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1 Introduction

The Standard Model (SM) of particle physics is an effective theory valid to some mass
scale Λ. New physics at the scale Λ may address important issues like the origin of the
electroweak scale, µEW . In the SM, electroweak symmetry breaking arises from a complex
fundamental Higgs scalar. Between µEW and Λ, an effective field theory (EFT) framework
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can be used to describe new physics in a model independent way. In this approach, the
leading terms are given by the SM, and corrections from an underlying theory beyond the
SM are described by higher dimension operators,

L =
∑
i

CiOi . (1.1)

The operators Oi are SU(3)C × SU(2)L × U(1)Y invariant and are constructed only from
SM fields. The Wilson coefficients (WCs) Ci, that determine the size of the contribution of
operators Oi, can be calculated by matching the effective theory with the underlying theory.

Analyses of higher dimension operators [1] have begun anew in the study of the SM as
an effective field theory. Due to the phenomenological success of the SM gauge theory and
the Higgs mechanism, the most studied EFT is the Standard Model Effective Field Theory
(SMEFT) [2–4], which respects the SM gauge symmetry with only SM field content. The
one-loop renormalization group evolution (RGE) of all dimension-six operators in SMEFT
have been calculated in refs. [5–7].

In the SMEFT framework, new physics is considered to be heavy with Λ� µEW . How-
ever, many experiments point to new physics with a mass scale well below the electroweak
scale, and many experiments to search for new light states are planned. Since these states
do not appear in SMEFT, its Lagrangian must be supplemented by interactions between
these new states and the SM fields. Possible new states are right-handed neutrinos that
are sterile under SM gauge interactions. The masses of the sterile neutrinos can vary over
a large range and can be heavy or light compared to the electroweak scale. Light sterile
neutrinos have been invoked to explain many phenomena; see ref. [8] for a review.

In this paper, we consider the sterile neutrinos to be light so that they appear as explicit
degree of freedoms in the EFT framework. We use the Standard Model Neutrino Effective
Field Theory (SMNEFT) which augments SMEFT with right-handed (RH) neutrinos n [9–
13]. The RGE of some SMNEFT operators have been calculated. The mixing between the
bosonic operators has been calculated in refs. [14, 15], and the one-loop RGE of a subset
of four-fermion operators are given in ref. [16]. In this work, we present the gauge terms
of the one-loop RGE of all dimension-six operators in SMNEFT.

The paper is organized as follows. In section 2, we define SMNEFT and establish
our notation. Our diagrammatic approach to calculate the one-loop anomalous dimension
matrix (ADM) is described in section 3. In section 4, we present the ADM. In section 5, we
study operator mixing using the leading-log approximation. We discuss some phenomeno-
logical implications in section 6, and summarize in section 7. Details of our calculations
are provided in an appendix.

2 SMNEFT

In this section, we present SMNEFT. Neutrinos may be Dirac or Majorana. In the case
of Dirac neutrinos, νR ≡ n, with n and the left-handed neutrino νL in the same spinor
νD = (νL, n)T , and of the same mass. In the Majorana case, n and νL are components of
two different spinors, νM = (νL, νcL)T , nM = (nc, n)T , and can have different masses. Our
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results are valid for both cases because we focus on the gauge sector. Without specifying any
possible Majorana and Dirac mass terms, the dimension-six B and L conserving SMNEFT
Lagrangian is

L
(6)
SMNEFT ⊃ LSM + in̄/∂n+

∑
i

CiOi , (2.1)

where Ci are the WCs with the scale of new physics absorbed in them, and the SM La-
grangian is given by

LSM = = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+(Dµφ)†(Dµφ) +m2φ†φ− λ

2 (φ†φ)2

+i(¯̀/D`+ ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd)

−(¯̀Yeeφ+ q̄Yuuφ̃+ q̄Yddφ+ h.c.) . (2.2)

Here, φ̃j = εjk(φk)∗, and the Higgs vacuum expectation value is 〈φ〉 = v/
√

2 with v =
246GeV. The covariant derivative and field strength tensors are defined by

Dµ = ∂µ + ig1yBµ + ig2
τ I

2 W
I
µ + ig3

T a

2 Gaµ , (2.3)

Bµν = ∂µBν − ∂νBµ , (2.4)

W I
µν = ∂µW

I
ν − ∂νW I

µ − g2ε
IJKW J

µW
K
ν , (2.5)

Gaµν = ∂µG
a
ν − ∂νGaµ − g3f

abcGbµG
c
ν , (2.6)

where g1, g2, and g3 are the gauge couplings of U(1)Y , SU(2)L, and SU(3)C , respectively,
and y is the hypercharge. εIJK and fabc are the SU(2)L and SU(3)C structure constants,
respectively.

The 16 baryon and lepton number conserving (∆B = ∆L =0 ) operators involving the
field n in SMNEFT are shown in table 1 [12] in the WCxf convention [17].

3 Formalism

The anomalous dimensions of an operator are given by the infinite pieces, i.e., the coeffi-
cients of the 1/ε terms of the diagrams. In this section, we define our procedure to calculate
the ADM, and relegate the details of our calculations to appendix A. To compute the ADM
we use the master formulae presented in ref. [18]. We compute one-loop contributions to
the ADM due to SM gauge couplings. The four-fermion operators (ψ4) in table 1 can be
divided into four categories: (R̄R)(R̄R), (L̄L)(R̄R), (L̄R)(R̄L), and (L̄R)(L̄R) on the basis
of the chiralities of the fields. The remaining operators are of the form ψ2φ3, ψ2φ2D and
ψ2Xφ. We focus on the ψ4-ψ4 and ψ4 - ψ2φ2D operator mixing since the mixing between
ψ2φ3, ψ2φ2D and ψ2Xφ has been computed in the ref. [15] using the background field
method. We have checked that the resulting 5× 5 matrix is consistent with the result for
the corresponding SMEFT operators [7] which have a similar ADM structure.
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(R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

Ond (n̄pγµnr)(d̄sγµdt) Oqn (q̄pγµqr)(n̄sγµnt) O`n`e (¯̀j
pnr)εjk(¯̀k

set)

Onu (n̄pγµnr)(ūsγµut) O`n (¯̀
pγµ`r)(n̄sγµnt) O(1)

`nqd (¯̀j
pnr)εjk(q̄ksdt)

One (n̄pγµnr)(ēsγµet) O(3)
`nqd (¯̀j

pσµνnr)εjk(q̄ksσµνdt)

Onn (n̄pγµnr)(n̄sγµnt) O`nuq (¯̀j
pnr)(ūsq

j
t )

Onedu (n̄pγµer)(d̄sγµut)

ψ2φ3 ψ2φ2D ψ2Xφ

Onφ (φ†φ)(l̄pnrφ̃) Oφn i(φ†
↔
Dµφ)(n̄pγµnr) OnW (¯̀

pσ
µνnr)τ I φ̃W I

µν

Oφne i(φ̃†Dµφ)(n̄pγµer) OnB (¯̀
pσ

µνnr)φ̃Bµν

Table 1. The 16 SMNEFT operators involving RH neutrinos n in the Warsaw basis convention
which conserve baryon and lepton number (∆B = ∆L = 0). The flavor indices ‘prst‘ on the
operators are suppressed for simplicity. The fundamental SU(2)L indices are denoted by i, j, and I
is the adjoint index.

For the ψ4 operators the bare and renormalized operators are related by

〈 ~O〉(0) = Z
− 1

2
ψ1
Z
− 1

2
ψ2
Z
− 1

2
ψ3
Z
− 1

2
ψ4

Ẑ〈 ~O〉 = Z〈 ~O〉 , (3.1)

where the superscript (0) labels the bare matrix elements. Here, Ẑ and Zψ are the renor-
malization constants for the operator ~O and the fields ψ, respectively. In the MS scheme
at one-loop level, the renormalization constants take the form,

(Zm)ψ = 1 + αm
4π

1
ε
amψ , (3.2)

(Zm)ij = δij + αm
4π

1
ε
bmij , (3.3)

(Ẑm)ij = δij + αm
4π

1
ε
cmij , (3.4)

with ψ = {q, u, d, `, e} and Zn = 1. The coupling constants are defined by αm = g2
m/4π

with m = 1, 2, 3 for U(1)Y , SU(2)L and SU(3)C , respectively. The coefficients of the
UV divergent parts of the diagrams (αm/(4πε)), amψ , bmij and cmij , are independent of the
gauge couplings. Note that cmij can be related to amψ and bmij via eq. (3.1). The anomalous
dimension matrices are defined by the RG equations,

Ċi(µ) = 16π2µ
d

dµ
Ci(µ) = (γC)ijCj(µ), (3.5)

where γC = γT with γ given by the matrix Ẑ as

γ

16π2 = Ẑ−1 dẐ

d ln µ
, (3.6)

and which can be directly expressed in terms of amψ and bmij :

γij = −2g2
m

 ∑
ψ=ψ1,...ψ4

1
2a

m
ψ δij + bmij

 . (3.7)
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×
×

ψ2 ψ1

ψ4 ψ3(a)

Xµ

×
×

ψ2 ψ1

ψ4 ψ3(b)

Xµ
×
×

Xµ

ψ2 ψ1

ψ4 ψ3(c)

Figure 1. Current-current topologies with four-fermion insertions. Here Xµ represents the gauge
bosons Bµ, Wµ and Gµ. The fermion fields q, u, d, `, e and n are represented by ψI .

×
×

ψ2 ψ1

ψ4 ψ3(d)

Xµ

×
×

ψ2 ψ1

ψ4 ψ3(e)

Xµ

Figure 2. Penguin topologies with four-fermion (d) and boson (e) insertions.

Here, the sum is over external fields ψ1 to ψ4 in a given operator, and summation over m
is implicit. Therefore, in order to compute the ADM for a set of operators, we need to
calculate the coefficients amψ and bmij from the field strength renormalization and operator
renormalization, respectively.

For the mixing between ψ4-ψ4 and ψ4-ψ2φ2D, the current-current (figure 1) and pen-
guin (figure 2) topologies mediated by the gauge bosons Xµ = Bµ,Wµ, Gµ, or the scalar,
have to be calculated. These diagrams can be computed by easily generalizing the master
formulae of ref. [18] to SMNEFT; see eqs. (A.1)–(A.7).

In appendix A, we present explicit calculations of the ADMs for Ond−Ond, Oφn−Ond,
Onedu −Onedu and O`n`e −O`n`e operator mixing. The same method is applicable to the
other operators. It is worth noting that for most of the cases the structure of the ADMs
of the SMNEFT operators are similar to those of SMEFT operators [7]. Therefore, our
SMNEFT results also serve as an important cross-check for the corresponding gauge terms
appearing in the SMEFT ADMs.

4 Anomalous dimensions

We now present terms for the one-loop ADM that depend on the gauge couplings α1, α2 and
α3 for all 16 SMNEFT operators. The general formula for the ADM is given by eq. (3.7)
and details of the calculations of the Feynman diagrams to extract amψ and bmij can be found
in appendix A. The ADM for bosonic SMNEFT operators is given in ref. [15]. The ADM
of most SMNEFT operators can be obtained from the ADM of the SMEFT operators [7]
with a similar structure. For example, the ADM for the SMNEFT operators O`nuq, O(1)

`nqd
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and O(3)
`nqd, can be obtained by replacing e with n, and switching u and d in the SMEFT

operators O`edq, O(1)
`equ and O(3)

`equ. We use this procedure as a cross-check when available.
No such comparison is possible for Onedu, which has a structure not present in SMEFT.

4.1 ψ4

The ADM for four-fermion operators are provided below.

4.1.1 (R̄R)(R̄R)

Ċ nd
prst

=
(4

3Ncy
2
dC nd

prww

+ 4
3NcydyuC nu

prww

+ 4
3ydyeC ne

prww

+ 8
3NcydyqC qn

wwpr

+ 8
3ydy`C `n

wwpr

+4
3ydyhCφnpr

)
g2

1δst , (4.1)

Ċ nu
prst

=
(4

3NcyuydC nd
prww

+ 4
3Ncy

2
uC nu

prww

+ 4
3yuyeC ne

prww

+ 8
3NcyuyqC qn

wwpr

+ 8
3yuy`C `n

wwpr

+4
3yuyhCφnpr

)
g2

1δst , (4.2)

Ċ ne
prst

=
(4

3NcyeydC nd
prww

+ 4
3NcyeyuC nu

prww

+ 4
3y

2
eC ne

prww

+ 8
3NcyeyqC qn

wwpr

+ 8
3yey`C `n

wwpr

+4
3yeyhCφnpr

)
g2

1δst , (4.3)

Ċnedu
prst

= ((yd − yu)2 + ye(ye + 8yu − 2yd))g2
1Cnedu

prst

, (4.4)

Ċ nn
prst

= 0 , (4.5)

4.1.2 (L̄L)(R̄R)

Ċ qn
prst

=
(4

3NcyqydC nd
stww

+ 4
3NcyqyuC nu

stww

+ 4
3yqyeC ne

stww

+ 8
3Ncy

2
qC qn

wwst

+ 8
3yqy`C `n

wwst

+4
3yqyhCφnst

)
g2

1δpr , (4.6)

Ċ `n
prst

=
(4

3Ncy`ydC nd
stww

+ 4
3Ncy`yuC nu

stww

+ 4
3y`yeC ne

stww

+ 8
3Ncy`yqC qn

wwst

+ 8
3y

2
`C `n

wwst

+4
3y`yhCφnst

)
g2

1δpr . (4.7)

4.1.3 (L̄R)(R̄L) and (L̄R)(L̄R)

Ċ`n`e
prst

=
(

(y2
e − 8yey` + 6y2

` )g2
1 −

3
2g

2
2

)
C`n`e
prst

− (4y`(ye + y`)g2
1 − 3g2

2)C`n`e
srpt

, (4.8)

Ċ(1)
`nqd
prst

= ((y2
d − 2yd(y` + 4yq) + (y` + yq)2)g2

1 − 8g2
3)C(1)

`nqd
prst

,

+(−24y`(yd + yq)g2
1 + 18g2

2)C(3)
`nqd
prst

, (4.9)
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Ċ(3)
`nqd
prst

=
(
− 1

2y`(yd + yq)g2
1 + 3

8g
2
2

)
C

(1)
`nqd
prst

+
(

(y2
d − 6ydy` + y2

` + 6y`yq + y2
q )g2

1 − 3g2
2 + 8

3g3
2
)
C

(3)
`nqd
prst

, (4.10)

Ċ`nuq
prst

= (((y` + yu)2 + yq(yq − 2y` − 8yu))g2
1 − 8g2

3)C`nuq
prst

. (4.11)

4.2 ψ2φ3

Ċnφ
pr

=−
(

9y2
` g

2
1 + 27

4 g
2
2

)
Cnφ
pr

− 6(4y2
hy`g

3
1 − yhg1g

2
2)CnB

pr

+ 3(4yhy`g2
1g2 − 3g3

2)CnW
pr

. (4.12)

4.3 ψ2φ2D

Ċφn
pr

=
(4

3y
2
hCφn

pr

+ 4
3NcydyhC nd

prww

+ 4
3NcyuyhC nu

prww

+ 4
3yeyhC ne

prww

+ 8
3NcyqyhC qn

wwpr

+8
3y`yhC `n

wwpr

)
g2

1 , (4.13)

Ċφne
pr

= (−3y2
eCφne

pr

)g2
1 . (4.14)

4.4 ψ2Xφ

ĊnW
pr

= ((3CF,2 − b0,2)g2
2 − 3y2

` g
2
1)CnW

pr

+ 3y`g1g2CnB
pr

, (4.15)

ĊnB
pr

= (−3CF,2g2
2 + (3y2

` − b0,1)g2
1)CnB

pr

+ 12CF,2y`g1g2CnW
pr

, (4.16)

where the quadratic Casimir CF,2 = 3
4 . b0,1 = −41

6 and b0,2 = 19
6 are the first coefficients

in the g1 and g2 β−functions, respectively.

5 Operator mixing

We study operator mixing by solving the RG equations presented above in the leading-log
approximation. The solution to these equations for running between scales Λ and µ is

Ci(µ) =
(
δij +

(γC)ij
16π2 ln µ

Λ

)
Cj(Λ) . (5.1)

Depending upon the mixing structure the operators are divided into five subsets form-
ing 6 × 6, 3 × 3, 3 × 3, 2 × 2, and 2 × 2 ADMs. Defining δCi(µ) = Ci(µ) − Ci(Λ), the
leading-log solution for the first group reads

δC nd
prst

δC nu
prst

δC ne
prst

δC qn
stpr

δC `n
stpr

δCφn
pr


(µ)

= α1
4π ln µ

Λ



4
9δst −

8
9δst

4
9δst −

4
9δst

4
9δst −

2
9δst

−8
9δst

16
9 δst −

8
9δst

8
9δst −

8
9δst

4
9δst

4
3δst −

8
3δst

4
3δst −

4
3δst

4
3δst −

2
3δst

−2
9δst

4
9δst −

2
9δst

2
9δst −

2
9δst

1
9δst

2
3δst −

4
3δst

2
3δst −

2
3δst

2
3δst −

1
3δst

−2
3

4
3 −2 2

3 −2
3

1
3





C nd
prww

C nu
prww

C ne
prww

C qn
wwpr

C `n
wwpr

Cφn
pr


(Λ)

. (5.2)
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Summation over the repeated w index is implicit. Next, we have the 3× 3 structure,
δCnφ

pr

δCnW
pr

δCnB
pr


(µ)

= 1
16π2 ln µ

Λ


−9

4(g2
1 + 3g2

2) −3g2(g2
1 + 3g2

2) 3g1(g2
1 + g2

2)
0 − 1

12(9g2
1 + 11g2

2) −3g1g2
2

0 −9g1g2
2

9
4(91

27g
2
1 − g2

2)



Cnφ
pr

CnW
pr

CnB
pr


(Λ)

.

(5.3)
The operators C(1)

`nqd and C(3)
`nqd mix according to

δC(1)
`nqd
prst

δC(3)
`nqd
prst


(µ)

= ln µ

Λ

[
α1
4π

( 1
3 −2
− 1

24 −
10
9

)
+ α2

4π

(
0 18
3
8 −3

)
+ α3

4π

(
−8 0
0 8

3

)]
C(1)
`nqd
prst

C(3)
`nqd
prst


(Λ)

.

(5.4)
The operator C`n`e mix with different flavors:δC`n`eprst

δC`n`e
srpt


(µ)

= α1 + α2
4π ln µ

Λ

(
−3

2 −3
−3 −3

2

)C`n`eprst

C`n`e
srpt


(Λ)

. (5.5)

The remaining operators do not mix:
δCnedu

prst

δC`nuq
prst

δCφne
pr


(µ)

= ln µ

Λ

α1
4π

−4
−2

3
−3

+ α3
4π

0
−8

0




Cnedu
prst

C`nuq
prst

Cφne
pr


(Λ)

. (5.6)

To study the running numerically, we set {prst} = {1111} for illustration. We list the
16× 16 ADM in the basis

~C =
{
Cnd, Cnu, Cne, Cqn, C`n, Cφn, Cnφ, CnW , CnB,

C
(1)
`nqd, C

(3)
`nqd, Cnedu, C`n`e, C`nuq, Cφne, Cnn

}
. (5.7)

The gauge couplings at 1TeV are set to g1 = 0.36, g2 = 0.64, g3 = 1.1 [19]. The 16 WCs
at MZ and at Λ = 1TeV are related by

δC(MZ)
10−3 =



−0.87 1.7 −0.87 0.87 −0.87 0.43
1.7 −3.5 1.7 −1.7 1.7 −0.87
−2.6 5.2 −2.6 2.6 −2.6 1.3
0.44 −0.87 0.44 −0.44 0.44 −0.22
−1.3 2.6 −1.3 1.3 −1.3 0.65
1.3 −2.6 3.9 −1.3 1.3 −0.65

46 39 −8.8
0 7.1 5.2
0 16 −0.99

150 −110
−2.2 −29

7.9
−0.43

150
5.9

0



C(Λ) .

(5.8)
The running effects in the 6 × 6 and 3 × 3 blocks are small because only electroweak

gauge couplings contribute. The mixing in the 2×2 block is large as it is governed by QCD.
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6 Phenomenology

We briefly comment on some phenomenological consequences of our results; for earlier work
see refs. [20–25]. Semileptonic decays of the b quark are topical given that both charged
current and neutral current decay measurements are hinting at new physics. SMNEFT
operators lead to the charged current decay b→ c`n̄, which contributes at the hadronic level
to B → D(∗)τ ν̄τ . They also generate the neutral current decay b→ sn̄n which contributes
at the hadronic level to B → K(∗) + invisible decays, which is interpreted as B → K(∗)ν̄ν

in the SM. In the lepton sector, of interest are the FCNC decays τ → µ + invisible and
µ → e + invisible. To make contact with low-energy phenomenology, we first run the RG
equations down to the weak scale and then match to the low-energy effective field theory
extended with right-handed neutrinos n (LNEFT). Depending on the process, further RG
running must be performed from the electroweak scale to the appropriate low energy scale
such as the mb scale for B meson decay and the mτ scale for τ decay. Note that the
sterile neutrino can mix with the active neutrinos, which in itself produces interesting
phenomenology, but to keep our discussion simple we neglect this mixing. We select the
following four types of process and list the SMNEFT operators relevant to them:

• B → D(∗)τ ν̄τ : Onedu, O`nuq, O(1)
`nqd, and O

(3)
`nqd

• B → K(∗)νν̄ & K → πνν̄: Ond, Oqn, O(1)
`nqd, and O

(3)
`nqd

• t→ cνν̄ & c→ uνν̄: Onu, Oqn, and O`nuq

• τ → µνν̄ & µ→ eνν̄: One, O`n, and O`n`e

The FCNC operators, Ond, Onu, One, Oqn and O`n do not run when only gauge interactions
are considered. So we do not study these operators and focus on the five operators, Onedu,
O`nuq, O(1)

`nqd, O
(3)
`nqd and O`n`e. Interestingly, O`nuq, O(1)

`nqd and O(3)
`nqd can contribute to

both the charged current and neutral current decays, and to coherent elastic neutrino-
nucleus scattering [16]. For certain flavor combinations, O`n`e can produce both τ → µ

and µ→ e decays.
Before studying the low-energy phenomenology, we first run the operators down from

the new physics scale Λ to the weak scale µEW . By using the leading-log approximation
in eq. (5.1), we relate the values of the WCs at MZ to their values at 1TeV:

Cnedu
prst

C`nuq
prst

C
(1)
`nqd
prst

C
(3)
`nqd
prst


(MZ)

=


1.0 0 0 0
0 1.1 0 0
0 0 1.1 −0.11
0 0 −2.2× 10−3 0.97





Cnedu
prst

C`nuq
prst

C
(1)
`nqd
prst

C
(3)
`nqd
prst


(1 TeV)

, (6.1)

C`n`eprst

C`n`e
srpt


(MZ)

=
(

1.0 −1.3× 10−2

−1.3× 10−2 1.0

)C`n`eprst

C`n`e
srpt


(1 TeV)

. (6.2)
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To study the phenomenology at energies below the electroweak scale one can no longer
use SMNEFT because of electroweak symmetry breaking. Instead, LNEFT, which respects
the SU(3)C ×U(1)Q symmetry must be employed to study the processes listed above. We
introduce the relevant LNEFT operators and match them with the SMNEFT operators at
the weak scale. The SMNEFT operators can generate both neutral and charged current
processes after electroweak symmetry breaking. The induced LNEFT operators in the
convention of ref. [13] are displayed in table 2 and their matching relations at tree level are

CV,RRnedu
prst

= Cnedu
prst

, CS,RLenud
prst

= C`nuq
prst

, CS,RRenud
prst

= −C(1)
`nqd
prδt

Vsδ
Vst

,

CT,RRenud
prst

= −C(3)
`nqd
prδt

Vsδ
Vst

, CS,RRenνe
prst

= −C`n`e
prst

, (6.3)

CS,RLνnuu
prst

= C`nuq
prsδ

V ∗tδ , CS,RRνndd
prst

= C
(1)
`nqd
prst

, CT,RRνndd
prst

= C
(3)
`nqd
prst

, CS,RRνnee
prst

= C`n`e
prst

.

(6.4)
where we chose a flavor basis in which the left-handed down-type quarks and charged
leptons are aligned. The flavor basis for up-type quarks in terms of the mass basis is given
by V †uL, where V is the SM CKM matrix. The neutrino fields are in the flavor basis
for convenience. In the next subsections, we study the low-energy phenomenology of the
listed processes.

6.1 B → D(∗)τ ν̄

The CC LNEFT operators induced by the SMNEFT operators
Onedu

α332
,O`nuq

3α23
,O(1)

`nqd
3α23

and O(3)
`nqd
3α23

can affect this process; see table 2. Here, α is the fla-

vor index of the right-handed neutrino n. Accounting for QED and QCD running below
the weak scale, the one-loop RGE for the four LNEFT operators is given by

ĊV,RRnedu
α332

ĊS,RLenud
3α23

ĊS,RRenud
3α23

ĊT,RRenud
3α23


(µ)

=

e2


−4 0 0 0
0 4

3 0 0
0 0 4

3 8
0 0 1

6 −
40
9

+ g2
3


0 0 0 0
0 −8 0 0
0 0 −8 0
0 0 0 8

3






CV,RRnedu
α332

CS,RLenud
3α23

CS,RRenud
3α23

CT,RRenud
3α23


(µ)

, (6.5)

where e is the QED coupling. Using eq. (5.1), we relate the four LNEFT operators at the
mb and MZ scales:

CV,RRnedu
α332

CS,RLenud
3α23

CS,RRenud
3α23

CT,RRenud
3α23


(mb)

=


1.0 0 0 0
0 1.2 0 0
0 0 1.2 −1.5× 10−2

0 0 −3.2× 10−4 0.93





CV,RRnedu
α332

CS,RLenud
3α23

CS,RRenud
3α23

CT,RRenud
3α23


(MZ)

. (6.6)
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SMNEFT NC LNEFT CC LNEFT

Onedu
prst

— OV,RRnedu
prst

= (n̄RpγµeRr)(d̄RsγµuRt)

O`nuq
prst

OS,RLνnuu
prst

= (ν̄LpnRr)(ūRsuLt) OS,RLenud
prst

= (ēLpnRr)(ūRsdLt)

O(1)
`nqd
prst

OS,RRνndd
prst

= (ν̄LpnRr)(d̄LsdRt) OS,RRenud
prst

= (ēLpnRr)(ūLsdRt)

O(3)
`nqd
prst

OT,RRνndd
prst

= (ν̄LpσµνnRr)(d̄LsσµνdRt) OT,RRenud
prst

= (ēLpσµνnRr)(ūLsσµνdRt)

O`n`e
prst

OS,RRνnee
prst

= (ν̄LpnRr)(ēLseRt) OS,RRenνe
prst

= (ēLpnRr)(ν̄LseRt)

Table 2. Operator structure matching between SMNEFT and LNEFT.

The mixing between OS,RRenud and OT,RRenud is small as it is induced by QED. However, the
corresponding mixing of the SMNEFT operators is relatively strong as it comes from elec-
troweak effects.

6.2 B → K(∗)νν̄ & K → πνν̄

B → K(∗) + invisible decay, which would be interpreted as B → K(∗)νν̄ in the SM, is
produced by OS,RRνndd and OT,RRνndd . The flavor structures are {prst} = {αβ23}. The process
K → πνν̄ can also be generated with the flavor structures, {prst} = {αβ12}. The ADM
for OS,RRνndd and OT,RRνndd is

ĊS,RRνndd
αβ23

ĊT,RRνndd
αβ23


(µ)

=
[
e2
(
−2

3 0
0 2

9

)
+ g2

3

(
−8 0
0 8

3

)]
CS,RRνndd
αβ23

CT,RRνndd
αβ23


(µ)

. (6.7)

The WCs at mb and MZ are related by
CS,RRνndd
αβ23

CT,RRνndd
αβ23


(mb)

=
(

1.2 0
0 0.92

)
CS,RRνndd
αβ23

CT,RRνndd
αβ23


(MZ)

. (6.8)

While there is no mixing between the NC LNEFT operators, their corresponding SMNEFT
operators can mix above the weak scale. For K → πνν̄ one has to run down to a scale
appropriate for kaon decays.

6.3 t→ cνν̄ & c→ uνν̄

The NC LNEFT operator OS,RLνnuu induced by O`nuq can generate the rare decay t → cνν̄

with {prst} = {αβ23}. The RG equation for OS,RLνnuu below the weak scale is

ĊS,RLνnuu (µ) =
[
e2
(
− 8

3

)
+ g2

3(−8)
]
CS,RLνnuu (µ) , (6.9)

and
CS,RLνnuu (µ = mb) = 1.2 CS,RLνnuu (µ = MZ) . (6.10)
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6.4 τ → µνν̄ & µ→ eνν̄

The decays τ → µ + invisible and µ → e + invisible are generated by OS,RRνnee and OS,RRenνe .
Note that the flavor is mixed for O`n`e. The flavor combination {prst} = {1132} can
generate both τ → µ and µ→ e decays. The relevant operators are OS,RRνnee

1132
, OS,RRenνe

1132
, OS,RRνnee

3112

and OS,RRenνe
3112

. The running at one-loop order is given by



ĊS,RRνnee
1132

ĊS,RRenνe
3112

ĊS,RRenνe
1132

ĊS,RRνnee
3112


(µ)

= e2


−6 4
0 2

−6 4
0 2





CS,RRνe
1132

CS,RReννe
3112

CS,RReννe
1132

CS,RRνe
3112


(µ)

. (6.11)

The WCs at mτ and MZ are related by


CS,RRνnee
1132

CS,RRenνe
3112

CS,RRenνe
1132

CS,RRνnee
3112


(mτ )

=


1.0 −9.9× 10−3

0 1.0
1.0 −9.9× 10−3

0 1.0





CS,RRνnee
1132

CS,RRenνe
3112

CS,RRenνe
1132

CS,RRνnee
3112


(MZ)

. (6.12)

The small mixing between these operators is a consequence of QED. For muon decay, one
needs to run down to the muon mass.

6.5 Electroweak precision observables

The operators Oφn and Oφne give rise to RH Z-couplings to n and RH W couplings to
n and leptons. The RH Z couplings to n can be parameterized in terms of the Wilson
coefficient Cφn as

δLZ = −gZ2 v2[Cφn]pr (n̄pγµnr) Zµ , (6.13)

where g2
Z = g2

1 + g2
2. Therefore, Cφn contributes to the Z-width via Γ(Z → nn̄). Similary,

the RH W couplings can be parameterized in terms of Cφne as

δLW = − g2

2
√

2
v2[Cφne]pr (n̄pγµer) W+

µ + h.c. . (6.14)

Note that such leptonic RH W couplings are absent in SMEFT because the RH neutrino
field is absent. The modified Z and W couplings affect electroweak precision observ-
ables. Interestingly, while Oφne does not mix with the other operators as can be seen
from eq. (4.14), Oφn has mixing with other operators; see eq. (4.13). Hence, electroweak
precision observables can place indirect constraints on the Ond, Onu, One, Oqn and O`n
operators that mix with Oφn, by a global fit.
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7 Summary

We presented the gauge terms of the one-loop anomalous dimension matrix for the
dimension-six operators of SMNEFT; see eqs. (5.2) to (5.6). We found that renormal-
ization group evolution introduces interesting correlations among observables in different
sectors. We discussed a few phenomenological implications of our results. To make contact
with low energy observables we also included the matching of SMNEFT to LNEFT at the
weak scale and RGE below the weak scale. However, to be confident that cancellations of
terms between independent operators are absent, the full one-loop RGE must be calculated.
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A Derivation of anomalous dimensions

A.1 Master formulae for the ADM

In this appendix, we collect the master formulae [18] for computing the ADM in the context
of low energy effective field theory due to one-loop QCD corrections and generalize them
to the electroweak interactions and use them for deriving ADMs in SMNEFT. Consider
an insertion of a four-fermion ψ4 operator (ψ̄α,i1 (V̂1)αβ,ijΓ1ψ

β,j
2 )⊗ (ψ̄γ,k3 (V̂2)γδ,klΓ2ψ

δ,l
4 ) into

the diagrams in figure 1 (current-current topology) and 2(d) (penguin topology). Here,
V̂1 ⊗ V̂2 represent the SU(3)C and SU(2)L structure of the operator, and the color and
isospin indices are denoted by Greek and Latin letters. For the four-fermion operators in
table 1, V̂1 ⊗ V̂2 are δαβ , δij , δαβδij , εjk, δαβεjk, etc., and Γ1,2 are Dirac matrices.

The UV divergent parts of the current-current diagrams in figure 1 mediated by the
gauge boson Xµ = (Bµ,Wµ, Gµ) depend on αm and are given by

Da = D(1)
a +D(2)

a = αm
4π

1
4ε
(
C(1)
a γµγρΓ1γ

ργµ ⊗ Γ2 + C(2)
a Γ1 ⊗ γµγρΓ2γ

ργµ
)
, (A.1)

Db = D(1)
b +D(2)

b = −αm4π
1
4ε
(
C(1)
b Γ1γργµ ⊗ Γ2γ

ργµ + C(2)
b γµγρΓ1 ⊗ γµγρΓ2

)
, (A.2)

Dc = D(1)
c +D(2)

c = αm
4π

1
4ε
(
C(1)
c Γ1γργµ ⊗ γµγρΓ2 + C(2)

c γµγρΓ1 ⊗ Γ2γ
ργµ

)
. (A.3)

In dimensional regularization, we use the convention d = 4 − 2ε. Here, D(1)
a,b,c represent

the symmetric counterparts of the diagrams D(2)
a,b,c shown in figure 1. The two terms in

eqs. (A.1)–(A.3) corespond to these two kinds of diagrams. The coefficients are given by

C(1)
a = JxmV̂1J

x
m ⊗ V̂2 , C(2)

a = V̂1 ⊗ JxmV̂2J
x
m , (A.4)

C(1)
b = V̂1J

x
m ⊗ V̂2J

x
m , C(2)

b = JxmV̂1 ⊗ JxmV̂2 , (A.5)
C(1)
c = V̂1J

x
m ⊗ JxmV̂2 , C(2)

c = JxmV̂1 ⊗ V̂2J
x
m , (A.6)
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where Jxm (m = 1, 2, 3) are the SU(3)C , SU(2)L and U(1)Y generators. The sum over the
index x is implied.

For the penguin insertion in figure 2(d), the UV divergent part, if we close V̂1Γ1 part
of the inserted operator, is given by

Dd = Cd
αm
4π

1
4ε

[1
6
qµqν

q2 + gµν

12

]
Tr(Γ1γµγλγν)Γ2 ⊗ γλ , (A.7)

with the coefficient Cd = Tr(V̂1J
x
m)V̂2⊗Jxm. Note that, depending upon the structure of the

operator given by the matrix (V̂1) and the type of gauge boson mediated in the penguin
diagram figure 2(d), the trace can be over the SU(3)C or SU(2)L indices.

A.2 Field strength renormalization

The field strength renormalization constants are defined in eq. (3.2). At one-loop, these
are given by the coefficients

a3
q,u,d = −4

3 , a3
`,e = 0 , (A.8)

a2
q,` = −3

4 , a2
u,d,e = 0 , (A.9)

a1
ψ = −y2

ψ , a1,2,3
n = 0 , (A.10)

where yψ is the hypercharge of the fields ψ = {q, u, d, `, e}.

A.3 Operator renormalization

For illustration, we present an explicit computation of the renormalization constants for
Ond, Onedu, O`n`e and Oφn. For the other operators, a similar procedure can be followed.
Here we present γ, and in section 4 we present γC = γT .

A.3.1 Ond-Ond mixing

To extract the divergent pieces of the diagrams we use the master formulae of appendix A.1.
For the insertion of Ond = (n̄pγµnr)(d̄sγµdt) to generate the same, we have

ψ1 =np , ψ2 =nr , ψ3 = ds , ψ4 = dt , (A.11)
V̂1 ⊗ V̂2 = δαβ , Γ1 ⊗ Γ2 = γµPR ⊗ γµPR . (A.12)

In this case, D(2)
a , i.e. the first topology in figure 1 with Xµ = Gµ or Bµ connected be-

tween two d-quark legs is generated. Using eq. (A.1), the divergent parts of these two
contributions are given by

D(2)
a [B] = α1

4π
1
4

1
ε

(4y2
d)(γµPR ⊗ γµPR) , (A.13)

D(2)
a [G] = α3

4π
1
4

1
ε

16
3 (γµPR ⊗ γµPR) . (A.14)
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A.3.2 Ond-Onu mixing

Next, we consider the penguin insertion which leads to Ond-Onu operator mixing through
Dd[B]. The penguin insertion of Onu leads to operator Ond for

ψ1 = np , ψ2 = nr , ψ3 = ds , ψ4 = dt , (A.15)
V̂1 ⊗ V̂2 = δαβ , Γ1 ⊗ Γ2 = γµPR ⊗ γµPR . (A.16)

Now, using the eq. (A.7), we obtain

Dd[B] = −α1
4π

1
ε

2
3ydyuNc(γµPR ⊗ γµPR) . (A.17)

A.3.3 Ond-Oφn mixing

As an example of fermionic and bosonic oprator mixing, we present the mixing between
Ond and Oφn, which is given by figure 2(e). Its divergent part reads

De[B] = −α1
4π

1
ε

2
3ydyh(γµPR ⊗ γµPR) . (A.18)

Combining all these contributions yields the renormalization constants,

b1nd
prst

, nd
prst

= y2
dg

2
1 , b3nd

prst
, nd
prst

= 4
3g

2
3 , (A.19)

b1nu
prww

, nd
prst

= −2
3ydyug

2
1δstNc , b1φn

pr

, nd
prst

= −2
3ydyhg

2
1δst , (A.20)

and subsequently combining these constants with the field renormalizations (A.8), the
elements of the ADM are obtained using eq. (3.7):

(γ1) nd
prst

, nd
prst

= −2(−y2
d + y2

d)g2
1 = 0 , (γ3) nd

prst
, nd
prst

= −2
(
− 4

3 + 4
3

)
g2

3 = 0 , (A.21)

(γ1) nu
prww

, nd
prst

= −2
(
− 2

3ydyuδst
)
Ncg

2
1 , (γ1)φn

pr

, nd
prst

= −2
(
− 2

3ydyhδst
)
g2

1 , (A.22)

where (γ1)ij ≡ −2g2
1

(∑
ψ=ψ1,...ψ4

1
2a

1
ψδij + b1ij

)
, and similarly for γ2 and γ3.

A.3.4 Oφn-Ond mixing

Dd which involves a penguin insertion of Ond can be computed using eq. (A.7):

Dd[B] = −α1
4π

1
ε

(γµPR ⊗DµPR)2
3ydyhNc . (A.23)

The renormalization constant and anomalous dimension are then

b1nd
prst

,φn
pr

= −2
3ydyhNcg

2
1δst , (A.24)

(γ1) nd
prst

,φn
pr

= 4
3ydyhNcg

2
1δst . (A.25)

Note that in this case there are no contributions from wavefunction renormalization.
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A.3.5 Onedu-Onedu mixing

For the insertion of Onedu = (n̄pγµer)(d̄sγµut), we have

ψ1 = np , ψ2 = er , ψ3 = ds , ψ4 = ut , (A.26)
V̂1 ⊗ V̂2 = δαβ , Γ1 ⊗ Γ2 = γµPR ⊗ γµPR . (A.27)

In this case, D(2)
a , D(2)

b and D(2)
c mediated by the gauge boson Bµ, and D(2)

a mediated by
Gµ are generated. We find

D(2)
a [B] = α1

4π
1
4

1
ε

(4ydyu)(γµPR ⊗ γµPR) , (A.28)

D(2)
b [B] = −α1

4π
1
4

1
ε

(16yeyu)(γµPR ⊗ γµPR) , (A.29)

D(2)
c [B] = α1

4π
1
4

1
ε

(4ydye)(γµPR ⊗ γµPR) , (A.30)

D(2)
a [G] = α3

4π
1
4

1
ε

16
3 (γµPR ⊗ γµPR) . (A.31)

Therefore, the divergent parts are

b1nedu
prst

,nedu
prst

= (ydyu − 4yeyu + ydye)g2
1 , b3nedu

prst
,nedu
prst

= 4
3 , (A.32)

and using eqs. (A.8) and (3.7), the elements of the ADM are

(γ1)nedu
prst

,nedu
prst

= − 2
(
− y2

d

2 −
y2
u

2 −
y2
e

2 + ydyu − 4yeyu + ydye

)
g2

1 ,

(γ3)nedu
prst

,nedu
prst

= − 2
(
− 4

3 + 4
3

)
= 0 . (A.33)

A.3.6 O`n`e-O`n`e mixing

The operator O`n`e = (¯̀j
pnr)εjk(¯̀k

set) mixes with itself through its insertion into the dia-
grams D(2)

a [B], D(2)
b [B], D(2)

c [B] and D(2)
b [W ]. We have

ψ1 = `jp , ψ2 = nr , ψ3 = `ks , ψ4 = et , (A.34)
V̂1 ⊗ V̂2 = εjk , Γ1 ⊗ Γ2 = PR ⊗ PR . (A.35)

The contributions to the divergent parts are

D(2)
a [B] = α1

4π
1
4

1
ε

(
(PR)⊗ γαγβ(PR)γβγα

)
y`yeεjk , (A.36)

D(2)
b [B] = −α1

4π
1
4

1
ε

(
γαγβ(PR)⊗ γαγβ(PR)

)
y2
` εjk , (A.37)

D(2)
c [B] = α1

4π
1
4

1
ε

(
γαγβ(PR)⊗ (PR)γβγα

)
y`yeεjk , (A.38)

D(2)
b [W ] = −α2

4π
1
4

1
ε

(
γαγβ(PR)⊗ γαγβ(PR)

) 3
4εjk . (A.39)

After simplification using the Fierz identity,

(¯̀j
pσ

µνPRnr)εjk(¯̀k
sσµνPRet) = −4O`n`e

prst

+ 8O`n`e
srpt

, (A.40)
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we find the renormalization constants to be

b1`n`e
prst

,`n`e
prst

= (4y`ye − 2y2
` )g2

1 , b1`n`e
srpt

,`n`e
prst

= (2y2
` + 2y`ye)g2

1 , (A.41)

b2`n`e
prst

,`n`e
prst

= 3
2g

2
2 , b2`n`e

srpt
,`n`e
prst

= −3
2g

2
2. (A.42)

The elements of the ADM are

(γ1)`n`e
prst

,`n`e
prst

= − 2
(
− 3y2

` −
y2
e

2 + 4y`ye
)
g2

1 , (γ2)`n`e
prst

,`n`e
prst

= − 2
(
− 3

4 + 3
2

)
g2

2 , (A.43)

(γ1)`n`e
srpt

,`n`e
prst

= − 2(2y2
` + 2y`ye)g2

1 , (γ2)`n`e
srpt

,`n`e
prst

= − 2
(
− 3

2

)
g2

2 . (A.44)
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