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1 Introduction

Grand Unified Theories (GUTs) such as SU(5), SO(10) (more precisely Spin(10)), and
E6 predict the existence of a topologically stable [1, 2] superheavy magnetic monopole of
mass ∼ MX/αX , where αX denotes the gauge fine structure constant at the unified scale
MX ∼ 1016 GeV. This monopole carries a single quantum of Dirac magnetic charge as
well as color magnetic charge, which is related to the fact that the unbroken subgroup is
SU(3)C ⊗U(1)em/Z3 [3, 4]. In non-supersymmetric SO(10) and E6 models, the symmetry
breaking to the Standard Model (SM) gauge group proceeds via one or more intermediate
steps which has important consequences for monopole masses and charges. For instance, the
breaking of SO(10) via SU(2)L⊗ SU(2)R⊗ SU(4)C [5] yields intermediate mass monopoles
that carry two quanta of Dirac magnetic charge [6, 7]. This is an important difference
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from SU(5) because the intermediate mass monopole in SO(10) with two units of magnetic
charge is a few orders of magnitude lighter than the SO(10) monopole carrying one unit
of charge which is again superheavy. Clearly, this cannot happen in SU(5). Similarly, in
E6 if the breaking occurs via SU(3)3 we find intermediate mass monopoles carrying three
quanta of Dirac charge [7–12]. The discovery of primordial monopoles with intermediate
mass scales would have profound consequences for particle physics and cosmology.

The discovery of topologically stable intermediate scale cosmic strings would also have
critical ramifications for the physics of the early universe and particle physics extensions
of the SM. The first and most well known example of topologically stable cosmic strings
appearing in GUTs is provided by SO(10) [13]. If the breaking of SO(10) to the SM gauge
group is carried out using scalar vacuum expectation values (VEVs) in the tensor repre-
sentations, a Z2 symmetry remains unbroken which implies the presence of topologically
stable cosmic strings. Note that a direct breaking of SO(10) to the SM gauge group would
yield GUT scale cosmic strings which is excluded by the WMAP and Planck satellite
data [14, 15] as well as the limits from pulsar timing arrays (PTA) [16–20]. (For recent
developments see refs. [21–24]). In other words, we expect the breaking to proceed via
intermediate steps which is favored for non-supersymmetric SO(10) for other phenomeno-
logical reasons. Thus, we are interested in exploring intermediate scale cosmic strings that
appear in SO(10) and E6 models.

In this paper, we consider two symmetry breaking chains for each of the non-
supersymmetric SO(10) and E6 GUTs with two intermediate steps. Superheavy magnetic
monopoles with one unit of Dirac magnetic charge are predicted in all cases along with
intermediate scale monopoles with two units or three units of Dirac magnetic charge in
SO(10) or E6, respectively. Intermediate scale cosmic strings appear in one of the SO(10)
and one of the E6 models. The GUT and intermediate scales are determined so that all the
low energy data and the constraint from proton decay are satisfied. We merge these models
with inflation driven by a Coleman-Weinberg potential of a scalar gauge singlet [25, 26]
and further restrict the model parameters by requiring that the data for all the inflation-
ary observables are reproduced. Studying carefully the phase transitions during which
the GUT and intermediate symmetry breakings take place, we discuss the generation and
subsequent evolution of magnetic monopoles and cosmic strings as well as the emission of
gravity waves from the decaying strings.

The paper is organized as follows. In section 2, we summarize the important features
of the renormalization group equations (RGEs) for the gauge coupling constants. This
section includes a brief discussion on beta functions, Abelian mixing, and the matching
conditions along with the threshold corrections. In section 3, we describe the details of the
symmetry breaking chains for the GUT models and the emergence of topological defects at
different stages of symmetry breaking. We also present in this section and in appendix A
the beta coefficients associated with each of these breaking scenarios. In section 4, we
perform a goodness of fit test to estimate the solutions of RGEs for each case in terms of
the unification and intermediate scales which are compatible with the low energy data and
the proton lifetime constraint. We discuss in section 5 the inflationary dynamics with a
Coleman-Weinberg potential where the inflaton is a scalar GUT singlet [25], and determine

– 2 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

the values of the model parameters that yield successful inflation. In section 6, we analyze
the phase transitions during inflation which are associated with the unification and the in-
termediate scales, and in section 7, the monopole production during the first intermediate
phase transition is discussed. The generation of cosmic strings during the second inter-
mediate phase transition and their subsequent evolution is presented in section 8 together
with the emission of gravity waves. In section 9, we extend our analysis to the case that
the second intermediate phase transition takes place after the end of inflation, i.e. either
during inflaton oscillations or after reheating. In section 10, we summarize our conclusions.

2 Renormalization Group Equations (RGEs) for gauge couplings

The RGEs for the gauge couplings gi (i = 1, 2, . . . , n) corresponding to a generic product
gauge group of the form G ≡ G1⊗G2⊗ . . .⊗Gn can be written as (up to two loop) [27–33]:

µ
dgi
dµ

= 1
16π2 big

3
i + 1

(16π2)2

n∑
j=1

bijg
3
i g

2
j , (2.1)

where µ is the renormalization scale parameter (not to be confused with the string ten-
sion) and

bi = 4κ
3 T (Fi)DFi + 1

3ηT (Si)DSi −
11
3 C2(Gi),

bij =
[(20

3 C2(Gi) + 4C2(Fi)
)
κT (Fi)DFi

+
(2

3C2(Gi) + 4C2(Si)
)
ηT (Si)DSi −

34
3 (C2(Gi))2

]
δij

+4 (κC2(Fj)T (Fi)DFi + ηC2(Sj)T (Si)DSi) (2.2)

are the one- and two-loop β-coefficients respectively with κ = 1 (1/2) for Dirac (Weyl)
fermions and η = 1 (1/2) for complex (real) scalars. Fi (Si) denote the fermion (scalar)
representations transforming under Gi, T (Ri) is the normalization of the representation
Ri,1 C2(Gi) is the quadratic Casimir operator for the group Gi, and C2(Ri) is the quadratic
Casimir operator for the representation Ri. Also, DRi = ∏

j 6=iD(Rj) with D(Ri) being the
dimension of the ith representation in the multiplet R = (R1, R2, . . . , Rn).

The multiple occurrence of Abelian groups leads to the mixing of their gauge cou-
plings even at the one-loop level [34–41]. In this case, instead of treating the individual
evolution of each Abelian gauge coupling, we need to consider the complete Abelian gauge
coupling matrix, e.g. for two Abelian gauge groups U(1)1 ⊗ U(1)2 we should consider the
following matrix

g =
(
g11 g12
g21 g22

)
, (2.3)

1It is defined as Tr
(
T aT b

)
= T (R)δab = 2`Rδ

ab, with T a being the generators of the group, `R is the
Dynkin index corresponding to the representation R, and a, b = 1, 2, · · · , dG , where dG is the dimension of
the group.
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and the RGEs of the individual matrix elements gcb with c, b = 1, 2 can be expressed as:

µ
dgcb
dµ

= βabgca, (2.4)

where
βab = 1

(4π)2 gia

(
β1L
ij + 1

(4π)2β
2L
ij

)
gjb. (2.5)

The one-loop beta coefficients are

β1L
ij = b̃ij = 4

3κq
F
i q

F
j D(F ) + 1

3ηq
S
i q

S
j D(S), (2.6)

where qF (S)
i is the Abelian U(1)i charge of the fermion (scalar) multiplet F (S). Similarly,

the two-loop beta coefficients are

β2L
ij = b̃ij,klgkmglm = b̃ij,kl(gk1gl1 + gk2gl2), (2.7)

with
b̃ij,kl = 4

(
κqFi q

F
j q

F
k q

F
l D(F ) + ηqSi q

S
j q

S
k q

S
l D(S)

)
. (2.8)

It is interesting to note that at the two-loop level, the RGEs of the non-Abelian gauge
couplings gr receive additional contributions due to the Abelian gauge coupling mixing.
The additional contributions are of the following forms:

µ
dgr
dµ
⊃ 1

(4π)4 bij,rg
3
rgikgjk and β2loop

ij ⊃ b̃ij,rg2
r , (2.9)

where

bij,r = 4
(
κqFi q

F
j T (Fr)DFr + ηqSi q

S
j T (Sr)DSr

)
,

b̃ij,r = 4
(
κqFi q

F
j C2(Fr) + ηqSi q

S
j C2(Sr)

)
. (2.10)

If a non-Abelian parent symmetry GP is spontaneously broken to another non-Abelian
daughter symmetry GD, the appropriate matching condition at the scale µ along with the
one-loop threshold correction ΛD(µ) is given as [38, 42–46]:

1
αD(µ) −

C2(GD)
12π =

( 1
αP (µ) −

C2(GP )
12π

)
− ΛD(µ)

12π , (2.11)

where

ΛD(µ) = −21 Tr
(
t2DV ln MV

µ

)
+ 2 η Tr

(
t2DS ln MS

µ

)
+ 8 κ Tr

(
t2DF ln MF

µ

)
, (2.12)

and αi = g2
i /4π. Here, tDψ denotes the generators in the superheavy representation of

GD with ψ ∈ {V, S, F} referring to the vector, scalar, and fermion fields respectively with
masses Mψ. The above matching condition is modified if the daughter symmetry is an
Abelian U(1)D and originates from multiple non-Abelian parent symmetries GPi :

1
αD(µ) =

∑
i

ω2
i

( 1
αPi(µ) −

C2(GPi)
12π

)
− ΛD(µ)

12π , (2.13)

where the ωi’s are the weight factors of the Abelian mixing with ∑i ω
2
i = 1.
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SO(10) G2L1R3C1B−L
G2L1Y 3C

G3C1Q

〈(2,− 1

Figure 1. SO(10) breaking to the SM via two intermediate steps. The VEVs causing the successive
symmetry breakings and the Higgs fields contributing to the RGEs at each stage are indicated. The
upper (red) arrows correspond to the model in section 3.1, and the lower (blue) arrows correspond
to the model in section 3.2. The dashed arrows in the middle are common to both models.

3 Symmetry breaking and topological defects

In this paper we study two non-supersymmetric unified theories based on each of the gauge
groups SO(10) and E6 with specific symmetry breaking chains. Regarding to notation, we
denote a gauge group of the form SU(m)A ⊗ SU(n)B ⊗U(1)C as GmAnB1C . Any represen-
tation under this product group is expressed as (p, q, r), which implies that it transforms
as p- and q-dimensional representation under SU(m)A and SU(n)B respectively carrying
U(1)C charge r. For example, G2L2R4C stands for SU(2)L ⊗ SU(2)R ⊗ SU(4)C and the
representation depicted as (1, 3, 15) transforms as a singlet under SU(2)L, a triplet under
SU(2)R, and as the adjoint representation under SU(4)C . We will employ, throughout the
paper, the so-called extended survival hypothesis which states that, at each stage of sym-
metry breaking, the only Higgs fields which do not decouple are the ones required for the
subsequent symmetry breakings.

SO(10) unification through two intermediate steps

The two symmetry breaking chains of SO(10) considered in this paper are summarized
in figure 1 together with the VEVs causing the breakings and the Higgs representations
contributing to the RGEs at each stage. We first discuss the scenario where the SO(10) is
broken to G2L2R4C using the 210-plet VEV along its (1, 1, 1) component, which also breaks
D-parity [47] that interchanges the representations of SU(2)L and SU(2)R and conjugates
that of SU(4)C . So the unbroken group is denoted as G2L2R4C /D. To break SU(4)C to
G3C1B−L and SU(2)R to U(1)R, we employ the component (1, 3, 15) ⊂ 210, which produces
SU(4)C and SU(2)R monopoles [7]. The breaking of U(1)B−L⊗U(1)R to U(1)Y is achieved
by a VEV either along the component (1,−1

2 , 1, 1) ⊂ (1, 2, 4̄) from a 16-plet of SO(10), or
the component (1, 1, 1,−2) ⊂ (1, 3, 10) from a 126-plet. These are two physically distinct
cases [7]. In the former case, the SU(4)C and SU(2)R monopoles, if not inflated away,
eventually come together to form a double charged monopole and no cosmic strings are
produced. In the latter case, however, in addition to the monopoles, we have necklaces
with SU(4)C and SU(2)R monopoles and antimonopoles as well as stable Z2 cosmic strings.
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SO(10) G2L2R4C /D G2L1R3C 1B−L
G2L1Y 3C

10 (2, 2, 1) (2,− 1
2 , 1, 0) (2,− 1

2 , 1)
16 (1, 2, 4̄) (1,− 1

2 , 1, 1)
210 (1, 3, 15)

Table 1. Higgs representations that contribute to the RGEs at each stage of the symmetry breaking
for the SO(10) model in section 3.1.

For a recent study with a single intermediate step unification with Abelian mixing see
refs. [39, 41, 48].

In each of these cases the Abelian gauge coupling mixing is accounted for, as discussed
in the previous section, by introducing a 2 × 2 gauge coupling matrix in the (R,B − L ≡
X) space:

G =
(
gRR gRX
gXR gXX

)
. (3.1)

At the breaking scales MI and MII , the inverse squared gauge couplings ω(GGT)−1ωT are
suitably projected to match with the parent or daughter inverse squared gauge couplings
respectively. At MI , we use the projectors ω = (1, 0) and ω = (0, 1) to match the inverse
squared gauge couplings with 1/g2

2R and 1/g2
4C respectively, and, at MII , we take ω =

(
√

3/5,
√

2/5) so that the inverse squared gauge couplings are projected on the hypercharge
inverse squared gauge coupling. We consider the off-diagonal couplings

gRX = gXR = g and gXX/gRR = r (3.2)

as free parameters in our subsequent analysis. Let us now discuss the two different breaking
patterns of SO(10) in turn.

3.1 SO(10) without strings or necklaces

In the SO(10) case with no strings or necklaces, the breaking of SO(10) to G2L2R4C /D is
achieved by the VEV of the component (1, 1, 1) ⊂ 210. At this level, the component
(1, 3, 15) ⊂ 210 remains massless. Also, the components (2, 2, 1) ⊂ 10 and (1, 2, 4̄) ⊂ 16.
The next breaking to G2L1R3C1B−L is induced by the VEV of (1, 3, 15) ⊂ 210, and we
are left with a single massless electroweak Higgs doublet and a massless complex singlet
(1,−1/2, 1,+1) ⊂ (1, 2, 4̄), whose VEV causes the subsequent breaking to the SM gauge
symmetry. The SO(10) breaking chain considered here can be depicted as follows:

SO(10) MX−−−→
〈210〉

G2L2R4C /D
MI−−−−−−−−−→

〈(1,3,15)〉⊂210
G2L1R3C1B−L

MII−−−−−−−−−−−−−−−→
〈(1,− 1

2 ,1,1)〉⊂(1,2,4̄)⊂16
G2L1Y 3C .

The Higgs fields which remain massless at each stage of the symmetry breaking and thus
contribute to the RGEs are summarized in table 1. The β-coefficients and the RGEs are
given in appendix A.
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SO(10) G2L2R4C /D G2L1R3C 1B−L
G2L1Y 3C

10 (2, 2, 1) (2,− 1
2 , 1, 0) (2,− 1

2 , 1)
126 (1, 3, 10) (1, 1, 1,−2)
210 (1, 3, 15)

Table 2. Higgs representations that contribute to the RGEs at each stage of the symmetry breaking
for the SO(10) model in section 3.2.

E6 G2L2R3C1B−L /D G2L1Y 3C

G3C1Q

〈(2,− 1

Figure 2. E6 breaking to the SM with two intermediate steps. The VEVs and the Higgs fields
contributing to the RGEs at each stage are indicated. The upper (red) arrows correspond to the
model in section 3.3, and the lower (blue) arrows correspond to the model in section 3.4. The
dashed arrows in the middle are common to both models.

3.2 SO(10) with strings and necklaces

In the SO(10) case with strings and necklaces, the breaking to G2L2R4C /D is again achieved
by the VEV of a scalar 210-plet. At this level we again have the massless compo-
nents (1, 3, 15) ⊂ 210 and (2, 2, 1) ⊂ 10, but now a massless (1, 3, 10) ⊂ 126 too. The
next breaking to G2L1R3C1B−L is induced by (1, 3, 15), and we are left with a massless
(1, 1, 1,−2) ⊂ (1, 3, 10) and a single electroweak Higgs doublet. The VEV of (1, 1, 1,−2)
does the breaking to the SM gauge group. The SO(10) breaking chain considered here can
be depicted as follows:

SO(10) MX−−−→
〈210〉

G2L2R4C /D
MI−−−−−−−−−→

〈(1,3,15)〉⊂210
G2L1R3C1B−L

MII−−−−−−−−−−−−−−−−→
〈(1,1,1,−2)〉⊂(1,3,10)⊂126

G2L1Y 3C .

The Higgs fields which contribute to the RGEs are summarized in table 2. The β-coefficients
and the RGEs are given in appendix A.

E6 unification with two intermediate steps

The two symmetry breaking patterns of E6 discussed here are summarized in figure 2
together with the VEVs causing the various symmetry breakings and the Higgs represen-
tations contributing to the RGEs at each stage. The E6 gauge symmetry is broken to
G3L3R3C using the D-violating VEV of a Higgs 650-plet. The next breaking to G2L2R3C1B−L

is achieved using a (3̄, 3, 1) ⊂ 27 which, interestingly, is the SO(10) singlet within the 27-
plet of E6. The breaking to the SM gauge group though is induced through the VEV of a

– 7 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

E6 G3L3R3C /D G2L2R3C 1B−L /D G2L1Y 3C

27 (3̄, 3, 1) (2, 2, 1, 0) (2,− 1
2 , 1)

27 (3̄, 3, 1) (1, 2, 1, 1)
650

Table 3. Higgs representations that contribute to the RGEs at each stage of the symmetry breaking
for the E6 model in section 3.3.

suitable sub-multiplet of a 27 or alternatively of a 351′. From the perspective of emergence
of possible topological defects, these are two distinct cases [7]. In the former case, i.e. with
the Higgs 27-plet, we have single and triply charged monopoles. But in the latter case, i.e.
with a scalar 351′, we also have Z2 strings but not necklaces. We now discuss these two
cases of E6 breaking in turn.

3.3 E6 without strings

Let us first consider the E6 case without strings. We use a Higgs 650-plet to break E6 to
G3L3R3C . At this level, we are left with two massless Higgs (3̄, 3, 1) from the two 27-plets.
The breaking of G3L3R3C to G2L2R3C1B−L is achieved through the VEV of the component
(1, 1, 1, 0) in (3̄, 3, 1). Noting the following decompositions of the SU(3)L and SU(3)R gauge
bosons (8, 1, 1) = (1, 1, 1, 0)⊕(3, 1, 1, 0)⊕(2, 1, 1,±1), and (1, 8, 1) = (1, 1, 1, 0)⊕(1, 3, 1, 0)⊕
(1, 2, 1,±1), it is evident that the nine would be Goldstone modes must transform as
(2, 1, 1,±1), (1, 2, 1,±1), and one linear combination of two singlets. The components
(1, 2, 1,+1) and (2, 2, 1, 0) belonging to the other (3̄, 3, 1) remain massless. The breaking of
G2L2R3C1B−L to the SM gauge group is achieved by employing the (1, 2, 1,+1) component.
One linear combination of the SU(2)L doublets in the bi-doublet (2, 2, 1, 0) provides the
electroweak Higgs doublet. The breaking chain of E6 considered here can be depicted
as follows:

E6
MX−−−→
〈650〉

G3L3R3C /D
MI−−−−−−−→

〈(3̄,3,1)〉⊂27
G2L2R3C1B−L /D

MII−−−−−−−−−−−−−→
〈(1,2,1,1)〉⊂(3̄,3,1)⊂27

G2L1Y 3C .

In table 3, we summarize the Higgs representations that contribute to the RGEs at
each stage.

The relevant β-coefficients are given as:

From MII to MI : b2L = −3, b2R = −17
6 , b3C = −7, bB−L = 17

4 , bij =


8 3 12 3

2
3 61

6 12 9
4

9
2

9
2 −26 1

2
9
2

27
4 4 37

8

 .
From MI to MX : b3L = −4, b3R = −4, b3C = −5, bij =

( 34 28 12
28 34 12
12 12 12

)
.

3.4 E6 with strings

In order to have cosmic strings, we break E6 to G3L3R3C /D by again employing a scalar 650-
plet, but at this level we are left with the following Higgs massless modes: (3̄, 3, 1) ⊂ 27

– 8 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

E6 G3L3R3C /D G2L2R3C1B−L /D G2L1Y 3C

27 (3̄, 3, 1) (2, 2, 1, 0) (2,− 1
2 , 1)

351′ (6, 6̄, 1) (1, 3, 1,−2)
650

Table 4. Higgs representations that contribute to the RGEs at each stage of the symmetry breaking
for the E6 model in section 3.4.

and (6, 6̄, 1) ⊂ 351′. The breaking of G3L3R3C /D to G2L2R3C1B−L /D is again achieved by the
VEV of (1, 1, 1, 0) ⊂ (3̄, 3, 1), and we are left with two massless Higgs representations,
namely (2, 2, 1, 0) ⊂ (3̄, 3, 1) and (1, 3, 1,−2) ⊂ (6, 6̄, 1). The latter component breaks
G2L2R3C1B−L /D to the SM gauge group and we end up with a massless SM Higgs doublet
from the former sub-multiplet, as in the previous cases. The breaking chain of E6 considered
here can be depicted as follows:

E6
MX−−−→
〈650〉

G3L3R3C /D
MI−−−−−−−→

〈(3̄,3,1)〉⊂27
G2L2R3C1B−L /D

MII−−−−−−−−−−−−−−−−→
〈(1,3,1,−2)〉⊂(6,6̄,1)⊂351′

G2L1Y 3C .

The Higgs fields contributing to the RGEs at each stage are presented in table 4.
The necessary β-coefficients of the relevant RGEs are:

From MII to MI : b2L = −3, b2R = −7
3 , b3C = −7, bB−L = 11

2 , bij =


8 3 12 3

2
3 80

3 12 27
2

9
2

9
2 −26 1

2
9
2

81
2 4 61

2

 .
From MI to MX : b3L = 1

2 , b3R = 1
2 , b3C = −5, bij =

( 253 220 12
220 253 12
12 12 12

)
.

4 Unification with threshold corrections and proton decay

We aim to find the unification solutions in terms of the unified gauge coupling constant gU ,
the unification scale MX , and the intermediate scales MI,II that are consistent with the
experimental observables at the Z gauge boson mass mZ . To perform this task, we define
a χ2 statistic at mZ as

χ2 =
3∑
i=1

(
g2
i − g2

i,exp

)2

σ2
g2

i,exp

, (4.1)

which we minimize to find the unification solutions. Here, gi (i = Y, 2L, 3C) are the
SM gauge couplings at mZ and are related to the unification and intermediate scales
and the unified gauge coupling through the RGEs. On the other hand, g2

i,exp are their
experimental values squared computed from the electroweak observables along with the
standard deviations denoted by σ — see table 5. This method ensures that our unification
solutions are consistent with the electroweak observables [49]. We have taken the solutions
for which the χ2

min < 1.
In the E6 case, we add suitable threshold corrections while implementing the matching

conditions at the breaking scales. Without loss of generality, we assume that the ratio of the
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Z-boson mass mZ 91.1876(21)GeV
Strong fine structure constant α3C 0.1185(6)

Fermi coupling constant GF 1.1663787(6)× 10−5 GeV−2

Weinberg angle sin2 θW 0.23126(5)

Table 5. Experimental observables at mZ .

mass of the heavy fields belonging to the parent symmetry to the symmetry breaking scale
µ, i.e. Mi/µ (i = V, S, F with notation as in eq. (2.12)), varies within the range [1/2, 2].
In the case of the SO(10) breaking chains, the presence of the Abelian mixing leads to a
range of allowed solutions. Thus, additional contributions due to threshold corrections can
be ignored to reduce the number of free parameters. In passing, we would like to mention
that inclusion of threshold corrections will only widen the allowed parameter space without
invalidating our conclusion.

One of the most interesting predictions of GUTs is the possibility of proton decay,
which is unfortunately yet to be observed. In the ongoing experiments, the proton lifetime is
continuously pushed to larger values that, in turn, puts severe constraints on the unification
scale. Our aim is to find the unification solutions that are simultaneously compatible with
the low energy observables and the exclusion limits on proton lifetime. Here, we consider
the decay of proton into a positron and a neutral pion. The partial lifetime for this channel
is given as [50–56]

τp =
[
mp

32π

(
1−

m2
π0

m2
p

)2

A2
L

g4
U

4M4
X

(1 + |Vud|2)2

×
(
A2
SR|〈π0|(ud)RuL|p〉|2 +A2

SL|〈π0|(ud)LuL|p〉|2
) ]−1

, (4.2)

where gU is the unified gauge coupling, and mp and mπ0 are the masses of the proton and
neutral pion respectively. The coefficients ASR(SL) include the enhancement factors due
to the RGEs for proton decay operators from MX to mZ [53, 57–62], and AL denotes the
renormalization factor from mZ to the QCD scale (∼ 1GeV) [63]. The Cabibbo-Kobayashi-
Maskawa matrix element Vud is given by |Vud| = 0.9742 [49] and the form factors are taken
from the lattice QCD computation of ref. [64]:

〈π0|(ud)RuL|p〉 = −0.131, 〈π0|(ud)LuL|p〉 = 0.134 . (4.3)

We construct the unification solutions with unification scale up to MX = 1017 GeV
which are consistent with all the constraints mentioned above for each of the symmetry
breaking chains in sections 3.1, 3.2, 3.3, and 3.4 and depict them in figures 3, 4, 5, and 6 re-
spectively. In particular, we present the allowed values of the unification scale MX and the
partial proton lifetime τp as functions of MI and MII . We note that the unified gauge cou-
pling gU lies within the range [0.52, 0.53] for the two SO(10) breaking chains in sections 3.1
and 3.2. In the case of E6, gU ranges within [0.51, 0.54] and [0.51, 0.56] for the models in
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(a) Contour plot of MX . (b) Contour plot of τp.

Figure 3. Contour plots for the SO(10) breaking chain in section 3.1, where the symmetry breaking
G2L1R3C1B−L

→ G2L1Y 3C
at MII is achieved by the VEV of (1,−1/2, 1, 1) ⊂ 16. For this fit, we

have gU ∈ [0.52, 0.53], r ∈ [0, 1], and g ∈ [0.40, 0.60].

sections 3.3 and 3.4 respectively. In SO(10), where we have Abelian mixing at the sec-
ond intermediate symmetry breaking, we find unification solutions for g within [0.40, 0.60]
and [0.39, 0.59] for the models is sections 3.1 and 3.2 respectively, and r ∈ [0, 1] for both
cases — for the definition of g and r see eq. (3.2). For the breaking chain in section 3.1,
we find that the intermediate scales lie in the ranges log10(MI/GeV) ∈ [16.1, 16.8] and
log10(MII/GeV) ∈ [4.0, 16.0], and for the chain in section 3.2 in the ranges log10(MI/GeV)
∈ [16.1, 16.7] and log10(MII/GeV) ∈ [4.0, 16.0]. For E6 , we obtain the intermediate scales
for the model in section 3.3 in the ranges log10(MI/GeV) ∈ [14.3, 16.9] and log10(MII/GeV)
∈ [9.4, 13.4], and for the chain in section 3.4 in the ranges log10(MI/GeV) ∈ [11.6, 17.0]
and log10(MII/GeV) ∈ [5.6, 14.6]. At this point, we have verified that all the unification
solutions satisfy the present Super-Kamiokande limit (τp > 1.6× 1034 years) [65, 66], and
also the projected Hyper-Kamiokande limit (τp > 8.0×1034 years) [67]. In the next section,
we will find the ranges of MX , MI , and MII for which a successful GUT-inflation scenario
with a Coleman-Weinberg potential is compatible with the Planck satellite results [68].

5 Inflation with Coleman-Weinberg potential

In order to understand the inflationary dynamics, we consider the relevant part of the
scalar potential φ [25, 26, 69]

V = λ

4φ
4 − 1

2β
2φ2χ2 + a

4χ
4 +Aφ4

[
log

(
φ

M

)
+ c

]
+ V0 , (5.1)

where the GUT-singlet inflaton field φ and the GUT symmetry breaking scalar χ are canon-
ically normalized real scalar fields, and A = β4D/16π2 [7], with D being the dimensionality
of the representation to which χ belongs. We substitute χ = (β/

√
a)φ in eq. (5.1), which

minimizes the potential for any given value of φ. In the limit λ � β4 and requiring that
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(a) Contour plot of MX . (b) Contour plot of τp.

Figure 4. Contour plots for the SO(10) breaking chain in section 3.2, where the VEV of
(1, 1, 1,−2) ⊂ 126 breaks G2L1R3C1B−L

to G2L1Y 3C
. For this fit, we have gU ∈ [0.52, 0.53], r ∈ [0, 1],

and g ∈ [0.39, 0.59].

(a) Contour plot of MX . (b) Contour plot of τp.

Figure 5. Contour plots for the E6 breaking chain in section 3.3, where the VEV of (1, 2, 1, 1) ⊂ 27
causes the symmetry breaking G2L2R3C 1B−L

→ G2L1Y 3C
at MII . For this fit, gU ∈ [0.51, 0.54].

the potential is minimized at φ = M with V (φ = M) = 0, we find

V (φ) = Aφ4
[
log

(
φ

M

)
− 1

4

]
+ AM4

4 , (5.2)

where V0 = AM4/4.
The slow-roll parameters can be written in terms of the potential and its derivatives

as follows (for a review see ref. [70]):

ε = m2
Pl

2

(
V ′

V

)2
, η = m2

Pl
V ′′

V
, ξ2 = m4

Pl
V ′V ′′′

V 2 , (5.3)
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(a) Contour plot of MX . (b) Contour plot of τp.

Figure 6. Contour plots for the E6 breaking chain in section 3.4, where the VEV of (1, 3, 1,−2) ⊂
351′ causes the symmetry breaking G2L2R3C 1B−L

→ G2L1Y 3C
at MII . For this fit, gU ∈ [0.51, 0.56].

where mPl is the reduced Planck scale and primes represent derivatives with respect to
φ. The spectral index ns, the tensor-to-scalar ratio r, and the running of the spectral
index α ≡ dns/d lnk can be deduced using the slow-roll parameters computed at the pivot
scale k∗:

ns = 1− 6ε∗ + 2η∗ , r = 16ε∗ , α = 16ε∗η∗ − 24ε2∗ − 2ξ2
∗ . (5.4)

Here, the subscript ∗ signifies the values of the parameters at the pivot scale k∗ =
0.05 Mpc−1. The experimental values of these observables at 95% confidence level are
as follows [68]:

ns = 0.9658± 0.0080, r < 0.068, and α = −0.0066± 0.0140. (5.5)

The amplitude of the curvature perturbation ∆R is given by

∆2
R = 1

12π2m6
Pl

V 3

(V ′)2

∣∣∣
φ=φ∗

, (5.6)

with its experimental value ∆2
R
exp = (2.099± 0.101)× 10−9 at 95% confidence level [68].

The number of e-foldings for the pivot scale is computed using the following equation:

N∗ = 1
m2

Pl

∫ φ∗

φe

V dφ
V ′

. (5.7)

Here φe is the value of φ at the end of inflation and is deduced using the following condition:

max(|η|, ε) = 1 . (5.8)

The number of e-foldings for the pivot scale k∗ = 0.05 Mpc−1 can alternatively be obtained
from the knowledge of the thermal history of the universe [71]:

N∗ ' 61.5 + 1
2ln ρ∗

m4
Pl
− 1

3(1 + ωr)
ln ρe
m4

Pl
+
( 1

3(1 + ωr)
− 1

4

)
ln ρr
m4

Pl
, (5.9)
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where ρ∗ = V (φ∗), ρe = V (φe), and ρr = (π2/30)g∗T 4
r are the energy densities at the

pivot scale, at the end of inflation, and at the reheat temperature Tr, respectively, and
ωr is the effective equation-of-state parameter from the end of inflation until reheating.
The effective number of massless degrees of freedom g∗ at reheating is taken to be 106.75
corresponding to the SM spectrum. Clearly, the values of N∗ from eqs. (5.7) and (5.9)
must coincide. For our analysis, we consider the so-called middle-N scenario (see ref. [72]),
where Tr = 109 GeV and ωr = 0.

In order to find consistent inflationary solutions in terms of the parameters A, M , φ∗,
and φe, we construct a χ2 function and adopt the following steps:

(i) We write
A = 4V0/M

4, MX =
√

8π/a(V0/D)1/4, (5.10)

and express ε as a function of M, and φ. The value φe of φ at the end of inflation is
then determined by requiring that ε(M,φe) = 1.

(ii) We express ns as a function of M, φ∗, and ∆2
R as a function of V0, M, φ∗.

(iii) We compute N∗ as a function of M , φ∗, φe from eq. (5.7) and as a function of V0, M ,
φ∗, φe using eq. (5.9). We then require that both results coincide up to a numerical
tolerance ∆N∗.

(iv) We choose the following values for the observables:

(a) ∆2
R
exp ± δ(∆2

R
exp) = (2.099± 0.101)× 10−9,

(b) ε(φe)± δ(ε(φe)) = 1.0± 0.1,
(c) ∆N∗ ± δ(∆N∗) = 0.0± 1.0, (5.11)

for given values of V0 and the other parameters M , φ∗, and φe. We ensure that the
arbitrary choice of tolerance for ε(φe) and ∆N∗ does not affect our conclusions.

(v) We define χ2 as a function of M , φ∗, and φe for some benchmark choices of V0:

χ2 =

(
∆2
R −∆2

R
exp
)2

(δ(∆2
R
exp))2 + (ε(φe)− 1.0)2

(δε(φe))2 + (∆N∗)2

(δ(∆N∗))2 . (5.12)

We minimize the χ2 function to find the best fit values of M , φ∗, and φe for a specific
choice of V 1/4

0 . In the process of minimization, we also ensure that ε converges to
unity before |η| as φ approaches φe.

(vi) Finally, using the best-fit values of the parameters, we estimate A from eq. (5.10)
and, subsequently, reconstruct the potential using eq. (5.2). We further compute the
slow-roll parameters from eq. (5.3) and also ns, r, and α from eq. (5.4).

In table 6, we present the estimated values of the various parameters of the model
including the slow-roll parameters, which are within two standard deviations from their
central experimental values — see eqs. (5.5) and (5.11). The range of the corresponding V0

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

V
1/4

0
1016GeV

V (φ∗)1/4

1016GeV log10 A M/mPl φ∗/mPl φe/mPl N∗ ∆2
R × 109 ns r α× 104

1.51 1.44 −13.4 20.20 9.13 18.87 52.3 2.1 0.9584 0.039 −6.41

1.59 1.50 −13.5 21.89 10.52 20.55 52.3 2.1 0.9596 0.045 −6.40

1.66 1.55 −13.6 23.81 12.17 22.47 52.4 2.1 0.9606 0.052 −6.41

1.74 1.59 −13.6 26.01 14.09 24.65 52.4 2.1 0.9615 0.058 −6.44

1.82 1.64 −13.7 28.50 16.33 27.15 52.5 2.1 0.9623 0.065 −6.49

Table 6. Values of the parameters for successful inflation with a Coleman-Weinberg potential.

is V 1/4
0 /1016 GeV ∈ [1.51, 1.82]. We see that these solutions are perfectly compatible with

all the requirements for a successful inflation. At this point it is worth mentioning that the
minimum values of χ2 are found to be χ2

min ∼ 10−13 � 1 for the fitted parameters in table 6.
Recall that the first step of symmetry breaking of SO(10) and E6 is achieved by the 210-
and 650-dimensional representation, respectively. Therefore, using eq. (5.10), we find that
the unification scale MX is given by MX = 2.342 V 1/4

0 for SO(10) and MX = 1.766 V 1/4
0

for E6. Thus, the range of the unification scale for successful inflation is log10(MX/GeV) ∈
[16.55, 16.63] and log10(MX/GeV) ∈ [16.43, 16.51] for SO(10) and E6, respectively, which
are compatible with the present Super-Kamiokande [65] and future Hyper-Kamiokande [67]
bounds on proton lifetime.

Before concluding this section let us emphasize that the tensor-to-scalar ratio r is
predicted to lie somewhere around 0.03 − 0.06 — see table 6. In the presence of non-
minimal coupling to gravity, r can approach values close to 0.003 [73, 74].

6 Phase transitions and formation of topological defects

The first step of the spontaneous breaking of E6 and SO(10) is achieved through the VEV of
a suitable GUT non-singlet canonically normalized real scalar field χ, which sets the value
of the unification scale 〈χ〉 ≡MX = (β/

√
a)M . We chose χ to belong to a 650- or 210-plet

of E6 or SO(10), respectively. At this point a legitimate question to ask is when the actual
GUT phase transition takes place. In the absence of temperature corrections, the potential
is minimized at 〈χ〉 = ±(β/

√
a)φ for any given value of φ. Thus, the field χ remains

non-zero as φ rolls towards M from non-zero values. However, during inflation, we must
include in the potential the temperature correction (1/2)σχT 2

Hχ
2 [25], where TH = H/2π

is the Hawking temperature and σχ is assumed to be of order unity. Initially, φ is small
and this correction term dominates over the second term in the right hand side of eq. (5.1).
Consequently, the potential attains its minimum at χ = 0 with the GUT gauge symmetry
restored. But as φ grows, χ = 0 turns into a local maximum of the potential and two
global minima appear at

χ = ±
√

[β2φ2 − σχT 2
H ]/a . (6.1)

The potential difference between the local maximum at χ = 0 and these minima is

∆V = (β2φ2 − σχT 2
H)2/4a. (6.2)
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At the beginning, these minima are very shallow and the fluctuations between them
over the local maximum are very frequent. The fluctuations occur within spheres of radii
equal to the Higgs correlation length m−1

eff , with meff being the effective mass of χ at the
minima given by

m2
eff = 2[β2φ2 − σχT 2

H ]. (6.3)

These fluctuations are Boltzmann suppressed when the energy required is higher than TH .
This gives the so-called Ginzburg criterion [75]:

4π
3 m−3

eff ∆V > TH ⇒ β2φ2 >

(
72a2

π2 + σχ

)
T 2
H . (6.4)

At the value of φ saturating this inequality, χ settles down in one of the vacua and the
breaking of the GUT gauge symmetry is completed leading to the formation of topologi-
cal defects.

The next (first intermediate) step of symmetry breaking is induced by the VEV of
another canonically normalized real scalar field χI , which belongs to an appropriate rep-
resentation of the intermediate gauge symmetry. For example, the field that breaks the
G2L2R4C symmetry lies in (1, 3, 15) contained in a 210-plet of SO(10). Similar to the previ-
ous case, the potential for χI is

V (φ, χI) = −1
2β

2
Iφ

2χ2
I + aI

4 χ
4
I , (6.5)

with the final VEV
〈χI〉 ≡MI = βI√

aI
M. (6.6)

After incorporating the finite temperature correction (1/2)σχIT
2
Hχ

2
I , the effective mass-

squared of χI reads
mI

eff
2 = 2[β2φ2 − σχIT

2
H ] . (6.7)

Therefore, the phase transition and the formation of the associated topological defects
occur for

β2
Iφ

2 =
(

72a2
I

π2 + σχI

)
T 2
H . (6.8)

From this equation, we can estimate the first intermediate breaking scale MI as:

MI =

√√√√(72a2
I

π2 + σχI

)
HI

2πφI
M
√
aI
, (6.9)

where φI is the value of the inflaton field at the phase transition, and HI is the correspond-
ing value of the Hubble parameter. We assume that a2

I ∼ 0.1 and σχI ∼ 1.
Following similar steps, we display the potential for the scalar field χII whose VEV

causes the second intermediate symmetry breaking:

V (φ, χII) = −1
2β

2
IIφ

2χ2
II + aII

4 χ4
II . (6.10)
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The effective mass-squared for χII is

mII
eff

2 = 2[β2φ2 − σχIIT
2
H ] , (6.11)

and the second intermediate breaking scale is

MII =

√√√√(72a2
II

π2 + σχII

)
HII

2πφII
M
√
aII

. (6.12)

Here, the phase transition occurs for φ = φII and HII is the Hubble parameter at φII . We
also choose a2

II ∼ 0.1 and σχII ∼ 1.
At this point, it should be mentioned that the logarithmic terms in the Coleman-

Weinberg potential arising from the couplings of φ to χI , χII can be ignored since βI , βII
� β. Thus, we do not include them in our analysis.

7 Intermediate mass monopoles

All GUT models predict [7] the existence of topologically stable magnetic monopoles associ-
ated with the unification scaleMX . In addition, the SO(10) model predicts the appearance
of intermediate mass monopoles carrying two quanta of Dirac magnetic charge associated
with the first intermediate breaking scale MI [7]. In the E6 case, monopoles with a triple
Dirac charge are generated at the first intermediate phase transition [7]. As we will see
later, the GUT monopoles are entirely inflated away, and we will thus concentrate on the
monopole production at the scale MI and compare their predicted present abundance with
the results of the MACRO experiment [76]. The upper bound on the monopole flux from
this experiment is 2.8 × 10−16 cm−2s−1sr−1. We take the lower bound (or observability
threshold) on the monopole flux to be 10−24 cm−2s−1sr−1, below which the monopoles are
too diluted to be observed. We define the monopole yield as YM ≡ nM/s, where nM and
s are the monopole number density and the entropy density respectively. The MACRO
bound on the monopole flux for monopole masses mM ∼ 1014 GeV then implies [77] that
the maximum allowed YM is Y max

M ∼ 10−27, while the observability threshold adopted here
corresponds to the minimal value of the monopole yield Y min

M ∼ 10−35.
We next turn to the discussion of monopole production at MI and the subsequent

evolution of their abundance [7, 69]. We assume that the mean inter-monopole distance
at production is of order mI

eff
−1, such that the monopole number density is ' (1/10)mI

eff
3,

where we included a numerical factor 1/10. The monopoles are subsequently diluted by
the factors exp (−3NI) and (tr/τ)2 during inflation and inflaton oscillations respectively.
Here, tr is the reheat time, which is about 0.36 GeV−1 for Tr = 109 GeV and for the SM
spectrum, and τ is the cosmic time at the end of inflation. The monopole number density at
reheating is about (mI

eff
3
/10) exp(−3NI)(τ/tr)2, while the entropy density is (2π2/45)g∗T 3

r .
Using these estimates we can find the monopole yield YM = nM/s after reheating as a
function of MI :

YM '
mI

eff
3

10 exp(−3NI)
(
τ
tr

)2

2π2

45 g∗T
3
r

. (7.1)
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V
1/4

0
1016GeV

τ
10−12GeV−1 φ+/mPl φ−/mPl

H+ H−
N+ N− log10

(
MI+
GeV

)
log10

(
MI−
GeV

)
(1013 GeV)

1.51 1.38 14.41 13.07 3.40 3.91 9.8 16.2 13.30 13.40
1.59 1.32 16.04 14.67 3.54 4.10 9.9 16.2 13.30 13.41
1.66 1.26 17.91 16.51 3.67 4.28 9.9 16.2 13.31 13.41
1.74 1.22 20.05 18.62 3.78 4.45 9.9 16.2 13.31 13.41
1.82 1.18 22.51 21.04 3.88 4.59 9.9 16.2 13.31 13.41

Table 7. Values of the various parameters (indicated by a subscript +) corresponding to the
MACRO bound on the flux of monopoles formed at the scale MI and their values (indicated by a
subscript −) corresponding to the adopted observability threshold for the monopole flux.

Here, H2
I = V (φI)/3m2

Pl, NI = (1/m2
Pl)
∫ φI
φe
V dφ/V ′, and g∗ = 106.75 for the SM spectrum.

Using the equation
3Hφ̇+ V ′(φ) ' 0 , (7.2)

which holds during inflation to a good approximation, we can compute the time τ at the
termination of inflation as follows:

τ '
∫ φ∗

φe

3H(φ)
V ′

dφ . (7.3)

In table 7, we present the minimal required numbers of e-foldings N+ which must follow
the monopole production so that the MACRO bound on the monopole flux is satisfied.
We also show the corresponding lower bounds MI+ on MI , as well as the corresponding
values of the inflaton φ+, and the Hubble parameter H+ at monopole production. We also
estimate the values of these parameters (indicated by a subscript −) corresponding to the
threshold for observability.

In figure 7, we show the allowed ranges of the intermediate scales MI , MII which
are consistent with successful inflation based on a Coleman-Weinberg potential for the
four GUT scenarios considered with the unification scale MX restricted in the range
log10(MX/GeV) ∈ [16.55, 16.63] for SO(10), and log10(MX/GeV) ∈ [16.43, 16.51] for E6.
It should be mentioned that the unification scale is perfectly consistent with the proton
lifetime bounds suggested by the present Super-Kamiokande results as well as the expected
sensitivity of the future Hyper-Kamiokande experiment. We note that out of the four sce-
narios only the E6 unified model with Z2 strings can yield an observable flux of triply
charged monopoles produced at the intermediate scale MI . The MACRO bound excludes
a considerable part of the available (blue) region for this model — see figure 7. It also
suggests that the monopoles corresponding to the unification scale MX are inflated away
in all cases.

8 Intermediate scale strings and gravity waves

The Z2 cosmic strings are formed [7] at MII when the parent symmetry is broken through
the VEV of a sub-multiplet of 351′ or 126 in E6 or SO(10) respectively. The mean inter-
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Figure 7. Intermediate breaking scales MI and MII for log10(MX/GeV) ∈ [16.55, 16.63] in the
case of SO(10) and log10(MX/GeV) ∈ [16.43, 16.51] in the case of E6 with successful inflation
based on a Coleman-Weinberg potential. We also show the two bounds MI+ and MI− on MI

derived by using eq. (6.9). Namely, the horizontal lines at log10(MI+/GeV) = 13.3 (dashed) and
log10(MI−/GeV) = 13.4 (dot-dashed) represent the MACRO bound and the upper bound on MI

for observability of the monopole flux (for MI ’s above this value, the monopoles are too diluted to
be observed).

string distance ds, i.e. the scale of the network, at formation is expected to be

ds ' p mII
eff
−1
, (8.1)

where p ' 2 is a geometric factor. For generic values of MII , these strings will be formed
during inflation. But, for suitably lower MII values, the strings can appear after the end
of inflation, either during the inflaton oscillations or even after reheating.

We first investigate the situation with MII large enough so that the string formation
takes place during the inflationary era. From eq. (6.12), we can find the lower bound on
MII for this to happen:

MII >

√√√√(72α2
II

π2 + σχII

)
H(φe)

2π
M

φe
√
αII

, (8.2)

with H(φe) =
√
V (φe)/3m2

Pl. The inflaton value φ = φII at the phase transition can
be computed again from eq. (6.11). We then determine the effective scalar mass using
eq. (6.11) and the mean inter-string distance from eq. (8.1). During inflation, ds is scaled
by a factor exp(NII), where NII = (1/m2

Pl)
∫ φII
φe

V dφ/V ′ is the number of e-foldings after
the string formation. The inter-string distance gets further scaled by two additional factors,
namely by (tr/τ)2/3 during the period of inflaton oscillations and by Tr/T0 from reheating to
the present time, where T0 = 2.35×10−13 GeV is the present cosmic microwave background
temperature. Including these factors, we estimate the present value of ds

ds ' p mII
eff
−1(φII) exp(NII)

(
tr
τ

) 2
3 Tr
T0

. (8.3)
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For strings to enter the present horizon, i.e. not to be inflated away, the inter-string distance
in eq. (8.3) should be smaller than the present horizon size 3t0, where t0 = 6.62×1041 GeV−1

is the present cosmic time.
The dimensionless string tension Gµ is given by

Gµ ' 1
8

(
MII

mPl

)2
, (8.4)

where G and µ are Newton’s constant and the string tension, i.e. the string mass per unit
length, respectively. Here, our assumption is that these strings are close to the Bogomol’nyi
limit of the Abelian Higgs model [78–80]. From PTA [17], we know that Gµ . 1.5 ×
10−11 [18], which implies thatMII . 2.7×1013 GeV. (For recent developments see refs. [21–
24].) As we will see later, this bound is strictly applicable only to those strings that enter
the horizon before t ' 10ΓGµteq (Γ is a numerical factor of order 50), and certainly not
for strings entering the horizon after the equidensity time teq ' 2.253× 1036 GeV−1, where
the energy densities of radiation and matter coincide.

The mean inter-string distance at a cosmic temperature T after reheating and before
the equidensity point can be estimated from eq. (8.3) with T0 replaced by T , where

T 2 =
√

45
2π2 g

−1/2
∗

mPl
t
, (8.5)

with the appropriate value of g∗ for the relevant temperature range. Equating this inter-
string distance with the horizon distance 2t, we can calculate the scale MII for which the
strings enter the horizon at any given cosmic time t during radiation dominance. After
horizon entrance the long strings chop each other and inter-commute generating loops of
typical size ` ' t/10 at any subsequent time t [81, 82]. These loops eventually decay [83] into
gravity waves at t ' `/ΓGµ, providing the major contribution to the stochastic background.
Strings that enter the horizon before 10ΓGµteq give rise to a complete spectrum of loops
generated between this time and teq and decaying after teq. These loops which are created
during radiation dominance and decay during matter dominance generate [84] the overall
peak of the stochastic gravity waves which lies at low frequencies and is restricted by the
PTA bound.

In order to compute the scale MII corresponding to strings entering the horizon after
teq, we need to solve the inequality

3teq < p m−1
eff exp(NII)

(
tr
τ

) 2
3
(
Tr
Teq

)
, (8.6)

where Teq = 9.45 × 10−10 GeV is the temperature at teq. These strings may generate [84]
an insignificant low frequency peak in the gravity wave spectrum which is overshadowed
by the overall peak and thus they are not important for the PTA bound.

In figure 8, we show the values of the second intermediate scale MII which correspond
to strings generated during inflation that re-entered the horizon during different eras of the
universe, consistent with successful inflation (see table 6).
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Figure 8. Intermediate breaking scales MII for the unification scale log10(V 1/4
0 /GeV) ∈

[16.18, 16.26] for successful inflation with Coleman-Weinberg potential for different cases: 1. strings
are formed at the end of inflation, 2. earliest loops decay at the equidensity time teq, 3. strings
enter the horizon at teq, and 4. strings enter the horizon at the present time. The dashed black
line corresponding to the PTA bound is also shown.

Let us summarize the various regions in figure 8:

• For log10(MII/GeV) & 12.64, the phase transition takes place and strings are gener-
ated before the end of inflation.

• For log10(MII/GeV) . 13.64, the strings enter the horizon before t ' 10ΓGµteq,
and thus the loops generated after this time and before teq are present. These loops
generate [84] a significant low frequency peak in the spectrum of stochastic gravity
waves and the restriction from the PTA bound is expected to hold in this case. Loops
created before t ' 10ΓGµteq decay during radiation dominance and contribute [84]
to the plateau of the spectrum.

• For 13.64 . log10(MII/GeV) . 13.68, the strings enter the horizon after t '
10ΓGµteq and before teq. Only part of the loops that are generated during radia-
tion dominance and decay after teq are present. Consequently, the low frequency
peak in the spectrum gradually fades away as MII increases in this region. This
region has been shaded in figure 8. Only the part corresponding to lower MII values
may be excluded by the PTA bound.

• For 13.68 . log10(MII/GeV) . 13.70, the strings enter the horizon after teq and the
significant low frequency peak in the gravity wave spectrum is absent. Consequently,
there is no restriction from the PTA experiment.

• For log10(MII/GeV) & 13.70, the strings never enter the horizon and thus again no
restriction arises.
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9 Phase transition after inflation

The phase transition occurs during inflaton oscillations or even after reheating if MII does
not satisfy the inequality in eq. (8.2), i.e. if MII . 4.36 × 1012 GeV. The PTA bound
is certainly well satisfied in this case. Strings produced after the end of inflation always
remain inside the post-inflationary horizon. It is interesting to note that the causality
criterion forbids the inter-string distance to be bigger than the horizon size. Long strings
reach the scaling solution quickly with one string segment per horizon and start generating
loops almost instantaneously.

At the beginning of inflaton oscillations, the corrections to the mass-squared of the
field χII are not dominated by the temperature corrections from the “new” radiation, but
by the Hubble parameter Hφ from the energy density ρφ(t) of the oscillating inflaton [85].
Assuming that these oscillations are quadratic, we have (for a review see ref. [86])

ρφ(t) = ρe

(
t

τ

)−2
exp[−Γφ(t− τ)], (9.1)

where Γφ ' 2.8GeV is the inflaton decay width. Therefore, right after the end of inflation,
the correction to the χII mass-squared term is

1
2σ
(
Hφ

2π

)2
χ2
II , (9.2)

where Hφ =
√
ρφ/3m2

Pl and the corresponding Hawking temperature is TH = Hφ/2π.
Here, we set σ = 1 so that continuity of the correction between the inflationary and the
oscillatory era is guaranteed. Using the correction in eq. (9.2) and following the analysis of
section 6, one can then calculate the value of χII at the minima of the potential with the
mean value of φ2 ' M2, since φ oscillates about M with an amplitude smaller than M .
The potential difference ∆V between the local maximum at χII = 0 and these minima,
as well as the effective mass meff of χII at the minima are also estimated. The Ginzburg
criterion for this case then takes the form:

4π
3 m−3

eff ∆V > TH ⇒ β2
IIM

2 >

(
72a2

II

π2 + σ

)
T 2
H . (9.3)

The value of TH (and thus ρφ) at which the phase transition takes place for given MII can
be calculated by saturating this inequality.

The new radiation energy density ρr is given by (for a review see ref. [86])

ρr(t) = ρe

(
t

τ

)−8/3 ∫ t

τ

(
t′

τ

)2/3
exp[−Γφ(t′ − τ)]dt′ , (9.4)

and its temperature T can be found from ρr = (π2/30)g∗T 4. As it turns out, T soon
becomes larger than TH and dominates the correction to the mass-squared term of χII ,
which takes the form (1/2)σ′T 2χ2

II . Here σ′ is, in principle, different from σ, but for
simplicity we take it again equal to unity. Needless to say that, in m2

eff and ∆V , TH and
σ should be replaced by T and σ′ respectively, and φ2 by M2. The Ginzburg criterion is
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V
1/4

0
1016GeV

Hφ(1012 GeV)
at TH = T

T (1012 GeV)
at TH = T

log10(MII/GeV) at t (10−12 GeV−1) at
end of inflation TH = T end of inflation TH = T

1.51 8.92 1.42 12.63 12.57 1.38 1.49
1.59 9.06 1.44 12.64 12.58 1.32 1.42
1.66 9.16 1.46 12.64 12.58 1.26 1.37
1.74 9.23 1.47 12.65 12.58 1.22 1.33
1.82 9.27 1.48 12.65 12.59 1.18 1.29

Table 8. Hubble parameter Hφ from the oscillating inflaton and the temperature of the new
radiation with TH = T for various V 1/4

0 values corresponding to successful inflation. We also show
the breaking scale MII and the cosmic time t at the end of inflation and at TH = T for comparison.
After the cosmic time at TH = T , the new radiation dominates over the Hawking temperature TH
from field oscillations.

V0
1/4 = 1.66 × 1016 GeV
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Figure 9. Hawking Temperature TH = Hφ/2π, with Hφ being the Hubble parameter from the
energy density ρφ of the inflaton oscillations, and new radiation temperature T versus cosmic time
for successful inflation with V

1/4
0 = 1.66 × 1016 GeV. The new radiation temperature T starts

dominating over TH after cosmic time 1.37 × 10−12 GeV−1, and inflation ends at τ = 1.26 ×
10−12 GeV−1.

then as in eq. (9.3) with TH replaced by T and σ replaced by σ′. The temperature T of
the new radiation at which the transition takes place for given MII is again calculated by
saturating the Ginzburg criterion. It is important to note that there is continuity of the
χII mass-squared correction between the regimes where this correction is dominated by
TH or T . The latter regime smoothly extends even to the period after reheating.

In order to find the limiting value of MII which separates the two regimes where the
correction to the χII mass-squared is dominated by the oscillating inflaton or the new
radiation, we compare TH and T calculated by using eq. (9.1) and eq. (9.4) respectively.
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We then find the cosmic time at which these two temperatures coincide and their common
value. Saturating the Ginzburg criterion in eq. (9.3), we finally estimate the limiting value
of MII . The value of the Hubble parameter Hφ from inflaton oscillations and the cosmic
temperature for TH = T are given in table 8 for successful inflation. We also provide in
this table the breaking scale MII and the cosmic time t at the end of inflation and at
TH = T for comparison. After the cosmic time at which TH = T , the temperature of the
new radiation starts dominating over the Hawking temperature TH . The variation of TH
and T with the cosmic time t is shown in figure 9 for V 1/4

0 = 1.66× 1016 GeV.
Loops that are produced during any phase transition occurring within the era of infla-

ton oscillations decay much earlier than the equidensity time teq. Indeed, a phase transition
taking place at the reheat time tr ' 0.36 GeV−1 corresponds to a breaking scale around
MII ' 2.34 × 109 GeV. The lifetime of the loops of size ∼ tr/10 generated at this tran-
sition is 6.43 × 1015 GeV−1 and thus these loops contribute to the plateau in the gravity
wave spectrum. During radiation dominance, a loop produced at cosmic temperature T
and time t decays at teq if t ' 10(ΓGµ)teq, where t and Gµ are estimated from eqs. (8.5)
and (8.4), respectively. The minimum value of the symmetry breaking scale MII for which
the loops generated during the corresponding phase transition in a radiation dominated
universe contribute to the sharp peak in the gravity wave spectrum can then be found from
the Ginzburg criterion and turns out to be 2.6× 104 GeV.

10 Conclusions

We have explored in this paper the appearance and subsequent evolution of topologically
stable magnetic monopoles and cosmic strings in realistic non-supersymmetric SO(10) and
E6 GUTs. As an important first step we perform a comprehensive study of GUT symmetry
breaking with two intermediate scales that is compatible with gauge coupling unification
and proton decay limits. In turn, this allows us to identify the monopoles and strings
associated with the GUT and intermediate scale symmetry breakings. Topological defects
with intermediate scales are of special interest and, to keep things realistic, we explore their
evolution within the context of an inflationary universe. We highlight models which predict
the presence of an observable number density of primordial monopoles with mass ∼ 1013−
1014 GeV and cosmic strings with the string tension parameter Gµ ∼ 10−11 − 10−10 that
have survived an inflationary epoch. The impact of inflation on the stochastic gravitational
background radiation emitted by strings is also discussed. Finally, we note that Gµ values
lying in a wide range ∼ 10−10− 10−20 will be probed by a variety of proposed experiments
including LISA [87, 88], SKA [89, 90], BBO [91, 92], and ET [93].
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A RGEs for the two breaking chains of SO(10)

A.1 The RGEs and βcoefficients for the breaking chain in section 3.1

From MII to MI :

µ
dg2L
dµ = 1

(4π)2

(
−3g3

2L

)
+ 1

(4π)4

(
8g5

2L + 12g3
2Lg

2
3C + 3g3

2L
2 g2

XX + g3
2Lg

2
RR

+ g3
2Lg

2
RX + 3g3

2L
2 g2

XR

)
,

µ
dg3C
dµ = 1

(4π)2

(
−7g3

3C

)
+ 1

(4π)4

(9g2
2L
2 g3

3C − 26g5
3C + g3

3C
2 g2

XX + 3g3
3C
2 g2

RR

+ 3g3
3C
2 g2

RX + g3
3C
2 g2

XR

)
,

µ
dgRR
dµ = 1

(4π)2

(53
12g

3
RR −

√
6

12 gXRg
2
RR + 53

12gRRg
2
RX + 33

8 gRRg
2
XR

−gXX24 gRR
√

6gRX + 33
8 gXXgRXgXR −

gXR
24
√

6g2
RX

)
+ 1

(4π)4

(
3g2

2Lg
3
RR + 12g2

3Cg
3
RR + 15

8 g
2
XXg

3
RR + 17

4 g
5
RR

+ 17
2 g

3
RRg

2
RX + 17

4 gRRg
4
RX + 3g2

2LgRRg
2
RX + 12g2

3CgRRg
2
RX

+ 4g2
3CgRRg

2
XR + 45

4 g
3
RRg

2
XR + 65

16gRRg
4
XR −

√
6

2 gXRg
4
RR

− 3
√

6
4 g2

RRg
3
XR −

√
6

8 gXRg
4
RX −

3
√

6
16 g2

RXg
3
XR + 9

2gRRg
2
2Lg

2
XR

+ 45
8 gRRg

2
XXg

2
RX + 45

8 gXXg
3
RXgXR + 15

2 gRRg
2
RXg

2
XR

+ 4g2
3CgXXgRXgXR + 65

16g
3
XXgRXgXR + 65

16gRRg
2
XXg

2
XR

+ 65
16gXXgRXg

3
XR −

9
√

6
16 g2

XXg
2
RXgXR −

3
√

6
8 gXXgRRg

3
RX

− 5
√

6
8 g2

RRg
2
RXgXR + 9

2gXXg
2
2LgRXgXR −

3
√

6
16 gRRg

3
XXgRX

− 3
√

6
8 g2

XXg
2
RRgXR −

3
√

6
8 gXXg

3
RRgRX

+ 105
8 gXXg

2
RRgRXgXR −

15
√

6
16 gXXgRRgRXg

2
XR

)
,

µ
dgRX

dµ = 1
(4π)2

(33
8 g

2
XXgRX −

√
6

12 gXXg
2
RX + 53

12g
2
RRgRX + 53

12g
3
RX

−
√

6
24 gXXg

2
RR + 33

8 gXXgRRgXR −
√

6
24 gRRgRXgXR

)

– 25 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

+ 1
(4π)4

(
+ 3g2

2Lg
3
RX + 12g2

3Cg
3
RX + 17g4

RR

4 gRX + 17
2 g

2
RRg

3
RX

+ 17
4 g

5
RX + 15

8 g
3
RXg

2
XR + 3g2

2Lg
2
RRgRX + 4g2

3Cg
2
XXgRX

+ 12g2
3Cg

2
RRgRX + 65g4

XX

16 gRX + 45
4 g

2
XXg

3
RX −

3
√

6
16 g3

XXg
2
RR

− 3
√

6
4 g3

XXg
2
RX −

√
6

8 gXXg
4
RR −

√
6

2 gXXg
4
RX + 9

2g
2
2Lg

2
XXgRX

+ 15
2 g

2
XXg

2
RRgRX + 45

8 gXXg
3
RRgXR + 45

8 g
2
RRgRXg

2
XR

+ 4g2
3CgXXgRRgXR + 65

16gRRg
3
XXgXR + 65

16g
2
XXgRXg

2
XR + 65

16gXXgRRg
3
XR

− 5
√

6
8 gXXg

2
RRg

2
RX −

9
16gXX

√
6g2
RRg

2
XR −

3
√

6
8 gXXg

2
RXg

2
XR

+ 9
2gXXg

2
2LgRRgXR −

3
√

6
8 g3

RRgRXgXR −
3
√

6
8 gRRg

3
RXgXR

− 3
√

6
16 gRRgRXg

3
XR −

15
√

6
16 gRRg

2
XXgRXgXR + 105

8 gXXgRRg
2
RXgXR

)
,

µ
dgXR

dµ = 1
(4π)2

(33
8 g

2
XXgXR + 53

12g
2
RRgXR −

√
6

12 gRRg
2
XR + 33

8 g
3
XR

−
√

6
24 gRRg

2
XX + 53

12gXXgRRgRX −
√

6
24 gXXgRXgXR

)
+ 1

(4π)4

(9
2g

2
2Lg

3
XR + 4g2

3Cg
3
XR + 17

4 g
4
RRgXR + 15

8 g
2
RXg

3
XR + 65

16g
5
XR

+ 3g2
2Lg

2
RRgXR + 4g2

3Cg
2
XXgXR + 65

16g
4
XXgXR + 65

8 g
2
XXg

3
XR + 45

4 g
2
RRg

3
XR

+ 12g2
3Cg

2
RRgXR −

3
√

6
16 gRRg

4
XX −

√
6

2 g3
RRg

2
XR −

3
√

6
4 gRRg

4
XR

+ 9
2g

2
2Lg

2
XXgXR −

√
6

8 g2
XXg

3
RR + 15

2 g
2
XXg

2
RRgXR + 17

4 gXXgRRg
3
RX

+ 45
8 gRRg

3
XXgRX + 45

8 g
2
XXg

2
RXgXR + 17

4 gXXg
3
RRgRX + 17

4 g
2
RRg

2
RXgXR

+ 3g2
2LgXXgRRgRX + 12g2

3CgXXgRRgRX −
15
√

6
16 gRRg

2
XXg

2
XR

− 9
√

6
16 gXXgRXg

3
XR −

9
√

6
16 g3

XXgRXgXR −
3
√

6
8 gRRg

2
XXg

2
RX

−
√

6
4 gRRg

2
RXg

2
XR −

5
√

6
8 gXXg

2
RRgRXgXR + 105

8 gXXgRRgRXg
2
XR

−
√

6
8 gXXg

3
RXgXR

)
,

µ
dgXX

dµ = 1
(4π)2

(33
8 g

3
XX −

√
6

12 gRXg
2
XX + 53

12gXXg
2
RX + 33

8 gXXg
2
XR

−
√

6
24 gXXgRRgXR + 53

12gRRgRXgXR −
√

6
24 gRXg

2
XR

)

– 26 –



J
H
E
P
0
2
(
2
0
2
1
)
1
1
4

+ 1
(4π)4

(9
2g

2
2Lg

3
XX + 4g2

3Cg
3
XX + 65

16g
5
XX + 15

8 g
3
XXg

2
RR

+ 45
4 g

3
XXg

2
RX + 17

4 gXXg
4
RX + 3g2

2LgXXg
2
RX

+ 12g2
3CgXXg

2
RX + 4g2

3CgXXg
2
XR + 65

8 g
3
XXg

2
XR + 65

16gXXg
4
XR

− 3
√

6
4 g4

XXgRX −
√

6
2 g2

XXg
3
RX −

√
6

8 g3
RXg

2
XR −

3
√

6
16 gRXg

4
XR

+ 9
2gXXg

2
2Lg

2
XR + 17

4 gXXg
2
RRg

2
RX + 15

2 gXXg
2
RXg

2
XR + 17

4 gRRg
3
RXgXR

+ 3g2
2LgRRgRXgXR + 45

8 gXXg
2
RRg

2
XR + 17

4 g
3
RRgRXgXR + 45

8 gRRgRXg
3
XR

+ 12g2
3CgRRgRXgXR −

9
√

6
16 gRRg

3
XXgXR −

15
√

6
16 g2

XXgRXg
2
XR

− 9
√

6
16 gXXgRRg

3
XR −

√
6

4 gRXg
2
XXg

2
RR −

√
6

8 gXXg
3
RRgXR

− 3
√

6
8 g2

RRgRXg
2
XR + 105

8 gRRg
2
XXgRXgXR −

5
√

6
8 gXXgRRg

2
RXgXR

)
.

From MI to MX : b2L = −3, b2R = 26
3 , b4C = −17

3 , bij =

 8 3 45
2

3 1004
3

1245
2

9
2

249
2

1315
6

 .
A.2 The RGEs and β-coefficients for the breaking chain in section 3.2
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