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1 Introduction

Searching for a method to describe various integrable models in a unified manner is a
significant subject in mathematical physics. A nice idea for such a way is to start from four-
dimensional gauge theories by following the works by Costello, Witten and Yamazaki [1–3].
In particular, two-dimensional (2D) integrable field theories can be derived from a four-
dimensional Chern-Simons (4D CS) theory

SCS[A] = i

4π

∫
M×C

ω ∧ Tr
[
A ∧

(
dA+ 2

3A ∧A
)]

(1.1)

equipped with a meromorphic one-form ω

ω ≡ ϕ(z) dz = dz , (1.2)

as proposed by Costello and Yamazaki [4]. The base space is M× C , where M is a 2D
manifold and C is a Riemann surface. Introducing 2D defects enables us to consider a
dimensionally reduced theory on M. These surface defects are classified into the order
defects and the disorder defects. The order defects are defined by introducing new degrees
of freedom such as free fermions and free bosons, which are coupled to the 4D bulk gauge
theory. For the disorder defects, we allow ω to have zeros on C, and the 2D theories lie on
the poles of ω.
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In the disorder defect case, ω has been identified with a twist function of the associated
integrable system [5]. Then Delduc, Lacroix, Magro and Vicedo has pushed this perspective
and elaborated the procedure to derive integrable field theories for disorder defects [6].
It succeeded in systematically deforming the boundary conditions for ω with (at most)
second-order poles. Following this procedure, a variety of integrable deformations have
been studied [6–13]. However, the order-defect case has not been elaborated so much at
least so far. For other related works on 4D CS theory, see [14–17].

Our puporse here is to discuss the order defect case by focusing upon an example.
According to the Hamiltonian analysis in [5], the models in this case should be ultralocal
(no δ′-term in the Poisson algebra). A famous example of the ultralocal model is the
Faddeev-Reshetikhin model [18]. We derive the FR model from a 4D CS theory with two
order surface defects. Then we present a trigonometric deformation of the FR model by
employing a boundary condition with an R-operator of Drinfeld-Jimbo type [19, 20]. This
is a generalization of the work [6] from the disorder surface defect case to the order one.

This paper is organized as follows. In section 2, we introduce the basics of the FR
model. In section 3, the FR model is derived from a 4D Chern-Simons theory with two
order surface defects. In section 4, we present a trigonometric deformation of the FR model
by employing an appropriate boundary condition with the R-operator of Drinfeld-Jimbo
type. Section 5 is devoted to conclusion and discussion.

Note: just before completing our draft, we have received an interesting work by Cau-
drelier, Stoppato and Vicedo [21], where the Zakharov-Mikhailov theory (which is a class
of ultralocal models) has been derived with order defects [21] based on the procedure pre-
sented in [22]. The FR model is included as a special example. But our derivation is
different from theirs and a trigonometric deformation of it has not been discussed there.

2 The Faddeev-Reshetikhin model

In this section, we shall give a brief review about the Faddeev-Reshetikhin (FR) model [18].

2.1 The classical action

The classical action of the FR model is given by

SFR[g(±)] = −
∫
M

Tr
(

Λg−1
(+)∂−g(+) + Λg−1

(−)∂+g(−) −
1

2ν g(+)Λg−1
(+)g(−)Λg−1

(−)

)
dσ+∧dσ− ,

(2.1)

where ν is a real parameter and g(±) are group elements of SU(2). HereM is 2D Minkowski
space with the coordinates xα = (x0, x1) = (τ, σ) and the metric ηαβ = diag(−1,+1). The
light-cone coordinates onM are defined as

σ± ≡ 1
2(τ ± σ). (2.2)

Here Λ is the Cartan generator of SU(2) taken as

Λ = T 3 , (2.3)
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where T a (a = 1, 2, 3) are the generators of SU(2) ,

T a = − i2σ
a , [T a, T b] = εabcT c , Tr

[
T aT b

]
= −1

2δ
ab . (2.4)

Here σa are the Pauli matrices, and the structure constants εabc are the antisymmetric
tensor normalized as ε123 = 1. The expression (2.1) of the action is given in [23]. The
FR model is closely related to the string sigma model with target space R × S3 , and the
low-energy effective action of (2.1) becomes the Landau-Lifshitz model as explained in [24].
It is easy to generalize the action (2.1) to the SU(N) case as discussed in [23], but we will
restrict ourselves to the SU(2) case for simplicity.

The equations of motion obtained from (2.1) are

∂∓J(±) = ∓ 1
2ν [J(+),J(−)] , (2.5)

where we have introduced

J(±) ≡ g(±) · Λ · g−1
(±) . (2.6)

The above equations of motion (2.5) can be rewritten as

∂+J(−) − ∂−J(+) −
1
ν

[J(+),J(−)] = 0 , ∂−J(+) + ∂+J(−) = 0 . (2.7)

Therefore, J(α) (α = ±) can be regarded as an on-shell conserved current. While these
equations (2.7) have the same forms with the ones derived from the SU(2) PCM, J(±)
satisfy additional relations

Tr
[
(J(±))n

]
= cn , (2.8)

where cn are constants. On the other hand, the conserved current of SU(2) PCM does not
satisfy this relation.

As is well known, the FR model (2.1) is classically integrable. Indeed, since the equa-
tions (2.7) take the same forms with those for the SU(2) PCM, we can easily construct a
Lax pair

L±(z) = ∓ 1
z ± ν

J(±) , (2.9)

where z ∈ CP 1 is a spectral parameter. The flatness condition of the Lax pair (2.9) is
equivalent to the equations of motion (2.7):

∂+L− − ∂−L+ + [L+,L−] = 1
z − ν

∂+J(−) + 1
z + ν

∂−J(+) −
1

z2 − ν2 [J(+),J(−)]

= ν

z2 − ν2

(
∂+J(−) − ∂−J(+) −

1
ν

[J(+),J(−)]
)

+ z

z2 − ν2

(
∂+J(−) + ∂−J(+)

)
. (2.10)
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As usual, we can obtain infinite (non-local) conserved charges from the monodromy matrix

T (z) = P exp
[
−
∫ ∞
−∞
dσLσ(σ; z)

]
, (2.11)

where the symbol P denotes the equal-time path ordering in terms of σ and the spatial
component of the Lax pair is defined as

Lσ(σ; z) ≡ 1
2(L+(σ; z)− L−(σ; z)) . (2.12)

2.2 The Poisson structure

The Poisson structure of the FR model is much simpler than that of the SU(2) PCM. In
fact, the Poisson brackets of J a(±)(σ) are given by

{J a(±)(σ1),J b(±)(σ2)} = εabc J c(±)(σ2)δ(σ1 − σ2) ,

{J a(+)(σ1),J b(−)(σ2)} = 0 .
(2.13)

These are ultra-local because the term with the derivative of the delta function does not
appear in the right hand sides of (2.13), in comparison to the SU(2) PCM. By using the
relations in (2.13), the Poisson bracket of the spatial component of the Lax pair can be
expressed as

{Lσ(σ1; z1),Lσ(σ2; z2)}P = [r(z1, z2),Lσ(σ1; z1)⊗ 1 + 1⊗ Lσ(σ2; z2)] δ(σ1 − σ2) , (2.14)

where the Poisson bracket in the tensorial notation is defined as

{A,B}P ≡ {A⊗ 1, 1⊗B} =
3∑

a=1
{Aa, Bb}T a ⊗ T b (2.15)

and r(z1, z2) ∈ g ⊗ g is the classical r-matrix associated with the integrable structure of
the system. The resulting classical r-matrix is given by

r(z1, z2) = −
∑3
a=1 T

a ⊗ T a

z1 − z2
= −ϕ(z1)−1 + ϕ(z2)−1

2(z1 − z2)

3∑
a=1

T a ⊗ T a , (2.16)

and the twist function ϕ(z) is just one like

ϕ(z) = 1 . (2.17)

The classical r-matrix (2.16) satisfies the classical Yang-Baxter equation (CYBE)

[r12(z1, z2), r23(z2, z3)] + [r12(z1, z2), r13(z1, z3)] + [r13(z1, z3), r23(z2, z3)] = 0 . (2.18)

Here we have introduced the tensorial notation

r12 = r ⊗ 1 , r23 = 1⊗ r , r13 = rab (T a ⊗ 1⊗ T b) , (2.19)

where rab are the components of the r-matrix

r = rab T
a ⊗ T b .

The relation (2.14) leads to the Poisson bracket of the monodromy matrices

{T (z1), T (z2)}P = [r(z1 − z2), (T (z1)⊗ 1)(1⊗ T (z2))] . (2.20)

This is the fundamental relation of the FR model.
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3 The FR model from a 4D CS theory

In this section, we shall derive the FR model from a 4D CS theory with two order surface
defects. The derivation here is mostly based on a generalization of the method in [6] for
the disorder case.

3.1 A 4D CS theory with two order surface defects

Let us consider a complexified SU(2) , GC = SU(2)C.1 The associated complexified Lie
algebra is gC ≡ su(2)C. Then, we consider a gC-valued gauge field A defined onM×CP 1.
The global holomorphic coordinate of CP 1 ≡ C∪{∞} is denoted by z. This CP 1 geometry
characterizes the rational class of integrable system.

We start from a 4D CS theory coupled with two order surface defects,

S[A,G(±)] = SCS[A]−
∫
M×{z+}

Tr
(
Λ · G−1

(+)D−G(+)
)
dσ+ ∧ dσ−

−
∫
M×{z−}

Tr
(
Λ · G−1

(−)D+G(−)
)
dσ+ ∧ dσ− , (3.1)

where the covariant derivatives D± are defined as

D±G(∓) ≡ (∂± +A±)G(∓) , A+ ≡ A+|z− , A− ≡ A−|z+ . (3.2)

The second and third terms of (3.1) describe the two order surface defects sitting at z± ∈ R ,
respectively. The first term is the 4D CS action given by

SCS[A] = i

4π

∫
M×CP 1

ω ∧ CS(A) , (3.3)

where CS(A) is the CS three-form defined as

CS(A) ≡ Tr
[
A ∧

(
dA+ 2

3A ∧A
)]

. (3.4)

Here, the meromorphic one-form ω is defined in terms of the twist function (2.17) as

ω ≡ ϕ(z) dz = dz , (3.5)

which has a double pole

p = {∞} . (3.6)

Note here that since ω is a (1,0)-form, the action (3.3) has an extra gauge symmetry

A 7→ A+ χdz . (3.7)

It enables us to take the gauge Az = 0 , i. e.,

A = Aσ dσ +Aτ dτ +Az̄ dz̄ . (3.8)
1For consistency with the previous section, we restrict our discussion here to the G = SU(2) case. But

the discussion in this section is valid for any semisimple Lie algebra.
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Equations of motion. Let us derive the equations of motion of the action (3.1). Taking
a variation of (3.1) with respect to A, we obtain

δS[A] = i

2π

∫
M×CP 1

ω ∧ Tr (δA ∧ F (A)) + i

4π

∫
M×CP 1

dω ∧ Tr (δA ∧A)

−
∫
M×CP 1

Tr(δA− · G(+)ΛG−1
(+) δ(z − z+)) dσ+ ∧ dσ− ∧ dz ∧ dz̄

−
∫
M×CP 1

Tr(δA+ · G(−)ΛG−1
(−) δ(z − z−)) dσ+ ∧ dσ− ∧ dz ∧ dz̄ , (3.9)

where F (A) ≡ dA+A∧A is the field strength of A. Here, we have assumed that A vanishes
at the boundary ofM× CP 1, and used the relation of the delta function∫

CP 1
δ(z − z±) dz ∧ dz̄ = 1 . (3.10)

Then, the bulk equations of motion are given by

F+− = 0 , (3.11)
ω Fz̄+ = −2πiG(+) · Λ · G−1

(+) δ(z − z+)dz , (3.12)

ω Fz̄− = 2πiG(−) · Λ · G−1
(−) δ(z − z−)dz . (3.13)

The second and third equations indicate that A has poles at z = z±. For later discussion,
we denote the set of the positions of the order surface defects as

z = {z±} . (3.14)

It is useful to rewrite the boundary equation of motion as

(res∞ω)εαβ Tr (Aα|∞ δAβ |∞) + (res∞ξ∞ω)εαβ∂ξ∞ Tr (Aα δAβ) |∞
=− 2εαβ∂ξ∞ Tr (Aα δAβ) |∞= 0 , (3.15)

where ξ∞ ≡ 1/z is the local coordinate around z =∞.

Gauge invariance. Let us see here the gauge invariance of the action (3.3) .
In analogy with the disorder defect case [6], it is natural to consider a gauge transfor-

mation

A 7→ Au ≡ u ·A · u−1 − duu−1 , G(±) 7→ Gu(±) ≡ u|z± · G(±) , (3.16)

where u is a GC-valued function defined on M× CP 1. Then, at the off-shell level, the
action (3.1) is transformed under the transformations (3.16) as

S[Au] = S[A] + i

4π

∫
M×CP 1

ω ∧ IWZ[u] + i

4π

∫
M×CP 1

ω ∧ d
(
Tr
(
u−1du ∧A

))
, (3.17)

where IWZ[u] is the Wess-Zumino (WZ) three-form defined as

IWZ[u] ≡ 1
3 Tr

(
u−1du ∧ u−1du ∧ u−1du

)
. (3.18)
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Thus the action (3.1) is invariant if the gauge parameter u satisfies

i

4π

∫
M×CP 1

ω ∧ IWZ[u] = 0 , u|p = 1 . (3.19)

These conditions are the same as in the disorder defect case. As a result, the transfor-
mations (3.16) can be regarded as a gauge transformation with u satisfying the condi-
tion (3.19) .

3.2 Lax form

Let us next introduce a Lax pair associated with the action (3.1).
As in the disorder defect case, a Lax pair is introduced by performing a formal gauge

transformation2 (3.16),

A = −dĝĝ−1 + ĝ · L · ĝ−1 , G(±) = ĝ(±) · g(±) , (3.20)

where ĝ , g(±) ∈ GC and ĝ(±) ≡ ĝ|z± . Here, we take a gauge choice such that Lz̄ = 0 , and
hence the one-form L takes the form

L = Lτdτ + Lσdσ = L+dσ
+ + L−dσ− . (3.21)

By substituting (3.21) into (3.12), (3.13), the bulk equations of motion become

∂+L− − ∂−L+ + [L+,L−] = 0 , (3.22)

ω ∂z̄L+ = −2πiJ(+) δ(z − z+)dz , (3.23)

ω ∂z̄L− = 2πiJ(−) δ(z − z−)dz . (3.24)

The currents J(±) are defined as

J(±) ≡ g(±) · Λ · g−1
(±) . (3.25)

As we will see later, these are going to be identified with the current (2.6). The boundary
equations of motion (3.23) and (3.24) indicate that the Lax pair is a gC-valued meromorphic
one-form with poles z = z±.

By substituting (3.20) into (3.1), the 4D action (3.1) can be written as

S[A] = i

4π

∫
M×CP 1

ω ∧
(
Tr(L ∧ dL) + d

(
Tr
(
ĝ−1dĝ ∧ L

))
+ IWZ[ĝ]

)
−
∫
M×{z+}

Tr
(
Λ · g−1

(+)(∂− + L−|z+)g(+)
)
dσ+ ∧ dσ−

−
∫
M×{z−}

Tr
(
Λ · g−1

(−)(∂+ + L+|z−)g(−)
)
dσ+ ∧ dσ− . (3.26)

Note that the expression (3.26) is still a 4D action. In the next subsection, we will dimen-
sionally reduce the 4D action (3.26) to the corresponding 2D action by imposing conditions
on ĝ.

2For the terminology “formal” , see [6, 7].
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3.3 From 4D to 2D via the archipelago conditions

In order to obtain the associated 2D integrable model, it is necessary to impose the
archipelago conditions [6] on ĝ as in the disorder defect case. The archipelago condi-
tions for ĝ are defined as follows: there exist open disks Vx, Ux for each x ∈ p such that
x ⊂ Vx ⊂ Ux and

i) Ux ∩ Uy = φ if x 6= y for all x, y ∈ p ,

ii) ĝ = 1 outside M × ∪x∈pUx ,

iii) ĝ|M×Ux depends only on τ , σ and the radial coordinate |ξx| where ξx is the local
holomorphic coordinate,

iv) ĝ|M×Vx depends only on τ and σ , that is, ĝx ≡ ĝM×Vx = ĝ|M×{x}.

The gauge symmetry (3.16) is utilized for ĝ to satisfy the archipelago conditions i), ii),
but we must choose an appropriate boundary condition (such as (3.34), (4.22)) for the
conditions iii) and iv) to be satisfied. The second and third terms in the first line of (3.26)
take the same form as the 4D CS action in the disorder defect case (for example, see
(2.14) in [6]). Hence, by following the discussion in [6], we can simplify the 4D action (3.3)
as follows:

S[g(±)] = −1
4
∑
x∈p

∫
M

Tr (resx(ϕL) ∧ ĝ−1
x dĝx)

− 1
4
∑
x∈p

∫
M×[0,Rx]

(resx ω) ∧ IWZ[ĝx]

+ i

4π

∫
M×CP 1

ω ∧ Tr(L ∧ dL)

−
∫
M

Tr
(
Λ g−1

(+)∂−g(+) + Λ g−1
(−)∂+g(−) + J(+)L−|z+ + J(−)L+|z−

)
dσ+∧dσ− ,

= + i

4π

∫
M×CP 1

ω ∧ Tr(L ∧ dL)

−
∫
M

Tr
(
Λ g−1

(+)∂−g(+) + Λ g−1
(−)∂+g(−) + J(+)L−|z+ + J(−)L+|z−

)
dσ+∧dσ− ,

(3.27)
where in the second equality we have used the relations

res∞ (ϕL) = 0 , res∞ ω = 0 . (3.28)

The integrand of the first term in (3.27) is apparently a four-form, but as we will see
in (3.39) it is localized on the defects atM×{z±} because dL in the integrand generates
delta functions due to the bulk equations of motion (3.23), (3.24).

Reality condition. Let us now discuss the reality condition to ensure that the 4D ac-
tion (3.1) is real. An involution µt : CP 1 → CP 1 is defined by complex conjugation z 7→ z̄.
Let τ : gC → gC be an anti-linear involution, and then the set of the fixed points under τ
defines a real subalgebra g of gC. The involutive automorphism τ satisfies

Tr(B ∧ C) = Tr(τB ∧ τC) , ∀B,C ∈ gC . (3.29)

The associated operation on the Lie group GC is denoted by τ̃ : GC → GC.

– 8 –
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The reality condition is imposed through these involutions as

ω̄ = µ∗tω , τA = µ∗tA , τ̃G(±) = µ∗tG(±) . (3.30)

One can see that the action (3.1) is real under the condition (3.30):

S[A,G(±)] = − i

4π

∫
M×CP 1

ω̄ ∧ CS(τA)

−
∫
M×{z+}

Tr
(
Λ · τ̃G−1

(+)(∂− + τA−|z+)τ̃G(+)
)
dσ+ ∧ dσ−

−
∫
M×{z−}

Tr
(
Λ · τ̃G−1

(−)(∂+ + τA+|z−)τ̃G(−)
)
dσ+ ∧ dσ−

= − i

4π

∫
M×CP 1

µ∗tω ∧ CS(µ∗tA)

−
∫
M×{z+}

Tr
(
Λ · µ∗tG−1

(+)(∂− + µ∗tA−|z+)µ∗tG(+)
)
dσ+ ∧ dσ−

−
∫
M×{z−}

Tr
(
Λ · µ∗tG−1

(−)(∂+ + µ∗tA+|z−)µ∗tG(−)
)
dσ+ ∧ dσ−

= − i

4π

∫
M×µtCP 1

ω ∧ CS(A)

−
∫
M×µt{z+}

Tr
(
Λ · G−1

(+)(∂− +A−|z+)G(+)
)
dσ+ ∧ dσ−

−
∫
M×µt{z−}

Tr
(
Λ · G−1

(−)(∂+ +A+|z−)G(−)
)
dσ+ ∧ dσ−

=S[A,G(±)] . (3.31)

Note here that µt(z±) = z± and Λ ∈ g. From the relation (3.20), the reality condition is
also expressed as

τ̃ ĝ(±) = µ∗t ĝ(±) , τ̃ g(±) = µ∗tg(±) , τL = µ∗tL . (3.32)

2D gauge symmetry. The 2D action (3.27) has the “2D gauge symmetry”. One can
perform the 2D gauge transformations keeping A and G(±) unchanged and preserving the
archipelago conditions imposed on ĝ. Under the transformation, L , ĝ(±) and g(±) are
transformed as

L 7→ h−1dh+ h−1 · L · h , ĝ(±) 7→ ĝ(±) · h , g(±) 7→ h−1 · g(±) , (3.33)

where h is a smooth g-valued function depending on (τ, σ) ∈ M. In contrast to the 4D
gauge symmetry (3.16), the 2D gauge symmetry (3.33) is considered as the redundancy in
defining ĝ without altering A and G(±).

2D effective action. In order to evaluate (3.27), let us determine the explicit expression
of the Lax form.

The first is to solve the boundary equation of motion (3.15) with the following
condition:

A|∞= 0 . (3.34)

This is a trivial solution to the boundary equation of motion.
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As we saw in section 3.2, L± have poles at z = z± , respectively. Therefore, it is natural
to suppose the following form of L±:

L =
(
U+ −

J(+)
z − z+

)
dσ+ +

(
U− +

J(−)
z − z−

)
dσ− , (3.35)

where we have used a formula for delta functions

δ(z − z±) = 1
2πi

∂

∂z̄

( 1
z − z±

)
. (3.36)

Here U± are undetermined functions on M and take values in g due to the reality con-
dition (3.32). The 2D gauge symmetry (3.33) allows us to set an archipelago type field
ĝ like

ĝ|∞= 1 . (3.37)

Since the boundary condition (3.34) indicates that U± = 0 , the Lax form is determined as

L = −
J(+)
z − z+

dσ+ +
J(−)
z − z−

dσ− . (3.38)

Finally, let us evaluate the 4D action (3.27). By using the expression (3.38), the first
term in (3.27) can be rewritten as

− i

4π

∫
M×CP 1

ω ∧ Tr(L ∧ dL)

= 1
2

∫
M×CP 1

Tr
[
L+

(
J(−)δ(z − z−)

)]
dz ∧ dσ+ ∧ dz̄ ∧ dσ−

+ Tr
[
L−

(
−J(+)δ(z − z+)

)]
dz ∧ dσ− ∧ dz̄ ∧ dσ+

= 1
2

∫
M

Tr
(
J(−)L+|z− + J(+)L−|z+

)
dσ+ ∧ dσ− . (3.39)

Then, the 2D effective action is evaluated as

S2D[g(±)] = −
∫
M

Tr
(

Λ g−1
(+)∂−g(+) + Λ g−1

(−)∂+g(−)

+ 1
2J(+)L−

∣∣
z+

+ 1
2J(−)L+

∣∣
z−

)
dσ+ ∧ dσ− (3.40)

= −
∫
M

Tr
(

Λ g−1
(+)∂−g(+) + Λ g−1

(−)∂+g(−) + 1
(z+ − z−)J(+)J(−)

)
dσ+ ∧ dσ− .

The above expressions (3.38), (3.40) agree with (2.9) and (2.1) if we take z+ = −ν
and z− = ν.
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4 A trigonometric-deformation of the FR model

In this section, let us consider a trigonometric-deformation of the FR model.

4.1 A twist function

For this purpose, we replace the rational classical r-matrix (2.16) with the su(2) trigono-
metric r-matrix,3

rtrig.(λ1, λ2) = iη T+ ⊗ T−

1− eiη (λ1−λ2) −
iη T− ⊗ T+

1− e−iη (λ1−λ2) −
η

2 cot
(
η(λ1 − λ2)

2

)
T 3 ⊗ T 3 , (4.1)

where we have introduced a deformation parameter η ∈ R and

T± = 1√
2

(T 1 ± iT 2) . (4.2)

Note that the classical r-matrix (4.1) satisfies the CYBE (2.18). The spectral parameter
λ takes a value on a cylinder (rather than CP 1) because the classical r-matrix (4.1) is of
trigonometric type. Then the fundamental region of λ is represented by

C/Z =
{
λ ∈ C

∣∣∣∣ − π

2η < Reλ < 3π
2η

}
. (4.3)

By taking a limit η → 0 , the classical r-matrix (4.1) reduces to the rational one (2.16).
Note that the r-matrix (4.1) is skew-symmetric in terms of spectral parameters and its
components,

rtrig.ab(λ1, λ2) = −rtrig.ba(λ2, λ1) . (4.4)

Here we have defined the components of the r-matrix as

rtrig.(λ1, λ2) ≡ rtrig.,ab(λ1, λ2)T a ⊗ T b . (4.5)

Since the associated twist function is obtained as a measure of the asymmetry of a given
classical r-matrix, the (1, 0)-form ω should be taken as

ω = ϕtrig.(λ) dλ = dλ . (4.6)

A relationship with Costello and Yamazaki. It is instructive to see that the
choice (4.6) of ω is consistent with the expression in [4].

First, let us move from the cylinder C/Z to a plane C× = C\{0} via the map

z = eiη λ . (4.7)

Note that in the z-coordinate system, the trigonometric r-matrix (4.1) becomes

rtrig.(z1, z2) = iη

1− z1/z2
T+ ⊗ T− − iη

1− z2/z1
T− ⊗ T+ − iη

2
z1 + z2
z1 − z2

T 3 ⊗ T 3 . (4.8)

3For the sl(2) case, see [2, 4].
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This is related to the rational one (2.16) through the relation

rtrig.(z1, z2) ≡
ϕ−1

trig.(z1) + ϕ−1
trig.(z2)

2 r(z1, z2) . (4.9)

Then, the (1, 0)-form ω on C× takes the form

ω = ϕtrig.(z) dz = dz

iη z
, (4.10)

and has two simple poles

p = {0,∞} . (4.11)

The form of ω in (4.10) is the same as in the one in [4].

The reality condition of ω. An involution µt may be defined as follows:

µt : λ→ λ ⇐⇒ z → 1
z
. (4.12)

In the λ coordinate, the reality condition is trivial:

ω = dλ = µtω . (4.13)

4.2 A boundary condition

In the following, we will consider the 4D CS action (3.1) with the (1,0)-form (4.10). We
obtain the same bulk equations of motion (3.11), (3.12) and (3.13), but now ω is replaced
by the one in (4.10). Note that in this section, the order surface defects lie on z = z± such
that z± = 1/z̄± since the involution µt is defined as (4.12).

The (1, 0)-form ω has the two simple poles (4.11). Hence, the boundary equations of
motion are

(res0 ω)εαβ Tr (Aα|0 δAβ |0) + (res∞ ω)εαβ Tr (Aα|∞ δAβ |∞)

= εαβ〈〈(Aα|0, Aα|∞) , δ (Aβ |0, Aβ |∞)〉〉 = 0 , (4.14)

where the bilinear form is defined as

〈〈
(
x, x′

)
,
(
y, y′

)
〉〉 ≡ 1

iη

(
Tr
(
x · x′

)
− Tr

(
y · y′

))
. (4.15)

As shown in [7], the boundary condition (4.14) can be solved by assigning the following
Drinfeld double to the bilinear form

h ≡ gδ ⊕ gR , (4.16)

where gδ and gR are defined as

gR ≡ {((R− i)x, (R+ i)x)|x ∈ g} , (4.17)
gδ ≡ {(x, x)|x ∈ g} . (4.18)
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Here, R : g → g is a skew-symmetric R-operator satisfying the modified classical Yang-
Baxter equation (mCYBE)

[R(x), R(y)]−R ([R(x), y] + [x,R(y)]) = [x, y] (x, y ∈ g, R ∈ End g) , (4.19)

and

Tr (R(x)y) = −Tr (xR(y)) , ∀x, y ∈ g . (4.20)

Here, let us take the R-operator of the Drinfeld-Jimbo type [19, 20] such that

R(T±) = ∓iT±, R(T 3) = 0 . (4.21)

We can easily check that the R-operator satisfies the mCYBE (4.19).
As a result, Aα is supposed to satisfy

(Aα|0, Aα|∞) ∈ gR . (4.22)

4.3 The associated Lax form and 2D action

Let us next derive the associated Lax form and 2D action.
As in the rational case, we can easily see that the associated Lax form satisfies the

equations (3.22), (3.23) and (3.24) though ω is now replaced with (4.10). Hence, an ansatz
of L± is taken as

L =
(
U+ −

iη z J(+)
z − z+

)
dσ+ +

(
U− +

iη z J(−)
z − z−

)
dσ− , (4.23)

where U± are undetermined smooth functions M → gC. The reality condition is again
realized as in (3.32) .

In order to obtain the expression of U± , we will take boundary conditions as in (4.22).
Then, the constraints on A± are given by

(R− i)A±|0= (R+ i)A±|∞ . (4.24)

Since the choice of the Drinfeld double (4.16) enable us to take ĝ|z=0∈ G, one can take
ĝ|z=0= 1 by using the 2D gauge invariance under g → g · h (h ∈ G). Furthermore, the
condition τ̃ ĝ = µ∗t ĝ indicates τ̃(ĝ|z=0) = µ∗t (ĝ|z=0) = ĝ|z=∞. Then by using the gauge
symmetry, we can take

ĝ|z=0= ĝ|z=∞= 1 . (4.25)

Then, the constraints (4.24) become

(R− i)U+ = (R+ i)(U+ − iηJ(+)) , (R− i)U− = (R+ i)(U− + iηJ(−)) . (4.26)

By solving the equations, we obtain

U± = ±η2(R+ i)J(±) . (4.27)
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Therefore, the resulting Lax form is given by

L =
(
η

2(R+ i)− iη z

z − z+

)
J(+)dσ

+ +
(
−η2(R+ i) + iη z

z − z−

)
J(−)dσ

− , (4.28)

which indeed satisfies the reality condition (3.32):

τL =
(
η

2(R− i)− −iη z̄
z̄ − z̄+

)
τJ(+)dσ

+ +
(
−η2(R− i) + −iη z̄

z̄ − z̄−

)
τJ(−)dσ

−

=
(
η

2(R− i)− −iη z̄
z̄ − z−1

+

)
J(+)dσ

+ +
(
−η2(R− i) + −iη z̄

z̄ − z−1
−

)
J(−)dσ

−

=µ∗t

[(
η

2(R− i)− −iη z−1

z−1 − z−1
+

)
J(+)dσ

+ +
(
−η2(R− i) + −iη z−1

z−1 − z−1
−

)
J(−)dσ

−
]

=µ∗t

[(
η

2(R+ i)− iη z

z − z+

)
J(+)dσ

+ +
(
−η2(R+ i) + iη z

z − z−

)
J(−)dσ

−
]

=µ∗tL . (4.29)

Here we have used the fact that J(±) take values in the real Lie algebra g , and z± ∈ C×

satisfy the condition z± = 1/z̄±. More interestingly, the Lax form (4.28) can be expressed
in terms of the trigonometric r-matrix (4.8). To see this, let us expand the current J(±) as

J(±) = J −(±)T
+ + J +

(±)T
− + J 3

(±)T
3 , (4.30)

and then the Lax pair (4.28) can be rewritten as

L =
(
− iη z+
z − z+

J −(+)T
+ − iη z

z − z+
J +

(+)T
− + iη

2
z + z+
z − z+

J 3
(+)T

3
)
dσ+

+
(
iη z−
z − z−

J −(−)T
+ + iη z

z − z−
J +

(−)T
− − iη

2
z + z−
z − z−

J 3
(−)T

3
)
dσ−

=
( ∑
a=±,3

rtrig.,ab(z, z+)J b(+)T
a

)
dσ+ +

(
−

∑
a=±,3

rtrig.,ab(z, z−)J b(−)T
a

)
dσ− . (4.31)

This expression (4.31) takes a similar form presented in [4].
Finally, let us derive the associated 2D action. As in the rational case, we can use the

same formula (3.39) though CP 1 in (3.39) is replaced with C×. As a result, the resulting
2D action is given by

S2D[g(±)] = −
∫
M

Tr
(

Λ g−1
(+)∂−g(+) + Λ g−1

(−)∂+g(−)

+ 1
2J(+)L−

∣∣
z+

+ 1
2J(−)L+

∣∣
z−

)
dσ+ ∧ dσ−

= −
∫
M

Tr
(

Λ g−1
(+)∂−g(+) + Λ g−1

(−)∂+g(−)

+ iη

2
z+ + z−
z+ − z−

J(+)J(−) −
η

2J(+)R(J(−))
)
dσ+ ∧ dσ−

= −
∫
M

Tr
(

Λ g−1
(+)∂−g(+) + Λ g−1

(−)∂+g(−)

+
η J(+)J(−)

2 tan
(
η(λ+−λ−)

2

) − η

2J(+)R(J(−))
)
dσ+ ∧ dσ− , (4.32)
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where we have parametrized the positions z± ∈ C× of the defects as

z± = exp(iη λ±) , λ± ∈ R . (4.33)

The deformed action (4.32) can also be expressed in terms of the trigonometric r-matrix,

S2D[g(±)] = −
∫
M

(
Tr
(
Λ g−1

(+)∂−g(+) + Λ g−1
(−)∂+g(−)

)
+ rtrig.,ab(λ+, λ−)J a(−)J

b
(+)

)
dσ+ ∧ dσ− . (4.34)

Note that by taking a limit η → 0 , the 2D action (4.32) reduces to the undeformed
one (3.40).

5 Conclusion and discussion

In this paper, we have derived the FR model from a 4D CS theory with two order sur-
face defects. Then we have presented a trigonometric deformation of the FR model by
employing the boundary condition with the R-operator of Drinfeld-Jimbo type. This is a
generalization of the work [6] from the disorder surface defect case to the order one.

There are open questions. It is well known that a lattice regularized model exists
for the FR model [18]. The integrable lattice model should be realized by considering
the expectation value of Wilson lines in 4D CS theory [2, 3]. It would be important to
understand how the continuum limit of the expectation value gives the 4D CS action (3.1)
associated with the FR model, as described in figure 1 of [4]. In relation to this issue, it
would also be interesting to see how the quantum inverse scattering method can be applied
at the level of 4D CS theory.

Moreover, as discussed in [25], integrable lattice models can be realized by considering
brane configurations. Hence, the lattice model associated with the FR model should also
be described by a certain brane configuration. In particular, it would be interesting to
understand the brane description of the FR model by taking its continuous limit.
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