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1 D = 5 BPS quiver

Five-dimensional gauge theories with eight supercharges [1] can be constructed via “com-
pactifying” M-theory on local Calabi-Yau 3-folds [2, 3]. One can hone in for degrees of
freedom localized at the bottom of such asymptotically conical “internal” manifolds, while
ignoring the bulk gravity. This way of realizing supersymmetric theories via local Calabi-
Yau’s is broadly called geometric engineering [4, 5]. The gauge multiplet comes with a
single real adjoint scalar, and this renders the dynamics along the Coulombic degrees of
freedom a lot simpler and qualitatively different from its D = 4 counterpart, namely the
Seiberg-Witten theories [6]. Despite such an apparent simplification, the D = 5 BPS
spectra have been studied less vigorously.

One curious aspect of D = 5 BPS spectra, relative to D = 4, is the absence of the
wall-crossing.1 One rationale behind this is that the central charges of point-like objects
are now real, so the well-known mechanism behind the wall-crossing is no longer viable.

1See ref. [7] for a recent study of this disparity between D = 4 and D = 5.
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What remains unclear though is exactly how this cross-over between D = 4 and D = 5
should be understood from the dynamics of these special objects themselves.

It is well-known that the dynamics of BPS objects in D = 4 is described by quiver
quantum mechanics, well-known from type IIB perspective [8] but also derived directly from
the Seiberg-Witten field theory near a wall of marginal stability [9]. The rank of each node
is the number of the respective building blocks, such as fundamental monopoles and dyons.
The number of bifundamental chirals between a pair of quiver nodes is determined by the
Schwinger product between the respective building blocks. The wall-crossing is captured
by the discontinuity [10] of the refined Witten index [11] of such quantum mechanics in the
parameter space of the Fayet-Iliopoulos (FI) constants, which are in turn related to the
phases of these primitive dyons.

One issue with uplifting this picture to D = 5 is that the primitive BPS objects, corre-
sponding to each node of D = 4 BPS quiver, uplift to objects with one spatial dimension,
such as BPS monopole strings; does this mean that the quiver quantum mechanics uplifts
to d = 2 quiver linear sigma model?

On the surface, this might sound attractive since the elliptic genus is well-known to be
safe from D-term wall-crossing [12]. However, its computation relies on T 2, which means
that d = 2 GLSM’s suffer no such wall-crossing even if compactified on a circle; if D = 5
BPS objects were governed by d = 2 linear sigma models, they would not have experienced
the wall-crossing even on S1×R3+1 either. It is by now well-known how the elliptic genus,
with no wall-crossing on the D-term parameter space, becomes piece-wise constant only in
the strict limit of d = 1 [10], while BPS states of D = 5 theories compactified on a circle,
should experience wall-crossing, since their central charges are still complex. So the uplift
of D = 4 BPS quiver to D = 5 cannot be understood as the simple dimensional uplift of
its d = 1 quiver description.

One can also see why this naive uplift of d = 1 GLSM to d = 2 is a bad idea from
the simplest example of D = 4 BPS quiver for pure SU(2) Seiberg-Witten theory, namely
a Kronecker quiver with intersection number 2 [8]. The two nodes represent monopoles
and dyons, with charges (0, 1) and (2,−1), respectively. In the semi-classical picture these
are a solitonic monopole and a solitonic anti-monopole bound with a single vector meson.
In going over to D = 5, the magnetic part uplifts to strings while the charged vector
multiplet remains as a particle. What should be noted here is that the two objects are
of opposite magnetic charge, and thus of opposite orientations; the usual non-relativistic
approximation to extract the low energy dynamics of such solitons no longer works.

In fact, viewing the whole situation from M-theory, the relevant objects for magnetic
sector are M5 branes wrapping 4-cycles in the Calabi-Yau, and as such the natural theory
on these string-like objects are of (0, 4) supersymmetry [13, 14], rather than (2, 2) which
would be naively suggested by the d = 1 quiver theories that governed D = 4 BPS particle
dynamics.

Recently, on the other hand, an interesting middle ground was offered in ref. [15]. The
authors asked what would be the useful low energy dynamics if one compactifies D = 5
gauge theory on a circle S1 and considers particle-like states, relative to the remaining
noncompact part of the spacetime, R3+1; although the monopole and the dyon would be
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still string-like, one considers only those configurations where these strings are wrapped
along S1. These can wiggle along the circle, but such wiggles can be attributed to Kaluza-
Klein (KK) momenta, to be treated as separate degrees of freedom. The latter approach
allows dynamics of D = 5 BPS states to be described yet again by some d = 1 quiver
theory, with more elementary nodes relative to that of purely D = 4 BPS states. The
downside is that the decompactification limit S1 → R1 requires an infinite sum over KK
charges, so the question of exactly how the wall-crossing disappears in strict D = 5 limit
becomes a little remote.

D = 4 BPS quiver, e.g., for pure gauge theory of rank r simple gauge group, comes with
2r primitive nodes typically. The magnetic part of these 2r dyons is labeled by “simple”
dual roots. Upon going up one higher dimension with S1, the Dynkin diagram naturally
uplifts to the affine Dynkin diagram, so we can expect two more nodes whose magnetic
charges belong to the (r + 1)-th node of the affine Dynkin diagram. D = 5 implies two
additional types of charges as well, namely the KK charge along S1 and the instanton-
soliton charge on S1 × R3, which should also enter these additional nodes as well. For
example, with the pure SU(2) supersymmetric gauge theory, one finds a cyclic 4-node BPS
quiver with the four neighboring intersection numbers all equal to 2.

How does one figure out the quiver theory, given a D = 5 gauge theory? It turns out
that this question has a more systematic answer than its D = 4 counterpart, thanks to
the presence of the KK modes, i.e., D0 branes. D0 probe theory for the local Calabi-Yau
would be a quiver quantum mechanics, whose individual nodes correspond to fractional
branes. These fractional branes, M2 branes wrapping 2-cycles and M5 branes wrapping
4-cycles times S1, offer basic building blocks for BPS states of D = 5 theory on S1, so the
D0 probe theory can be naturally adopted as D = 5 BPS quiver [15].

In the context of type IIB theory, on the other hand, systematic construction of the
probe D3 theory for such local Calabi-Yau has been pursued since late 90’s, most notably by
Feng, He, and Hanany [16]. The construction in terms of the d = 4 gauge theory, with four
supercharges, is by now well-established, with various techniques such as Brane Tiling [17–
19], for toric Calabi-Yau. As such, all one has to do is to import this technology for D0’s [15].

1.1 Orbifolds

Calabi-Yau’s obtained from orbifolding C3 by a discrete Abelian subgroup Γ of SU(3)
offer the simplest examples [20, 21]. For n D0 probes, one starts with n × |Γ| many D0’s
and orbifolding will lead to a quiver theory with |Γ| many nodes, each with gauge group
U(n). One can choose to assign different ranks to the nodes, which corresponds to adding
fractional branes localized near the orbifold point. The partial resolutions of these orbifolds
are also known to lead to other toric examples [16, 22], to which we will turn later in the
next subsection.

One of the simplest examples of local Calabi-Yau’s is local P2 with the asymptotic cone
C3/Z3. Although this does not produce a Seiberg-Witten gauge theory, it does offer the
D = 5 BPS quiver in its simplest and non-trivial form. The probe theory with n D0 branes
starts by projecting the maximally supersymmetric U(3n) Yang-Mills by Z3 which acts
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Figure 1. The quiver diagram of C3/Z3 orbifold theory.

on three complex coordinates by multiplying (w,w,w−2) with w a 3rd root of unity. The
resulting quiver is a cyclic triangle quiver with three bifundamentals for each pair of nodes.

From the viewpoint of the original D0 theory prior to the orbifolding, these bifunda-
mental chirals can be embedded into three U(3n) complex adjoints as

X =


0 x12 0
0 0 x23

x31 0 0

 , Y =


0 y12 0
0 0 y23

y31 0 0

 , Z =


0 z12 0
0 0 z23

z31 0 0

 (1.1)

which survive the projection

xij = w1+i−jxij , yij = w1+i−jyij , zij = w1+i−jzij (1.2)

with w = e2πi/3. The subscripts denote the pair of gauge nodes, with respect to which these
chirals are bifundamental. Note that the superpotential is not generic but must descend
from the cubic superpotential of the maximally supersymmetric U(3n) theory, i.e.,

W = 1
3tr (X[Y,Z]) = 1

3tr (x12y23z31 − x12z23y31 + · · · ) (1.3)

where the ellipsis denotes the cyclic permutations of x, y, z. In fact, this fine-tuned super-
potential is a hallmark of local Calabi-Yau, and the precise construction of W has been
offered through the brane tiling machinery [17–19].

The transition to smooth local P2, from the singular orbifold, is naturally described by
turning on FI constants on these three U(n) nodes, which corresponds to moving out into
the Coulombic moduli space of the D = 5 theory. In a sense this is the simplest prototype
of D = 5 BPS quivers, associated with the so-called E0 theory [2].

More elaborate examples can be found from the orbifold C3/Zp × Zp. One projects
U(p2n) theory via

xij;kl = w1+i−kxij;kl , yij;kl = wi−kyij;kl , zij;kl = w−1+i−kzij;kl , (1.4)

and
xij;kl = wj−lxij;kl , yij;kl = w1+j−lyij;kl , zij;kl = w−1+j−lzij;kl , (1.5)
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Figure 2. The quiver diagram of C3/Z2 × Z2 orbifold theory.

with w = e2πi/p and the labels valued in Zp. The surviving blocks are,

xij;i+1,j , yij;i,j+1 , zi+1,j+1;ij , (1.6)

which are 3p2 bifundamentals that connect p2 U(n)’s.
For example, the theory of n D0-branes that probes C3/Z2×Z2 comes with four nodes

and twelve U(n) complex bifundamental chirals. Relabeling

11→ 1 , 12→ 2 , 21→ 3 , 22→ 4 , (1.7)

the bifundamentals can be embedded into the complex adjoint chirals of U(22n), e.g.,

X =


0 0 x13 0
0 0 0 x24

x31 0 0 0
0 x42 0 0

 , (1.8)

and similarly Y and Z have surviving components, respectively, (y12, y21, y34, y43) and
(z14, z23, z32, z41).

One can see that for every pair of nodes, there are two bifundamental chirals of mutu-
ally conjugate gauge representations. Again turning on FI parameters resolves the orbifold
singularity. The superpotential is cubic;

W = 1
22 tr (X[Y,Z]) = 1

4tr (x13y34z41 − x13z32y21 + · · · ) , (1.9)

where the rest of the terms can be constructed by chasing the subscript through the sur-
viving block’s of X,Y, Z, with the sign determined by the parity of the permutation of
x, y, z. Extension of this to Zp × Zp is straightforward. The relabeling of ij for p > 2,

ij → (i− 1)p+ j (1.10)

embeds three sets of the p2 bifundamental chirals into three U(p2n) complex adjoint chirals,
X,Y, Z, respectively, and W = tr (X[Y, Z]) /p2 contains total 2p2 monomials, half of which
have 1/p2 and the other half −1/p2 as the coefficient.
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A special subsector of this orbifold dynamics emerges when we force all the surviving
blocks to take values of three common n × n matrices, x∗, y∗, z∗. The superpotential will
collapse to a single cubic commutator potential,

W → tr (x∗[y∗, z∗]) , (1.11)

and the three chirals are each complex adjoint relative to the “diagonal” U(n)∗ which rotates
U(n)’s sitting at nodes all simultaneously. This U(n)∗ together with x∗, y∗, z∗ defines
maximally supersymmetric U(n) Yang-Mills theory. Furthermore, the overall U(1) and
trace parts of these three complex chirals decouple from the rest of U(n)∗ theory, and leave
behind a maximally supersymmetric SU(n) Yang-Mills. Let us call the latter SU(n)∗ theory.

This SU(n)∗ theory has a clear interpretation as the local and relative dynamics of
n D0-branes. When D0’s are clustered near each other and sitting at a generic point of
the Calabi-Yau, they will see the spacetime locally as R10 unless they are at the top of
a singular point; so long as the mutual distances between D0’s are sufficiently small, the
dynamics among them would be controlled by the flat space D0 theory. This local dynamics
SU(n)∗ will prove to be a key to obtaining the Kaluza-Klein towers due to S1.

1.2 Partial resolution of orbifolds

More examples of local toric Calabi-Yau’s and the accompanying D = 5 BPS quiver can
be found by starting with an orbifold and resolving the singularity partially [16, 22]. This
procedure is called “Higgsing” since the resolution involves turning on FI constants partially
such that some bifundamental chirals acquire vacuum expectation values.

Among various Calabi-Yau 3-folds which geometrically engineer D = 5 gauge theory,
we introduce two classes of geometry, known as the Y p,q and Xp,q families [23–26], named
after the Sasaki-Einstein 5-manifold which occupies their angular direction. We first discuss
the former, of which p = 2, q = 0 case (Y 2,0) is particularly known as local F0 surface, and
the latter will be discussed shortly.

Y p,q family and local F0 geometry

Given two non-negative integers p and q such that p > q ≥ 0 , a Calabi-Yau 3-fold Y p,q

describes a fibration of the ALE space of Ap−1 type over P1. It geometrically engineers
D = 5 N = 1 SU(p)q gauge theory [26]. The toric diagram of Y p,q 3-fold is given by the
four external vertices,2

v1 = (1, 0), v2 = (0, 0), v3 = (0, p), v4 = (−1, p− q) . (1.12)

Figure 3 shows how to embed the toric diagram (1.12) in a larger triangular toric diagram,
corresponding to Zp+1 × Zp+1 orbifold after an SL(3, Z) transformation. This suggests a

2If necessary, we triangulate the diagram by connecting v1 and v4 to all internal points along the y-axis,
together with vertical segments. This resolves the singularity hence the geometry becomes smooth. The
other triangulations are related by flop transitions which do not affect our discussion in the paper, except
for the detailed dictionary between internal cycles in resolved CY’s and fractional branes in appendix B.
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Figure 3. An embedding of Y p,q toric diagram in the toric diagram of C3/Zp+1 × Zp+1 orbifold
theory. The linearly dotted gray points imply several internal vertices which are omitted for brevity.

way of taking partial resolution3 of orbifold probe theory in order to obtain the D = 5 BPS
quiver of SU(p)q gauge theory.

The simplest example in this class would be local F0 surface, or Y 2,0, which engineers
D = 5 SU(2) pure gauge theory. The detailed procedure of Higgsing toward F0 is given
as follows. Relabeling nodes of C3/Z3 × Z3 orbifold theory following (1.10), we have the
superpotential

W = 1
32 tr (x14y45z51 − x14z43y31 + · · ·+ x93y31z19 − x93z38y89) . (1.13)

A vev v assigned to z51 merges node 1 and node 5 of the orbifold theory as their relative
U(n) is frozen. By integrating out massive fields x14 , x25 , y12 , y45, we have superpotential

1
9tr
(
v−1y16z62z27x71 − v−1x18z84z43y31 + x36y64z43 − x36z62y23

+ x47y78z84 − x47z76y64 + x18y89z91 + x69y97z76 − x69z91y16

− x71z19y97 + x82y23z38 − x82z27y78 + x93y31z19 − x93z38y89
) (1.14)

where the label 5 is now renamed as 1. By repeating similar exercise with four more FI
constants turned on so that x93 , y23 , y64 , x18 chiral fields are Higgsed one by one, we obtain
the following superpotential

WF0 = tr (x23y34y41z12 − x23z34y41y12 + x41y12z23z34 − x41z12z23y34) . (1.15)

Note we rescaled the chiral fields to avoid clutter then relabeled the nodes as follows,

5 , 8→ 1 , 6→ 2 , 3 , 9→ 3 , 7→ 4 . (1.16)

The quiver diagram of local F0 theory is drawn in figure 4.
3Note that we need to freeze (p2 + 1)-many nodes before reaching to Y p,q quiver. It remains to be seen

whether there would be a more efficient embedding, i.e. toric diagram of orbifold theory with smaller rank,
to cast Y p,q toric diagram.
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<latexit sha1_base64="WbTX3E5c2d9BqemzTok7ROqmC14=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexqwHgLePEY0TwwWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mHGCfkQHkoecUWOl+8feZa9YcsvuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmrDqT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0L8pepXx9VynVqlkceTiBUzgHD66gBrdQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwB4dONhg==</latexit>

Z1

<latexit sha1_base64="Uz+7igIUngIZqFMVvzfq9USLVgw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWtB/YhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHS/WPf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwpqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVL3L6vXdZaVey+Mowgmcwjl4cAV1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/ey42E</latexit>

Z1

<latexit sha1_base64="Uz+7igIUngIZqFMVvzfq9USLVgw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsN4KXjxWtB/YhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHS/WPf65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwpqfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVL3L6vXdZaVey+Mowgmcwjl4cAV1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/ey42E</latexit>

Z2

<latexit sha1_base64="TrOHJNesj8fNGoFzyQ5cAtuM+jM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgPEW8OIxonlgsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+Z++wmV5rF8MJME/YgOJQ85o8ZK94/9Sr9YcsvuAmSdeBkpQYZGv/jVG8QsjVAaJqjWXc9NjD+lynAmcFbopRoTysZ0iF1LJY1Q+9PFqTNyYZUBCWNlSxqyUH9PTGmk9SQKbGdEzUivenPxP6+bmrDmT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20KmWvWr6+q5bqtSyOPJzBOVyCB1dQh1toQBMYDOEZXuHNEc6L8+58LFtzTjZzCn/gfP4A4E+NhQ==</latexit>

Z2

<latexit sha1_base64="TrOHJNesj8fNGoFzyQ5cAtuM+jM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyGgPEW8OIxonlgsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5Pb2Nza3snvFvb2Dw6PiscnLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb+Z++wmV5rF8MJME/YgOJQ85o8ZK94/9Sr9YcsvuAmSdeBkpQYZGv/jVG8QsjVAaJqjWXc9NjD+lynAmcFbopRoTysZ0iF1LJY1Q+9PFqTNyYZUBCWNlSxqyUH9PTGmk9SQKbGdEzUivenPxP6+bmrDmT7lMUoOSLReFqSAmJvO/yYArZEZMLKFMcXsrYSOqKDM2nYINwVt9eZ20KmWvWr6+q5bqtSyOPJzBOVyCB1dQh1toQBMYDOEZXuHNEc6L8+58LFtzTjZzCn/gfP4A4E+NhQ==</latexit>

eY1

<latexit sha1_base64="+hRD8bUsE+YjotDH5llVk5liSBA=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5KI+NgV3LisYB/ShjCZ3LRDJ5MwM1Fq6Je4caGIWz/FnX/jtM1CWw9cOJxzL/feE6ScKe0431ZpZXVtfaO8Wdna3tmt2nv7bZVkkkKLJjyR3YAo4ExASzPNoZtKIHHAoROMrqd+5wGkYom40+MUvJgMBIsYJdpIvl3tP7IQNOMh5PcT3/XtmlN3ZsDLxC1IDRVo+vZXP0xoFoPQlBOleq6Tai8nUjPKYVLpZwpSQkdkAD1DBYlBefns8Ak+NkqIo0SaEhrP1N8TOYmVGseB6YyJHqpFbyr+5/UyHV16ORNppkHQ+aIo41gneJoCDpkEqvnYEEIlM7diOiSSUG2yqpgQ3MWXl0n7tO6e1a9uz2qN8yKOMjpER+gEuegCNdANaqIWoihDz+gVvVlP1ov1bn3MW0tWMXOA/sD6/AHlM5M5</latexit>

eY1

<latexit sha1_base64="+hRD8bUsE+YjotDH5llVk5liSBA=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5KI+NgV3LisYB/ShjCZ3LRDJ5MwM1Fq6Je4caGIWz/FnX/jtM1CWw9cOJxzL/feE6ScKe0431ZpZXVtfaO8Wdna3tmt2nv7bZVkkkKLJjyR3YAo4ExASzPNoZtKIHHAoROMrqd+5wGkYom40+MUvJgMBIsYJdpIvl3tP7IQNOMh5PcT3/XtmlN3ZsDLxC1IDRVo+vZXP0xoFoPQlBOleq6Tai8nUjPKYVLpZwpSQkdkAD1DBYlBefns8Ak+NkqIo0SaEhrP1N8TOYmVGseB6YyJHqpFbyr+5/UyHV16ORNppkHQ+aIo41gneJoCDpkEqvnYEEIlM7diOiSSUG2yqpgQ3MWXl0n7tO6e1a9uz2qN8yKOMjpER+gEuegCNdANaqIWoihDz+gVvVlP1ov1bn3MW0tWMXOA/sD6/AHlM5M5</latexit>

eY2

<latexit sha1_base64="fBrNVa+N1T9LX5VokIYnbicWRa0=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5KU4mNXcOOygn1IG8JkctsOnUzCzESpoV/ixoUibv0Ud/6N0zYLbT1w4XDOvdx7T5BwprTjfFuFtfWNza3idmlnd2+/bB8ctlWcSgotGvNYdgOigDMBLc00h24igUQBh04wvp75nQeQisXiTk8S8CIyFGzAKNFG8u1y/5GFoBkPIbuf+jXfrjhVZw68StycVFCOpm9/9cOYphEITTlRquc6ifYyIjWjHKalfqogIXRMhtAzVJAIlJfND5/iU6OEeBBLU0Ljufp7IiORUpMoMJ0R0SO17M3E/7xeqgeXXsZEkmoQdLFokHKsYzxLAYdMAtV8YgihkplbMR0RSag2WZVMCO7yy6ukXau69erVbb3SOM/jKKJjdILOkIsuUAPdoCZqIYpS9Ixe0Zv1ZL1Y79bHorVg5TNH6A+szx/mt5M6</latexit>

eY2

<latexit sha1_base64="fBrNVa+N1T9LX5VokIYnbicWRa0=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5KU4mNXcOOygn1IG8JkctsOnUzCzESpoV/ixoUibv0Ud/6N0zYLbT1w4XDOvdx7T5BwprTjfFuFtfWNza3idmlnd2+/bB8ctlWcSgotGvNYdgOigDMBLc00h24igUQBh04wvp75nQeQisXiTk8S8CIyFGzAKNFG8u1y/5GFoBkPIbuf+jXfrjhVZw68StycVFCOpm9/9cOYphEITTlRquc6ifYyIjWjHKalfqogIXRMhtAzVJAIlJfND5/iU6OEeBBLU0Ljufp7IiORUpMoMJ0R0SO17M3E/7xeqgeXXsZEkmoQdLFokHKsYzxLAYdMAtV8YgihkplbMR0RSag2WZVMCO7yy6ukXau69erVbb3SOM/jKKJjdILOkIsuUAPdoCZqIYpS9Ixe0Zv1ZL1Y79bHorVg5TNH6A+szx/mt5M6</latexit>

eY3

<latexit sha1_base64="pwd/PKnwHHLOAoWhkGKf3rYfFPc=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5Jo8bEruHFZwT6kDWEyuW2HTiZhZqLU0C9x40IRt36KO//GaZuFth64cDjnXu69J0g4U9pxvq3Cyura+kZxs7S1vbNbtvf2WypOJYUmjXksOwFRwJmApmaaQyeRQKKAQzsYXU/99gNIxWJxp8cJeBEZCNZnlGgj+Xa598hC0IyHkN1P/DPfrjhVZwa8TNycVFCOhm9/9cKYphEITTlRqus6ifYyIjWjHCalXqogIXREBtA1VJAIlJfNDp/gY6OEuB9LU0Ljmfp7IiORUuMoMJ0R0UO16E3F/7xuqvuXXsZEkmoQdL6on3KsYzxNAYdMAtV8bAihkplbMR0SSag2WZVMCO7iy8ukdVp1a9Wr21qlfp7HUUSH6AidIBddoDq6QQ3URBSl6Bm9ojfryXqx3q2PeWvBymcO0B9Ynz/oO5M7</latexit>

V3

<latexit sha1_base64="mTGVqda5lGZfg9unsrPd1vnSL38=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexq8HELePEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4yTZg0YLGoqqbrq7gkRwbVz3yymsrK6tbxQ3S1vbO7t75f2Dlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GNzO//YhK81g+mEmCfkSHkoecUWOl+1b/vF+uuFV3DvKXeDmpQI5Gv/zZG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWGVAwljZkobM1Z8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsv/yWts6pXq17f1Sr1izyOIhzBMZyCB5dQh1toQBMYDOEJXuDVEc6z8+a8L1oLTj5zCL/gfHwD2yGNgA==</latexit>

Y2

<latexit sha1_base64="28ZWWRa4sZAgRVQjvEPAqOHb3cg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyG4OMW8OIxonlIsoTZyWwyZHZ2mekVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYkUBl3328mtrW9sbuW3Czu7e/sHxcOjpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDPzW09cGxGrBxwn3I/oQIlQMIpWun/sVXrFklt25yCrxMtICTLUe8Wvbj9macQVMkmN6Xhugv6EahRM8mmhmxqeUDaiA96xVNGIG38yP3VKzqzSJ2GsbSkkc/X3xIRGxoyjwHZGFIdm2ZuJ/3mdFMMrfyJUkiJXbLEoTCXBmMz+Jn2hOUM5toQyLeythA2ppgxtOgUbgrf88ippVspetXx9Vy3VLrI48nACp3AOHlxCDW6hDg1gMIBneIU3RzovzrvzsWjNOdnMMfyB8/kD3i+Ngg==</latexit>

Y1

<latexit sha1_base64="9BwkcUCjxSDD9oXjh0eCCxV+iss=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyK+LgFvHiMaB6SLGF20psMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz32ymsrK6tbxQ3S1vbO7t75f2Dpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGN1O/9YRK81g+mHGCfkQHkoecUWOl+8ee1ytX3Ko7A1kmXk4qkKPeK391+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiEnVumTMFa2pCEz9fdERiOtx1FgOyNqhnrRm4r/eZ3UhFd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLy6R5VvXOq9d355XaRR5HEY7gGE7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+5q0FJ585hD9wPn8A3KuNgQ==</latexit>

(a) Y 3,0 quiver

<latexit sha1_base64="IWtuuc8W3G7fpz8EOuB3NhywHB8=">AAACBHicbVC7TgJBFJ3FF+Jr1ZJmIphgYsiukogdiY0lJvIwgGR2GGDC7MOZu0ay2cLGX7Gx0BhbP8LOv3GALRQ8ySQn59yTO/c4geAKLOvbSC0tr6yupdczG5tb2zvm7l5d+aGkrEZ94cumQxQT3GM14CBYM5CMuI5gDWd0MfEb90wq7nvXMA5YxyUDj/c5JaClrpltA3uAqECOcP7mNjo9tuI8vgu5zsRdM2cVrSnwIrETkkMJql3zq93zaegyD6ggSrVsK4BORCRwKlicaYeKBYSOyIC1NPWIy1Qnmh4R40Ot9HDfl/p5gKfq70REXKXGrqMnXQJDNe9NxP+8Vgj9cifiXhAC8+hsUT8UGHw8aQT3uGQUxFgTQiXXf8V0SCShoHvL6BLs+ZMXSf2kaJeK51elXKWc1JFGWXSACshGZ6iCLlEV1RBFj+gZvaI348l4Md6Nj9loykgy++gPjM8fyjyW6A==</latexit>

(b) Y 3,1 quiver

<latexit sha1_base64="y5iJGvtpgVrTIs84/3hkpDXHJy8=">AAACBHicbVC7TgJBFJ3FF+Jr1ZJmIphgYsiukogdiY0lJvIwgGR2GGDC7MOZu0ay2cLGX7Gx0BhbP8LOv3GALRQ8ySQn59yTO/c4geAKLOvbSC0tr6yupdczG5tb2zvm7l5d+aGkrEZ94cumQxQT3GM14CBYM5CMuI5gDWd0MfEb90wq7nvXMA5YxyUDj/c5JaClrpltA3uAqOAc4fzNbXR6bMd5fBdynYm7Zs4qWlPgRWInJIcSVLvmV7vn09BlHlBBlGrZVgCdiEjgVLA40w4VCwgdkQFraeoRl6lOND0ixoda6eG+L/XzAE/V34mIuEqNXUdPugSGat6biP95rRD65U7EvSAE5tHZon4oMPh40gjucckoiLEmhEqu/4rpkEhCQfeW0SXY8ycvkvpJ0S4Vz69KuUo5qSONsugAFZCNzlAFXaIqqiGKHtEzekVvxpPxYrwbH7PRlJFk9tEfGJ8/zWGW6g==</latexit>

<latexit sha1_base64="gCARHO0tryUCtpTUX3KTcdFsxoU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseCF09S0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD3d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0mrVvUuq+79RaVey+Mowgmcwjl4cAV1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/IJ41q</latexit>

N1
<latexit sha1_base64="gCARHO0tryUCtpTUX3KTcdFsxoU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseCF09S0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD3d9r1+uuFV3DrJKvJxUIEejX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0mrVvUuq+79RaVey+Mowgmcwjl4cAV1uIUGNIHBEJ7hFd4c4bw4787HorXg5DPH8AfO5w/IJ41q</latexit>

N1

<latexit sha1_base64="P3kvbj7rA974vOEfmPmig6HDAfY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseCF09S0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD3f9Wr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5JWrepdVt37i0q9lsdRhBM4hXPw4ArqcAsNaAKDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/Jq41r</latexit>

N2

<latexit sha1_base64="P3kvbj7rA974vOEfmPmig6HDAfY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseCF09S0X5AG8pmO2mXbjZhdyOU0J/gxYMiXv1F3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD3f9Wr9ccavuHGSVeDmpQI5Gv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE177GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5JWrepdVt37i0q9lsdRhBM4hXPw4ArqcAsNaAKDITzDK7w5wnlx3p2PRWvByWeO4Q+czx/Jq41r</latexit>

N2

<latexit sha1_base64="NqRClCc67kkLLcwpTJEfC85Smxk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fjw4kkq2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw13vvFcquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvEuK+79RblWzeMowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx/LL41s</latexit>

N3
<latexit sha1_base64="NqRClCc67kkLLcwpTJEfC85Smxk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV9Fjw4kkq2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzThBP6IDyUPOqLHSw13vvFcquxV3BrJMvJyUIUe9V/rq9mOWRigNE1Trjucmxs+oMpwJnBS7qcaEshEdYMdSSSPUfjY7dUJOrdInYaxsSUNm6u+JjEZaj6PAdkbUDPWiNxX/8zqpCa/9jMskNSjZfFGYCmJiMv2b9LlCZsTYEsoUt7cSNqSKMmPTKdoQvMWXl0mzWvEuK+79RblWzeMowDGcwBl4cAU1uIU6NIDBAJ7hFd4c4bw4787HvHXFyWeO4A+czx/LL41s</latexit>

N3
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Figure 5. Quiver diagrams of Y p,q theory (a) with p = 3, q = 0 and (b) with p = 3 , q = 1. The
chiral fields are labelled by the convention in [15].

A D = 5 BPS quiver of higher rank gauge theory is obtained by starting with larger
orbifold theories and by taking a similar Higgsing procedure, which truncates the corners of
toric diagram according to figure 3. For example, the BPS quivers of SU(3) gauge theory are
obtained by assigning vev to ten chiral fields in the orbifold probe quiver C3/Z4×Z4. Fig-
ure 5 shows resulting D = 5 BPS quivers for SU(3)0 and SU(3)1 gauge theory, respectively.

Xp,q family and local dP2 surface

Another class of toric Calabi-Yau 3-folds of interest is Xp,q family, for two integers p and
q such that p > q ≥ 1. Its toric diagram has five external vertices

v1 = (1, 0), v2 = (0, 0), v3 = (0, p), v4 = (−1, p− q), v5 = (−1, p− q + 1) . (1.17)

An embedding of (1.17) to Zp+1 × Zp+1 orbifold’s toric diagram is sketched in figure 6,
which suggests how to obtain D = 5 BPS quiver of SU(p)q gauge theory with a fundamental
hypermultiplet, starting from the orbifold probe quiver via Higgsing.

The simplest example in this family is X2,1, also known as the local dP2 geometry. Its
BPS quiver can be explicitly worked out, as shown in figure 7. This geometry turns out
to engineer D = 5 SU(2) gauge theory with a fundamental hypermultiplet [26]. From the
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Figure 6. An embedding of Xp,q toric diagram in the toric diagram of C3/Zp+1 × Zp+1 orbifold
theory. The linearly dotted gray points imply several internal vertices which are omitted for brevity.

superpotential of Z3 × Z3 orbifold theory

W = 1
32 tr (x14y45z51 − x14z43y31 + · · ·+ x93y31z19 − x93z38y89) ,

non-zero FI constants can lead vev assignment to z51 , x93 , y23 , y64, which makes neigh-
boring fields in the quiver massive. As we integrate out those massive, the superpotential
becomes

WdP2 = tr (x34y41z12z23 + x12y23y35z51 − x45z51z12y23x34

+x45x52z24 − x12z24y41 − x52z23y35) ,
(1.18)

where we relabeled the nodes in the quiver as follows,

6→ 1 , 3 , 9→ 2 , 7→ 3 , 5→ 4 , 8→ 5. (1.19)

Note that if we further Higgs x45 fields, we end up with local F0 theory superpotential
in (1.15) and quiver in figure 4 as the node 4 and 5 merge.

2 What to count?

The problem we wish to address is the counting of BPS states which are particle-like with
respect to the noncompact part of the spacetime, i.e., R3+1. Given the quivers of section 1,
it comes down to computing various topological invariants of such quiver dynamics such
as refined Witten index, or cohomology if the dynamics reduces to a geometric one in the
low energy limit. In practice, the former reduces to an exact path integral [10] or to a
heat kernel computation of twisted partition function, while the latter can be sometimes
computed explicitly if the geometry is simple enough, e.g., toric.

While either of such methods would work perfectly well when the dynamics is fully
gapped, there is a general problem when the dynamics includes asymptotically flat direc-
tions. In particular, the problem arises invariably if the low energy theory involves an
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Figure 7. The quiver diagram of local dP2 theory.

infinite volume of target manifold. All of the current examples involve local Calabi-Yau as
part of the target, so such subtleties occur generically.

This is further compounded by the fine-tuned superpotential that is generically needed
for local Calabi-Yau’s. The well-known machinery for exact path integrals, often broadly
called “localization,” does not seemingly depend on details of the superpotential, but only
with the hidden assumption of the genericity. Once we begin to impose non-Abelian global
symmetries on the superpotential that cannot be entirely captured by flavor chemical po-
tentials, the result of the localization computation often deviates significantly from the
desired counting [27]. While the latter problem is also obliquely related to the noncompact
nature of the target, it should be considered as a separate issue, and one can see by explicit
exercises that the resulting JK residue computation [10] becomes rather ineffective even
for the simplest examples.

Coming back to the specific counting problem at hand, note that the particle-like
nature of BPS states means that the wavefunction of the states must be restricted to
the L2 class, i.e., square-normalizable with respect to the internal directions, while along
R3+1 the state would propagate freely as plane wave. Even with more conventional and
geometric approaches, such L2 boundary condition is difficult to impose systematically for
index problems. One well-known exception would be an asymptotically cylindrical non-
linear sigma model (NLSM) where L2 condition translates to the Atiyah-Patodi-Singer
(APS) boundary condition [28].

As such, we will encounter two types of topological invariants. One class, which in
this note would encompass many different types, computed by relatively straightforward
existing routines, will be denoted as Ω. It could be a result of the localization path integral
or of the heat kernel computation; when the problem reduces to an entirely geometric one,
such as via cohomology, we will also use Ω to denote index-like objects of singular homology
or (compact) de Rham cohomology as well. The other, denoted as I, would be the desired
(refined) Witten index that counts physically relevant L2 BPS states only.

– 10 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
9

The two objects are fundamentally different, despite that physics literatures tend to
refer both as “index.” Only if the dynamics is compact and the Hilbert space is fully
gapped, Ω = I is guaranteed. Much of what we explore in this note would be about how to
recognize the difference, and, sometimes, how to extract I from Ω for these quiver theories.

In the path integral computation of the refined index, say, for those examples with fine-
tuned superpotentials, one can seemingly evade such issues by turning on flavor chemical
potentials associated with isometries. This essentially turns on mass terms and creates a
gap. While the resulting partition function Ω has its own physical interpretation and is
often very useful, e.g., for a check of dualities, such twisted partition functions sometimes
give misleading results when it comes to the L2 BPS state counting [27].

An almost trivial, yet illustrative example is a NLSM with target C1, say, realized in
terms of a single massless chiral multiplet. The theory has a global symmetry that rotates
C1 by a phase. Assigning a fugacity x to this symmetry, likewise y for an R-symmetry, and
vanishing R-charge to the single chiral multiplet to prohibit any superpotential, one finds
the following twisted partition function from the localization of the path integral [10],

ΩC1 = yx−1/2 − y−1x1/2

x1/2 − x−1/2 . (2.1)

Turning off the flavor chemical potential, x→ 1, is impossible due to the pole, symptomatic
of the noncompact dynamics.

Expanding in x or 1/x might be the next tempting step, since x enters the definition of
Ω in the form of xF where F is the flavor charge. This will at least give F -graded sectors,
and the zeroth power of x may have some chance of capturing the physics prior to the
massive deformation due to x. However, the two expansions yield mutually inconsistent
results at the invariant sector

ΩC1 =

−y−1 +O(1/x) ,
−y +O(x) .

(2.2)

A general relation for fully gapped geometric theories says [29]

I = (−y)dχy=−y2 , (2.3)

where d is the complex dimension of the compact target and χy is the Hirzebruch genus.
The R-charge fugacity y grades the Hodge diamond diagonally, which should extend to any
geometric theories, compact or not. The above expansion of Ω suggests that the content
of the rotationally invariant BPS state corresponds to either one-dimensional H2 or one-
dimensional H0, with all other cohomology empty. This follows from (2.2), combined with
the fact that C1 is algebraic such that the Hodge diamond is populated by the vertical
middle only.

Interestingly, these two conflicting results appear to reflect, respectively, de Rham
cohomology H? and de Rham cohomology with compact support H?

c ,

dimH0(C1) = dimH2
c (C1) = 1 ;

dimHk(C1) = dimH2−k
c (C1) = 0 , k = 1, 2 . (2.4)
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As we noted above, however, the physically relevant cohomology would be H?L2 , whereby
one is supposed to count L2 harmonic forms on the target, which is clearly absent for C1,

H?L2(C1) = 0 → I = 0 . (2.5)

This trivial example teaches us that neither the localization computation nor the standard
(compact) de Rham cohomology computation should be trusted.

A more informative example can be found from an Abelian GLSM with N chirals of
charge +1 and K chirals of charge −1. Suppose N > K for simplicity and the sign of the
FI constant such that this GLSM flows down to the O(−1)K bundle over PN−1. Keeping
a flavor symmetry that rotates all chirals simultaneously and forbidding superpotential by
assigning zero R-charges to all chirals, we expand with respect to its fugacity x and find

Ω =

 (−1)N−K−1
(
y1−K−N + · · ·+ yN−K−1

)
+O(1/x) ,

(−1)N−K−1
(
y1+K−N + · · ·+ yN+K−1

)
+O(x) .

(2.6)

The flavor-neutral part, or the x-independent part, captures again precisely H? and H?
c ,

respectively, of the bundle. The latter statement can be seen easily from the fact that H?

is homotopy invariant, so H? of the bundle equals H?(PN−1), and also from the general
fact that H?

c is a Poincaré dual of H?.
What is H?L2 of this bundle? As we will see in section 3.1, there is a mathematical

theorem which asserts that, under some favorable circumstances, HpL2 equals Hp for p > d

where d = N + K − 1 is the complex dimension. Also, the L2 cohomology should come
with natural pairing between HpL2 and H2d−p

L2 , forming Poincaré-dual pairs. This leaves
behind only HdL2 undetermined. If d happens to be odd, we can say more, since only even
cohomologies are non-trivial,

dimH2K
L2 = dimH2K+2

L2 = · · · = dimH2N−2
L2 = 1 ;

dimHpL2 = 0 , for all other p . (2.7)

These L2 states can be compactly summarized via a truly enumerative index

I = (−1)N−K−1
(
y1+K−N + · · ·+ yN−K−1

)
, (2.8)

which is the rescaled Hirzebruch genus of the L2 cohomology. One curious fact is that this
result could have been obtained if we blindly took the common part of the two expansions
of Ω in x and 1/x as above [27], or equivalently the common part of H? and H?

c . The latter
is effectively the content of the theorem (3.3) below.

As these examples illustrate well, distinctive features of I, as opposed to generic Ω,
are that it is integral, finite, and a symmetric Laurent polynomial in the R-charge fugacity
y. Note that, for BPS quivers in particular, the power of y is related to the spin and
SU(2)R-isospin content of the BPS spectra [29], so the invariance under y→ y−1 is also a
consequence of the spacetime symmetries on R3+1.
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3 Abelian BPS quivers

The main message above was how one must not be hasty and not resort to existing routines
for supersymmetric partition functions or to (co-)homology of the internal manifold. When
the latter is noncompact, the partition function will generically give misleading numbers
while one must be also wary of exactly which cohomology is relevant for the problem at
hand. As such, for some questions, the only reliable answer can be obtained from the direct
cohomology counting, assuming that the distinction between H?, H?

c , and H?L2 is carefully
kept track of. For the toric case, on the other hand, there are systematic tools, available in
ref. [30] for example, that recover the homology H? given the toric data, from which H? can
be inferred. We will presently turn to how one might further extract H?L2 from such data.

We should warn the readers that even this is not going to be effective when the quiver
turns non-Abelian; the low energy geometric limit of the latter often misses the relevant
ground states of the quiver gauge theory as will be outlined in section 4.

3.1 L2 cohomology from homology

Let us start by reviewing a theorem in [31] which discussed relations between L2 cohomology
and following types of cohomology given a noncompact manifoldM with scattering metric
g assigned;

• de Rham cohomology H?(M)

• relative cohomology with respect to the boundary H?(M, ∂M)

• de Rham cohomology with compact support H?
c (M)

A metric g on a manifoldM is called the scattering metric when g satisfies the following
asymptotic behavior,

g → dx2

x4 + h

x2 , (3.1)

where x is a boundary defining function, i.e. x vanishes but dx 6= 0 on ∂M and h is a
smooth metric on ∂M. Note that if we set x = 1/r, the scattering metric in (3.1) becomes

g → dr2 + r2h with r →∞ , (3.2)

which reproduces a familiar form of metric on a conical geometry.
For a manifoldM with scattering metric g, there exist natural isomorphisms,

HpL2(M)→


Hp(M , ∂M) , if p < m/2 ,
Im(Hp(M , ∂M)→ Hp(M)) , if p = m/2 ,
Hp(M) , if p > m/2 ,

(3.3)

with m = dimRM, where Hp(M , ∂M) denotes the relative cohomology ofM with respect
to its boundary. For a complex manifold, such as Calabi-Yau d-folds, with m = 2d, this
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means that HpL2(M) equals Hp(M) for p > d, determining the upper half of Betti numbers.
This in turn determines the lower half as well since there is a natural pairing,∫

M
ω(k) ∧ ω(2d−k) , (3.4)

which leaves only the middle cohomology HdL2(M) to be further considered. For our
problem of local Calabi-Yau 3-fold, which are toric and thus algebraic, homology H3(M)
is empty, so both H3(M) and H3

L2(M) are also empty.4
On the other hand, there is yet another natural pairing between Hp and Hp where the

latter is the singular homology, as ∫
Σ(p)

ω(p) , (3.5)

so we arrive at

dimHpL2(M3) = dimH6−p
L2 (M3) = dimH6−p(M3) , p = 0, 1, 2,

dimH3
L2(M3) = 0 , (3.6)

for a toric Calabi-Yau 3-fold which is asymptotically conical. So, the matter of BPS state
counting for Abelian quivers with unit rank at each node brings us to the homology counting
for p > 3.

Even before counting ofHp(M3), we already know some universal facts. First, the toric
Calabi-Yau 3-folds in question are all algebraic manifolds, with only even homology being
non-trivial, meaning that only H4(M3) and H6(M3) are needed for extracting the entire
H?L2(M3). Second, the local Calabi-Yau has the top homology empty, H6(M3) = 0 since
one cannot possibly draw a top-dimensional simplex with no boundary. Therefore, one only
needs to count H4(M3), whose dimension would also count dimH2

L2(M3) = dimH4
L2(M3).

Perhaps, the simplest examples of local Calabi-Yau 3-folds are the conifold and the
local P2. These are, respectively, a O(−1)⊕O(−1) bundle over P1 and a O(−3) line bundle
over P2. Given the homotopy invariance of singular homology, we are immediately led to

H?(Conifold) = H?(P1) , H?(local P2) = H?(P2) , (3.7)

which says H?L2(Conifold) = 0 according to (3.3), for example, and one finds

IConifold = 0 , Ilocal P2 = −y− y−1 . (3.8)

The conifold example actually belongs to the class we already discussed in section 2, except
that K ≥ N where the L2 cohomology vanishes entirely given the same sign of the FI
parameter.5

4Although the Calabi-Yau property implies a covariantly constant holomorphic 3-form, it does not
generate the ordinary de Rham H3 for local Calabi-Yau’s which are toric. This can be glimpsed at, if
somewhat trivially, with the example of C3. The holomorphic 3-form, Ω3.0 = dz1 ∧ dz2 ∧ dz3 can be also
written as Ω3,0 = d(z1 dz2 ∧ dz3) and hence is exact in the absence of an asymptotic boundary condition.

5These countings, although in agreement with the field theory interpretation, at odds with some of
existing claims. For example, the null answer for the conifold disagrees with refs. [15, 32], of which the
former relies on the compact cohomology. In view of our general discussions so far, however, such conflicts
are not very surprising.
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More relevant for us are the two well-known infinite classes of toric Calabi-Yau 3-folds
introduced in section 1.2. The first set is the Y p,q family, whose toric diagram is already
given in figure 3. For readers’ convenience, we list its four external vertices here again,

v1 = (1, 0), v2 = (0, 0), v3 = (0, p), v4 = (−1, p− q) . (3.9)

We take q 6= p, and also q < p without loss of generality, such that in our convention the
toric diagram is convex.6

With this toric data, it is straightforward to compute their homology,

dimH0 = 1 ,
dimH2 = p ,

dimH4 = p− 1 ,
dimH6 = 0 .

(3.10)

In other words,

dimH2
L2 = dimH4

L2 = p− 1 ; dimHpL2 = 0 , p 6= 2, 4 , (3.11)

or
IY p,q = (p− 1)× (−y− y−1) . (3.12)

Recall that M-theory compactified on a Y p,q 3-fold results in D = 5 SU(p)q gauge theory
with the rank p− 1.

Another infinite family of interest is the aforementioned Xp,q family, whose toric dia-
gram is shown in figure 6. In addition to four vertices of Y p,q family, Xp,q toric diagram
has an extra vertex v5 as noted in (1.17). We find the homology from the toric data as

dimH0 = 1 ,
dimH2 = p+ 1 ,
dimH4 = p− 1 ,
dimH6 = 0 ,

(3.13)

again with vanishing odd homology. Their L2 cohomology H?L2 is thus the same as that of
Y p,q Calabi-Yau families, since only H4 matters, such that

IXp,q = (p− 1)× (−y− y−1) . (3.14)

M-theory compactified on an Xp,q 3-fold, with p > q and appropriately scaled, gives rise
to a D = 5 SU(p) gauge theory with one fundamental matter, also of rank p− 1.

6A scaling choice is also made in the geometry that treats the two S2 in the base of Y p,q, and thus the
two winding numbers p and q, differently in order to reach an D = 5 SU(p)q theory.
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3.2 What have we counted?

Let us take a step back and understand the physical states thus constructed from
H2
L2(M3) ' H4

L2(M3). The quivers with unit rank at each node correspond to states
with a single KK charge only. What physical states in these gauge theories are counted by
this counting? The answer is obvious; in the Coulomb phase the only BPS particles with
neither the gauge charges nor the flavor charges are the rank-many vector multiplets that
belong to the Cartan part of the gauge sector. Thus, the above song-and-dance ends up
counting these Cartan vector multiplets, each with unit KK charge along the compactifi-
cation circle S1.

More concretely, given a quiver with the Higgs moduli space Md, the Kähler 2-form
J defines the Lefschetz spin on differential n-forms, via SU(2)L actions,

L+[ω(n)] = J ∧ ω(n) , L−[ω(n)] = Jyω(n) , L3[ω(n)] = (n− d)
2 ω(n) . (3.15)

This SU(2)L has been identified as spatial angular momentum along R3, so we have counted
the number of bound state pairs forming spatial spin doublets. This spin content comes
about from the relative part of the dynamics, so it needs to be tensor-producted against
the standard half-hypermultiplet content from U(1)∗. In other words, we would find vector
multiplets out of H?L2(M3), whose number equals dimH4(M3).

Indeed, the answers we found in section 3.1 are all such that one finds spin 1/2 multi-
plets, the number of which always equals the purported rank of the corresponding D = 5
supersymmetric field theory:

I(1,1,...,1)(y) = rank ×
(
−y− y−1

)
. (3.16)

So far, we have left out the center of mass motion along the spacetime R3+1, or equivalently
the decoupled overall U(1) vector multiplet, which supplies a half-hypermultiplet. The
above spin doublets from the internal part combine with this half-hypermultiplet from R3+1

and elevate these states to rank-many vector multiplets. In the end, we have recovered the
Cartan vector multiplets with a unit KK charge precisely via the proposed BPS quivers.

In some sense, through the above elaborate procedure, we did not really dig up any
new information. After all, the rank of the gauge group should be equal to dimH2

L2(M3),
which, either by the Poincaré duality, or equivalently by the Lorentz symmetry, has to be
the same as dimH4

L2(M3). What must be noted is, rather, how this recovery for unit KK
modes is achieved, only after a careful distinction between various types of cohomology,
from the standard singular homology counting, via the theorem (3.3): we have counted
dimH2

L2(M3) by starting with the usual singular homology counting of toric variety whose
H4 maps to H4(M3) via the natural pairing and in turn to H4

L2(M3) by the theorem of
section 3.1, bringing us to

dimH2
L2(M3) = dimH4

L2(M3) = dimH4(M3) , (3.17)

with all other H?L2(M3) empty, for local Calabi-Yau 3-folds.
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4 Towers of pure D0 branes

Let us now turn to the question of how one constructs the entire KK towers for the Cartan
vector multiplets; these pure KK states should correspond to assigning a common rank, say
n, to all nodes of the BPS quiver. For each KK momentum n, one expects to find precisely
rank-many spin doublets of supersymmetric ground states, to be tensored by a universal
half-hypermultiplet from the decoupled U(1). Recall that, despite various difficulties and
subtleties, the problem for n = 1 at least remains that of the cohomology of the Higgs
moduli space. This is no longer true for n > 1, as we see below.

4.1 Cohomology of the symmetric orbifold is irrelevant

Since n = 1 quiver was a single D0 probe theory over the Calabi-YauM3, the Higgs branch
for n = 1 is precisely M3. This motivates one to speculate that n > 1 quiver may flow
down to a sigma model onto the n-th symmetric product ofM3, say,

SnM3 = (M3)n/Sn . (4.1)

Recall that the chiral multiplets in these BPS quivers are either adjoint or bifundamental:
at typical point in the Higgs moduli space, the bifundamentals are turned on and reduce
the gauge groups to a single U(n), namely, the common U(n)∗ that rotates all nodes simul-
taneously. Among this U(n)∗, the overall U(1)∗ decouples from the rest of the dynamics
since no bifundamentals would be rotated by it, and its scalar superpartners serve as the
center of mass degrees of freedom along the spatial R3. This leaves behind the interacting
SU(n)∗ theory, under which all chirals transform as adjoint. This leads us to the above
symmetric orbifold.

One may hope that the (co-)homology of this symmetric orbifold is the quantity to
study. However, this is not correct. There are two interrelated problems with this naive
thought. The first is that the theory actually flows to a different symmetric orbifold,

Nn ≡
[
(M3)n × (R3)n

]
/Sn = R3 ×

[
(M3)n × (R3)n−1

]
/Sn , (4.2)

where (R3)n comes from the Coulombic side. This is because, at generic Higgs vev of
bifundamental chirals and adjoint chirals of the probe theory, the Cartan part of SU(n)∗
remains massless as well, so these Coulombic moduli can be turned on simultaneously
along with the chirals. Since we are dealing with quiver GLSM with four supercharges, the
former translates to 3(n− 1) free Coulombic moduli, i.e. relative positions of n D0 branes
in the spatial R3. Now, the orbifolding group Sn is the Weyl group of SU(n)∗, so it would
act on the Coulombic moduli and Higgs moduli simultaneously, giving us the second factor
in the rightmost expression of (4.2).

The second problem concerns, again, the obligatory L2 condition along all moduli
direction, except for a single R3 factor which is the center of mass. In other words, the
wavefunction must be L2 on Nn/R3. There is a well-established generating function that
keeps track of Poincaré polynomial of a symmetric orbifold, SnM, given that of M, due
to Macdonald [33]. However, as illustrated in the appendix A, one can understand the
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counting from this generating function merely as that of n identical particle quantum
mechanics with Bose statistics imposed.7

This means that any such n-particle states would be plane-wave-like along each and
every factor of R3’s inNn. Even though one started with non-trivial L2 wavefunctions found
inM3, there is no mechanism at the level of the orbifold dynamics that forces two or more
of them to be confined along the Coulombic part of the relative motion, (R3)n−1, for n > 1.
As such, even if there are normalizable BPS states at n = 1, no other normalizable states
can be found for n > 1 at the level of L2 cohomology of Nn/R3, regardless of details ofM3.

4.2 Entire KK towers of the Cartan

If the L2 cohomology of the low energy orbifold fails to capture the desired BPS spectrum,
we must step back to the quiver GLSM. One might think that topological invariants must
be the same between these two theories since one is merely the low energy limit of the
other, but in reality we just saw that this is too naive, which is of course ultimately related
to how the naive robustness often fails in the presence of the continuum sectors [11, 27].
As we saw above, the problem stems not only from the noncompact Calabi-Yau but also
from the Coulombic continuum.

A relatively simple example where GLSM and its low energy limit thereof would offer
different indices and twisted partition functions is that multi D0 dynamics, namely maxi-
mally supersymmetric SU(n) Yang-Mills quantum mechanics. The low energy limit is the
symmetric orbifold R9(n−1)/Sn as the target, and the twisted partition function has been
computed in the past [27], with the unrefined limit being [34–37]

ΩR9(n−1)/Sn
= 1
n2 ,

ΩSU(n) =
∑
p|n

1
p2 = 1 + · · ·+ 1

n2 , (4.3)

where, in the latter, p’s are divisor of n including 1. Note how the two offer different
twisted partition functions. This goes against the naive thought that such quantities are
topological and thus should agree between UV and IR pictures.

We will see presently how the integral indices I, not just twisted partition functions Ω,
differ between the two descriptions. The twisted partition functions are rational, again due
to the asymptotically flat and gapless directions. The integral index that counts the L2

bound state requires a subtraction of the latter continuum contribution, usually denoted
as δI, such that

IR9(n−1)/Sn
= ΩR9(n−1)/Sn

+ δIR9(n−1)/Sn
,

ISU(n) = ΩSU(n) + δISU(n) . (4.4)

As one can show using the heat kernel method, the defect terms δI’s are determined entirely
by the asymptotic dynamics of the either system [34, 35].

7Please note that we are dealing with d = 1 quantum mechanics, rather than d = 2 theory which would
have detected additional localized states via twisted sectors.
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On the other hand, as one approaches the asymptotic region, the orbifold becomes
an ever more accurate approximation of the GLSM, since all masses of off-diagonal parts,
dropped in favor of the orbifold, scale linearly with the Coulombic vev. This implies, given
the general nature of δI as a boundary contribution [34],

δISU(n) = δIR9(n−1)/Sn
+ · · · , (4.5)

where the ellipsis denotes terms that arise from hybrid sectors with multiple partial bound
states exploring the asymptotic regions individually. This cascade of partial bound states
contributing to δI was observed early on [37, 38].

The SU(n) theory is a little special in that the only contributing continuum sectors are
such that n is divided equally to p identical n/p-particle bound states formed by SU(n/p)
interactions, whose mutual asymptotic dynamics is governed by R9(p−1)/Sp. This implies

δISU(n) =
p 6=1∑
p|n

δIR9(p−1)/Sp
× ISU(n/p) , (4.6)

with which the only self-consistent answer in the end is

δIR9(n−1)/Sn
= −ΩR9(n−1)/Sn

,

IR9(n−1)/Sn
= 0 ,

ISU(n) = 1 . (4.7)

The last supports the existence of the M-theory as was originally envisioned by Witten [39].
One can understand this disparity between the GLSM and the low energy orbifold

limit more physically as follows: as Polchinski demonstrated handsomely [40], a simple
virial theorem, combined with supersymmetry, shows that, on the supersymmetric ground
state in question, the expectation values of squared matrix elements are of similar size
between the “diagonal” and “off-diagonal” part of SU(n). Therefore, if one scales down the
energy scale toward infrared to render the off-diagonal components to become very massive
and “ignorable,” the support of the wavefunction is shrunken further and further near the
origin along the Cartan directions as well. In the strict geometric limit, such wavefunctions
would then have a vanishing support and becomes undetectable by d = 1 orbifold.

Interestingly, this prototype SU(n) example is in fact all one needs to address the
infinite KK towers of the Cartan part of the gauge sector that we are trying to establish.
Why is so? Although the orbifold Nn is on its own irrelevant for BPS state counting as we
already saw, this moduli space is still useful for visualizing where the desired bound states
are supported. Consider (n, n, n, · · · , n) quiver with the moduli space

Nn = R3 ×
[
(M3)n × (R3)n−1

]
/Sn . (4.8)

We have seen in the previous section that n = 1 case produces rank-many spin doublets
alongM3, each of which is combined with a half-hyper from the center of mass R3 to form
a vector multiplet. Let us denote the wavefunction responsible for these states,

Ψgeometric (4.9)
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collectively. These states can be characterized as plane-wave-like with half-hyper spin
content along R3 and as an L2 harmonic 2-form/4-form pair alongM3.

Recall that, at generic point of the Coulomb phase of geometrically engineered D = 5
gauge theory, M3 is a smooth manifold and point-wise can be approximated by C3 =
R6. If we scale the quiver theory such that the symmetric orbifold is better and better
approximation, the desired states must be that unit-charged KK particles are clustered
ever closer among themselves, such that the above symmetric orbifold is better and better
approximated by

Nn ' [R3 ×M3]×
[
(R6)n−1 × (R3)n−1

]
/Sn . (4.10)

The former square bracket represents the center of mass part of the dynamics while the
latter is approximately valid when the distances between the individual bound states of
the (1, 1, 1, · · · , 1) sub-quivers are relatively small compared to the curvature scale ofM3.

The relative part, [
(R6)n−1 × (R3)n−1

]
/Sn = (R9)n−1/Sn (4.11)

can be regarded as the low energy limit of the SU(n)∗ subsector we have introduced in
section 1 for the orbifold examples. However, we must emphasize again that one cannot
expect to find the relevant L2 states at this geometric level. Rather, the states in question, if
any, would emerge only if we go back to the full GLSM. Therefore, the desired wavefunctions
may be approximately factorized as

Ψ ' Ψgeometric ⊗ΨSU(n)∗ (4.12)

at least in the limit where the moduli space itself factorizes approximately as in (4.10).
Let us see more precisely how this happens. The two factors, Ψgeometric and the relative

part of the wavefunction, which is to be eventually replaced by ΨSU(n)∗ , scale somewhat
differently under change of parameters of the quiver theories. Ψgeometric is represented by a
L2 harmonic form onM3, so its support is sensitive to the scale of the Calabi-Yau 3-fold in
question, or equivalently to FI constants of the BPS quiver. On the other hand, the relative
part of the wavefunctions is unaware of the FI constants and scales with the gauge couplings.
As one tunes the coupling so that the symmetric orbifold limit is ever more accurate, the
support of the relative part of the wavefunction must become more and more localized at the
origin of the orbifold. On the other hand, near this origin, the moduli space is increasingly
similar to (4.10), and the relative part of the quiver dynamics approaches the SU(n)∗ theory.

One parameter that controls this process is the gauge coupling, since the massive off-
diagonal component, to be dropped in the orbifold limit, would have the mass proportional
to the coupling. This means that, by tuning the electric couplings of the BPS quiver
continuously (but never actually taking the limit), one can make the support of the relative
part much smaller than the support of Ψgeometric. Therefore there exists a corner of the
parameter space of the BPS quiver, where we can reliably replace the BPS state counting
problem by that of (4.12). This approximation is possible unless we are sitting near a
singular point of the center of massM3. We are considering generic point on the Coulombic
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moduli space of D = 5 theory, so M3 would be smooth everywhere. As such, (4.12) is
reliable at least for the purpose of the index counting for BPS states,

We have uncovered, earlier in this section, the content of Ψgeometric as rank-many
vector multiplets, it remains to count ΨSU(n)∗ by going back to the approximate SU(n)∗
theory. Fortunately, this more difficult task is already performed since SU(n)∗ theory is
nothing but the maximally supersymmetric Yang-Mills theory which we used above as an
illustration. Our review above immediately translates to

ISU(n)∗ = 1 , (4.13)

implying a unique supersymmetric ΨSU(n)∗ for each integer n. This should be contrasted
against

I(R9)n−1/Sn
= 0 , (4.14)

which supports our earlier claim that cohomology of the symmetric orbifold does not have
new localized states “created” due to the orbifolding. The gauge theory “resolution” of the
orbifold singularity is essential for d = 1.

As such, the BPS state content of any orbifold quiver is such that there are again
precisely rank-many vector multiplets at each and every KK charge n; there is always
a unique ΨSU(n)∗ state, so the counting of the states are the same for all n ≥ 1. This
translates to the following refined L2 index for (n, n, . . . , n) quivers,

I(n,n,...,n)(y) = rank ×
(
−y− y−1

)
(4.15)

universally where “rank” refers to D = 4, 5 field theory in question. The result is manifestly
independent of the potential wall-crossing chambers, since the relevant bound state comes
from an effective SU(n)∗ theory that has no FI parameter.

We have obtained this SU(n)∗ theory rather explicitly for orbifold quiver theories;
recall U(n)∗ and SU(n)∗ theories we discussed in section 1. The two are related by how
we factor out the decoupled overall U(1) and keep only the traceless parts of chirals x, y, z,
which we called x∗, y∗, z∗. The cubic superpotential,

W∗ = tr(x∗[y∗, z∗]) (4.16)

governs the low energy dynamics, rendering this SU(n)∗ theory to become the maximally
supersymmetric SU(n) theory, leading us to (4.13), and the resulting rank-many vector
multiplets for each n > 1.

Furthermore, the spirit behind the decompositions (4.10) and (4.12) clearly holds for
any smooth Calabi-Yau 3-fold M3, as long as the curvature length scale of the latter is
taken sufficiently large and the support of the relative part of the wavefunction is controlled
to be small by tuning the electric coupling. As such, this result of KK towers of rank-many
vector multiplets still stands universally, although our line of thoughts cannot be applied
immediately to central, strongly interacting regions of the Coulombic moduli space of D = 5
theory in question.

Although we did this for positive n, the same for negative n also follows since nothing
much changes upon n → −n except which half supersymmetries of the D = 5 theory are
preserved by the BPS state.
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5 Coulombic counting

In recent years, computations of (refined) index for supersymmetric gauged quantum me-
chanics have received renewed interest via the localization method. While the most sweep-
ing formulation of such kind was given several years ago [10], via Jeffrey-Kirwan residues,
this does not quite work for the BPS quivers here since the former must assume that the
superpotential is generic.

Although some global symmetries can be incorporated, allowing the superpotential
constrained further, non-Abelian global symmetries are often not entirely reflected; asymp-
totic isometries of local Calabi-Yau’s in question, cannot be fully incorporated into such a
computation. One might still hope that the Cartan part of such isometries, whose chemical
potentials do enter the computation, suffices but one can see in various local Calabi-Yau
examples, such as the conifold quiver, the routine offered by these localization computation
often produces nonsensical results.

One alternative is an older routine of the Coulomb branch counting [41–44], whose
mechanism by itself is insensitive to the superpotential of the quiver since it keeps track
of how BPS states are constructed along the Coulombic moduli space; the superpotential
data enters obliquely, if crucially, via the single-center degeneracies treated as input data,
also known as the quiver invariant.

In this approach, the issues due to noncompact targets are split into two different types.
The subtleties due to the noncompact Higgs branch are now all hidden in the quiver invari-
ant [29, 45] to be surmised through other routes. For our quivers, in particular, the ubiqui-
tous spectra of the neutral KK tower we have already obtained restrict many of quiver in-
variants to vanish. The other type due to the Coulombic continuum has a known resolution
in existing wall-crossing literature via a form of multi-cover formulae [27, 41, 42, 46]. Ratio-
nal invariants from the latter, again to be denoted as Ω here, have an explicit inversion for-
mula and give I as needed. We will see how these work, first by revisiting multi-D0 states.

5.1 Pure D0 towers revisited, with quiver invariants

For general quiver theories, this multi-center approach is known to be incomplete due to
the so-called quiver invariants, which count degeneracies of single-center BPS objects and
are immune to wall-crossing [29, 45, 48, 49]. States counted by the quiver invariants are
localized at the center of the Coulombic moduli space and instead spread along the Higgs
branch. This means that the missing superpotential data which affects the Higgs branch
only, would manifest in this Coulombic approach via the quiver invariants, often denoted
as ΩS or ΩInv and generally rational if the quiver is not primitive. We use IS for their
integral and enumerative counterpart for the sake of clarity.

One can view IS as an analog of the internal degeneracy, 2, of an electron which is
needed to construct Schrödinger atoms. A general solution [41–43] to the wall-crossing
formulae of Kontsevich and Soibelman [46] exists [47], with the quiver invariants as input
data. On the other hand, IS 6= 0 appears generically in the black hole regime, and the
known BPS spectra of D = 4 field theories tend to be consistent with IS = 0 except for
the U(1) single-node quivers. Even with generic superpotentials, as would be relevant for
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BPS black holes, the quiver invariant tends to be absent when all intersection numbers are
2 or smaller [29, 45, 48].

States counted by the quiver invariant are in particular dictated by the F-term em-
bedding into D-term ambient [29]. As such, the simpler, fine-tuned superpotential tends to
suppress these possibilities further. A simple and non-trivial example is the triangle cyclic
quiver [49] with the common intersection number 3. For this, the Coulomb counting gives
I = −y − y−1 + IS with IS unknown. With generic superpotentials, the quiver theory
flows to an elliptic curve such that I = 0 and thus IS = y + y−1 [45]. The same quiver
with a fine-tuned superpotential with SU(3) isometry, on the other hand, would flow to a
local P2, for which we must have I = −y− y−1 and IS = 0.

With the simplifying assumptions that IS = 0 except for the elementary nodes, we
have computed the Coulombic index of several D = 5 BPS quivers with (n, n, . . . , n) rank
vectors, and successfully reproduced,

I(n D0’s; y) = rank ×
(
−y− y−1

)
, (5.1)

independent of n. Again, “rank” refers to D = 4, 5 field theory in question. Note that the
mutual consistency between our counting in section 3 and 4 and the current Coulombic
counting requires

IS(n D0’s; y) = 0 , (5.2)

in particular, and IS = 0 for all nontrivial subquivers as well.
The index I(nD0’s; y) is independent of the wall-crossing chambers. This chamber-

independence has been seen from the construction of section 3 and 4; only Ψgeometric part
can know about FI constants, ζ, but the degeneracy is insensitive to signs of ζ since the
topology remains independent thereof. The stability is also numerically observed here, but
more generally, the Coulombic wall-crossing picture implies the same for all states whose
quiver rank vectors are in the kernel of the intersection matrix [50].

When n > 1 so that the quiver is no longer primitive, an important distinction must be
made between the true integral index I and its rational cousin Ω. Ω could be directly com-
puted by a Coulombic heat kernel method [9, 41], from which I’s are extracted by inverting

Ω(Γ; y) =
∑
p|Γ

y− y−1

p · (yp − y−p) · I(Γ/p; yp) , (5.3)

where the sum is over divisors p of the rank vector ~N of quiver Γ and Γ/p refers to a
subquiver, whose rank is given by division of ~N by p. This sum is exactly the kind of the
rational structure, now refined, that we have encountered for ΩSU(n) = ISU(n) − δISU(n)
via (4.6) for maximally supersymmetric SU(n) theories. The quiver invariant follows the
same pattern, so ΩS(n D0’s; y) = 0.

5.2 Electrically charged BPS states in the weak coupling chamber

For BPS states with charges coming from the gauge sector, one should expect heavy wall-
crossings to happen. Already with such a relatively simple theory like D = 4 SU(2) Nf = 4,
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the wall-crossing pattern quickly becomes intractable, so the situation with D = 5 BPS
quivers, with two extra nodes relative to its D = 4 counterpart, any sort of classification
of BPS states is not going to be practical. Any such attempt of BPS state classification
should be in practice accompanied by well-motivated choices of the wall-crossing chamber.

One type of the chamber which might be viewed as a reference is the weak coupling
chamber. Note that the weak coupling limit by itself does not preclude wall-crossings
since dyons can decay to a pair of other dyons easily when the rank of the group is larger
than one [51–53]. For purely electric objects from the gauge group choice and the matter
content, however, there should not be any wall-crossing in the weak coupling limit since
the theory would be defined by such content. As such, the “weak coupling chamber” makes
sense for these elementary BPS objects with a relatively simple state counting: given how
a KK tower would result from the S1 compactification, we should expect to find

I(Γ + n D0’s) = I(Γ) (5.4)

for quiver Γ whose net charge content corresponds to an elementary state that defines the
D = 5 field theory in question.

Let us recall what we know about the weak coupling regime of D = 4 pure SU(2)
theory. The weak coupling means very large 1/g2, so the monopole M and the dyon D,
which together span all known BPS states of D = 4 pure SU(2), would be much heavier
than the elementary charged vector boson W ,

|ZM | � |ZW | , |ZD| � |ZW | , (5.5)

while the central charges are related as ZW = ZM + ZD. Drawing these three central
charges in the upper half plane, ZM and ZD have to be very large and point to almost
opposite of each other, while ZW should direct the halfway between the two. On the other
hand, FI constants measure how far the central charges of each node, ZM and ZD, deviate
from the total central charge, ZM + ZD [8, 9]. Therefore, the weak coupling chamber
corresponds to a large FI constant of some particular sign, opposite of the other strong
coupling chamber where W is absent as a state.

How does this generalize to D = 5 pure SU(2) theory? The question comes down to
understanding the central charges of the two additional nodes. For F0 quiver in figure 9 of
appendix B, the magnetic charge assignment to each node is8

M , −M , −M , M , (5.6)

so one might think that signs of the FI constants should follow these signs. On a closer
inspection, however, one realizes that there are more charge components to the latter two
whose central charge contributions scale like 1/g2,

M , −M , I −M , M − I , (5.7)

with I denoting the instanton. In fact, I −M corresponds to the so-called KK monopole,
which is present whenever a D ≥ 4 gauge theory is put on a circle, in such a way that the
full instanton I is recovered from M + (I −M) [54].

8This can be inferred from the brane charge of each node, which is summarized in appendix B.
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Figure 8. In the weak coupling limit, the elementary nodes are categorised into three classes
according to their central charges. The first, short arrows in the middle, are weak coupling objects,
such as quarks and charged vectors. The second are rank-many objects with positive magnetic
charges, β∨i≤r, plus the KK monopole, I − β∨r+1. These are long arrows to the right. The third
group with the opposite magnetic/instanton charges points toward the left. If the total central
charge consists only of electric, flavor, and KK charges, the second and the third classes of nodes
would be equipped with large positive and large negative FI constants, respectively.

The last node with magnetic chargeM−I carries the KK charge but the latter’s central
charge contribution ∼ 1/R scales differently, as it does not get renormalized with the gauge
coupling renormalization. Pure electric central charge, which should be added to the various
nodes, would also scale with 1/R, in the regime where the bulk of their mass comes primarily
from the S1 holonomy vev. In such a weak coupling regime, neither of these additional
types of charges is the leading contribution to the central charges of the elementary nodes.

Therefore, in the weak coupling limit achieved by a small S1 radius R and large Wilson
line expectation values ∼ 1/R, the node 1 and the node 3 each should then have large
positive FI constant while node 2 and node 4 should have large negative FI constant. Since
the FI constants measure deviation of the node central charges away from the total central
charge of the quiver, this characterization is robust whenever the total charge of the quiver
has neither magnetic nor instanton components.

This story generalizes to all higher rank gauge theories with or without flavors. For
example, consider a D = 5 theory with a rank r simple gauge group and Nf fundamental
hypermultiplets; the number of nodes for the BPS quiver is 2r + 2 + Nf . Of these, Nf

captures the matter electric charges and bare flavor masses thereof, while 2r+ 2 nodes are
analog of the monopole node and the dyon node of pure D = 4 SU(2) BPS quiver.

With simple roots {βi}, 2r nodes of D = 4 BPS quiver would have magnetic charges
with the dual root β∨i [55]

β∨1 , −β∨1 , β∨2 , −β∨2 , . . . , β∨r , −β∨r . (5.8)

The rest of the nodes, if flavor hypermultiplets are present, corresponds to these elementary
matter BPS states [56].
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On top of these, D = 5 BPS quiver requires two additional nodes which, respectively,
should carry the magnetic and the instanton charges as [54, 57]

I − β∨r+1 , β∨r+1 − I , (5.9)

where β∨r+1 ≡
∑
a∨i β

∨
i is the highest dual root. Recall that h∨ = ∑

a∨i is the dual Coxeter
number and {β∨1 , · · · , β∨r ,−β∨r+1} span the affine Dynkin diagram of the dual group.

Again, the weak coupling chamber translates to large positive FI constants for nodes
with magnetic charges, β∨i≤r and −β∨r+1, and large negative FI’s for nodes with magnetic
charges, −β∨i≤r and β∨r+1. With such an assignment, one should be able to recover, from
the D = 5 BPS quiver, the expected KK towers of elementary fields, such as charged
vector mesons, collectively denoted as W, and quarks, also collectively Q, if fundamental
flavors are added; that is9

I(W + n D0’s) = I(W) = −y− y−1 ,

I(Q + n D0’s) = I(Q) = 1 . (5.10)

We have tested this for various BPS quivers we have discussed. See table 1, where we
scanned up to 11 particle problems and also confirmed that the index is robust under
small variation of FI constants.

6 Summary

We explored D = 5 BPS quivers for field theories [15] that are geometrically engineered,
from M-theory, over a toric local Calabi-Yau 3-fold and further compactified on a circle S1.
The basic building blocks include those for the corresponding D = 4 BPS quiver, while
instantons and KK modes also enter via the additional nodes of the quiver. Altogether,
the BPS quiver can be read off from the D0 probe quiver, which in turn can be deduced
from older stories of D3 quivers [16], in type IIB, that probe the same Calabi-Yau 3-fold.

These BPS quivers are equipped with fine-tuned superpotentials which are unavoidable
for local Calabi-Yau’s and render some of the usual path-integral machinery for computing
twisted partition functions ineffective. In this note, we delineated the computational issues,
and addressed BPS counting problems with emphasis on the KK towers. Given the heavy
wall-crossing patterns, cataloging of all wall-crossing chambers is all but impossible, and we
mostly concentrated on two simplest classes of states: neutral vector multiplets with KK
charges, and electrically charged states with KK charges in the weak coupling chamber.

The former, corresponding to the Cartan part of the gauge multiplets, is the robust
part of D = 5 BPS spectra, entirely free of wall-crossing. For states with a unit KK charge,
the counting problem does reduce to a geometric one, but with the L2 condition entering

9Similar observations have been made in the past. See ref. [58] for example where, in a large volume
limit of the local P2, n-independence of the Donaldson-Thomas invariants for kD2-nD0 were conjectured,
and demonstrated for k ≤ 4.
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~N BPS states I FI constants
F0, pure SU(2), ζw = C(1,−1, 1,−1)

(1, 1, 0, 0) W −y− y−1 ζw

(2, 2, 1, 1) W + KK −y− y−1 ζw ± ε(1,−1,−1, 1)
(3, 3, 2, 2) W + 2 KK −y− y−1 ζw ± ε(1,−1,−1, 1)

F1, pure SU(2)π, ζw = C(1,−1, 1,−1)
(1, 1, 0, 0) W −y− y−1 ζw

(2, 2, 1, 1) W + KK −y− y−1 ζw ± ε(1,−1,−1, 1)
dP2, SU(2) with Nf = 1, ζw = C(1,−1, 1, 0,−1)

(1, 1, 0, 0, 0) W −y− y−1 ζw

(2, 2, 1, 1, 1) W + KK −y− y−1 ζw ± ε(1,−1,−1, 1, 0)
(1, 1, 1, 2, 1) Q + KK 1 ζw ± ε(1,−1,−1, 0, 1)
(2, 2, 2, 3, 2) Q + 2 KK 1 ζw ± ε(1,−3, 2, 0, 0)

dP3, SU(2) with Nf = 2, ζw = C(1,−1, 0, 0, 1,−1)
(1, 1, 0, 0, 0, 0) W −y− y−1 ζw

(2, 2, 1, 1, 1, 1) W + KK −y− y−1 ζw ± ε(1, 0, 0, 0, 2,−4)
(1, 1, 1, 2, 1, 1) Q2 + KK 1 ζw ± ε(−2,−2, 0, 2, 1,−1)

Y 3,0, pure SU(3)0, ζw = C(1,−1, 1,−1, 1,−1)
(1, 1, 0, 0, 0, 0) W1 −y− y−1 ζw

(0, 0, 1, 1, 0, 0) W2 −y− y−1 ζw

(2, 2, 1, 1, 1, 1) W1 + KK −y− y−1 ζw ± ε(1,−2, 1,−2,−1, 4)
(1, 1, 2, 2, 1, 1) W2 + KK −y− y−1 ζw ± ε(1,−1,−1, 1, 0, 0)

Y 3,1, pure SU(3)1, ζw = C(1,−1, 1,−1, 1,−1)
(1, 1, 0, 0, 0, 0) W1 −y− y−1 ζw

(0, 0, 1, 1, 0, 0) W2 −y− y−1 ζw

(2, 2, 1, 1, 1, 1) W1 + KK −y− y−1 ζw ± ε(1,−2,−1,−2, 1, 4)
(1, 1, 2, 2, 1, 1) W2 + KK −y− y−1 ζw ± ε(1,−1,−1, 1, 0, 0)

Table 1. Refined Witten index of BPS quivers with no net magnetic or instanton charges, in the
weak coupling chamber. We took C � 1 and ε ∼ O(1). Quiver invariants IS are all assumed to
vanish except for elementary nodes.
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crucially. A universal routine for extracting L2 cohomology, from the more accessible
ordinary de Rham cohomology, or equivalently singular homology, was outlined [31], and
we performed the computation for several examples. One notable fact is that the resulting
refined indices are all symmetric Laurent polynomials, as is necessary from the field theory
viewpoint and contrary to the naive homology counting.

For higher KK states of these neutral vector multiplets, governed by non-Abelian quiv-
ers with rank vector (n, n, . . . , n), we show how the geometric cohomology approach fails
entirely, forcing us to consider the full gauged dynamics. Fortunately, multi-D0 wave-
functions in flat spacetime [27, 34, 35], well-known from the famed M-theory/type IIA
duality [39], constitute the difficult relative part of n > 1 BPS states, allowing us to
reconstruct the entire KK towers in the limit of small internal curvatures.

BPS states with electric charges do suffer heavy wall-crossings, and more so with
nonzero KK charges, but admit a universal notion of the weak coupling chamber. This
should be contrasted against magnetically charged BPS states which generically wall-cross
even in such a weak coupling regime [52, 53]. For these weak-coupling states, we relied on
the Coulombic approach [41] where the intricacies due to the fine-tuned superpotential are
expected to enter via the so-called quiver invariants [29, 45] that are input data for such
multi-center approach [43]. Assuming quiver invariants are all trivial except for the elemen-
tary node states in half-hypermultiplets, we numerically recovered the anticipated KK tow-
ers. The same method was also applied for the above neutral KK towers with equal success.

We have recovered BPS states that are immediately expected from the weak coupling
content of the D = 5 theories, and, as such, this note could be viewed as a first-principle
confirmation of the proposed D = 5 BPS quivers, with heavy emphasis on the field theory.
Some of issues and difficulties we pointed out for enumerative (refined) indices are relevant
whenever one considers theories with noncompact targets, such as local Calabi-Yau’s, so
the note can also be considered a cautionary lesson.

In particular, the Donaldson-Thomas (DT) invariants have been counted for certain
limited collections of D-branes or for simpler types of Calabi-Yau’s [59–61]. With non-
compact Calabi-Yau’s, one again finds the resulting motivic DT invariant ΩDT(y) not
necessarily symmetric under y→ y−1. On the other hand, recall how we reached at the L2

index I from such asymmetric twisted partition functions or from the vanilla cohomology
data, also asymmetric, in sections 2 and 3; a natural, if naïve, question is whether taking
the common part of ΩDT(y) and ΩDT(y−1) blindly might produce a sensible L2 index.

The motivic DT invariant for n D0’s can be read off from those for D6-nD0 in ref. [59],
via wall-crossing, and appears to have a universal form [41] as10

ΩDT(n D0’s; y) = −P (y)/y3 (6.1)

with the ordinary Poincaré polynomial P of the Calabi-Yau in question. Note the n-
independence, just as with I(n D0; y). Given how I for n = 1 was extracted from the
asymmetric Poincaré polynomial of the local Calabi-Yau’s in section 3, we arrive at, in
retrospect,

I(n D0’s; y) = ΩDT(n D0’s; y) ∩ ΩDT(n D0’s; y−1) , (6.2)
10We thank Boris Pioline for explaining these results.
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where we used ∩ as a shorthand for taking of the common part of the two Laurent poly-
nomials. It would be interesting to see if this simple pattern between L2 indices and the
DT invariants is applicable further.

A recent related work [50] studied ground states for D = 5 BPS quivers with a
numerical multi-center approach.11 The emphasis there was on magnetically charged
states in the so-called canonical chamber, however, as appropriate for the Vafa-Witten
invariants that stem from the worldvolume theory of D4 branes wrapped on 4-cycles. As
such, the question of neutral and electric KK towers was somewhat orthogonal to their
interests, and left ambiguous.

One useful byproduct encountered along the way, both here and in ref. [50], is how the
Coulombic approach was trustworthy. As long as IS = 0 continues to hold, the Coulombic
counting offers a routine that bypasses the complications due to the fine-tuned superpoten-
tial and the accompanying L2 condition. How far this can be pushed remains to be seen,
however.
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Coulombic multi-center code publicly available. We have relied on the routine for numerical
computations in section 5. We also thank Sung-Soo Kim and Boris Pioline for useful
discussions. This work is also supported by KIAS Individual Grants (PG076901 for ZD,
PG071301 and PG071302 for DG, PG005704 for PY) at Korea Institute for Advanced
Study.

A Poincaré polynomial and the symmetric product

The rank-n symmetric product of a manifoldM is, by definition,

SnM≡ (M× · · · ×M)/Sn , (A.1)

where we first take n-fold direct product ofM then mod out the symmetric group action
via permuting n elements. When the manifoldM has complex dimension one, this space is
known to be smooth. On the other hand, if the dimension is greater than one the latter has
singularities. In the math literature, there exists a beautiful formula which expresses the
cohomology of SnM in terms of those ofM. To state the result, recall that the Poincaré
polynomial PM(t) ofM is defined to be

PM(t) =
∑
i≥0

bi(M) · ti , (A.2)

with bi(M) the i-th Betti number ofM. Moreover, we encapsulate all the Poincaré poly-
nomials of SnM into another generating function ΠM,

ΠM(t; y) ≡
∑
n≥0

PSnM(t) · yn . (A.3)

11Other recent studies on D = 5 BPS spectra include refs. [32, 62–64].
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Then the formula takes the following form [33],

ΠM(t; y) = exp
(∑
r>1

PM(tr) y
r

r

)
, (A.4)

where we assigned PS0M(t) = 1 for convention.
The physical picture behind this formula is clear. The generating function ΠM in (A.4)

captures Bose-symmetrized cohomology out of full cohomology of product manifoldM⊗n,
where the latter is made by taking tensor products among cohomology elements of original
manifold M. For instance, the Poincaré polynomial of the second and third symmetric
product ofM is written in terms of PM as follows,

PS2M(t) = PM(t)2

2! + PM(t2)
2 ,

PS3M(t) = PM(t)3

3! + PM(t)PM(t2)
2 + PM(t3)

3 ,

(A.5)

which manifests the construction of two- and three-particle partition function of non-
interacting bosons out of its single-particle partition function.

This means that there are no fundamentally new states associated with the symmetric
orbifold. All states in the cohomology of SnM are constructed as tensor products of n num-
ber of states that belong to H?(M), only to be symmetrized via the bosonic statistics. This
is of course natural since the n-particle Hamiltonian would be merely a sum of n mutually
independent 1-particle Hamiltonian on SnM. It follows that the L2 property of these states
classified byH?(Mn/Sn) would follow immediately from that of states classified by H?(M).

The final piece of information for us is that

M = R3 ×M3 , (A.6)

and that the L2 property should be demanded over

Mn/R3 = R3(n−1) × (M3)n . (A.7)

However, any non-trivial element of H?(M), say for n = 1, would be uniformly supported
along R3 part of M. For n > 1, the bosonized wavefunction would immediately fail the
L2 condition, due to this uniform spread along R3 part ofM. As such, no L2 cohomology
HL2 can exist, except for n = 1.

B Internal cycles and fractional branes

This appendix summarizes the brane charge assignment to nodes in each BPS quiver. The
following geometries are considered: local P2 ,F0 ,F1 ' dP1 , dP2 , dP3 , Y

3,0 and Y 3,1 . For
basis choice of internal cycles, we refer readers to [15]. According to their convention, we
use [Ei] for four-cycles and [Ci] for two-cycles.

The corresponding BPS objects are monopole strings from M5 branes wrapped on the
four-cycles, elementary charged fields from M2 branes wrapped on the two-cycles, and D0
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N1

N2

N4

N3

Figure 9. The BPS quiver of F0 theory. Yellow nodes and the arrows among them constitute the
BPS quiver of D = 4 theory. The red node carries the KK monopole charge while the gray one
carries unit KK charge as well as negative of the KK monopole charge.

branes for [pt]. In particular, the scaling of the local Calabi-Yau is such that some of
two cycles wrapped by M2 branes also carry instanton charges. For all our examples with
simple gauge groups, there is only one such two-cycle, which we indicate in red.

We discuss local P2 theory first. The D0 probe quiver of this theory is drawn in figure 1.
Its fractional brane charges come as follows.

K[E1] = [E0] , K[E2] = −2[E0] + [C1] , K[E3] = [E0]− [C1] + [pt] . (B.1)

For F0 geometry, which engineers pure SU(2) gauge theory in D = 5, the dictionary is
as follows,

K[E1] = [E0] , K[E2] = −[E0] + [C1] ,
K[E3] = −[E0]− [C1] + [C2] , K[E4] = [E0]− [C2] + [pt] .

(B.2)

The probe quiver is given in figure 9 for readers’ convenience.
F1 ' dP1 geometry, which engineers SU(2)π theory, with a discrete theta angle asso-

ciated to π4(SU(2)) turned on, has the following map,

K[E1] = [E0] , K[E2] = −[E0] + [C1] ,
K[E3] = −[E0]− [C1] + [C2] , K[E4] = [E0]− [C2] + [pt] .

(B.3)

Its quiver is drawn in figure 10.
dP2 geometry renders the next map. This local CY engineers D = 5 SU(2) gauge

theory with Nf = 1 flavor. Its probe quiver is drawn in figure 7.

K[E1] = [E0] , K[E2] = −[E0] + [C3] + [C4] , K[E3] = −[C3] ,
K[E4] = −[E0]− [C3]− [C4] + [C5] ,
K[E5] = [E0] + [C3]− [C5] + [pt] .

(B.4)
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N1

N2

N4

N3

Figure 10. The BPS quiver of F1 theory.

N1

N2

N4N3

N5
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N6

Figure 11. The quiver diagram of dP3 theory.

dP3 theory makes the fifth table. This local CY engineers D = 5 SU(2) gauge theory
with Nf = 2 flavor.

K[E1] = [E0] , K[E2] = −[E0] + [C3] + [C4] ,
K[E3] = −[C1] , K[E4] = −[C3] ,
K[E5] = −[E0] + [C1] + [C2]− [C4] ,
K[E6] = [E0]− [C2] + [pt] .

(B.5)

Its quiver diagram is drawn in figure 11.
The next theory we discuss is Y 3,q family, which has D = 5 N = 1 SU(3) theory

description. The integer label q is interpreted as the Chern-Simons level of the gauge
theory. Two examples of the probe quiver are illustrated in figure 5 in section 1. Y 3,0

theory has the map between internal cycles and fractional branes as follows.

K[E1] = [E1] , K[E2] = −[E1] + [C3] ,
K[E3] = [E2] , K[E4] = −[E2] + [C7] ,
K[E5] = −[E1]− [E2]− [C3]− [C7] + [C9] ,
K[E6] = [E1] + [E2]− [C9] + [pt] .

(B.6)
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Another interesting theory of this class is Y 3,1, which engineers D = 5 SU(3)1 gauge theory.

K[E1] = [E1] , K[E2] = −[E1] + [C3] ,
K[E3] = [E2] , K[E4] = −[E2] + [C7] ,
K[E5] = −[E1]− [E2]− [C3]− [C7] + [C9] ,
K[E6] = [E1] + [E2]− [C9] + [pt] .

(B.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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