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1 Introduction and summary

D-instantons represent saddle points of the path integral in second quantized string theory
and give non-perturbative contribution to the string amplitudes. The usual world-sheet ap-
proach to computing these corrections suffer from infra-red divergences from the boundary
of the moduli spaces of Riemann surfaces. A concrete example of such ambiguities arose
in a recent analysis of two dimensional string theory [1]. The authors of [1] computed the
D-instanton contribution to the closed string scattering amplitude, but could determine the
final result only up to two undetermined constants. Furthermore, the string theory result
diverges for real energies of the external states, and so in order to get finite results, [1]
evaluated the string theory results for imaginary energies of the external states. These
results were then compared numerically with the results in the dual matrix model [2–5],
leading to the best fit values −1.399 and .496 for the undertermined constants.1

String field theory [7–9] is well poised to address the issues related to infra-red diver-
gences arising in string theory [9–11]. It does so by drawing insights from quantum field
theory. Indeed, in an earlier analysis [12], string field theory was used to determine the
first of these constants unambiguously, leading to the value − ln 4, which is within 1% of
the numerical result −1.399. The second constant can also be fixed by this procedure [13].
Both of these ambiguities arise from divergences in the open string channel, where one or
more of the internal open string states go on-shell or become tachyonic. In this paper we
address the problem of evaluation of the amplitude for real energies of external states. As
will be explained below, the associated divergences arise from internal closed string states
going on-shell. However string field theory can be used to address these divergences as well.

We shall now summarize the main results, leaving the actual derivation of the results
to section 2 and section 3. We begin with a review of the results of [1] in which the authors
computed the D-instanton contribution to the 1→ 1 scattering amplitude of closed string
tachyon in two dimensional string theory to first subleading order in the expansion in the

1Ref. [6] extended this analysis to multi-instanton contribution. However since the analysis was done
only for the leading order terms in the expansion in powers of the string coupling around the multi-instanton
solution, the ambiguities of this type did not arise in [6].
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string coupling constant gs. Their result takes the form:

A1→1 = 4N e−1/gs 2πδ(ω1 + ω2) sinh(π|ω1|) sinh(π|ω2|)[
1 + gs f(ω1, ω2) + gs g(ω1) + gs g(ω2) + C gs +O(g2

s)
]
, (1.1)

where −ω1 > 0 represents the energy of the incoming tachyon, ω2 > 0 denotes the energy
of the outgoing tachyon, N is a normalization constant, C is a constant, and

f(ω1, ω2) = 2−1/4π1/22(ω2
1+ω2

2)/2 1
sinh(π|ω1|) sinh(π|ω2|)

∫ 1

0
dy

y ω
2
2/2(1− y)1−ω1ω2(1 + y)1+ω1ω2〈V|ω1|/2(i)V|ω2|/2(i y)〉D , (1.2)

g(ω) = 2π2 1
sinh(π|ω|)

∫ ∞
0

dt

∫ 1/4

0
dx η(it)

( 2π
θ′1(0|it) θ1(2x|i t)

)ω2/2
〈V|ω|/2(2πx)〉A .

(1.3)

θ1(z|τ) is the odd Jacobi theta function and θ′1(z|τ) ≡ ∂zθ1(z|τ). 〈V|ω1|/2(i)V|ω2|/2(i y)〉D
denotes the two point function on the upper half plane of a pair of primaries in the c=25
Liouville theory, carrying momenta |ω1|/2 and |ω2|/2, inserted at i and iy respectively.
〈V|ω|/2(2πx)〉A denotes the one point function of the Liouville primary of momentum |ω|/2
on an annulus described by 0 ≤ Re(w) ≤ π, w ≡ w+2π i t, with the vertex operator inserted
at Re(w) = 2πx. Explicit expressions for these correlation functions can be found in [1].
In (1.1), inside the square bracket, the leading term 1 represents the product of two disk
one point functions of the closed string tachyons. The subleading terms proportional to gs
come from three sources. The term proportional to f(ω1, ω2) represents the contribution
from the disk two point function of closed string tachyon vertex operators. The terms
proportional to g(ω1) and g(ω2) represent the product of one point function on the disk
and one point function on the annulus of the closed string tachyon. Finally the term
involving the constant C is the contribution from the product of the two disk one point
functions and the zero point function on surfaces of Euler number −1 — a torus with a
hole and a disk with two holes. The normalization constant N was fixed by comparison
with the matrix model result to be [1]:

N = − 1
8π2 . (1.4)

In the analysis of this paper we shall use (1.4) without proving it.
The integral (1.2) defining f(ω1, ω2) diverges from the y ' 0 and y ' 1 regions,

while the integral (1.3) defining g(ω) diverges from the t ' ∞, x ' 0 and t ' 0 regions.
The divergence of f from the y ' 0 region and that of g from the t ' ∞ and x ' 0
regions are associated with open string degenerations, and string field theory can be used
to get unambiguous finite results for the integrals from this region [12–14], fixing the two
undetermined constants in the analysis of [1]. Ref. [1] dealt with the divergences associated
with the y ' 1 and t ' 0 regions, associated with the closed string degeneration, by
working with imaginary energies. In section 3 we shall use insights from string field theory
to deal with these divergences, and describe the procedure for getting finite results for these
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integrals for real energies. The main idea follows the one described in [15], — to represent
the amplitudes as Feynman diagrams of string field theory, and carry out the integrals over
momentum variables along appropriate contours in the complex momentum plane. In fact
we do not need to go through the analysis is detail, but simply lift the results of [15] to
the case under study.2

Once we have divergence free expressions for f(ω1, ω2) and g(ω), we can also use them
to compute a general n+ 1-point amplitude in which an incoming closed string tachyon of
energy −ωn+1 > 0 scatters to n outgoing closed string tachyons of energies ω1, · · · , ωn > 0.
The result takes the form:

A1→n = 2n+1N e−1/gs 2πδ(ω1 + ω2 + · · ·ωn + ωn+1)
{
n+1∏
i=1

sinh(π|ωi|)
}

1 + gs

n+1∑
i,j=1
i<j

f(ωi, ωj) + gs

n+1∑
i=1

g(ωi) + C gs

 . (1.5)

The matrix model result for this amplitude can be computed using the ingredients given
in [1]. This has been described in section 2 and the result takes the form:

2n+1N e−1/gs 2πδ(ω1 + ω2 + · · ·ωn + ωn+1)
{
n+1∏
i=1

sinh(π|ωi|)
}

1− i gs
n∑
j=1

ωj

(
1−

n∑
i=1

πωi coth(πωi)
) . (1.6)

Equality of (1.5) and (1.6) demands the following identity:

n∑
i,j=1
i<j

f(ωi, ωj) +
n∑
i=1

f(ωi,−ω1 − · · · − ωn) +
n∑
i=1

g(ωi) + g(−ω1 − · · · − ωn) + C

= −i
n∑
j=1

ωj

(
1−

n∑
i=1

πωi coth(πωi)
)
, for ωi > 0, 1 ≤ i ≤ n . (1.7)

Note that f and g given in (1.2) and (1.3) are formally real, in the sense that the
integrands appearing in their expressions are real. On the other hand, the matrix model
answer, encoded in the right hand side of (1.7), is purely imaginary. This is a standard
problem in the world-sheet approach to string theory [17–23], and whenever an amplitude
is expected to acquire an imaginary part, the corresponding integral over the moduli space
of Riemann surfaces diverge. The relevant divergences in this case arise from the closed
string channel, — precisely those associated with the y ' 1 region for f(ω1, ω2) and the
t ' 0 regions for g(ω).3 Our analysis in section 3, that shows how to extract finite results

2An alternative approach is to deform the contour of integration over the moduli of Riemann surfaces
into complex plane [16].

3The divergences associated with the open string degeneration produces real result after being treated
using string field theory techniques of [12–14].
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for both f(ω1, ω2) and g(ω), does contain imaginary parts. In fact the imaginary parts
turn out to have compact analytic expressions, given by:4

fimaginary(ω1, ω2) = 1
2 i π ω1 ω2 {coth(πω1) + coth(πω2)} sign(ω1 + ω2) , (1.8)

gimaginary(ω) = i π

2 |ω|
{
ω coth(πω)− 1

π

}
. (1.9)

It is easy to check that the imaginary part of the left hand side of (1.7), computed with (1.8)
and (1.9), agrees with the right hand side of (1.7). This gives an analytical proof of the
imaginary part of (1.7).

2 Scattering involving multiple closed string tachyons

Ref. [1] computed the following D-instanton induced amplitudes in two dimensional string
theory. The disk one point function of a closed string tachyon of energy ω is given by

2 sinh(π|ω|) . (2.1)

In this and in all the following expressions the energies will always be taken to be outgoing,
with an incoming particle regarded as carrying negative energy. In this notation, the disk
two point function of a pair of closed string tachyons of energies ω1 and ω2 is given by

4 gs sinh(π|ω1|) sinh(π|ω2|) f(ω1, ω2) , (2.2)

where f(ω1, ω2) has been defined in (1.2). An annulus one point function of a closed string
tachyon of energy ω is given by:

2 gs sinh(π|ω|) g(ω) , (2.3)

where g(ω) has been defined in (1.3). We shall also denote by C gs the zero point function on
surfaces of Euler number −1. Each amplitude carries an overall normalization of N e−1/gs

where N is the normalization constant given in (1.4). Finally, the integration over the
collective modes of the D-instanton generates a factor of 2πδ(ω) where ω is the total
energy carried by all the external states of the amplitude. Multiplication by N e−1/gs

and the 2πδ(ω) factors has to be done at the end after taking the products of all the
disconnected parts that an amplitude may have.

Using these results we can compute a general D-instanton induced scattering amplitude
in which an incoming closed string tachyon of energy −ωn+1 > 0 scatters to n outgoing
closed string tachyons of energies ω1, · · ·ωn. The leading order term comes from the product
of n+1 disk one point functions, each giving a factor of 2 sinh(π|ωi|), while the subleading
term is given by the sum of three kinds of diagrams — product of (n − 1) disk one point

4I wish to thank Bruno Balthazar, Victor Rodriguez and Xi Yin for raising the possibility of getting the
imaginary parts of these amplitudes using unitarity cuts. Even though we did not use this, with hindsight
one can see that the imaginary parts could have been obtained using the Cutkosky rules of string field
theory [24]. The approach discussed in section 3 gives finite expressions for both, the real and imaginary
parts of the amplitude, for real energies.
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functions and a disk two point function, the product of n disk one point functions and an
annulus one point function and the product of n+1 disk one point functions and a zero point
function on a Riemann surface of Euler number −1. Therefore the result takes the form:

A1→n = 2n+1N e−1/gs 2πδ(ω1+ω2+· · ·ωn+ωn+1)
{
n+1∏
i=1

sinh(π|ωi|)
}

1+gs
n+1∑
i,j=1
i<j

f(ωi,ωj)+gs
n+1∑
i=1

g(ωi)+C gs

 . (2.4)

The matrix model result for A1→n was computed in [1]. There it was shown that the
leading order result agrees with the leading order term in (2.4) (given by the 1 inside the
square bracket) if we choose N as in (1.4). The subleading order result of the matrix model
takes the form [1]:

A(1) =−δ(ω1+· · · ωn+1)e−1/gs 2π igsω sinh(πω)
∑
S

(−1)|S|
∫ ωS

0
dxeπ(ω−2x)

(
x−ω2

)
,

(2.5)
where

ω ≡ ω1 + · · ·+ ωn , (2.6)
S is a subset of {1, · · · , n}, |S| is the number of elements of S, and

ωS =
∑
i∈S

ωi . (2.7)

After performing the integration over x and summing over S using the results,∑
S

(−1)|S| e−2π ωS =
n∏
i=1

(
1− e−2πωi

)
,

∑
S

(−1)|S| ωS e−2π ωS = −
n∏
i=1

(
1− e−2πωi

) n∑
j=1

ωj
e−2π ωj

1− e−2πωj
, (2.8)

we get

A(1) = δ(ω1+· · · ωn+1)e−1/gs 2π igsω sinh(πω)2n
n∏
j=1

sinh(πωj)
[

1
4π2−

n∑
i=1

ωi
4π coth(πωi)

]
.

(2.9)
Eq. (2.9) would agree with the subleading order term in (2.4) if,

n+1∑
i,j=1
i<j

f(ωi, ωj) +
n+1∑
i=1

g(ωi) + C = −i
n∑
j=1

ωj

(
1−

n∑
i=1

πωi coth(πωi)
)

for ωn+1 = −
∑n
i=1 ωi, ωi > 0 for 1 ≤ i ≤ n , (2.10)

or, equivalently,
n∑

i,j=1
i<j

f(ωi, ωj) +
n∑
i=1

f(ωi,−ω1 − · · · − ωn) +
n∑
i=1

g(ωi) + g(−ω1 − · · · − ωn) + C

= −i
n∑
j=1

ωj

(
1−

n∑
i=1

πωi coth(πωi)
)
, for ωi > 0, 1 ≤ i ≤ n . (2.11)
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× × ×

(a) (b)

Figure 1. The Feynman diagrams contributing to the imaginary parts of f(ω1, ω2) (figure (a)) and
g(ω) (figure (b)). The thick lines denote closed string propagators and the ×’s denote the closed
string one point function on the disk.

3 Divergences to imaginary parts

The expressions for the functions f(ω1, ω2) and g(ω), given in (1.2) and (1.3), are formally
real, while the matrix model result (2.9) is purely imaginary. Therefore (2.11) looks wrong.
However, the reality of f and g is misleading. As in any quantum field theory, a string
amplitude is expected to acquire an imaginary part when the energy of a subset of external
states exceeds the threshold of production of physical intermediate states. However, in the
world-sheet description, whenever an amplitude is expected to acquire an imaginary part,
the corresponding integral over the moduli space of Riemann surfaces diverges [17–23].
In the present case, the imaginary parts of f and g, and the associated divergences in
the world-sheet description, arise from the closed string degeneration associated with the
Feynman diagrams shown in figure 1. In order to avoid these divergences, ref. [1] worked
with imaginary energies where these divergences are absent, and verified (1.7) for n = 1 in
this domain numerically.

It is however possible to work with real energies and extract finite answers either by
deforming the contour of integration over the moduli of Riemann surfaces into complex
plane [16], or by using string field theory description of the amplitudes as integrals over
loop momenta, and then deforming the momentum integration contours into the complex
plane [15]. We shall illustrate this below by showing how to get finite results for f(ω1, ω2)
and g(ω) using the string field theory based approach, and also analytically computing the
imaginary parts of these functions for real energies.

Let us begin by analyzing the divergent part of f(ω1, ω2) coming from the y → 1
region of (1.2). This contribution was analyzed in eq. (2.14), (2.15) and (2.18) of [1].
After carefully evaluating the overall normalization factors, and accounting for the fact
that we are labelling the incoming and the outgoing energies by −ω1 and ω2 respectively,
the relevant divergent part of f(ω1, ω2) takes the form:

1
sinh(π|ω1|) sinh(π|ω2|)

∫ ∞
0

dP

∫ 1
dy (1− y)−1+2P 2−(ω1+ω2)2/2 2−2P 2+(ω1+ω2)2/2

C(|ω1|/2, |ω2|/2, P ) sinh(2πP ) , (3.1)

where C(P1, P2, P3) is the three point functions of primaries, carrying momenta P1, P2 and

– 6 –
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P3, in c = 25 Liouville theory [25, 26], normalized as in [27]. The y integral diverges5

for P 2 < (ω1 + ω2)2/4. However string field theory tells us to replace the y-integral
as follows [10]:∫ 1

dy(1−y)−1+2P 2−(ω1+ω2)2/2⇒
∫ 1−a

dy (1−y)−1+2P 2−(ω1+ω2)2/2+ a2P 2−(ω1+ω2)2/2

2P 2−(ω1+ω2)2/2−iε ,

(3.2)
for any small but finite positive number a. The iε has been introduced according to the iε
prescription for the propagators of string field theory, and at the end we have to take the
limit ε→ 0+. In this limit, (3.2) is an identity for 2P 2− (ω1 +ω2)2/2 > 0 but follows from
the Feynman rules of string field theory for 2P 2− (ω1 +ω2)2/2 ≤ 0. It is also easy to check
that the right hand side is independent of a in the ε → 0+ limit. Therefore, making the
replacement (3.2) in (3.1), one can extract finite results for the ‘divergent’ integral (3.1).
One can even evaluate it numerically if desired keeping the energies ω1 and ω2 real.

Let us now discuss the computation of the imaginary part of f(ω1, ω2). Since the
integrand in the expression for f(ω1, ω2) given in (1.2) is formally real, the only source of
the imaginary part is the iε in (3.2). Using the result,

1
2P 2 − (ω1 + ω2)2/2− iε = i π

2 |ω1 + ω2|
δ

(
P − |ω1 + ω2|

2

)
+ real for P > 0 (3.3)

in (3.2), and substituting this into (3.1), we get the following expression for the imaginary
part of f(ω1, ω2):

fimaginary(ω1, ω2) = i π

2 sinh(π|ω1|) sinh(π|ω2|)
1

|ω1 + ω2|
sinh(π|ω1 + ω2|) C

( |ω1|
2 ,
|ω2|

2 ,
|ω1 + ω2|

2

)
. (3.4)

Using the result (see e.g. [27]),

C(a, b, a+ b) = C(a, a+ b, b) = C(a+ b, a, b) = 8 a b (a+ b) , (3.5)

we can express (3.4) as

fimaginary(ω1, ω2) = 1
2 i π ω1 ω2 {coth(πω1) + coth(πω2)} sign(ω1 + ω2) . (3.6)

Next we turn to the computation of g(ω). Our focus will be on extracting finite result
from the t ' 0 region of (1.3) where the integral is apparently divergent. Comparing (1.3)
of this paper with eqs. (2.27) of [1] and using the results of appendix A of [1], the divergent
part of g(ω) from this region can be written in the form:

1
sinh(π|ω|) 27/2 π

∫ ∞
0

dP1

∫ ∞
0

dP2 C(|ω|/2, P1, P2) sinh(2πP1) sinh(2πP2)∫ ∞
0

ds

∫ 1
4

0
dx s1/2 exp

[
−2πs

{
(1− 2x)P 2

1 + 2xP 2
2 − x

(1
2 − x

)
ω2
}]

, (3.7)

5In [1] this part of the analysis was carried out for ω1 + ω2 = 0, and therefore they did not encounter
this divergence.
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where the integration variables s is related to t in (1.3) by s = 1/t. Therefore the divergence
near t = 0 now arises from the region of large s. We have chosen the lower limit of s integral
to be 0 for definiteness, but this has no particular significance — we can change this to any
other value at the cost of adding a finite contribution. Let us now change the integration
variables from (s, x) to

t1 = 2π s (1− 2x), t2 = 4π s x . (3.8)

We note further that for x ≤ 1/4, we have t2 ≤ t1. We shall relax this by allowing x

integration to run over the range 0 ≤ x ≤ 1/2 at the cost of multiplying the integrand by
a factor of 1/2. This reduces (3.7) to

1
sinh(π|ω|) π

−1/2
∫ ∞

0
dP1

∫ ∞
0

dP2 C(|ω|/2, P1, P2) sinh(2πP1) sinh(2πP2)∫ ∞
0

dt1

∫ ∞
0

dt2 (t1 + t2)−1/2 exp
[
−t1 P 2

1 − t2 P 2
2 + t1t2

t1 + t2

ω2

4

]
. (3.9)

This integral diverges from the large t1, t2 region for ω > 2(P1 + P2), but there is no
divergence from the region of large t1 at fixed t2 or vice versa. However, as has been
discussed in detail in [15], this divergence can be attributed to the wrong use of Schwinger
parametrization in a string field theory Feynman diagram. Ref. [15] also discusses how to
extract finite answer from this apparently divergent integral. Comparing eq. (2.11) of [15]
for D = 1 to the sum of eqs. (2.4) and (2.5) of [15], we get the replacement rule:

(4π)−1/2
∫ ∞
A

dt1

∫ ∞
A

dt2 (t1+t2)−1/2 exp
[
t1t2
t1+t2

M2−(t1m2
1+t2m2

2)
]

⇒ exp
[
A(M−m2)2−Am2

1

]
(2m2)−1 {M+m1−m2}−1 {m1+m2−M−iε}−1 Θ(M−m2)

+
∫ ∞
−∞

du

2π exp
[
−A

{
u2+m2

1

}
−A

{
(u+iM)2+m2

2

}] (
u2+m2

1

)−1{
(u+iM)2+m2

2

}−1
,

(3.10)

where Θ is the Heaviside function. The right hand side is a finite integral. Therefore,
substituting this into (3.9) after replacing m1,m2,M by P1, P2, ω/2 we can get finite
result for (3.9).

The physical interpretation of (3.10) is as follows. The left hand side represents the
contribution where we exress the two internal propagators in figure 1 by their Schwinger
parameter representation and carry out the integration over the energies carried by these
propagators. The right hand side represents the result of carrying out internal energy inte-
grals directly, by deforming the energy integration contour to lie along the imaginary axis,
and picking up residues from the poles that the contour crosses during this deformation.
The external energy ∝M is kept real. The first term on the right hand side is the residue
at the pole that the contour crosses, while the second term represents the integration along
the imaginary energy axis. The left hand side arises in the world-sheet theory, but string
field theory tells us that the right hand side is the correct one when the two differ. For
M < m1 +m2, both sides are finite and (3.10) holds identically.

– 8 –
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Let us now compute the imaginary part of g(ω). Again, since the integrand for g(ω)
in (1.3) is formally real, the only sources of imaginary parts of g(ω) are the i’s on the right
hand side of (3.10). The imaginary part of (3.10) is given by:

i π (4m1m2)−1 δ (m1 +m2 −M) , (3.11)

where we have used the fact that the term in the last line of (3.10) is real — this can be
checked by making a u→ −u transformation. Using (3.11) in (3.9), we get the imaginary
part of g(ω):

gimaginary(ω) = i π

2 sinh(π|ω|)

∫ ∞
0

dP1

∫ ∞
0

dP2 C(|ω|/2, P1, P2)P−1
1 P−1

2

sinh(2πP1) sinh(2πP2) δ
(
P1 + P2 −

|ω|
2

)
. (3.12)

Using (3.5) we can express this as

gimaginary(ω) = i π

2 |ω|
{
ω coth(πω)− 1

π

}
. (3.13)

Using (3.6) and (3.13), it is now straightforward to verify that the imaginary part of
the left hand side of (2.11) agrees with the matrix model answer given on the right hand
side. Therefore (2.11) can now be written as an equation involving the real parts of f and g:

n∑
i,j=1
i<j

freal(ωi, ωj)+
n∑
i=1

freal(ωi,−ω1−· · ·−ωn)+
n∑
i=1

greal(ωi)+greal(−ω1−· · ·−ωn)+C = 0 ,

(3.14)
for ωi > 0. A class of solutions to (3.14) is provided by

freal(ωi, ωj) = ωih(ωj) + ωjh(ωi), greal(ω) = ω h(ω), C = 0 , (3.15)

for any function h(ω). It will be interesting to explore whether the results of string theory
computation yields this form.
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