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1 Introduction

Quantum field theory is currently the best theoretical framework to describe particle
physics and most condensed matter systems. In fact, gauge theories are at the core of
our very understanding about the fundamental forces of nature and how they intermediate
matter interactions.

A central object of study in any quantum field theory is the S-matrix. Whether
computed perturbatively or not, the S-matrix encodes the main dynamical data of a given
theory. Therefore, studying its structure and general properties is an essential step towards
a more complete physical and mathematical understanding of the problem at hand. In this
direction, recent results have considerably improved and expanded the available tools for
computing scattering amplitudes in quantum field theory, establishing the area as one of
the main driving forces in contemporary theoretical physics research.

At this interface between physics and mathematics, lies the present work. We will
employ algebraic techniques inspired from String Field Theory [1-3] (see also [4] for a
recent review) to obtain all the tree-level amplitudes for SU(N) gauge theories coupled to
massive fermions or scalars. We will focus our attention on Chern-Simons-Matter (CSM)
theory, Quantum Chromodynamics (QCD) and scalar QCD theory (sQCD).

L algebras constitute a natural underlying structure in the Batalin-Vilkovisky (BV)
formalism (see, for example, [5, 6] and references therein. See also [7] for a direct application
to the S-matrix). From a physical point of view, these algebras have a clear structure and
help to organise the dynamics of a given field theory in a chain complex that takes the
form [8]:

T {parg;rlrllggers } - {ﬁfﬂds } - { eqﬁglt?g; of } -

As shown in [9], single-particle solutions to the free equations of motion of the field
theory, given by plane waves in flat space, are related to multiparticle solutions via a quasi-
isomorphism in the L, algebra, which are manifested through the Berends-Giele recursion
relations [10] they satisfy.

The fundamental ingredient in our approach is the so-called perturbiner expansion [11—
16], which is another multi-particle solution of the classical equations of motion of the
theory that can be directly used to compute tree-level amplitudes, e.g. [17-24].

The perturbiner construction has been formally justified only recently by some of the
authors [25], and it arises in the context of Loo-algebras in the construction of their minimal
models. In this work, we will extend this construction to colour-dressed perturbiners, which
necessarily appear in theories involving fields that transform in different representations of



the gauge group (adjoint, fundamental and anti-fundamental, for example).! In addition,
we will show that the Maurer-Cartan action built with the perturbiner solutions can be
turned into a generator of tree-level scattering amplitudes that include several cases of
interest depending on the chosen boundary conditions.

In order to define the Maurer-Cartan action, we need to introduce a suitable graded
inner product (,), guarateeing that the L..-algebra, £, is cyclic. We will denote by
lg(ay,...,ax) the Lo products associated to a given field theory, with a; generically repre-
senting the elements of a graded vector space that includes the fields. The cyclicity of the
algebra is then simply expressed as

<ak+1) lk(ala o 7a1€)> = Z|Z<CL1, lk(U’Qv -y Ok, ak+1)7 (11)

where £ is determined by the grading of the elements a; involved in the product (see, for
example, [3]). The Maurer-Cartan action is then expressed as

1

Scld] = 5loh(@) + Y

n>2

(a,ln(ay...,a)), (1.2)

where the a’s generically denote the classical field content of the theory and are called
Maurer-Cartan elements. Observe that [1(a) is associated with the free field equations of
motion while /,, with n > 2 corresponds to interaction contributions in the Lagrangian
(vertices). In this construction, the solutions to the linearised equations of motion are said
to be in the cohomology of the algebra (free fields). Interestingly, there is also a homotopy
Maurer-Cartan action in the algebra cohomology, denoted by Sj;-[al, and they are related
by a quasi-isomorphism.? As we will show here, Siiclal can be seen as the generating
function for all the tree-level amplitudes of the theory.

For our algebraic analysis, we will extract the L..-algebra for the field theories from
the master actions in the classical BV formalism. This type of algebraic construction for
gauge theories with matter has been done from a more formal perspective in [26]. Here
we will use notation and conventions more familiar to the physics community. Once the
Lo-algebra products are obtained, we will proceed to build the perturbiner expansion
from the minimal model and then all the tree-level amplitudes. The procedure is detaily
described in [25].

The first theory that we will study is Chern-Simons-Matter (CSM) with massive
fermions. This theory plays an important role in condensed matter physics, being used
to describe phenomena like the quantum Hall effect and anyonic physics. The tree-level
amplitudes for CSM were calculated for the case of massless matter in [27] using the Britto-
Cachazo-Feng-Witten recursion relations [28], which is an on-shell method. Working with
massive fermions is important if we want to go to the condensed matter domain via a
nonrelativistic limit.

! Although structurally similar, we are not aware of such solutions with mixed representations being
explicitly presented in the literature.

2Any homotopy algebra is quasi-isomorphic to a minimal model, characterized by the vanishing of the
1 product.



We will then move on to QCD-like theories. The scattering amplitudes for this case
have been studied extensively using Feynman diagrams. There is a result for all tree-level
amplitudes with massless fermions in [29], where they found a procedure to extract the
QCD amplitudes from the ones of N = 4 Super Yang-Mills. Another interesting result for
tree-level amplitudes is in [30], where a new colour decomposition was introduced together
with evidence that QCD obeys the colour-kinematics duality [31].

The last example that we will work in is scalar QCD. This theory models the type of
interactions between gluons and Higgs bosons in the Standard Model, this being a topic of
interest in particle physics. Another interesting application of this theory is the problem
of two bodies in classical General Relativity, by the application of double-copy [32] in the
scattering amplitudes and the infinite mass limit for the scalars. In order to apply double-
copy the amplitudes must also satisfy the colour-kinematics duality, this procedure has
been studied in [33].

This work is organised as follows. In section 2 we will present the field theories and
determine their BV master actions. Each theory will then be studied in a different section
including the extraction of the Ly.-algebra from the BV action, the construction of the
perturbiner expansion and the generating function for the scattering amplitudes, finishing
with a series of examples illustrating our method. CSM is described in section 3, QCD in
section 4 and scalar QCD in section 5. In section 6 we present the final remarks.

RL:4—1 with coordinates

Notation. We will work in d-dimensional Minskowski spacetime
z# and diagonal metric tensor 7, with the mostly minus signature (+ — — —---), being

29 the time direction. The standard volume form is
dle = dz® Adat Ao A da®h (1.3)

The d’Alembertian operator is defined as [0 = n**0,,0,, where we use the shorthand notation
0, for the partial derivative 0/0z*.

For the gauge group, we take the Lie group SU(N) of all special unitary linear transfor-
mations in CV and, as is conventional, we take its Lie algebra su(N) to consist of complex
N x N anti-Hermitian matrices with zero trace. Latin indices a, b, etc. from the beginning
of the alphabet run over the N2 —1 generators of su(N). We let these generators be denoted
by T, with structure constants fabC satisfying

[T, Th) = iV2f T,
= .. T (1.4)

We also normalise the Cartan-Killing form on su(NV) in such a way that
Kap = tr(T,Ty) = dgp- (1.5)

The indices a, b, and so on are raised and lowered by using £* and its inverse kqp, respec-
tively. The fundamental representation of SU(N) we denote by V = CV. Latin lowercase
indices 7, j, and so on run over the N basis vectors of V.



We will denote by S the complexified spinor representation of Spin(1,d—1). The Dirac
matrices, v*, satisfy

{27 =29 (1.6)

We also frequently make use of Feynman’s “slash” notation: for any vector v in RM4~1,

we
write ¢ = 1, Y*v” = y*v,. The Dirac operator is then simply expressed as d= Y0,. In

our conventions, the product of two Grassmann numbers, ¢ and Y, satisfies (£x)T = xT¢l.

2 Gauge theories with matter

Our focus in this work is on gauge theories coupled to matter fields in the fundamental
representation of SU(N). In this section we briefly review their field content and action,
and use the BV formalism to determine their master action and extract their Lo, structure
through the corresponding BV transformations.

2.1 Quick review of the BV formalism

Let us first briefly recall the BV formalism for general gauge theories. An extended review
can be found in [34].

Consider a gauge theory with collective field content ¢", classical action Sp[¢] and
gauge parameters €“. For simplicity, we are assuming an irreducible gauge algebra, i.e.
with linearly independent gauge transformations.

The starting point of the BV formalism is to promote the infinitesimal gauge param-
eters € to ghost fields of opposite Grassmann character (bosonic gauge symmetries give
origin to fermionic ghosts and vice-versa). Additionally, we assign a graduation to our
fields, the ghost number, equal to 1 for €* and 0 for ¢". The next step is to introduce an
antifield for each field in the theory. We let ®4 run over all the fields ¢" and %, and for
each @4 we introduce an antifield &% with opposite statistics, and ghost number equal to
—gh(®4) — 1, where gh(®4) is the ghost number of ®*. Thus we can define an antibracket
of two general functionals F[®, ®*] and G[®, *]| by

— —
0 9 0 8)@. (2.1)

FG)=F —

(F,G) <8<I>A o%%  0P% 0PA

From there we look for a BV action S[®,®*] of ghost number 0 depending on ®* and
% subjected to two requirements. The first requirement is that S[®, ®*] reduces to the

original action Sp[¢] when the antifields ®% are set to zero. The second requirement is that
S|®, ®*] satisfies what is called the classical master equation

(S,8) = 0. (2.2)

The solution S[®,P*| exists as an expansion in powers of antifields, usually finite. Also,
it follows from (2.2) that S[®, ®*] is automatically invariant under the so-called BV trans-



formations given by

opy @ = —(8,0%) = 5;5 :
;S (2.3)
OBy @l = —(8,®4) = -

Differently put, the gauge symmetries of Sy[¢] are promoted to nilpotent global symmetries
of the master action S[®, ®*].

2.2 Chern-Simons-Matter theory

Chern-Simons-Matter theory has been highlighted in recent times in a number of pa-
pers [35-38]. We refer to those references for more details.

The field content for CSM is given by a gauge field A, which we consider as a 1-form
on RY2 with values in su(N), a Dirac spinor 1, which we consider as 0-forms on R"? with
values in S ® V, and a conjugate Dirac spinor v, which we consider as O-forms on R2
with values S ® V. More explicitly, A is specified through the components of the 1-forms
A® = Ajdz#, while ¢ and 1 can be described in terms of its components ¢ and ;.

The CSM action is

sold vl = [ du{ Lo (430,40 — LlucAgALAT) + 06D —mpp), (24

where & is the Chern-Simons level, m is the mass and ¢**? is the Levi-Civita symbol, with

€012 = 1. The covariant derivative, D,, is given by

(D;ﬂ/})i = 8u1/}i - iAZ(Ta)ijd’j, (2 5)
(Du&)i = ;ﬂZi =+ iAZ@Z’j(Ta)Ji-
This action is invariant under the following infinitesimal gauge transformations
0A;, = Dy,
St = ic™(Ta)' 9, (2.6)

5 = —icp;(Tn);,

where ¢ is the infinitesimal gauge parameter, which we interpret as a O-form on R"? with
values in su(N), and D,c* = 0,c® —1i be“AZcC is its covariant derivative.

The field strength F' is a 2-form on RY? with values in su(N). In terms of components
this is F'* = %Fﬁyd:z“ A dz¥ with

ﬁﬁ:@ﬂ—@@—@f@&. (2.7)

In addition, there is a matter current J associated with the spinors ¥ and 1, which can be
thought of as the 1-form on R%? with values in su(/N) having the components

J8 = iy (T) 0. (2.8)



The equations of motion derived from the action above are simply

R, = I,
iV (D)t — mapt =0, (2.9)

(D, )" + map; = 0.
In particular, the Bianchi identity for F' is compatible with the covariant conservation of
J&, D,Jt = 0.

We now recast the CSM theory in the BV formalism. First, we promote the 0-form
¢ with values in su(N), appearing as the infinitesimal gauge parameter in (2.6), to an
anticommuting field of ghost number 1. Next we introduce antifields A*, ¢*, ¥* and ¢* for
all the fields A, 1, 1 and ¢, with A* regarded as a 1-form on R»? with values in su(N), *
and 1* as O-forms on RY? with values in S®V and S ® V, respectively, and ¢* as a 0-form
on RY? with values in su(N). Therefore, A*, ¥* and ¢* have ghost number —1, while ¢
has ghost number —2. In this case, the solution of the master equation (2.2) is given by

S[A7 A*7 /l/}? /IZ*J 7‘;7 /(/]*7 c7 C*] = SO[A7 w) /l/_]:l

3 a p*p is xa b _c . a Tx i R i xj (210)
+ - d’z § Dy Al + ifabcc et +ic"Y; (T,) i —ic 0i(T,) S
The BV transformations defined in (2.3) are explicitly given by
6BVCCL — %fbcacbcc
dpv Ay = Dyc”,
Sy’ = ic*(T,)' 07,
Spvth; = —ic®i (T,).,
e R ) (2.11)
dpvA," = e F N = T = i fe“cP A

Sy = i(Dp)iy* + map; — i)} (Tu),,

Opvep™ = iy (D) —ma’ + i (T,) 9™

5BVC*a — —DHA*(W _ ifbc“c*bcc + HZJ;K (Ta)ijwj _ i@ZJ@' (Ta)ij¢*j>
and their nilpotency follows from the master equation.

2.3 Quantum Chromodynamics

Let us next turn to QCD. Standard references include [39] and [40]. Our conventions are
those of [41].

As in the previous section, the field content of QCD consists of a gauge field A, a Dirac
spinor 1 and a conjugate Dirac spinor ). However, being a four-dimensional theory, we
now consider A as a 1-form on RY3 with values in su(N), while ¥ and v are regarded as
0-forms on R'3 with values in S®V and S®V, respectively. The field strength components
Fy, are defined by the same formula as (2.7), and the covariant derivatives D, and D“LB,
by the same formula as (2.5). The action for the theory reads

SO [A7 wv TZJ] = /

1 a v (3
[ ate { =R+ 56D — m)v (2.12)



where again m is the mass of the matter fields ¢ and . This action is invariant under
infinitesimal gauge transformations as in (2.6), with the infinitesimal gauge parameter
¢ being now a 0-form on RY3 with values in su(N). The equations of motion derived
from (2.12) are

D,F} = Jt,
iy (D) — m =0, (2.13)
i(D/ﬂZ)i’}/M + m&z =0.

Here D, FI" = 0,FI" — i beaAbyFC“” is the covariant derivative appropriate to the field
strength F', and J¥ are the components of the covariantly conserved matter current defined
by the same formula as that appearing in (2.8).

We next consider the BV formulation of QCD. Let us therefore promote the infinites-
imal gauge parameter ¢ to an anticommuting field of ghost number 1. Following the CSM
case, we denote the antifields as A*, ¢*, ¥* and ¢*, with respective ghost numbers —1,
—1, —1 and —2. We think of A* as a 1-form on R"? with values in su(N), * and ¢* as
0-forms on R'? with values in S ® V and S ® V, respectively, and c¢* as a 0-form on R'3
with values in su(/N). The BV action is

S[A,A*ﬂ/% Jj*a ijw*a ¢, C*] = SO[A7 %1/;]

+ d*z {DMCQAZM + %fabcc*acbcc + icazﬁf(Ta)ijd)j — icaii(Ta)ijw*j},

R1,3

(2.14)

such that

opvc’ = %fbcacbcca
opvA), = Dy,
ey’ =i (Ta) 07,
Oy = —ic";(Ta)';, ) (2.15)
Spv AL = DVFy, — J0 —if, *cP AL
opv; = 1(Dpth)int +mab — i3 (Ta);,
Opvy™ = iy (D)’ — map' +ic*(To)' 9™,
Spye™® = =Dy A™H — i fy “eret 17 (T) 97 — ihy(T*) ;9.

constitute the nilpotent BV transformations of the fieds and antifields.

2.4 Scalar Quantum Chromodynamics

Lastly, let us describe scalar QCD. For some recent references see [42] and [33].

The fields of interest here are a gauge field A with field strength F', together with a
scalar field ¢ and a conjugate scalar field ¢, which we consider as 0-forms on R'3 with
values in V and V, respectively. In terms of components, ¢ and ¢ are represented by
functions ¢’ and ¢;.



The action for the theory is given by
_ 1 _ _
Sol4.0.0] = [ dte{- SR + D,oD"0 ~ miGs ). (2.16)
R1,

with m being the mass of ¢ and ¢. The covariant derivatives are defined in the standard
way as

(Du¢)i = 8u¢i - iAZ(Ta)iquj,

_ - - ; (2.17)
(Dug)i = 0ugi + 1Au¢j(Ta) i
The gauge transformations can be cast as
dA} = Dy,
59" = ic*(T,)" ¢, (2.18)

3¢i = —ic"g;(Tu),,
where the infinitesimal gauge parameter ¢ is as in the QCD case. We can also define a

matter current J associated with the scalar fields ¢ and ¢, which we view as the 1-form on
R with values in su(N) with components

T = (Dpd)i(T)';¢" — ¢i(T*)' (Do)’ (2.19)
The equations of motion derived from (2.16) are given by
D,Fi = gk,
D'Dy¢' +m?¢’ =0, (2.20)

DuDuQEi + m2€5i =0,
and, again, imply the covariant conservation of the matter current, D, J/' = 0.
As in the previous cases, the BV algorithm can be reproduced if we simply promote
the infinitesimal gauge parameter ¢ in (2.18) to an anticommuting field of ghost number 1,
and introduce antifields A*, ¢*, ¢* and ¢* conjugate to A, ¢, ¢ and ¢, with ghost numbers
—1, —1, —1 and —2. Here A* and ¢* are interpreted as in the QCD case, and ¢* and ¢* as
0-forms on R with values in V and V, respectively. The solution to the master equation is

S[A, A%, 6, 6", 6, 6", ¢, ¢ = So[4, ¢, 9]
+ / diz {DMCGAZ“ + i‘]?abcc*acbcc +ic"¢F (Ta)ijgbj — icagbi(Ta)ijng*j},
R1,3 2

which directly lead to the nilpotent BV transformations:

(2.21)

i~
5B\/Ca — §fbcacbcc

opvAj, = Dy,
opve’ =ic"(To)';¢,
Sy = —icd;(Tu);, (2.22)
Sy AL = DVFY, — Jt —if, " A,
0By} = (D" Do) + m*g; — icd5(Ta)’,,
Spve™ = (D*Dyug) +m?¢" +ic*(T,)' 0",
bpve™ = ~Dy AT —ify "0 + iG] (T) ;@7 —i6u(T7)' 6.



As we will see in the next sections, the BV transformations in (2.11), (2.15) and (2.22)
are the basic structures needed to extract the L., algebra of their respective theories.

3 L-structure for CSM theory

In this section we shall present the L.,-structure underlying CSM theory and use it to
determine recursion relations for its tree-level scattering amplitudes. The key ingredient
in this construction is the perturbiner expansion, which can be formally obtained in the
transition to the minimal model of its corresponding L., algebra [25]. We will also describe
how to derive exact expressions for the tree-level scattering amplitudes in CSM theory by
analysing the respective homotopy Maurer-Cartan action in the cohomology.

3.1 The CSM L, algebra

We will first describe the Lo,-algebra associated to the CSM theory. For more information
on the theory of L.,-algebras we refer the reader to [5] (see also [6]).

Denote by Q"(RY2, su(N)) the space of r-forms on RY? with values in su(N), and by
QO(RY2, S ® V) the space of O-forms on RY? with values in S® V. We let d be the exterior
differential, * the Hodge star operator induced by the Minkowski metric, and § = *dx
the corresponding codifferential. Then, the graded vector space L underlying the CSM
Loo-algebra is

L° = QY(RY2, su(N)),
Ll — Ql([Rl’Q,su(N)) @ QO(R1,27 SeV)® QO(IRL27 S® ‘7)7
L? = QYRY su(N) @ QURMY2, S @ V)@ QORY2, S@ V),
L3 = QY(RM2, su(N)).

In the terminology of subsection 2.2, an element ¢ € LY is related to the gauge parameters,
an element A 4+ 1) 4+ ¢ € L' is a triple consisting of a gauge field, a Dirac spinor and a
conjugate Dirac spinor, an element A* + ¢* + ¢* € L? is the triple of antifields conjugate
to A, 1 and v, and an element ¢* € L3 correponds to the antifields of ¢. The higher
order brackets on L are conveniently encoded in the BV transformations displayed in
equation (2.11). As explained in the subsection 4.3 of [5], they can be cast as

6Bvca = —%ZQ(C, C)a,
1 1 - 1
5BVAZ :ZI(C)Z+Z2(AaC)Z+§l3(A7A7C)Z+513(w+¢7¢+'¢ac)z+§l3(ca c,A*)Z,
Oyt =la(v,¢) +13(A,1,0) +ls(c,c, 9",
5BV1Zi :lQ(?Z},C)i—|—l3(A,?E,C)i+l3(C, Cﬂ/;*)i’ (31)
1 1 — _
opvA, = —ll(A)Z—§l2(AaA)Z— 552(¢+¢,¢+¢)Z—l2(67 AN)o
6BV1Z};< = _l1(¢+¢)2_l2(14,&)1—12(0,&*)14‘ )
gy = —l (Y+0) —la (A, ) —la(c, ")+,
OBy ™ =11 (A") +la(A, A*) —la(c, ") +la(Y+1, P +p*) +---



where for the antifields we have explicitly written only those terms which are needed for

our discussion. The non-vanishing higher order brackets l,, can be determined by a direct

comparisson between the above expressions with (2.11). For I; we have

satisfying the L, relation

For I3 we have

ll(c)ua = *aMCa S Ll,

k 2
= g, Ay € L,

l1(A)

1Y +9)" = =99 + my' € L2,
1( + )i = 10" — map; € L2,

h(A%)g = —0" AL, € 1P,
ll(ll(x)) =0.

la(c,¢2)* = ify“cics € LY,

la(c1, Ag)ft = ifyp. " A5, € LY,

la(c1, A3)y = ify "} A5, € L?,
lo(cr,65)" = —ifp."fes® € L?,

l2(A1, A2)j, = %EuvpfbcaAlfyA;p e L?
la(A1, A3)* = ifbcaAlqugcﬂ er’
Iy(cr,92)" = _iccll(Ta)ijl/’% €L,
la(cr, )i = icfao;(Tu); € L,

la(cr, ¥3)" = —ic{(To)' ;05" € L2,
Ia(c1,93)i = icfeba;(Ta)’; € L?,
I2(A1,1he)" = iWMA(fM(Ta)ij¢g €L
l2(Ar, )i = —iAS, i (Ta) 2 € L,

la(W1 + P1, 92 + 2)% = (T)[(D1ivudd) + (Yaiyu])] € L2,
Lo (Y1 + U1, 95 + ¥5)" = i(Ta)ij(J};id}{ —Pry’) € LP,

such that

l(la(x1,22)) = (I (21), 22) + (1)l (21, 1y (22)),

with |z1| denoting the grade of ;. All the higher products ,,, with n > 3, vanish.

We can now identify the underlying cochain complex of this algebra:

QO(R12, su(N)) — Q1 (R12, su(N))

*d

QO(RY2, S ® V) ( 0 i$+m> QO(RY2, S @ V)

id—m 0

D D
QU([RLQ’ S® f/)

QO([RL?’ S® V)

~10 -

(3.5)

QN R2, su(N)) =2 QO(R'2, su(N)).
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This Ly.-algebra can be made cyclic by setting the non-vanishing inner products be-
tween the different elemets of the algebra to be

(c,c*)y = - d3z ¢,

(A, A*) = s A’z AJF A, (3.6)

b0 407 = [ a6+ )

where ¢ € L0, ¢* € L3, A+ + ¢ € L' and A* +¢* +¢* € L.
Using the inner products above, it is straightforward to verify that the homotopy
Maurer-Cartan action for the Lyo-algebra £cgm, given by

o

SuclA+9+4P] ="

A+ Y+ A+ +9,. . ATy ), (3.7)
n=0 '

(n+1)

indeed coincides with the CSM action (2.4),
7] — 3 K a iz a Ab gc e
SMC [A+w+¢] = /[Rl,? d’z {-4}[{5” P <AuayApa_ 3fabcAMAyAp> —|—w(1lD—m)¢} (38)

Since our goal is to deal with multiparticle solutions (perturbiner expansion), we have
to slighty modify the definition of the L..-algebra L. To that end, let (k,)p>1 be an
infinite set of momentum vectors in R™2. Let also OW,, be the set of words P = pip2 - - - pn
of length n with p; < po < -+ < pp. If P = pipa---p, is one such word, we put
kp = kp, + kp, + -+ + kp,. We denote by &°(R1?) the space of formal series of the form

h(z) = Z Z hpe kP (3.9)

n>1 PeOW,,

by &7 (RY2 su(N)) the space of r-forms on R%? with values in su(NN) and coefficients on
EO(RY?), by £°(RM2, S®V) the space of O-forms on RY? with values in S®V and coefficients
on &°(R12), and by &°(R%2, S ® V) the space of 0-forms on R!? with values in S ® V and
coefficients on &°(RY2). We further extend the definition of the exterior differential d,
the Hodge star operator *, the codifferential § and the Dirac operator @ to the spaces
&*(RY2,su(N)), 2R, S ® V) and £°(R2, S @ V) in the obvious way.

In terms of these new spaces, the graded vector space underlying the cyclic Lo.-algebra
L controlling the perturbiner expansion for the CSM theory is

The higher order brackets and the cyclic inner product are determined by the same formulas
as in (3.2), (3.4) and (3.6).

- 11 -



3.2 The perturbiner expansion for CSM

Now we turn our attention to the perturbiner expansion for the CSM theory. As explained
in [25], this can be naturally obtained from the minimal model for the L.o-algebra L.

Let us start by describing the minimal Le-structure on the cohomology® H*(L) of L.
For this purpose, we need to define a projection p: L — H*(L) and a contracting homotopy
h: L — L. The first thing to notice is that the cochain complex underlying H*(L) is

ker(d) 0 0 0 0 0 coker(9).
@ @
0 id+m 0 0 id+m
ker| . — > coker| .
id—m 0 id—m 0

The first two components of the projection p(® and p(!) are thus chosen to be the natural
projections induced by the Hodge-Kodaira decomposition,* while the last two components
p@ and p® are chosen to be the ones induced by the quotient maps. As for the contracting
homotopy, it is necessary to consider the massless Feynman propagator DY, the Chern-
Simons Feynman propagator C¥ and the spinor Feynman propagator S¥, defined on the
spaces of O-forms on R%2, 1-forms on RY2, and 0-forms on R}? with values in (S ® V) &
(S ® V), respectively. Their explicit expressions are

1 2 or 1 0 ig+m
DF=—, =2, = sf=o_— 3.10
o’ I{£MVP|:|7 D+m2 1a—m 0 , ( )
or, when acting on plane waves of the form e
1 2 ik# 1 0 F+m
F _ F _ F _
D" = k2 C = ?‘?ullpﬁv S = /€2—mQ<k om0 ) (3.11)

We extend all three propagators D¥, CF and SF in such a way as to yield linear opera-
tors D¥: £9(RY2 su(N)) — &O(RYM2 su(N)), CF: &Y (RY2 su(N)) — &1(RY2, su(N)) and
SF: 6ORY2,S@V)® EORYZ, S V) = &ORY2,S@ V) @ &°(R"2,S @ V). The three
non-zero components of the contracting homotopy h then read as

h“L:(DFoao) . LY IO,

F
’”2):(% SOF> =L (312)
F
h® <(1if) ) I3 12

3The cohomology is given by the plane-wave states annihilated by [;. For the gauge bosons, this is
empty as Chern-Simons fields do not have dynamical degrees of freedom. For the spinors, the cohomology
is simply given by states satisfying the massive Dirac equation.

4See [3, 9] for more details. For physyicsts, the Hodge-Kodaira decomposition might be better understood
as follows. In a given BRST quantized theory, any set of states can be decomposed into three parts: spurious
(BRST-exact), physical and unphysical. Here, 1 plays the role of the nilpotent BRST charge.
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or, more explicitly,

0,

) (A)® = —E“A““,
L2 (A*)z — EsﬂypgA*aP
KO (g% 4 )i = lma:;n?w (3.13)
B + )= D g
By = %C*a

where A € L', A* +¢* +¢* € L? and ¢* € L3. With these prescriptions, the quasi-
isomorphism between H*(L) and L is determined by maps f,: H*(L)®" — L which are
constructed recursively using h, whereas the higher order brackets I/,: H*(L)®" — H*(L)
are constructed recursively using p. We shall not reproduce here the explicit expressions,
but instead refer the reader to the appendix A of [9] (see also [5]). It is important to note,
though, that such expressions are derived under the assumption that h! (A +Y+9)=0
for any A +1 + 1 € L'. By the definition above, this implies that the first summands
A € &Y (RY2 5u(N)) should satisfy the Lorenz gauge condition 9,A% = 0, since this
corresponds to our chosen representatives of the cohomology. Different gauge conditions
are of course possible but they would have to be accompanied by a corresponding change
in the contracting homotopy (i.e. the propagators in the field theory).

We shall now obtain the perturbiner expansion for the CSM theory by using the
minimal Le-structure on H*(L). For this, we consider a Maurer-Cartan element 1/ 4+’ €
HY(L) = ker(. 0 i&”m), in which each summand is written in the form

id—m 0
wl — Z \I/p efik‘p'x’
p>1
. (3.14)
W= e
p>1

which are the simplest multi-particle solutions of the free Dirac’s equation.
Then we define the perturbiner expansion as the Maurer-Cartan element A + 1) + 1) in
L given by the formula

Atp+=3 - fn¢+¢,...,¢’+¢7). (3.15)
n>1"
To help understand this definition, we work out the components A € &1(RY?, su(N)),
Y € EORY, S®V) and ¢ € &9(RY2, S ® V) separately. Here we may borrow from the
analysis carried out in the subsection 3.2 of [25]. To start off, we notice that, on general
grounds,

Fa@ + 4 )

3 N - - 3.16
;Z( ) Olz)(fk(w +¢"”’wl+¢/)’f”—k(¢/+¢/v---’¢,+¢/)). ( )
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The higher order brackets in (3.4) and the definition of A(?) in (3.12) then tells us that

A=y (Q;)!fw VT

n>1

p=3 (2n+ G +O ) (3.17)

n>1

wl_2(2 +1) f2n+1(¢ +¢7”'7wl+¢/)ia
where now

2n—1
f2n(w/+’¢7a"'a¢,+1]},)a“:7% Z (2]?)( Ol2)(fk(¢ JF?/M---,?/)/?L@E/)’
k=1
f2n k(¢/+¢/’_”’¢/+¢7))au

- (2 1
f2n+1(¢l+¢/»~-71/1 +1/] Z<n+ )(SFOZQ)(fk(w +¢77¢ +¢) (318)
f2n+1—k(1/] +¢77¢ +¢)) )
/ i / i 1 o 2n+1 F ! 7! / i
f2n+1('¢ +¢77¢ +¢)z:—§ k (S ol?)(fk(¢ +¢;7¢ +¢)7
k=1
f2n+1*k(wl + 1/_},7 s 7w/ + IZ/))I
Using mathematical induction and taking note of (3.11), we reduce the above to
Fan@W/ + 9 ) = 2n)t D AT
PEOW,,
fonr1 (W + 4 ) =@ 1)L YT Upe e (3.19)
PEOWay 41

Fonr (W 40, )i = @n 1) D Wpe P,

PeOWap 41

where the coefficients A?D“ , \I/fp and W p; are determined from the recursion relations

3“ = b
‘Aﬁa = — Z 5 €ypo'fbca36 HEC
sp sp P=QUR
2mi Ve -y
Jp = o kpy Y. MW (T, T,
P=QUR
botm (3.20)
- P i
P= T sp—m2 Z AQ ‘I'Rv
P P=QUR
2 Fp—m
Z \IIRJ SP _ m2
P=QUR

Here, P = (Q U R denotes the distribution of the letters of the ordered words P into non-
empty ordered words @ and R. In line with the terminology used [17, 18, 20, 22|, we
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refer to the coefficients A%, ¢, and U p; as the Berends-Giele currents for A, ¥ and 1,
respectively. Observe that the auxiliary quantities J#* are the perturbiner coeflicients of the
topological current associated to the matter current (2.8). While the latter is covariantly
conserved, the former is divergenceless (kp,Jd’s’ = 0). The topological current is the one
that generates the field A as can be seen in the equations. By plugging equation (3.19)
back in (3.17), we obtain

ap ap —ikp-x __ a —ikpg-x a —ik -z
AM_Z Z Ap e ™ _Z‘Apge T+ Z ‘Apgrse P A

n>1 PeOWa,, p<q p<g<r<s
i __ i —ikp-x __ i —ikp-x i —ikpgx .
PEY Y Whe o Y w3 ot o
n>1 PeOWap 1 P p<g

Y= > Upe T =3 e £ Y Wy et
p

n>1 PeOWap4q p<q

These expressions are called color-dressed pertubiners [18], since they yield color-
dressed amplitudes when applying the Berends-Giele formula. In conclusion, as advertised
above, the recursion relations for the perturbiner coefficients are encoded in the recursion
relations for the Lo-quasi-isomorphism from H*(L) onto L.

Before continuing, we would like to add some physical input. The multi-particle expan-
sions above may be slightly misleading because there does not seem to be any restriction
on repeated particle labels, e.g. A{,. In addition, a given label cannot simultaneously be
used to describe different polarizations. In order to remediate this, we will formally assume
that the polarisations Ay, 1/1; and 1/_1pi have an internal structure given by

AS = A2 6, (3.22a)
W = 6, (3.22b)
@Z_in = 1/_)pi9pa (3.22C)

where the tilded polarisations have the opposite statistics to the original ones and 6, is
a Grasmannian variable satisfying 0,0, = —0,0,. Therefore, the single-particle labels will
never appear twice in a given ordered word and the computed multiparticle expansions
are well defined. In spite of this construction, the final results will always be written in
terms of the original polarisations. This also applies to the following perturbiners in the
present work.

Now we turn to the analysis of the tree-level scattering amplitudes for the CSM theory.

3.3 Tree-level scattering amplitudes for CSM

In this section, we will see how the homotopy Maurer-Cartan action for H*(£cgm) can be
seen as a generator for tree level scattering amplitudes. The starting point is to insert the
multi-particle solution (3.14) into the homotopy Maurer-Cartan action

/ / YA 1 / ! / 1! / "
Suold’ + 9] = 3 gy W 0 4 00 ). (3.23)
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In order to compute the sum, first notice that
_ _ 1=/, _ _ _
L+ ) =5 D <Z>( Volo) (fi(d/ +0 oo,/ +4), frmi (W44, 0 +40)).
i=1
(3.24)
Thus, using the L relations (3.4) and inner products displayed in (3.6), the action (3.23)
can be cast as

Sucl' + ¢, ¢+ =) SOy (W ), (3.25)

n21(2 n+2)!
such that
bt W ) =2+ )Y AG(T) W T (3.26)
PEOW27L+1
P=QUR
bt (0 0 )i == )Y U (T) Age R, (3.27)
PeOWa, 11
P=QUR

These results are straightforward to obtain using mathematical induction.
Now, using

s dBre T = (21)35(k), (3.28)

we finally obtain

SII\/IC = _(27r) Z 2n + Z Z 5(ka){\T/Rj(Ta)ji~AaQ\IJ% + @piA%(Ta)ij\P;{}'
n> >1 PeOWa,
= Poqui

(3.29)
This action contains all the possible tree-level scattering amplitudes with arbitrary labels,
i.e. redundant information for practical purposes. In order to improve the output, we can
constrain the multiple sums in several ways. First, we can restrict the sum to a “diagonal”
form by taking p = 2n + 2 in the summand. This takes care of the permutation factor
Additionally, we can remove the global constant factor and leave the momentum

(2n+2) +2)
conservation delta function implicit. We are then left with
Stic =2 D AR AVt + Veni2iflg(Ta)' W} (3.30)
n>1 PEOWap 11
P=QUR

Since this expression is multilinear in the coefficients \I/; and ‘i/qz-, we can apply an op-
erator that exchanges a given coefficient by its boundary value, i.e. the actual polarisations
we want to compute. Such operators can be defined as:

)

" 0w, 190

(3.31)

Note, in particular, that we do not have to worry about extra signs being introduced in
the amplitude computatlon since they have bosonic statistic. The boundary conditions are
usually expressed as ¥,,; = vp6 and \Il’ = uq5 where v and u satisfy

vp(k, +m) =0, (k, —m)ug = 0. (3.32)
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In Chern-Simons Matter theories, the amplitudes always have an even number of par-
ticles since the only bosonic field, the gauge vector, does not have any propagating degrees
of freedom. Therefore, 2m-point amplitudes of m fermion-antifermion pairs are given by

-9 9
o= 11 () I () s

qest, 7/ resz,

, (3.33)
U, U=0

where the 8!, are non-intersecting particle label sets of size m which are determined by the
explicit process to be computed. For example, the choice of two three-element sets picked
from (1,2,3,4,5,6) for the <% amplitude.

It is worth pointing out that these amplitudes can also be obtained using the Berends-
Giele formula on the currents with the respective boundary conditions. The L., construc-
tion offers an underlying algebraic structure, including a formalisation of the perturbiner
expansion.

3.4 Dyck words and flavoured amplitudes

One particular kind of amplitudes we are interested in are the ones with distinct flavors for
the fermions, these can be extracted from the Maurer-Cartan action (3.30) by restricting
the set of words we take in the sum to Dyck words, as we will now show.

Ampltidues as the ones above, involving only fermion-antifermion pairs, were studied
in [43, 44] for QCD, where a new basis for amplitudes with matter was introduced employing
Dyck words. This is known as the Melia basis. A conjecture for the generalisation of Melia’s
result was done in [30] and it is known as the Johansson-Ochirov basis. This conjecture
was later proved in [45].

Dyck words are regular words decorated with a string of parentheses “(” and “)” which
are properly closed. These words help to keep track of the fermion-antifermion pairs in the
amplitude with the decoration p (“(”) for the antifermions and ¢ (*)”) for the fermions.?
For example,

1234 = (1(23)4)

is a Dyck word, representing two antifermions, 1 and 2, colour paired with two fermions,
respectively 4 and 3. On the other hand,

31 = 1)(23)(4

is not a Dyck word.

In our construction, we also have the ordering restriction of the words, which furhter
simplifies the amplitude generator.

The last ingredient concerns the boundary conditions of the problem. We will fix the
particle in ¥} to be an antifermion and the (2n 4 2) particle to be a fermion, so the second
term on the right-hand side of (3.30) drops out. This choice also means that the first and

ik-x

50 . . — . . .
°Since we took solutions with e our conventions for “(” and “)” are in the inverse order from [30].
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last particle have the same flavour. With all the previous considerations, we propose the
following generator:

Gesm=Y. > SULAG(TL) W, 0+ > Ui(T) AR(kiE;?>AAT)JWwW2

n>1Qe0Ws, Q=RUS
Q€eDyck R,SeDyck

(3.34)

In order to make sense of this generator, the perturbiner expansions have to be analo-

gously localised. We will call a word even or odd according to its length. By construction,

the (anti)fermion currents in (3.20) have only odd words P. In this case, due to the or-

dering condition, the label that corrupts the Dyck “character” of a word will always be

located in one of the extremes, such that P = pQ and @ € Dyck. Thus, our perturbiner
coefficients for odd words will be cast as

Q=" (kaer)AQ( 2)'; ¥

Spg —m?

+ (%”Qf m) > AR(T) (W) (Ty) ATy, (3.352)
5pQ — M) 0_RUs Sps — m

R,SeDyck
\I'sz—\I’pJAQ( ) (M)

+ Z \Ilpj(Tb) k‘A <%pR m)-As( ) (M) (3.35D)
=RUS SpR SpQ — M

RSGDka

Analogously, the even part of the perturbiners in (3.20) shall be written instead as

I5 kpa  aqpb
a (o
.A% = ?P — 73 Z 8)\“y5Vprbca3€Q HRC7 (3368‘)
P P p=qQur
QUREeDyck
2mi - L
a v
Iy = — kpa ST MU (T T%. (3.36h)
P=QUR
QUReDyck

In this construction, even words that are not Dyck are automatically projected out of
the generator (3.34), i.e. they do not contribute to the fully-flavoured amplitudes. Once
the boundary conditions are set, the (2n+ 2)-point fully-flavoured scattering amplitude for
CSM can be finally expressed as

O \N(~; & \&(= ) g )
%Flav <\I’ i— ) NI i T} e \If] G
Y owy, M ow, 1:[ T Oy o 8\I/2q 1 oM

q=2

U, U=0
(3.37)

We are now ready to work out some examples using the previous construction.
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3.5 Examples

We will now present some examples, focusing exclusively on fully-flavoured amplitudes.
First, the case of the four-point scattering amplitude. The only possible Dyck word
in (3.34) is Q = 23. From (3.37), it follows that

av a

2w i ani _ lk 5>\MV _
= —(Ta)",;,(T*)?;,0170u4 (m>v27VU3, (3.38)

N K 593

which can be diagramatically expressed® as

::E: 3
%Flav. —
4

For the six-point case, we will choose the labels to be (1,2,3,4,5,6). Because of the

[\

=

ordering restriction, there are very few possible Dyck words and the only contributions
n (3.37) are

Therefore, the six-point amplitude reads

0! 8-@% 0 7z 0 {(Ta)iljﬂgz&(%l% >A45(Tb)

%Flav‘ =3 \i -
6 ! 2h8\112h 38\1139, 8\1/4k 58\I/l5 5123 m2

+ (Ta)zljﬂfﬁ Lz A%(Tb) + (Ta)21i6‘A3345 Ug- (3.40)
S145 — M
The first two terms inside the curly brackets are straightforward to compute. For the
third term, we have to take into account the deconcatenations of the word 2345 in the
Dyck localisation. The allowed deconcatenations for it are

(R, S) = (2,335), (4,235), (245,3), (234,5), (23,45), (45,23). (3.41)

There is also the deconcatenation 24 35, but we can see that they correspond to non-Dyck
words and they do not contribute to the calculation. In the odd parts of the deconcatena-
tions, it is easy to identify a letter in one of the extremes that breaks the Dyck character
of the word. A similar computation is presented in more details in the appendix A.

After applying the boundary condition derivatives and using the momentum conser-
vation of the scattering, the fully-flavoured 6-point amplitude can be presented as

472\ & crn
%Flav. — o rer 42
o () 5 3.2

2
K r=1

In this section we present the Feynman diagrams just as a pictorial representation of the amplitude.
We do not present the Feynman rules for the graphs, since the procedure with those is usually the other
way around, i.e. graphs—Feynman rules—amplitude. In the preceding sections they will be cast out in
order to generalise some results.
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where the ¢;’s are the colour factors that give information about the gauge group represen-

tation, the n;’s are the kinematic numerators which depend only in kinematical variables
(momenta and polarisations), and the D;’s that are the propagators. The colour factors

are given by

cr = (Tu)"(Ty), (T*)2, (T,
ca = (Ty)"j(Ta) (T2, (T,
cs = (Tu),(To) (T, (TP,
ca = (T)";(Ta) (TP, (T,
cs = (Tu)"*;(To),, (T, (T2,
co = (T)";(Ta),, (TP) ", (T2,

C7:fabc(Ta)“ (Tb)m (Tc)i4i5'

while the kinematic numerators and propagators can be expressed as

n1 = kagae ™ kaspe " (017, (Fro3 —

N = kozxne™ kazpe " (0170 (Fras

m)Youe)(V2y,us) (Vayrus),
—m)yuue) (V2y,us) (Vayrus),
(

n3 = k163 ka5 (V2 (Faas +m)%u3)(171%’u6) Vayrus),

ng = —k‘lﬁ,\é‘/\uykﬁpgl)aT (’5270(%'245 -

15 = kioae ™ ka3pe” T (D4 (Kass +m) Yo tis) (D17uu6) (V27-us),

ne = —k’lsAé‘/\sz:apf?pm(174%(%234—m)’yuu5)(171’mu6)(172%u3),

251/,003163 3345,

m)%“iﬂ)(”l%%) (Vayrus),

where we wrote the colour-stripped topological currents qu = pq,\s/\”"(@p’yyuq).

Like previously, this amplitude can be diagramatically expressed as

T
T

'!Z{FlaV —

N

[ \OJ

= »-N

m

(= [ 98]
+

= N ]l

+
]

=

23:3
5

(3.43)
Dy = (s123—m?)s23545,
Do = (s145—m?) 823545,
D3 = (8345 —m?)s45516,
Dy = (8245 —m?)845516,
D5 = (5235 —m?)s23516,
D¢ = (s934—m?) 823516,
D7 = 593545516,
(3.44)
5
+2 3
6 T 6
3
5
6



It is interesting that the Dyck localisation in the cohomology Maurer-Cartan action
take us to an expansion that perfectly encodes the fully-flavoured diagrams in a compact
way. For example, in (3.40) we can see how the first two terms are the possible ways of
attach to the base fermion line two flavoured pairs directly via two internal vectors, and
the third one gives all the possible ways to organise the two flavoured lines with only one
internal vector attached to the base fermion line. Going to a higher number of points
the number of diagrams will increase exponentially, but the number of words for our first
expression in the cohomology Maurer-Cartan action will be considerably smaller due to
the localisation.

In addition, we would like to point out that amplitudes with fermions of the same
flavour can be obtained from the fully-flavoured ones just by adding label permutations.
Since different flavours usually have different masses, in section 6 we give a prescription to
take this into account.

4 L-structure for QCD

We will now use the underlying Lo-structure of QCD to derive recursion relations for the
tree-level scattering amplitudes. These are obtained by carrying out the same procedure
described in the previous section with slightly more involved steps.

4.1 The QCD L, algebra

Our notation here will also be similar: Q"(R%3, su(N)) is the space of r-forms on R'? with
values in su(N), d is the exterior differential, 0 the codifferential induced by the Minkowski
metric, and Q°(R'3, S ® V) the space of 0-forms on R!® with values in S® V. As a graded
vector space, the QCD L..-algebra L is

L° = QY(RY3, su(N)),
L' = QYRY su(N)) @ QO(RY3, S @ V) @ QRS Sa V),
L? = QYRY, su(N)) @ QORI S @ V)@ QURYP, S@ V),
L? = QY(RY3, su(N)).

Adopting the terminology of subsection 2.3, we think of the elements ¢ € L as coming
from infinitesimal gauge parameters, elements A+ +1) € L' as triples containing a gauge
field, a Dirac spinor and a conjugate Dirac spinor, elements A* + ¢* + ¢* € L? as triples
of antifields conjugate to A, 1 and 1, and elements ¢* € L3 as antifields conjugate to c.
The link between the BV transformations (2.15) and the higher order brackets on L is
provided by formulas identical to those of (3.1), except that for the BV transformation of
the antifield Aj* we will have the extra term 3ils(A, A, A)j;- The non-vanishing products
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for [1 are

ll(c);w = —8Mca S Ll,

L(A)S = —8"(9,A% — 9,A%) € L2,

LWy +9) = =i’ +my' € L2, (4.1)

L+ ) = —i0Py" — map; € L2,
W(AY), = —O" AL, € LP,

satisfying the relation (3.3). For Iy we have

la(c1, ) = ifbc“cl{cg e L0,

lg(Cl,Ag) lfbcacl 24 € Lla
la(ci, A5)% = if, Ch A e L2,

2
la(cr,c5)* = —ifbcaclicgc e L3,
I2(AY, A%) o = fane0” (AL AL.) — fabe(OuALy — 0, ALy AZ + (14 2) € L?

lo(Ay, A5 =i fbc“Ab At e r?
l2<cl7¢2)i = —101( ) W S L17

ber, do); = ictloy (T e 1Y, 4P

o, 3)" = —ie}(Tu)' ;05 € L2,

o, 43)i = ic{a;(Ta)’; € L7,

la( A1, b)) = iy AL, (To)' 0 € L2,

lo(Ar, ha)s = —1AL, o (To) " € I,

Lo(r + 1, P + P)ls = (T)[(hravuttd) + (i) € L2,

lo(1 + 1,05 +3)" = i(Ta)ij(@W{ —Prapy’) € L?,

satisfying the relation (3.5). And for I3 we have:

I3(A', A% A®) g = — fabe fede (AL AT AD 4 + sym(1,2,3)) € L*. (4.3)

satisfying the relation

lo(la(z1, ), w3) + (= 1) @2F Ty (g (29, m3), 1) + (= 1)@ F @Dy 1y (g, 21), 29)
+ (I (21), w2, m3) + (= 1) ig(21, 1y (2), 23)
+ ()Pl (2, 29, 1 (25)) + L (I3(21, 22, 23)) = 0. (4.4)

The underlying cochain complex is

QO(R3, su(N)) — QL(RL3, su(N)) o QLR su(N)) = QO(R13, su(N)).
® ®
QO(R3, 5 @ V) <ia3m i@—(‘:)—m> QO(RYS, 5 @ V)
® ®
QRY S@V) QR S2V)
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This Lyo-algebra is endowed with a cyclic structure defined by

(e, c*) = " dtz ¢,

(A, A*) = s d'z AFH AL (4.5)

Wb ) = [ a0 i),

where ¢ € L0, ¢* € L3, A+ ¢+ € L' and A* +¢* +¢* € L.
The Maurer-Cartan action has the same form as in (3.7) and can be computed to be

Swcld+v+0) = [ ate{-TFLFY + 56D - m)v .

reproducing the QCD action (2.12).

Next we must modify the definition of the L..-algebra L to work with perturbiner
expansions. For this, we will again consider an infinite set (k,),>1 of momentum vectors,
now in R3. As before, we denote by &°(R'3) the space of formal series of the form (3.9),
by &"(RY3, su(N)) the space of r-forms on R™® with values in su(/N) and coefficients on
&O(RY3), and by &"(RY3,S ® V) the space of O-forms on RY with values in S ® V and
coefficients on &°(R13). We also extend the exterior differential d, the codifferential § and
the Dirac operator @ to act on the spaces &*(RY3, su(N)) and &°(R'3, S @ V).

With this modification, the graded vector space underlying the cyclic Loo-algebra L
that encodes the perturbiner expansion for QCD is

L = &%(RY3, su(N)),
L' = YR, su(N)) @ €°(R2, S V) @ £°(RY3, S @ V),
L = YRV, su(N)) @ 6°(RY3, S V)@ &' (R, S @ V),
L3 = &R, su(N)).

The higher order brackets and the cyclic inner product are given by exactly the same
formulas presented above.

4.2 The perturbiner expansion for QCD

Let us now turn to the perturbiner expansion for QCD. Again, we will that it is encoded
in the minimal model for the L..-algebra L introduced above.

In order to describe the minimal L-structure on the cohomology H*(L) of L, we need
to specify a projection p: L — H*(L) and a contracting homotopy h: L — L. First notice
that, as a consequence of the abstract Hodge-Kodaira decomposition, the cochain complex
underlying H*(L) is

ker(d) —— ker(5d)/ im(d) 0 ker(6d)/ im(d) —=—> ker(d).
® ©®
0 id+m 0 0 id+m
ker(ia_m 0 >—>coker<ia_m 0 )
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With this in mind, we choose the four components of the projection p©, pM . p@ and
p3) to be the natural projections induced by such decomposition. On the other hand,
to define the contracting homotopy h, we consider the massless Feynman propagator DY
and the spinor Feynman propagator S¥, given by the same expressions as those in (3.10),
along with their extension to linear operators D¥: &"(R'3 su(N)) — &" (R, su(N)) and
SF: eOR3, 8@ V)@ ORYB, S V) = &XRY3,S@ V)@ &R, S® V). In terms of
these, the three non-zero components of the contracting homotopy h read as

h<1>=(DF05 o) . LV I
DFoP. 0
(2) — e . 2 1
h _< 0 SF> : L — L, (4.6)
F
RB) = (dOOD ) L L3 — 12

where Pp: & (RY3 su(N)) — &"(RY3, su(N)) denotes the projector onto the image of dd.
More explicitly,

hH(A)e —%A““,
L2 (A*)Z _ é(”uv _ uaz/>A*ay7
WO (4 4 ¢*)t = gj;ﬁ; (4.7)
(Y% + %) = 1D&+ i
B = _%C*a’

where A € L', A* +¢* +¢* € L? and ¢* € L3. Once more, it should be stressed that
the formulas for the L,-quasi-isomorphism and the higher-order brackets for the minimal
Leo-structure on H*(L) are derived under the assumption that h(") (A + 1+ 1) = 0 for any
A+ 41 € L' In view of (4.7), the first summands A € &°(R"3, su(N)) are then bound
to satisfy the Lorenz gauge condition 9, A% = 0.

Let us next examine how the perturbiner expansion for QCD can be extracted from
the minimal L.o-structure on H*(L). In analogy with the CSM theory case, we start with
a Maurer-Cartan element A’ + ¢ 4+ ¢’ € H'(L) = (ker(dd)/im(d)) ® ker(iagm iagm), for
which we have

la ap —ikp-x
A “:ZAp“e P

p>1
_ Z \I/Z —ikp-x
4.8
= (4.8)
B =3 Bpeihoe,
p=1

Again, we are automatically assuming the physical input described around equation (3.22).
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We then define the perturbiner expansion to be the Maurer-Cartan element A+ + 1)
in L given by the expression

Atp+ = Z an'+¢ + LA+ ). (4.9)

n>1

Let us make this construction clearer and work out the separate components A4 € &(RY3,
su(N)), ¥ € 8RS, S@ V) and o € &R, S ® V). The first remark is that, since f,, is
graded symmetric, we have

SolA 3+ A+ ) = Y (Z)fn(A’,...7A’,¢’+zﬁ’,...,w’+1/7), (4.10)
pt+g=n

where, on the right-hand side, there are p copies of A’ and ¢ copies of ¢/ +'. In addition,
for each decomposition of n into p + ¢, the general prescription for writing down the maps

fn gives

fn(Ala'”7AI71//+7~E/7”'71/}/+1;/)

:_% Z (?)( OZQ)(fZ( ) ~~7A/7¢/+1/_/7---7¢/+TZ/)7
" itj=n _ _
FiOAL ALY Ly )
. N (i i i (4.11)
S <Z>< _>(h< o 13) (Fi( Ao AL+ ),
Cidj+k=n J

fj(A/>"'7A,71/),+1Z/3"'>¢/+72),)3
fk(Ala"'7A,7w,+,(z/7"'7¢/+¢7))'

Thus, using the higher order brackets in (4.2) and (4.3), and the definition of 2(?) in (4.7),
we can show that

A =3 3T o (A ALY L ),
n>1p+2q= n

1 e _ .
- 77114/,...,14/, ! Ij'”’ / /'L7
n§>:1p+2§1:n !(2Q+1)!f ( vy vy (4.12)

_ 1 / I i / 7/
U= X o A AL

n>1p+2q+1=n p
Here, for each decomposition of n into p + 2g,
F(A A A )
= _% 3 (’;) (DF o bo) (A, A + 4,0+ ), (4.13)
fn( A AL )
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where we bear in mind that in the case when ¢ = 0,
a 1 n a
fa(A . AN ”:—5 Z <l>(DFolg)(fl(A’,...,A’),fm(A’,...,A’)) "

" l+m=n

n\[(n— 4.14
_% Z <k>< lk)(DFolg)(fk(A’,...,A’),fl(A’,...,A’), ( )

" k+l+m=n
fm(A’,...,A’))a“,
whilst for each decomposition of n into p 4+ 2g + 1,
fn(A,?"'7A,717Z},+1Z/?"'7¢/+17Z)/)i
1 n — -
:_5 Z <l>(SFOZQ)(fl(Alv'"7A,a¢,+¢/7"'7¢,+¢/)7 (415)

" l4+m=n )
fm(A/a"'aAluwl+TZ),)"'5’¢/+1Z/)) 9

and
falAL A 4+ ),
= _% H%::n (7) (ST o lo) (A, AL 40 ), (4.16)
P Ay AL L )

The recursion relations (4.13), (4.15) and (4.16) can be solved by induction. Next, in a long
but straightforward procedure, we substitute the resulting expressions into (4.12) to obtain

A =37 N AT = N A TR L N A okt

n>1 PeOW, p r<q
_ i —ikpx _ i —ikp —ik
=3 S wet =gt Sty
n>1 PeOW,, r<q
b= > peihrT = Z\pm e T LN e T
n>1 PeOW,, r<q

where the Berends-Giele currents A%, \Iﬂ]; and Up; are determined from the recursion

relations
1
AP = > A= ifitlhg  ARAG +AD,TH"),
SP SPP QUR
Z \IIQZPY (Ta)zj‘;[lgﬁ
P=QUR
TUY = ikpAY —ikp AR +ify,® > AYAY,
ron (4.18)
i k?p‘i‘m)
Up = _< 2 Z AQ
SP—M" ) pZQUR
Up; = Z Ug,(T, A@( kp = >
P=QUR
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Observe that these expansions are once again color-dressed versions of perturbiners.
Also, it is important to realise that the auxiliary quantities J%" and Fp" represent the
expansion coefficients of the matter current J* and field strength F**, respectively. The
requirement of the Lorenz gauge condition 9, A" = 0 translates then into the divergenceless
condition kp, A% = 0. Thus, as promised, we see that all the information contained in
the perturbiner coefficients can be encoded in the recursion relations for the L,-quasi-
isomorphism between H*(L) and L.

Next, we will present the generator for tree-level scattering amplitudes for QCD

4.3 Tree-level scattering amplitudes for QCD

As we saw in the subsection 3.3, the starting point to build the amplitude generator is to
insert the plane wave superposition in (4.8) into the homotopy Maurer-Cartan action in
the cohomology, which is simply

(A +0 L (A9 4, A+ ). (4.19)

SwclA'+9'+¢'1=>"

1
= (n+1)!

Analogously to (4.10), we can expand I/ (A’ + ' + 4/, ..., A + ' + ) as
(A 44 A ) = Y <q>l/ (A A Y ), (4.20)
p+q=n

where, on the right-hand side, there are p copies of A’ and ¢ copies of ¥/ + 1. Next, for
each decomposition of n into p + ¢, we use the general expression that gives us the higher
order brackets on H*(£qcp) to write

DA, . A ) 4, )

1 _ -
:_5 Z (?)( Ol?)(fl( ) --aA,,¢/+¢/;---7¢/+¢,);
Titj=n _ _
fj(A,7"'7A/7w,+¢/>"'a¢,+¢/)>
1 n\fn—1 - n (421)
=Y <Z>< .)(p( o ls)(Fi(A oo AL ),
D itj+k=n J

fj(Alv"'7A,771Z),+1Z/7"'71/}/+1/7)a
FulA o A ).

Now we can follow the same procedure that took us to the Maurer-Cartan action in
the cohomology for CSM in (3.29), to obtain the following result for QCD

Swic =@My ——

n>1

Z Z 6 PP {fabc( kQ .AR)(AC Aa)+ﬂb VAa 9:/11/6)
p>1 PeEOW,
P=QUR

+ Uil (T) W% — Uity (To)' ;W — WA (T0)' 0%}, (4.22)

(n+1)

which contains all the possible QCD tree-level scattering amplitudes for any given set of
labels for the particles.
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Without loss of generality, we can present this generator in a more compact form. As
in the CSM case, we will leave momentum conservation implicit and restrict the sum by
fixing one particle index (diagonal sum), removing the symmetry factor .—. Therefore,

/QCD Z Z {fabc k'Q Ab )(.AC Aa) —|—Ab V‘Aau:}#}f}yc)
n>1 PeOW,,
P=QUR

+ UQuAL(T) Wl — Uil (T,)' W) — \ifpiAg(Ta)ij\Ifg} (4.23)

will be our generator.
The amplitudes can then be extracted with the application of the boundary condition
operators similar to (3.31) together with an additional one for the gluons,

Apa 0

b A (4.24)

with flg“ = epégp, with kj - €, = 0. A general m-point amplitude with m — 2k gluons and

k quark-antiquark pairs is given by

a0 . L0 g
o= T1 (A H(‘an\rq) IT (91557 ) s

1 2 3
pesmfgk qESk rESk

(4.25)

A, T=0

with S}; denoting non-intersecting particle label sets of size k, which are assigned by the
given amplitude to be computed (e.g. (1,2,3,4,5) for 5275“196)

When k£ = 0, the expression above generates amplitudes containing only gluons, which
are widely available in the literature. When m = 2k, the amplitudes in (4.25) have no
external gluons. Apart from dimensions and some kinematic factors, they already appeared
in the previous section for CSM.

Flavoured amplitudes. Using the Dyck decomposition presented in the previous sec-
tion, we can discuss fully-flavoured amplitudes in QCD, possibly with external gluons. Ba-
sically, the labels that represent gluons do not come with any kind of parentheses and can
be placed anywhere without affecting the closure condition of a Dyck word. For example,

123456 — (12(345)6), (4.26)

is a Dyck word.
Here we define the generator for fully-flavoured amplitudes for QCD in the same way
we did in the previous section:

Goen=Y 3 LGS @) Wt 3 @M(Tb)zﬂQ(le ’")M D

2
n>1PcOW, P=QUR s1Q—m
PeDyck Q,ReDyck

(4.27)
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For simplicity we will take the sets for the particle labels with the quark-antiquark pairs
first and the external gluons later in the ordering (1,2,3,...,m —2,m — 1, m). Therefore,
the m-point fully-flavoured amplitude reads

'dnlzlzv.:<i]li ? )(‘i’gn 8 )X
’ oVy; v,

xH v 0 o) 0 nﬁl(ﬁﬂ 0 )G
29— 228\1/2(1, 0 2q— 18\112‘1 ] 8A““ QCD

p=2k

A0, 0=0
(4.28)

Let us now work out some examples and check that the amplitude generator is indeed a
solid tool.

4.4 Examples

In this section, we are going to present several cases of interest. First, we consider the
scattering of one quark-antiquark pair with two and three-gluons. It will then be simple
to obtain a generalisation to n — 2 gluons, since the gluonic current, that we will denote as
a’j/[, may be written in a compact way.

The second class of examples concerns scattering amplitudes involving only fermions,
both with and without flavour.

In what follows we chose a slightly different convention for the perturbiner currents. In
the perturbiner expansions (4.17)-(4.18) we will replace the particle momenta k, by —k,.
Equivalently, the fermion polarisations will by exchanged as w <+ v. The reason is that we
want the outcome to be readily comparable with other results in the literature (e.g. [30]).

4.4.1 Four-point ampltidue with two gluons
In this case we will choose the boundary conditions to be
‘i’u =1 6?'1 T = vy 5@4,
Al = aby 622, Al = ak 5%, (4.29)
where 41 and v4 satisfy the equation of motion
1 (f; —m) =0, (Fy +m)vg = 0. (4.30)
Following (4.25), the total amplitude is expressed as
. gy (ki + m)¢3v4

$2{4’1 = (T‘“T{“)i1 ftmasc(Tc) z4ﬂ1¢23v4

4 519 — m?2
4 (TagTaQ)i1i4 Uiy (Slj/i?»_‘l‘rzz)%mj (4.31)
with the slight change of notation
nh = al, n’é)q] =nh(kp-ng) — F)'nyg — (p < q),
(4.32)

at "lpa FH =kl nY — kY nt
Pq v Ap pTp = Np Tp-
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Now, if we use the gauge group algebra in (1.4), .2 ; can be finally rewritten in a
colour-stripped form as

Ay = (T“QT“?’)“MA(L 2,3,4)+ (Ta3Ta2)“Z-4A(L3, 2,4), (4.33)
where the partial amplitudes are given by

Ut gy (F1o +m)dsv

A(1,2,3,4) = U . 4.34
e e .
4.4.2 Five-point ampltidue with three gluons
For this example, the chosen boundary conditions are
\i“:aléfl, \T/%:v5(5§5,
Al = alt o, p=2,3,4, (4.35)

where u; and vs satisfy the equation of motions in (4.30).
Again, the total amplitude can be read from the general construction in (4.25). It is
straightforward to check the building blocks supported on the boundary conditions above:

‘qua = fapaqa agq’ (4.36&)
= g, (K, +m)
Uy, = —(Tw), 2P 7 4.36b
1pj ( ) J S1p — mz ) ( )
U fe o Mg ;o oz Msay ;5 Mz
Ag34a = fazagcfca4a + fa3a4cfca2a + fa4agcfca3a ) (436C)
5234 523 834 S42

+ fapaqa(Ta)ilj [_ﬁ1¢pq(k1pq + m)]

Uipgj = (TT)", (1, (F1p + 1)y (Fipg + )

T (s1p —m?)(s1p9 —M?) (s1pg — m?)
L +m +m
+ (TaqTap)zlj [ lﬁq(%lq . )¢p(k1qp 2 )] (436(1)
(s1g — m?)(s1pg — M?)
where we have generalised the definitions in (4.32) to
nipg = np(kp Q) — Fp'nug — (P < Q), (4.37a)
Fipg) = kponipg) + spenpng — (1 < v), (4.37b)
and
nt
U1 po...pp = L [p1polps].- r] + (all possible nested brackets). (4.38)

Sp1p2Spipeps * " Spip2..pr

g I :
For example, a5, and ahs,s are given by

1 o
n n
B, = [[23]4] + [2(34]]
34 — )
5235234 5234534

H H H Iz H
Plzags) L Miepags)  Tleas) | PRRs) 3]

. (4.39)
523523452345 534523452345 534534552345 545534552345 52354552345

I
2345 =
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Again, using the gauge group algebra we can rewrite the total amplitude .27 ; in terms
of the partial amplitudes as

a1 =Y (Tw@T%HT%@) A(L, p(2), p(3), p(4),5), (4.40)
pES3
with
Uy (F1o + m)ds (K103 +m)d,vs
(s12 —m?)(s123 — m?)
Uz (K193 +m)dyvs | gy (Kip + m)¢34v5.

A(l’ 2) 3, 45 5) = a1¢234v5 +

+ 4.41
(5123 — m?) (512 —m?) (4.41)

4.4.3 Generalisation n-point amplitudes with (n — 2) gluons

In order to generalise the color-ordered amplitude, A(1,2,...,7), it is useful to built intu-

ition from Feynman diagrams. The color-stripped Feynman rules from the QCD action are

i = kp ———»—— (—kp) — (]ié]{jg;) , (4.42)

where P is a multiparticle label.
Thus, in terms of diagrams, the partial amplitude A(1,2,3,4) can be simply repre-

A(1,2,3,7) § g § (4.43)

Similarly, A(1,2,3,4,5) may be cast as

sented as

234

A(l, 2,3,4, 5 g § § g
a23 ay4 a2 a34
+ g g + g g . (4.44)
1 5 1 5

Therefore, following this pattern, we propose the following compact formula for the
n-point partial amplitude, A(1,2,...,n — 1,7),

a23..n—1 Gn—1
A(l,2,...,n— 1,ﬁ) = g § g % (4.45)
l .........
a23 Qp—1 a2..pQar..n—1

~ 31—



Analytically, it reads

A(12 n—1,7) =

Z Z uyd (kl’l’ﬁ—l—i_m)¢ (1 i1 + m2)¢ .
R o up
i=1 (p1,....p:) 27p1+1( p1+1 — m2) p1+2,p1tpatl (Sl,n—pi—l — m2) n—p;,n—1"1

€ C;(n—2)

(4.46)
with the definitions:
k}’j —k“+k+1+ —i—k(’;,

Spq = Spp+l..q = kpq - kpg

ap . = Zp+1...q' (4.47)

Ci(n) is the set of i-tuples of positive integers that add to n. For example,

C1(4) = {(4)},
C 4 = ]., 3 5 27 2 b} 37 1 9
L(4) = {(1,3), (2.2). (3. 1) s
Cs3(4) ={(1,1,2), (1,2,1), (2,1,1)},
Ca(4) ={(1,1,1,1)}.
This proposal has been numerically verified for six and seven points.
4.4.4 Four and six-point amplitudes with quark-antiquark pairs
For this computation, we choose the following configuration,
\ili = ﬂl (521, \ifgi = 17,2 (5;2, \Ifé = U3 5237 4 = V4 5 (4.49)

We can then use either (4.28) and (4.25) to obtain amplitudes with and without flavour,
A2 and A5 Flav. respectively. They are simply expressed as

o = [_(UI’Y/LU;):S(UQ’WU?,)] (Ta)i1i4(Ta)i2i3 + [—(u2’7u1);2)3(u1’7“1)3)] (Ta)izu( a)ilig’
(4.50)

ﬂFlav. _ [—(ﬂlfyuv4)(ﬂ27”1}3)] (T )il‘ (Ta)iz

4.51
(a.51)

i3
which are very well known in the literature. In <75 Flav. "each pair (1,4) and (2,3) have a
different flavour.

For the fully-flavoured scattering between six fermions, % 3 Flav. " we choose the following
boundary conditions,

‘i’pi =07, p=1,24, =, 6’ q=23,5,6, (4.52)

7 )

similarly to what was done in the CSM case.
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In appendix A, the building blocks of this amplitude are computed explicitly. After

some simplifications, %Iga"‘ can be written as

ig
(s123 — m?)s23845

Flav. __
%,3 =

)" (1) (T) o [(TT0) 5 (1), ()", ma
561523545

(ToT®)", (T, (T*)™,, no
+ cyelic( (61) — (23) — (45 , 4.53
PR yelic((61) = (23) — (45)) (4.53)
with
"o = _({Ll%‘vﬁ)(62%’1}3)(647/’1}5)‘/’6’2:-/)761,/92-&-1637k4+k5’
n1 = —[u1yu (K193 + m)vv6) (U2 vs) (Usy" vs), (4.54)
ny = —[u1vu (K145 + m)vove](Gaytvs) (2" v3),

where the vertex V;‘;”Z is defined in (A.11). Clearly, each pair (1,6), (2,3) and (4,5) has a
different flavour. This result is in agreement with the one obtained in [30].

5 Ly-structure for sQCD

This section introduces the Loo-structure for scalar QCD and its tree level amplitude
generators. With the obvious modifications, the technical aspects are completely analogous
to CSM and QCD.

5.1 The sQCD L, algebra

The notation here is identical to the one used in QCD, except that we work with Q°(R!3, V)
and Q°(RY3, V) instead of Q°(R'3, S ® V) and Q°(R™, S @ V). The graded vector space
underlying the scalar QCD L,-algebra L is

L° = QY%(RY3, su(N)),
L' = QN RY3, su(N)) @ QR V) @ QO (R'3, V),
L? = QY(RY, su(N)) @ Q°(R"3, V) @ QO (R'3, V),
L3 = QY(RY3, su(N)).

In the terminology of subsection 2.4, elements ¢ € L° should be interpreted as infinitesimal
gauge parameters, elements A 4+ ¢ + ¢ € L! as triples of a gauge field, a scalar field and a
conjugate scalar field, elements A* + ¢* + ¢* € L? as triples of antifields conjugate to A, ¢
and ¢*, and elements ¢* € L? as antifields conjugate to ¢. The direct link between the BV
transformations (2.22) and the higher order brackets on L is given by formulas analogous
to (3.1), with ¢ and ¢ in place of ¢ and 1, and where the BV transformations of the
antifields A7¢, o ar_ld ¢*' contain the extra contributions %lg(A, A, A)gs %lg(A, A, b+ 0);
and %lg(A,A,gZ) + ¢)*, respectively. The non-vanishing higher order brackets on L are
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identified next. For [; we have

li(¢)pa = —0uca € L',
Lh(A), = -0"(0uA) — 9, A)) € L?,
L+ ) =—-0¢" —m’¢' € L?, (5.1)

L(+¢)i = —0d; —m?¢;, € L2,
l1(A), = —éWAZa eL?,
satisfying the relation (3.3). For lo we have
la(e1, ) = ify 0 ¢S e LY,
lo(c1, Ag)fh = ify. ) A5, € LY,
la(c1, A3, = 1be“ A*C e L?
la(cr, c3)* = —ifbcaclfc§c €L’
lo (A1 Az)w = fabcﬁl’( ) fabc(a Aub 0, A1 )AQV +(1+2)€ L?
lo(Ay, A5)* = if, " A} A3 € LP
la(cr, ¢2)’ = —ic}(Ta)';¢} € L',
la(cr, da)i = icf oy (T, )Jz €L,
la(c1, ¢3)" = —ic{(Ta)';¢5 € L?,
la(c1, 65)i = icidho; (Ta); € L7,
l2(Av, ¢2)' = (1) {0 (AL, 0)) + ALy0,0%} € L2,
la(A1, §2)i = —i(T) {0, (Al ) + AL, 0,05} € L7,
lo(f1 + b1, 62 + d2)fs = 1(T) {9104 — Dudhridh + (1 ¢ 2)} € L7,
lo(d1 + 61,05 + 65)" = U(T") { b1y — daid} € L,
satisfying the relation (3.5). And for I3 we have
I3(A1, Aay A3)pa = — fabe feae Atp Al Azua + sym(1,2,3) € L2,
5(A, ¢1 + 61,62 + d2)ya = Awd) (TT° + T'T)' ;6% + (1 ¢ 2) € L?,
I3(A1, Az, ¢)" = A1 Al (T°T" + T'T)' ;¢ € L2,
13(A1, Az, 8); = A Al (TTY + TbTa)j~ € L?,
l3(d1 + 1,02 + bo, P3 + 03)" = M(P192)95) +sym(1,2,3) € L,
I3(1 4 d1, 02 + b2, @3 + b3)i = AMP1¢2)¢3i + sym(1,2,3) € L,
satisfying the relation (4.4).

(5.2)

(5.3)

The underlying cochain complex of L is

QO(R'3, su(N)) —— Q1 (R'3, su(N)) o QLR su(N)) —> QO(R'3, su(NV)).
@ ©
QO(RY3, V) <D +0m2 D+0m2) QO(RL3, 1)
S ©
QO<[R1,37 V) QO(RLB’ V)
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The cyclic structure is a simple parallel to the previous ones in (3.6) and (4.5),

(e, c*) = . dtz ¢,

(A, A%) = s dz A AL (5.4)

(6400 +0) = [ dhw(0"di+6i0),

where ¢ € L0, ¢* € L3, A4+ ¢ + ¢ € L' and A* + ¢* + ¢* € L.
Now it is a straightforward computation to reproduce the homotopy Maurer-Cartan
action for the L..-algebra L,

Scld+ o+ = [ dlo{- FLEY + DD 6~ mPGo}, (55)

which is simply the scalar QCD action displayed in (2.16).

Just as in section 3 and section 4, we adjust the definition of the L,-algebra L so as to
include perturbiner expansions. We will consider an infinite set (k;);>1 of momentum vec-
tors in RY3, and using the notation therein, consider the associated spaces &"(RY3, su(IV))
and &°(R13, V). The graded vector space underlying the cyclic Lo.-algebra L then becomes

The corresponding higher order brackets and cyclic inner product are given respectively
by (5.1), (5.2), (5.3) and (5.4).

5.2 The perturbiner expansion for sQCD

We turn next to the perturbiner expansion for scalar QCD. As indicated earlier, the
approach and calculations are very similar to those we have made in 4.2.

Like before, in order to describe the minimal L.o-structure on the cohomology H*(L)
of L, we need to define a projection p: L — H*(L) and a contracting homotopy h: L — L.
The cochain complex underlying H*(L) is

ker(d) — 2 ker(5d)/ im(d) 0 ker(5d)/ im(d) —— ker(d).
% ¥
. 0 —(O+m?) 0 ok 0 —(O+m?)
Neo+mr) o R om0

From this, it follows that the four components of the projection p(©®, p@), p(2) and p®)
can be chosen to be the natural projections induced by this decomposition. To define the
contracting homotopy, in addition to the massless Feynman propagator DY of the previous
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sections, we need also the massive Feynman propagator GF defined on the space of 0-forms

on RY with values in V &V as
1 01
F_
G__D+W<m> (56)

ik-x

I

1 01
F_
G = k? — m? (1 O)l (5.7)

As before, we extend both D¥ and G so that we obtain linear operators DF: &7 (RM3,
su(N)) — &7 (RY,su(N)) and GF: &9(RY3, V)@ &9(RY3, V) — £O(RY3, V) @ £O(RY3, V).
The three non-zero components of the contracting homotopy h may then be expressed as

or, when acting on plane waves of the form e~

h<1>=(DFoa 0) S A )
DFoP, 0
(2 = e . 2 1
h —< 0 GF> : L — L7, (5.8)
F
h<3>=<d°D ) S 7 P )
0
Writing down the components explicitly, we have
19)
M a)e — _ZF gan
1 0,,0
2 *\a v *av
h )(A )i = D(WV‘ MD )A )
_ A 1 .
(2) ( 1% NG *7 59
WO +67) = — =", (59)
_ 1 -
(2)(p* KN ok
h (¢ +¢)l D+m2¢z7

h(3)(c*)ﬁ _ 7%6*0,7
where A € L', A* + ¢* + ¢* € L? and ¢* € L3 As usual, it should be mentioned that
the formulas for the L,-quasi-isomorphism and the higher brackets for the minimal L .-
structure on H*(L) are derived under the assumption that (D (A + ¢ + ¢) = 0 for any
A+ ¢+ ¢ € L'. Owing to (5.9), this implies that the first summands A € &1(RY3, su(N))
satisfy the Lorentz gauge condition d,A% = 0.

We now have the ingredients necessary to formulate the perturbiner expansion for
scalar QCD. First of all, we pick a Maurer-Cartan element A’ + ¢/ + ¢/ € HY(L) =

(ker(dd)/im(d)) @ ker( —(D?er) _(D§m2) ), and write

la ap —ikp-x
A “:ZAp“e P

p>1
/7 i —ikp-
¢'=D Tpe T, (5.10)
p>1
G= Byie T,
p=>1
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assuming the physical input described around equation (3.22). Then we define the pertur-
biner expansion to be the Maurer—Cartan element A + ¢ + ¢ in L given by the formula,

A+op+¢= Z an’+¢> +¢,.. A+ ¢+ ). (5.11)

n>1

The task is to work out the components A € &Y(RY3 su(N)) and ¢ € (R, V) and
¢ € &°(RY3, V). By the same argument used to derive (4.12), we start with

A=y Y Ao KB

n>1p+2q= n

1 _ .
= > AL AL 6 ) 5.12
n>1p+2q+1i=n pM(2¢ + 1)! (5.12)
_ 1 _ _
:Z Z 7(}071(/1/7'"7A/7¢/+¢I7"‘)¢/+¢I)i7
n>1p+2q+1=n pl(2q +1)!
where the expressions for f,,(A’,..., A, ¢/ +¢' ..., ¢' +@ )%, fu(A,..., A ¢+, ..., ¢+
@) and f, (A, ..., A, ¢ +¢,...,¢'+¢'); are identical to those of (4.13), (4.15) and (4.16)
with ¢/ + ¢/ replaced by ¢’ + ¢’. Next, we need to solve the ensuing recursion relations
and insert the result into (5.12). This calculation proceeds exactly as before, using math-
ematical induction. Thus we obtain the color-dressed perturbiners,

_ Z Z AC}“ o—ikpz _ Zﬂau e~ tkpw | Zﬂau e tkpgr 4 ,

n>1 PeOW,, pr<q

¢z _ Z Z (bipe—ikp'l' Z (I)z —ikp-x + Z (I)z _lkpq T e (513)
n>1 PeOW, p<q

_ _ Z Z i)Pie—ikp.a: - Z q)pl e —ikp-x + Z (I) g e —ikpq-x e
n>1 PeOW,, p<q

where the Berends-Giele currents Ajﬂ“ , <I>§3 and ®p; are determined from the recursion
relations and finally expressed as

a, 1 a i crFa C, v
APM:?EPM"‘* Z {—lfbc (kQ‘AIJ)%)AéL +Abu?§zu},

p 5P pZQUR
= {(k%%)@Qi(T“)Z‘I’%+A5b ) ‘I’Si(TaTb+TbTa)ij‘I’§“}v
P:QuR R=S5UT
Fo = AW — kP AY + 1,0 S ABAT, (5.14)
P=QUR ‘
. 1 . a
Pp=———g D {(kRﬂ)( WPk + (L) g Y AS 'Al%’}’
sp—m P=QUR R sSuT
_ 1 _
opi=——s Y {Q(kR-A%)‘I’Rj(T) - 0o (LTa); Y A% -Ai}}.
Ssp—m P=QUR R suT

The quantities J7° and F¢" correspond to the expansion coefficients of the matter current
J and the field strength F*¥. So, once again, we find that the recursion relations for
the perturbiner coefficients are predetermined by the recursion relations for the L ,-quasi-
isomorphism from H*(L) to L.
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5.3 Tree-level scattering amplitudes for sQCD

We can now discuss the tree-level scattering amplitudes for scalar QCD. The approach is
entirely analogous to that of QCD in the previous section.

The first step is to insert the plane wave superpositions in (5.10) into the homotopy
Maurer-Cartan action in the cohomology, S};c. Since the construction is analogous to
QCD, we will just present the result. It is given by

Swe = (2m)* )

D3 a<kpp>{fabc<<m )G - AZ) 1 A A T

n>1 (n+1) p>1 PEOW,,
P=QUR
+ ((kr — kq) - Aap)®qi(T*) ;% + (Abg - Aap) D Psi(T°T* + TT)'; ¥,

R=SUT
+2(kg - AQ) pi(Ta)' ;% — 2(kr - AQ) Pri(Ta)'; P},

+ [ @i (TuTy) %) + Poi(TyTa)'; 2] > A - AT} (5.15)
R=SuUT

As before, we can remove the extra coefficients by taking the diagonal sum and im-
posing momentum conservation. This leave us with

sQC c a ve
Sl =" % {fabc (kg - AR)(AG - AD) + A, AL T

n>1 PeOW,,
P=QUR

+ (kR = kQ) - Aap) PQi(T*) j@% + (Ao - Aap) Y Bsi(TT* + TT") ;0.
R=SuUT
+ 2(kp - A‘LQ)(I)pi(Ta)Z]-@% —2(kr - AH)Pri(T0)'; P,
+ [(fpi(TaTb)ij(I)] + (T TL)' ;@0 Y. A%- AT} (5.16)
R=5SUT
Now we introduce the boundary conditions operators for sQCD, with the same operator
for gluons that we have in (4.24) plus the ones for the scalars, given by

(2

qiaiqﬁ r8®£'

B0 5 0 (5.17)

The boundary conditions for the scalars will be Cipi = 5? , éé = 5fq. For a general m-point
amplitude with m — 2k gluons and k scalar pairs we have the following expression

D - 9 LD
o= T1 (i) 11 (g, ) T (s
qes; q res? r

where the 8% are again non-intersecting sets of size 7 where the particles take the labels.

(5.18)

A,0,5=0

The case with no scalars falls again into Yang-Mills amplitudes the same way it happened in
QCD. We can jump directly to the fully-flavoured case, where only the last term in (5.16)
contributes in the Dyck localisation for the amplitudes we deal with here.
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The fully-flavoured scattering amplitudes generator for sQCD after Dyck localisation
reads

GSQCD:Z Z {2(k1'AaP)‘I’1j(Ta)jk‘I’ﬁ+1 <I>1](TbT) s Z (Acé'“qll)%)+

n>1PeOW,_1 P=QUR
PeDyck

1
_|_ -
PzzQ:UR (s19—m?)
Q,ReDyck

X[Q(le"ACR)(TC)j Oy — (TaTe)  Phiy D (A%'AdT)H7 (5.19)

R=5SUT

2(ki - AY) 81 (1)~ u(DTn)'; S (AL-AY)
Q=SuT

where the Dyck localisation is analogous to the QCD case. Here, for example, the multi-
particle fields A’XM are Dyck localised. Additionally, it is useful to point out that in the
internal deconcatenations not all the words have Dyck character (just their union), unless
explicitly stated.

Mimicking the expression (4.28) in QCD, we are now ready for the calculation of
fully-flavoured scattering amplitudes in scalar QCD, given by

ﬂglgV—(qm 0 ) (& a.)x
' aq)lz 8‘13]

XH oy ns ) (#h, - ) T (A )
2q— Qzaq)Qq 0 8(132q : 1 D 8%[5“ sQCD

p=2k

Now we will present some examples in order to illustrate the use of the amplitudes
generator.

5.4 Examples

Such as it was made in the QCD section 4.4, first we consider the scattering between two
scalars and two and three gluons. These two amplitudes will give us the tools to obtain a
general and compact formula to go beyond than five-point.

Later, we are going to study amplitudes that just include scalars particles (with and
without flavors).

5.4.1 Four-point (two scalars and two gluons)
In order to compute the scattering of two scalar fields and two gluons, we use the following

set up,

Oy =0, &t = o

14

Ab =5, AR, = ek 59, (5.21)
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where the total amplitude, .27 1, is given by (5.18). Thus, it is needed to calculate the
multiparticle field ®;93;, then,

(s123 — m?) ®raz; = — @1 (TTPY,[(Aga - Azp) + (Aop - Aza)] — 2(Aza - k13) P13 (T,

—2(Agga - k) ®15(T); — 2(Aga - krz) Bra (T°);, (5.22)
with

2(as - k1) (T)"; 2(az - k1) (T%)";

- f Do — 5. j
Absoq = faazas Gy, P12 = — S19 — m?2 ;o Pizj=— 513 — m2 . (5.23)
and where the current a“M was defined in (4.38). Therefore, <7 1 becomes
; (k1 =k (k12 — k
% 1= (Ta2Ta3)“- |:(a2 ( 1 34))(@3 ( 12 4)) N (CL2 . (13):|
’ “ s12 — m?
asrmasi | (a3 - (k1 — kog))(az - (k13 — ky))
+ (T 3T2)1Z-4[ pp—— — (a3 - ag)
+ fasase(T)", (azs - (k1 — ka)). (5.24)

Now, using the algebra, [1T92, T3] = faQagcTC, it is straightforward to arrive at,

dyy = (TT%)", A(1,2,3,4) + (2 < 3), (5.25)
being A(1,2,3,4) the color-ordered amplitude,
k1 — ksa))(as - (k12 — k4))

512 — m2

A(T, 2, 3,4) = (a2 : ( — (CLQ . (13) + (a23 . (k‘l — ]{34)) (526)

5.4.2 Five-point (two scalars and three gluons)

Here, we focus on the interaction between two scalar fields and three gluons. The boundary
condition we choose are the following

By, =0, L = 5

157
Ab =eyoa2, AR =5, AR, =€l %, (5.27)

The total amplitude, % 1, may be computed from (5.18). So, such as it was done above in
section 5.4.1, after some simple manipulations, it is not hard to show that % ; arrive at

1= (T%OTwHT%®)", AT, p(2), p(3), p(4),5), (5.28)
pPES3
where the ordered amplitude, A(1,2,3,4,5), is read as
A(1,2,3,4,5) =
lag - (k1 — kss)l[as - (k12 — kas)laa - (k13 — ks)] (a2 - a3)[aq - (k13 — ks)] n
(812 - m2)(8123 - m2) (8123 - m2)
lag - (k1 — k35)][(—21)(a3 - ay)] " [ags - (k1 — kus)][as -2(k13 —ks)] (ass - ag)+
(512 —m?) (8123 —m?)
[CZQ . (k‘l - (k;;)]EG;iQ)(km - k5)] . (a2 . a34) + [a234 . (kl . k5)]7 (5.29)

with af, defined in (4.38).
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5.4.3 Generalisation (two scalars and n — 2 gluons)
Notice that from the color-stripped Feynman rules for scalar QCD
0 v 1

1
::—-nuy, % :=<k[——kj)“, kp----- ("‘kl) s
kjwkj kr---2---k; k‘2 m?

(5.30)
where I, J are multiparticle labels, the ordered amplitude, A(1,2,3,4), can be rewritten as

a23 az as

A(1,2,3,4) = 1%2%34 + 1____%_"4 + 1%9?9_’_’4 . (5.31)

Analogously, the result obtained in (5.29) for A(1,2,3,4,5) gives a similar diagram-
matic structure

A(T,2,3,4,§):
as as a4 as3 a4 as a34 a234
s § 3 + 3§ + 3§43 + 3
T---3.3. 5 5 T---3---3. 50 1---3--3. 5 T---3--- 5
as as a4 as as a4 ass a4
L N I B G . W g
T--2 o F 5 T---Foeo 2 5 T-- 87 5
as asq

o w 5 (5.32)

Thus, by the result obtained in (5.31) and (5.32) (for A(1,2,3,4) and A(1,2,3,4,5),
respectively), it is straightforward to spot a pattern, that being

A(T,2,...,n—1,@):

Ap—1 a23 An—1 az..p Ar . .n—1
1---%---% .%___n 1____%. .%___n 1---3%---7},

Gn—1
% N
¥ )

Qj...j+h

Aj4+ht1..w
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Such as it was done in (4.46) for QCD, we are able to propose an analytic expression
for A(1,2,...,n — 1,n), which has following form

A(1,2,...,n—1,n)=

A S S A
Z (a27p1+1' 'ap1+2,P12+1) (51.p1941—m2) (ap12+27p1,3+1' 'ap1,3+27101,4+1)

1 1
— XX —(a,, . . AN/ P
(51,P1,4+1—m2) (51,171,1'—2+1—m2)( PLi-2F2p1,i-1+1 nepLn 1) +

(a iy I — A-a ..
2,p1+1"Mp1+2,n (51.p, 41 —m2) p1+2,p12+1 p12+2,p1,3+1 (51,0111 —m2)

1 —
(an—pin—1"k1.0—p;—1jn) }

1
(Sl,pl,i,3+1 —m2) (a’pl,i—3+27p1,i72+1 ‘A.apl,i72+2,p1,i—l+l) (

$1m-p;—1—m?)

n—2
- 1 1
+ Z Z {(aQ,PlJrl'klpﬁ-Q,n)()(ap1+2,p12+1'A'aP12+2,P1,3+1)(

. 81,p1+1—m? 81,p1,5+1—M?)
=1 (p1,.-0i)

1€2N-+1 cC; (n—2)

1
(ap1,3+2,p1,4+1 'A'ap1,4+2,171,5+1) T ( ) (ap1,z‘—2+2,p1,i_1+1 'A'an*m,n*l) +

S1p1i_a+1— M
(a A-a );(a A-a );
2,p1+1 p1+2,p12+1 (S1.p1at1—2) p12+2,p1,3+1 p1,3+2,p1,4+1 (5191 4_a+1 —m2)

1 —
(apl,i73+27pl,i72+1 A apl,i—2+27pl,i—1+1) ( (an—pi,n—l 'kl,nfpiflm) }

$1,n—p;—1—m?)

k : k
=2 2 {(eprkipien) e @t2pett FLp s s2e) X
=1 (p1,....ps)

€Ci(n—2)
1 1

(81,p12+1—m32) (s1,n—p;—1—m?

) (an—Pi,n—l'kl,n—pi—ln)} ) (534)
where we have defined

Py =p1+p2+---+Dr

kp,q‘r,s = kp7q - k7"757
(apptr - A Apirg1prriiee)

K kY
1,p—1|p+r+1,n “1,p+r|p+r+1+t+1ln v

— oM N4
Il $1 ptr — M2 Uptr1ptrtltts (5.35)
7p T

and with C;(n—2) given in (4.48). For instance, when n = 4, the previous formula becomes

A(T, 2, 3,4) = (ag WANE ag) + (a23 . ];;1|4) (536)
with
l::llt34 _1112 4
(az- A -ag) = ab | g+ 220 ap, (5.37)

S12 — m2

from (5.35). It is trivial to check that (5.26) and (5.36) are equal.
Finally, we have verified this formula up to seven-point (numerically).
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5.4.4 Four-point (only scalars)

Our second example is four scalar fields with and without flavours. By choosing the bound-
ary conditions

b, =9,", by =0,

D} = 6, D) =5t (5.38)
the amplitudes, <7 2 and %Iga"', are given by the equations (5.18) and (5.20), respectively.
From the Perturbiners, ®123; and @?Q}E,:l; (Dyck means localisation on Dyck words,”
such as it was explained in section 3.4), and the current A’XM
3 ke — ks)M(T)", H ko — k3)M(T)%,
Al — 9z _ (k1 = ks)"(1") R T (k= ks)"(1") B (5.39)
S13 S13 523 523
one arrives at following expressions for the amplitudes
%,2 = (Ta)“u (Ta)mig A(T7 47 é? 3) + (Ta)“ig (Ta)12i4 A(Tv 37 Z 4)’ (5'40)
"%Igav. = (Ta)“u (Ta)mig A(T) 4) §7 3)7 5.41
with
o ki—kyq) (ko —k - = ko —kg)- (k1 — k
A(1,4,2,3) = Uk = ka) - (ko 3), A(1,3,2,4) = (ke = k) - (k1 = k) (5.42)
$23 513

5.4.5 Six-point (only scalars)

In this section, we consider the six-point amplitude totally flavoured (three different
flavours). For this computation, we choose the boundary conditions,
Bry=00, Dy =02, By =06
B,  ®l—g, B0l (5.43)
and the amplitude, sz(féa"', is given by (5.20). In order to perform this calculation, we must

=Dyck .
carry out the current, ®y35s , i.e.

—(s12345 — m?) Bopss s = 2(k1 - Apygs ) @15(T%Y,
+ @1 (T [(Azsa - Assp) + (Aasa - Azsp)]
+ 2123 - Atz ) P13 (T + 2(k1as - Azs o) P55 (T,
(5.44)

In appendix B, we have detailed this computation, therefore, by using the result obtained
in (B.14), the amplitude 42{6}3&"' turns into

) (T () o
561523545

(TaTb)il- (Ta)iQ' (Tb)i4i5 ny

i i3
(5123 - m2)523545

Flav.
%,3

(T’bT’a)zli6 (Ta)lziS (Tb)l4i5 n2 I CyCliC((61) N (23) SN (45))]’ (545)

(s145 — m?)s23545

"See appendix B.
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with

no = (ke — k1)u(k2 — k3)u (ke = k5) ViDL ks kahs
ny = —4(ky - (ky — k3)) (ke - (ka — ks)) — (s1238 — m?) (k2 — k3) - (ka — ks), (5.46)
no = —4(k1 . (k4 — k5))(/€6 . (kg — kg)) — (8145 — m2)(k2 — kg) . (k}4 — k5).

The vertex V”Vp has been defined in (A.11). Again, notice that each pair (1,6), (2,3) and
(4,5) has a dlfferent flavour.
Finally, we can check that ng, n; and ng satisfy the colour-kinematics relation [31]

(T“Tb)“% - (TbT“)“iG = f“bC(Tc)ili6 - n1 —ng = ng. (5.47)

After some simple manipulations, it is straightforward to write down %%a‘" in terms of
the Johansson-Ochirov color base [30].

6 Summary and discussion

In this section we will summarise our results and point out the applications, generalisations
and future developments.

6.1 Main results

In this work we used algebraic tools inspired by string field theory for the underlying
structure of the BV formalism and exploited its connection with the perturbiner expansion.
We computed the multiparticle solutions (Berends-Giele currents) of gauge theories coupled
to matter, including recursive formulas to compute their tree level amplitudes. We focused
here in three special theories: Chern-Simons-Matter (CSM), Quantum Chromodynamics
(QCD), and scalar Quantum Chromodynamics (sQCD), all of them single-flavoured with
SU(N) gauge group.

6.2 Applications

The first main outcome of our work is a set of covariant and compact formulae for color-
stripped amplitudes for the scattering of one massive quark-antiquark (or scalar-antiscalar)
pair with (n — 2)-gluons with arbitrary polarisations. In the DDM base [46], these ampli-
tudes can be expressed as

Gy g = Z (TU%@T%G) .. .Tap(nfl))ilin A(1,p(2),p(3),...,p(n—1),n), (6.1)
peSn72

where A(1,2,3,...,n — 1,n) denotes the color-stripped amplitude (primitive). In QCD,
they are simply expressed as

n 9 P2 apz

AT,2,....n—1n)=>)_ § g % (6.2)
i=1 Pl, ,pz) 1 .........
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which we presented in equation (4.46), using the Feynman rules in (4.42). For scalar QCD
this ordered amplitude has a similar form, but more diagrams must be included since there
is a quartic interaction between scalars and gluons (see equations (5.33) and (5.34)).

From the BCFW-shifting method, Ochirov in [47] and Forde, Kosower, Badger, Glover,
Khoze, Svrcek in [48, 49], obtained a general formula for the same type of amplitudes
(massive fermions and scalars, respectively) but where all gluons have identical helicity,
e.g. A(1,27,3%,...,(n — 1)*,n). At four and five-point, it is straightforward to check
that our results are in total agreement with their results. However, we would like to
understand how those formulae match at the n-point case. For the scalar case, Ahmadiniaz,
Bastianelli, and Corradini in [50] used the worldline formalism to compute the gluon-
irreducible contribution to the tree level amplitude of (n —2) gluons and two scalars, which
agrees to the corresponding terms in equations (5.33) and (5.34).

The second main outcome of our work is related to Dyck word localizations and their
connection to flavoured amplitudes. In [30], by considering the Melia base of primitive
amplitudes in QCD (see [43]), Johansson and Ochirov observed that the n-point scattering
of k = n/2 quark-antiquark pairs with different flavours can be written as
A= N O(L,2,0) A(L,2,0), (6.3)

n
o€Dyck;,_4

where C(1,2,0) is the Johansson-Ochirov color base. Here, we showed that these ampli-
tudes can be obtained directly from single-flavoured theories if we use a Dyck localization
on the Berends-Giele currents. For example, in QCD (and similarly for CSM and scalar
QCD), with boundary conditions

\f/qi:ﬁqézq, g=1,2,4,....,.n— 2, \Iljn:vq(? r=3,5...,n—1,n (6.4)

i

it is straightforward to check that the amplitude generator (4.28) provides the fully-
flavoured amplitude MnF}La/VQ', where the quark-antiquark pairs, (1,n), (2,3)...(n—2,n—1),

have a different flavours, but with the same mass.

6.3 Generalisation: different masses for flavours

In order to describe different flavours in a given theory, we usually have to add a number
of Ny copies of the matter kinetic term to the action, each with a different mass. The
distinct flavours and masses are then introduced when drawing different Feynman diagrams
for a certain amplitude. Here can shortcut this procedure by looking at the contracting
homotopy for the matter fields, without directly modifying the action.

Looking at (3.11), we see that the contracting homotopy for fermions keeps track of the
particles” momenta in the fermionic multi-particle solutions, but only one mass is taken
into account, as can be seen in the fermionic perturbiners (3.20) and (4.18). In (3.17)
and (4.12) we can see that fermionic perturbiner contains a number of 2n + 1 fermionic
single particle elements and it is precisely that +1 “unpaired” fermion the one that carries
the mass after the contraction. A slight modification in the fermionic part of (3.11) that
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takes into account the different masses is

qF _ 1 0 —(k+my))
) o

Free of deconcatenations, this fermion is easily identified in the Dyck language localisation
for fully-flavoured amplitudes. In this case, we can use (6.5) to modify the fermionic
Berends-Giele currents to

Q=" (kp@ : mp)/té(n)@wi

SpQ — m}%
koo +m [ Kps +m i 4b
+ (Q S ART | g () ATy, (6.6a)
5pQ =M ) G=RUs Sps — My
R,SeDyck
_ - F.o—m
Up0i = U, AS (T, | 229 ——F
pQi pj‘AQ( a) i <3pQ _ mIQ)
— b kR_mp a k %pQ_mp
bY By AR<p)AS<T ) ( S (e
Q:%;Js pJ k SpR — mg a) i 5pQ — m}g}
R,SeDyck

for QCD and similarly for CSM. Then, the generator for fully-flavoured amplitudes takes
the form

_ o _ o (Fp—m ,
Gosm =Y, > SULAGT) Y, n+ > Yu(Ty)' AR (H)Aas(Ta)jk‘I’gnn
n>1QeOWay Q=RUS SIR — My
QEDyck R,SeDyck

(6.7)
This construction is easily extended to the theory with scalars.

6.4 Future perspectives

There are some immediate directions to turn following the results presented here. In a work
in progress we are analysing the kinematic numerators obtained for CSM with different
flavours. Since the theory is trivalent, it is a perfect candidate for colour-kinematics and
double-copy constructions of 3D gravity-matter amplitudes. If, as suggested in [51], 3D
axiodilaton gravity coupled to matter comes from the double copy of QCD3s, we expect
an interesting topological gravity theory coming from the double-copy of CSM. The Dyck
localisation procedure could also be extended to supersymmetric theories and its effect on
the colour-stripped amplitudes might shed some light on a possible algebraic construction
of the Johansson-Ochirov basis for different theories. Finally, another natural step is to
understand multiparticle solutions at loops using strong homotopy algebras, motivated by
the recent results in [52].
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A Computing \1’11323;3‘51 for QCD

In this section, we will outline how to calculate the current ‘1’12345,1‘ on the support of the
Dyck

= ‘I’(1(23)(45)

the upper text “Dyck” in the Perturbiners is no longer necessary.

Dyck constraint, namely \Tf%}éﬁ i Since here we focus on Dyck words then,

Let us consider N as an odd-length word, this implies there is only one open parenthesis
(otherwise, the current vanishes trivially), such as in @(1(23)(45),1‘- By the rules described
in section 3.4, the letter with the open parenthesis must be fixed (factorised), for example
N — (p M, where M is a Dyck word. Therefore, the current U N, turns into®

= = b l le +m i
_\Ij(pM,i(%pM - m) ‘I’ DJ ‘AM + Z ‘I’p,l AQ(Tb) T g — m2 (;%(Ta)]i ) (A 1)
M=QUR 1Q
Q,ReDyck
where the multiparticle fields, AY-,, respect Dyck’s condition, Af., = A’{,’fyd(. Clearly, a
similar expansion can be written for the current \IJEDX/[Ck.
Now, from the boundary conditions,
Uy =1,07, p=1,24, U =v,6, q=3,5,6, (A.2)

and (A.1), the current \111234571- becomes
—W (1(23)(45),i (F12345 — M) = {\i’l,j Aszasa + W (1(23), Aasa + V(a5),5 A2z a] (T*;. (A.3)

Notice that \11(1(23) and \IJ( 1(45),j mean the square bracket in (A.1), i.e

= o + m)y] (u2yHvs) (4ay"vs) ; ; :
N, ) TN — [ulVM(%123 TaTb i1 (ayiz Tb 14
23),j ‘A45 a( ) i <3123 —m2 S93 S45 ( ) z( ) 1,3( ) i5)

137

)
\Tl( 45,5 A23a( a)ji — _[U17u(%12i)1;nj)mQ]§Z§ZZZ55)(UQ7VU3) (TaTb)ili(Ta)miS(Tb)m

(A.4)
where
b Uy - g UgyHv ,
Aty = Bon ) e g = Tma TS g ()
23 523 S45 S45

8Tt is useful to remind that for the QCD examples, we are taking the transformation, ky — —kb, in
order to compare our results with the ones obtained in [30].
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Subsequently, the contribution Abs,s , is given by

-.A'u o 811211345,(1
2345,0 = +
52345
- Fabe
i , .
8‘7;345 {iALg, (ko3 Aase) — (Aasp- Fase)! +iAls, (kas-Aaze) — (Aasy-Fasze)' }, (A6)

where the only non-vanishing allowed contributions in the second line come from the de-

concatenations,

(23)(45) = RUS — (23) U (45); (45) U (23). (A7)

Notice that deconcatenations such as, for instance (2(4 U 3)5) and (2 U 3)(45), vanish
trivially, while, 3)(4 U (25) or 3)5) U (2(4, are not allowed. Under support of the boundary
conditions, it is straightforward to see the curvatures, F55. and F,L. | are given by

ViL sV gl N4 VL sV gl N
Fog. = tkgzAys. — ikygAas. Fupe = thisAyse — itkysAuse, (A.8)

therefore, the second line in (A.6) turns into

561
- fabc(Ta)ili(Tb)iQig (Tc)i4i5
561523545

- 9345 ;
Ui lﬂg345,a - 2 (T, =

X {— (@19 ) (U27003) (WaYp05 )V Lk eyt ks ea ks }, (A.9)

where we have used momentum conservation, k; + ko + - - - + kg = 0, and the equations of
motions

Up b, = may, Myvp, = —mu,. (A.10)

Additionally, we have introduced the vertex

Vol = 1" (0 — @) + 1™ (k = p)" + 1" (g — k)" (A.11)

Finally, we now compute the current, 3’(‘23)( 15).0° It is straightforward to see that all

a
b
possible non-vanishing deconcatenations are

(23)(45) = RUS — (23)(4U5); (4U(23)5); (2(45) U 3); (2U 3)(45),
thus, one has
35345,11 =

U (93)(4,i7" (Ta)ij‘l’?,) + U (o45),i7" (Ta)ij\ljgg) + U g " (Ta)ij‘ljgg)(45) + Uy " (Ta)ij‘l’%gg)g))-
(A.12)
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Therefore, from (A.1), it is not hard to compute the above contributions so, these land at

(TbTa)M- (Tb)i2

v A(TL) W = = 5 5 { (a4, +m)y,vs)(u2y"v3) },
(23) (4,17 ( )] 5) (5123 —m2) 503 {17 (Fao3 )Yuvs] (U2 v3) }
U H(T ) \I}j _ (TbTa)i2i3 (Tb)i4i5 — k — v
2@5):7" (Ta)'; )T " (sa15—m?) 545 x{—[u27y (Faas +m)yuvs] (uay”vs) },
_ o (TeT?), (T%)™, ) _
o Y (T,) W = = 2 {— v “vs)},
(2,47 ( )] 3)(45) (3261—77”62)845 X{ [U27H(%261+m)7 U3](U4’Y ’U5)}
- i i (TTP)™, (%)™, _ .
Vi (Ta)'; V{og)5) = . Ex{=[tayu(Kagr +m)yvs| U2y vs)}. (A.13)

(s461 —m?2) s23

Putting all results together we arrive at

() (), (T o VT&T!’)“ (1), (),

is
(s123—m?)s23845

U , —m)WL =
(12345,1(%12345 )¥s 561523545

(TaTb)il- (Ta)i4‘ (Tb)iZ. no

16 i5 B~ teyclic( (61) — (23) — (45 ,
(s145 —m?)s23S45 y (( )= (23) = ( ))]

(A.14)
where
no = _(ﬂl’m%‘)@2’71/113)@4’Yp715)vklgfkl,k2+k3,k4+k5 ,
ny = —[u1yu (K193 + m)vove) (a2 v3) (uay"vs) ,
ng = —[t17,(F145 + m)vove] (Uaytvs) (U2 v3). (A.15)

Notice that in (A.14) we have introduced W} on the left hand side.

B Computing @1132?41(571- for sQCD

In this section, we calculate the current <i>123457,- on the support of the Dyck condition,
é%ﬁ%,i = (iD]()fE;l;) (15~ Notice that the upper text “Dyck” in the Perturbiners is no longer
necessary, since we are only focusing on Dyck words.

Such as in the above section, let us consider N as an odd-length word. By the rules in
section 3.4, the letter with the open parenthesis must be fixed, i.e. N — (p M, where M is

a Dyck word. Therefore, the current ® N, turns into

- (SpM - mg) (i)(pM,i = {Q(kp "A%/I)(i)p,j(Ta)ji + (T)p,j (TbTa)jz’ Z (APa 'AQb)}
M=PUQ

2(kp - AR)Ppi(Te)'; + pi(TT S X p_puv (Ava - Ave) :
+ Z 2(kpR -AaS) [_ 2 ilants ! (p o 2 : R=OV. (Ta)Ji‘F
M=RUS Spr — M?)
R,SeDyck
20k, - A%) Dy, (T 4+ Oy (TTH) . S 5 Avq - Ave .
[_ (kp - AR)Ppi(Te)'; + Ppu( 2) i 2 r=vuv (Avd - Ave) @TY, S (Apa-Aos) b,
(spr —m?) S=PUQ

(B.1)
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where the multiparticle fields, A, respect Dyck’s condition, AY, = .A’;/(]I)Wk. In a similar
way, we have the current Cbzfﬁk. Additionally, it is useful to remind that the ordered
deconcatenation in the sums, >-y—pugs 2 r=yuy and > -g—pyg, are such that the union
is Dyck.

Now, from the boundary conditions,
L = ¢!

157

by =0;", Poi=107 Pyi=0;", =6

137

(B.2)
and using the equation (B.1), the current <I>(1(23)(45) becomes

— (512345 =) ®(1(23) (15,0 = 2(k1-A2345,0) P15 (1Y,
+® {(TTY ,[(A2z.0-Aas )+ (Aas.a-Azzp)]
+2(k123 '-A45,a)(i)(1(23)7j (Ta)]i +2(k145 '.Agg,a)fi)(l(%),j (Ta>Ji,

(B.3)
where we have denoted as @123,j and <f>1457j the square brackets in (B.1),
o B _Q(kl ‘A23c)<i>1,l(Tc)lj o B _Q(kl ‘A45c)<i>1,l(TC)lj (B.4)
(1(23),J (S123 — m?2) ) (1(45),5 (s145 — m2) : :
The contributions Ags. and Ays. were already computed in (5.39), so
3 ko — k3)"(T°)", # kea — ks)H(T°)",
AQBC — 3236 — ( 2 3) ( ) 23’ .A,45c — 3456 — ( 4 5) ( ) 7,5. (B5)
$23 $23 545 S45

On the other hand, from the perturbiner expansion of AY o the contribution Abzys ,

”w
J5345.4
52345

; fabc
(3 X ‘
s£345 {143, (F23-Adse) = (Azap- Fase) +iAYs, (kas - Azse) = (Aasp-Tase)},  (B.6)

Ad345.04 = +

where the only non-vanishing allowed contributions in the second line come from the decon-
catenations,

(23)(45) = RUS — (23) U (45); (45) U (23), (B.7)
such as it was explained in the previous section. Under support of the boundary conditions,
the curvatures, F5%. and FL . are given by

Tt = ks Abs, — ikhAss., Fate = ikisAlls, — ikl Alsc, (B.8)

therefore, the second line in (B.6) can be written as

1 35345 a fabc( )11 (Tb)i2i3 (TC)i4’i5
Adsa5.4 — — = X
’ 89345 561523545

{(7%‘ — k1) (k2 = k3)u(ka — k5) o Vi be ko haihs + (523 — 5a5) (k2 — k3) - (ks — k) }
(B.

9)
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where we have used momentum conservation, ki + ko + - - - + kg = 0, and the vertex V;D“ q”f,;
was defined in (A.11).

The last step is to compute the current Jhz5 ,. For this case, the non-vanishing
deconcatenations are

(23)(45) = RUS — (23)U(45); (45)U(23); (23)(4U5); (4U(23)5); (2(45)U3); (2U3)(45),

then one has,

35345,[1 =
ASE O 45 b + AL O3 40 + (Koza — ks)“¢(23)(4,i(Ta)ij@%) + (ks — k235)“‘i’(47i(Ta)ij‘I’f23)5)
+ (ka5 — k3)”‘i>(2(45),i(Ta)ij(I)g) + (k2 — k345)u(i)(2,i(Ta)ij(I)g)(45)7 (B.10)
with

623,ba = (TbTa)iQi?) + (T‘aTb)i2 645,ba = (TbTa)i4i5 + (TaTb)i4i5 . (Bll)

137

Finally, from (B.1), the currents ®y; and ®% in (B.10) become,

— 2(ky - -Agg)(i)zl,j (Ta)ji = 2(k2 - AZS)éQ,j (Ta)ji
D(93)(4, = — Gt =) D(o(45),i = — R — (B.12)
: 2(ks - Agy) (T, @ : 2(ks - Ags) (T, @}
o _ (ks - A3)(T°)"; 5 P — (ks - Afs) (T°)% 3 (B.13)
(23)5) (5235 _ mz) 3)(45) (5345 _ m2)

Therefore, by putting everything together one arrives at

i3
(s123 — m?)s23845

_ rabe T i1 T i2 T g . TaTb i1 Ta 2 Tb 4 n
(s12305 — m?) ®(1(23)(45),0 = S ) ) s (1) mo + [( )i ()%, (1),
561523545

(TeT?)2 (T, (T)2,, no "+ evelic ( (61) — (23) — (45) )]
(5145 — mM?)523545 Y (ti1) = (d2i3) — (iais)
(B.14)
where
no = (ke — k1) (k2 —k3)u (ks —k5) o Vi Lo kotbs ea ks
ny = _4{(k‘1'(kQ—kB))(k‘ﬁ'(k4—k5))+ (8123_m2)(k24_k3).(k4_k5) }
ny = —4{<k1~<k4—k5>><k6-<k2—k3>>+ (ovip ) kb (ks ko) } (B.15)

Here, we have used the momentum conservation, ky + - - - + kg = 0, the algebra, [T?, T%] =
fabc T¢, and the on-shell condition, k? = m?2.
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