case
for concreteness, its dependence on new physics can be parametrized by the reweighting
coefficients an

W/Y and ac
W as in eq. (2.11). The second term in eq. (2.19) contains NLL

effects. It can also be expressed in terms of the C’s using eq. (2.14) and noticing that

– 15 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
4

the spinor current matrix elements drop in the amplitude ratio. The ∆ρNLL term is still
a quadratic polynomial in the new physics parameters, but it is not a perfect square
and its constant term is not equal to zero. This is due to the fact that NLL corrections
are introduced also on the SM term, therefore the reweighting is non-trivial even in the
absence of new physics. The 6 coefficients of the ∆ρNLL polynomial have to be computed
and stored in the events file, together with an

W/Y and ac
W , in order to obtain the analytical

W&Y predictions at NLL EW accuracy.
Notice that the NLL corrections are often negative, so that ρ can become negative in

certain regions of the phase space. If this had to result in a negative cross-section after the
weights are summed up in some bin, it would mean that the EW IR corrections are too
large to be treated perturbatively in that bin. Fortunately this does not occur in the energy
range of interest for the LHC measurements. Finally, we remark that the NLL corrections
in the LL chirality channel make neutral contact interaction operators contribute to the
charged DY process, because of the amplitude mixing in eq. (2.14). Therefore, at least in
principle, charged DY measurements are actually also sensitive to the Y parameter and
not only to W.

So far we only discussed EW logs of IR origin. UV logs do not appear explicitly in
eq. (2.14) because we are applying the results of ref. [43] with the MS renormalization
scale set to the center-of-mass energy

√
s. At one loop order this is irrelevant for the one-

loop corrections in eq. (2.14), which can still be computed at a fixed scale. However the
tree-level amplitudes need to be evaluated with running couplings, RG-evolved at the scale√
s. When expanding at one-loop, this produces single logarithms of s. The running of

the SM couplings g and g′ starts at the Z-boson mass mZ ' mW , where these parameters
are defined. Therefore the SM couplings renormalization produces “IR-type” logarithms
of s/m2

W . These are readily computed by replacing

g2 → g2(s) ' g2 + δg2 = g2 + g4

16π2 bgL , g′ 2 → g′ 2(s) ' g′ 2 + δg′ 2 = g′ 2 + g′ 4

16π2 bg′L ,

(2.20)
in the C±,0SM effective couplings as they appear in the effective Feynman vertices in figures 1
and 2. The factors bg = −19/6 and bg′ = 41/6 in the above equation are the SM g and g′

couplings β-functions.
The RG running of the new physics couplings is the last source of enhanced loga-

rithms. However these are not logarithms of s/m2
W , but rather of Λ2/s, where Λ is the

scale where the EFT operators are renormalized. The explicit form of these terms depends
on the definition of the renormalized W and Y parameters. These are given by eq. (2.10),
in terms of the G′2W/2B four-fermion operator coefficients renormalized at Λ. The SM
parameters (g, g′, and mW ) that appear in the equation are evaluated at mZ , therefore
they do not contribute to the running. Insertions of O′2W/2B in EW loops generates RG-
running logarithmic contributions to a number of dimension-six operators. However, only
the current-current quark-lepton non-FCNC operators listed in table 1 produce quadrati-
cally energy-growing effects in the DY cross-section and need to be retained. The effect of
the others is power-suppressed relative to the leading energy-growing terms. It should be
noted that O′2W/2B generate generic quark-lepton operators, namely the universality rela-
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tions on the right panel of table 1 are violated by RG-running. In order to include running
effect we thus need to go back to eqs. (2.5) and (2.7), evaluated with the K’s obtained by
solving the evolution equations at the leading log. The final expression for the reweighting
factors takes the form

ρ
q1q2→l1l2
NLL (s, t, u) ≡ ρq1q2→l1l2

n(c),Λ + ∆ρq1q2→l1l2
NLL,Λ . (2.21)

Explicit results, obtained with the DsixTools [49] calculation of the relevant β-functions
for the new physics couplings, and including the running of the SM couplings, are presented
in appendix A.

The RG EFT logs are found to have a marginal impact on the phenomenological
analysis of the DY data, but they introduce conceptually novel aspects that is worth
clarifying. First, they introduce a dependence on the EFT operators renormalization scale
Λ. Technically, Λ is arbitrary and we conventionally set it to Λ = 10TeV in our projections
for the W and Y parameters sensitivity. On the other hand, for the interpretation of the
results in the microscopic UV theory the EFT operators emerge from, setting Λ to the
cutoff scale of the EFT would have been preferable. The EFT cutoff intrinsically depends
on the UV theory. The choice Λ = 10TeV corresponds to the estimated cutoff scale in
the Composite Higgs UV scenario with moderate g∗, for values of W and Y close to the
LHC reach [1]. Naively, one could consider employing the results with Λ = 10TeV also
for EFT’s with much higher cutoff, by running the operator coefficients down to 10TeV.
However this would not be correct in general because running produces many operators
at 10TeV, while our calculation assumes that O′2W/2B are the only non-vanishing current-
current operators at Λ = 10TeV. Therefore our results are strictly speaking inapplicable
even to theories where O′2W/2B are the only operators that emerge at the cutoff scale, if the
cutoff scale is much higher than 10TeV. Furthermore even in theories with 10TeV cutoff,
the presence of other operators, even if not of the current-current type, does influence the
current-current operators running below Λ and our calculation does not apply. While of
limited practical relevance (since the RG logs are very small and the cutoff is unlikely to
be much higher than 10TeV), this issue could be readily addressed by including in the
reweighting all the current-current quark-lepton non-FCNC operators, with coefficients
RG-evolved starting from the most general d = 6 operators content at the scale Λ. Since
current-current operators are the only relevant ones in DY up to power-suppressed effects,
this will produce complete NLL predictions in the general EFT parameter space.

We can not fully validate our implementation of the EW logarithms because EW radia-
tive corrections in the presence of the EFT operators have not been computed. However we
can validate the SM EW logarithms using the POWHEG calculation of neutral DY including
the complete one-loop EW correction [39]. We employ the “weak-only” POWHEG routine,
that implements only the virtual corrections involving massive vector bosons, obtaining
excellent agreement as figure 4 shows. The logarithms reproduce the exact one-loop result
up to O(1%) accuracy, relative to the tree-level, in the entire mass spectrum. In partic-
ular they reproduce very accurately the O(20%) enhancement of the corrections in the
very high mass tail. Somewhat larger discrepancies are found as expected in the forward
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Figure 4. Dilepton invariant mass (mll, left panel) and canter of mass angle (cos θ∗, right panel)
distributions. δ is the discrepancy relative to the Born.

and backward regions of the angular distribution. As previously mentioned, the agree-
ment would significantly deteriorate if we had not fully retained the angular-dependent
logs. Given the expected statistics and experimental errors, 1% accuracy in the predictions
would probably be sufficient in the analysis, therefore one might even consider using the
reweighted Monte Carlo in place of POWHEG for the Standard Model prediction. The same
level of accuracy is expected in the prediction of the new physics EFT effects, relative to
the exact one-loop calculation. Since new physics is itself a small correction to the SM
(never more than 10% in the relevant configurations), the reweighted prediction of the new
physics term is fully equivalent to the exact one-loop result to all practical purposes. A
technical aspect worth mentioning is that, since the “weak-only” POWHEG routine does not
implement the box diagrams involving the exchange of a photon and of a Z-boson, the
corresponding EW logs due to the soft/collinear Z-boson region need to be consistently
removed from our reweighting formulas for the comparison. A successful comparison also
relies on a judicious choice of the SM input parameters. The most accurate predictions are
obtained using tree-level input parameters in the Gµ-scheme [50, 51].

Up to now we discussed pure EW corrections, obtained by reweighting tree-level Monte
Carlo events. We can straightforwardly combine EW corrections with NLO QCD effects
by reweighting the POWHEG DY generator [36]. The reweighting strategy is similar to the
one described in section 2.2, with the reweighting factors given by eq. (2.21). The only
difference is that reweighting now depends also on the t and u Mandelstam variables, and
not only on s. These are computed on the POWHEG events, before showering, with the
following prescription. If a gluon is present in the final state, we assume that it is emitted
from the initial parton moving along the positive z-axis if it moves in the right hemisphere
(in the center of mass frame), and the converse for left-hemisphere gluons. Concretely,
we compute t and u using the four-momentum of the incoming quark or anti-quark that
travels in the z direction opposite to the final-state gluon. For gluon-initiated process, the
momentum of the initial quark or anti-quark is employed. There is of course no ambiguity
in events without emissions. At the leading log in QCD, where the emissions are collinear
or soft and factorize, this prescription is exact. It is not exact at NLO, for hard emissions.
However the t- and u-dependent terms in the reweighting are EW corrections, therefore we
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do not need to model them precisely at NLO in QCD since mixed (two-loops order) QCD
and EW corrections are not included in our calculation.

Summarizing, our reweighting produces NLO QCD events, consistently matched with
QCD parton showering, and including NLL EW corrections on the SM and on the new
physics contributions. The NLL QED accuracy for partially exclusive quantities, like lepton
momenta defined with a narrow recombination cone, or “bare” muons momenta, is obtained
by the Pythia 8 [40] QED showering. We validated QED showering effects by comparing
with the literature [37, 39, 51, 52]. In particular we reproduced table 1 of ref. [51], with
∆Rrec = 0.1 recombination cone, pγT,min = 10GeV, and |η|γmax = 3 thresholds for photons.
The thresholds on the recombined leptons are plT,min= 25GeV and |η|lmax= 2.5. We also
recombine to the nearest lepton the lepton pairs produced by photon splitting. The same
recombination strategy is adopted for the predictions reported in the following sections.

Before concluding this section, it is worth emphasizing that our result does not include
real emissions of massive vector bosons. Namely we target a final state without W or Z
bosons. While theoretically well-defined, this final state is not experimentally accessible
because the vector bosons might not be detectable if they are soft, or collinear to the
beam, or if they decay to neutrinos. We could straightforwardly account for real emis-
sions, including new physics by reweighting, because at the NLL order the real emissions
factorize. Therefore they can be generated through splitting, starting from Monte Carlo
events without emissions, duly weighted to include new physics. We did not implement
this strategy because it is much simpler to use the MadGraph. For a tree-level process
such as the massive vector bosons emission, reweighting is automated and can be used to
include the EFT effects. The effect of real corrections depends strongly on the exact defini-
tion of the cross-section that is measured experimentally, which in turn is also dictated by
experimental considerations. Therefore we ignore real corrections in the analysis of the fol-
lowing section, having in mind an hypothetical measurement of the exclusive cross-section
as defined above. However it should be emphasized that these effects should be properly
taken into account in the experimental analysis because they are as relevant as the virtual
EW logs [53], as expected. Two more processes are not included in our results. One is
the photon-quark dilepton production, which does depend on new physics but is extremely
small [50, 51]. The other is photon-photon initiated production, which is not sensitive to
new physics and thus can be easily added on top by a tree-level SM simulation.

3 The Drell-Yan likelihood

We now turn to phenomenological applications. In this section we discuss the parametriza-
tion of the predicted cross-section as a function of W and Y, with the associated uncertain-
ties, and use it to build the binned Likelihood function needed for the W&Y interpretation
of the DY measurements. This will be the starting point for the LHC sensitivity projections
reported in section 4.

3.1 Cross-section parametrization

Suppose the neutral and charged DY cross-sections are measured in bins, labeled by the
index I. The theoretical expected cross-section, denoted by σth

I , is a quadratic polyno-
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mial in the parameters of interest W and Y. The cross-section is positive, so it can be
parametrized as

σth
I (W,Y) = σsm

I c
2
0,I

∣∣∣∣∣∣∣
 1 c1,I c3,I

0 c2,I c4,I
0 0 c5,I

 ·
 1

W
Y


∣∣∣∣∣∣∣
2

(3.1)

= σsm
I c

2
0,I

[
1 + 2c1,IW + 2c3,IY + (c2

1,I + c2
2,I)W2 +

(
c2

3,I + c2
4,I + c2

5,I

)
Y2

+2(c1,Ic3,I + c2,Ic4,I)WY
]
.

by employing the Cholesky decomposition for positive 3 × 3 matrices, in terms of six
dimensionless coefficients ck,I , with k = 0, . . . , 5. The decomposition is unique provided
c0,I , c2,I and c5,I are positive, while both signs are allowed for the other coefficients. In
the equation, σsm

I denotes the prediction for the SM cross-section in each bin evaluated
with central-value inputs. Namely, with the strong coupling constant αs set to the central
value αs = 0.1180 and with central-value PDF and renormalization/factorization scales.
Consequently, the central value of the c0,I coefficients is equal to one by definition: c0,I = 1.

The central values of the other coefficients, ck,I , are readily computed with our
reweighted samples, starting from central-value SM Monte Carlo data. As explained in
the previous section, the reweighted events contain the coefficients of the weights as a
polynomial in W and Y. These are summed up in each bin producing the polynomial coef-
ficients in the bin, out of which the Cholesky decomposition coefficients can be computed,
provided the cross-section is a positive polynomial as it must be by consistency. This is
always the case in the kinematical regimes accessible at the LHC, because the negative
EW logs are still sufficiently small. The only subtlety is associated with the dependence
on Y of the charged DY cross-section. Since the latter emerges only through the EW logs,
which we expanded at fixed order in our reweighting formulas, no Y2 term is present and
the cross-section polynomial becomes negative at W = 0 for very large Y. While such large
values of Y are phenomenologically irrelevant, we solved the problem by adding the Y2

term to the charged DY reweighting for a fully consistent combined expansion in the new
physics and in the EW loop parameters.

3.2 Parametric and theoretical uncertainties

We now discuss the estimate of the uncertainties on the theoretical predictions for the ck,I
coefficients. These are described statistically, and included in the Likelihood, in terms of
nuisance parameters, with an approach that can fit both in a frequentist and in a Bayesian
inference framework. From the frequentist point of view the nuisance are related to param-
eters the ck,I predictions depends on, such as for instance the value of αs or the PDF. The
results of auxiliary measurements (e.g., αs or PDF measurements) are incorporated in the
Likelihood as multiplicative terms that depend on the nuisance parameters but not on the
parameters of interest (i.e., W and Y). From the Bayesian perspective, the nuisance are ran-
dom variables (and so in turn the ck,I ’s), and the likelihood of the auxiliary measurements
can be interpreted as their statistical distribution. In what follows we adopt the Bayesian
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language to describe the auxiliary likelihood associated with the nuisance parameters, but
we eventually employ it for a frequentist inference on the W and Y parameters.

Notice that the discussion above applies only to systematic uncertainties with an un-
derlying statistical origin. The uncertainties from scale variation instead, and more in
general all the uncertainties associated with missing higher order corrections in the predic-
tions, do not possess a robust statistical interpretation. As customary we will nevertheless
include them as nuisance parameters, but fortunately we will see that they do not play a
dominant role in our sensitivity projections.

We now examine the different sources of uncertainties individually, discuss their
parametrization in terms of nuisance parameters, and start quantifying their impact.

Uncertainty from Monte Carlo statistic. No nuisance parameters must be included
for Monte Carlo statistical uncertainties, which are completely negligible. More precisely,
the uncertainties on the new physics terms are negligible provided the Monte Carlo statistics
is sufficient to provide accurate enough (well below 1%) predictions of the SM terms. This
is because new physics is included by reweighting, hence the relative accuracy on the new
physics ck,I parameters is the same one of the SM terms. Since new physics is itself a
correction to the SM in the kinematical regime of interest and for the relevant values of
the W and Y parameters, the resulting cross-section uncertainty is completely negligible.
Accurate SM predictions for unfolded differential cross-section measurements are easy to
obtain. If instead the analysis had to be performed on the observed distribution, producing
large enough detector simulations might be problematic. However once this is achieved,
new physics effects could be included by reweighting with negligible Monte Carlo error. As
discussed in the Introduction, it would have been harder to bring the uncertainties on the
new physics prediction to a negligible level if employing Monte Carlo predictions that are
not obtained by reweighting.

Uncertainty from αs. The uncertainty coming from the value of the QCD coupling αs
is, by construction, determined by a single parameter. It is thus included through a single
nuisance parameter θαs affecting all bins in a correlated way. The nuisance is distributed
as a standard normal, i.e.

fαs (θαs) = 1√
2π
e−

1
2 (θαs )2

. (3.2)

We can regard θαs as a variable related to the physical αs (which is Gaussian-distributed
by assumption) by a suitable linear transformation that brings its distribution to the stan-
dard normal.

The POWHEG SM DY [36] Monte Carlo samples include the weights of each event when
αs is set to the lower and upper (αl

s = 0.1165 and αu
s = 0.1195) boundaries of the 1σ

confidence interval, plus of course the weight for αs equal to its central value αs = 0.1180.
From the latter, we obtain the central-value coefficients ck,I (with c0,I = 1 as previously
discussed). From the former, we obtain the values of ck,I for αs = αl

s and for αs = αu
s .

The resulting relative variations are shown in the left panel of figure 5 for the neutral
DY invariant mass distribution, with the binning employed for the LHC projections in
section 4.
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Figure 5. Left: uncertainties on the ck,I coefficients from variation of the value of αs, computed
as
∣∣ck,I(αu

s )− ck,I(αl
s)
∣∣ /(2 |ck,I |). Right: relative impact of the ck,I coefficients on the total σth

I for
W =5 · 10−4, Y =−5 · 10−4, and all nuisance parameters θi = 0. This is computed as |∆kσI |/σth

I ,
with ∆kσI the difference between the central-value cross-section σth

I and the value of σth
I obtained

by setting “ck” to zero in eq. (3.1).

We see that the αs uncertainties are rather small, compared with the expected exper-
imental (statistical and systematic) uncertainties of the cross-section measurements (see
figure 7). Also notice that the αs uncertainties are much smaller for the new physics ck,I ’s
(for k = 1, . . . , 5) than for the overall multiplicative c0,I coefficient, which encapsulate in
particular the uncertainty on the SM term of the prediction. Moreover, the new physics
contribution to the cross-section is small, suggesting that all the αs uncertainties apart
from those on c0,I can safely be ignored in the analysis. This is confirmed by the right
panel of figure 5, which quantifies the relative impact of the new physics terms to the total
expected cross-sections σth

I . Large values of the W and Y parameters are chosen in the
figure, well above the projected LHC sensitivity with only 100 fb−1. Even for these values,
new physics is a small correction to the SM up to around 2TeV energies. At this high
energy, αs uncertainties are anyhow irrelevant because of the large statistical uncertainties
(see again figure 7). Similar conclusions are reached by studying the charged DY transverse
mass distribution we consider in section 4 for the LHC projections.

In light of the above discussion, we include the dependence on θαs only on c0,I , with a
linear parameterization

c0,I = c0,I (θαs) = c0,I + καs
I θ

αs = 1 + καs
I θ

αs , (3.3)

where the καs
I ’s are computed as

kαs
I = max

(
|c0,I(αu

s )− c0,I | ,
∣∣c0,I(αl

s)− c0,I
∣∣) . (3.4)

If the dependence of the coefficients on αs was exactly linear, the upper and lower variations
would be exactly equal and opposite, and eq. (3.3) would describe exactly the dependence
of c0,I on αs. We have verified that the variations are equal and opposite to good ap-
proximation, and the maximal variation was selected for conservative results. Notice that
the parameterization in eq. (3.3) does not respect the condition c0,I > 0 for the unicity of
the Cholesky decomposition. This does not produce negative cross-sections, but (formally)
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results in a double coverage of the space of the predictions in terms of θαs . However the
problem is irrelevant in practice because the uncertainties are so small that c0,I will never
change sign in the Likelihood marginalization (or profiling) process.

Uncertainty from the parton distribution functions. The PDF uncertainties on
the c’s are computed using POWHEG, with the same strategy outlined above for the αs
uncertainties. We employed the 30 PDF in the set PDF4LHC15_nlo_30_pdfas (code
90400 in the LHAPDF database [54]) [55–58], which correspond to the Hessian reduction
of the PDF uncertainties to 30 nuisance parameters θpdf

i , with i = 1, . . . , 30. The nuisance
are uncorrelated and normally distributed:

fpdf (θpdf
i ) = 1√

2π
e−

1
2 (θpdf

i )2
, i = 1, . . . , 30 . (3.5)

The use of an Hessian set is legitimated by the fact that we look for small deviations from
the SM, rather than to on-shell new physics. In this context, the Hessian parametrization
allows for a simpler treatment of the PDF uncertainties including correlations between
different bins and different process such as the neutral and charged DY. Our choice of the
set with 30 replicas, in alternative to the one with 100 replicas, is motivated by a study
we performed for neutral DY using the PDF4LHC15_nlo_mc_pdfas Monte Carlo en-
semble set, where we identified less than 20 eigenvectors of the c’s covariance matrix with
uncertainties above h.

The following dependence of the ck,I coefficients on the PDF nuisance parameters is
assumed. The c0,I , c2,I and c5,I , which need to be positive for the unicity of the Cholesky
decomposition, are parametrized with an exponential:

X(θpdf
i ) = X exp

[ 30∑
i=1

X(i) −X
X

θpdf
i

]
, for X = {c0,I , c2,I , c5,I} . (3.6)

The others are parameterized linearly

X(θpdf
i ) = X +

30∑
i=1

(X(i) −X)θpdf
i , for X = {c1,I , c3,I , c5,I} . (3.7)

In the equation, we indicate with a bar the central value predictions, while the superscript
(i) denotes the value of the parameter obtained with each of the 30 PDF replicas in the
set. The parametrization is such that X equals (approximately, in the case of eq. (3.6))
X(i) when θpdf

i is at its one-sigma value and all the other θpdf
i ’s vanish, compatibly with

the definition of the Hessian set.
The PDF uncertainties are larger than those on αs, and eventually turn out to be the

dominant component of the total theoretical uncertainties shown in figure 7. Furthermore
these uncertainties grow with the energy like the new physics effects. Therefore in our
analysis we account for them fully, both in the SM and in the new physics contributions
to the cross-section.
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Figure 6. Left: uncertainties from scale variation computed as (cmax
k,I − cmin

k,I )/(2ck,I). Right:
uncertainties from missing EW loops estimated as explained in the main text.

Uncertainty from missing higher orders. The uncertainties due to the truncation of
the perturbative series in the cross-section prediction are harder to quantify, and impossible
to incorporate rigorously in any statistical framework. Nevertheless we can estimate their
impact as follows. Missing higher orders in the QCD loop expansion are estimated by vary-
ing the factorization (µF ) and QCD-coupling renormalization (µR) scales independently
around the central values µF = µR =

√
s. The scales are varied by multiplicative factors

equal to 2±1, 2±1/2 and 1, in a grid with a total of 24 entries plus the central value config-
uration. The maximal and the minimal values of the ck,I coefficients in this grid, denoted
as cmax

k,I and cmin
k,I below, are used for the uncertainty estimate. Missing higher order in the

EW loop expansion are instead estimated by adding the leading IR logarithmic terms at
two loops to our reweighting formulas. All IR logs have been computed in ref. [43] at two
loops, however only the leading (i.e., L4 angular-independent) terms are retained in the
estimate of the uncertainties. Compatibly with Sudakov resummation formulas, these are
straightforwardly included by replacing fa.i. → fa.i. + f2

a.i./2 in eq. (2.17). The predictions
for the ck,I coefficients that include this contribution are denoted as c2−Sudakov

k,I .
The uncertainties from missing higher orders in QCD (left panel) and in EW (right

panel) are displayed in figure 6. We discuss them in turn. NLO QCD scale variation effects
are known (see, e.g., ref. [59]) to be sizable in the SM. Correspondingly we see in the
figure that the uncertainties on the c0,I ’s are relatively big. On the other hand, the scale
uncertainties on the new physics ck,I ’s (with k 6= 0) are extremely small and completely
negligible. Namely, we find that the NLO QCD scale variations mostly affect σth

I in eq. (3.1)
as an overall new physics-independent multiplicative factor. The uncertainties due to the
missing higher-orders in the EW loop-expansion are smaller than the QCD scale variation,
and they become sizable only at high energy where the statistical error gets big. They
are definitely irrelevant for the new physics term, but they could play a role for the SM
contribution, in particular for the charged DY process where they are slightly larger than
what shown in the figure for the neutral case.

The previous results show that our predictions for the new physics contribution to the
cross-section are sufficiently accurate, and the associated theoretical uncertainties can be
neglected. On the SM term instead, NLO QCD scale variations and missing higher orders
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in the EW expansion are potentially relevant. However the SM predictions are available
at NNLO [37], and 2-loops enhanced EW logarithms can be easily included in by analytic
reweighting. By replacing the SM term of our prediction with the NNLO SM, and including
2-loops logs, we could thus lower the NLO scale variations to the NNLO level, and make
higher order EW corrections completely negligible. In what follows we will thus ignore
EW effects and include NNLO-sized QCD scale variations which we estimate, following
ref. [37], to be one tenth of the NLO ones. These uncertainties are modeled by introducing
one nuisance parameter θtu

I for each bin, following a standard normal distribution. Linear
dependence on θtu

I is assumed for c0,I

c0,I = c0,I +
(cmax
k,I − cmin

k,I )
2 θtu

I . (3.8)

3.3 Statistical inference

In the following section we will present sensitivity estimates for the W&Y parameters at
the LHC with the standard [60] frequentist approach based on the profile Likelihood ratio
and employing Asymptotic formulas and the “Asimov dataset”. Namely, we define the
“tµ” test statistic (with µ = (W,Y) the parameters of interest), with the Likelihood in
the numerator maximized over the nuisance parameters for fixed W and Y and the one
in the denominator maximized also on the parameters of interest. The Asymptotic (χ2

2)
distribution is assumed for tµ in the EFT hypothesis in order to set the 95% (or 68%) CL
boundaries, while the median tµ in the SM hypothesis is obtained by setting the observed
data to the central-value SM prediction.

The treatment of experimental (statistical and systematical) uncertainties would be
completely straightforward if the experimental result was presented as a measurement of
the unfolded cross-section in the bins. Namely, the complete Likelihood will be merely
obtained by plugging σth

I in the experimental Likelihood, expressed as a function of the
“truth-level” cross-sections σI , including the dependence on the parameters of interest
and on the nuisance, and multiplying by the nuisance parameters constraint terms. The
simplest way to mimic the complete Likelihood would be to employ a Gaussian guess for
the experimental Likelihood, which should include an estimate of the uncertainties on the
measurement emerging from the combination of statistical and systematic errors. Since it
is unclear how the statistical and systematic errors should be combined, a slightly more
sophisticated approach is considered in what follows. However it should be emphasized
that this adds nothing to the accuracy of our modeling of the experimental errors, given
the lack of basic information on the systematic uncertainties expected in the measurement
and of the (potentially very important) correlations between the errors in different bins
and in neutral and charged DY. One advantage of the strategy we follow is that it could
be adapted to the direct comparison of the W and Y prediction with the observed-level
distributions without unfolding.

Experimental uncertainties. The experimental Likelihood for the σI cross-sections
emerges from the number of events, nI , observed in each bin. These are Poisson-
distributed independent variables with means µI that are related to the theoretical pre-
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Figure 7. Invariant and transverse mass distribution of the relative discrepancy between BSM
and SM predictions, for neutral (left panel) and charged (right panel) Drell-Yan. The gray band
represents the uncertainties (at 1σ) in the theoretical predictions, while the black bars denote the
statistical uncertainties estimated as one over the square root of the number of expected events.
The HL-LHC integrated luminosity (L = 3 ab−1) is assumed.

dictions µth
I = L · σth

I (with L the integrated luminosity) up to experimental uncertainties
which we encapsulate in normal-distributed nuisance parameters θexp

I , and to the luminos-
ity uncertainty. Namely, the µI are defined as

µI = µth
I

(
1 +

∑
J

[√
Σexp

] J

I
θexp
J + 0.02 θL

)
, (3.9)

where Σexp is the covariance matrix associated with the systematic experimental uncertain-
ties in the relation between the truth-level expected countings µth

I and the observed-level
expectations µI . Notice that the expression above does not take into account event migra-
tions from the truth- and observed-level bins, which should be encapsulated in the response
matrix that multiplies the µth

I term. However it can model realistically the effect of uncer-
tainties on the determination of the response matrix, provided a reasonable guess is made
for the covariance matrix Σexp. The simple choice we consider in the next session is based
on current experimental results. The error on the luminosity measurement, at the 2% level,
is described by the normally distributed nuisance parameter θL.

The complete Likelihood we will employ for the statistical inference finally reads

L
(
W,Y, θαs , θpdf

i , θtu
I , θexp

I , θL
)

=
N∏
I=1

Poisson
[
nI |µI

(
W,Y, θαs , θpdf

i , θtu
I , θexp

I , θL
)]

×fαs(θαs)fpdf(θpdf)ftu(θtu
I )fexp(θexp)fL(θL) .

(3.10)
The dependence of µI (through σth

I , as in eq. (3.9)) on the parametric and theoretical uncer-
tainties is introduced by combining additively the correction terms in eqs. (3.3), (3.6), (3.7),
and (3.8).

4 LHC projections

We base our projection on hypothetical measurements of the neutral DY invariant mass
(mll) and of the charged DY transverse mass (mT ) distributions in logarithmically-
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spaced bins

{.3, .33, .365, .41, .46, .52, .59, .68, .79, .91, 1.07, 1.26, 1.5, 1.8, 2.16, 2.62, 3.20, 3.93, 13}TeV .

The LHC collider energy is set to 13TeV, and integrated luminosities of 100 fb−1, 300 fb−1,
and 3 ab−1 are considered. The former luminosity is roughly the one that has been collected
as of today. The two latter ones are those that will be available at the end of the LHC and of
the HL-LHC programs, respectively. We incorporate in the projections 65% identification
efficiency for electrons and 80% for muons, which effectively reduces the luminosity by a
factor of 2 in neutral DY and by around 40% for the charged process.

The projections are obtained with the Likelihood described in the previous section,
where all the relevant sources of parametrical and theoretical uncertainties in the cross-
section predictions are taken into account. However they are not fully realistic because the
experimental systematic uncertainties in the cross-section measurements (and the correla-
tion of these uncertainties across different bins) can only be estimated by the experimental
collaboration. Based on run-1 results, in our “baseline” scenario we set to 2% and to 5% the
experimental relative uncertainties in the measurement of the neutral and of the charged
cross-sections, respectively. No correlation is assumed across different bins, i.e. Σexp ∝ 1

in eq. (3.9), aiming to a conservative result.
The results are illustrated in the rest of this section, starting from those in the baseline

configuration for the uncertainties. We next consider departures from the baseline setup
and discuss the impact of the various sources of uncertainties separately.

A first qualitative assessment of the sensitivity can be obtained by looking at figure 7.
The figure shows the corrections to the cross-section, relative to the SM, at 4 points in
the W&Y parameter space, overlaid with the total uncertainties in the theoretical pre-
dictions, represented as a gray shaded region. As discussed in the previous section, these
uncertainties are dominated by the PDF contribution. The black bars correspond to the
statistical uncertainties in each bin at the HL-LHC. The 1% uncertainty level is marked
with horizontal dotted lines because it provides a reasonable absolute lower bound to the
systematic component of the experimental error on the cross-section measurements, on top
of the statistical one. Based on the figure, we expect values of W&Y of the order of 1 ·10−4

or less to be within the reach of the HL-LHC. This is confirmed by the contours in the
W&Y plane, at 68 and 95% CL, displayed in figure 8 for the 3 integrated luminosities we
considered. The neutral and charged DY sensitivities are shown separately and combined.

We further inspect our results, following ref. [1], from the viewpoint of the validity of
the EFT modeling of new physics. The first three plots in figure 9 show single-parameter
95% CL sensitivities as a function of the maximal energy (invariant or transverse mass)
of the data employed in the analysis. These are obtained considering only one (W or Y)
parameter of interest, with the other set to zero. The first two panels refer to neutral
and charged DY, respectively, and the third one to the combination of the two channels.
Consistently with ref. [1], we see that the reach sits comfortably below the “Derivative
Expansion Breakdown” region, showing that the usage of the EFT is justified and the
resulting limits are valid. More quantitatively, we see that the energy region which is
relevant for the limit does not exceed 2 or 3TeV. The value of the W&Y parameters we
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Figure 8. Projected 68% and 95% exclusions in the W&Y plane for different luminosities from
neutral (purple) and charged (green) Drell-Yan measurements at 13TeV LHC.

are sensitive to can easily be due to new physics particles which are much heavier than
that. For instance in Composite Higgs theories the new physics scale could easily be at
10TeV or more, justifying the usage of the EFT at few TeV energies. A more simple
examples is the one of a Z ′, such as the “Universal Z ′ model” employed in ref. [20] for
future colliders performance assessments. The sensitivity projection on the Y parameter
(which is the only one generated by this model), once translated in the mass-coupling plane
of the Z ′ model as in figure 9, reveals that the HL-LHC could be sensitive to values of the
Y parameter induced by a Z ′ which is as heavy as 30TeV. The projected direct reach on
the Z ′ particle at the HL-LHC, from ref. [20], is overlaid to the figure in order to outline
that the sensitivity to the model is dominated by the neutral DY measurement of Y in a
wide region of the parameter space.

It is interesting to investigate the impact of each source of uncertainty on the sensi-
tivity. We report in figure 10 the projected single-operator limits obtained with different
assumptions on the errors, compared with the baseline configuration. Eliminating the un-
certainties from αs and from missing higher orders in the perturbative expansion is found
not to improve the sensitivity appreciably, and for this reason the corresponding reach is
not reported in the figure. On the other hand, we have verified that the reach would sig-
nificantly deteriorate with respect to the baseline, especially at the HL-LHC, if the theory
uncertainties on the SM prediction were increased to the level estimated by the NLO scale
variation in figure 6. Incorporating uncertainties from missing 2-loops EW Sudakov effects
degrades instead the reach by 10% at most at the HL-LHC. The baseline reach projections
thus rely on the availability of NNLO predictions, while it is less relevant to include the
enhanced EW logarithms at the 2-loops order.

As expected, PDF are the most relevant source of uncertainties in the theoretical
predictions. However we see in figure 10 that halving or eliminating these uncertainties
does not improve the sensitivity radically. We now turn to the uncertainties of experimental
origin, i.e. the luminosity and the Σexp uncertainty of eq. (3.9). Removing the latter (as in
the “No Syst” bars) has a moderate impact on the reach, while the former is completely
irrelevant. Indeed, by removing also the luminosity uncertainty (“No Exp” bar), the reach
does not improve further.
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Figure 9. Projected bounds as a function of a cutoff on the mass variable. Bottom right: projected
exclusions on a simple Z ′ model (defined as in ref. [20]) from the measurement of the Y parameter.
The exclusion reach from direct Z ′ searches, at the HL-LHC, is also shown.

Figure 10. Single-parameter 95% reach on W (left) and on Y (right), with different integrated
luminosities and for different uncertainty configurations.

The picture emerging from the previous discussion is that the experimental accuracy
assumed in the baseline configuration is sufficient, given the state-of-the art accuracy of
the theoretical predictions, to exploit at best the LHC and HL-LHC potential to probe
the W&Y parameters, and vice versa. A more accurate determination of the PDF could
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improve the sensitivity, but only slightly. On the other hand, it should be emphasized
that our estimate of the experimental uncertainties is a mere guess, which in particular
does not take into account correlations between the experimental errors in the different
bins and in the different processes, which might reduce the impact of these uncertainties
on the reach. If this was the case, the adequacy of the theoretical predictions should be
reconsidered, and an improvement of the PDF determination could entail a much more
significant progress in the sensitivity. The absolute lower bound for the reach is provided
by the “Only Stat” bars in figure 10, where all sources of theoretical and experimental
systematic error are eliminated.

Before concluding, we compare our results with the findings of ref. [1]. Our projected
limits are weaker by around 30%, due to a different estimate of the PDF uncertainties.
In the present paper, we used LHAPDF, which combines several PDF sets, while the
estimate in ref. [1] was based on ref. [61], where only one set (NNPDF) was considered.
The PDF uncertainties of ref. [61] are a factor of around 2 smaller than ours in the relevant
kinematical range, making the uncertainties employed in ref. [1] effectively correspond
to our “Half PDF” configuration. With this configuration we could indeed accurately
reproduce the results of ref. [1].

5 Conclusions

We have shown that the effect of the most relevant dimension-6 operators (i.e., those that
grow quadratically with the energy at the interference level) can be incorporated in the
high-energy Drell-Yan predictions by analytic reweighting, up to the NLO accuracy in QCD
and including double and single log-enhanced EW corrections at one loop. Our method
allows to compute the dependence on the new physics parameters of the cross-section
in any phase-space bin without performing a scan on the parameters space. It can also
generate events that include QCD and QED showering effects consistently, based on the
POWHEG method.

Two operators in this set, associated with the W and Y parameters, are particularly
interesting because they are generated in universal new physics scenarios including Com-
posite Higgs. We thus focused on these operators for an illustration of the methodology, and
performed LHC (and HL-LHC) sensitivity projections. Our results confirm and strengthen
the findings of ref. [1], where less accurate predictions and systematic uncertainties esti-
mates were employed. The accuracy of our predictions for the new physics contribution
to the cross-sections is found to be totally adequate, and the associated uncertainties are
negligible. The relevant uncertainties are those on the SM term, and PDF are the dominant
source. Theoretical uncertainties are under control provided NNLO QCD predictions are
employed for the SM term. One-loop EW radiative corrections should also be included,
possibly exactly rather than at the single-log order using our strategy. The impact of two-
loops EW logarithms on the reach has been found to be marginal, also at the HL-LHC.
Nevertheless, these terms could be included straightforwardly by analytic reweighting.

Our work could be extended in two directions. First, by including all the relevant
operators in view of a global EFT fit. Second, by assessing the impact on the sensitivity
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(qχq , lχl
) (uL, eL) (dL, eL) (qL, eR) (uR, eL) (dR, eL) (uR, eR) (dR, eR)

βn,W
g′2−g2

12
5(11g2−g′2)

12 − 1
6g
′2 − 1

3g
′2 1

6g
′2 0 0

βn,Y
51g2−703g′2

324
−51g2−703g′2

324 − 883
162g

′2 − 853
81 g

′2 679
162g

′2 − 1256
81 g′

2 940
81 g

′2

βc,W = 28g2−3g′2

6 βc,Y = − 17
54g

2

Table 3. The relevant β-functions.

of the angular distributions, to be studied in multi-differential cross-section measurements.
Our analytic reweighting strategy will be crucial for these extensions as it allows to deal
with a larger number of parameters and of bins with limited extra computational effort.
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A Reweighting factors

The first term in eq. (2.19) takes the form

ρ
q1q2→l1l2
n(c),Λ =

(
1 + a

n(c)
W,ΛW + a

n(c)
Y,Λ Y

)2
,

where

an
W,Λ = an

W (s; qχq , lχl) + log(Λ2/s)
16π2m2

W

g2βn,W (qχq , lχl)
C0

SM(qχq , lχl)
,

an
Y,Λ = an

Y (s; qχq , lχl) + log(Λ2/s)
16π2m2

W

g′2βn,Y (qχq , lχl)
C0

SM(qχq , lχl)
,

ac
W,Λ = ac

W (s) + log(Λ2/s)
16π2m2

W

V ∗udg
2βc,W

C+
SM(s; {u, d}, l))

,

ac
Y,Λ = log(Λ2/s)

16π2m2
W

V ∗udg
′2βc,Y

C+
SM(s; {u, d}, l))

,

with a
n(c)
W (Y ) and the C’s defined as in section 2.1. The β-functions, computed by

DsixTools [49], are reported in table 3.
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The second term in eq. (2.19) is given by

∆ρuu→llNLL,Λ = 2
(
ρ
uχu ūχu→lχl lχl
n,Λ FD + δC0

SM(uχu , lχl)
C0

SM(uχu , lχl)

√
ρ
uχu ūχu→lχl lχl
n,Λ

+ δχu,Lδχl,L

√
ρ
uχu ūχu→lχl lχl
n,Λ ρc,Λ

g2

(4π)2Lu<
[
Vud′C+

SM(s; {u, d′}, l))
C0

SM(uχu , lχl)

])
,

∆ρdd→llNLL,Λ = 2
(
ρ
dχd d̄χd→lχl lχl
n,Λ FD + δC0

SM(dχd , lχl)
C0

SM(dχd , lχl)

√
ρ
dχd d̄χd→lχl lχl
n,Λ

− δχd,Lδχl,L

√
ρ
dχd d̄χd→lχl lχl
n,Λ ρc,Λ

g2

(4π)2Lt<
[
C+

SM(s; {u′, d}, l))Vu′d
C0

SM(dχd , lχl)

])
,

∆ρud→νl+NLL,Λ = 2
(
ρc,ΛFD + δC+

SM(s; {u, d}, l))
C+

SM(s; {u, d}, l))

√
ρc,Λ(s,W )

+ V ∗ud
g2

(4π)2Lu

(√
ρc,Λρ

uχu ūχu→lχl lχl
n,Λ

C0
SM(uχu , lχl)

C+
SM(s; {u, d}, l))

)

− V ∗ud
g2

(4π)2Lt

(√
ρc,Λρ

dχd d̄χd→lχl lχl
n,Λ

C0
SM(dχd , lχl)

C+
SM(s; {u, d}, l))

))
,

where the factors δC0(+), defined as

δC0
SM(qχq , lχl) =

∂C0
SM(qχq , lχl)
∂g2 δg2 +

∂C0
SM(qχq , lχl)
∂g′2

δg′2 ,

δC+
SM(s; {u, d}, l)) = ∂C+

SM(s; {u, d}, l))
∂g2 δg2 ,

take into account the RG running of the SM couplings g and g′.
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