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Abstract: We investigate the asymptotic structure of the free Rarita-Schwinger theory
in four spacetime dimensions at spatial infinity in the Hamiltonian formalism. We impose
boundary conditions for the spin-3/2 field that are invariant under an infinite-dimensional
(abelian) algebra of non-trivial asymptotic fermionic symmetries. The compatibility of
this set of boundary conditions with the invariance of the theory under Lorentz boosts
requires the introduction of boundary degrees of freedom in the Hamiltonian action, along
the lines of electromagnetism. These boundary degrees of freedom modify the symplectic
structure by a surface contribution appearing in addition to the standard bulk piece. The
Poincaré transformations have then well-defined (integrable, finite) canonical generators.
Moreover, improper fermionic gauge symmetries, which are also well-defined canonical
transformations, are further enlarged and turn out to be parametrized by two indepen-
dent angle-dependent spinor functions at infinity, which lead to an infinite-dimensional
fermionic algebra endowed with a central charge. We extend next the analysis to the su-
persymmetric spin-(1, 3/2) and spin-(2, 3/2) multiplets. First, we present the canonical
realization of the super-Poincaré algebra on the spin-(1, 3/2) multiplet, which is shown
to be consistently enhanced by the infinite-dimensional abelian algebra of angle-dependent
bosonic and fermionic improper gauge symmetries associated with the electromagnetic and
the Rarita-Schwinger fields, respectively. A similar analysis of the spin-(2, 3/2) multiplet is
then carried out to obtain the canonical realization of the super-Poincaré algebra, consis-
tently enhanced by the abelian improper bosonic gauge transformations of the spin-2 field
(BMS supertranslations) and the abelian improper fermionic gauge transformations of the
spin-3/2 field.
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1 Introduction

The asymptotic structure of gravity is an extremely rich subject, which has attracted a
revived interest in the last years [1].

One of the lessons that has been learned from the study of the behaviour of the grav-
itational field at infinity is that the algebra of asymptotic symmetries can be much larger
than the algebra of background isometries. The first instance where this phenomenon
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was observed was four-dimensional Einstein gravity with vanishing cosmological constant,
where studies at null infinity revealed that the asymptotic symmetries formed the infinite-
dimensional Bondi-van der Burg-Metzner-Sachs (BMS) algebra [2–8], which can even be
further extended to include super-rotations [9–12]. Another much studied example is anti-
de Sitter gravity in three spacetime dimensions, where the asymptotic symmetry algebra
is given, for standard AdS boundary conditions, by two copies of the infinite-dimensional
Virasoro algebra [13]. In both cases, the asymptotic symmetry algebra contains the algebra
of background isometries (the Poincaré algebra or the anti-de Sitter algebra, respectively),
but is strictly bigger than it. Furthermore, a non trivial central charge with interest-
ing physical significance may appear in the Poisson bracket algebra of the generators of
the asymptotic symmetries - which is necessarily trivial for the subalgebra of background
isometries - , as it is the case for three-dimensional AdS gravity [13].

When one considers the supersymmetric versions of these two theories, one finds in both
cases a graded extension of the respective infinite-dimensional symmetry algebras. This
was shown to be the case for supergravity in four dimensions in [14], where a graded exten-
sion of the BMS algebra was exhibited to be a symmetry of the theory. While the analysis
of [14] was performed at null infinity, it was later confirmed in [15] that the same superal-
gebra emerges at spatial infinity. In the three-dimensional context, the infinite-dimensional
asymptotic symmetry superalgebras of anti-de Sitter supergravities were worked out in [16,
17] and identified with (nonlinear) extended super-conformal algebras.

The main motivation of our paper, which deals with asymptotically flat spaces in four
spacetime dimensions, arises from the following puzzle. A notable feature of the super-
symmetric extension of the BMS algebra of [14] is that it contains only a finite number
of fermionic generators. However, group theoretical arguments indicate that extensions
of the BMS algebra by an infinite number of fermionic generators exist [14] and indeed,
such super-BMS algebras appeared more recently in the analysis of supergravity at null
infinity [18–22]. The question we would like to explore is whether one can develop a
consistent Hamiltonian formulation of this infinite-dimensional fermionic extension. Such
a step would shed important light on the quantum formulation of the theory.

Indications that it should be possible to implement consistently such an extension
comes actually from asymptotically flat supergravity in three dimensions, where a super-
BMS3 algebra possessing this feature was uncovered [23] (see also [24–30] for extended
supergravity).

By consistent Hamiltonian formulation of the symmetry, we specifically mean the fol-
lowing: can one impose boundary conditions on the phase space variables of supergravity
so that the super-BMS transformations have a well-defined moment map?

The phase space variables of supergravity are fields defined on a Cauchy hypersurface
(or, which is sufficient for our purposes, “asymptotically Cauchy hypersurface”), providing
thereby complete initial data out of which the future (Cauchy) development, including the
behaviour of the fields near null infinity, can in principle be derived. The boundary condi-
tions are given at large distances on these Cauchy hypersurfaces, i.e., at spatial infinity.

A first requirement to be imposed is that the boundary conditions make the action, and
in particular, its kinetic term finite. This guarantees the existence of a well-defined, finite,
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symplectic 2-form leading to the standard Hamiltonian structure. A second requirement
is that the symmetries under investigation - here, super-BMS transformations - not only
preserve the boundary conditions, but also the symplectic form and hence can be associated
with a well-defined canonical generator.

This program was successfully achieved for the BMS group of general relativity in [31–
33], where boundary conditions implementing the above requirements were given. In fact,
two inequivalent sets of boundary conditions consistent with the BMS symmetry were
devised. The development of initial data satisfying either of the boundary conditions at
spatial infinity was investigated near null infinity, confirming incidentally as a by-product
that the existence of a smooth null infinity resulting from regular initial data on a Cauchy
hypersurface is far from granted - as forcefully stressed and vigorously studied in [34, 35]
and references therein. A similar analysis was performed in electromagnetism for the angle-
dependent u(1) transformations [36].

The question, then, is whether one can go beyond the supergravity analysis of [15] by
relaxing the boundary conditions given there in such a way that an infinite-dimensional
fermionic extension (and not just a finite-dimensional one) of the BMS symmetry can be
realized as asymptotic symmetry, with well-defined canonical generators.

The problem is rather intricate because it involves on the bosonic side a generalized
form of parity conditions [31–33, 37]. We shall therefore first consider the simpler linearized
models, which contain in the gravitational case already a good wealth of information on
the interacting case [38] (but see [39] for the Yang-Mills theory). Free supersymmetric
models are the scope of this paper. In a subsequent work we shall come back to the full
interacting theories.

We first show that the free Rarita-Schwinger field on a Minkowski background admits,
with suitable boundary conditions that are verified to be Poincaré invariant, an infinite
number of non-trivial fermionic improper [40] gauge symmetries parametrized by two inde-
pendent functions of the angles. These form an abelian algebra with a non trivial central
charge. The construction needs the introduction of surface degrees of freedom, which we
describe. These are analogous to the surface degrees of freedom needed for a consistent
Lorentz-invariant description of electromagnetism [36] (see also [41]) and are somewhat
reminiscent of the edge modes of [42–44].

We then consider the free supersymmetric (1, 3
2) and (2, 3

2) multiplets and show that
rigid supersymmetry is compatible with our boundary conditions, leading to an infinite
set of fermionic symmetries (standard rigid supersymmetry and improper fermionic gauge
symmetries). The algebra of the charges is computed and the Lorentz transformation
properties of the fermionic parameters are in particular written.

Our paper is organized as follows. In section 2, we recall the results of [15] in the
context of the free Rarita-Schwinger field and stress that with the boundary conditions
adopted in this paper, there is no non trivial fermionic asymptotic symmetry. We next
analyze (section 3) the free Rarita-Schwinger theory with softened boundary conditions
involving an improper gauge term. We show that these conditions are compatible with
Poincaré invariance — specifically, the boosts — if one add a surface field with specific
Lorentz transformations. This surface field enters the symplectic form through a surface
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integral at infinity, much in the same way as what was shown for electromagnetism in [36].
We then work out the Poincaré generators, which are all well-defined (integrable and finite),
as well as the generators of the fermionic improper gauge symmetries, which turn out to
form an abelian superalgebra parametrized by two spinor functions of the angles, with a non
trivial central extension. In section 4, we extend the analysis to the spin-(1, 3/2) multiplet
and show compatibility with supersymmetry. This requires to define the supersymmetry
transformations by including in them a field-dependent u(1) gauge transformation, in order
to leave the (pre-)symplectic form invariant. In section 5, we achieve the same task for
the spin-(2, 3/2) multiplet. We show that the algebra of the rigid symmetries and the
improper gauge symmetries form a graded extension of the BMS algebra possessing an
infinite number of fermionic generators - the subalgebra of rigid symmetries and bosonic
improper gauge symmetries being isomorphic to the super-BMS algebra of [14, 15]. Finally,
section 6 gives some concluding remarks. Two appendices provide conventions and some
more technical material.

2 Formulation of the Rarita-Schwinger theory with standard asymptotic
conditions

We consider the Rarita-Schwinger field ψµ in four-dimensional Minkowski space. In the
canonical formalism, the dynamical variables are its spatial components ψk and the action
is given in flat coordinates by [45]

S = − i2

ˆ
d4xψµγ

µνρ∂νψρ + “boundary terms” =
ˆ
dt

(
K −H − i

ˆ
d3xψT0 S

)
. (2.1)

The kinetic term in the action reads explicitly1

K = i

2

ˆ
d3xψTk γ

km∂tψm +B , (2.2)

where B is a surface term chosen so that the action is finite. Its explicit form depends on
the boundary conditions on the spin- 3

2 field. The Hamiltonian is given by

H = i

2

ˆ
d3xψTk γ0γ

kmn∂mψn . (2.3)

The constraint S enforced by varying the Lagrange multiplier ψ0 is

S = γmn∂mψn ≈ 0 . (2.4)

The standard asymptotic conditions on ψk are

ψk = O
( 1
r2

)
. (2.5)

1We choose the convention where Dirac conjugate for Majorana spinors reads ψµ = ψTµ γ0 with all
γ-matrices real, γ0 being antisymmetric and γi symmetric.
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With these boundary conditions, the boundary term B can be taken to vanish and the
kinetic term in the action is finite. It implies the bracket relation

{ψαm(x), ψβn(x̄)} = i

2(γnγm)αβδ(3)(x− x̄) (2.6)

showing that ψk is somehow canonically self-conjugate.
The Lagrange multiplier ψ0 describes the gauge transformation involved in the time

evolution of the system and is arbitrary. We shall impose

ψ0 = O
( 1
r2

)
(2.7)

so that the motion “involves no gauge transformation at infinity”. This is a convenient
asymptotic gauge fixing condition, which clearly makes the constraint term in the action
finite.

The Hamiltonian action (2.1) is invariant under infinitesimal Poincaré transformations
obtained by taking the Poisson bracket of the fields with the Poincaré generators

ˆ
d3x(ξE + ξmPm) , (2.8)

where

E = i

2
[
ψTk γ

kmnγ0∂mψn + ∂k(ψTj γjγ0ψ
k)
]
, (2.9)

Pk = −i
[1

2∂m(ψTn γmnψk) + 1
2ψ

T
mγ

mn∂kψn + 1
8∂p(ψ

T
mγ

mnγ p
k ψn)

]
. (2.10)

Here,

ξ = bix
i + a⊥ , (2.11)

ξi = bi jx
j + ai , (2.12)

are the components of the vector fields that parametrize the Poincaré transformations.
The arbitrary constants bi and bij = −bji parametrize the boosts and spatial rotations,
respectively. The constants a⊥ and ai stand for standard translations (the term bix0 in
ξi can be absorbed in ai at any fixed time). Note that the integral giving the Poincaré
generators converges at infinity even for boosts and spatial rotations since in that case the
integrand behaves as ∼ 1

r4 .
One gets

δξψp = {ψp,
ˆ
d3x(ξE + ξmPm)}

= ξγ jk
p γ0∂jψk + 1

2∂jξγ
jγ0ψp −

1
2ξγpγ0S + Lξψp , (2.13)

where the Lie derivative of ψk is given by

Lξψk = ξm∂mψk + ∂kξ
mψm + 1

4∂mξnγ
mnψk . (2.14)
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By construction, this transformation leaves the symplectic form invariant since it is a
canonical transformation. Furthermore, it is direct to check that it leaves the constraint
invariant, δξS ≈ 0.

The Hamiltonian action (2.1) is also invariant under fermionic gauge transformations
of the form

δηψk = ∂kη , (2.15)

where ∂kη must be of order r−2 in order to preserve the asymptotic decay of the spin- 3
2

field, i.e.,
η = η0 +O

(1
r

)
(2.16)

the constant term η0 being ineffective in (2.15). This transformation is again canonical,
being generated by

Q[η] = i

ˆ
d3x (η − η0)TS, (2.17)

an expression that can easily be verified again to converge at infinity. One has indeed

δηψk = {ψk, Q[η]} . (2.18)

The generator Q[η] can be rewritten as

Q[η] = i

ˆ
d3x ηTS−iηT0

˛
d2Skγ

kmψm , (2.19)

since −
´
d3xS +

¸
d2Skγ

kmψm = 0 (Stokes theorem). When the constraints hold, the
generator Q[η] vanishes and so, the gauge transformations are all proper [40]. This is also
true for the zero mode η0, as it should, since η0 drops from the gauge transformations. In
the presence of couplings, of course, the constraint-generator S is not linear anymore. There
is a source contribution that makes the surface integral multiplying η0 non-zero. But even
in that case, there are only four improper fermionic gauge transformations parametrized
by the zero mode η0 because the generators of the other fermionic gauge symmetries are
(weakly) equal to zero [15].

The absence of improper gauge transformations in the free theory is due to our choice of
O(r−2) fall-off of the Rarita-Schwinger field. We shall now discuss less restrictive conditions
that lead to a much more interesting asymptotic symmetry structure.

3 New asymptotic conditions for the Rarita-Schwinger field

3.1 Formulation of the new conditions

The less restrictive boundary conditions developed in this paper allow for a O(r−1) term
in the gravitino field ψk. However, if one were to consider an arbitrary O(r−1) behaviour,
one would encounter divergences in the symplectic structure and in the Lorentz generators
that are difficult to tame. For that reason, the allowed O(r−1) in ψk will be assumed to
take the specific form of a gradient. We therefore adopt as asymptotic conditions

ψk = ∂kχ+ µk , (3.1)
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where
χ = χ+O

(1
r

)
, (3.2)

and
µk = µ̄k

r2 +O
( 1
r3

)
, (3.3)

where the coefficients of the various powers of r are functions of the angles. We call ψk the
“complete gravitino field” and refer to µk as the “bulk field” and χ as the “surface field”.
The bulk field µk depends on all three spatial coordinates xk, while χ depends only on the
angles of the 2-sphere “at infinity”. It is convenient to extend, as we have done, the surface
field into a bulk field χ. There is clearly some ambiguity in the process since higher powers
in r−1 in χ can be absorbed into µk, but this will not be a problem (this redundancy will
appear as a proper gauge symmetry).

The inclusion of the surface field χ in the boundary condition is the new feature with
respect to the previous treatment of [15]. One might argue at this point that because the
new term ∂kχ in the asymptotic behaviour of ψk is a gradient, it should be irrelevant since
it takes the form of a gauge transformation. However, only proper gauge transformations
correspond to redundancies in the description of the system [40]. Improper gauge transfor-
mations, which have non-vanishing generators even on-shell, do change the physical state
of the system. The added gradient term ∂kχ does turn out to be an improper gauge trans-
formation. A similar extension of the boundary conditions by an improper gauge term that
is the leading term in the asymptotic expansion of the field was considered earlier in [46].

The boundary conditions on µk will actually need to be strengthened in order for the
kinetic term in the action to be finite. Anticipating what we shall find below, we already
impose the needed extra condition, which expresses that the constraint function S should
decay one power of r−1 faster than what generically follows from the boundary conditions
on the fields, i.e., it should decay as r−4. Thus we impose

S = O
( 1
r4

)
, (3.4)

which is very reminiscent of the fall-off conditions on the constraints in the case of electro-
magnetism [36] and gravity [31, 33].

The new asymptotic conditions on the gravitino field are easily checked to be preserved
under Poincaré transformations, which we take to coincide with (2.13),

δξψp = ξγ jk
p γ0∂jψk + 1

2∂jξγ
jγ0ψp −

1
2ξγpγ0S + Lξψp , (3.5)

leading to

δξχ = −ξγ0γ
m∂mχ+ 1

2∂jξγ
jγ0χ + Lξχ , (3.6)

δξµp = ξγ jk
p γ0∂jµk + 1

2∂jξγ
jγ0µp −

1
2ξγpγ0γ

jk∂jµk + Lξµp . (3.7)

Since the split of ψp into ∂pχ and µp involves ambiguities, there is also some ambiguity in
the expressions for δξχ and δξµp, besides the usual gauge freedom. The above choice, such
that δξχ and δξµp depend respectively only on χ and µp, is particularly convenient.
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The boundary conditions are also preserved by gauge transformations of the form

δεχ = ε , δεµm = ∂mε , (3.8)

spanned by two fermionic parameters, ε and ε, whose asymptotic behaviors are given by

ε = ε+O
(1
r

)
, (3.9)

ε = ε

r
+O

( 1
r2

)
. (3.10)

As we shall see, these transformations involve both proper and improper gauge symmetries.

3.2 Finiteness of the kinetic term

That the addition of a gradient of order O(r−1) to the gravitino field is a non-trivial step
can be immediately seen at two places. First, the action - specifically the kinetic term - is
superficially divergent. Second, the integral giving the Lorentz generators also superficially
diverges at infinity (logarithmically) since the integrand, which is not gauge invariant,
behaves now as r−3. We examine these two problems successively, starting with a proper
definition of the action.

If one decomposes the Hamiltonian kinetic term (2.2), one gets three kind of terms:

i

2

ˆ
d3x∂kχ

Tγkm∂mχ̇ , (3.11)

which is formally linearly divergent;

i

2

ˆ
d3x∂kχ

Tγkmµ̇m + i

2

ˆ
d3xµTk γ

km∂mχ̇ , (3.12)

which is formally logarithmically divergent; and

i

2

ˆ
d3xµTk γ

kmµ̇m , (3.13)

which is finite.
We analyse in turn the two divergent pieces.

• The first term is equal to

i

2

ˆ
d3x∂k

(
χTγkm∂mχ̇

)
, (3.14)

and so is a surface term that can be removed by subtracting it through B in (2.2).

• The second term can be transformed into

i

ˆ
d3xχ̇Tγkm∂kµm + i

˛
d2Skχ

Tγkmµ̇m , (3.15)
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(using aTγkmb = bTγkma for anticommuting spinors) up to a total time derivative that can
again be absorbed in B. The surface term in (3.15) is clearly finite while the bulk term is
also finite since we assume that the constraint S decays as O(r−4).

So, if we adjust properly the surface term B, we get for the kinetic term

K = i

ˆ
d3xχ̇Tγkm∂kµm + i

2

ˆ
d3xµTk γ

kmµ̇m + i

˛
d2Skχ

Tγkmµ̇m +B′ , (3.16)

which is finite. The term B′ is the undetermined left-over piece from B that re-
mains after the appropriate subtractions making the action finite have been performed.
Space covariance and convergence requirements show that B′ should be proportional to
i
¸
d2Skχ

Tγkmµ̇m and so henceforth we consider the most general kinetic term

K = i

ˆ
d3xχ̇Tγkm∂kµm + i

2

ˆ
d3xµTk γ

kmµ̇m + i

2α
˛
d2Skχ

Tγkmµ̇m , (3.17)

where α is assumed to be a non-zero arbitrary constant. Note that for α = 2 one has that
B′ = 0. We also note that the fields χ and µk enter separately in the action and not only
through the sum ψp, specifically in the kinetic term.

3.3 Equations of motion

We now verify that the action has a true extremum with our boundary conditions, and not
just an extremum up to surface terms. The action for the generalized boundary conditions
reads as above

S =
ˆ
dt

[
K − i

ˆ
d3x

(1
2µ

T
k γ0γ

kmn∂mµn + ψT0 S
)]

, (3.18)

where the kinetic term K is now given by

K = i

ˆ
d3x

(
χ̇Tγmn∂mµn + 1

2µ
T
mγ

mnµ̇n

)
+ i

2α
˛
d2Smχ

Tγmnµ̇n . (3.19)

We shall impose the same convenient asymptotic condition

ψ0 = O
( 1
r2

)
(3.20)

on the Lagrange multiplier ψ0 .
The variation of (3.18) with respect to ψ0 leads to the fermionic constraint

S = γmn∂mµn = 0 . (3.21)

The variation of the action with respect to µm turns out to be

δS = i

ˆ
dt

{ ˆ
d3xδµTm

[
γmn(µ̇n + ∂nχ̇− ∂nψ0)− γ0γ

mnp∂nµp
]

+
(

1− α

2

) ˛
d2Smδµ

T
nγ

mnχ̇

}
, (3.22)
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where the boundary conditions have been taken into account to get rid of some boundary
terms. If one imposes δS = 0, the bulk contribution and the surface term must separately
vanish. Vanishing of the bulk term reads

γmn(µ̇n + ∂nχ̇− ∂nψ0)− γ0γ
mnp∂nµp = 0 . (3.23)

The leading order 1/r of (3.23) reduces to the condition

γmk∂kχ̇ = 0 , (3.24)

on the leading term χ in the asymptotic expansion of χ, from which one infers

∂t(∂kχ) = 0 . (3.25)

The zero mode of χ is thus an arbitrary function of time, but its higher spherical harmonic
components are constant in time. The subsequent orders in (3.23) are just the standard
dynamical Rarita-Schwinger equations for the gravitino field. The boundary term in (3.22)
then vanishes as a direct consequence of (3.25) and the constraint (3.21) (for the zero mode).

The variation of (3.18) with respect to χ yields

δS = i

2α
˛
d2Smδχ

Tγmnµ̇n , (3.26)

modulo the constraint. The above implies the following boundary equation of motion2

γrA ˙̄µA = 0 (3.27)

for the angular component of µk. Note that the next-to-leading order (1/r2) of (3.23)
implies

γrA(µ̇A +DAχ̇
(1)) = 0 , (3.28)

where χ(1) is the coefficient of the (1/r)-term in the expansion of χ. This leads to the Dirac
equation on the 2-sphere for χ̇(1), from which one also gets that the zero mode of χ(1) is
an arbitrary function of time, but its higher spherical harmonic components are constant
in time.

We can thus conclude that the action (3.18) is a true extremum on the classical histo-
ries, which obey the Rarita-Schwinger equations of motion supplemented by (compatible)
dynamical equations on the first terms in the development of χ.

3.4 Pre-symplectic form

In order to discuss the canonical implementation of the Poincaré symmetry, we first need
to understand the Poisson bracket structure of the theory.

The kinetic term (3.17) in the action yields the pre-symplectic form

Ω = − i
ˆ
d3xdV χ

Tγkm∂kdV µm + i

2

ˆ
d3xdV µ

T
k γ

kmdV µm

+ i

2α
˛
d2SkdV χ

TγkmdV µm . (3.29)

2Here, xA denotes the coordinates on the 2-sphere at infinity. In spherical coordinates, for example,
xA = (θ, ϕ) labels the two angles on the sphere.
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Note that since χ and µm are anticommuting, the one-forms dV χ and dV µm are commuting.
In particular, dV µTk γkmdV µm is not zero. If the one-form a is commuting, then dV (a∧b) =
dV a ∧ b+ a ∧ dV b.

This closed 2-form Ω form is degenerate, i.e., there exists a non-vanishing Y such that
ιY Ω = 0. Our goal in this subsection is to determine all the null vectors Y of Ω.

The equation ιY Ω = 0 reads

0 = − i
ˆ
d3xΥTγkm∂kdV µm − i

ˆ
d3xdV χ

Tγkm∂kΣm

+ i

2

ˆ
d3xΣT

k γ
kmdV µm + i

2

ˆ
d3xdV µ

T
k γ

kmΣm

+ i

2α
˛
d2SkΥTγkmdV µm + i

2α
˛
d2SkdV χ

TγkmΣm , (3.30)

with
δY χ = Υ , δY µm = Σm . (3.31)

The terms involving dV χ and dV µm are independent and must vanish separately. Thus,
one must have

0 = −i
ˆ
d3xΥTγkm∂kdV µm + i

ˆ
d3xΣT

k γ
kmdV µm + i

2α
˛
d2SkΥTγkmdV µm , (3.32)

and
0 = −i

ˆ
d3xdV χ

Tγkm∂kΣm + i

2α
˛
d2SkdV χ

TγkmΣm . (3.33)

The first line can be transformed into

0 = i

ˆ
d3x

(
∂kΥT + ΣT

k

)
γkmdV µm − i

(
1− α

2

) ˛
d2SkΥTγkmdV µm , (3.34)

which will be zero for arbitrary dV µm satisfying the boundary conditions if the bulk and
surface terms separately vanish. Vanishing of the bulk term imposes Σk = −∂kΥ from
which it follows in particular that the leading term Υ in Υ is constant since Σk = O(r−2),
i.e., Υ = C + Υ(1)(xA)

r +O(r−2). The constant C is unrestricted if α = 2 but must vanish
for the surface term involving dV µm to be zero when α 6= 2.

Vanishing of the bulk term in the second equation (3.33) is an immediate consequence
of Σk = −∂kΥ, and vanishing of its surface term implies that Υ(1) is also a constant (α 6= 0),
so that we get as zero vector fields Y of Ω

Υ = C + C(1)

r
+O(r−2) , Σk = −∂kΥ , (α = 2) (3.35)

(and C = 0 if α 6= 2). When the pre-symplectic form is degenerate, the correspondence
between phase space Hamiltonian vector fields and phase space functions is amended in an
obvious way. A phase space vector field X is still called Hamiltonian if LXΩ = 0, which is
equivalent to dV (ιXΩ) = 0. This implies ιXΩ = −dV F for some function F that is defined
up to a constant and that is necessarily constant on the null submanifolds generated by
the null vectors Y , since 0 = ιY dV F = LY F . Conversely, a phase space function F defines
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a Hamiltonian vector field only if it is constant on the null submanifolds generated by the
null vectors Y , and the corresponding Hamiltonian vector field is then defined only up
to a combination of the Y ’s. A recent instance where such a phenomenon occurs in an
asymptotic analysis was studied in [47].

One can get a true symplectic structure by factoring out the null leaves of the pre-
symplectic form. This can be done by imposing a gauge condition that freezes the possibility
to move along the null leaves. One way to achieve this in our case is to impose that χ
reduces to its first two terms in the asymptotic expansion, and that the coefficients χ and
χ(1) have no zero mode.

3.5 Canonical realization of the boosts — Need for a new surface field

It is straightforward to check that the pre-symplectic form is invariant under spatial rota-
tions and translations, given by (3.6) and (3.7) with ξ = a⊥ and ξi = bijx

j + ai, so that
these transformations are canonical by construction with a well-defined generator. The
situation is more complicated for boosts, for which

δξχ = −ξγ0γ
m∂mχ+ 1

2∂jξγ
jγ0χ , δξµp = ξγ jk

p γ0∂jµk + 1
2∂jξγ

jγ0µp −
1
2ξγpγ0γ

jk∂jµk ,

(3.36)
with

ξ = bix
i, (ξk = 0) . (3.37)

The pre-symplectic form changes (off-shell) by the following surface term

dV (ιξΩ) = i

2

˛
d2SkξdV µ

T
mγ

kmnγ0dV µn + i

2α
˛
d2Skξ∂mdV χ

Tγ0γ
kdV µ

m . (3.38)

The first term vanishes once the boundary conditions are taken into account, while the
second term is finite. The variation of the symplectic form then becomes

dV (ιξΩ) = i

2α
˛
d2Skξ∂mdV χ

Tγ0γ
kdV µ

m , (3.39)

and is not zero, even if one takes into account that the constraints hold asymptotically.
In order for the boosts to be canonical transformations, we must find a way to get an

invariant pre-symplectic form

dV (ιξΩ) = 0⇒ ιξΩ = −dV Pξ , (3.40)

which would allow us to define a canonical generator Pξ for boosts. To that end, we
extend the phase space by adding new boundary degrees of freedom, the variation of which
compensates the non-vanishing of (3.39).

Integrability of the boost generator. The non-vanishing of the right hand side of
equation (3.39) is due to the presence of the field χ. This problem does not arise in the
supergravity analysis in [15], where the boost generator for the spin-3/2 field is immediately
integrable, as there is no χ field in that construction. However, keeping the field χ is crucial
in our case in order to obtain an infinite-dimensional set of improper gauge symmetries at
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spatial infinity. In analogy with the case of electromagnetism [36], we cure the problem
by introducing an additional boundary field in the action principle to make the symplectic
form invariant under boosts.

More specifically, we consider a vector-spinor field ρk depending only on the angles of
the 2-sphere “at infinity”, which extends into the bulk as

ρk = ρk

r2 +O
( 1
r3

)
, (3.41)

endowed with the following symplectic form

Ω0 = − i2α
˛
d2Sk dV χ

Tγ0dV ρ
k . (3.42)

We postulate the following infinitesimal transformation law under the Poincaré group,

δb,Y ρ
r = −γrDA(bµA)− 1

2bγAµ
A+ bγ0γ

ADAρ
r + 3

2bγ
rγ0ρ

r− 1
2∂Abγ

Aγ0ρ
r +LY ρr , (3.43)

and for the angular components δb,Y ρA = 0. (See appendix B for spherical coordinates).
The change of the symplectic form (3.42) is given by

dV (ιξΩ0) = − i2α
˛
d2Sk

(
dV δξχ

Tγ0dV ρ
k + dV χ

Tγ0dV δξρ
k
)
. (3.44)

For the boosts, this expression becomes, up to a total derivative on the 2-sphere,

dV (ιξΩ0) = − i2α
˛
d2Skξ∂mdV χ

Tγ0γ
kdV µ

m . (3.45)

Therefore, the total change of the symplectic form under boosts vanishes

dV (ιξΩ) + dV (ιξΩ0) = 0 , (3.46)

which makes the boosts canonical transformations.
The introduction of the field ρk modifies the kinetic term by a boundary contribution

which one easily reads from Ω0, leading to

K = i

ˆ
d3x

(
χ̇Tγmn∂mµn + 1

2µ
T
mγ

mnµ̇n

)
+ i

2α
˛
d2Sm

(
χTγmnµ̇n − χTγ0ρ̇

m) . (3.47)

The action principle with the additional boundary field now reads

S =
ˆ
dt

[
K − i

ˆ
d3x

(1
2µ

T
k γ0γ

kmn∂mµn + ψT0 γ
mn∂mµn

)]
. (3.48)

It is easy to see that the action is invariant under arbitrary shifts of ρm,

δσρ
m = σm , δσχ = 0 , δσµm = 0 , (3.49)

where the parameter σm falls off as

σm = σm
r2 +O

( 1
r3

)
. (3.50)
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It is useful to make the orthogonal decomposition of σm as

σm = σnm + θ
m (3.51)

where nm = ∂
∂r is normal to the sphere and θmnm = 0. Invariance of the action forces σ to

be time-independent but imposes no condition on θ
m because only the radial component

ρr of ρm appears in the action. The angular components of ρm are absent and hence pure
gauge degrees of freedom that can be “gauged away” (in fact they are already “away”!).
The transformations parametrized by θm are proper gauge transformations and there is
only one degree of freedom in ρm, namely, its radial component ρr.

The change of variables ρm → ωm with

ωm = ρm + γ0γ
mnµn ⇒ ωm = ρm + γ0γ

mnµn (3.52)

brings the kinetic term K to the simpler form

K = i

ˆ
d3x

(
χ̇Tγmn∂mµn + 1

2µ
T
mγ

mnµ̇n

)
− i

2α
˛
d2Smχ

Tγ0ω̇
m , (3.53)

which clearly involves only the radial component ωr. Henceforth, we keep the formulations
both in terms of ρk and ωk, as they enlighten different aspects of the theory.

Pre-symplectic structure. Given the boundary modification of the action, the pre-
symplectic form becomes

Ω = −i
ˆ
d3xdV χ

Tγkm∂kdV µm + i

2

ˆ
d3xdV µ

T
k γ

kmdV µm

+ i

2α
˛
d2SkdV χ

TγkmdV µm −
i

2α
˛
d2Sk dV χ

Tγ0dV ρ
k . (3.54)

Note that in terms of ωk, the surface terms are combined into a single term:

− i

2α
˛
d2Sk dV χ

Tγ0dV ω
k . (3.55)

The null vectors Y are accordingly given by new expressions that are easily worked out. A
direct computation shows that these are now (with δY χ = Υ, δY µm = Σm and δY ρk = Rk),

Υ = C(1)

r
+O(r−2) , Σk = −∂kΥ , Rr = γrA∂AΥ , RA = yA , (3.56)

where yA are arbitrary functions. In particular, the zero mode of χ is not pure gauge
anymore since the constant C of (3.35) is now forced to be equal to zero in (3.56) even
when α = 2. This is because the zero mode of ρr is present in the new action.

Equations of motion. The boundary modification of the action leads also to a slight
change in the boundary equations of motion.

Variation of the complete action (3.48) with respect to ρk yields χ̇ = 0. This boundary
equation of motion is a consequence of the unchanged equations of motion obtained by
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varying µk, with the only additional information that the zero mode of χ should also be
constant in time (instead of being arbitrary).

If one varies the complete action (3.48) with respect to χ, one gets

δS = i

2α
˛
d2Smδχ

T (γmnµ̇n − γ0ρ̇
m) , (3.57)

modulo the constraint. The boundary equation of motion is thus now given by

γrA ˙̄µA − γ0 ˙̄ρr = 0 ⇔ ω̇
r = 0 , (3.58)

an equation that can be viewed as fixing ρ̇ in terms of ˙̄µA.

3.6 Poincaré generators

The addition of the new boundary field renders all the Poincaré transformations canonical,
and consequently leads to well-defined generators through its relation with the symplec-
tic form

ιXΩ = −dVG . (3.59)

With the expression of the infinitesimal Poincaré transformations of the fields writ-
ten above,

δξχ = −ξγ0γ
m∂mχ+ 1

2∂jξγ
jγ0χ+ Lξχ , (3.60)

δξµp = ξγ jk
p γ0∂jµk + 1

2∂jξγ
jγ0µp−

1
2ξγpγ0γ

jk∂jµk + Lξµp . (3.61)

δb,Y ρ
r = −γrDA(bµA)− 1

2bγAµ
A + bγ0γ

ADAρ
r + 3

2bγ
rγ0ρ

r − 1
2∂Abγ

Aγ0ρ
r + LY ρr

⇔ δb,Y ω
r = bγ0γ

ADAω
r + 3

2bγ
rγ0ω

r − 1
2∂Abγ

Aγ0ω
r + LY ωr , (3.62)

one finds that the Poincaré generators are explicitly given by

Pξ,ξi =
ˆ
d3x

(
ξHRS + ξiHRS

i

)
+ BRS

ξ,ξi , (3.63)

HRS = i

2
[
µTk γ

kmnγ0∂mµn + ∂k(µTj γjγ0µ
k) + ∂k(χTγkγ0γ

mn∂mµn)

+ 2∂kχTγ0γ
kγpq∂pµq

]
, (3.64)

HRS
i = −i

[1
2∂m(µTnγmnµk) + 1

2µ
T
mγ

mn∂kµn + 1
8∂p(µ

T
mγ

mnγ p
k µn)

+ ∂kχ
Tγmn∂mµn + 1

4∂p(χ
Tγ p

k γ
mn∂mµn)

]
, (3.65)

BRS
ξ,ξi = i

2α
˛
d2Sk

(
δξχ

Tγ0ω
k + LξiχTγ0ω

k
)
. (3.66)

where ωk is defined in (3.52). In the ω-formulation, BRS
ξ,ξi gets simplified to

i

4α
˛
d2Sk

[
∂jξ χ

Tγjωk − 2ξn∂nχTγ0ω
k + 1

2∂pξqχ
Tγpqγ0ω

k
]
. (3.67)
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3.7 A twofold of infinite-dimensional fermionic improper gauge symmetries

Similarly, the canonical generator of the proper and improper gauge symmetries reads

GRS
ε,ε,σk = i

ˆ
d3x

(
εT + εT

)
γkm∂kµm

+ i

2α
˛
d2Sk

(
εTγkmµm − χTγkm∂mε− εTγ0ρ

k + χTγ0σ
k
)
, (3.68)

generating the infinitesimal transformation laws of the fields

δεχ = ε , (3.69)
δεµm = ∂mε , (3.70)
δσmρ

m = σm . (3.71)

One can rewrite the generator (3.68) in terms of the new variable ωk as

GRS
ε,ε,σk ≡ G

RS
ε,ε,ζk

= i

ˆ
d3x

(
εT + εT

)
γkm∂kµm + i

2α
˛
d2Sk

(
χTγ0ζ

k − εTγ0ω
k
)
, (3.72)

where we have set ζk = σk + γ0γ
km∂mε, so that the transformations of the field ωk read

δζmω
m = ζm . (3.73)

The bulk term of the charge (3.72) is proportional to the constraint. The surface integral
to which the charge reduces on-shell does not vanish if the leading terms ε and ζ

r in
the expansions of ε and ζr are not zero. These are the improper gauge symmetries. By
contrast, the transformations with ε 6= 0 but ε = ζ

r = 0 are proper gauge transformations.
Thus, the symmetry turns out to be two-fold (if α 6= 0), labelled by the leading order
parameters ε and ζr.

Using the proper gauge transformations, one can force the field χ to reduce to its
leading term,

χ = χ , (3.74)

which justifies why it is called a surface field.
It is curious that the bulk term of the gauge transformations with ε = −ε identically

vanishes. These are improper when ζ
r 6= 0. Thus, there exist improper gauge transfor-

mations that are generated by pure boundary terms. This is possible because the (pre-
)symplectic form involves non trivial surface contributions, as it happens in the case of the
duality-invariant formulation of electromagnetism [47].

We shall use both parametrizations GRS
ε,ε,σk

and GRS
ε,ε,ζk

of the gauge generators. The
first one is the natural one when one starts from the Rarita-Schwinger formulation of the
action, as we have done here. The second one is more adapted to the description of the
independent improper gauge symmetries, since these are just characterized by the simple
conditions ε = 0, ζr = 0, which take a “non-diagonal form” that mixes the parameters in
the other parametrization.
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3.8 Asymptotic symmetry algebra

The bracket algebra of the canonical generators of gauge and Poincaré symmetries reads

{Pξ1,ξi1
, Pξ2,ξi2

} = Pξ̂,ξ̂i , (3.75)

{Pξ,ξi , GRS
ε,ε,σk} = GRS

ε̂,ε̂,σ̂k , (3.76)

{GRS
τ1 , G

RS
τ2 } = C{τ1,τ2} , (3.77)

where τi = {εi, εi, σki } with i = 1, 2, and where the hatted parameters of the commutator
transformations are given by

ξ̂ = ξi1∂iξ2 − ξi2∂iξ1 , (3.78)

ξ̂i = ξj1∂jξ
i
2 − ξ

j
2∂jξ

i
1 + ξ1∂

iξ2 − ξ2∂
iξ1 , (3.79)

ε̂ = −ξγ0γ
m∂mε+ 1

2∂jξγ
jγ0ε+ Lξε (3.80)

ε̂ = −ξγ0γ
m∂mε+ 1

2∂mξγ
mγ0ε+ Lξε , (3.81)

σ̂r = −γrDA(bDA
ε)− 1

2bγAD
A
ε+ bγ0γ

ADAσ
r

+ 3
2bγ

rγ0σ
r − 1

2∂Abγ
Aγ0σ

r + LY σr . (3.82)

Only the asymptotic parts τ̂ of the gauge parameters — the ones defining the improper
transformations — are actually meaningful since one has always the freedom of adding
proper gauge transformations to τ̂ . This freedom can be frozen by fixing the gauge and
using the Dirac bracket, but the meaningful, gauge invariant, asymptotic information on
the algebra can already be extracted without going through this procedure.

The bracket algebra of the generators of the improper gauge transformations provides
a projective representation of the algebra of the transformations themselves, with a central
extension C{τ1,τ2} that can be non trivial [13, 48]. Here, non-trivial central charges are
allowed because the fermionic improper gauge symmetries are abelian and indeed do occur.
They are given by

C{ε,ε} = −C{ε,ε} = i

2α
˛
d2Skε

Tγkm∂mε , (3.83)

C{ε,σk} = −C{σk,ε} = − i2α
˛
d2Skε

Tγ0σ
k . (3.84)

A consistency check is that the central charge vanishes when one of the gauge trans-
formations is a proper gauge symmetry, i.e., in the specific case considered here, ζk =
σk + γ0γ

km∂mε = 0.
We close this section with two observations.

• The leading orders ε, ε, σr of the gauge parameters, characterizing the improper gauge
transformations, are functions on the 2-sphere transforming in infinite-dimensional
representations of the Lorentz group that can be read off from (3.80)–(3.82). (Co-
variantly) Constant spinor fields define a four-dimensional irreducible representation,
the “zero mode” representation.
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• To remove the zero mode of the fermionic improper gauge symmetry parametrized
by ε, one could impose the transverse condition ∂kρ

k = 0 on ρk. This is consistent
with Lorentz invariance and makes the zero mode of χ pure gauge.

More on this will be discussed elsewhere.

4 Rigid supersymmetry: spin-(1, 3
2) multiplet

We shall now analyze the compatibility of the infinite-dimensional asymptotic symmetries
with the super-Poincaré algebra in four dimensions. We start with the simplest case of the
spin-(1, 3

2) multiplet under rigid supersymmetry, which corresponds to the sum of the free
Maxwell and free Rarita-Schwinger actions

S = SEM + SRS , (4.1)

where [36]

SEM =
ˆ
dt

{ ˆ
d3x

(
πiȦi + πΨΨ̇

)
−
˛
d2SiA

iΨ̇

−
ˆ
d3x

(1
2π

iπi + 1
4F

ijFij + λπΨ −At∂iπi
)}

, (4.2)

and the Rarita-Schwinger action SRS is given in (3.48).
Under rigid supersymmetry the fields transform as

δε0Ak = iεT0 γ0∂kχ+ iεT0 γ0µk , (4.3)

δε0π
k = −iεklmεT0 γ0γ5∂lµm , (4.4)

δε0µk = 1
2γmγkW

mγ0ε0 , (4.5)

δε0χ = 0 , (4.6)

where W k = πk − εklm∂lAmγ5, and ε0 is a constant spinor parameter. These transforma-
tions leave the piece of the total action (4.1) involving only the fields Ak, πk, µk and χ

invariant up to non-vanishing boundary terms. We shall remedy this problem by defining
the transformation laws of the boundary fields Ψ and ρk in S so that the symplectic form
and the action be invariant under rigid supersymmetry.

This will not be sufficient for fully solving the problem, and an extra step must be
simultaneously taken. As all rigid symmetries are defined up to a gauge symmetry, we
have the freedom to add a gauge transformation to the supersymmetry transformations -
denote it by ν - which can depend on the fields. The variation of the symplectic form under
supersymmetry and the accompanying gauge transformation reads dV (ιε0Ω+ινΩ). It turns
out that one cannot define the supersymmetry transformations of the boundary fields so
that dV (ιε0Ω) vanishes by itself. It is also necessary to add a U(1) gauge transformation
with a field dependent parameter

ν(ε0) ≡ FT ε0 , (⇒ν(ε0) = 0 if ε0 = 0) , (4.7)
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where F is a function of the fermionic fields specified below. Only then can one achieve

dV (ιε0Ω + ινΩ) = 0 , (4.8)

a condition that is necessary for integrability of the supersymmetry charges.

4.1 Invariance under rigid supersymmetry

The symplectic form for the multiplet (1, 3
2) is explicitly given by

Ω = ΩEM + ΩRS , (4.9)

where

ΩEM =
ˆ
d3x

(
dV π

kdVAk + dV πΨdV Ψ
)
−
˛
d2SkdVA

kdV Ψ , (4.10)

ΩRS = −i
ˆ
d3xdV χ

Tγkm∂kdV µm + i

2

ˆ
d3xdV µ

T
k γ

kmdV µm

+ i

2α
˛
d2Sk

(
dV χ

TγkmdV µm − dV χTγ0dV ρ
k
)
. (4.11)

Under rigid supersymmetry, it changes as

dV (ιε0Ω) =
ˆ
d3x (dV δε0πΨdV Ψ + dV πΨdV δε0Ψ)

+
˛
d2Sm

(
idV π

mdV χ
Tγ0ε0 − dVAmdV δε0Ψ

)
− αi

˛
d2Sm

(1
2dV χ

TdVW
mγ0ε0 + dV χ

Tγ0dV δε0ρ
m
)
. (4.12)

The second term can be made zero by imposing the following transformation law for the
boundary field ρm

δε0ρ
m = 1

2γ0W
mγ0ε0 ⇔ δε0ω

m = 0 . (4.13)

The first term can be removed by applying the field dependent U(1) gauge transformation

dV (ινΩ) = i

˛
d2SmdV π

mdV ν , (4.14)

with ν = χTγ0ε0, and choosing δε0πΨ = δε0Ψ = 0. We then obtain that

dV (ιε0Ω + ινΩ) = 0 . (4.15)

4.2 Canonical realization of the asymptotic symmetries

Once supersymmetry is defined on the fields as above, the theory is invariant under the rigid
super-Poincaré transformations. It is also invariant under the improper gauge symmetries
of the spin-1 and spin-3

2 fields, which are unaffected by the construction. We examine their
generators in turn.
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4.2.1 Super-Poincaré algebra

The canonical generators of Poincaré transformations are given by the sum

Pξ, ξi = PEM
ξ,ξi + PRS

ξ,ξi , (4.16)

since the spin-1 and spin-3
2 fields are uncoupled. The charges are given by

PEM
ξ,ξi =

ˆ
d3x(ξHEM + ξiHEM

i ) + BEM
ξ,ξi , (4.17)

HEM = −Ψ∂iπi −Ai∂iπΨ + 1
2πiπ

i + 1
4FijF

ij , (4.18)

HEM
i = Fijπ

j −Ai∂jπj + πΨ∂iΨ , (4.19)

BEM
ξ,ξi =

˛
d2x

[
b(Ψ̄π̄r +

√
γ̄ĀBD̄

BAr) + Y B(ĀBπ̄r +
√
γ̄Ψ̄∂BĀr)

]
. (4.20)

for the electromagnetic field [32, 36] and PRS
ξ,ξi given in (3.63) for the Rarita-Schwinger field.

Infinitesimal Poincaré transformations for Maxwell fields read [32, 36]

δξAi = ξπi + LξAi , (4.21)
δξπ

i = ∂j(ξF ji) + Lξπi , (4.22)
δξΨ = ∂i(ξAi) + ξi∂iΨ , (4.23)
δξπΨ = ξ∂iπ

i + ∂i(ξiπΨ) ≈ 0 , (4.24)

and the ones for Rarita-Schwinger fields are given in (3.60), (3.61), (3.62).
The canonical generator of rigid supersymmetry follows from the relation ιε0Ω +

ιν(ε0)Ω = −dVGSUSY
ε0 and is given by

GSUSY
ε0 = i

ˆ
d3xµTkW

kγ0ε0 . (4.25)

Infinitesimal rigid supersymmetry transformations of all the fields in the multiplet are then

δε0Ak = iεT0 γ0µk , (4.26)

δε0π
k = −iεklmεT0 γ0γ5∂lµm , (4.27)

δε0µk = 1
2γmγkW

mγ0ε0 , (4.28)

δε0ρ
m = 1

2γ0W
mγ0ε0 , (4.29)

δε0Ψ = δε0χ = 0 . (4.30)

It is straightforward to verify that the super-Poincaré algebra is satisfied

{Pξ1,ξi1
, Pξ2,ξi2

} = Pξ̂,ξ̂i , (4.31)

{Pξ,ξi , GSUSY
ε0 } = GSUSY

ε̂0 , (4.32)
{GSUSY

ε10
, GSUSY

ε20
} = Pâ,âi , (4.33)
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where the hatted parameters of the commutator transformation are

ε̂0 = 1
2∂mξγ

mγ0ε0 + Lξε0 , (4.34)

â = i

2(ε20)T ε10 , âi = − i2(ε20)Tγiγ0ε
1
0 , (4.35)

with ξ̂ and ξ̂i given in (3.78) and (3.79), respectively.
It is worth noting that the bracket between two rigid supersymmetry generators (4.33)

correctly closes to spatial and time translations, as expected for the canonical realization
of the super-Poincaré algebra on the spin-(1, 3/2) multiplet.

4.2.2 Infinite-dimensional algebra of improper gauge symmetries

Since the two fields in the supermultiplet do not interact, the symmetry sector of the im-
proper gauge symmetries is just the direct sum of the asymptotic angle-dependent u(1)
transformations of the Maxwell field and the asymptotic angle-dependent fermionic trans-
formations of the Rarita-Schwinger field. The canonical generators of improper gauge
symmetries are unchanged. For completeness, we reproduce them here, together with their
algebra,

GEM
µ,ν =

ˆ
d3x(µπΨ − ν∂iπi) +

˛
d2Sm(νπm − µAm) , (4.36)

GRS
ε,ε,σk = i

ˆ
d3x

(
εT + εT

)
γkm∂kµm

+ i

2α
˛
d2Sk

(
εTγkmµm − χTγkm∂mε− εTγ0ρ

k + χTγ0σ
k
)
. (4.37)

Transformation laws for the Maxwell field under gauge symmetries read

δµ,νΨ = µ , δµ,νAi = ∂iν , δµ,νπ
i = δµ,νπΨ = 0 , (4.38)

while the ones for Rarita-Schwinger fields are given in (3.69), (3.70), (3.71).
The brackets of improper gauge generators with Poincaré read

{Pξ,ξi , GEM
µ,ν } = GEM

µ̂,ν̂ , (4.39)
{Pξ,ξi , GRS

ε,ε,σk} = GRS
ε̂,ε̂,σ̂k , (4.40)

where the parameters transform as

ν̂ = ξµ+ Lξρ , µ̂ = ∂m(ξ∂mν) + Lξνm , (4.41)

with ε̂, ε̂ and σ̂ given in (3.80), (3.81) and (3.82), respectively.
The brackets between improper gauge symmetries form a centrally extended Abelian

gauge algebra

{GEM
µ1,ν1 , G

EM
µ2,ν2} = 0 , (4.42)

{GEM
µ,ν , G

RS
τ } = 0 , (4.43)

{GRS
τ1 , G

RS
τ2 } = C{τ1,τ2} , (4.44)

where τi = {εi, εi, σki } with i = 1, 2, and C{τ1,τ2} are given in (3.83) and (3.84).
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5 Rigid supersymmetry: spin-(2, 3
2) multiplet

We now turn to the spin-(2, 3
2) multiplet, which is the relevant one for analyzing the super-

BMS extensions in four dimensions. The procedure parallels the one we followed for the
spin-(1, 3

2) multiplet.
The system is described by the sum of the free spin-2 (Pauli-Fierz theory) and free

Rarita-Schwinger actions
S = SPF + SRS . (5.1)

The Hamiltonian action for the free spin-2 theory on a Minkowski background reads

SPF =
ˆ
dt d3x

(
πij ḣij − E − nG − niGi

)
, (5.2)

where the energy density and the Hamiltonian constraints associated to the Lagrange
multipliers n and ni, are given by

E = πijπij −
π2

2 + 1
4∂khij∂

khij − 1
2∂jh

ij∂khik + 1
4∂ih∂

ih+ 1
2hG , (5.3)

G = 4h− ∂i∂jhij , (5.4)

Gi = −2∂jπji , (5.5)

respectively. This theory is left invariant by the following gauge transformations

δζnhij = ∂iζj + ∂jζi , (5.6)
δζπ

ij = ∂i∂jζ − δij4ζ . (5.7)

The Rarita-Schwinger action SRS is given in (3.48).
The piece of the total action (5.1) containing only the fields hmn, πmn, µm and χ is

invariant, up to a non-vanishing boundary terms, under rigid supersymmetry transforma-
tions of the form

δε0hmn = i

2ε
T
0 γ0γ(m∂n)χ+ i

2ε
T
0 γ0γ(mµn) , (5.8)

δε0π
mn = i

4ε
T
0 (∂m∂nχ− δmn∆χ)

+ i

4ε
T
0 ∂

(mµn) − i

4δ
mnεT0 ∂kµ

k + i

4ε
T
0 γ0γ5γ

(mεn)pq∂pµq , (5.9)

δε0µp = 1
4∂mhnpγ

mnε0 + 1
2Kmpγ0γ

mε0 , (5.10)

and δε0χ = 0, where ε0 is a constant spinor parameter. In particular, the kinetic term is
invariant but only up to a non-vanishing surface term.

The solution to the problem of achieving strict invariance is reached again by suitably
choosing the transformation law under rigid supersymmetry for the boundary field ρk in
SRS, and by performing appropriate field dependent spin-2 gauge transformations with
parameters

ζ(ε0) ≡ iεT0 F , ζn(ε0) ≡ iε
T
0 Fn , (⇒ζ(ε0) = ζn(ε0) = 0 if ε0 = 0) , (5.11)

where F and Fn are functions of the fermionic dynamical fields, whose specific form is
given in the next subsection.
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5.1 Invariance under rigid supersymmetry

The symplectic form for the multiplet (2, 3
2) reads as follows

Ω = ΩPF + ΩRS , (5.12)

where

ΩPF =
ˆ
d3xdV π

mndV hmn , (5.13)

and ΩRS is given in (4.11).
The change in the symplectic form under rigid supersymmetry is given by

dV (ιε0Ω) = − i2

˛
d2Sm∂ndV χ

T ε0(dV hmn − δmndV h)− i

2

˛
d2SmdV π

mndV χ
Tγ0γnε0

+ i

2α
˛
d2SmdV χ

Tγ0

(
− 1

4γ0γ
mnγpq∂pdV hnqε0 + 1

2dV π
mnγnε0 + dV δε0ρ

m
)
.

(5.14)

The term proportional to α can be made zero, by imposing that the boundary field ρm

transforms as

δε0ρ
m = 1

4γ0γ
mnγpq∂phnqε0 −

1
2π

mnγnε0 ⇔ δε0ω
m = 0 . (5.15)

The remaining terms in (5.14) can be removed through the following field dependent spin-2
gauge transformations

dV (ιζ,ζkΩ) =
ˆ
d3x

(
dV δζπ

mndV hmn + dV π
mndV δζkhmn

)
= 2
˛
d2Sm∂ndV ζ(dV hmn − δmndV h) + 2

˛
d2SmdV π

mndV ζn , (5.16)

with parameters

ζ(ε0) = i

4χ
T ε0 , ζn(ε0) = i

4χ
Tγ0γ

nε0 . (5.17)

We then obtain that the symplectic form is invariant

dV (ιε0Ω + ιζ,ζnΩ) = 0 , (5.18)

which allows to define a canonical generator for rigid supersymmetry.

5.2 Canonical realization of the asymptotic symmetries

5.2.1 Super-BMS algebra of [14, 15]

The Poincaré canonical generators are again just the sum of the individual Poincaré gen-
erators and read

Pξ, ξi = PPF
ξ,ξi + PRS

ξ,ξi , (5.19)
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where [38]

PPF
ξ,ξi =

ˆ
d3x(ξHPF + ξiHPF

i ) + BPF
ξ,ξi , (5.20)

HPF = πijπij −
π2

2 + 1
4∂khij∂

khij − 1
2∂jh

ij∂khik + 1
4∂ih∂

ih

+ ∂l

(
− hij∂lhij − hil∂ih+ 3

2h
lj∂ihij + 1

2hij∂
ihjl

)
− 1

2h(∂i∂jhij −4h) (5.21)

HPF
i = −2∂j(πjkhik) + πjk∂ihjk , (5.22)

BPF
ξ,ξi =

˛
d2x

{
b

[√
γ̄

(
− 1

2 h̄h̄rr + 1
4 h̄

2 − 3
4 h̄ABh̄

AB
)

+ 2√
γ̄
π̄rAπ̄

rA
]

+ 2YAπ̄rBh̄AB
}
,

(5.23)

and PRS
ξ,ξi is written in (3.63). Infinitesimal Poincaré transformations for Pauli-Fierz fields

are given by

δξhij = 2ξ
(
πij −

1
2δijπ

)
+ Lξhij , (5.24)

δξπ
ij = 1

2ξ(4h
ij + ∂i∂jh− 2∂k∂(ihj)k)

1
2∂kξ

[
∂khij − 2∂(ihj)k + δij(2∂lhkl − ∂kh)

]
− 1

2δ
ijξ(4h− ∂i∂jhij) + Lξπij , (5.25)

while the ones for Rarita-Schwinger fields are given in (3.60), (3.61) and (3.62).
The rigid supersymmetry canonical generator GSUSY

ε0 , determined through ιε0Ω +
ιζ,ζnΩ = −dVGSUSY

ε0 turns out to be given by

GSUSY
ε0 = i

ˆ
d3x

[
− 1

2µ
T
mπ

mnγ0γnε0−
1
4µ

T
m(∂nhmn−∂mh)ε0−

1
4ε

T
0 γ

iγjrsµs∂rhij

]
. (5.26)

It reproduces through the Poisson bracket the above supersymmetry transformation laws
for the fields accompanied by the above field-dependent spin-2 gauge transformations, i.e.,
explicitly,

δε0hmn = i

2ε
T
0 γ0γ(mµn) , (5.27)

δε0π
mn = i

4ε
T
0 ∂

(mµn) − i

4δ
mnεT0 ∂kµ

k + i

4ε
T
0 γ0γ5γ

(mεn)pq∂pµq , (5.28)

δε0µp = −1
4∂mhnpγ

mnε0 −
1
2Kmpγ0γ

mε0 , (5.29)

δε0ρ
m = 1

4γ0γ
mnγpq∂phnqε0 −

1
2π

mnγnε0 , (5.30)

and δε0χ = 0.
The canonical generator of the bosonic improper gauge transformations, which are the

proper BMS supertranslations in the free theory [38], reads

GT,W =
ˆ
d3x

[
ζ(4h− ∂i∂jhij)− 2ζi∂jπji

]
+ 2
˛
d2x

[√
γ̄T h̄rr +W (π̄rr − π̄AA)

]
. (5.31)
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Infinitesimal gauge transformations are then given by

δζhij = ∂iζj + ∂jζi , (5.32)
δζπ

ij = ∂i∂jζ − δij4ζ , (5.33)

with

ζ =T +O
(1
r

)
, ζi = ∂i(rW ) +O

(1
r

)
, (5.34)

where the set of functions {T even,W odd} turns out to generate BMS supertranslations. The
remaining parts {T odd,W even} drop out trivially of the charge due to the parity conditions
on the bosonic fields [32, 33], so these generate proper gauge transformations.

One may then easily derive the Poisson bracket algebra of the generators of the super-
Poincaré and BMS supertranslation generators, to get

{Pξ1,ξi1
, Pξ2,ξi2

} = Pξ̂,ξ̂i , (5.35)

{Pξ,ξi , GT,W } = GT̂ ,Ŵ , (5.36)

{GT1,W1 , GT2,W2} = 0 , (5.37)
{Pξ,ξi , GSUSY

ε0 } = GSUSY
ε̂0 , (5.38)

{GSUSY
ε10

, GSUSY
ε20

} = Pâ,âi , (5.39)

where the parameters transform as

T̂ = −3bW − ∂AbD̄AW − bD̄AD̄
AW + Y A∂AT , (5.40)

Ŵ = −bT + Y A∂AW , (5.41)

ε̂0 = 1
2∂mξγ

mγ0ε0 + Lξε0 , (5.42)

â = − i4(ε20)T ε10 , âi = − i4(ε20)Tγ0γ
iε10 , (5.43)

with ξ̂ and ξ̂i given in (3.78) and (3.79), respectively.
This is just the super-BMS algebra of [14, 15], with the finite number of fermionic

generators GSUSY
ε0 parametrized by a constant spinor (“restricted super-BMS algebra”). To

make the identification of the algebras, one must recall how the Poincaré translations and
the improper spin-2 gauge symmetries of the linear theory combine to form the full set of
BMS super-translations [38].

5.2.2 Infinite-dimensional fermionic gauge algebra

But, as we have shown above, there are more fermionic symmetries, which take the
form of improper gauge transformations. These asymptotic symmetries are clearly un-
affected by the inclusion of the free spin-2- field. The full algebra, containing also these
fermionic symmetries, is a graded extension of the BMS algebra with an infinite number
of fermionic generators.
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The canonical generator of the improper fermionic gauge symmetries was worked
out above,

GRS
ε,ε,σk = i

ˆ
d3x

(
εT + εT

)
γkm∂kµm (5.44)

+ i

2α
˛
d2Sk

(
εTγkmµm − χTγkm∂mε− εTγ0ρ

k + χTγ0σ
k
)
. (5.45)

The brackets of this generator with the restricted super-BMS generators read

{Pξ,ξi , GRS
ε,ε,σk} = GRS

ε̂,ε̂,σ̂k , (5.46)

{GT,W , GRS
ε,ε,σk} = 0 , (5.47)

{GSUSY
ε0 , GRS

ε,ε,σk} = 0 , (5.48)

where ε̂, ε̂ and σ̂ are given in (3.80), (3.81) and (3.82), respectively. The brackets between
the improper fermionic gauge symmetries form a centrally extended Abelian gauge algebra,
written in (3.77).

6 Conclusions

In this paper, we have consistently relaxed the boundary conditions at spatial infinity of
the Rarita-Schwinger field in such a way that the resulting fermionic improper gauge sym-
metries form an infinite-dimensional algebra parametrized by two independent functions
of the angles. Poincaré invariance is maintained in the sense that not only the boundary
conditions are Poincaré invariant but also the action itself so that the Poincaré transfor-
mations have well-defined (integrable and finite) generators. To achieve this result, we
introduced boundary degrees of freedom at infinity, which modify the symplectic struc-
ture by boundary terms. We have also shown that the analysis can be extended to cover
the supersymmetric free (1, 3/2) and (2, 3/2) multiplets and that it is compatible with
supersymmetry. In the (2, 3/2) case, one finds a symmetry superalgebra which is graded
extension of the BMS algebra with an infinite number of fermionic generators.

It remains to be explored whether similar results still hold when interactions are
switched on, i.e. in supergravity. As the Yang-Mills example shows, this is not auto-
matic [39]. Work along these lines is in progress.
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A Notations and conventions

Spinor fields will be mostly considered in two different orthonormal frames. One is the
“cartesian frame” formed by the vectors { ∂

∂xi
}. The other is the “spherical frame” given

by {e(a)
k ∂
∂xk
≡ ∂

∂r ,
1
r
∂
∂θ ,

1
r sin θ

∂
∂ϕ} in spherical coordinates.
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When dealing with the cartesian frame, it is natural to use cartesian coordinates. The
associated Christoffel symbols and spin connection clearly vanish.

We give the corresponding formulas in the spherical frame, and use spherical coordi-
nates. Indices in parentheses refer to the local frames, while indices without parentheses
are coordinate indices. The matrix (e(a)

k) is given in spherical coordinates by

(e(a)
k) =

 1 0 0
0 1

r 0
0 0 1

r sin θ

 . (A.1)

The non-vanishing Christoffel symbols in spherical coordinates are

Γθθr = Γθrθ = 1
r
, Γrθθ = −r , (A.2)

Γϕϕr = Γϕrϕ = 1
r
, Γrϕϕ = −r sin2 θ , (A.3)

Γϕϕθ = Γϕθϕ = cos θ
sin θ , Γθϕϕ = − cos θ sin θ , (A.4)

while the spin connection coefficients ω(a)(b)m = −ω(b)(a)m defined as

ω(a)(b)m = e(a)k|me
k

(b) , (A.5)

fulfill the triad condition

∇me k
(a) = e k

(a) |m − ω
(b)

(a) me
k

(b) = 0 , (A.6)

where e k
(a) |m = e k

(a) ,m + Γkmne n
(a) . The spin connections coefficients are explicitly given

in the spherical frame by

ω(a)(b)r = 0, (A.7)
ω(1)(2)θ = 1 = −ω(2)(1)θ, ω(1)(3)θ = 0 = −ω(3)(1)θ, ω(2)(3)θ = 0 = −ω(3)(2)θ,

ω(1)(2)ϕ = 0 = −ω(2)(1)ϕ, ω(1)(3)ϕ = sin θ = −ω(3)(1)ϕ, ω(2)(3)ϕ = cos θ = −ω(3)(2)ϕ,

The γ-matrices are

γ(0) =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

 , γ(1) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (A.8)

γ(2) =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 γ(3) =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 , (A.9)

where γ(r) coincides in the spherical frame with γ(1). The spin covariant derivative of the
γ-matrices in spherical coordinates γm, and in the local frame γ(a),

∇kγm = ∂kγk − Γnkmγn −
1
4ω(c)(d)k[γ(c)(d), γm] = 0 , (A.10)

∇kγ(a) = ∂kγ(a) −
1
4ω(c)(d)k[γ(c)(d), γ(a)]− ω(a)(b)kγ

(b) = 0 , (A.11)
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vanish. The covariant derivative of spinor fields and vector-spinor fields are respectively
given by

∇kχ = ∂kχ−
1
4ω(a)(b)kγ

(a)(b)χ , (A.12)

∇kµm = ∂kµm − Γnkmµn −
1
4ω(a)(b)kγ

(a)(b)µm. (A.13)

B Asymptotic conditions and charges in spherical coordinates

In spherical coordinates, the radial and angular components of the spinor fields fall-off as

χ = χ+O
(1
r

)
, (B.1)

µr = µr
r2 +O

( 1
r3

)
, µA = µA

r
+O

( 1
r2

)
,

ρr = ρr
r2 +O

( 1
r3

)
, ρA = ρA

r
+O

( 1
r2

)
. (B.2)

The Poincaré parameters behave as

ξ = rb+ T , ξr = W , ξA = Y A + 1
r
D
A
W , (B.3)

where the asymptotic Killing equations read

D
A
D
B
W + γABW = 0 , DADBb+ γABb = 0 , LY γAB = 0 , ∂AT = 0 . (B.4)

The functions on the sphere, b and Y A describe the homogeneous Lorentz transformations,
while T and W describe translations. Here, DA denotes the covariant derivative with
respect to the metric on the 2-sphere. The gauge parameters behave as

ε = ε+O
(1
r

)
, (B.5)

ε = ε

r
+O

( 1
r2

)
, (B.6)

σr = σr
r2 +O

( 1
r3

)
, (B.7)

σA = σA
r

+O
( 1
r2

)
. (B.8)

The explicit form of the constraint in spherical coordinates at leading order reads

S = 1
r

(
γAB∇AµB−

1
2γ1γ

AµA − γrγA∇Aµr − µr
)

+O
( 1
r2

)
, (B.9)

where ∇A stands for the spin-covariant derivative on the 2-sphere.
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Poincaré and fermionic gauge charges in spherical coordinates. Poincaré gener-
ators are given by

Pξ,ξi =
ˆ
d3x

(
ξHRS + ξiHRS

i

)
+ BRS

ξ,ξi , (B.10)

where the bulk pieces of the generators can be read off from (3.63), and the asymptotic
charges become

BRS
ξ,ξi = i

2α
˛
d2x

(
δbχ

Tγ0ω
r + LY χTγ0ω

r
)
. (B.11)

Infinitesimal transformation laws under Poincaré are determined by

δχ = −bγ0γ
ADAχ+ 3

2bγ
rγ0χ+ 1

2∇Bbγ
Bγ0χ+ LY χ , (B.12)

δµr = bγ0γ
r
(
γBC∇BµC + γrγBµB

)
+ 1

2bγ
rγ0µr + 1

2∇Bbγ
Bγ0µr

+1
2bγ0γ

r
(
γAB∇AµB − γrγA∇Aµr − µr

)
+ LY µr , (B.13)

δµA = bγ0γ
BC
A ∇BµC + bγ0γ

rγ B
A

(
∇Bµr −

1
2γ

rγBµr −
1
2µB

)
+1

2bγ0γA

(
γBC∇BµC − γrγB∇Bµr − µr

)
+ LY µA , (B.14)

δρr = −γrDA(bµA)− 1
2bγAµ

A + bγ0γ
ADAρ

r + 3
2bγ

rγ0ρ
r

−1
2∂Abγ

Aγ0ρ
r + LY ρr , (B.15)

δρA = 0 . (B.16)

The surface charges of improper gauge symmetries are

BRS
ε,ε,σk = i

2α
˛
d2x

(
εTγrγAµA − χTγrγADAε− εTγ0ρ

r + χTγ0σ
r
)
, (B.17)

where the infinitesimal transformation laws under gauge symmetries at leading order are
given by

δεχ = ε , δεµr = −ε , δεµA = ∂Aε , δσρr = σr , δσρA = σA . (B.18)
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