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ABSTRACT: We study how the evaporation rate of spherically symmetric black holes is af-
fected through the extraction of radiation close to the horizon. We adopt a model of extrac-
tion that involves a perfectly absorptive screen placed close to the horizon and show that the
evaporation rate can be changed depending on how close to the horizon the screen is placed.
We apply our results to show that the scrambling time defined by the Hayden-Preskill
decoding criterion, which is derived in Pennington’s work (arXiv:1905.08255) through en-
tanglement wedge reconstruction is modified. The modifications appear as logarithmic
corrections to Pennington’s time scale which depend on where the absorptive screen is
placed. By fixing the proper distance between the horizon and screen we show that for
small AdS black holes the leading order term in the scrambling time is consistent with
Pennington’s scrambling time. However, for large AdS black holes the leading order Log
contains the Bekenstein-Hawking entropy of a cell of characteristic length equal to the AdS
radius rather than the entropy of the full horizon. Furthermore, using the correspondence
between the radial null energy condition (NEC) and the holographic c-theorem, we argue
that the screen cannot be arbitrarily close to the horizon. This leads to a holographic
argument that black hole mining using a screen cannot significantly alter the lifetime of a
black hole.
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1 Introduction

The AdS/CFT correspondence is a conjecture that relates gravitational systems in asymp-
totically AdS spacetimes to conformal field theories in one fewer spatial dimension [1-3].
This provides an ideal setting to resolve the black hole information paradox [4-7]. In par-
ticular, it suggests that information thrown into a black hole is not lost. The reason for
this is that the AdS black hole undergoing evaporation is dual to unitary time evolution
of a thermal state on the CFT side of the duality, which does not allow for information
loss. The information thrown into a black hole is thus argued to be scrambled by some
kind of unitary dynamics and then remitted via Hawking radiation [8-10]. The question
of how long one needs to wait for information thrown into a black hole to emerge in the
subsequent Hawking radiation was first addressed in [8]. It stated that information thrown
into a black hole after the Page time would re-emerge within a scrambling time scale which
is given by:

tser ~ 511’1(5), (11)
where [ is the inverse Hawking temperature and S is the number of degrees of freedom in
the black hole which take part in scrambling.

Usually in the context of AdS/CFT one considers black holes well beyond the Hawking-
Page transition. These black holes, often referred to as large AdS black holes, are dual to
large N gauge theories [11, 12]. They have a horizon radius, rg, that satisfies rs > L where
L is the AdS radius. A peculiar property of large AdS black holes is that they are thermally
stable. This is due to the confining potential which comes from the asymptotics of AdS
spacetimes. In such a case any Hawking radiation that the black hole emits reaches the
conformal boundary and bounces back, being reabsorbed into the black hole. Eventually
the black holes reaches stable equilibrium with the surrounding Hawking radiation and
will not evaporate [13, 14]. This makes large AdS black holes ill-suited to discuss the
information paradox. To remedy this issue, it has been suggested to start with a large AdS
black hole and then couple the bulk fields to an auxiliary field (called the evaporon) which
carries energy away from the AdS black hole into an auxiliary system thereby allowing the
black hole to evaporate [15, 16].

In such constructions, it is the joint system of the reservoir and black hole which satisfy
unitarity. Such constructions have been of recent interest in explorations of the information
paradox. For example, [17, 18] rely on such setups to show how information from the black
hole gets released in the Hawking radiation (see [19] for a recent overview of the literature).
They use entanglement wedge reconstruction to show how information inside a black hole
after the Page time scale is encoded in the subsequent Hawking radiation. In particular,
Pennington showed that a small amount of information thrown into a black hole (after the
Page time) will re-emerge in Hawking radiation after a time scale given by:

B8 2nC
temerge = g In (5517‘5) s (12)

dt

where C' can be thought of as the radial distance away from the horizon that one expects
the Rindler description to hold, drs/dt is the average rate of change of the horizon radius



during evaporation, and S is the inverse Hawking temperature. Moreover, as we shall
review in section 3, temerge is the scrambling time scale discussed in [8]. A key assumption
that was made in the calculation was that radiation was being extracted close to the horizon
by some type of “super-observer” in a non-local manner. Since the radiation was extracted
sufficiently close to the horizon it was assumed that greybody factors can be ignored and
the 2D Stefan-Boltzmann law was used for the evaporation rate:

@ _ CevapT
dt 12527

(1.3)

where cevap represents the number of modes being extracted near the horizon. Using this
evaporation rate in conjunction with the first law of black hole thermodynamics (dM =

TdS) gave an information emergence time of the form:!

temerge ~ ﬂ In <S_Sext> . (14)

2 Cevap

A similar result is also derived for 2D black holes in Jackiw-Teitelboim (JT) gravity studied

n [18]. Which is given by:
6 (S - Sext)
emerge " —1 — |, 1.
femerg 27 o c (1.5)

where c is the central charge (a measure of the degrees of freedom of a CFT) of a CFT that
describes bulk matter in the 2D gravity theory. In light of the two results in egs. (1.4-1.5)
for the emergence time, it is tempting to make a rough identification of ¢ ~ cevap. The
central charge, ¢, in eq. (1.5) seems to be a fixed parameter which does not appear to have
any kind of dependence on quantities that characterize the black hole such as temperature.

However, it is clear that in Pennington’s setup cevap depends on details of where and
how radiation is extracted near the horizon. For example, Cevap should depend on how
close one is extracting radiation near the horizon. The closer we are, the larger cevap can
get. Furthermore, cevap Will depend on the means by which one extracts radiation from
the horizon; if we choose to place a surface at a radial distance ér from the horizon with
perfectly absorbing boundary conditions then cevap would be larger than if we chose some
kind of semi-reflective boundary conditions. All these details will have some effect on the
value of Cevap and therefore on the evaporation rate.

In light of these observations, we explore how the evaporation rate of a black hole
depends on how close we extract radiation from the horizon. In this paper, we will model the
“super-observer” using an absorptive screen placed close to the horizon. Roughly speaking,
we assume that the screen can be understood from the prospective of the holographic
renormalization group in AdS/CFT [20, 21]. At infinity we have a full UV complete (local)
theory. The degrees of freedom on the screen and their dynamics are going to be viewed as
a lower energy coarse grained version of the UV theory. We expect that the lower energy

theory will become increasingly non-local as we push the screen closer to the horizon.?

"We will review some of the details of the calculation in section 3.
2We will evaluate this interpretation of the screen in more detail in section 4.2 when we discuss the null
energy condition for the screen and connections to the holographic c-theorem.



To simplify considerations, we assume that the screen will absorb any radiation that
reaches it.? In section 2.1, we review how to calculate the average evaporation rate of a
black hole and discuss how greybody factors affect this rate. By doing this we are able
to clearly identify Pennington’s cevap in terms of an infinite sum over angular momentum
modes. We discuss how in two dimensions cevap in eq. (1.4) can be reasonably identified
with ¢ in eq. (1.5) with no further dependence on parameters that characterize the black
hole. However, in higher dimensions we find that such a naive identification is not valid.
We introduce the notion of a generalized greybody factor which quantifies the fraction of
radiation that gets to a point at a radial distance dr away from the horizon. At this distance
away we introduce a perfectly absorbing screen which will absorb any radiation that hits
it. We then write down an expression for the evaporation rate in terms of the generalized
greybody factor. After doing this we restrict ourselves to massless scalar perturbations and
write down a model for the generalized greybody factor which treats the effective potential
as a “hard wall.” In section 2.2, we apply the hard wall model to AdS Schwarzschild black
holes and find the evaporation rate. In section 2.3, we discuss why the hard wall model for
the generalized greybody factor is not sufficient for near extremal AdS Reissner-Nordstrom
(RN) black holes. We motivate a correction that “softens” the wall and accounts for
radiation being able to tunnel into the classically forbidden region. We then provide an
estimate using this modified model for the evaporation rate of near extremal AdS RN black
holes. In section 3, we review Pennington’s calculation of temerge and then use the modified
evaporation rates that we calculated in section 2 and find temerge. In particular, for AdS
black holes with r;/L < 1 we find results that agree with Pennington’s calculation up
to some logarithmic correction which depends on how far we choose to extract radiation.
However, in the case of rs/L > 1 we find a slightly different result; the argument that goes
into the Log is not the entropy of the entire horizon, but rather the entropy of a cell of size L
controlled by the AdS radius (in addition to the usual logarithmic correction which depends
on the extraction radius). In section 3.4, we discuss the subtleties involved in choosing the
B dependence of the subleading Log correction for near extremal black holes. By fixing the
proper distance between the screen and horizon we find that temerge is consistent with the
scrambling time for near extremal black holes (up to a sub-leading Log correction that has
no further dependence on the temperature of the black hole). We speculate that fixing the
proper radial distance of the screen from the horizon to corresponds to fixing the energy
scale of the effective holographic theory on the screen. In section 4.1 we formulate a more
rigorous framework to calculate how the screen will absorb Hawking radiation. This is
done by viewing the screen as an interface which patches the interior black hole spacetime
to an exterior “reservoir” spacetime. By doing this we reduce the problem of finding how
the screen absorbs the radiation to a calculation of finding the transmission amplitude of
scalar perturbations through an effective potential. We argue that by using this approach

3By doing this we are not actually defining the effective theory living on the screen that is consistent with
some UV completed theory on the boundary. If we did make the effective theory on the screen consistent
with a UV completed theory, we should not expect a perfectly absorptive screen. However, we still believe
that a perfectly absorptive screen near the horizon is a reasonable approximation. In section 4.1, we propose
a more rigorous way of defining how the screen should absorb radiation.



one should recover the results in reasonable agreement with the toy models discussed in
this paper. In section 4.2 we briefly review the holographic c-function and the role that the
null energy condition (NEC) plays in its formulation. We then consider the radial NEC
for the matter that makes up the screen and show that it satisfies the radial NEC a finite
distance from the horizon as long as the AdS radius of the spacetime enclosed by the screen
is smaller than the AdS radius of the exterior spacetime. This provides a heuristic way to
quantify the effective coarse-grained degrees of freedom as the screen is moved toward the
horizon. In section 4.3 we discuss how extracting Hawking radiation near the horizon of
an AdS black hole can be tied in with discussions of black hole mining. We show that the
radial NEC places non-trivial constraints on how close the screen is allowed to be to the
horizon. The constraints show that small AdS black holes cannot be mined by placing a
screen very close to the horizon. However, mining for very large AdS black holes is possible
since the screen can be placed very close to the horizon without violations of the radial
NEC. We compute how long it takes for a very large AdS black hole to transition to a small
AdS black hole through screen mining. We estimate that to leading order a the transition
time (in units of the AdS radius) is given by the Bekenstein-Hawking entropy of an AdS
radius sized cell.

We then conclude this work by summarizing the major results of this paper as well as
some outstanding questions and issues which can be explored further.

2 Changing evaporation rates via near horizon extraction

2.1 Modelling Hawking radiation extraction through generalized greybody
factors

It is well known that close to the horizon, a black hole will emit radiation as a black body.
However, by the time this radiation reaches an observer very far away from the black
hole the spectrum of the radiation is modified. This is because the black hole generates a
non-trivial potential that perturbations travelling through the background will experience,
resulting in partial reflection and transmission of perturbations. These effects are contained
in greybody factors and they have a non-trivial effect on the evaporation rate of a black
hole. We will review the basics of how greybody factors affect the evaporation rate. We
will then introduce the notion of a generalized greybody factor which will depend on how
far one is extracting radiation from the horizon.
We begin with the well known result which describes the occupation number distribu-
tion of Hawking quanta emitted by a black hole (not accounting for greybody factors):
B 1
(n(w))y = o1 (2.1)

The plus is for fermionic Hawking quanta and the minus is for bosonic Hawking quanta.
For the sake of simplicity we will restrict ourselves to bosonic quanta in this paper. The
total evaporation rate (ignoring greybody factors) of the black hole is given by:

_ 1 © Nyw Ny
dt QWZNE/ Now (n —d“_zwzg:N’f/o B _ 1 12522% (2:2)




where Ny is the number of different bosonic species and Ny is the degeneracy of the ¢-th

4 Note that we recover the 2D Stefan-Boltzmann law used by

hyper-spherical harmonic.
Pennington with the identification, cevap = Np >y Ny This is only finite in 2D where the
sum over ¢ disappears and we are left with cevap = N, which does not depend on the
parameters that characterize the black hole (or even the exact position of the screen) this
is similar to the behaviour of ¢ in eq. (1.5) which we discussed in section 1.

In higher dimensions the sum persists and will be divergent resulting in an infinite
evaporation rate. The effective potential near the horizon is essential for understanding how
the divergence is regulated in higher dimensions. Generally speaking, if we extract Hawking
radiation a finite radial distance ér from the horizon we should expect some fraction of the
total radiation emitted by the black hole to reach r = rgy + dr. This is due to the fact that
the effective potential is only zero at the horizon and strictly increases (at least in some
neighborhood of the horizon). The larger ¢ is the more quickly it increases, this causes the
higher angular momentum modes to reflect back into the black hole, effectively placing a
cutoff over the sum of angular momentum modes which result in a finite evaporation rate.

We define the generalized greybody factor, ~y(w,or), for each ¢. It quantifies the
fraction of radiation that gets to some surface a finite distance dr from the horizon.® If the
absorptive surface is sitting at r = s+ dr then, the generalized greybody factor represents
the fraction of energy absorbed by the screen from the ¢-th mode. Then the total rate at
which the black hole losses mass is given by:

0 Nng’)/g w (57“)
dt = Z/ e (2.3)

The generalized greybody factor will be essential in regulating the infinite sum over /.
In general, we can compute ~y;(w, dr) by considering the wave equation on the black hole
background. However, doing this analytically is difficult. To circumvent this issue we
will introduce models for the generalized greybody factor which will capture the essential
physics of the situation near the horizon.

For the sake of concreteness we will consider the massless scalar wave equation for a

6

spherically symmetric black hole background in d + 1-dimensions.” We are interested in

the radial part of the solution which can be shown to obey the Regge-Wheeler equation:

d*

P (w? = Vi) = 0, (2:4)

where r, is the tortoise coordinate defined by the relation dr, = %, and V} is the effective

4To understand why N is present recall that the solution to the massless scalar wave equation in a
spherically symmetric background can be decomposed as a product U(t,r, ¢Z‘) = e*"“tr“*@/%/;(r)qy(&)
where ®, are hyper-spherical harmonics for a given ¢ angular momentum mode there are N, degenerate
eigenfunctions. In particular, we identify Pennington’s cevap = Np Z ‘ Ny.

®In particular lims, o0 Ye(w, 67) will reproduce the greybody factors that are usually discussed in the
context of an observer sitting at asymptotic infinity.

®These black hole spacetimes will generally have a metric of the following form ds?> = —f(r)dt* +
dr?/f(r) +r2dQ3_,.
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Figure 1. Above is a depiction of how perturbations behave near the horizon with a generalized
greybody factor given in eq. (2.8). Near the horizon the Potential V;(r) is linear and is depicted
by the solid blue line. The slope of the blue line increases with ¢. The absorptive boundary
is depicted by the vertical red line at » = ry + ér. The thick black line is a lower bound for
the frequency of radiation that gets absorbed. Everything below the thick line has frequency
W < Wmine = \/Ve(rs + 0r) and cannot get to the absorbing surface, it bounces off the potential
and gets reabsorbed. Everything above the thick line has frequency w > wmin,¢ and is able to reach
the absorptive surface and gets completely absorbed.

potential given by:

d—1df (d—1)(d-3)

N l+d—2)
2r dr 4r2

r2

(2.5)

Vi) = 0 | ) +

If we choose to extract radiation close to the horizon (i.e. r —ry; < ry) we can approximate
Vp to linear order as:

Vi = 4 {(d—l)?ﬂ 0+ d—2)

B pBrs r3

where 3 is the inverse Hawking temperature. We place a perfectly absorbing surface at

](r—rs)+..., (2.6)

r —rs = 0r where 0r/rs < 1. Now consider the quantity:

o Am [(d—1)27n L(l+d—2)
S Iara

As long as w? > V, we should be able to ignore the effects of V;; the radiation will

w? = V(r) ~w

}(r—rs)+... (2.7)

experience little to no hindrance to get to the absorbing screen we place near the horizon
(i.e. y¢(w,0r) ~ 1). However, once w? < V; we should expect most of the radiation to
be reflected back into the black hole and reabsorbed (i.e. y¢(w,dr) ~ 0). We depict the
scenario in figure 1. We model this sort of “hard wall” potential by introducing the following

generalized greybody factor:

Ye(w, 67) = © [w? = Vi + 67)] (2.8)



where © is the Heaviside step function. Using this model the evaporation rate using
eq. (2.3) is given by:

dM Ny S [ Now T
—_— = — N, d 2.9
dt 21 eo/w _ ePw_1 dw = 271'622 Z/wmmgex_l x|, ( )

min, ¢

where wpin ¢ satisfies:
Winin,e — Ve(rs + 67) = 0. (2.10)

In the next section, we use this model to find the evaporation rate of AdS Schwarzschild
black holes. We will also use a similar model with some adjustments to calculate the
evaporation rate of near extremal AdS RN black holes.

2.2 AdS schwarzschild black holes

In this section we will estimate the evaporation rate of a d + 1-dimensional AdS
Schwarzschild black hole.” We start by doing the integral in eq. (2.9) and obtain the
following result:

M
aM = (e7mint) — i oln (1 — e Pmint)] | (2.11)
dt ’
where the zp,, ¢ is given by:
-2
Lmin,l = ﬁwmin,g = \/477 <27T(d - 1) + WFd)) 5l7 (212)
Ts Ts

and Li,,(z) is the m-th order polylog function in . We estimate the value of the series
as follows. We note that xp,, increases with £. So for sufficiently large ¢ we have the
following leading order approximation for the evaporation rate:

Lig (e7™™mf) — 2pin e In (1 — e7mint) o (1 4 @iy o)~ @t + O (6_21“““7") . (2.13)

We expect the approximation used above is accurate for very large values of £. In figure 2
we plot the exact function and the approximation. If we use the approximated function for
any ¢ > 1 we expect to get a reasonable estimate for the series (accurate within an order of
magnitude). We approximate the degeneracy of angular momentum modes as Ny ~ £4=2
so we have:

dM Ny
dt 271'52

oo
L Z 72 (1 + Zanin ) exmm»eﬂ , (2.14)

where the 72/6 term comes from the £ = 0 mode in the limit where 7 /r; — 0. To do the
sum over modes with ¢ > 1 in closed form we need to make an additional approximation

"The AdS Schwarzschild black hole has the following line element ds? = — f(r)dt? + + 7r2dQ2 |,

f(T)
— 2
where f(r) =1+ ;—i — (TS )d 2 (1 + %) The Hawking temperature of these black holes are given by

r
_dr24(d—2)L?
TH - Anrg L2 °



Exact
Approximation

Figure 2. The solid blue line labeled “Exact” is the left hand side of eq. (2.13) and the dotted
yellow line labeled “Approximation” is the right hand side of eq. (2.13).

that simplifies the functional form of iy ¢:

[4mwBd
Tmin ¢ ~ ol o = % < 1. (215)
s

This approximation comes from the leading order expansion of x,, ¢ for large £. We can
then do the sum in closed form and get:

aM N, [a?
dt "~ 2732 | 6

+> 2 (1 + al) eaf]

=1 (2.16)

N, w2 . _ . —
= F;z [6 +alij_g (e7) + Lig—q (e a)] .

If 67 /rs is sufficiently small (i.e. the screen is sufficiently close to the horizon) we can do
a series expansion in « near zero. The leading order contribution to the estimate for the

evaporation rate is given by:

d—1

ad Mo [d(d—Q)!( e >2+(9(1)

dt T 22 47 Bor (2.17)

In appendix A we do a detailed comparison of our leading order estimate for the evaporation
rate given in eq. (2.17) with numerical calculations. We find that our estimate for the series
agrees with numerical results up to a pre-factor of order 1 (see tables 3-5). Notice that
the ¢ = 0 mode is an order one correction to the leading order term if dr/r, is sufficiently



small (i.e. the screen is placed sufficiently close). To avoid clutter in our leading order
expression we will define a dimension dependent coefficient Ay and write the evaporation

rate as:

d—1

dMNAdNb<r§> 2

T 2

dt 15} Bor ) (2.18)
1—

dld —2)! (4mw) 2
4, A=) F
2T

2.3 Near extremal AdS RN black holes

Now lets consider d + 1-dimensional near extremal AdS RN black holes.® We analyze how
the evaporation rate depends on where we extract radiation near the horizon. In this case
we should expand V; to second order. This is because the first order expansion of V; is
proportional the temperature which will go to zero in the extremal limit. Sufficiently close
to the extremal regime the second order term will dictate the leading order behaviour of
the potential close to the horizon.

Vi(r) =Vi(r —rg) + %(r —rs)2 ...
CAr[(d-1)2r L+ d—2)
= ? [ prs T?
Vo = f"(rs)W (2.19)
Ar [ d (d—1df (d=1)(d=3)f(r) L(l+d—2) g d—1
5 2 (Gt e e ) e .

The expansion above will be valid if r — ry < r,;. Sufficiently close to the extremal regime
we will have the leading order contribution equal to:
Po(rs) (L +d—2)

Vilr) = ST S
S

(r — 1) (2.20)

As before, we can consider placing a perfectly absorbing surface a radial distance dr from
the horizon. If we decide to use the Heaviside step model in eq. (2.8) then we will need to
do the integral in eq. (2.9) with the lower bound:

Bor ¢ fo(r (e +d—2) (2.21)

LTmin,l = mein,ﬁ =
Ts 2

Unlike the non-extremal case we discussed previously the lower bound is much larger
than unity sufficiently close to the extremal regime. This means that we are well into the

8The d+1-dimensional AdS RN black hole has a line element of the form ds® = — f(r)dt*+ }iZf) +r2dQ2_,,

d—2 d
where f(r) = (1 — :;_2 1- $ + 2—22 1- :—3)7 where 75 is the radius of the horizon and Q is
the charge of the black hole. The black hole is extremal when the charge and horizon radius satisfy the
2 ’
fol]owing rela,tion7 Q2 = 'rg(d_Q) (1 + dfdg%)? this occurs when Ty = % =0.
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Figure 3. Above is a depiction of how perturbations behave near the horizon with a generalized
greybody factor given in eq. (2.23). For wmin¢ the model is unchanged and everything is absorbed.
However, for w < wmin,¢ we account for the wave-like behaviour of the solution which allows for the
solution to tunnel into the classically forbidden region. The amplitude the solution would decay as
some power law after the classical turning point. We estimate the amount of energy that tunnels
to the absorptive surface by taking the ratio between the amplitude of the solution at the turning
point and the amplitude at the absorptive surface. Doing this gives a power law suppression of the
generalized greybody factor for w < wpin¢ in eq. (2.23).

exponentially decaying tail of the integrand. Recall that the Heaviside step function model
was used to simulate the effective potential as a “hard” wall. In reality we know that the
waves can actually enter the classically forbidden region. The amplitude of the solution will
decay through some power law in the classically forbidden region. By the time a wave with
w < Wmin reaches the absorptive surface its amplitude would be power law suppressed as
depicted in figure 3. The Heaviside model completely disregards these effects. This would
be okay if the contribution of modes with w > wy,in ¢ Was not exponentially suppressed,
but since it is suppressed in the near extremal regime we need to consider the effects of
w < Wming. Therefore, for a near extremal black hole we need a generalized greybody
factor of the form:

w

q(¢)
Ye(w, 0r) = O(wW — Wmin,e) + ( ) O (Wminys — w) , (2.22)

Wmin, ¢
where ¢(¢) is some function of ¢ which will be determined by analyzing the dynamics of
the perturbations near the horizon and gives us the power law decay we need. The details
of how to obtain a reasonable model for ¢(¢) for scalar wave perturbations is detailed in
appendix B. The result for £ > 1 is:

2Vg+1
’Y@(wa 6T) = @(w - wminﬁ) + (w > ) (wmin,Z - W)
min, ¢

1 26(0+d —2)
vy = ZJFO‘% Q?ZW,

ext

(2.23)



where fI (rs) is the second derivative of f(r) evaluated at the horizon radius rg, in the
limit where the Hawking temperature goes to zero. Using this, the expression for the
contribution to the evaporation rate for £ > 1 is given by:’

21/g+1
dM N Wmin, ¢ N o0 N
_ Mo / f“(“’) dot [~ dw
0

dt 2w W —1 \ Wmine L ePv —1
/=1 min, Wmin, ¢
2.24
Ny, s 9 1 2(vetl) 0o € ( )
= o = wmin,éNf /0 Wde + /1 mde .

With some work detailed in appendix C we can do the integrals in closed form and write
the total evaporation rate as the following series over £:

M N, &
dt 27’(52 Z Stun N4 + Sntun ﬁ]
. N r(3+,/1+4a§)m3+ ez (D
tun,l — LV¢
rie (2:25)

Sutun,e = Ny [Lig (7m0 0) — Zpyin g In (1 — 7 Fmint) ]

Borfll i (rs)ay 5(57” JEn E +d— 2)
2

The terms Siune in eq. (2.25) represents the contribution of to the evaporation rate of

Tmin,l = 6wmin,é =

modes that tunnel through the effective potential. The terms Spuun ¢ in eq. (2.25) represent
the contribution to the evaporation rate of modes that do not need to tunnel through
the barrier to reach the screen. When we are sufficiently close to the extremal regime we
can show that Stune > Shtun,e (this point is discussed in appendix D). This means that
sufficiently close to the extremal regime we can ignore Sptun ¢ and write:

IM o0 Nb o r(?,Jm/lJrzLo@)Li3+ (1)

o 2ﬂ522 tnt = 5 Z 2 ol (2.26)

144/ 14407
xmin,@

where we used Ny ~ ¢9=2. We cannot evaluate the series in closed form so we resort to
additional approximations.

We begin by considering the case of very large AdS black holes where ry/L > 1. In
this case we have:

(2.27)

WHl+d—2)— 20+ 1)l+d—1) L $\ !
az+1—ae=\/( ) — 20+ 1)( )T~<T> < 1.

dd—1) L

9We are not including the £ = 0 mode in this section, in appendix F we treat the £ = 0 mode. We
show that for very large AdS black holes sufficiently close to the extremal regime the ¢ = 0 contribution
is sub-leading compared to the contribution of modes with ¢ > 1. For very small AdS black holes and
asymptotically flat black holes the ¢ = 0 mode has a leading order effect on the evaporation rate when
d < 8 in the near extremal regime, we discuss this point and also discuss its consequences on the information
re-emergence time. Overall we find that including the ¢ = 0 results in minor changes in the expressions
for information re-emergence time which are consistent with the usual scrambling time scales for nearly
extremal AdS RN black holes.
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The spacing between consecutive oy becomes smaller as the AdS black holes we are con-
sidering become larger relative to the AdS radius. In this case, we estimate the sum using
an integral as follows:

dal

2 .
D /OogH (34 1+ 40) Liy, g (1)
at  2np% )i 14+/1+4a2

min,?

d-2
Ny, [ (d-2 2r§fé§(t(rs)a?
_27T52/Q1 ( . —1+\/1+(d_2)2]) (2.28)

A
T (3 + \/W) LISJr 1+4a3<1) aﬂ“? ext (T's)

Srf! (rs 14+/14+4a2 27“3]"4; (TS)OzQ
(ﬁ r exé(r )ae) ¢ (d— 2)\/1 + t ¢

X

day,

(d—2)

where in the last line we simply changed the variables of integration from ¢ to oy using the
definition of ay in eq. (2.23). The lower bound of integration is a1, equal to:

d—1 L2
o = = R~ \/2 < 1. (2.29)
(d—2)2+d(d—1)75 dr;

For very large AdS black holes (d > 4) we use the following approximation for the integrand:
(The steps to arrive at this approximation are described in appendix E we also make plots
to show that the approximation will become more accurate as r/L becomes larger.):

dM

da—1 9942
Ny, [oqt M 2 (BT o (7s) 2o a4 do
dt e

is1 2742 Jo 15 2 2

s () b (B () T ()

d—1

= _ 8- 2 _
%;;27;; <2d(i£21)7"§> [m(d(d Li)ﬁérﬂ (d(d _L;W) . (d : 3)‘

(2.30)

Note that the expression above is ill defined for d = 3. This is because we approximated
the lower bound of the integral using 0. If we instead use «; for the lower bound we will
get a well defined result for d = 3 given by:

_9_ 2
e T
dt |,  278%15 2 o 2 ¢ =

Ny (2 )\ | Bi 2030 (g
27T5215< 2 > N 2(w)2 >

(2.31)
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d 3 4 6 8 10

Numerical 3.48 x 1078 | 2.87 x 1077 | 1.03 x 1073 | 4.02 x 10" | 6.25 x 106

Approximation 3.40 x 1078 | 2.91 x 1077 | 7.80 x 10™* | 2.38 x 10 | 2.79 x 10°
Coxt = Apyoe o o 1.02 0.99 1.32 1.69 2.24

Table 1. We fix % = 100 and rs/L = 100. For different d we numerically calculate the series
defined in eq. (2.25)Sand compare to the approximated evaporation rate we found in eq. (2.30) and
eq. (2.33) for d > 4 and d = 3 respectively. We can see that in higher dimensions the approximation
is not as good as it is in lower dimension but the results differ by an order one factor given by Cext.
Furthermore, if one does similar calculations for larger values of r;/L we will find better agreement
between the numerical result and approximated result.

where Fi(x) is the exponential integral function. The leading order contribution for a; < 1
expansion gives the following evaporation rate:

Bor £l (rs

O] (i) [T 20 n (2] 0.3)

dt |, 27p%15 2 Borfll (rs) \* ’ ‘
d=3 b g (Brflr))

where v ~ 0.577 is the Euler-Mascheroni constant. Note that for this expansion to make

sense a? In (B0r f2,

AdS black holes):

(rs)) < 1, this will be true if r5 /L is sufficiently large (i.e. for very large

dM Ny wher? |In |3 ()] +4
dt |,y ~ T 15 12 5 (6561")2

(2.33)

L2

We compare the estimated evaporation rate to a numerical calculation of the full
evaporation rate in table 1. We find that the approximated result differs from the numerical
result by a order one pre-factor, one can also check that the approximations will get better
as rs/L becomes larger (we can see this graphically by comparing figures (5-6)).

For very small AdS black holes (or asymptotically flat black holes) in the near extremal
regime we will not need to sum all the modes to infinity. We can get a rough estimate by

simply computing the first term in the limit where r,/L — 0 we have:!°

2 .
v N, [T (3 +tyIt 4O‘1> Ly, ivaaz (1

dt  2m[3? 14++/1+402
xmin,l

°0ne can check that the ratio between the first and second term in the series in the near extremal
regime for very small AdS black holes will go as, Stun,1/Stun,2 ~ (% - > 1. So the closer we are
to the extremal regime smaller the sub-leading terms are compared to the first term. Furthermore, in
higher dimensions we need to be closer to the extremal regime to similar errors as we might have in lower

dimensions. We verify these statements with the results given in table 2.
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Bér/r2 | 10% | 10* | 10% | 106 | 10%?
Cq=3 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Ca—4 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00
Ca=s | 1.07 | 1.00 | 1.00 | 1.00 | 1.00
Ca—e | 1.33 | 1.03 | 1.00 | 1.00 | 1.00
Ca—7 | 232 | 1.16 | 1.00 | 1.00 | 1.00
Ca—s | 6.40 | 1.70 | 1.03 | 1.00 | 1.00
Ca—o | 26.6 | 3.82 | 1.15 | 1.00 | 1.00
Ca=10 | 153 | 13.0 | 1.64 | 1.01 | 1.00

Table 2. We are setting /L = 0 (asymptotically flat black holes or very small AdS black holes).
We are computing C4 which is the ratio between the numerical calculation of eq. (2.25) divided by
the approximated result given by eq. (2.34) for spacetime dimension d + 1. We can see that for
larger values of 3 the estimate for the evaporation rate using only ¢ = 1 mode becomes more precise.
This is because of the for larger 8 the £ = 1 mode is dominant compared to all the ¢ > 1 modes.

2(2d—3 .
N, r(2952) Lizga-n (1)

o (=22 (%))

- d— : =
v, [T CE2) Lages (1 ( . )2(:21) (2.34)

WP (a-na-zpE |\

In table 2 we numerically verify that our estimation is valid when sufficiently close to the
extremal regime.

Now that we have derived estimates for the evaporation rate it is useful to keep in mind
that all the calculations we did in this subsection made the assumption that Swpmin e > 1.
this implies that f—: > (B2 12 (rs))_l/ ?. We define the parameter A as follows:

ext

AL
5 A BN oy for very large AdS BH in planar limit (rs/L — 00)
o~ Ao
T's oxt (s i for very small AdS (or asymptotically flat) BH,

BV2(d—2)%
(2.35)

where we require, 1 < A < B/ fll;(rs). In terms of A we express the evaporation rates of

very large AdS black holes for d > 4 as:

~ = d—3
In d(d—1) s\ Ny <7“s)
2 L FZA2\T
d—3

large_7r3<d<d_1))2r(d_3>
=4 " 3 2 2 )

dM

~ Alarge
dt

d>4
d>4

(2.36)
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For very large AdS black holes for d = 3 we have:

i w0 Ny (38 g (V3R ) ™ Ny (3 g g
dt |,_,  3032A% |\ 2L2 L T T B0peaz M \arz )

For very small AdS black holes (or asymptotically flat ones) we have:

ﬂ B Alsimalle

dt g "G5
2(d—1) 2(2d—3 .

(\/i(d _ 2)) d—2 I (%) Lisea—s (1)

(d-2)

2 ((d=1)(d -2

(2.38)

small __
AP =

We will come back to the physical relevance of A when discussing the ambiguities of “fixing”
the screen a certain distance from the horizon in section 3.4.

3 Hayden-Preskill decoding criterion from entanglement wedge recon-
struction

3.1 Review of Pennington’s calculation

As we discussed in the introduction, it was shown in [8] that after the Page time a small
amount of information thrown into a black hole could be reconstructed from subsequent
Hawking radiation after the scrambling time scale. The works [17, 18] are able to reproduce
this result in a holographic setting. The setup is to have the usual black hole in AdS
which is dual to some CFT on the boundary. This is then supplemented by some type
of absorbing boundary condition at the boundary which allows the radiation emitted by
the black hole to be absorbed and stored. The radiation in the reservoir purifies the black
hole CFT state. There are two entanglement wedges in this scenario, one corresponds to
the entanglement wedge of the black hole and the other is the entanglement wedge of the
reservoir where radiation is absorbed. As the black hole evaporates these entanglement
wedges have time dependence and it can be shown that information that is initially sitting
in the entanglement wedge of the black hole a scrambling time in the past (assuming we
are considering a time after the Page time) will end up in the entanglement wedge of the
reservoir. This is equivalent to saying that information thrown into a black hole, after a
Page time has elapsed, will re-emerge in the subsequent radiation after a scrambling time
as is claimed in the Hayden-Preskill decoding protocol [8].

In this section, we review some of the details of how this scrambling time scale appears
in Pennington’s calculations [17]. It comes from trying to find the location of a classical
“maximin” surface in the spacetime of a spherically symmetric evaporating black hole
(which happens to be a good approximation for where the quantum extremal surface is
after a Page time has elapsed!!). The determination of the location of the surface eventually

171t should be noted that we are actually interested in the quantum extremal surface which is found
by applying the maximin prescription to a functional given by %’1‘\2 + Spuik(x) . The calculation we are
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comes down to the following calculation. The first step is to start with a static spherically
symmetric black hole metric of the form:

dr?
fr)

Then one defines ingoing Eddington-Finkelstein coordinates v = t+r, where dr = f(r)dr..

ds® = —f(r)dt* + +r2dQ3 . (3.1)

With some simple manipulations one arrives at the following metric:
ds® = —f(r)dv? + 2dvdr + 2dQ3_,. (3.2)

Upon doing this one approximates the metric of an evaporating black hole by introducing

time dependence into f by allowing the Schwarzschild radius rs to become time dependent

(i.e. 7s = r5(v)). One then considers radial null geodesics on this evaporating black hole

spacetime. The radial coordinate r;. describing the trajectory of these null geodesics satisfy:
drlc _ f(rlc) ~ 21

o = 3 = ﬁ(rlc—rs). (3.3)

The right most expression comes from expanding f(r;.) to first order and § = TI}I =
47t/ f'(rs). Define a coordinate 7}, = 7. — 75 then we will find:
drj, 2w , drs

=y O 4
dv B Tle dv (3 )

Under the assumption that drs/dv < 0 and approximately constant the equation can be
integrated to find:

dr
c=rs+C 2mv/B EJ’ 3.5
i rs+Ce + 2w dv (35)

where C is an integration constant. It is clear that when C' = 0, then 7. is constant
(up to corrections caused by drs/dv not being constant.) this defines the horizon of the
evaporating black hole which is given by:

6 drs)
or — T's 1 s+ .
"h " ( +27rrs dv =7 (36)
Lets compute drye/dv:
drhor  drs | df/dvdrs  drg 9 drg
dv  dv 21 dv  dv + O((drs/dv)”) dv’ (3.7)
With this we can compute dr./dv:
dric _ 21C 9143 ( v dﬁ) drs 9
~ =™ 1——-— — drs/dv)?). )
- 5 e 5o +dv+(’)((r/v)) (3.8)

reviewing here finds the classical maximin surface, which is found by applying the maximin prescription to
the area term ignoring the Spuk term. In [17], Pennington argues that the classical maximin surface will
only deviate slightly (even when one accounts for greybody factors) when the Sy term is included and the
quantum extremal surface will stabilize close to the classical maximin surface which lies on the lightcone.
Throughout this paper we are going to assume that these arguments are still valid for our construction.
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%%‘ < 1 we can solve for when dry./dv = 0 this occurs when:!?

v=vy = —%111 (;ZS ) : (3.9)

Assuming that

dv

To determine |dry/dv|, Pennington makes the assumption that Hawking quanta emitted
by the black hole is assumed to be extracted sufficiently close to the horizon so that one
can use the 2D Stefan-Boltzman law:

@ _ CevapT
dv 12827

(3.10)

where Cevap = Ny + Ny /2 where Ny and Ny are the number of bosonic and fermionic modes
respectively. Using the first law of black hole thermodynamics the rate of energy loss can
be related to drg/dv the final result is:

O L .11)
dv| Qg i(d—-1)ré 21 dv| 38(d—1)ri2Qq 1 '
This results in:
d—1
b In <Tsd_1> , for non-extremal BH
B Cri=2Q4 4 2 Cevap{p
v~ — - In | —s—dL) o (3.12)
21 CevapGN B Ty Td_ 1
——1In o~ |, for near extremal BH.
2m Cevapﬁ ﬁp_

So after the Page time, information thrown into the black hole reemerges after waiting
for the time scale |vg| = temerge in €q. (1.2). Note that in the near extremal case the
expression written down above is valid for small near extremal AdS black holes. For large
near extremal AdS black holes C ~ L?/f so there will be some awkward L dependence
inside the Log. As we will see in the following sections, by properly understanding cevap
for large AdS black holes, the length scale in the Log will come out to be L instead of 7.

3.2 Information emergence time for AdS Schwarzschild black hole

Using our newly derived evaporation rate in eq. (2.18) along with the first law of black hole
thermodynamics and the area law for entropy of a black hole we will get:

d—1
dM 44y  Nptdt ( 2 ) 2

drs aM| _
dt | (d - I)Qd,1 ﬁr?iQ orp

dt

4p0d—1
a (d— 1)Qd—17“g72

d—1 9 d—1
- 2
-~ Nbgp ’["S
pré—2 \orp
12The length scale of C' was chosen by analyzing how far the expansion f(r) near the horizon is valid to

ﬁ(m)' For small AdS black holes f”(rs) ~ r; 2 (as
noted by Pennington) and for large AdS black holes f”(rs) ~ L™2 (not discussed by Pennington), where 7

(3.13)

first order. In particular, it is not hard to see that C' ~

and L are the horizon and AdS radius respectively.
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To avoid clutter in our expressions we drop {23_1 and other dimensionless factors. Plugging
this into eq. (1.2) we find for non-extremal black holes:

d—1
B (érp) =
temerge o In Nbfg_l . (3 14)

For very large AdS Schwarzschild black holes (rs > L) and the inverse temperature goes
as 3 ~ L?/r,. Plugging this into eq. (3.14) we find that Pennington’s scrambling time scale

B Lé-1 d—1 <u>
7femerge o In Nbég_l B In o ) (315)

where we assume that L/¢, > r/dr. The interesting thing to note here is that the leading

results in:

order term is not the Log of the entropy of the horizon of the black hole. It is actually the
entropy of a small cell on the horizon which has the size of the AdS radius L. We can do a
similar calculation for very small AdS black holes (s < L) in this case 8 ~ rs and we will
obtain a more familiar result that Pennington got up to a Log correction that depends on
where we place our absorptive screen:

B rd=1 d—1 (g)
temerge ~ —— 1 = - | - . 3.16
& 27 . Nbég*1 2 . or ( )

As we can see from eq. (3.15), by understanding the explicit dependence of cevap on 3

we find that femerge contains the Bekenstein-Hawking entropy of a cell on the horizon of
characteristic length L inside the Log. This reasonable and consistent with the scrambling

time discussed in [9] for large AdS black holes dual to large N gauge theories.'?

3.3 Information emergence time for near extremal AdS RN black hole

Now lets consider what happens for near extremal AdS RN black holes. We can compute
|drs/dt| using the first law up to some dimensionless pre-factors we have:

drs
dt

d—1
B,
r§_2

aM
dt |’

~

(3.17)

We can compute |drs/dt| using the evaporation rates in egs. (2.36)-(2.38). We then plug
these into eq. (1.2) and obtain the following results.

Case 1, small AdS black hole: r; < L. In this case we have:

B s B re i1 2(d — 1)
75eme1rge ~ %hl <ﬁ2 % ) ~ % |}n <ﬁNb£g_1> + (d — 2) In (A)‘| s (318)

where 1 < A < B/rs.

13Recall that the ratio (L/£,)* ' ~ N? [22].
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Case 2, large AdS black hole: r; > L. In this case we have:

2tomerge | ( 12 )
dr.
b s

re L2 A2
In(==—|+n|——0rs d=
! (5 NM%) i <1n(3rg/L2)> ’ ’
~ 43 3.19
1 rjﬂ +In | A2 1 M ’ d> 4 ( :
n BNbEg—l n n 2L2 ) = &

where 1 < A < /L.
If we make the assumption that A has no additional 8 dependence then we see the for

small AdS black hole the first term matches what Pennington had. For large AdS black
holes we again see that L instead of 75 appears in the leading order Log term. In the next
section we will discuss an ambiguity that A presents us with for near extremal black holes
which is related to where we place our absorptive screen.

3.4 Information emergence time as scrambling time

In the previous sections we found that the time scale after which information re-emerges
for AdS Schwarzschild black holes is given as:

d—1 B
ﬁln Tsdl _d 1111(“) , s << L
2w Nyls~ 2 or
temerge ~ d—1 (320)
ﬁ In L d_lln(rs> s > L
or |\ v t) 2 e e
For near extremal AdS RN black holes (d > 4) we have:

15} re rd-l d—1 9

— |In| =—2 In (A

2r |\ B Vel +d—2n( )+

temerge
B Ts Li-1 2
5 In ,BNbég_l —l—ln(A)—l—...

2

, rs <KL

(3.21)
) rs > L,

where the “...” stand for double Log terms which we did not explicitly write. In the case
of AdS Schwarzschild black holes we should assume the following hierarchy of scales that
¢, < ér < rs. By doing this it is clear that the dependence on 07 for the re-emergence
time is sub-leading to the first term in the limit where ¢, — 0. We can reasonably identify
temerge With the scrambling time scales discussed in [8, 9].

The case of a near extremal AdS RN black holes is more subtle. For near extremal
AdS RN black holes we have an additional length scale that we did not have for the AdS
Schwarzschild case. This length scale is 8 and it causes problems when we try to decide
on where the screen should be placed. To understand the issue, recall that we introduced
A through the following definition which relates it to dr:

A= ?6 r(rs), (3.22)
S

ext
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where we required that 1 < A < S+/fli(rs). The issue is that there are a number of
choices we can make for the S-dependence of A. In Pennington’s paper it is suggested that
we extract radiation at a fixed distance from the horizon. There are at least two natural
ways to do this.

The first way is to set the radial coordinate distance from the horizon, dr, to some
constant that does not depend explicitly on 8. Then it is clear that A ~ §/rs. In this case

we would have results that look like:
d
8 ( 3 > 73 pd-1 d—1 or2
— |1 — 5 In | — L
o n " Nbfg_l + d—2 n r§ , Ts K

g g LAt or?
o In TsNbﬁg_l +In 7 || rs > L.

These results are at odds with what Pennington has for near extremal AdS black holes and

(3.23)

temerge ~

also with the literature [23, 24] which discusses the scrambling time for near extremal black
holes. In particular, the main difference is how S appears in the Log. One should expect
B to appear in the denominator rather than the numerator. This suggests that fixing an
absorptive screen at a constant coordinate distance will yield a re-emergence time that is
much longer than the scrambling time, % In(S — Sext)-

Now consider the second way, which is to fix the proper radial distance from the screen
to the horizon. Then we can show dr ~ lgrop /B, where lop is the proper radial distance
between the screen and horizon.'* By doing this, we see that A will have no additional
dependence on 8 and we can write:

B re ri-! 2(d—1), (Iop
2 | === 1 < L
o n 3 NbEgA + d—2 n rg , re K

temerge ~ 2
B Ts Ld-1 lprop
— |In| =———— 1 L
o |\ BN t) T\ )| Ts > L

then we can be reasonably identify the information re-emergence time with the scrambling

(3.24)

time for near extremal black holes. So the question is what we should be fixing, the
coordinate distance or proper distance, or perhaps something else? We believe the answer
lies in the idea of fixing the energy scale of our effective theory on the screen. We know in the
AdS/CFT correspondence the radial direction in the bulk corresponds to the energy scale
of the CFT on the boundary. So by fixing the energy scale we should unambiguously fix
how &r scales with 8. However, it is not clear exactly how the energy scale of the boundary
theory depends on the radial distance. If it depends on the proper radial distance then
we should fix the proper length between the horizon and screen. In discussions of the
holographic renormalization group one usually considers metrics written in the form [21]:

ds® = d2? + €%/ Fr(2, 2" da' da? (3.25)

1476 see this consider the proper radial length from the horizon to a point ér from the horizon this is

given by the an integral lprop = f:f’JFéT \/%, for ér < min{rs, L} we can expand to first order and do the

l2
integral to find dr ~ St
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where 2 is the radial direction in the bulk and z’ are coordinates on the boundary and Yij
is the induced metric on a constant z slice. The fixing of energy scales can be interpreted as
the fixing of z. The way the metric is written suggests that z is the proper radial length in
the bulk. Therefore, it seems that fixing the proper length between the screen and horizon
seems like a reasonable way to fix the energy scale, although this may not be valid for
metrics that significantly differ from (3.25).

To summarize our discussion, we found that there are many ways to fix the 5 depen-
dence of A (which is related to where the screen is placed). Depending on how dr depends
on 3 we can get temerge that may or may not resemble the scrambling time for near extremal
AdS black holes. In particular, we find that by fixing the proper radial distance between
the horizon and absorptive screen we get an information emergence time that is consistent
with the scrambling time for near extremal AdS black holes. We suggested that fixing
the proper radial distance between the screen and horizon can be interpreted as fixing the
energy scale of the theory on the screen. We also find an additional sub-leading Log term
which contains information on exactly where the screen absorbs radiation (which should
not explicitly depend on ). It is interesting to note that for large AdS black holes it is
not the entropy of the entire horizon that goes into the Log but instead the entropy of a
cell on the horizon of characteristic length L. This is reasonable if we recall that large AdS
black holes are dual to large N gauge theories with N2 ~ Ld_l/fg_l [22].

4 Discussion of the physics of the screen

4.1 Absorptive screen as a thin shell of matter

As we have demonstrated, the effect of extracting Hawking radiation near the horizon of a
black hole generally has non-trivial consequences for the evaporation rate. In this work we
adopted a model which extracted radiation close to the horizon using a perfectly absorbing
screen that would absorb any Hawking radiation that gets to it. The rate at which energy
was being absorbed by the screen for each angular momentum mode is captured through
the generalized greybody factor. We did not rigorously compute this factor but instead
proposed models that would capture the essential behaviour of the generalized greybody
factor near the horizon. Here we will discuss a way to calculate the generalized greybody
factor by treating the screen as an interface which patches an interior and exterior solution
to the Einstein equations.

In this picture, the screen is not really literally absorbing radiation, it is acting as
an interface between the interior spacetime containing the black hole and an exterior
“reservoir” spacetime which collects and stores the radiation emitted by the interior black
hole. Assuming that the interior and exterior spacetimes are spherically symmetric, the
scalar perturbations that propagate in this spacetime would satisfy the following radial
wave equation:

d*y

TY’E + (w2 - Vvscreen,ﬁ) P =0, (41)
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Figure 4. Above is a depiction of the potential that we are considering to emulate an absorptive
screen placed at r = rg 4+ dr depicted by the dotted red line. We keep the effective potential the
same as the black hole up until we get to the screen interface. We then transition to a potential
for a flat space which will act as a reservoir for the extracted Hawking radiation. Close to the
horizon the solution takes on the form of in-going and out-going plane waves. We normalize the
outgoing wave near the horizon to unity and the amplitude of the in-going plane wave is R. The
absorptive screen boundary condition is enforced by only allowing outgoing plane waves in the flat
region with amplitude 7. We patch the solutions and uniquely determine 7" and R by requiring
continuity of the solution and its derivative at the screen interface. Then the generalized greybody
factor is defined by |T'|%.

where Vicreene is the effective potential defined in a piece-wise manner in terms of the
interior and exterior spacetimes:

‘/int,f(r)a T <1 <7T5+ or

(4.2)
Vext,e(r), 1> 15+ 01

Vvscreen,é =
The basic idea behind this is that we want to keep the spacetime unchanged until we arrive
at the absorptive screen. The process of the screen “absorbing” radiation at r 4+ dr can
be thought of a gluing an asymptotically flat region, just behind the screen and letting

"15 as depicted in figure 4. To find the fraction of radiation

the wave “escape to infinity
“absorbed” by the screen (i.e. the generalized greybody factor) we would solve the wave
equation in each region. In the interior region where r € (rs,rs + 0r) the general solution

will be some linear combination of two independent solutions:

Yre(rs) = c1ofe(r4) + c2,090(74). (4.3)

5The region behind the interface that we are gluing does not necessarily have to be an asymptotically

flat space it could be more general. We choose an asymptotically flat space since the wave escaping to
infinity would be the analogue of a purely absorptive boundary condition for the screen. One is also free to
glue another asymptotically AdS space behind the screen. We will discuss this perspective in section 4.2.
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By analyzing the solution near the horizon we will find that they take on the form of plane
waves and normalize the outgoing wave to unity (i.e. we start with outgoing Hawking
radiation) this will fix some type of relation between ¢; ¢ and cz . In the exterior region
where the potential goes to zero far from the screen the solution should be purely outgoing
plane wave (i.e. absorptive screen boundary condition):

Yrre(re) = Tpe™™. (4.4)

We have 2 unknowns left now, namely 7" and one of the coefficients of the solution of the
interior region which will represent how much of the wave is reflected back. We can fix
these by requiring the solution and its first derivative at r = rg + dr be continuous. This
will fix Ty uniquely. The generalized greybody factor is then defined by the amplitude
square of the transmission coefficient:

Ye(w, dr) = \Tg(w,5r)|2. (4.5)

The procedure we outlined above would be a more rigorous way to find the generalized
greybody factor. As one can imagine doing this analytically for any choice of dr would be
difficult, however the procedure we just outlined can be implemented numerically to find
the exact behaviour of the generalized greybody factors. We expect that the generalized
greybody factors to mimic the behaviour of the idealized models we analyzed in this paper
at least in the limit where 0r < min{rg, L}. It would be interesting to see how this method
of extracting radiation at a finite distance from the horizon compares to other models that
have been proposed to extract radiation from AdS black holes. For example, one could
move the screen further from the horizon and ask how the generalized greybody factor
at infinity (which is really just a greybody factor now) compares to greybody factors of
models that use the evaporon [15, 16] to absorb energy from the black hole.

4.2 Null energy condition for the screen and the holographic c-theorem

Recall that in section 1 of this work we wanted to view the absorptive screen near the
horizon as a coarse-grained version of the conformal boundary (with absorbing boundary
conditions). The goal of this discussion is to elaborate on this idea in the context of the
holographic c-theorem and the role that the null energy condition plays in its formulation.

The idea of the radial direction in the bulk being a measure of the energy scale of
the dual boundary theory is formalized by discussing holographic c-theorems [20, 25, 26].
When discussing c-theorems one usually considers two d-dimensional CF'Ts, one has a
central charge cyy and the other has a central charge c¢;p where cjr < cyy. These two
CF'Ts are assumed to be connected by an RG flow which starts from a UV fixed point and
flows towards an IR fixed point. One can define a monotonic c-function which measures the
effective degrees of freedom of the of the coarse-grained theory along the RG flow between
the fixed points. If the two CFTs are holographic, one can make use of the AdS/CFT
duality to construct a holographic c-function in terms of quantities defined in a d + 1-
dimensional gravity theory with matter. A central aspect of the construction relies on
matter in the bulk satisfying the null energy condition (NEC). In particular, if one chooses
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appropriate coordinates so that the “radial” direction identifies the energy scales along the
RG flow, then one needs the radial NEC to be satisfied in order to construct a monotonic
c-function. Due to this fact, we will mainly focus on analyzing the radial NEC for the
matter on the screen. Doing this we will provide a heuristic picture of how the effective
degrees of freedom on the screen change as the screen is moved radially in the bulk.

To make things concrete, we will assume the interior spacetime, enclosed by the screen
interface, is that of a d 4+ 1-dimensional AdS Schwarzschild black hole with a line element
of the form:

dr?

)
7"‘2 r d—2 7,,2
o=t (1) (1),

where rg is the radial coordinate of the horizon, L_ is the AdS radius for the solution.

ds— = g, dxt'dz” = —f_ (r)dt* + + r2dQ3 4,

(4.6)

The “—” subscripts and superscripts mean we are dealing with quantities within the region
enclosed by the screen. The exterior spacetime will be a pure AdS space with an AdS
radius L4 (“+” superscripts and subscripts denote quantities in the exterior). The line
element will be given by:

dr?
dsy = g:,/dx“da:” = —A(ro) fy (r)dt* + . r2dQ2
f+(r) A7
> (@.7)
f+(T) =1 + T2
7

where rg is the radial coordinate where the screen is placed. The lapse function A(rg) =
f=(ro)/f+(ro) ensures that the induced metric on either side of the screen is the same.
Using the formalism described in appendix G it can be shown that the stress energy tensor
of the screen is given by eq. (G.14) and it resembles the stress energy tensor of a perfect
fluid in d-dimensions with an energy density, p, and pressure, p given by the following

expressions:
= (f-00)"/2 = f1(r0)/?)
1 o | filro) 1. (ro) -
- 167rg l2(d -2 <f+(7‘0)1/2 - f_(ro)lﬂ) o <f+2_7"0)01/2 a f—z?“o)ol/2>1 '

To summarize, we see that the patching of an interior black hole solution to an exterior
AdS solution requires the screen to have a stress energy tensor of a d-dimensional perfect
fluid with energy density and pressure given in eq. (4.8). In appendix H we found the
radial NEC translates to the screen having a positive energy density, p > 0. It turns out
that the expression for the energy density of the screen can be positive only if Ly > L_.
Furthermore, the closest the screen can get to the horizon before the radial NEC is violated

is given by:
L2 l/d
1 _—
ot | (49)
c—TH L2 . .
1— =
o
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For any screen position rg > r, the screen will have a positive energy density and the radial
NEC is satisfied. Now consider holding 7y and L_ fixed and define R = L4 /L_. We will
allow R to vary by changing the value of L. When R = 1 we know r. — o0 so the
screen has to be sitting at the conformal boundary in order to satisfy the radial NEC. If
we increase R the screen is allowed to move deeper into the bulk. Now recall the standard
dictionary in AdS/CFT which states that the AdS radius in Planck units is related to the
effective number of degrees of freedom of the dual CFT [22]:

d—1
<L> ~ Coff- (4.10)
Ep

Under the assumption that the screen is holographic we have a way to view the ratio R in
terms of ceg:
n
RIT o Cefl > (4.11)
Cett
where we defined LE! /Eg_l ~ ceiﬁ. We view R as the ratio between the number of
effective degrees of freedom of the screen and boundary theory. When the number of
effective degrees of freedom of the screen equals the number effective degrees of freedom
the boundary theory the screen must coincide with the boundary. If we coarse-grain the
boundary theory (screen) the number of degrees of freedom on the screen are reduced and
this corresponds to moving the screen deeper into the bulk. From this, we can heuristically
see how satisfying the radial NEC for the screen gives rise to a monotonic decrease in the
effective number of degrees of freedom on the screen as it is moved closer to the horizon of
the black hole.

4.3 The null energy condition and black hole mining

The idea of changing the evaporation rate of a black hole by extracting radiation near the
horizon has also been discussed in the context of black hole mining [27-29]. In particular,
Brown suggests that energy conditions (most notably the null energy condition) impose
constraints on how quickly one can extract radiation from the horizon [30]. In the previous
subsection, we found that satisfying the radial NEC at a finite distance from the horizon
places a constraint on how close the screen is allowed to be to the horizon. The closest
radial coordinate is given by r. in eq. (4.9). Then 07y = r. — rg is given by:

L 2/d
() rg, rg << L_

72\ 1/d
<1 n 2‘) g (4.12)
"o 1 <L_

2
> rH, TH> L_,
TH

OTmin =

d

where the expression above is taken in the limit that L1 — oo so the exterior spacetime is
asymptotically flat. An interesting observation is that dry;, monotonically increases as the
black hole evaporates. Due to this, we can see that for small AdS black holes the screen
cannot be placed very close to the horizon, so we are not really mining very small AdS
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black holes with the screen.' However, for very large AdS back holes the screen can be
placed very close to the horizon. In this case it is interesting to ask how long it takes for
a very large AdS black hole to transition to a small AdS black hole via screen mining. We
estimate this time by setting 6r = 0rpyy in eq. (2.18) to get the following evaporation rate
for very large AdS black holes:

M Ny (m)“z”

dt ~ % \L_

L, (4.13)

We use the relation between the mass and horizon radius of very large AdS black holes,
given by M ~ 1%/ (LQ_Eg_l), to replace the derivative of mass with derivative of the horizon
radius. We integrate the equation to estimate the duration of time elapsed for the large
AdS black hole with an initial radius of rg = r; > L_ to evaporate to a black hole of
radius L_. We find:

d—1 3 d—1
At ~ <L> [1 - (L)CHQ] L (L> L (4.14)
p Ts Ny Ly Ny

At leading order we find that the time it takes (in units of AdS radius) for a very large AdS
black hole to transition to the small AdS black hole regime via screen mining is proportional
the Bekenstein-Hawking entropy of an AdS cell. After the black hole enters the small regime
the evaporation rate will mimic that of a black hole evaporating in asymptotically flat space
(i.e. evaporation rate will go as dM/dt ~ N,3~2). It is difficult to directly compare our
result for the evaporation rate of large AdS black holes with the results of Brown [30] which
are concerned with asymptotically flat black holes. However, we can see that once the black
hole enters the small regime the bounds derived by Brown are not violated because the
screen is far from the horizon (i.e. radial NEC only allows near horizon screen mining of
very large AdS black holes).

It is interesting to mention that the time scale in eq. (4.14) we found using near horizon
screen mining is agrees with the evaporation time scale found in an earlier work by Page [32].
Page’s work considers large AdS black hole evaporation assuming absorptive boundary
conditions at infinity. Having absorptive boundary conditions at infinity is analogous to
placing our absorptive screen at infinity. The fact that the lifetimes in either case (i.e.
near or far screen mining) are comparable to each other suggests that the lifetime of very
large AdS black holes does not significantly change when mined by a screen obeying the
radial NEC.

So far, we have restricted ourselves to discussing the NEC for null vectors with only a
radial component. This was primarily because of the connection between the radial NEC
and discussions of the holographic c-theorem. One may ask what kind of constraints the
NEC gives if the null vectors are tangent to the screen (i.e. no radial component). In

16The reader may be concerned with the evaporation rate we derived in eq. (2.18) for the small AdS black
hole regime. The equation was derived assuming the screen is placed close to the horizon, but respecting
the radial NEC does not allow this. This should not be a particularly big issue since, up to an order one
pre-factor, the evaporation rate should go as dM/dt ~ 82 [31]. Which is consistent with Pennington’s
results [17] as well as ours.
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appendix H we show that the screen violates the tangential NEC at any finite distance
from the horizon. The violations of the tangential NEC become milder the further the
screen is placed from the horizon and is actually saturated in the limit where the screen is
sent to infinity. This is unsurprising as a screen composed of ordinary matter will not sit
at a fixed distance from the horizon, but rather would fall into the black hole. In order for
it not to fall in the matter composing the screen must violate energy conditions. However,
it is worth noting that the calculations we did, did not account for Hawking radiation
being emitted from the black hole. It is well known that Hawking radiation violates energy
conditions, which is why the area of the horizon decreases [33, 34]. An interesting idea
worth considering is whether the screen can be prevented from falling into the black hole
by the pressure generated by the Hawking radiation emitted by the black hole. Naively,
the pressure due to Hawking radiation will become larger the closer the screen gets to the
horizon this may counteract the gravitational pull on the screen generated by the horizon.

5 Conclusion and future prospects

In this work, we investigated how the evaporation rate of AdS black holes change when
radiation is absorbed near the horizon using an absorptive screen, which is motivated by
the entanglement wedge reconstruction framework described by Pennington [17]. We used
idealized toy models, motivated by physical arguments, which would capture the essential
physics of radiation propagating towards the absorptive screen. We showed that by fixing
the screen at a proper radial distance from the horizon, the re-emergence time for the
information thrown into an AdS black hole is given by the expressions in eq. (3.20) and
eq. (3.24). For small AdS black holes (or asymptotically flat black holes) the expressions,
at leading order, contain the Log of the entropy of the whole horizon. This is consistent
with Pennington’s calculations [17]. In contrast, however, for large AdS black holes, we
find that the re-emergence time depends on the log of the entropy of an AdS cell on the
horizon (rather than that of the entire horizon). Such a modification is reasonable and
consistent with the scrambling time discussed in the work [9].

In sections 4.1 and 4.2, we attempted to provide a more physical description of what
governs wave propagation and internal physics of our putative screen. The interior space-
time enclosed by the screen contains the black hole, while an exterior asymptotically flat
or AdS spacetime can represent the auxiliary system that could store radiation. The “ab-
sorption” of radiation by the screen would then be equivalent to radiation passing through
the screen interface and escaping to infinity. The calculation of how radiation would be
“absorbed” can be translated to a well-defined computation of greybody factors. We used
Israel junction conditions to compute the stress associated with the screen. The require-
ment of the matter on the screen having a positive energy density (which comes from the
radial NEC used to formulate a monotonic c-function in a holographic RG description) sets
a minimum distance for the screen from the black hole horizon if it is the dual description
of a coarse-grained unitary boundary CFT.

The calculations done in this paper have been done from a gravitational perspective.
In order to explore the ideas discussed in sections 4.1 and 4.2 more rigorously it will be
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necessary to translate the gravitational picture we proposed to a coupled quantum system
description. The 7T formalism described in [35] will likely be an important ingredient
and a good starting point for defining the screen theory. We would then couple the screen
theory defined by the T'T deformation to a holographic CFT describing an AdS bulk with
a brick wall. We leave such a formulation to future work.
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A Numerical analysis of evaporation rate series for AdS Schwarzschild
black hole

In this appendix we will numerically compute the following series for an AdS Schwarzschild
black hole:

oo
Z gd—Q [Lig (e_l‘min,e) — Tmin In (1 _ e—xminj)]
/=1

ArL20(6 4+ d —2)\ or
ine = 4/4m |2 -1 —.
Lmin,l \/ ™ ( W(d ) + d?“g + (d — 2)L2 ) Ty

To evaluate the series numerically we need to fix d, dr/rs, and rs/L. Once we do this we

(A1)

will compare the result to our approximated expression given by:
d—1
r

d=2 [T i (o—Tmint) _ . . — e @mint)] a2 d(d — 2)! - . A2
Ezzlﬁ [Liz (e ) = Tmineln (1 —e )]~ d(d-2) (477,6’57“) (42

The approximated expression will differ from the numerical expression by a numerical
pre-factor. In other words the numerical result can be written in the form:

r

d—1

00 2 2
d—2 Li ~Tmin,£) _ . 1 1— ~Zmin, ¢ = -2 ' 5 A3
317 L (770 ) = i ln (1= €77 )] = Cy [d<d ><4ﬂ55r> A

Y

where Cy is a numerical pre-factor which will change with d, dr, and ry/L. We summarize
our results in tables 3-5. Each table fixes d and 07 /7, to some fixed value (specified in the
caption for each table). Within the table we vary the size of the black hole rs/L (from 0
corresponding to an asymptotically flat black hole to 1000 corresponding to a very large
AdS black hole) and numerically compute the series in eq. (A.1). We also compute the value
for series as determined by our approximation given in eq. (A.2). We divide the numerical
and approximate result to determine the pre-factor C; that the two results differ by.
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rs/L 0 0.1 1 10 1000
Numerical 1.96 x 102 | 2.02 x 10% | 8.01 x 10% | 6.15 x 10* | 6.14 x 108
Approximation | 1.89 x 102 | 1.95 x 10? | 7.59 x 102 | 5.72 x 10* | 5.70 x 108
Cs = apyemetica 1.04 1.04 1.06 1.08 1.08
Table 3. d = 3 and dr/r, = 1074
rs/L 0 0.1 1 10 1000
Numerical 1.33 x 10 | 1.38 x 10®% | 1.37 x 10° | 4.11 x 10'3 | 4.07 x 10?3
Approximation | 1.47 x 10% | 1.53 x 10% | 1.45 x 10° | 4.12 x 103 | 4.05 x 10?3
Co = Fpprmetica 0.91 0.90 0.95 1.00 1.01
Table 4. d = 6 and ér/rs = 1074
ry/L 0 0.1 1 10 1000
Numerical 5.09 x 1017 | 5.38 x 1017 | 2.06 x 1019 | 1.66 x 10%7 | 1.63 x 10%°
Approximation 5.98 x 1017 | 6.32 x 10'7 | 2.30 x 10" | 1.69 x 10%7 | 1.63 x 10%°
Cio = Fppomelien 0.85 0.85 0.90 0.98 1.00

Table 5. d = 10 and dr/ry = 107

B Power law behaviour of generalized greybody factor for near extremal
BH

Here we present a way to get the power law behaviour for w < wpine in eq. (2.23). We
do this by analyzing the near horizon solution of the wave equation for an extremal black
hole. We will begin by considering modes with £ > 1.

The first thing we do is recall that the potential needs to be written in the tortoise
coordinate r, which satisfies:

dr dr 1 (r—rs)f"(rs)
x = ~ = | = Y
" f(r) /fl(r—rs)—i—f;(r—rs)Q f'(rs) " 2f"(rs) + f"(rs)(r — 1) =0
(B.1)
where f, = f(™(ry). We can easily invert this and find:
r—Trs = 2h 2 (B.2)

- fla(rs)

f2(1 —exp(fi74))

where in the last expression we take the extremal limit where f; — 0. Now that we have
an expression for the near horizon tortoise coordinate we can analyze the wave equation
which at leading order will read:

d?)

Py [, ACt+d-2) 1
dr?

72 for (7s)

b =0. (B.3)
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We can find the general solution to this equation can be written in terms of Bessel functions:

P(re) = /1 [Ady, (W) + BYy, (wr)]
1 \/1 L 8l+d-2) (B.4)

vy = =
2 72 fot (7s)

We want a solution that goes to zero at r, = 0 this implies that B = 0 and we get the

following solution:

P(ry) = Ay/redy(wry). (B.5)

One can easily see that this solution for very small r, oscillates as a plane wave. However
near the boundary it decays. It is the rate of decay that we are interested in. In particular,
it is reasonable to assume that the shift from an oscillating function to a decaying function
occurs near the classical turning point which is:

20(0+d —2)]"/?
rip w) = — {} . <B'6)
W= [
Consider the ratio: 9 9
2 (B | e || o) | (B.7)
I,Z)(T‘*p) T*p Jy(wr*p)

where r’? < r, < 0. This gives a measure of how the amplitude of the solution decays in
the non-classical region. We analyze the decay of the solution a distance ér = r — rg from
the horizon in the classically forbidden region. To do this we need to consider w < wWpin ¢
We parameterize this in terms of 0 < € < 1 and write w = €wpine. Then we can express

r'? as:
2
(i) —
rP(e) = —————. B.8
=G B
We also set r, at the position of interest (i.e. where the absorbing surface is):
2
e = — ) B.9
() ()
Now we can express T2 in terms of e:
2 Ju (0%6) 2
T?(e) = e |2
Jl/z (O‘Z)
Or et (7s) 72 fexe (Ts)

1 2

We can do a series expansion of 72 in ay to understand the power law behaviour we find:

Jy, (0ye) 2
JV@ (Ozg)

T2 — ~ 621/g+1

+0 (a;*)] ~ et (B.11)
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We will use this behaviour to model the generalized greybody factor for w < wpins. So
now we have the following for near extremal black holes:

2vp+1
Ye(w, 01) = O(W — Wmin,e) + ( ) O (Wminyy — w) - (B.12)

Wnin, ¢
This gives the result in eq. (2.23).

Now we will consider the ¢ = 0 mode. In this case the leading order expansion of the
effective potential near the horizon is:

d—1) [ (r)]?
Vico(r) = Vo) = Ol oo (e ory). (Bay)
T's
Note that to capture the leading order behavior of the effective potential for £ = 0 one must
expand to third order. This is in contrast to the effective potential for £ > 1 modes which.
only required a second order expansion. As we will see this makes the £ = 0 modes distinct
from the higher order modes. With some work we can show that the wave equation near
the horizon takes the form:
d? 5 2d—-1) 1

) Yw—o. B.14
R N N T .

Unlike the ¢ > 1 case we cannot find the general solution of this equation in a closed form.
We instead opt to solve the equation in two regimes (close to the horizon and close to the
conformal boundary) and then patch the solutions at the turning point of the potential.
Close to the horizon we have plane wave solutions. The outgoing plane wave normalized
to one is given by:
Pr(ry) = e . (B.15)

In the classically forbidden region (where the amplitude of the solution will decay) we

. 2(d—1
will have w? < - (é;t(r)s) %

So the solution can be roughly found by solving:

d>  2(d-1) 1
( >ﬁ¢:u (B.16)

dr? Ts foxt (T5) 73

The general solution will be given by Bessel functions of the first and second kind:

bri(ry) = Y [Cljl <2za) + Y1 (2@04)]

. Vo Vo (B.17)
] 2(d—-1)
B Ts foxt (Ts)

Just like for the £ > 1 modes we impose the boundary condition that the solution vanish at
the conformal boundary located at r, = 0. This gives the following solution the forbidden

Yrr(ry) = A\;_T* [Jl (\/2%) + 1Y} (\/2%” : (B.18)

region:
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Patching the solutions in the two regions at the turning point P by requiring w](r* ) =
wn(r* ) allows us to fix the constant A. To find the power law decay we analyze how the
amplitude of the solution decays from the turning point to the screen in a similar manner
to what we did for the £ > 1 mode. In particular, the fraction of radiation that gets to the

screen is given by:

2
T2 ‘¢II( screen)
0
Yrr(rid)
-2
screen B‘lg
R T (319
2(d—1) \?
T’ip(w):—< ( 17 ) ) .
w2r5fext(r5)
We define w = ewnin,p where 0 < e <1 and:
orfll(rs
Wmin,0 = 77.]?;()
B.20)
d— 115\ 12 (

Wmin,0 is the minimal frequency in which waves would reach the screen without encountering
the angular momentum barrier for £ = 0. We can then write T3 as:

T2 — 23 Ji (2in) +iY1 (2in)

2
~ 31 2)| ~ B, B.21
Ji (2ine'/3) + Y (2ine/3) ‘ [ +0 (77 )] ¢ (B.21)

So for the £ = 0 mode the generalized greybody factor in our toy model will be:

4/3
Y0 (W, 07) = © (W — Wiin,0) + ( d ) O (Wmin,o — w) . (B.22)

Wmin,0

C Integrals describing evaporation rate in near extremal regime

In this section we go over the assumptions to arrive at the series expression for the evapo-
ration rate given by eq. (2.25). We need to compute the integrals in eq. (2.24).

We approximate the values of these integrals under the assumption that Swpyine > 1
(i.e. we are sufficiently close to the extremal regime). Lets begin with the first term(s) in
eq. (2.24) which describes modes with w < wmin¢. The term(s) read:

0o 1 62(V[+1)
z; min,/ Z/ mde
Np & 2 62+\/m
= — Wi 7£NZ/ de

Nbér ext aZe ™ Lo
ZNE/ (ﬁ&rfé;t('rs)aze) B 1de.
2

Oep
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Note that the integrand will generally have a local maximum. In particular, as long as
porflli(rs) is sufficiently large (this is true when we are sufficiently close to extremality) we
are guaranteed to have a sharply peaked local maximum within the interval of integration.
This means that we can easily extend the range of integration from € € (0,1) to € € (0, 00)
and still have a good estimate on the value of the integral. Such an integral can be done
in full generality shown below:

1 2 2+4+/1+4a
7 de
/O exp (,Bérfexé(rs)age) _1

(C.2)

2 2+ l+4o¢z
~ d
/0 exp ﬂd’/‘fext(rs)aze) 1 €

—3—/14+4a2
2 ﬁdrfx (7“ )Oég ‘ .
=y <e;s r 3+\/1+4a§ L13Jr 1+4a§(1)'

Now we will deal with the second term(s) in eq. (2.24) which describes modes with
W > Win,¢ the terms read:

Ny & o0 €

2
— E wi s Ng/ ———————de
2t = min, ¢ 1 eBWmine _ 1

0o (C.3)
—BWmin,e ) _ . _ = Bwmin,
Zl {ng ( f) BWmin,¢ In (1 e ‘f)} )

Combing these results give us the series representation of the evaporation rate given in
eq. (2.25).

D The contribution to evaporation rate of tunneling vs. non-tunneling
modes in near extremal regime

In this appendix we will discuss the relative size between the terms Siun ¢ and Sygun,e Which
are used to define the evaporation rate of a near extremal AdS RN black hole. The goal is
to estimate the following ratio:

144/ 14403

Sntun,ﬁ B [L12 (efmmin,l) — xmin,ﬁ 1n (1 — efxmin,l)] xmin,f

Stune r (3 + \/@) Li, 1+4a5(1)
[ (34 \/14+407) Liy, (1)

where in the last line we used Zpyine > 1 since we are in the near extremal regime. For a

Q

fixed ¢ we can see that the ratio Sytun,e/Stun,e << 1 due to the exponential suppression and
it follows that Spiune < Stun,e When we are sufficiently close to the extremal regime. This
is why we use the approximation in eq. (2.26) and ignore the modes that do not tunnel.
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E Analysis of the evaporation rates of near extremal very large AdS RN
black holes

We discuss approximating the integrand in eq. (2.28) which is given by:

Y AT A
(a2

e a2 [l () (d —2
2r2 ! (rs)a? 2
(d - 2)\/1 et

T (3+\/1+407) Liy, ez

(56rf;;t<rs>ae ) Ly/1+4dof
2

(E.1)

X

When «y is close to zero one will find that the integrand initially grows. This growth will
eventually slow down and stop when «y is sufficiently large and the integrand will decay. A
conventional leading order expansion of the integrand in the small or large ay regime will
not be able to capture this behavior. We make the following approximations, the product
of the first two terms is approximated in the large o, regime to give:

et |\
(a2

d—1
2 £ 2
~ T'sJext (TS) ad—Q
9 14

Even though this approximation is more accurate for larger oy one can plot the approxima-

ar? [l () (d —2
2r2 fU (rs a? 2
(d— 2)\/1 + 4(d_§)2> :

(E.2)

tion and compare to the exact function and find reasonable agreement at small values of .
We approximate the terms in the second line with:

[ (3+/1+402) Liy, (D] (55rfé;t(rs)>2zag .
1

o, ”. E.3
(657'fel;(t(7's)al)1+ 1+daf 2 ¢ ( )
2

~
~

5

Combining these gives:

d—1

4 9 1 5 Srf! —2_20‘3
I~ (Tsfealrs) (Wt@“)> ad™t, (E.4)
15 2 2

To get a sense of how the approximation compares to the full function we make various plots
) %)
becomes worse as we increase d. However, even for larger values of d doing the integral of

shown in figure 5 by fixing the values of % and d. We can see that the approximation
the approximated integrand will give a result that is off by a order one pre-factor from the
exact result.

The approximation improves in the limit when r5/L — oo as we can see in the following
plots in figure 6 where we increase /L from 10 to 10°°.
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F Treating the £ = 0 mode in the near extremal regime

Using the generalized greybody factor given by eq. (B.22) the contribution to the evap-
oration rate of a near extremal AdS RN black hole is given by computing the following

Nb /wmin,O w w 4/3 d + /OO w d
= w ——dw
—o 27 |Jo ePY — 1\ Winino w ebv — 1

integrals:

au
dt

min,0

:% /16_10/3d6+/00'6d€ )
21 0 exBW'mm,O6 —1 1 S/mem,[)f —1

Similar to the ¢ > 1 modes, when Swmino > 1 we can extend the integration limits over

(F.1)

the interval (0, 1) to (0, 00) without changing the value of the result. When we do this we
will obtain the following evaporation rate from the £ = 0 channel:

aM
dt

Ny [F (L;) ¢ (%) 4 Liy (e*/@‘*’minﬁ) — Bwmin,o In (1 — eﬁwmin,o)] . (F.2)

/=0 N 27T’62 (ﬁwmin,0)7/3

where I'(13/3)((13/3) ~ 9.84. Close to the extremal regime the primary contribution
comes from the first term just like for modes ¢ > 1. So we have:

AM (d— 1)(5r)1/2 Bor fé;t(rs)] T3

dt

v—o 2mp?

5 (F.3)

s

T (13/3) ¢ (13/3) l(

Now that we have the ¢ = 0 contribution to the evaporation rate it is interesting to ask
how large of an effect it has on the evaporation rate if we include it.

For large AdS black holes we estimated the evaporation rate contribution from modes
with ¢ > 1. We found that the evaporation rate went as 5% (perhaps with some In(s)
dependence which we can ignore if § is sufficiently large.). If we look at the 8 dependence
of the ¢ = 0 contribution to the evaporation rate is it goes as 313/, In the extremal limit
when 8 — oo the £ = 0 mode’s contribution to the evaporation rate will decay more quickly
than the total contribution of the modes ¢ > 1. So sufficiently close to the extremal regime
for very large AdS black holes we can effectively ignore the contribution of the ¢ = 0 mode
since it will be a sub-leading correction. This is also what happened in the case of AdS
Schwarzschild black holes (assuming we placed the screen sufficiently close to the horizon).

For very small AdS black holes (or asymptotically flat black holes) we can consider
the ratio between the £ = 1 mode evaporation rate (given by eq. (2.34)) and the ¢ = 0
evaporation rate (given by eq. (F.3)) which is given by:

M B o215 74 [ 02\ Ay
d ey T(13/3)¢(13/3) [(d — 1)(d — 2)*] <) ()
G| [@=)Y2d =227 () Lisa s (1) \OT/ A8 (F.4)

_ d-8
~ (732,

We can see that if d < 8 then ¢ = 0 mode will dominate sufficiently close to the extremal
regime and if d > 8 then the ¢ = 1 mode will dominate sufficiently close to the extremal
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regime. Lets consider what happens when d < 8. For £ = 0 mode we require Swmino >

1= 2> (5)2/3 We define A such that & = A (3)2/3 then the evaporation rate can
Ts Jé] . rs B p

be expressed as:
dM Ny

ot " AT (F5)
Using this result we can express the information re-emergence time as:
B 719 Td_l
fomerge ~ o —In | A / &j)H . (F.6)

We fix the 8 dependence of A by fixing the proper distance (which we denote as lprop)

. . Y3 1ron \ 2
between the screen and horizon. This means A ~ (ﬁ) (‘;—;’) . Then we find:

/B (Ts ) 7/6 T;i—l (lprop >
cmeree 2m /6 fgile Ts ( )

This shows that the even when ¢ = 0 dominates we still get results for the information

re-emergence time that are comparable to the results we obtained in cases where the ¢ =1
mode was dominant. The main change is the power that the combination r4/3 comes with,
which is 7/6 rather than 1. As before, the sub-leading log term contains information about
how far from the horizon the screen is placed. So we again get results consistent with
known literature on the scrambling time of near extremal black holes.

G Derivation of the stress energy tensor of the screen

In section 4.1 we suggested that generalized greybody factors discussed in this paper can be
understood in terms of a transmission coefficient for an effective potential given in eq. (4.2).
We stated that such a potential would be obtained by cutting off the geometry of the AdS
black hole where the screen would be, we would then glue an exterior space which acts as
a storage system for the radiation. By requiring this gluing to satisfy the Einstein field
equations with some matter distribution, then there will generally be a singular matter
distribution at the interface where the gluing occurs. In our setup the singular matter
will lie on a spherical shell where the screen would be. The problem of finding the stress
energy tensor of such a shell is a well studied problem whose solution is stated in terms of
Israel junction conditions [36] (see [37, pp. 59-117] for a review). The starting point is to
write down the metrics both inside and outside the shell. We will utilize a hyperspherical
coordinate system z* = (t,r,¢',...,¢% ). This coordinate sytem will be used both inside
and outside the shell. In these coordinates the shell is at a fixed at r = rg = const. The
metric inside the shell will be given by:

G = = - ()08, + f-(r) 7180, + 1291 8,07, (G-1)
where I,J = 1,2,...,d — 1 are angular indices and g% is the (diagonal) metric on a
d — 1-unit sphere. The “—” sub-indices and super-indices indicate that we are dealing with
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tensors inside the shell (r < rp). Analogously, we take the metric outside the shell to be:

G = —A(r0) f+(r)818, + f1(r) 16,0, + 1 g756,6;)

f=(ro) (G-2)
f+(ro)’

where the “4” sub-indices and super-indices indicate that we are dealing with tensors
outside the shell (r > ro). The additional time lapse constant A(rg) is introduced so that

A(ro) =

the induced metric on both sides of the shell is the same in “natural” induced coordinates
y® = (t,¢',...,¢% ). It is given as:
Oz Ox¥ |
ab = 2 a9
dy dy

+ Q <
= 048, g = —F (10)046, + 75971040 - (G.3)
r=rg
The stress energy tensor of the shell denoted S, is related to the discontinuity in the
extrinsic curvature tensor and its trace on either side of the r = ry hypersurface. More

specifically, we have:'7

Suv =~ 5 (1K) = [KThas) (G)

above the notation [T] for any tensor T is defined as:

[T] = lim TT — lim T~. (G.5)

=70 =70

So we need to calculate the extrinsic curvature on either side of the hypersurface, which is
defined in terms of the covariant derivative of the normalized unit vector to the timelike
hypersurface r = ro:

K, = 040,V im;, . (G.6)
Here, fo is the covariant derivative with respect to the metrics, gff,/, on either side of the
shell. The trace is simply given by:

K* = hK%. (G.7)
The normal vector to a constant r hypersurface outside the shell is:
nt = fu(r) 2. (G.8)
The normal vector to a constant r hypersurface inside the shell is:
n, = f-(r)~%". (G.9)

Using these expressions we will find that:
1 _
K, = —5f=(r0) f+(ro) L2 1 (ro) 848, + rof+(ro) /2 gy 8167

Koy = =5 - 0) V21 (r0) 8404 + 1o (r0)" 20107 -
K* = 540) 21 r0) + (d = 05 )2
= S50 ) (= g (),

7In the formula below we assume that hypersurface is timelike.

K-
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Using these expressions and plugging into eq. (G.4) gives:

2(d—1)f-(ro) (f+(7”0)1/2 - f_(r0)1/2>

To

16mSa = — Lot

/! !/
_ 1/2 1/2 7“0f+(7"0) _ rof. (o) Q oIcJ
+ 20 =2) (F100)' = - (0) V2) + P2 — R | rogfoid
(G.11)
It is convenient to define the following basis on the shell:
oo =%
f=(ro)
T (G.12)
e =4 o,
which allows us to write the inverse induced metric as:
d—1
het =nlegel = —ejey + ) etel. (G.13)
I=1

Using this basis we can see the stress energy tensor of the shell is that of a d-dimensional
perfect fluid given by:

S = peet +p)_ejér = (p+p)eje; + ph®

I
_ V2 — F L ()12
,_(d=1 (7 (;LO f1(r0)'?) G
! fiulro) (o)
P= T6mrg [Q(d -2 (f+(ro)1/2 - f_(m)l/2) o <f+J(r?"0)01/2 B f(r0)01/2>1 7

where p is the energy density of the shell and p is the principle pressure. This completes
our derivation of the stress energy tensor of a shell that allows for the gluing two spherically
symmetric static spacetimes along the interface r = rg. This will be used in the discussion
of energy conditions of the shell.

H Null energy condition of the screen

In appendix G, we derived a solution to the Einstein equation which represented the gluing
of two different spherically symmetric solutions to the Einstein equation along a timelike
hypersurface r = ry where our “absorptive” screen would be placed.'® To have a consistent
patching it is required that there be a thin shell of matter with a stress energy tensor given
by eq. (G.14). It is interesting to ask if such a shell will satisfy energy conditions.

18The reason for quotation marks is that the radiation is not actually absorbed by the screen, but rather
leaks into the exterior flat or AdS space.
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In particular, we are interested in the null energy condition (NEC). The NEC states
that for any future directed null vector k* one has:

Tuwk'E” > 0. (H.1)
If we restrict ourselves to null vectors with no radial component then NEC simply becomes:
p+p>0. (H.2)

On the other hand, considering a purely radial null vector is more subtle since the rr
component of the metric is discontinuous across the shell, and we should consider what
happens on each side separately. The null vector will be given by:

1\ 1/2
K= ey [0F + (‘f) S . (H.3)
rTr
If the radial null vector is to be future directed then ¢4+ > 0. Since the stress energy tensor
of the shell has no radial component we see that the null energy condition for a radial null
vector becomes:
p>0, (H.4)

which is to say that the matter on the shell has a positive energy density. Now let us
consider interior metric to be that of a Schwarzschild AdS black hole:

7.2 r d—2 ,r2
J) =1+ Ty - (f) (1 + ng) . (FL.5)

The exterior metric will be chosen to be that of pure AdS:"

7“2

fr(r)=1+ Iz (H.6)

+
Before analyzing whether it is possible to have p > 0 we will consider what happens to the
energy density of the screen as we approach the horizon and the conformal boundary. At

the horizon the energy density of the screen takes on a negative value given by:

d—1 2
1+ 4
L+

p(ro=rH) = (H.T)

8r H
As the screen gets closer to the conformal boundary the energy density will saturate to the

following constant:
d—1/1 1

lim p= 22—~ 1), H.
rognoop 81 (L L+) ( 8)

9The reader might be wondering why we choose pure AdS rather than flat space as we suggested in

section 4.1. The reason is that we want to have a well defined holographic description of the exterior
system where the radiation is stored. The flat space limit can be obtained by sending Ly to infinity. The
advantage of using pure AdS rather than flat space from the beginning is that we can control how much
separation there is between the shell and the exterior conformal boundary, the larger L. is the further we
push the conformal boundary away from the screen.
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From this we see that the radial NEC is always violated at the horizon but if L_ < L
then the radial NEC is satisfied as the screen approaches the conformal boundary. Now
we will discuss the constraint of the energy density being non-negative. It will read:

2 d—2 2 2
To (TH TH S o
J1+LE <TO) <1+L2_>_,/1+L2+. (H.9)

Under the assumption that ro > ry we can square the expressions on both sides of the

inequality to obtain the following simplified constraint:

11 1 (rg\* Y
L%_H_@<m) <1+L2_>20. (H.10)
We already know the radial NEC will be satisfied for a screen at the conformal boundary
if Ly > L_. Furthermore, we also know that if screen is placed arbitrarily close to the
horizon the radial NEC will be violated. From these considerations there must be a critical
radius where the screen will saturate the radial NEC and the energy density will vanish.
This is easily found and given by:

Te =TpH H . (H.11)

It is also interesting to consider how the energy density of the screen changes as we
move the screen closer to the conformal boundary by considering dp/drg > 0 for any radial
coordinate outside the horizon. The expression for the derivative is given by:

dp d-1 rof’ (o) B rof!(ro) B ; -
dro  8mrd [2\/]0_(7«0) 2/ T+ (o) \/f—( 0)+\/f+( 0)]

__ (d=1)&(ro)
8mrg/f-(ro) f+ (ro)

o) =y f+(ro) (TOJN;(TO) - f_(r0)> + 1/ f~(r0) <f+(r0) - m) :

(H.12)

2

The sign of the derivative depends on £(rp). By plugging in the expressions for f, (rg) and
f=(ro) we will find that:

7“2 d rH d—2 7“2 ?”2 ry d—2 742
(o) TR~ <m) T )ty G T2
r2 TH d—2 72 72 87Trop
1+-9 (= 1+ L) — /149 = ) H.1
>J T2 <r0> T2 T T a1 (H.13)

We have a strict inequality since ry < oo (saturation occurs in limit as rg — 00):

dp P

dro " rox/T1(ro)]—(ro)’

(H.14)
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Figure 7. Above is a plot of the energy density of the screen as a function of its placement for the
case when d = 3 and rig/L_ = 1. Each solid line is a plot of the energy density of the screen in
units of the interior AdS radius, L_ for different choices of the ratio R = L, /L_. We can see that
all the lines start at r9/L_ = 1 which is where the horizon of the black hole is. At ro/L_ =1 the
energy density given by eq. (H.7) and will be negative. All the lines then increase monotonically
and will saturate to a value given by eq. (H.8) at infinity. For cases when R < 1 the energy density
at the conformal boundary will saturate to a negative value. When R = 1 the energy density is
always negative and saturates to zero at the conformal boundary. When R > 1 the energy density
is positive if o > r. where r. is given by eq. (H.11). The red curve corresponding to the limit
when R = oo represents the case when we patch a flat exterior metric at the screen interface and
the dotted line is the value the energy density will saturate to at infinity. The main features of
the energy density as illustrated in this plot remain intact if we consider higher dimensions and
different values of rg/L_.

This implies that at any point where the radial NEC is satisfied the energy density must
increase within a neighborhood of that point. This is enough to show that for ry > r. the
energy density must strictly increase. In figure 7 we plot of the energy density of the screen
to illustrate the monotone increase of energy density.

Now that we have explored when the NEC is violated for radial null vectors we can
move on to understanding the NEC for tangent null vectors (i.e. null vectors with no radial
component). In this case we must understand the condition p + p > 0. Before doing this
lets consider what happens to this combination as we approach the horizon and as we
approach infinity. As we approach the horizon we have:

lim (p+p) = —oo. (H.15)

TO—TH
When we take the screen to infinity it can be shown that p + p goes to zero with the
following leading order behaviour:

L_—L, 1
=—+0(= . H.16
pEP 8mrd * <r§) ( )
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Figure 8. Above is a plot of the sum of the energy density and pressure (i.e. p+p) of the screen as
a function of its radial placement for the case when d = 3 and ry/L_ = 1. Each solid line is a plot
of the energy density of the screen in units of the interior AdS radius, L_, for different choices of the
ratio R = L /L_. For each line there is a divergence at 7o/L_ = 1 where the horizon of the black
hole is. All the lines in the graph will saturate to a value of zero at infinity, however the way by
which this is achieved is different depending on the value of R. Lines with R < 1 (blue and yellow
line) actually cross the z-axis and then decrease and saturate to zero. Lines with R > 1 (green,
red, and dotted lines) stay below the z-axis and saturate to zero at infinity. This is consistent with
the simple expressions we found in eq. (H.15) and eq. (H.16). The main features discussed remain
intact in higher dimensions and for more general choices of rp/L_.

This means that if L, > L_ then for sufficiently large ¢ the sum of the energy density and
pressure is negative. If L, < L_ the for sufficiently large r¢ the sum of the energy density
and pressure is positive. Similar to the radial NEC, we see that there is a violation of the
tangent NEC close to the horizon and a saturation at infinity. The divergent violation at
the horizon comes from the pressure given by eq. (G.14) due to the fact that f_(rg) = 0.
Now that we understand what happens close to the horizon and infinity we will consider
the constraint more generally. In terms of f and f_, it is given by the following inequality:

pip= l2(f—(ro)1/2—f+(ro)1/2)+ro( filro) __f(ro) )]20- (HA7)

167rg fr(ro) /2 f(ro)'/?

It is difficult to make further progress analytically like we did for understanding the
radial NEC. Therefore, we will resort to making plots for p + p in eq. (H.17) and make
some general comments.

From figure 8 we can see that if L, > L_ then the tangential NEC is violated for all
ro € (rH,00).
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