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1 Introduction

The AdS/CFT correspondence was first proposed for conformal field theories such as the
N = 4 Super Yang Mills (SYM) theory [1, 2]. However, it has created a new paradigm
for an effective description of gauge theory, through a five-dimensional gravitational dual,
even beyond the conformal case. Non-conformal gauge/gravity dual models have been used
extensively to describe theories similar to QCD. For example, chiral symmetry breaking [3–
5], meson masses [6–9] and baryon masses [10] have all been addressed. This modelling
has been more successful than one would expect with sensible predictions of the spectrum
and couplings possible at least at the 15% level, or even better. Moreover, the compari-
son to lattice studies turns out to be convincing. An example of this is the quark mass
dependence of QCD, as realized for instance in the dependence of the ρ meson mass on
the π meson mass [8, 11, 12]. The holographic techniques for QCD described above can
be extended to other non-abelian gauge theories [13–15]. It is natural to apply them to
strongly coupled models of physics Beyond the Standard Model (BSM) that have been
proposed. For example, holographic work on technicolour includes [15–22].

Another class of BSM models that have generated considerable study are composite
Higgs models [23, 24] (the idea that the Standard Model (SM) fields might be composite has
a long history — see for example [25]) — in these models we study the Higgs emerges as a
bound state of a strongly coupled gauge theory at the 1–5TeV scale. The composite nature
of the Higgs removes the huge levels of fine tuning in the SM hierarchy problem. In this
paper, we will apply holographic methods to survey the full set of gauge theories that may
underpin composite Higgs models including [26, 27] and the exhaustive listing of [28]. We
predict the models’ meson spectrum and investigate the properties of top partner baryons.
We build on the work in our earlier, short paper [29], expanding the analysis to a much
wider set of quantities in the gauge theories previously studied and hugely enlarging the
set of gauge theories considered. The holographic model we use moves beyond simple
holographic models such as the Randall-Sundrum [30] approach of [31, 32] by directly
including the running dynamics of a particular UV completion of the model.

Holographic models of QCD-like theories split into two types: so-called top down
models use the precise tools of the AdS/CFT dictionnary to study deformed versions of
N = 4 SYM that display confinement and chiral symmetry breaking. Quark fields have
been rigorously included in N = 4 SYM by adding probe D7-branes [8, 33, 34]. These
models are usually highly predictive, yet an actual rigorous string dual of QCD does not
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exist, in particular due to the large N limit involved in holography. Thus the gravity
dual theories only exemplify aspects of the dynamics. There are also bottom up models
that have been constructed (often called AdS/QCD [6, 7]) which apply the basic tools of
holography but are less rigorous. These models typically contain more free parameters —
for example the early models imposed chiral symmetry breaking by hand and the quark
condensate was a fitted parameter. More elaborate constructions such as [35] address many
of these issues and fit QCD well.

The model we will use here, Dynamic AdS/YangMills [15], lies between the two ex-
tremes of top down and bottom up. The action is based on the Dirac Born Infeld (DBI)
action of a D7 brane in AdS5 which describes a quenched quark in the top down models. In
examples with chiral symmetry breaking based on this action, deformations of the super-
symmetric set up induce a running anomalous dimension for the quark condensate, which
shows as a radially dependent mass for the scalar that describes the embedding [12, 36]. In
the IR the Breitenlohner-Freedman bound [37] is violated and this scalar develops a vaccum
expectation value dual to the quark condensate, which is therefore dynamically determined.
The DBI action then naturally predicts the spectrum and couplings of a variety of bosonic
and fermionic exitations/states. It is very natural to use this DBI action to describe the
quark/meson physics for more complex models by simply feeding it the running anomalous
dimension appropriate for those models — although one loses the prediction of the form of
this running the spectrum remains a prediction. We will use the two loop running of the
couplings in theses theories extended (beyond their formal regime of validity) into the non-
perturbative regime to provide sensible ansatz for the runnings in all possible gauge groups
and with quarks in all representations. The Dynamic AdS/YM theory can therefore make
predictions for the spectrum of the full set of asymptotically free gauge theories proposed
as composite Higgs models. A small number of previous holographic analyses of composite
Higgs models exist [31, 32, 38, 39] but they do not attempt to include the particular Nc

and Nf dependent runnings of the theories in the dynamics.
Recent work has also shown that it is straightforward to include higher dimension

operators (HDOs), such as Nambu-Jona-Lasinio operators [40], into the Dynamic AdS/YM
model [41, 42]. This is achieved by using Witten’s double trace prescription [43]. We will
review this mechanism and explore the role of higher dimension operators in our theories.
In particular we will present a section where we study Nf = 2 QCD to allow the reader to
understand the ball-park success of the holographic model in a familiar setting. Here, to
introduce the HDO work, we introduce, in the spirit of [44, 45], many HDOs to “perfect”
the predictions. This should be compared to perfecting a lattice action as introduced by
Lüscher and Hasenfratz long ago [46, 47]. We introduce a UV cut-off corresponding to
the scale where QCD transitions to the strong-coupling regime from the perturbative UV.
Note that the gravity dual should be strongly coupled in the region where QCD becomes
perturbative above this cut off. We show that HDOs, reflecting the matching at that scale,
can improve the spectrum predictions, although with a growing loss of predictivity.

We will then turn to using our holographic model for composite Higgs models. The
key component of composite Higgs models is that a strongly coupled gauge theory causes
chiral symmetry breaking in the quark sector, generating four or more Nambu-Goldstone
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bosons [23]. By weakly gauging the global chiral symmetries the four then pseudo-Nambu
Goldstone bosons (pNGBs) can be placed in the two-dimensional representation of SU(2)L
to become the complex Higgs field. This strong dynamics is expected to happen at a scale
of roughly 1–5TeV. The Higgs Yukawa couplings must be formed by higher dimension
operators from a flavour scale above the strong dynamics scale. It has been argued, for
example in [48], that the electroweak gauge fields and top Yukawa interactions in the low
energy effective theory of the pNGBs generates the standard model (SM) Higgs potential.
We will not address the generation of the Higgs potential here, concentrating instead on the
dynamics and spectrum of the strong coupled theory one level higher. The need for higher
dimensional operators to give mass to the SM fermions motivates the study of related
operators with a particular focus of their impact on the spectrum of the composite states.

Three theories have had particular focus in the literature. Note we will generically refer
to fermions transforming under the strongly coupled gauge theory, in any representation, as
quarks, in analogy to QCD (elsewhere they are referred to as hyper-quarks etc). Firstly, an
SU(2) model with two fundamental Dirac fermions breaks an SU(4)/SO(6) global symmetry
to Sp(4)/SO(5) generating five Goldstones [49, 50]. Secondly, an Sp(4) gauge theory with
fundamental quarks has the same symmetry breaking pattern [26]. Thirdly, an SU(4)
theory with five quarks in the sextet representation breaks SU(5) to SO(5) generating
fourteen Goldstone modes [27]. We will study these cases in detail and compare to lattice
simulations of these theories, quenched versions or versions with slightly different fermionic
content. The comparison is very favourable and leads us to place some trust in our model’s
predictions as flavours are unquenched or flavours added to make the precise content needed
by composite Higgs models. Here we see the huge benefit of holographic models where the
field content can be changed rapidly, albeit without the rigour of the lattice.

The generation of the top quark Yukawa coupling in composite Higgs models is difficult
since it is so large. A possible mechanism to enhance it is for the strong dynamics to
have baryons with the same symmetries as the chiral top quarks which they mix with
via flavour higher dimension operators [51]. In the Sp(4) model this can be achieved
by adding quarks in the sextet representation [26]; and in the SU(4) model by adding
quarks in the fundamental representation [27] as we will explore in detail. These baryons
naturally have order one couplings to the Higgs (pNGBs) generated by the strong dynamics.
Even here a Yukawa coupling of order one is hard to achieve requiring anomalously light
baryons (phenomenologically they must lie above 800–900GeV or so [52, 53], dependent
on the precise decay channels) and or large structure functions. Here we will investigate
this dynamics using holography. The D7-brane action, extended to its fermionic sector,
naturally describes baryons (super-partners of the mesons) consisting of three fermions (a
quark an anti-quark and an adjoint fermion in the root N = 2 theory) as fermionic fields
in the DBI action [34, 54–56]. We phenomenologically extend this description to describe
the top partners which are also usually constructed from three constituents. We do indeed
find it hard to generate a large top Yukawa coupling in the base theories. Here, as in [29],
we propose a novel mechanism of adding an additional new higher dimension operator that
can reduce the top partner masses. We explore the impact of this operators showing that
a physical Yukawa coupling can be achieved by reducing the top partner mass relative
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to the vector meson mass along with simultaneous enlargements of the relevant structure
functions. If the strong coupling scale is > 1TeV then the top partner masses are still
likely compatible with LHC constraints yet with a top Yukawa coupling of order one.

In particular our new results in these full theories include: meson decay constants be-
yond lattice analysis to date for the SU(2) model; the meson spectrum and decay constants
for the Sp(4) model in the unquenched theory which has not been studied on the lattice;
first computations of the axial meson and scalar (σ or S) meson sectors in an SU(4) theory
where other observables have been studied on the lattice (the theory has four Weyl sextet
quarks and two flavours of Dirac fundamental quarks); and the full unquenched spectrum
of the true proposed SU(4) composite Higgs model (with five Weyl sextet quarks and three
flavours of Dirac fundamental quarks), a theory that is beyond lattice study currently.

We will further exploit the power of holography by computing the predicted spectrum
for the full class of twenty six models in the classification of [28]. Note, that we find that
some of these models lie, at least based on the ansatz of the two loop running of the
coupling, in the conformal window [57, 58] with an infra-red (IR) fixed point that is too
small to break chiral symmetries. The scalar meson mass is particularly sensitive to the
rate of running of the coupling in any given theory and some of these proposed models are
walking theories with very low scalar masses (as expected from [14]; but also see [59–61]
for an important discussion of the possible role of mixing with the glueball sector). The
ability to see these effects is straightforward holographically but on the lattice needs both
unquenched simulations and a wide separation of scales.

This is a long paper, however it is designed so that the reader can drop in to the
self-contained sections of interest to them:

Those interested in the specfics of the holographic model should read section 2 — we
review the model, including determining the vacuum, the meson spectrum computation
and the baryon spectrum computation (supplemented by appendix A where we present the
first analysis of the Dirac operator in these models) and describe the addition of higher
dimensional operators (HDOs). The reader should note that the base model, without
HDOs, only has the parameters Nc, Nf and the quark mass so parameter spaces are directly
analogous to the true theories.

In section 3 we apply the model to two flavour QCD. We compute the ρ, a, σ, π
and nucleon masses and decay constants including the quark mass dependence and the
dependence on radial excitation number n. We apply the idea of perfecting the model
through a UV cut off and HDOs. We compare these results to observed values and lattice
simulations — the model can match the data at the 10% level in most observables.

Section 4 is where we turn to composite Higgs models but as before the reader may
only be interested in the sub-sections for particular models which are again self-contained.
We generically introduce these models and our notation for the classification of their
field content.

In particular, section 4.2 provides our results for the SU(2) gauge theory, including the
V (ρ), A(a), S (σ), π masses and decay constants including the quark mass dependence.
The results correspond well to the lattice data.
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Section 4.3 provides results for the Sp(4) model including the V , A, S, π and top
partner baryon masses and decay constants including the quark mass dependence in each
of the fundamental and sextet quark sectors. The holographic results in the quenched
theory sit well next to quenched lattice simulations for both representations of quarks, and
including the quark mass dependence. We unquench and observe the scalar mass decrease
by up to 60% as the weaker running of the coupling is included. Here we study the role of
a HDO in bringing the top partners mass down and observe that the top Yukawa coupling
can reasonably be raised towards one by this method.

Section 4.4 repeats this analysis for the SU(4) model. Lattice data only exists for a
theory with two flavours of both the fundamental and sextet quarks, but it is unquenched.
We study that theory and again find sensible agreement with the lattice in both types of
quark sectors. Returning to the correct flavour content for the composite Higgs scenario
we find the running is a little slower and the gap between the two quark representations
sectors is enhanced a little, with lighter scalar fields. We again see how a HDO can help
generate a large top quark Yukawa coupling.

In section 4.5 we work through all the remaining models proposed in [28]. We work out
whether, at the level of the two loop running, they are expected to break chiral symmetries
or not and for those that do present the holographic predictions for the spectrum.

Section 5 briefly discusses some of the immediate phenomenological implications of our
studies and results.

Finally, we draw our work together and discuss future projects in section 6. Appendix A
explores the Dirac operator in Dynamic AdS/YM and appendix B lists group theoretic
factors for the models.

2 Dynamic AdS/YM

In this section we introduce the holographic model that we will use. The model was first
suggested in [15]. Here, we refer to this model as Dynamic AdS/YM (Anti-de Sitter/Yang-
Mills) to emphasise that it can be used to holographically describe the chiral symmetry
breaking dynamics of any gauge theory (not just QCD), including with quarks in several,
potentially inequivalent, representations.

The action for the model is inspired by the DBI (Dirac-Born-Infeld) action of a holo-
graphic top-down model involving a D7-brane embedded in AdS5 or in a perturbed AdS5
geometry. The DBI action is expanded to quadratic order in the embedding function X.
A detailed description of this expansion in particular cases is described in [12, 36]. We also
add an axial gauge field in the natural fashion familiar from AdS/QCD models [6]. We
may think of this model as describing a single quark in the background of the gauge fields,
which may include the contribution to the dynamics from any other quarks even in the
probe limit. Note here that the origin of the model at large Nc means the U(1)A flavour
symmetry is not anomalous so the pNGB and so forth form part of the same U(Nf ) multi-
plet along with other flavours. In any case by placing fields in the adjoint representation of
a flavour symmetry, and by tracing over the action, multiple mass degenerate quarks can
be included directly.
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In particular, the model has a field of dimension one, in terms of the gauge theory
conformal scalings, for each of the relevant gauge invariant operators. For instance, X is
dual to the complex quark bilinear — in QCD this is the operator q̄q but it can be any
such dimension three, gauge invariant operator of the theory, as we will shortly expand on.
The fluctuations of this field are dual to the σ (or S for scalar) and π mesons of the theory.
We will write it as X = Leiπ. AµL and AµR are dual in QCD to the operators q̄γµq which
generates the vector (the V or ρ) mesons and q̄γµγ5q which generates the axial vector (A)
mesons, respectively.

Note in theories with quarks in real representations one forms a Majorana spinor from
each flavour ΨM = (ψ,−iσ2ψ∗). The gauge invariant and Lorentz invariant condensates
are then as in QCD written X = Ψ̄MΨM and one still inserts the appropriate gamma
matrix structure into the operator X to describe vector and axial vector states — the
former carry no charge under the broken symmetry, whilst the latter are charged. Apart
from this change in meaning for X the spirit of the gravity description is then the same as
in QCD.

The gravity action of Dynamic AdS/YM is

Sboson =
∫
d5x ρ3

(
1
r2 (DMX)†(DMX) + ∆m2

ρ2 |X|
2

+ 1
2g2

5

(
FL,MNF

MN
L + (L↔ R)

))
.

(2.1)

The five-dimensional coupling may be obtained by matching to the UV vector-vector cor-
relator [6], and is given by

g2
5 = 24π2

d(R) Nf (R) , (2.2)

where d(R) is the dimension of the quark’s representation and Nf (R) is the number of
flavours in that representation.

The model lives in a five-dimensional asymptotically AdS (AAdS) spacetime, which is
given by

ds2 = r2dx2
(1,3) + dρ2

r2 , (2.3)

with r2 = ρ2 + L2 the holographic radial direction corresponding to the energy scale, and
with the AdS radius set to one. Note in D7 brane models [8, 33, 34] r is the RG scale of the
gauge fields and ρ that for quark physics. The factors of ρ and L in the action and metric
are implemented directly from the top-down analysis of the D3/probe-D7 brane system
— there L corresponds to the direction perpendicular to the D7 in the 10 dimensional
space. The factors ensure appropriate UV behaviour, such that the metric returns to pure
AdS at the boundary, but also an IR behaviour where the fluctuations know about any
chiral symmetry breaking through a non-zero value of L. From a bottom up perspective
it is natural for L to enter with ρ since ρ and L are both dimension one from the field
theory perspective — in a sense eq. (2.3) includes the backreaction of the geometry to the
formation of the quark condensate. dx2

(1,3) is a four-dimensional Minkowski spacetime.
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2.1 The running anomalous dimension & the vacuum

The dynamics of a particular gauge theory, including quark contributions to any running
coupling, are included through the choice of ∆m2 in the action eq. (2.1). In order to find
the vacuum of the theory, with a non-zero chiral condensate, we set all fields to zero except
for |X| = L(ρ). For ∆m2 a constant, the equation of motion obtained from eq. (2.1) is

∂ρ(ρ3∂ρL)− ρ ∆m2L = 0 . (2.4)

When ∆m2 = 0, near the boundary of the AAdS space which corresponds to the UV, the
solution is given asymptotically by L(ρ) = m+ c/ρ2, with c = 〈q̄q〉 of dimension three and
m, the mass, of dimension one (note again L and ρ have dimension one). For non-zero
∆m2, the solution takes the form L(ρ) = mρ−γ + cργ−2, with

∆m2 = γ(γ − 2). (2.5)

Here γ is precisely the anomalous dimension of the quark mass. The Breitenlohner-
Freedman (BF) bound below which an instability occurs is given by ∆m2 = −1.

In the gauge theory, we expect γ to run. Therefore we impose this running at the level
of eq. (2.4) by allowing ∆m2 to depend on ρ. Our starting point is the perturbative results
for the running of γ. Expanding eq. (2.5) at small γ gives

∆m2 = −2γ. (2.6)

We proceed by determining γ from the gauge theory. Note that this relation means that
the holographic model determines a theory to break chiral symmetry if the input form of
γ passes through 1/2, when the BF bound is violated — we will use this criteria below
(matching the assumptions in [57]).

Since the true running of γ is not known non-perturbatively, we allow ourselves to
extend the perturbative results as a function of renormalization group (RG) scale µ to
the non-perturbative regime. We will directly set the field theory RG scale µ equal to the
holographic RG scale r =

√
ρ2 + L2. Note it is important that we let ∆m2 depend on L for

the following reason. Chirally symmetry breaking occurs in the IR because the L = 0 state
has a BF bound violation at small ρ. L then becomes non-zero, the condensate switches
on, until the BF bound is not violated any more and the state becomes stable. However, if
we did not have L in ∆m2 then the BF bound would remain violated even as L switches on
and L would grow indefinitely. This mechanism happens naturally in the top down probe
D7 systems. We consider the two-loop results for the running because this ansatz includes
the possibility of conformal windows [57, 58] for ranges of Nf .

The two-loop result for the running coupling in a gauge theory with multi-
representational matter is given by

µ
dα

dµ
= −b0α2 − b1α3 , (2.7)
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with

b0 = 1
6π

(
11C2(G)− 2

∑
R

T (R)Nf (R)
)
,

b1 = 1
24π2

(
34C2

2 (G)−
∑
R

(10C2(G) + 6C2(R))T (R)Nf (R)
)
.

(2.8)

Here we have written the results for the number of Weyl fermion flavours in a given repre-
sentation. To find the running of γ we then use the one-loop anomalous dimension

γ = 3 C2(R)
2π α. (2.9)

Note we do not go beyond one loop here, since the running at large α is already a guess
and moving beyond one loop in γ does not provide further features (again we are following
the conventions of [57] here).

Now for a given theory we numerically solve eq. (2.4) with our ansatz for ∆m2 for the
function L(ρ) that defines the vacuum. To do so, we need IR boundary conditions that we
again import from the D3/probe D7 brane system. The initial conditions that we use are

L(ρ)|ρ=ρIR = ρIR , ∂ρL(ρ)|ρ=ρIR = 0 . (2.10)

The first of these corresponds to an on-shell mass condition: once the IR mass, determined
by L(ρ)|ρ=ρIR = LIR, equals the energy scale ρ = ρIR, we stop the evolution of L(ρ) to lower
scales, since the quarks should now be integrated out. Geometrically, ρIR corresponds to
the value of ρ at which the function L(ρ) crosses a line at 45◦ in the L — ρ plane. The
value of ρIR is fixed in each particular theory and for each choice of UV quark mass: we
numerically vary ρIR until the value of L at the boundary is the desired quark mass. We
refer to the corresponding configuration that describes the vacuum (for a given Nc, Nf , and
quark mass) as L0(ρ) with IR value LIR (this is effectively the constituent quark mass) at
the IR cut off ρIR.

Note at this point we observe a crucial difference between our approach and previous
papers on holgraphic composite Higgs models [31, 32], which use the boundary conditions
to impose chiral symmetry breaking. Here though it is not the IR boundary conditions
that cause the dynamics that we report. In our case the dynamics results from the BF
bound violation (or not) for L in the bulk and the IR boundary conditions simply provide
IR regularity independent of the model’s dynamics.

If there are quarks in multiple representations, then we will simply replicate eq. (2.1)
for each representation. This ignores mixing between the mesons made of quarks in differ-
ent representations, though different representations are still aware of each other through
the choices of ∆m2. We will discuss such cases and their subtleties in more specific mod-
els below.

2.2 The meson sectors

The mesons of the theory can be found by solving the equations of motion for fluctuations
in the various fields of the model in eq. (2.1). In each case a fluctuation is written as
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F (ρ)e−ik.x, M2 = −k2 and IR boundary conditions F (LIR) = 1, F ′(LIR) = 0 used. One
seeks the values of M2 where the UV solution falls to zero, so there is only a fluctuation
in the vev of operator and not the source in the UV.

The fluctuations of L(ρ) give rise to scalar mesons. They are obtained by writing
L = L0 + S, and where to linear order r2 = ρ2 + L2

0. The equation of motion for the
fluctuation reads

∂ρ(ρ3∂ρS(ρ))− ρ(∆m2)S(ρ)− ρL0(ρ)S(ρ)∂∆m2

∂L
|L0 +M2 ρ

3

r4S(ρ) = 0. (2.11)

The vector-mesons are obtained from fluctuations of the gauge fields V = AL + AR
around the vacuum value of zero and satisfy the equation of motion

∂ρ(ρ3∂ρV (ρ)) +M2
V

ρ3

r4V (ρ) = 0. (2.12)

To obtain a canonically normalized kinetic term for the vector meson we must impose∫
dρ

ρ3

g2
5r

4V
2 = 1. (2.13)

The dynamics of the axial-mesons (A = AL−AR) is described by the ~x, t components
of AN by the equations

∂ρ(ρ3∂ρA(ρ))− g2
5
ρ3L2

0
r2 A(ρ) + ρ3M2

A

r4 A(ρ) = 0 . (2.14)

The difference between the V and A equations reflect that L carries axial charge so couples
to A.

To compute decay constants, we must couple the meson to an external source. Those
sources are described as fluctuations with a non-normalizable UV asymptotic form. Again
we need to fix the coefficient of these solutions by matching to the gauge theory in the UV.
External currents are associated with the non-normalizable modes of the fields in AdS.
In the UV we expect L0(ρ) ∼ 0 and we can solve the equations of motion for the scalar,
L = KS(ρ)e−iq.x, vector V µ = εµKV (ρ)e−iq.x, and axial Aµ = εµKA(ρ)e−iq.x fields. Each
satisfies the same UV asymptotic equation

∂ρ[ρ3∂ρK]− q2

ρ
K = 0 . (2.15)

The solution is
Ki = Ni

(
1 + q2

4ρ2 ln(q2/ρ2)
)
, (i = S, V,A), (2.16)

where Ni are normalization constants that are not fixed by the linearized equation of
motion. Substituting these solutions back into the action gives the scalar correlator ΠSS ,
the vector correlator ΠV V and axial vector correlator ΠAA. Performing the usual matching
to the UV gauge theory requires us to set [6, 15]

N2
S = d(R) Nf (R)

48π2 , N2
V = N2

A = g2
5 d(R) Nf (R)

48π2 , (2.17)
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where d(R) is the dimension of the representation (note here again we write for Weyl
fermions so for 2 Dirac flavours Nf = 4).

The vector meson decay constant is then given by the overlap term between the meson
and the external source

F 2
V =

∫
dρ

1
g2

5
∂ρ
[
−ρ3∂ρV

]
KV (q2 = 0) . (2.18)

Note here that we are using the notation common in the AdS/QCD literature that the
dimension two coupling between the meson and its source is called F 2

V . It is common in the
phenomenology and lattice literature to call this quantity F̃VMV (see for example [62]).
Below where we compare to lattice results we must fix this choice. We have converted
the lattice results to our definition of FV in eq. (2.18) which seems a purer statement of
the strength of that coupling independent of the prediction of the mass. The axial meson
normalization and decay constant are given by eq. (2.13) and eq. (2.18) with replacement
V → A.

The pion decay constant can be extracted from the expectation that ΠAA = f2
π , with

f2
π =

∫
dρ

1
g2

5
∂ρ
[
ρ3∂ρKA(q2 = 0)

]
KA(q2 = 0) . (2.19)

To compute the pion mass in the presence of a quark mass we should formally work
in the Aρ = 0 gauge and write Aµ = Aµ⊥ + ∂µφ. The φ and π fields (the phase of X) mix
to describe the pion — we have

∂ρ(ρ3∂ρφ(ρ))− g2
5
ρ3L2

0
r4 (π(ρ)− φ(ρ)) = 0 ,

q2∂ρφ(ρ)− g2
5L

2
0∂ρπ(ρ) = 0 .

(2.20)

Here we shoot out from the IR with φ(LIR) = 1, φ′(LIR) = 0, and then vary π(LIR) and
q2 = −M2

π to find solutions where both φ, π vanish in the UV. This is numerically very
intensive. Below for the non-zero quark mass cases, we will neglect the axial meson field
to simplify the analysis. When substituting the lower equation of eq. (2.20) into the upper
one, we find

∂ρ
(
ρ3 L2

0 ∂ρπ
)

+M2
π

ρ3 L2
0

r4 (π − φ) = 0 . (2.21)

We then assume φ� π and neglect the mixing, such that there is only the single equation
for π to solve as for the other fluctuations. This is the natural description of the pion mass
in the D3/probe D7 system before we added the axial field by hand. As we will see, the
results below suggest that this is a sensible approximation.

In a particular SU(4) model we will study below, lattice studies have identified an
additional spin zero hadron (a tetraquark). Generically spinless states with UV dimension
∆ can be described by adding to the action an additional scalar field S,

S = Sboson + SJ , with SJ = 1
2

∫
d5x ρ3

(
∇M∇MS +m2S2

)
. (2.22)
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Fluctuations of this scalar S = f(ρ) eik·x in the background lead to the equation of motion

∂2
ρf(ρ) + 5 ρ+ L0 ∂ρL0

r2 ∂ρf(ρ) + M2

r4 f(ρ)− ∆(∆− 4)
r2 f(ρ) = 0, (2.23)

where ∆ is the conformal dimension of the operator that we consider.

2.3 The fermionic sector

One of the first new additions of this work is that we wish to allow for the inclusion of
baryonic states in the Dynamic AdS/QCD theory. Here we are motivated by the mass of
top partners in composite Higgs models which we will explore more below. Of course, in
true large Nc holography baryons made of Nc quarks are very heavy stringy modes (for
example described by a wrapped D5 with Nc strings attached in the basic AdS/CFT Cor-
respondence [63]). However, there are fermionic bound states (baryons) described by the
supergravity limit of the duality. In the D3/probe D7 system some fermionic superpart-
ners of the mesons are made of a quark, an anti-quark and a gaugino and are described by
fermionic excitations of the D7 world volume theory [34, 54]. Indeed in a preparatory paper
we carefully worked through the D3/probe D7 system example [55] (see also [56]) and that
work will lead us here. That a three fermion bound state can have such a description in
a top down model suggests phenomenologically a proton made of 3 quarks in QCD or the
top partners in the models we will discuss below could reasonable be modelled by simply
placing a fermion in the bulk. The work of [10] has already trialled this in AdS/QCD with
some phenomenological success.

In appendix A we provide a full derivation for placing a fermion in first AdS and then
the Dynamic AdS/YM background. Here we simply summarize the results. We add to
the action

S = Sboson + S1/2 , with S1/2 =
∫
d5x ρ3 Ψ̄

(
/DAAdS −m

)
Ψ . (2.24)

The four component fermion satisfies the second order equation(
∂2
ρ + P1∂ρ + M2

B

r4 + P2
1
r4 −

m2

r2 − P3
m

r3 γρ
)
ψ = 0 , (2.25)

where MB is the baryon mass and the pre-factors are given by

P1 = 6
r2 (ρ+ L0 ∂ρL0) ,

P2 = 2
(
(ρ2 + L2

0)L∂2
ρL0 + (ρ2 + 3L2

0)(∂ρL0)2 + 4ρL0∂ρL0 + 3ρ2 + L2
0

)
,

P3 = (ρ+ L0 ∂ρL0) .

(2.26)

In five dimensions for the states of UV dimension 9/2, as appropriate for a three quark
state, the bulk fermion mass is m = 5/2.

The four component spinor can then be written in terms of eigenstates of γρ such that
ψ = ψ+α+ + ψ−α− where γρα± = ±α±. The equation then becomes two equations, one
for ψ+ and one for ψ−, obtained by replacing γρ in eq. (2.25) by ±1 respectively. The
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two equations are though copies of the same dynamics with explicit relations between the
solutions as we describe in appendix A. Thus one need solve one only and from the UV
boundary behaviour extract the source J and operator O values. The UV asymptotic form
of the solutions are given by

ψ+ ∼ J
√
ρ+OMB

6 ρ−11/2 ,

ψ− ∼ J
MB

4
1
√
ρ

+Oρ−9/2 .
(2.27)

The full solution must be found numerically — here we use the D3/probe D7 system
as a guide to impose the IR boundary conditions

ψ+(ρ = LIR) = 1, ∂ρψ+(ρ = LIR) = 0 ,

ψ−(ρ = LIR) = 0, ∂ρψ−(ρ = LIR) = 1
LIR

.
(2.28)

Note that we impose these boundary conditions at ρ = LIR rather than at ρ = 0 as in the
supersymmetric case in [55, 56].

2.4 Higher dimensional operators

Another key ingredient we wish to explore here is the inclusion of higher dimension quark
operators using Witten’s double trace prescription [41, 43]. This prescription amounts to
introducing a cut-off at some scale ΛUV in the gauge theory or an upper boundary in AdS
at ρ = ΛUV . In the field theory for some operator O we include a “double trace” higher
dimensional operator (HDO) by

LUV = GO†O, , (2.29)

where G is a dimensionful coupling. Now were O to acquire a vacuum expectation value
then via eq. (2.29) there would be an effective source at the boundary

J = G〈O†〉 . (2.30)

Note that the analysis of [41, 43] shows that adding the HDO as a boundary term in AdS
and then minimizing the bulk and boundary action naturally reproduces eq. (2.30).

Until now we have considered a sourceless theory and in any computation of the back-
ground (L0(ρ)) or any fluctuation we have only allowed solutions where the appropriate
source vanish. For example, it is precisely this prescription that picks out discrete values
of the bound state masses. Now though we will allow all of the solutions with non-zero J
and re-interpret them as part of the source free theory but with the HDO present: asymp-
totically we read off J ,O and then use eq. (2.30) to compute G. Now we can sort through
these solutions and find the masses of bound states which match the boundary condition
for a particular G.

The operators we will consider in Dynamic AdS/YM, which we will explore below, are

g2
S

Λ2
UV

|q̄q|2 , g2
V

Λ2
UV

|q̄γµq|2 , g2
A

Λ2
UV

|q̄γµγ5q|2 ,
g2

B
Λ5
UV

|qqq|2 , (2.31)

where the gi are dimensionless couplings.
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Figure 1. The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS scalar
mass ∆m2 against log RG scale (we use µ =

√
ρ2 + L2 in the holographic model). On the right we

show the vacuum solution for |X| = L(ρ) against ρ. The 45◦ line is where we apply the on mass shell
IR boundary condition in eq. (2.10). The L(ρ) with a massless UV quark has LIR = 0.43. The quark
masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05, 0. Here units are set by α(ρ = 1) = 0.65.

3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study
of Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless
theory by finding the function L(ρ) using eq. (2.4). Then we compute the spectrum of the
model by looking at fluctuations, study the quark mass dependence and the n dependence
of excited states. Finally we consider introducing a cut off where the theory runs to a
perturbative regime and include HDOs at that scale to improve the IR description.

The key input for any theory we study is the form of γ we input in eq. (2.6). The
formulae for the one and two-loop coefficients of the β-function and the one-loop anomalous
dimension for QCD are, with Nf the number of Weyl flavours in the fundamental and N̄f

the number in the anti-fundamental representations

b0 = 1
6π
(
11Nc − (Nf + N̄f )

)
,

b1 = 1
24π2

(
34Nc

2 − 5Nc(Nf + N̄f )− 3
2
Nc

2 − 1
Nc

(Nf + N̄f )
)
,

γ = 3(Nc
2 − 1)

4Ncπ
α .

(3.1)

We choose an initial value for α(µ = 1) = 0.65 for the numerical analysis but will set
the scale with the ρ-meson mass below. The resulting running of ∆m2 in the Dynamic
AdS/QCD model is shown in figure 1 on the left — the BF bound is violated close to the
scale r = µ = 1.

We can now compute the vacuum for the theory by solving eq. (2.4) subject to the
boundary conditions in eq. (2.10). We solve the equation numerically and show the re-
sults on the right in figure 1 for different asymptotics of L(ρ) corresponding to different
UV masses.
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Observables QCD AdS/SU(3) Deviation
(MeV) here’s the hidden text 2 F 2 F̄
Mρ 775 775∗ fitted
MA 1230 1183 −4%
MS 500/990 973 +64%/−2%
MB 938 1451 +43%
fπ 93 55.6 −50%
fρ 345 321 −7%
fA 433 368 −16%

Mρ,n=1 1465 1678 +14%
MA,n=1 1655 1922 +19%
MS,n=1 990 /1200−1500 2009 +64%/+35%
MB,n=1 1440 2406 +50%

Table 1. The predictions for masses and decay constants (in MeV) for Nf = 2 massless QCD. The
ρ-meson mass has been used to set the scale (indicated by the *).

3.1 The meson and baryon spectrum of QCD

To compute the meson masses, we must set g5 in eq. (2.1) by matching to the UV vector-
vector correlator in perturbative QCD

g2
5 = 48π2

Nc(Nf + N̄f )
. (3.2)

Having found the massless vacuum, we can now study the spectrum as described in
section 2. We set all sources to zero in the UV. The results for the ground states in each
channel are shown at the top of table 1 using the ρ-meson mass to set the scale. Note we
begin to use notation we will use later — labelling the holographic model as AdS/SU(3) to
indicate the gauge group and 2F 2 F̄ to show there are 2 Weyl fermions in the fundamental
and two in the anti-fundamental representation (ie 2 Dirac fermions in the fundamental).
Comparing to the physically measured QCD values for the ground states, we see the ρ- and
A-meson sectors are reasonably described but the pion decay constant is low (although we
have not yet included a UV quark mass). The σ (S) mass is high, but possibly should be
compared to the f0(980) if the f0(500) is a pion bound state [64] (in which case it fits well).
The proton mass is clearly too high though.

We can compute the quark mass dependence of the meson masses also. We display
the results in figure 2 including fits and comparisons to lattice data. The top two plots
show that at low quark mass the pion mass squared is linear in mq as required by the
Gell-Mann-Oakes-Renner relation whilst at larger mq the behaviour reverts to depending
on m2

q as for the other mesons. In the lower plot we show the other meson masses as a
function of M2

π . The lattice data is extracted by eye from the plots in for example [65–67]
so we don’t give errors — they provide a guide to the expected order of magnitude. Note
the coefficients are dimensionful so depend on the choice for the setting of the scale. The
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Mρ = 775 + 0.00023 M2
π ,

Mρ lat = 770 + 0.00064 M2
π ,

MA = 1183.5 + 0.00095 M2
π ,

MA lat = 1230 + 0.0015 M2
π ,

MB = 1450.6 + 0.0007 M2
π ,

MB lat = 938 + 0.0015 M2
π ,

MS = 973.4 + 0.00023 M2
π ,

MS lat = 570 + 0.0011 M2
π .

Figure 2. The top figures show the pion mass squared aginst the UV quark mass. The dashed
black lines show the fit we obtained which is given by M2

π = 3871mq + 13.45m2
q. In this formula

the pion mass is given in MeV. The bottom plot shows the other meson and baryon masses against
Mπ and the best fits obtained in our model. In these formulae the pion mass is also given in MeV.

comparison is reasonable at the level of a factor of two except for the σ where our estimate
of the mass is high and the gradient low, perhaps reflecting the difficulty with identifying
the state we have already encountered.

Finally it is also interesting to look at the masses of higher excited states of the mesons.
We are wary of this comparison — at infinite Nc the AdS/CFT description of excited states
remains a point-like supergravity description whilst in QCD, at lower Nc, we expect, as the
quarks separate, the confining strings between them to become apparent [68]. One might
therefore only expect the lowest excited state(s) to be well described by the methods we are
using. It has been argued that the excited state masses should scale with the excitation
number n as

√
n [68] whilst in standard AdS/QCD models they scale as n. In [69, 70]

it was argued that rather dramatic changes to the deep IR would be needed to make
highly excited states scale as

√
n— this approach is not obviously reintroducing string like

behaviour though. So it is interesting to look at the low lying n masses in our description.
In figure 3 we show the wave functions for the first few excited ρ-meson states and plot
the masses against n. In fact they are rather linear in n and the model, unsurprisingly,
does not capture the string like behaviour. We display the values of the first excited states
in table 1 where they come out high. Below we will take a different approach to adding
string like structure back into the model by including HDOs which does seem to improve
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Figure 3. On the left, we show the normalizable solutions to the equations of motion for the
vector meson (the black rectangle covers the region below the IR cut off). They are obtained for
MV = 1.337(775MeV), 2.895(1677.9MeV), 4.45(2578.9MeV). On the right we show the numerical
masses — blue dots — and the spectral curve that we obtained by fitting to the first six states and
verified against the next three. Here, n is the number of nodes of the wave-functions.

the predictions for at least the n = 1 states as we will see.

3.2 The nucleon-σ Yukawa coupling

A further important quantity is the nucleon σ Yukawa coupling strength, which we estimate
here. We must normalize the kinetic term of the scalar and the baryon using

NS
∫
dρ

ρ3

(ρ2 + L2
0)2 S2(ρ) = 1, NB

∫
dρ

1√
ρ2 + L2

0

ψ2(ρ) = 1 . (3.3)

The precise expression for the dynamically determined Yukawa coupling would depend
on the action mixing the L and ψ fields beyond quadratic order and there are a number of
terms one could write on dimensional grounds with free couplings. An example term that
will contribute is

yNNσ =
∣∣∣∣∣
∫
dρ ρ3∂ρS ∂ρL0 ψ

2

(ρ2 + L2
0)2

∣∣∣∣∣ . (3.4)

For this case, we find yNNσ = 1.47, which is of order one as one might expect. We stress
again though that while this is indicative of the expectation that the coupling will be of
order one, it is not a prediction because we can multiply by an arbitrary coupling in our
holographic model.

3.3 Higher dimensional operators

We now turn to demonstrating the effects of the addition of higher dimensional operators
to the Dynamic AdS/YM description of two-flavour QCD. The philosophy is to include a
UV cut off at a scale corresponding to the transition region from strong to weak coupling
— at higher scales the gravity description is expected to break down (become strongly
coupled). There is an expectation that QCD will have generated HDOs at this matching
scale. In addition one can consider the HDOs as potentially including stringy effects into
the gravity description as well. We enact this in the holographic model by putting a

– 16 –



J
H
E
P
0
2
(
2
0
2
1
)
0
5
8

2 4 6 8 10
ρ

0.2

0.4

0.6

0.8

1.0

V(ρ)

● ● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●

●
●

●

●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●

● ●

-400 -200 0 200 400
gV2

500

1000

1500

MV (MeV)

Figure 4. On the left the holographic wave functions of the vector meson ground state for various
g2
V — the ground state at g2

V = 0 is the lowest curve; as M2 decreases, g2
V increases and these are

the higher curves. The black region represents the region below the IR cut off ρIR below which
the quarks have become very massive and need to be integrated out. On the right we plot the
associated masses against coupling g2

V extracted from those solutions — blue points are the ground
state (corresponding to the left hand points), the orange points are the first excited states.
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Figure 5. The masses of the pseudovector meson ground state and first excited state as a function
of g2

A.

boundary at ρ = 10 roughly 10 times the scale of chiral symmetry breaking. Using the
ρ-meson mass to set the scale this corresponds to a scale of about 6GeV.

Let us start, as an example, with the analysis of the vector mesons. Previously we
solved eq. (2.12) which has UV asymptotics of the form J + 〈O〉/ρ2. We only accepted
solutions for values of M2

V where J = 0 (see figure 3). Now though we will enlarge the
set of available solutions to those with all values of J as shown on the left in figure 4.
We now interpret these solutions as having J = 0 but the higher dimension operator
g2
V /Λ2

UV |q̄γµq|2 present. We extract J and 〈O〉 from the asymptotics and compute the
four fermion operator coupling g2

V using eq. (2.30). We can then plot the vector meson
mass as a function of gV . This is displayed on the right in figure 4. We see here that the
mass of the bound state and the first excited state fill out the available mass values between
the ground state mass and the first excited state masses at g2

V = 0 with a discontinuity
between g2

V = ±∞. In addition positive g2
V drives the ground state mass below its value
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Figure 6. The instability of the massless embedding in the presence of an NJL interaction: on the
left we show the mass of the σ scalar in the massless background of figure 1 (shown in red there)
— it becomes tachyonic beyond a critical value of g2

s . On the right we show the IR quark mass LIR
against the NJL coupling as interpreted from the embeddings with a source in figure 1. We see that
the tachyon instability is related to the NJL interaction changing the vacuum by enhancing chiral
symmetry breaking.

at g2
V = 0 and to zero as g2

V → ∞. There is never a tachyonic state here. Note that the
first excited state’s mass does not fall below the mass of the ground state at g2

V = 0.
We repeat this computation for the axial vector meson and show the results in figure 5.

The behaviour of the mass with gA is very similar to that of the vector mass with gV except
that it appears to asymptote to a fixed non-zero value as g2

A →∞.
Next we consider the scalar meson of the theory where there is a new phenomenon. We

begin by solving eq. (2.11) for the scalar meson fluctuations in the background embedding
with zero UV quark mass, allowing all M2

S values and extracting the g2
s coupling of the

higher dimension operator
g2
S/Λ2

UV |q̄q|2. (3.5)

We refer to this operator as a Nambu-Jona-Lasinio (NJL) operator. In figure 6 we show that
the scalar becomes tachyonic at a finite value of g2

S . This indicates that the vacuum has be-
come unstable at larger g2

S . Here though we understand this instability. Consider again the
solutions of the background embedding shown in figure 1, including now the solutions with
non-zero mass in the UV. We include all these solutions with non-zero sources as solutions
of the theory with the HDO present and at the level of the background determine g2

s . In the
right hand plot in figure 6 we show the IR quark mass LIR against g2

S . Here we interpret the
ρ = 0 behaviour of the function L0(ρ) as the constituent quark mass. It shows that around
the same critical value of g2

S , where the scalar became tachyonic, the more massive vacua
of the theory with a non-zero UV source emerge. This is the well known dynamics of the
Nambu-Jona-Lasinio model [40]- this has been investigated before in a holographic context
in [71]. Note it is not a pure second order transition with the IR mass rising from zero
because the base QCD theory already contains chiral symmetry breaking — the NJL inter-
action just enhances this mass generation. If the σ mass is computed in the true vacuum,
where L0(ρ) includes the effect of g2

s , then at any g2
S there is no tachyonic behaviour.

It is important to note that the vacuum embeddings in figure 1 have two interpretations
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Figure 7. The effect of adding higher-dimensional operators on the mass spectrum of the baryon.
The red dots are the results when we drive the ground state lighter and the green ones depict the
first excitation.

— either there is an explicit UV mass for the quarks or a UV HDO is present. At the
level of the solutions in figure 1 there is no distinction but there is at the level of the
fluctuations. If there is a UV quark mass only present, then in the fluctuation calculation
we must require that asymptotically in the UV there is only a vev for the operator and
no J . On the other hand, if we interpret all of the UV source in the embedding as being
due to the NJL operator then we must determine the value of gS from the background.
Then we have to enforce that same value at the level of the fluctuations. Of course, most
generally there can also be a mixture of quark mass and NJL operator in which case one
needs to be careful to apply the appropriate g2

S for the fluctuation calculation.
Finally we can introduce a baryon squared HDO, g2

B
Λ5

UV
|qqq|2, to change the baryon

mass. The results are shown in figure 7. In fact this plot was our initial motivation for this
work since we were interested in bringing the proton mass down relative to the ρ-meson
mass in AdS/QCD. As we will see later, they may be similarly used to generate light
baryonic top partners in BSM models. Figure 7 shows similar features to the ones for the
masses of the vector meson and axial-vector meson.

3.4 Perfecting two flavour QCD

Finally for two flavour QCD we will consider perfecting the holographic description [44, 45]:
that is using HDOs to correct for the presence of a finite cut off. We will consider the
description to only exist below ρ = 10 (approximately 6GeV) and include HDOs to improve
the description. These HDOs are intended to represent the physics of the perturbative
regime and of the regime where the theory transitions from weak to strong coupling, which
have been integrated out above the cut off. In principle one would like to explicitly match
but presumably the intermediate, somewhat strongly coupled regime between perturbative
QCD and where the holographic description is sensibly weakly coupled will make this
matching hard. Thus we simply tune the HDOs couplings at our somewhat adhoc choice
of UV cut off to match the observed mass spectrum.

To bring the decay constant fπ to its measured value we allow ourselves to move
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Observables QCD Dynamic AdS/QCD HDO coupling
(MeV) here’s the hidden here’s the hidden
MV 775 775 sets scale
MA 1230 1230 fitted by g2

A = 5.76149
MS 500/990 597 prediction +20%/− 40%
MB 938 938 fitted by g2

B = 25.1558
fπ 93 93 fitted by g2

S = 4.58981
fV 345 345 fitted by g2

V = 4.64807
fA 433 444 prediction +2.5%

MV,n=1 1465 1532 prediction +4.5%
MA,n=1 1655 1789 prediction +8%
MS,n=1 990/1200–1500 1449 prediction +46%/0%
MB,n=1 1440 1529 prediction +6%

Table 2. The spectum and the decay constants for two-flavour QCD with HDOs from figure 7
used to improve the spectrum.

away from the L0 corresponding vanishing quark mass. This can be interpreted either as
including a small bare quark mass or a four fermion operator for q̄q — we find mq|UV =
0.06576 or equivalently g2

S = 4.59. Since we use the ρ mass to fix the scale, we can use
the g2

V coupling to tune the ratio of FV /M2
V to the observed value. We then use g2

A, g
2
B to

arrange the masses of the axial vector, and baryon to their observed masses. The resulting
spectrum is shown in table 2.

Clearly this is a much better description of the ground state QCD spectrum than in
table 1 if only because we have tuned most of the parameters! fA is a prediction and lies
closer to the data than before. The scalar mass is also a prediction and here, where we
have interpreted the UV quark mass as the presence of g2

S , the result has dropped closer
to the mass of the f0(500) resonance. The predictions for the first excited states’ masses,
the final four entries in the table, have all moved closer to the experimental values too —
possibly this means that the HDOs are including some of the stringy effects the supergravity
approximation excludes. The mass of the first excited state of the scalar is quite far off
again, as in section 3.1, suggesting that interpreting these states is difficult. Overall though
we conclude that the improvement method used is sensible. In principle one could go further
and allow corrections to the UV matchings of the coupling g2

5 and the normalization of the
correlators in eq. (2.17) but then we would lose essentially all predictivity.

4 Composite Higgs models

The holographic model we have used above to describe QCD with higher dimension oper-
ators can naturally be extended to other non-abelian gauge theories in which a dimension
three, gauge invariant quark bilinear condenses. The key idea is to simply change the run-
ning of the anomalous dimension for the quark bilinear. The bound states are then those
associated with that operator with inserted gamma matrix structure. It is natural to apply
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this modelling to proposed strongly coupled models of physics beyond the Standard Model
(BSM). In [22, 72], one of the authors has already studied predictions of such models for
technicolour theories, including examples where the dynamics is enhanced by Nambu-Jona-
Lasinio operators [71] and where extended technicolour interactions are included as HDOs
for the generation of the top mass [73]. In this section we will apply these techniques to a
further class of BSM models, the Composite Higgs Models.

4.1 Setting the scene

4.1.1 Review of composite Higgs models

The crucial ingredient in composite Higgs models is a strongly coupled sector that breaks
a global symmetry generating Nambu-Goldstone bosons. By weakly gauging part of the
global symmetries the Standard Model (SM) gauge groups are introduced and 4 of the
then pseudo Nambu-Goldstone bosons (pNGB) are identified with the SM Higgs. Realistic
models have to contain the Higgs fields as a (2, 2) representation of the custodial symmetry
group. Gauging the SM SU(2)L × U(1) leads to an explicit breaking of the global group
which in turn implies that a potential for the pNGBs is generated at loop-level. Moreover,
in the low-energy theory one assumes that HDOs have also generated the top Yukawa
coupling. The effective cut off on these loops is given by the strong coupling scale ΛS ' 4πfπ
where here fπ is the pion decay constant of the SU(4) gauge theory. Typically, ΛS is
assumed to be at a scale of order 1–5TeV. The potential is of the form [48]

Vh = −CLR(3g2
2 + g2

Y ) cos2
(
h

f

)
+ y2

t

2 Ct sin2
(2h
f

)
. (4.1)

Here CLR and Ct are low-energy couplings of the effective theory below the strongly coupled
group’s scale, which can be expressed in terms of correlation functions within the theory
(see e.g. [48] for details in the case of an explicit SU(4) model). We will not revisit these low
energy computations further here, but instead concentrate on the strong dynamics sector
at the higher scale that generates the pNGB fields.

Explicit models of the top quark Yukawa coupling require more elaborate models. In
the spirit of extended technicolour [74], one can simply include HDOs of the form

1
Λ2
UV

t̄LF̄FtR , (4.2)

where F are generically the composite fields that make up the Higgs. ΛUV must probably
be at least 5TeV, making it hard to generate the large top mass. Such couplings also
potentially suffer from Flavour Changing Neutral Currents.

Another possibility for generating the top mass, often referred to as partial compos-
iteness, is that the left and right-handed top particles tL and tR mix with baryon-like spin
1/2 states in the gauge theory TL, TR with the same quantum numbers [51]. These baryons
are frequently called top partners. They will be involved in the strong dynamics and so
have an order one Yukawa coupling to the Higgs. The diagram in figure 8 then generates
a contribution to the top Yukawa coupling as shown.
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Z3

~  ~

t

t

L

R

T
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R

H
g2 Z   g2 Z   Z3yt =  

~ ~

M2
T LUV

4

g2 Z / LUV
2

g2 Z / LUV
2

Figure 8. The diagram responsible for the generation of the top Yukawa coupling. tL, tR are the
standard model top quarks, TL, TR the top partners — they mix via the HDOs with couplings g
and g̃ — there are Z form factors associated with the formation of the top partner baryons. H is
the pNGB that becomes the Higgs which has an order one Yukawa coupling to the top partners Z3.

Here the Z factors are three structure functions that depend on the strong dynamics.
The top-top partner mixing factors result from the couplings of HDOs such as

g2

Λ2
UV

t̄LFFF , (4.3)

where the F are again generically representing the fermions that TR is made from. We
expect Z3 to be of order one since it is generated by the strong dynamics — it is analogous
to the nucleon-σ or π coupling in QCD. The Z and Z̃ factors (setting g = g̃ = 1) will take
the form Λ3

S/Λ2
UV where ΛS is the strong coupling scale. If the top partner’s masses are of

order ΛS , then the Yukawa is given by

yt ' Λ4
S/Λ4

UV (4.4)

which, assuming a separation of at least a factor of 3 between the flavour scale and the
strong coupling scale, makes the top mass a factor of 100 too light. We will compute the
Z factors and MT holographically below where we indeed find that a large top Yukawa
cannot be achieved in this way.

To combat the small Yukawa coupling size one could try to lower MT or reduce the
power of ΛUV in the denominator. One proposed solution is walking dynamics [75]. In
a walking theory the dimension of the fermions in eq. (4.3) are lower at ΛUV and then
the powers of ΛUV reduce (see for example [26, 76] for discussion). Here, though, we will
provide a new mechanism that allows an order one top Yukawa coupling as needed for the
top mass. To generate the large top mass one could hope the top partners are anomalously
light relative to the strong scale ΛS by a factor of 3 or more, but generically there is no
reason to expect this. However, here we will realize such a mechanism: in particular we
will include a new HDO that reduces to a shift in the top partners’ mass at low energies,
using the holographic HDO implementation introduced in sections 2.4 and 3.3. We show
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that the top Yukawa coupling can be made of order one by lowering the top partners’ mass
to roughly half the vector meson mass in the strongly coupled sector. This appears to be
consistent with experimental constraints and provides a mechanism for generating an order
one top Yukawa coupling.

A comprehensive analysis of the group theoretic possibilities for the strong sector
underlying composite Higgs models with top partners was performed in [28]. We will
analyze all 26 models using our holographic techniques. However, we also show that some
of these models lie, at least based on the ansatz of the two loop running of the coupling, in
the conformal window [57, 58] with a infra-red (IR) fixed point that is too small to break
chiral symmetries. In the theories that do break symmetries dynamically we derive the
values of the masses of the vector, scalar, axial mesons, and spin-1/2 baryon as well as the
decay constants.

There are three scenarios that we will consider in considerable detail here, since they
were already studied within lattice gauge theory [77–81]. We will start with a simple SU(2)
gauge theory with quarks in the fundamental representation (which in the classification
of [28] is among the Sp(2N) models). We will then discuss two models, one based on
the gauge group Sp(4), originally proposed in [26], and one based on the gauge group
SU(4) proposed in [27]. These models contain additional pNGBs beyond the Higgs. We
will not address their mass generation in the low-energy theory, though. Instead, we will
concentrate on the bound states at the higher, strongly coupled scale.

4.1.2 Model classification
Since we will be discussing many different models, it is important to be able to clearly
but succinctly identify them. We will label models by their gauge group and the matter
content of the model. We give the number of Weyl fermions in the representations F for
the fundamental, An for the n index antisymmetric representation, Sn for the n index
symmetric representation, G for the adjoint and s for the spinor representation. We use a
bar for the anti-representation. Thus, for example, we can fully specify a model as Sp(2Nc)
aG, bF, which means an Sp(2Nc) gauge group with a Weyl flavours in the adjoint and b in
the fundamental of the group. We will refer to the holographic description of such a model
as AdS/Sp(2N) aG, bF.

We also note that we will refer to all fields in representations of the flavour group as
‘quarks’ in analogy to QCD.

4.1.3 Lattice data in a normalization adapted to holography
In the sections below, we will present data from a variety of lattice collaborations [77–81].
In order to present them in a uniform manner we have manipulated the data from some
of the original papers. In particular, we choose to present all quantities as dimension one
quantities (mass or decay constant) using one of the representation’s vector meson mass to
set the scale. Wherever possible, we give errors on the quantities we have extracted from
lattice papers. We propagate them using simple differential formulae. Thus for example if

C =

√
A

B
, then dC = 1

2

(
dA√
AB

+
√
A dB√
B3

)
. (4.5)
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We note again that we are using the notation common in the AdS/QCD literature that
the dimension two coupling between the meson and its source is called F 2

V . It is common in
the phenomenology and lattice literature to call this quantity F̃VMV (see for example [62]).
We have moved any lattice results we quote below to our definition of FV as discussed in
section 2.2.

4.2 SU(2) gauge theory with 2 Dirac fundamental quarks — SU(2) 4F

One of the simplest gauge theories that can underlie composite Higgs models is an SU(2)
gauge theory with two Dirac quarks in the fundamental representation [49] (or two Weyl
fermions in each of the F and F̄ ). The pseudo-real nature of the fundamental of SU(2)
means that the naive SU(2)L × SU(2)R symmetry of the quarks is enhanced to an SU(4)
flavour symmetry [50] (the 2 and 2̄ are identical). The condensation pattern is of similar
structure as in QCD (〈ūLuR+ d̄LdR+h.c.〉), which then breaks the SU(4) flavour symmetry
to Sp(4). Five generators are broken so there are 5 pNGBs.

It is straightfoward to describe the model using our AdS/YM description — we simply
dial Nc = 2, Nf = 2 in the running of α in eq. (2.8) and γ eq. (2.9). These then feed into
∆m2 in eq. (2.6). With these values, we repeat our computations as in holographic QCD.
We have again

b0 = 1
6π
(
11Nc − (Nf + N̄f )

)
,

b1 = 1
24π2

(
34Nc

2 − 5Nc(Nf + N̄f )− 3
2
Nc

2 − 1
Nc

(Nf + N̄f )
)
,

γ = 3(Nc
2 − 1)

4Ncπ
α .

(4.6)

Note that the Sp(4) multiplets of mesons include the usual SU(2)V multiplets, so we com-
pute as in QCD to find masses and decay constants. Our results for the massless theory
are shown in table 3 normalized to the ρ/V mass.

There is lattice work on this model in [77, 78], where unquenched Wilson fermions are
used, i.e. the determinant of the Dirac operator is calculated instead of setting it to one,
as in quenched theories. In the holographic approach this corresponds to including quark
loop contributions to the gauge propagator.

We show these results in the massless limit for the V,A and σ masses also in table 3.
Comparing to our holographic results, we see sensible agreement, as we found in the QCD
analysis above. The holographic A mass is perhaps a little high. The lattice errors on the
scalar mass are sufficiently large to incorporate our result.

Since the lattice studies also provide fits to the quark mass dependence in the model, we
make that comparison as well. In figure 9 we show the small (linear) and larger (quadratic)
mq dependence of the pNGB mass squared. At larger pNGB masses, higher order terms in
the expansion in mq would be needed. We then plot the meson masses as a function of M2

π

in figure 10 and present our fits and those from the lattice. The holographic model agrees
rather well with the lattice fit and certainly lends strength to the view that the holographic
model provides a credible and useful description of the dynamics.
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Observables Lattice AdS/SU(2)
2 F, 2F̄

MV 1.00(3) 1* sets scale
MA 1.11(46) 1.66
MS 1.5(1.1) 1.27
fπ 0.076(13) 0.0609
fV 0.376
fA 0.474

Table 3. Comparison of the lattice studies [77, 78] of the massless SU(2) gauge theory to our
holographic model’s predictions for meson masses and decay constants in units of the vector me-
son mass.
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Figure 9. We plot the pNGB mass against the UV quark mass in the small and intermediate
quark mass regions for the SU(2) gauge theory (in units of the vector meson mass at mq|UV = 0).
The red points are the numerical results. The dashed black lines are obtained as a simple analytic
fit: M2

π = 4.67 mq|UV + 13.97 m2
q|UV .
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Figure 10. The growth of the spectra in the SU(2) theory as we increase the quark mass in the
UV. The masses are rescaled with respect to the vector meson mass at mq|UV = 0. In our analytic
formulae quantities are again normalized to the vector meson mass at mq|UV = 0.
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4.3 Sp(4) gauge theory with top partners — Sp(4) 4F, 6A2

The SU(2) model of the previous subsection can realize a composite pseudo-Goldstone
Higgs but can not contain top partners since there are no baryons in an SU(2) gauge theory.
The same global symmetry breaking pattern (SU(4) → Sp(4)) can be achieved with any
Sp(2N) gauge theory with again two Dirac fermions in the fundamental representation (4
Weyl fermions in the F ). It is natural to concentrate on the next most minimal Sp(4) case,
as Sp(2) ' SU(2).

Top partners can be introduced [26] into the Sp(4) model by the inclusion of three
additional Dirac fermion in the sextet, two index anti-symmetric representation of the
gauge group (we will refer to them as A2s) (in the nomenclature of [82] this is model M8).
The three copies are the three QCD colours although we drop the colour interactions since
they are only weakly coupled at the energy scales we consider. The top partners are FA2F

bound states. From the point of view of the Sp(4) dynamics there is an SU(6) symmetry on
the six Weyl fermion A2s which are in a real representation. When the A2 condensate forms
this symmetry is broken to SO(6). The full symmetry breaking pattern is characterized by

SU(4)× SU(6)×U(1)→ Sp(4)︸ ︷︷ ︸
SU(2)L×U(1)

× SO(6)︸ ︷︷ ︸
SU(3)×U(1)

×U(1) (4.7)

where the U(1) factors give eventually the hypercharge.
For the holographic model we need the running of the coupling eq. (2.8) and γ eq. (2.9).

These then feed into ∆m2 in eq. (2.6) to define the model.The beta function coefficients
for the running of α and γ in the UV are

b0 = 1
6π

(
11(N + 1)−Nf1 − 2(N − 1)Nf2

)
b1 = 1

24π2

(
34(N + 1)2 − 5(N + 1)Nf1 −

3
4(2N + 1)Nf1

−10(N + 1)(N − 1)Nf2 − 6N(N − 1)Nf2

) (4.8)

and the one-loop anomalous dimensions for the different representations are

γA2 = 3
2πNα ,

γF = 3
2π

2N + 1
4 α ,

(4.9)

In the above Nf1 = 4 denotes the flavours in the fundamental and Nf2 = 6 in the two-index
antisymmetric. N = 2 for Sp(4).

Generically one would expect the A2 fermions to condense ahead of the fundamental
fields since the critical value for α where γ = 1/2 (the criteria discussed below eq. (2.6)) is
smaller. If we extend the perturbative results into the non-perturbative regime we find

αA2
c = π

6 = 0.53 , αFc = 4π
15 = 0.84 . (4.10)

When the A2s condense their condensate breaks their flavour SU(6) to SO(6). At this
point the A2s become massive but it is unclear how quickly they decouple from the running
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Figure 11. AdS/Sp(4) 4F, 6A2. Left panel: the running of ∆m2 against RG scale for the fun-
damental (blue line), A2 (orange) and in red the running of the fundamental representation after
A2 have been integrated out. Right panel: the vacuum solution L(ρ): the orange line for the A2
representation and blue the fundamental without decoupling. The red solution is when we consider
the decoupling of the A2 which condenses before the fundamental. The dashed green line is the
fundamental when we consider additional NJL-terms such that it matches in the IR the A2 repre-
sentation. Finally, the yellow and purple vacuum solution correspond to the quenched models for
the A2 and fundamental representations respectively. Here units are set by α(ρ = 1) = 0.65.

of α — we will investigate this point below. The usual assumption is that both species of
fermion condense close to the same scale.

4.3.1 The holographic vacuum of the theory

Let us begin by investigating the question of the scale of the condensates in the vacuum
of the theory using our holographic model. As a first run we use the AdS/YM theory
with the running of α including both fermion species — that is we use eq. (4.8) at all
energy scales. We then track the running of the anomalous dimension γ for the two
representations using eq. (4.9). Note the scale where the BF bound is violated is similar
for the two representations because the coupling is running quickly near the BF bound
violation point. These give us two ∆m2 in eq. (2.6), one for each representation, which
are shown in blue (F) and orange (A2) on the left in figure 11. Each of the condensates is
a distinct operator which we represent by a distinct field L — in other words we run two
copies of the AdS/YM equations for the vacuum expectation values of the two condensates.
The results for the two resulting L functions are shown in figure 11 on the right — again
blue (F) and orange (A2). The A2 fields condense at a higher scale than the F because its
∆m2 passes through the BF bound first.

There is though a tricky and interesting decoupling problem here. When the A2 fields
condense and become massive should we integrate them out of the running of α? At weak
coupling massive quarks do decouple from the running but it is less clear what is appropriate
at strong coupling. We have computed an example of such a possible decoupling. Here as
soon as the scale LIR for the A2 fermions is reached we remove them from the running of
α at lower ρ — the running of the F fields ∆m2 then deviates from the blue to the red
curve on the left in figure 11. It runs faster than before and the condensation scale for the
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fundamental fields moves closer to that of the A2s. The resulting L(ρ) function for the F
is shown by the red line in the right hand plot of figure 11.

The lattice should be able to shed light on the rate of decoupling of massive flavours
but to date only quenched calculations have been performed for this model as we will
review below. We therefore also show results for the embeddings that result from the fully
quenched (ie setting all Nf = 0 in eq. (4.8)) running in figure 11 on the right — the yellow
(F ) and purple (A2) curves. The coupling now runs faster at all scales and the condensation
scale for both fermion species rises, with again the A2s condensing first. The gap between
the F and A2 condensation scales is yet smaller due to the very fast running of the pure
glue theory.

If the IR separation in the condensation scales for the two fermion species is undesirable
then they can be brought together by including an NJL term for the F fields (g2

s/Λ2
UV |F̄F |2)

that enhances the fundamental condensation scale. We have also looked at this case, adding
a NJL four fermion term to make the values of LIR equal for the two representations.
The A2 embedding function is our original orange curve but the embedding for the F
representation becomes the green dotted curve in figure 11.

It is worth commenting on the size of the IR mass, LIR in physical units. We will
compute the spectrum in the next section but borrowing ahead we can write LIR in units
of the vector meson’s mass in the A2 representation for the case discussed. For the model
where we do not integrate out the A2 fields we have LA2

IR = 0.304mV and LFIR = 0.187mV .
When we integrate out the A2s on mass shell we have LA2

IR = 0.304mV and LFIR = 0.26mV .
For the model with the NJL interaction for the fundamental we have LA2

IR = LFIR = 0.304mV .
For the quenched model we have LA2

IR = 0.317mV and LFIR = 0.314mV .

4.3.2 Holographic spectrum

We now compute the spectrum of the theory holographically. We will do this for each
of the scenarios we have outlined — the quenched theory; the theory where the A2s are
integrated out at their IR mass scale; the theory where A2s are not integrated out; and the
theory with a NJL term to enforce an equal scale of condensation.

We assume that there is only a small mixing between bound states made of the two
fermion species so that we do not have to mix the states associated with fluctuations of each
L0 embedding (indeed to include that mixing would be hard requiring the fluctuations to
know of both embeddings in some sort of non-abelian DBI action). Now we simply fluctuate
around each vacuum solution separately from eq. (2.1) with

g2
5|F = 48π2

2Nf1Nc
, g2

5|A2 = 48π2

Nf2(Nc(Nc − 1)− 1) . (4.11)

Similarly we split the normalizations for the external currents in eq. (2.17).
We show the resulting spectrum for each of the cases we consider in table 4 for the

case where all fermion representations are massless.
In each case, without a NJL term, the bound states of the A2 fields are heavier and have

higher decay constants than those made of the fundamental fields F , reflecting the A2s’
higher condensation scale. The separation in scale between the two sectors does depend
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AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [79] lattice [80] AdS/Sp(4)
no decouple A2 decouple quench quench unquench + NJL

fπA2 0.120 0.120 0.103 0.1453(12) 0.120
fπF 0.0569 0.0701 0.0756 0.1079(52) 0.1018(83) 0.160
MV A2 1* 1* 1* 1.000(32) 1*
fV A2 0.517 0.517 0.518 0.508(18) 0.517
MV F 0.61 0.814 0.962 0.83(19) 0.83(27) 1.03
fV F 0.271 0.364 0.428 0.411(58) 0.430(86) 0.449
MAA2 1.35 1.35 1.28 1.75 (13) 1.35
fAA2 0.520 0.520 0.524 0.794(70) 0.520
MAF 0.938 1.19 1.36 1.32(18) 1.34(14) 1.70
fAF 0.303 0.399 0.462 0.54(11) 0.559(76) 0.449
MSA2 0.375 0.375 1.14 1.65(15) 0.375
MSF 0.325 0.902 1.25 1.52 (11) 1.40(19) 0.375
MBA2 1.85 1.85 1.86 1.85
MBF 1.13 1.53 1.79 1.88

Table 4. AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various holographic
models and comparison to lattice results — we use the subscript A2 and F for the quantity in
each of the two different representation sectors. Note here for the unquenched lattice results,
which do not include the A2 fields, we have normalized the F vector meson mass to that of the
quenched computation. Note the lattice scalar is the a0 not the isospin singlet σ which we compute
holographically — we present the results as a guide to lattice expectations of quark anti-quark
meson masses though.

quite strongly on the decoupling assumptions. If the A2s are not decoupled at all, the
separation, as measured by the vector meson masses, is almost a factor of two whilst in
the quenched limit it barely exists. The slowing of the running of the gauge coupling with
the inclusion of flavours is important. The case where the A2s are integrated out at their
IR mass scale lies between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The
rate of running measures the departure from conformality which shows up in the flatness
of the effective potential for the quark condensates. The slower the running the lighter the
resultant scalar — here there is as much as a factor of four in the prediction.

When the NJL term is used to enforce equal IR mass scales for the two fermion species
the bound states of the fundamental fields become just slightly heavier than those with A2
constituents, reflecting the higher UV mass.

Finally in table 4 we also show results for the baryon top partner. This state is a bound
state of two F and an A2 so should know about both vacuum solutions L0F and L0A2 . The
present holographic framework does not allow us to include two L0 at the same time so
instead we compute the mass of the baryon using each of the two embedding functions —
this is as if each constituent had the same constituent mass, either that of the F or that
of the A2. We expect that the mixed state’s mass will be between these two values.
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4.3.3 Comparison to lattice results

Lattice studies of this model, in the quenched approximation, have been made in [79].
In [80] the group followed up that work by unquenching the fundamental quark sector using
Wilson fermions. We show the results of these studies in table 4 for direct comparison to
the holographic results. We have normalized the quenched results to the vector meson
mass from the A2 sector. For the unquenched calculation, which does not include the A2
fields, we align the vector meson mass in the F sector to the quenched theory to allow
the changes to be seen in the F sector. One notes that the variation from quenched to
unquenched lattice simulations are not large. Note the lattice results for scalar masses are
for the a0 like states rather than the σ state we compute with holography — they provide
a guide to the lattice expectation for scalar states though.

An initial view of the quenched results from both the lattice and the holographic model
is that they show considerable correlation. As in QCD, the holographic approach appears
to be a decent stab at the spectrum! This lends confidence that trends as the fields are
unquenched may be trustworthy. Thus as discussed above we would expect that if the A2
fields were included as unquenched fields the F sector would decrease in mass by 20–40%.
We also expect the scalar meson masses to be considerably lower than predicted by the
quenched lattice computation.

Here the lattice computations to date don’t provide guidance on a prescription for
decoupling the A2 fields since they have always been quenched.

4.3.4 Quark mass dependence

The quenched lattice study of [79] provides fits to the mass dependence of the spectrum so
for comparison we reproduce the same fits in figure 12. We also display the same plots and
fits for the fully undecoupled model (the furthest extreme from the quenched version of our
models). The fits for the quenched theory are reasonably close with gradients matching
better than a factor of two in most cases. We note that our holographic model predicts
that the slower the running of the coupling (the less quenched the quarks are) the sharper
the slopes with Mπ — this effect was previously seen for walking theories in [12]. It would
be interesting to see if this result was reproduced in unquenched lattice computations.

4.3.5 Holography of the top partners

The top partners are FA2F spin 1/2 baryons of the strongly coupled dynamics that play
a key role in the generation of the top quark mass as described in the section 4.1.1. We
have computed their masses in the Sp(4) model which are shown in table 4 — we remind
that we have computed the masses as if all constituents have a dynamical mass given by
first the fundamental and secondly the A2 representations. The true mass is likely to lie
between these values.

For the top mass there are two key contributions as we can see in figure 8. The top
Yukawa coupling,

yt = g2Z g̃2Z̃ Z3
M2
T Λ4

UV

, (4.12)
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Figure 12. AdS/Sp(4) 4F, 6A2 — results for the spectrum as a function of the pNGB mass in the
quenched theory and the case with no decoupling of the A2 — lattice results from [79] are included
for comparison. In our analytic formulae we use units of the vector meson mass at mq|UV = 0.
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is inversely proportional to the top partner mass squared. It is proportional to the Z3 and
Z/Z̃ factors which we will set equal. The Z factors, like the baryon-σ vertex in QCD,
are not direct predictions of the holographic framework since they must be generated by
couplings beyond the basic quadratic terms of the holographic action eq. (2.1) and so in
principle one can add new couplings. We can though write down holographic terms that
are likely to be the dominant contributions and look at their order of magnitude behaviour.
In particular we have

Z3 '
∫
dρ ρ3 ∂ρπ(ρ) ψB(ρ)2

(ρ2 + L2)2 , (4.13)

Z = Z̃ '
∫
dρ ρ3∂ρψB(ρ) . (4.14)

Here π(ρ) and ψB(ρ) are the holographic wavefunctions for the pNGB and the baryon
repectively. They are normalized to give canonical kinetic terms for these states as in
eq. (3.3).

If we naively compute the top Yukawa coupling, from the full set of factors in eq. (4.12)
(with g = g̃ = 1), in the Sp(4) model, with a cut off on the HDOs of roughly 6 times the
vector meson mass, we find the top Yukawa coupling is only of order 0.01 which is far
below the value of one needed.

The top Yukawa would be enhanced if the top partners were anomalously light relative
to the strong coupling scale (roughly the scale 1 in our table 4). As we have described
in QCD, it is possible to drive the baryons light by including a HDO — see figure 7 for
example. In the Sp(4) theory we can also look to include a HDO of the form

LHDO = g2
T

Λ5
UV

|FA2F |2 . (4.15)

As the operator FA2F becomes the top partner field, this is directly a shift in the top
partner mass.1 In figure 13 we show the dependence of the top partner mass on g2

T — we
show the effect using both the F and A2 embeddings as L0(ρ) in eq. (2.25). The HDO can
indeed be used to reduce the top partner mass — for small g2

T the effect is linear and small
but after a critical value the effect is much larger, as shown.

One must be careful though because as the top partners’ mass changes so also do the Z
factors in eq. (4.13) and eq. (4.14). In particular as the HDO in eq. (4.15) plays a large role
it induces a sizeable non-normalizable piece in the UV holographic wave function of the
top partner. This means that the integrals in the equivalent of the normalization factors
in eq. (3.3) and directly in the expressions for the Z factors are more dominated by the
UV part of the integral. The overlap between different states can change substantially.
We therefore plot the full expression for the Yukawa coupling from eq. (4.12) against the
top partner mass (which changes as we dial g2

T ) in figure 14. We see that the top Yukawa
does indeed grow as the top partner’s mass falls and can become of order one as the top
partners mass falls to about half of the vector meson mass. This suggests, that after fixing

1A similar effective operator was mentioned in [51], but there it is not included in the dynamical calcu-
lations.
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Figure 13. AdS/Sp(4) 4F, 6A2 —We show the effect of adding the double-trace operator eq. (4.15)
to the spin-1/2 baryon’s mass. On the left we use the L0(ρ) from the F representation and on the
right L0(ρ) from the A2 representation. Note the initial linear behaviour when g2

T is perturbative
but then as it passes a critical value the effect on the mass is much larger.
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Figure 14. AdS/Sp(4) 4F, 6A2 — the top Yukawa coupling, as given by (4.12), is plotted against
the top partner mass in units of the vector meson mass. MT is controlled by adding a HDO as in
figure 13. We compute on the left with L0(ρ) for the fundamental quark and on the right we use
the A2 L0(ρ).

the strong coupling scale to a sensible large value in the 1–5TeV range, we should be able
to realize a top partner mass of about 1TeV and the required top mass.

4.4 SU(4) gauge theory with top partners — SU(4) 3F, 3F̄ , 5A2

The next model we choose to study is one taken from [27, 83] for which there has been
related lattice work [81, 84]. The gauge group is SU(4). There are five Weyl fields in the
sextet A2 representation. When these A2 condense they break their SU(5) symmetry to
SO(5) — the pNGBs inlcude the Higgs.

To include top partner baryons, fermions in the fundamental representation F are
added allowing FA2F states. To make these states QCD coloured we need three Dirac
spinors in the fundamental. When these fields condense the chiral SU(3)L × SU(3)R sym-
metry is broken to the vector SU(3) subgroup — the SU(3) sub-group is identified with
weakly coupled QCD (which we will neglect since it is weak at the scales in question).
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The full symmetry breaking pattern and embedding of the SM groups is

SU(5)× SU(3)L × SU(3)R ×U(1)→ SO(5)︸ ︷︷ ︸
SU(2)L×U(1)

× SU(3)︸ ︷︷ ︸
SU(3)

×U(1) (4.16)

For the holographic model we need the running of the coupling eq. (2.8) and γ eq. (2.9).
These then feed into ∆m2 in eq. (2.6) to define the model. The coefficients of the one and
two-loop β-function read

b0 = 1
6π
(
11Nc −Nf1 − (Nc − 2)Nf2

)
,

b1 = 1
24π2

(
34N2

c − 5NcNf1 −
3
2
N2
c − 1
Nc

Nf1

−5Nc(Nc − 2)Nf2 − 3(Nc + 1)(Nc − 2)2

Nc
Nf2

)
.

(4.17)

and the one-loop anomalous dimensions for the different representations are

γA2 =
( 6

4π
(Nc + 1)(Nc − 2)

Nc

)
α ,

γF =
(

3
4π

N2
c − 1
Nc

)
α .

(4.18)

Naively one would expect the A2 fermions to condense ahead of the fundamental fields
since the critical value for α where γ = 1/2 (the criteria discussed below eq. (2.6)) is
smaller. If we extend the perturbative results into the non-perturbative regime we find

αFc = 8π
45 = 0.56 , αA2

c = 2π
15 = 0.42 . (4.19)

As in the Sp(4) model we will ask how quickly the A2 fields decouple from the running of
γ below their IR mass scale.

This model is hard to simulate on the lattice because of the fermion doubling problem
and the sign problem associated to chiral theories so instead lattice work [81, 84] has
focused on the theory with just two Dirac A2s and 2 Dirac fundamental quarks. In the next
subsection we will switch to the holographic description of that model and the comparison
to the lattice data before returning to the full model thereafter. Of course, the ability to
simply switch fields in and out is one of the huge benefits of the holographic approach.

4.4.1 The lattice variant of the model — SU(4) 2F, 2F̄ , 4A2

Here we consider a model with an SU(4) gauge theory with two Dirac sextet and two
Dirac fundamental quarks. We again run two separate holographic models for the F and
A2 (though linked through the different representations contributions to the running of α)
which neglects mixing between the two sectors.

We set our model parameters, as defined in section 2, using

mq|UV = 0, α(0) = 0.65, g5|4 = 24π2

Nf1Nc
, g5|6 = 48π2

Nf2Nc(Nc − 1) . (4.20)
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Figure 15. SU(4) 2F, 2F̄ , 4A2 — We display the vacuum solutions L(ρ): the gold line corresponds
to the A2 representation and the red is the F. The blue line is the fundamental when we consider
an additional NJL-term such that it matches in the IR the A2 representation.

We run two schemes — one where the A2s contribute to the running of α at all scales
and one where we decouple them at their IR mass scale. The vacuum profiles for L(ρ) are
shown in figure 15 — here the coupling runs sufficiently quickly with or without the A2
fields that the differences in the L(ρ) function for the F quarks lies within the line width,
whether the A2 decouple or not. It would be nice if the lattice could teach us how to enact
this decoupling. Here though the errors on the lattice data are still too large to distinguish
these two scenarios, so again we lack data on precisely how to decouple quarks in the strong
coupling regime. Finally we also compute, and display in figure 15, for the theory with
an NJL operator (g2

s/Λ2
UV |F̄F |2) which allows us to bring the F IR mass equal to the A2

IR mass.
Next we compute the spectrum and display the predictions in table 5. We also display

lattice data from [81] (also [84] and there is a relevant chiral perturbation theory analysis
for the model in [85]). The holographic model and the lattice data agree well in describing
the split in mass between the vector mesons of the F and A2 sectors (the differences in
decoupling choices lie within the error bars).

The top partner baryon is a mixed FA2F state. Again we estimate the possible spread
of its mass by using in turn the L0(ρ) from the F and A2 sectors, essentially assuming the
F and A2 have the same constituent masses at either the lower F or higher A2 scale. The
holographic model over estimates the top partner mass by 30%.

There is lattice data for an additional spin zero state made of four quarks (either all
F s or all A2s), that we refer to as a tetraquark, and denote as the J in table 5. We have
computed the mass of such a state using eq. (2.23) — here the holographic prediction is
that the F and A2 tetraquarks’ masses lie within 10%. In contrast the lattice prediction
suggests a factor of two between the masses of the states. It is hard to understand how
such a large separation could occur when the constituent quark masses are very similar for
the F s and A2 as measured by the vector meson masses. It would be interesting to look
into the origin of the splitting in the lattice simulations further.
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Figure 16. SU(4) 2F, 2F̄ , 4A2 — The growth of the A2 and F sectors spectra as we increase the
quark mass in the UV. The masses are rescaled with respect to the vector meson mass in the A2
representation at mq|UV = 0 in accord with the presentation in table 5. Here Mπ is the pNGB
mass in units of the vector meson mass at mq|UV = 0.

Finally in figure 16 we display the Mπ dependence of the spectrum in the non-
decoupling scenario although here we do not have lattice data for comparison.

4.4.2 SU(4) 3F, 3F̄ , 5A2 model — vacuum configuration

After this small digression to the lattice variant, we return to the study of the model
actually proposed for composite Higgs models — SU(4) 3F, 3F̄ , 5A2. The coefficients of
the one and two-loop β-function are still given by eq. (4.17) and the γs in eq. (4.18) with
appropriate choices of numbers of flavours. We choose as previously, see section 2,

mq|UV = 0, α(0) = 0.65, g5|4 = 24π2

Nf1Nc
, g5|6 = 48π2

Nf2Nc(Nc − 1) . (4.21)

To address the decoupling of the A2 we will present results for the vacuum solution,
L(ρ), in a number of different cases in figure 17. Firstly we do not decouple the A2 from
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Lattice [81] AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4)
4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄
unquench no decouple decouple no decouple decouple quench + NJL

fπA2 0.15(4) 0.0997 0.0997 0.111 0.111 0.102 0.11
fπF 0.11(2) 0.0949 0.0953 0.0844 0.109 0.892 0.139
MV A2 1.00(4) 1* 1* 1* 1* 1* 1*
fV A2 0.68(5) 0.489 0.489 0.516 0.516 0.517 0.516
MV F 0.93(7) 0.933 0.939 0.890 0.904 0.976 1.02
fV F 0.49(7) 0.458 0.461 0.437 0.491 0.479 0.495
MAA2 1.37 1.37 1.32 1.32 1.28 1.32
fAA2 0.505 0.505 0.521 0.521 0.522 0.521
MAF 1.37 1.37 1.21 1.23 1.28 1.46
fAF 0.501 0.504 0.453 0.509 0.492 0.489
MSA2 0.873 0.873 0.684 0.684 1.18 0.684
MSF 1.03 1.02 0.811 0.798 1.25 0.815
MJA2 3.9(3) 2.21 2.21 2.21 2.21 2.22 2.21
MJF 2.0(2) 2.07 2.08 1.97 2.00 2.17 2.24
MBA2 1.4(1) 1.85 1.85 1.85 1.85 1.86 1.85
MBF 1.4(1) 1.74 1.75 1.65 1.68 1.81 1.88

Table 5. SU(4) theories — the spectrum in a variety of scenarios and lattice data for comparison.

the running of α at any scale — the gold line corresponds to the A2 representation and
the green the fundamental. There is a small gap with the fundamentals a little lighter. If
we decouple the A2 fields at scales below their IR mass LIR then the fundamental L(ρ)
becomes the red embedding. Plot 17b is a zoom in showing the difference between the
non-decoupled and the decoupling cases — in this model the separation barely changes
when the decoupling is implemented.

It is possible to make the IR mass scales the same for both representations by including
an NJL interaction for the fundamental fields (g2

s/Λ2
UV |F̄F |2). The blue line in figure 17

is for the fundamental representation when we consider an additional NJL-term such that
it matches in the IR the A2 representation LIR.

Finally, the orange and purple vacua correspond to the quenched models for the A2
and fundamental representations respectively — here we don’t include the fermions in the
running at all. We include this example because it would be relatively cheap to perform a
lattice simulation of the theory in the quenched limit so our results may be of future interest.

It is worth commenting on the size of the IR mass, LIR in physical units. We will com-
pute the spectrum in the next section but borrowing ahead we can write LIR in units of the
vector meson’s mass in the A2 representation for the case discussed. For the model where
we do not integrate out the A2 fields we have LA2

IR = 0.308mV and LFIR = 0.278mV . When
we integrate out the A2s on mass shell we have LA2

IR = 0.308mV and LFIR = 0.283mV .For
the model with the NJL interaction for the fundamental we have LA2

IR = LFIR = 0.308mV .
For the quenched model we have LA2

IR = 0.318mV and LFIR = 0.316mV .

4.4.3 SU(4) 3F, 3F̄ , 5A2 model — spectrum

We can now compute the spectrum of the theory in each of these cases. We display the
results in table 5 so it is easy to compare to the lattice variant model. The spectra are fairly
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Figure 17. SU(4) 3F, 3F̄ , 5A2 — In the left plot we display the vacuum soluions L(ρ): the gold
line corresponds to AdS/SU(4) for the A2 representation and the green is the fundamental. The
red vacuum solution is when we consider the decoupling of the A2 which condenses before the
fundamental. The blue line is the fundamental when we consider additional NJL-terms such that
it matches in the IR the A2 representation. Finally, the orange and purple vacua correspond to the
quenched models for the A2 and fundamental representations respectively. The right hand plot is
a zoom in when considering the AdS/SU(4) model without decoupling and when we consider the
decoupling of the A2 quark fields.

similar in all cases but the key changes occur as more fermions are included in the running.
Thus increasing the number of fields slows the running which firstly increases the gap
between the A2 and F sectors and secondly reduces the σ scalar mass. For completeness
in figure 18 we show the dependence of the meson and baryon masses on the pNGB mass
for of the F and A2 sectors, although there is no lattice data to compare to here.

4.4.4 Top partners

The top partners are FA2F spin 1/2 baryons of the strongly coupled dynamics that play
a key role in the generation of the top quark mass as described in the section 4.1.1. We
have computed their masses in the SU(4) model which are shown in table 5 — we remind
that we have computed the masses as if all constituents have a dynamical mass given by
first the fundamental and secondly the A2 representations. The true mass is likely to lie
between these values.

For the top mass there are two key contributions as we can see in figure 8. The top
Yukawa coupling,

yt = g2Z g̃2Z̃ Z3
M2
T Λ4

UV

, (4.22)

is inversely proportional to the top partner mass squared. It is proportional to the Z3 and
Z/Z̃ factors. The Z factors, like the baryon-σ vertex in QCD, are not direct predictions
of the holographic framework since they must be generated by couplings beyond the basic
quadratic terms of the holographic action eq. (2.1) and so in principle one can add new
couplings. We can though write down holographic terms that are likely to be the dominant
contributions and look at their order of magnitude behaviour. As in the previous model
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Figure 18. SU(4) 3F, 3F̄ , 5A2 — The growth of the spectra as we increase the quark mass in the
UV. The masses are rescaled with respect to the vector meson mass in the A2 representation at
mq|UV = 0 in accord with the presentation in table 5. In our analytic formulae the scale is again
set by the A2 vector meson mass at mq|UV = 0.

we may express the Z factors by

Z3 '
∫
dρ ρ3 ∂ρπ(ρ) ψB(ρ)2

(ρ2 + L2)2 , (4.23)

Z = Z̃ '
∫
dρ ρ3∂ρψB(ρ) . (4.24)

Here π(ρ) and ψB(ρ) are the holographic wavefunctions for the pNGB and baryon repec-
tively. They are normalized to give canonical kinetic terms for these states as in eq. (3.3).

We compute the top Yukawa coupling (setting g = g̃ = 1), from the full set of factors
in eq. (4.22). It is proportional to the Z3 and Z/Z̃ factors which we will set equal. In this
SU(4) model, with a cut off on the HDOs, as an example, of roughly 6 times the vector
meson mass, we find the top Yukawa coupling is only of order 0.01 which is far below the
value of one needed.
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Figure 19. SU(4) 3F, 3F̄ , 5A2 — We show the effect of adding the double-trace operator eq. (4.25)
to the spin-1/2 baryon’s mass. On the left we use the L0(ρ) from the F representation and on the
right L0(ρ) from the A2 representation. Note the initial linear behaviour when g2

T is perturbative
but then as it passes a critical value the effect on the mass is much larger.

The top Yukawa would be enhanced if the top partners were anomalously light relative
to the strong coupling scale (roughly the scale 1 in our table 5). As we have described
in QCD, it is possible to drive the baryons light by including a HDO — see figure 7 for
example. In the SU(4) theory we can also look to include a HDO of the form

LHDO = g2
T

Λ5
UV

|FA2F |2 . (4.25)

As the operator FA2F becomes the top partner field this is directly a shift in the top
partner mass. In figure 19 we show the dependence of the top partner mass on g2

T — we
show the effect using both the F and A2 embeddings as L0(ρ) in eq. (2.25). The HDO can
indeed be used to reduce the top partner mass — for small g2

T the effect is linear and small
but after a critical value the effect is much larger, as shown.

One must be careful though because as the top partners mass changes so also do the
Z factors in eq. (4.23) and eq. (4.24). In particular as the HDO in eq. (4.15) plays a large
role it induces a sizable non-normalizable piece in the UV holographic wave function of the
top partner. This means that the integrals in the equivalent of the normalization factors
in eq. (3.3) and directly in the expressions for the Z factors are more dominated by the
UV part of the integral. The overlap between different states can change substantially.
We therefore plot the full expression for the Yukawa coupling from eq. (4.22) against the
top partner mass (which changes as we dial g2

T ) in figure 20. We see that the top Yukawa
does indeed grow as the top partner’s mass falls and can become of order one as the top
partners mass falls to about half of the vector meson mass. This suggests, that after fixing
the strong coupling scale to a sensible large value in the 1–5TeV range, in this model we
should be able to realize a top partner mass of about 1TeV and the required top mass.

4.5 A catalogue of other composite Higgs models

Finally, in part to demonstrate the flexibility of the holographic method and in part as a
service to model builders, we will survey many of the other gauge theories that have been
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Figure 20. SU(4) 3F, 3F̄ , 5A2 — The top Yukawa coupling, as given by (4.22), is plotted against
the top partner mass units of the vector meson mass. MT is controlled by adding a HDO as in
figure 13. We compute on the left with L0(ρ) for the fundamental quark and on the right we use
the A2 L0(ρ).

proposed as composite Higgs models with top partners. In particular we will calculate their
spectrum and decay constants. We are led by the proposals in [28] and will identify them
by the notation of section 4.1.2. Here we do not know of any lattice data, so our results for
the meson spectrum and couplings plus the top partner mass stand in isolation. We hope
though they will be of potential use for future work.

All of the models proposed in [28] that we consider are asymptotically free (they have
positive b0 in eq. (2.8)). However, we find that some of the models live in the conformal
window [57, 58] at the level of the approximation of the two loop running results we use.
To lie in the conformal window b1 in eq. (2.8) must be negative. We then compute the
value of αc, which is the value of α for γ = 1/2, the criterion discussed below eq. (2.6),

αc = π

3C2(r) , (4.26)

and the (positive) value of the coupling at the IR fixed point α∗ where the β-function
vanishes

α∗ = −b0
b1
. (4.27)

We classify a gauge theory as lying in the conformal window if α∗ < αc. Such models do
not break chiral symmetries and can not make good composite Higgs models. We will note
these models below but not compute for them.

We will only compute for models that break chiral symmetries. Of course by adding
NJL operators, one can force any gauge theory to break chiral symmetry. Such models,
dominated by the NJL term, have spectra that will depend on the initial condition of the
gauge coupling at the UV cut off (a continuous parameter) so are not easily presented. We
will therefore only address models where the gauge dynamics drives the symmetry breaking.

Theories that lie close to the lower (in Nf ) edge of the conformal window, yet still
break chiral symmetry, have a slowly running gauge coupling and are referred to as walking
theories — in these theories γ runs from zero to one over a substantial regime of RG scale µ,
unlike in QCD where this running happens very quickly. The main evidence for walking in
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the spectrum of the theories we study is that the scalar mass (S) falls towards zero because
the near conformality tends to flatten the effective potential for the quark condensate —
this is the most significant result we find case by case in this section. Where theories break
chiral symmetry for a range of Nc, Nf , we will display results at the extreme non-walking
and walking values of the parameters. Due to their potential interest for model building,
we stress walking theories below, but they are therefore over represented in the sample of
theories we present.

In this sub-section we will not decouple the heavier representations from the running
coupling — in most cases the two or more representations of matter condense at similar
scales (within a factor of 2) and our work on the previous two models suggest the precise
form of the decoupling is an interesting but small effect. We will not present as much detail
as in section 4.3 and section 4.4, instead we will just display the results for the masses and
couplings from the holographic description by theory. In each case we will normalize to
one of the vector meson state’s mass. For the numerical analysis below we fix α(0) = 0.65
and require a massless quark in the UV, mq|UV = 0.

4.5.1 Models with exceptional gauge groups

The first models for which we compute the spectrum and decay constants are those with
exceptional gauge groups that have been proposed in [28]. The gauge group can be either
G2 or F4 with matter in the fundamental representation. There are singlet baryons made
of three quarks in these cases (see [27] for a detailed discussion). The symmetry breaking
pattern with Nf Weyl fermions is SU(Nf ) → SO(Nf ). If Nf ≥ 11 then the SM gauge
group can be embedded in the global symmetry and a Higgs doublet and coloured top
partners generated. In fact it has been argued that these models are not very promising
phenomenologically [28] since there is a high number of pNGBs and some of them mediate
proton decay.

The G2 group is asymptotically free until Nf = 22. The theory lies in the conformal
window according to the criteria discussed below eq. (4.27) down to Nf = 16. The Nf = 16
theory actually has the fixed point value equal to the chiral symmetry breaking coupling
so is maximally walking and would presumably have a massless scalar meson. We present
results for the extreme cases we can compute, i.e. for Nf = 11 and Nf = 15, in table 6.

F4 theory is asymptotically free until Nf = 16. The edge of the conformal window
lies between Nf = 12 and Nf = 13 flavours. We present spectra for the Nf = 11 and 12
cases also in table 6 — both of these theories have a slowly running coupling, resulting in a
very light scalar. The A and V mesons in these present models are more degenerate than
in QCD.

4.5.2 Models with matter in two representations

Composite Higgs models with fermionic matter in two representations can only have either
a Sp(2N) or SO(Nc) gauge group and generate the Higgs and top partners.
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Observables AdS/G2 AdS/G2 AdS/F4 AdS/F4
11F 15F 11F 12F

fπ 0.0749 0.0797 0.0486 0.0489
MV 1* 1* 1* 1*
fV 0.456 0.488 0.49 0.501
MA 1.15 1.11 1.03 1.03
fA 0.438 0.470 0.483 0.494
MS 0.288 0.114 0.000431 0.00039
MB 1.78 1.76 1.55 1.55

Table 6. Holographic predictions for the spectra and decay constants of AdS/G2, 11F , AdS/F4,
11F , and AdS/F4, 16F .

There are three possible scenarios with a symplectic gauge group:

Sp(2N) 5S2, 6F N ≥ 6 These theories are all in the conformal window.
Sp(2N) 5A2, 6F N ≥ 2 Theories with N < 8 are below the conformal window,

and break chiral symmetry.
Sp(2N) 4F, 6A2 N ≤ 18 Theories with N < 5 are below the conformal window,

and break chiral symmetry.

We present the spectra for examples of the second and third models that break chiral
symmetry. In particular we present for the minimum and maximum number of colours, in
table 7 (note the final model with Sp(4) is the one we studied in more detail in section 4.3).
The two theories that lie close to the edge of the conformal window (the Sp(14) and Sp(8)
cases in table 7, are very slowly walking and have very low scalar masses.

In the case of SO(Nc) gauge theories, there is a discrete set of cases with two quark
representations that generate both the SM Higgs and the top partners in [28]. The models
have matter in the fundamental and spinor representations, and Nc and Nf are fixed.
Those theories within this set that break chiral symmetry are

SO(7) 5F, 6s SO(7) 5s, 6F SO(9) 5F, 6s SO(9) 5s, 6F

SO(10) 5F, 6s SO(11) 5F, 6s SO(11) 4s, 6F SO(13) 4s, 6F .

We display holographic results for the masses and decay constants for these theories in
table 8 as well as in table 9. Note that the SO(13) 4s, 6F theory has a very light scalar
meson, resulting from the slow running of the coupling. The SO(9) theories are of note
since the F fields condense at a higher scale than the spinor fields s so the F bound states
are heavier than the s counter parts — here the critical coupling eq. (4.26) for the F lies
lower than that for the s representation. In the other theories shown, the critical couplings
for F is higher than that for s and the F sector is then lighter. In addition, we find
the following four models to lie in the conformal window and thus do not display chiral
symmetry breaking,

SO(13) 5F, 6s SO(14) 5F, 6s SO(15) 5G, 6F SO(55) 5S2, 6F .
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Observables AdS/Sp(4) AdS/Sp(14) AdS/Sp(4) AdS/Sp(8)
5A2, 6F 5A2, 6F 4F, 6A2 4F, 6A2

fπF 0.066 0.0521 0.057 0.0154
fπA2 0.113 0.114 0.12 0.152
MV F 0.618 0.364 0.61 0.102
fV F 0.304 0.229 0.27 0.0534
MV A2 1* 1* 1* 1*
fV A2 0.494 0.851 0.52 0.733
MAF 0.862 0.414 0.938 0.141
fAF 0.316 0.219 0.303 0.0511
MAA2 1.4 1.02 1.35 1.07
fAA2 0.507 0.843 0.52 0.712
MSF 0.348 0.000476 0.33 1.46 · 10−7

MSA2 0.376 0.000296 0.38 0.000263
MBF 1.15 0.639 1.13 0.186
MBA2 1.85 1.48 1.85 1.75

Table 7. Holographic results for masses and decay constants in the Sp(2Nc) theories with two
different matter representations that can trigger chiral symmetry breaking.

Observables AdS/SO(7) AdS/SO(7) AdS/SO(9) AdS/SO(9)
5F, 6s 5s, 6F 5F, 6s 5s, 6F

fπF 0.125 0.132 0.115 0.121
fπs 0.126 0.119 0.149 0.143
MV F 1.08 1.07 0.913 0.926
fV F 0.58 0.601 0.518 0.55
MV s 1* 1* 1* 1*
fV i 0.581 0.555 0.683 0.653
MAF 1.39 1.33 1.13 1.11
fAF 0.578 0.593 0.507 0.537
MAs 1.21 1.25 1.12 1.14
fAi 0.571 0.55 0.665 0.636
MSF 0.744 0.687 0.508 0.579
MSs 0.728 0.725 0.511 0.568
MBF 1.98 1.98 1.68 1.71
MBs 1.85 1.85 1.84 1.84

Table 8. Holographic results for the masses and decay constants in the two SO(7) and the two
SO(9) theories with two matter representations that can trigger chiral symmetry breaking.
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Observables AdS/SO(10) AdS/SO(11) AdS/SO(11) AdS/SO(13)
5F, 6s 5F, 6s 4s, 6F 4s, 6F

fπF 0.11 0.0811 0.103 0.0615
fπs 0.147 0.104 0.156 0.0878
MV F 0.876 0.918 0.753 0.57
fV F 0.51 0.456 0.468 0.322
MV s 1* 1* 1* 1*
fV i 0.682 0.681 0.727 0.694
MAF 1.06 1.05 0.878 0.636
fAF 0.5 0.432 0.455 0.308
MAs 1.12 1.04 1.09 1.03
fAs 0.664 0.666 0.708 0.684
MSF 0.614 0.142 0.404 0.0453
MSs 0.578 0.154 0.44 0.0615
MBF 1.61 1.33 1.38 0.884
MBs 1.83 1.46 1.82 1.34

Table 9. Holographic results for the masses and decay constants for the two SO(10), the SO(11)
and the SO(13) theories with two matter representations that can trigger chiral symmetry breaking.

4.5.3 Models with matter in three representations

The SU(4) model of section 4.4 falls into this class. In addition, there are four SO(Nc)
gauge theories in [28] with specific matter in the F , spinor s and the opposite chirality s̄
representations (note the dimensions of the fundamental and the spin are equal for eight
colour). Three of these break chiral symmetry,

SO(8) 5F, 3s, 3s̃ SO(10) 5F, 3s, 3s̃ SO(12) 5F, 3s, 3s̃

and one lies in the conformal window,

SO(14) 5F, 3s, 3s̃.

We analyze the first three in table 10.

4.5.4 Models with QCD-like breaking patterns

This variety of composite Higgs models has classes with three and four representations.
While we could have presented the three representation models in the previous section
we chose to separate them in order to follow the classification of [27]. They each have a
symmetry breaking sector for one representation where SU(Nf )L× SU(Nf )R → SU(Nf )V .

In addition to the model of section 4.4, there are two models with three representations,

SO(10) 4s, 4s̃, 6F SU(4) 4F, 4F̄ , 6A2 .

Both of these models allow chiral symmetry breaking to occur. We display our results
for the masses and decay constants in these cases in table 11.
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Observables AdS/SO(8) AdS/SO(10) AdS/SO(12)
5F, 3s, 3s̃ 5F, 3s, 3s̃ 5F, 3s, 3s̃

fπF 0.117 0.11 0.0796
fπs 0.123 0.147 0.140
MV F 1 0.876 0.608
fV F 0.553 0.51 0.356
MV s 1* 1* 1*
fV s 0.579 0.682 0.732
MAF 1.24 1.06 0.718
fAF 0.547 0.5 0.341
MAs 1.21 1.12 1.06
fAs 0.569 0.664 0.732
MSF 0.817 0.614 0.177
MSs 0.817 0.578 0.324
MBF 1.85 1.61 1.08
MBs 1.85 1.83 1.68

Table 10. Results for the gauge theories with matter in three representations.

Moreover, there are the following models with four representations: the isolated model

SU(7) 4F, 4F̄ , 3A3, 3Ā3,

two classes which break chiral symmetry through the full range of Nc,

SU(Nc) 4F, 4F̄ , 3A2, 3Ā2 Nc ≥ 5 SU(Nc) 3F, 3F̄ , 4A2, 4Ā2) Nc ≥ 5

and two classes that are only outside the conformal window at large Nc,

SU(Nc) 4F, 4F̄ , 3S2, 3S̄2 Nc ≥ 5 below the conformal window for Nc > 10
and break chiral symmetry.

SU(Nc) 3F, 3F̄ , 4S2, 4S̄2 Nc ≥ 8 below the conformal window for Nc > 70
and break chiral symmetry.

The first theory with Nc > 10 and the second with Nc > 70 are clearly very hard to
reconcile with any phenomenology. For example, the S parameter would be expected to
be huge. However, for lower Nc values these models are very finely tuned to the conformal
window. This leads to a very small scalar meson mass. For these classes we just present
models for the smallest value of Nc, for which they break chiral symmetries in table 12.

5 Phenomenological implications and constraints

The above analysis of the spectra of possible composite Higgs models has been a purely
field theoretic exercise, without taking into account experimental constraints. Now we
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Observables AdS/SO(10) AdS/SU(4)
4s, 4s̃, 6F 4F, 4F̄ , 6A2

fπF 0.107 0.0922
fπi 0.156 0.122
MV F 0.777 0.805
fV F 0.470 0.424
MV s 1* 1*
fV i 0.723 0.540
MAF 0.922 1.05
fAF 0.455 0.427
MAi 1.09 1.29
fAi 0.704 0.536
MSF 0.311 0.494
MSi 0.376 0.488
MBF 1.42 1.49
MBi 1.81 1.85

Table 11. Holographic results for masses and decay constants in the SO(10) 4s, 4s̃, 6F and
SU(4) 4F, 4F̄ , 6A2 models. i = s for the former and i = A2 for the latter.

AdS/SU(5) AdS/SU(5) AdS/SU(7) AdS/SU(10) AdS/SU(71)
4F, 4F̄ , 3A2, 3Ā2 4A2, 4Ā2, 3F, 3F̄ 4F, 4F̄ , 3A3, 3Ā3 4F, 4F̄ , 3S2, 3S̄2 3F, 3F̄ , 4S2, 4S̄2

fπF 0.0834 0.0598 0.0803 0.0469 0.0210
fπi 0.14 0.153 0.164 0.0746 0.0192
MV F 0.67 0.486 0.628 0.386 0.627
fV F 0.372 0.251 0.378 0.228 0.395
MV i 1* 1* 1* 1* 1*
fV i 0.608 0.65 0.82 0.726 1.49
MAF 0.845 0.661 0.741 0.434 0.63
fAF 0.368 0.25 0.37 0.217 0.394
MAi 1.19 1.15 1.06 1.02 1
fAi 0.59 0.628 0.805 0.683 1.48
MSF 0.338 0.13 0.534 0.000155 0.000849
MSi 0.399 0.273 0.439 0.000479 0.00140
MBF 1.24 0.897 1.16 0.634 0.643
MBi 1.84 1.83 1.82 1.3 0.952

Table 12. Results for gauge theories with matter in four representations. i = A2 for the first two
models. i = A3 for the next one. For the final two we have i = S2.
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briefly consider their experimental impact. We immediately note than many of the theo-
ries have very large field content and this is liable to be in conflict with the precision S

parameter [86] constraints.
We will briefly summarize some generic phenomenological implications for searches at

the LHC based on the mass hierarchies in the models presented in the previous sections.
The following discussion neglects contributions to the masses arising from the gauging of
the SM forces, analogous to the electric mass splitting between the charged and neutral
pions in the SM. These small differences are only likely to play a role in accidentally very
fine tuned cases. We will concentrate on the models in sections 4.3 and 4.4 where there are
counterparts of explicit models presented in [82]. In these models the global group related
to the A2 representations contains the electroweak SM group whereas the one related to F
(and in the case of SU(4) also F̄ ) contains SU(3)c. Thus, given the measured Higgs mass
is about 125GeV and the bounds on heavy spin one resonance are well above one TeV [87],
the ratio of the pion mass to the vector meson masses for the A2 condensate shown in
figures 12 and 18 is confined to small values to be consistent with the data. On the other,
the other pions related to the F condensate can be substantially heavier.

Inspecting table 4 we find, in the case of the Sp(4) model(s), for mq = 0 and negligible
contributions from HDOs, that: (i) A2 bound states are somewhat heavier than the F
counterparts; (ii) The scalars are significantly lighter than the vector and axial vector
states. The fermionic bound states are still heavier than the corresponding vector bound
states. The EW loop corrections mentioned above will tentatively reduce the mass splitting
between the corresponding A2 and F bound states. We also recall from figure 12 that a
finite but small hyperquark mass hardly changes the relative mass ratios yielding the same
overall picture.

One expects that the scalar mesons will dominantly decay into the corresponding
pNGB. There could also be decays into a pair of top quarks arising from the mixing
of the top partners with the top quark. The next heavier states are the vector mesons
as can be seen from table 4. In the searches for these states it is usually assumed that
the decay dominantly into SM-particles. However, due to the quite large mass difference
between scalars and these vector states we also expect sizeable branching ratios for the
decay VA2 → SA2 SA2 leading to a final state with four pNGB which will decay further.
Thus we expect actually an enhancement of the multiplicity of the SM particles compared
to the standard LHC searches. The top partners, which are the FA2F states, should
have about the same mass or might be even be lighter than the vector state due to the
requirement of a large top Yukawa coupling as discussed in section 4.3.5. Thus we expect
that in addition to the standard decays such as

T → tΠ (5.1)

(where Π is one of the pNGB which belong either to the electroweak or to the strong sector)
there may also be sizeable branching ratios into final states like

T → t S . (5.2)
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The subsequent decay of the S into two pNGB results, also in this case, to a more com-
plicated final state compared to the one used in the standard searches by the LHC col-
laboration. This affects for example the phenomenology of the models M5 and M8 pre-
sented in [82].

Turning now to the SU(4) models we focus on the main differences compared to the
Sp(4) ones. Comparing tables 4 and 5 we notice that in the case of SU(4) the masses
of the mesons and baryons depend less on the underlying hyperquarks’ mass compared
to the Sp(4) models. Secondly, the scalars are significantly heavier than in the case of
Sp(4) implying that they will be less frequently produced at the LHC in both, direct
production and from cascade decays from heavier states, which affects for example the
LHC phenomenology of model M6 in ref. [82]. More generically one finds from these
tables and the ones in section 4.5, that the ratio MS/MV is an important quantity to
identify possible underlying gauge groups. However, we note for completeness that this
ratio depends to some extent also on the matter content of the underlying theory.

Finally we note that many of the theories presented in section 4.5 have very slow
running resulting in very light scalar resonances. We expect that the loop induced effective
potential due to explicit symmetry breaking effects like the gauging of the SM-group will
give sizeable contributions to their masses. This is beyond the realm of this paper and
requires a model-by-model investigation of the spectrum of the light states. In these cases
one needs also to check to which extent direct searches already constrain them. This will
also depend on the precise quantum numbers of these light scalars.

6 Conclusions and discussion

In this paper we have adapted the holographic model of [15] to describe composite Higgs
models, including fermionic bound states as in [55], as well as multiple representations of
matter. Our holographic approach is inspired by string theory realizations of gauge/gravity
duality: the holographic gravity action is based on the top-down DBI action for a probe
D7-brane. As a novel feature compared to previous holographic composite Higgs models,
the spontaneous symmetry breaking is induced by the dynamics of the gravity theory, just
as in the stringy top-down models. Within these models, in a phenomenological approach
we directly impose the running of the quark anomalous dimension. We have used the two-
loop running of the gauge coupling, extending it naively to the non-perturbative regime, to
predict the running of γ. The model then predicts the light meson and nucleon spectrum
for given numbers of colours and flavours for chosen groups and representations.

We also included higher dimension operators into the holographic model to describe
Nambu-Jona-Lasinio-like interaction terms. We have demonstrated this in two-flavour
QCD, where we ‘perfected’ the model in the spirit of lattice QCD by including HDOs at
the UV scale where the theory transitions to weak coupling. We have shown that the
spectrum can be brought closer to the observed spectrum in this way (see table 2).

After grounding the holographic model with the QCD predictions, we then moved
to studying the underlying gauge theory dynamics in composite Higgs models. We stud-
ied three theories in particular detail that have associated lattice results — SU(2) 4F ;
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Sp(4) 4F, 6A2; and SU(4) 3F, 3F̄ , 5A2. The results and comparisons to lattice data are
in tables 3, 4 and 5. The holographic techniques describe the lattice data sensibly. This
encouraged us to extended the results beyond known lattice results. In particular, we
straightforwardly computed a wider range of observables and crucially had the ability to
quench, unquench and change the number of flavours of quarks without the troubles of
lattice doubling or sign problems. Indeed in section 4.5, we have surveyed the full set of
possible gauge theories for composite Higgs models proposed in [28]. We expect that this
will provide a useful resource for model builders.

In a holographic realization of models with ‘partial compositeness’, we have also com-
puted the top Yukawa coupling, using HDOs to impose the required mixing between the
top quark and top partner baryons in the strong coupling sector. Extending this approach
by including an additional HDO of the form |FA2F |2 both reduces the top partners’ masses
and raises the structure functions sufficiently to allow for a top Yukawa coupling of order
yt ' 1, consistent with the Standard Model. This value is obtained for a top partner mass
of half the value of the vector meson mass in the strongly coupled sector. For a choice
of the strong coupling scale between 1–5TeV, this is likely to be compatible with current
experimental bounds on these states.

The holographic modelling does depend on assumptions about the IR dynamics. We
expect to be able to improve the tuning of the model to the dynamics as more lattice results
become available, similarly to the results for QCD of [35]. An example of an IR assumption
that we have made is the input for the running of the quark anomalous dimension γ. We
have considered models of [28] where the two-loop ansatz for the running of γ places the
theory in the conformal window. If the IR fixed point value in these theories turns out to
be higher, the ansatz for the running could be easily modified. The holographic techniques
also seem likely to remain useful for chiral models that cannot be studied on the lattice
easily — we anticipate a constructive dialogue with future lattice work.

There is also substantial room for future exchanges with model builders. For example,
the addition of NJL interactions could turn models in the conformal window into sym-
metry breaking theories. This is easily studied with the holographic approach presented.
Moreover, models with further matter content that are closer to being conformal in the
UV may be of interest [76]. In this case, the HDOs dimensions would reduce, such that
enhancements of the top Yukawa coupling might be possible. Generically, all of these ideas
are quick to apply using holographic techniques in any such model. We hope holography
will become a common-place tool for model builders.
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A A spinor in AdS and AAdS spacetimes

A.1 Five-dimensional AdS spacetime

The invariant line element of the spacetime we are working described by the set of coordi-
nates xM = (r, xµ), µ = 1, · · · , 4, such that the AdS5 is represented by the domain u > 0
and the metric is equal to

ds2 = gABdx
AdxB = dr2

r2 + r2ηµνdx
µdxν , (A.1)

where we have set the AdS length equal to one. The boundary, ∂AdS, is approached as
r →∞. Since we want to consider a spinor in the above background, we need to choose a
fünfbein, eAM , such that it satisfies

gMN = eIMe
J
NηIJ , (A.2)

with ηIJ the 5-dimensional Minkowski metric. The fünfbein and the non-vanishing com-
ponents of the spin-connection are given by

eIµ = rδIµ ,

eIρ = r−1δIρ ,

ωrνµ = −ωνrµ = −rδνµ .
(A.3)

The Dirac operator in AdS5 using these conventions is given by

/DAdS = rγr∂r + 1
r
γµ∂µ + 2γr . (A.4)

In the above, the matrix γr is the higher-dimensional analog of the chirality operator, γ5,
in 4 dimensions and the γ matrices satisfy the Clifford algebra; {γA, γB} = 2ηAB. Consider
the free spinor action in an AdS5 space

SDirac =
∫

AdS
d5x
√
gΨ̄( /DAdS −m)Ψ , (A.5)

from which one obtains the Dirac equation

( /DAdS −m)Ψ = 0 , (A.6)

where we have used the shorthand: Ψ = Ψ(xµ, r). From the above we can obtain a second-
order differential equation for the scalar function of the holographic radial coordinate. The
way we choose to perform the analysis consists of acting with the operator rγr∂r + 1

rγ
µ∂µ

on eq. (A.6) and then by using the first-order equations of motion that the spinor satisfies
to re-express some of the terms. After some algebra we obtain(

∂2
r + 6

r
∂r + M2

r4 + 1
r2 (−m2 −mγr + 6)

)
ψ = 0 , (A.7)

where we have decomposed the five-dimensional spinor in a plane-wave along the Minkowski
directions and an ordinary scalar function which we denote by ψ. Note that in principle
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ψ contains the two eigenstates of the chirality operator. The above equation is in agree-
ment with the equation described in [88], where the interested reader can find an explicit
representation of the γ-matrices, as well as the analytic solutions of the above equation in
terms of Bessel functions. In this work we will not be interested in the analytic solutions
of the equations of motion, but rather the scaling behaviour near the conformal boundary
(r →∞). We give the relevant relations below

ψ+ ∼ c1r
−2+m + c2r

−3−m ,

ψ− ∼ c3r
−3+m + c4r

−2−m ,
(A.8)

and in the above relations c1,2,3,4 are sources and operators — see the next section for their
interpretation. This statement is made exact in the main body of the paper, see section 2.

A.2 Relations between the sources and the operators

The Dirac equation solution in eq. (A.8) naively has 4 constants of integration as presented
but these are correctly only 2. The 2 constants are interpreted as the boundary sources
and operators. To understand this reduction we begin with the first-order Dirac equation
in pure AdS. This is written as(

rγr∂r + 1
r
γµ∂µ + 2γr −m

)
Ψ(xµ, r) = 0 . (A.9)

We decompose the spinor as Ψ(xµ, r) = eik·x(ψ+α+ +ψ−α−) where the α± are eigenstates
of the chiral projector γr and have values ±1. They are related to one another as

α− = i/k

M
α+ . (A.10)

We can substitute the above decomposition into the Dirac equation and obtain a set of first-
order coupled differential equations. Taking into consideration that the chiral eigenspinors
are linearly independent the resulting equations read

ψ+ = r

M
(r∂rψ− + (2 +m)ψ−) ,

ψ− = r

M
(−r∂rψ+ − (2−m)ψ+) .

(A.11)

We can plug the asymptotic expansions, see eq. (A.8) in the above expressions and solve
to relate two of the constants to the other two. The final form of the asymptotics reads

ψ+ ∼ c2
√
r + c1

M

6 r−11/2 ,

ψ− ∼ c2
M

4
1√
r

+ c1r
−9/2 ,

(A.12)

and the identification is c1 = O and c2 = J .
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A.3 The Dynamic AdS/YM spacetime

We can now repeat this process in the AdS/YM spacetime. The invariant line element is
given by

ds2 = r2dx2
(1,3) + dρ2

r2 , (A.13)

from which we can readily obtain the fünfbein, eAM . The fünfbein and the non-vanishing
components of the spin-connection are given by

eIµ =
√
ρ2 + L(ρ)2δIµ ,

eIρ = 1√
ρ2 + L(ρ)2 δ

I
ρ ,

ωrνµ = −ωνrµ = −(ρ+ L(ρ) ∂ρL(ρ))δνµ .

(A.14)

The Dirac operator in this spacetime which is asymptotically AdS5 (AAdS)using these
conventions is given by

/DAAdS =
√
ρ2 + L(ρ)2γρ∂ρ + 1√

ρ2 + L(ρ)2 γ
µ∂µ + 2ρ+ L(ρ) ∂ρL(ρ)√

ρ2 + L(ρ)2 γρ . (A.15)

The action for a free spinor in the above geometry is given by

S1/2 =
∫
d5x ρ3 Ψ̄

(
/DAAdS −m

)
Ψ , (A.16)

where again we have used the square root of the metirc determinant from the top-down
analyses rather than the one obtianed from our spacetime -as was done in the case of the
bosonic sector of the theory. It is a straightforward task to vary the above action and
obtain the equations of motion. Then, we promote the first-order equations of motion to
second-order by acting on them with the differential operator 1

r γ
µ ∂µ + r γρ ∂ρ, and in

such a way we construct a Klein-Gordon problem in terms of an ordinary scalar function
of the holographic radial coordinate ρ that reads(

∂2
ρ + 6

r2 (ρ+ L ∂ρL) ∂ρ + M2

r4 −
m2

r2 −
m

r3 (ρ+ L ∂ρL) γρ

+ 2
r4

(
(ρ2 + L2)L∂2

ρL+ (ρ2 + 3L2)(∂ρL)2 + 4ρL∂ρL+ 3ρ2 + L2
))

ψ = 0 .
(A.17)

As a check of the above relation let us consider the limit L → 0, in which the Dynamic
AdS/QCD metric becomes AdS5 and in that limit the equations of motion eq. (A.17)
reduces to (

∂2
ρ + 6

ρ
∂ρ + M2

ρ4 + 1
ρ2

(
6−m2 −mγρ

))
ψ = 0 , (A.18)

which is precisely eq. (A.7) under the identification r → ρ.
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B Group theory factors

In what follows, by G we denote the adjoint representation. Other representations are
displayed by their Young Tableaux. This is a matrix of the group theory factors of the
SU(N) gauge group.

R T(R) C2(R) d(R)
G N N N2 − 1

1/2 (N2 − 1)/2N N

(N + 2)/2 (N − 1)(N + 2)/N N(N + 1)/2

(N − 2)/2 (N + 1)(N − 2)/N N(N − 1)/2

(N − 3)(N − 2)/4 3(N − 3)(N + 1)/2N N(N − 1)(N − 2)/6

This is a matrix of the group theory factors of the Sp(2N) gauge group.

R T(R) C2(R) d(R)
1/2 (2N + 1)/4 2N

G= N + 1 N + 1 N(2N + 1)

N − 1 N N(2N − 1)− 1

We present here the matrix of the group theory factors of the SO(N) gauge group.

R T(R) C2(R) d(R)
1 (N − 1)/2 N

N + 2 N (N − 1)(N + 2)/2

G = N − 2 N − 2 N(N − 1)/2

spin(N: even) 2
N−8

2 N(N − 1)/16 2
N−2

2

spin(N: odd) 2
N−7

2 N(N − 1)/16 2
N−1

2

Finally, we include the group theory factors for the exceptional gauge theories G2 and F4
which are relevant to composite Higgs models with matter in a single representation of the
gauge group.

Groups d(G) T (G) C2(G) d(F ) T (F ) C2(F )

F4 52 9 9 26 3 6
G2 14 4 4 7 1 2

In the above tables, T is half the Dynkin index, C2 is the quadratic Casimir, and d is the
dimension of the representation. The usual relation holds

C2(R)d(R) = T (R)d(G) , (B.1)

where by R we mean a sepcific representation. We also have that

T (R) = −T (R̄) . (B.2)
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