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teractions are taken into account. Since these corrections become more relevant in the
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charge conservation. Evidence in this direction has been mainly given in the context of

corrections to Einstein-Maxwell theory. Here we compute corrections to the charge-to-mass

ratio of some dyonic extremal black holes explicitly embedded in the heterotic string effec-

tive theory. We find that modifications of the extremality bound depend on the solution

considered, with the charge-to-mass ratio remaining unchanged or deviating positively from

one. Additionally, we observe that the introduction of the higher-curvature terms increases

the Wald entropy in all cases considered, whose variation does not seem to be correlated

with the charge-to-mass ratio, contrary to the situation in Einstein-Maxwell theory.
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1 Introduction

Black holes have played, and continue to play, a central role in fundamental aspects of

physics. Cutting-edge advances in the understanding of quantum gravitational aspects of

string theory have been possible thanks to their study [1–9]. In recent years some attention

has been dedicated to the problem of whether extremal black holes, those with vanishing

temperature, should decay or remain as stable states. The question arises because, in

many situations, black hole remnants are regarded as problematic. For example, it can

be argued that a theory of gravity with global symmetries contains an infinite number of

remnants below a certain mass scale, which is usually considered to be inconsistent [10, 11].

On the other hand, stable black holes of theories with local symmetries are not infinitely

degenerate (under a certain mass scale), so it is more difficult to produce arguments against

their existence. Still, they are associated to an infinite tower of charged states not protected

by a symmetry principle, and it was conjectured in [12] that a finiteness criterion should

be applied such that those are unstable.

Hence, we are led to consider the decay of extremal black holes. The simplest of those

is the Reissner-Nordström one, which has M = Q in appropriate units. It is immediate to

see that decay of this black hole in two separated states with q1 + q2 = Q, m1 +m2 ≤ M

requires qi/mi ≥ 1 for at least one of them.1 These bounds can be saturated in the special

1This is a necessary but not sufficient condition for the process to occur, which seems thermodynamically

disfavored. Since these black holes have zero temperature, standard Hawking radiation does not take place.
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case in which there is no binding energy between the products, while a strict inequality is

expected in generic situations.

The weak gravity conjecture proposes that the spectrum of a quantum theory of gravity

must be such that extremal black holes can decay, as far as energy and charge conservation

are concerned. There are two possible scenarios compatible with the conjecture. Under

the rather reasonable assumption that the decay would occur through the emission of a

light particle by the black hole, i.e. m1 � m2, the consequences of having q2/m2 > 1 are

stronger than those of the complementary scenario q1/m1 > 1 in the following sense. In

terms of the former, the WCG becomes a sharp tool that can be useful to discern if an

effective theory belongs or not to the swampland [12, 13]. Examples of applications of

the conjecture in this direction can be found in [14] and references therein. On the other

hand, the latter possibility corresponds to a milder version of the conjecture that would

just provide information about states far heavier than the Planck mass, and hence it is less

useful for the swampland program. Of course, the two scenarios are not mutually exclusive,

and it is conceivable that they might be related [15].

The problem of computing corrections to the extremal charge-to-mass bound has been

considered before by other authors in several frameworks. To date, the Reissner-Nordström

black hole of Einstein-Maxwell theory supplemented by higher-derivative terms is arguably

the system which is best understood in that respect. An explicit computation for that

system that gives the corrections to the ratio in terms of the value of the coefficients of

the higher-derivative terms was presented in [16] (see also [17]). Subsequent works have

proposed that, demanding analyticity of scattering amplitudes, unitarity and causality

constrain these coefficients such that there is a positive deviation of the charge-to-mass ratio

of extremal black holes [18–20]. The same conclusion has been reached from the analysis of

the renormalization of one-loop divergences [21]. Likewise, it has been proposed that this

can be related to the positivity of the corrections to the entropy of the black hole induced by

higher-derivative operators [22–24]. The study of black holes in Einstein-Maxwell theory

is well justified and interesting, as it provides a relatively simple arena to explore this

question while making contact with dominant interactions in real world experiences. On

the other hand, since the problem at hands is intimately related to quantum gravity, it is

important to ask if the positive character of the deviation is displayed by models with an

explicit string theory embedding.

Effective gravitational theories derived from string theory usually contain, besides

vectors, scalars. Einstein-Maxwell-Dilaton (EMD) theory arises as a natural truncation of

the effective theories of different string models. For instance, it appeared as a truncation

of N = 4, d = 4 supergravity2 in [25], where the first EMD black-hole solutions where

found. These solutions were later rederived and studied in [26, 27].3 The Kaluza-Klein

theory obtained by compactifying the 5-dimensional Einstein-Hilbert action on a circle also

provides another particular example of EMD theory with the Kaluza-Klein scalar playing

the role of dilaton field. Different instances of EMD theory are distinguished by the different

couplings of the dilaton to the vector field kinetic term in the action.

2This is the effective theory of the Heterotic Superstring compactified on T 6.
3This solution is usually referred to as the GHS black hole.
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Although EMD theory looks very similar to Einstein-Maxwell (EM), there are impor-

tant differences. In particular, the purely electrically or magnetically charged Reissner-

Nordström black hole with constant scalar is not a solution of the equations of motion,

as the vector field acts as a source for the dilaton. Only when the black hole is dyonic

with equal magnetic and electric charges the source term in the dilaton equation vanishes

and the dilaton can take a constant value. For generic values of the electric and magnetic

charges, one gets charged black holes with a non-trivial scalar field.

In the extremal limit, these black holes are regular, except in the purely electric and

purely magnetic cases. Corrections to the charge-to-mass ratio in one of these singular cases

have been studied in [16], although, due to the singularities, this is not a good ground to

discuss stability of extremal black holes. Still, it is worth mentioning that the correction

has again a positive character, which gives some support to the mild WGC.

However, the positive deviation of the charge-to-mass ratio cannot be general in string

theory. Supersymmetric black holes are special. When they are regular they necessarily

carry several charges and their mass is given by a linear combination of them with moduli-

dependent coefficients. Typically, the scalars are not constant, but their value at the horizon

is fixed in terms of the charges due to the attractor mechanism [2, 5, 6, 28–30]. The linear

relation between mass and charge is a salient feature of supersymmetric systems and, as

supersymmetric black holes are extremal [1], the charge-to-mass ratio can be expected to

remain unmodified by higher-derivative corrections. This has been recently shown to be

the case in three- and four-charge heterotic black holes [31, 32] in, respectively, five and

four dimensions.4 Nevertheless, one should notice that these configurations correspond to

a bound state of a (large) number of fundamental objects without binding energy. This

means that, speaking in terms of energy and charge conservation, the decay of supersym-

metric black holes is possible. Another family of configurations of N ≥ 2 four-dimensional

supergravity for which no corrections to the ratio have been observed (even at one-loop

quantum level and non-supersymmetric solutions) was recently described [21]. These black

holes are obtained through a particular embedding of dyonic solutions of Einstein-Maxwell

theory for which the solution is claimed to not receive corrections at all [33].

In this article we compute explicitly the first-order α′ (fourth order in derivatives)

corrections to the charge-to-mass ratio of the extremal Reissner-Nordström black hole em-

bedded in heterotic string theory in several ways. All the embeddings that we will consider

here are dyonic (so the dilaton vanishes at lowest order in α′) and non-supersymmetric (so

there is a chance of having non-vanishing α′ corrections). To the best of our knowledge,

these provide the first examples in which such a computation has been made using a ex-

plicit embedding of the black-hole solutions in a superstring theory whose first-order in α′

corrections are explicitly known in detail.

We start in section 2 with a description of the zeroth-order solutions we start from.

They are 2-vector dyonic, extremal Reissner-Nordström black holes, although we take only

one of the charges to be independent for simplicity. Depending on the election of the

4In those articles, it was noted that the relation between mass and the number of fundamental con-

stituents of the black hole is modified by α′-corrections. However, the relation between mass and asymptotic

charges remains unchanged.
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relative signs of the charges, there are two families of solutions that can be considered,

for which the consequences of including the higher-curvature corrections are different. In

one case the charge-to-mass ratio of the solution remains unchanged, while in the other it

deviates positively from one. On the other hand, the Wald entropy of both solutions is

equal and differs from the expression of the zeroth-order system. Our results are discussed

in section 3.

In the different appendices we include the details about the different computations that

we have performed. The effective field theory of the heterotic string at first order in α′ is

described in appendix A. The equations of motion evaluated for the spherically-symmetric

ansatz can be found in appendix B and the calculation of the Wald entropy is addressed

in appendix C. In appendix D we compute the corrections for a solution different to the

ones considered in section 2, which has some peculiar features.

2 A family of extremal black holes

Let us consider the following field configuration of heterotic superstring theory, whose

perturbative action and equations of motion are briefly reviewed in appendix A,

dŝ = e2(φ−φ∞)ds2 − c2(dz + V/c∞)2 − dyidyi ,

Ĥ =F ∧ (c∞dz + V ) +H ,

e−2φ̂ =
1

c
e−2φ , (2.1)

where ds2 is the four-dimensional metric in the Einstein frame, F is a 2-form, V is a

Kaluza-Klein vector, c is a KK scalar, H is a 3-form, and φ is the four-dimensional dilaton.

In addition, c∞ and φ∞ are the asymptotic values of c and φ. These are effective four-

dimensional fields, while hatted objects represent ten-dimensional fields of the heterotic

theory. This ansatz corresponds to the compactification of heterotic superstring theory on

S1
z × T5, where we truncate all the fields that have indices on T5, while the KK reduction

on S1
z is general. The coordinates parametrizing the compact space z and yi, i = 1, 2, 3, 4, 5

have all period 2π`s.

At the supergravity level (zeroth-order in α′), this gives rise to the following four-

dimensional effective theory

S =
1

16πG
(4)
N

∫
d4x
√
|g|
{
R+ 2(∂φ)2 +

(∂c)2

c2
+
e−4(φ−φ∞)

2 · 3!
H2

+
e−2(φ−φ∞)

4

(
G2 +

c2
∞
c2
F 2

)}
,

(2.2)

where G = dV and, at this order, F = dA. The four-dimensional Newton’s constant is

given by

G
(4)
N =

G
(10)
N

c∞(2π`s)6
. (2.3)
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Also, the 3-form satisfies the Bianchi identity

dH = −F ∧G , (2.4)

and using it we can dualize H into a scalar field. From the effective four-dimensional

action (2.2) one sees that, at the supergravity level, one could truncate V , H and c. This

would simplify the system to the Einstein-Maxwell-Dilaton model. However, it turns out

that this is inconsistent once α′ corrections are taken into account, as those introduce non-

trivial couplings between these fields. In other words, higher-derivative corrections to the

Einstein-Maxwell-Dilaton effective model in the context of string theory may require the

activation of additional fields. This is a well-known but often forgotten fact [34, 35].

2.1 Supergravity zeroth-order solution

A generalized version of the extremal Reissner-Nordstrom black hole can be a solution of

the theory (2.2) if we allow for dyonic vectors. Let us consider the following configuration,

ds2 =

(
1 +

Q

r

)−2

dt2 −
(

1 +
Q

r

)2 (
dr2 + r2dΩ2

(2)

)
,

A =
2qA

(r +Q)
dt− 2pA cos θdϕ ,

V =
2qV

(r +Q)
dt− 2pV cos θdϕ ,

φ = φ∞ , c = c∞ , H = 0 , (2.5)

where qA,V , pA,V are the electric and magnetic charges of the vectors A and V (in Planck

units) and Q =
√
q2
A + p2

A + q2
V + p2

V is the total duality-invariant charge.5 On the other

hand, the mass of this black hole is M = Q. It is easy to check that this is a solution

of (2.2) if the charges satisfy the following conditions

|qA| = |pA| , |qV | = |pV | ,

qApV + pAqV = 0 . (2.6)

The first two conditions ensure that F 2 = G2 = 0 while the third one implies that F∧G = 0,

and in this way the scalar fields have no sources. This special point in charge space has

the property that the scalars are trivial at the supergravity level, although this does not

hold once higher-curvature corrections are implemented, as we show below. Let us note

that starting from a given solution, the transformation t → −t generates a new solution

with opposite values of the electric charges and in turn φ → −φ changes the sign of the

magnetic charges. Thus, without loss of generality we can consider qA = pA > 0, and in

that case pV = −qV . Hence, there are two inequivalent sets of solutions, corresponding to

qV > 0 and qV < 0. We wish to compute the first-order α′-corrections to these solutions,

but for simplicity we will restrict to the case in which the absolute value of all the charges

5Invariant under electric-magnetic duality and T-duality.
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is the same. Hence, there are two possibilities: qA = qV = pA = −pV = Q/2 and

qA = −qV = pA = pV = Q/2. In addition, the special case with qV = 0, in which α′

corrections seem to introduce pathologies in the extremal limit, is treated in appendix D.

Thus, in this article we study the corrections to a stringy Reissner-Nordström black hole

which, despite having two independent U(1) dyonic vector fields, has only one independent

charge Q. The configuration (2.5) has an event horizon at r = 0, with near-horizon

geometry AdS2 × S2 and it is therefore a black hole with vanishing temperature. On the

other hand, the configuration does not preserve any supersymmetry, this being related to

the presence of dyonic vectors, as in ref. [36].

2.2 Case 1: qV < 0

Let us first consider the case qA = −qV = pA = pV = Q/2. Starting from the zeroth-order

solution (2.5) and using (2.1), it is possible to compute the first higher-curvature corrections

by solving perturbatively the ten-dimensional equations of motion at first order in α′, which

can be found in appendix A. The details about the resolution of those equations are shown

in appendix B. We find the following solution

ds2 =

(
1 +

Q

r
+

α′Q2

8(r +Q)3r

)−2

dt2 −
(

1 +
Q

r
+

α′Q2

8(r +Q)3r

)2 (
dr2 + r2dΩ2

(2)

)
,

F =
Q

(r +Q)2

(
1 +

α′Q2

4(r +Q)4

)
dt ∧ dr +Q

(
1 +

α′Q(Q+ 4r)

2(r +Q)4

)
sin θdθ ∧ dϕ ,

V = − Q

(r +Q)
dt−Q cos θdϕ ,

φ̂ = φ̂∞ +
α′Q2

4(r +Q)4
,

c = c∞

(
1 +

α′Q2

4(r +Q)4

)
, H = 0 . (2.7)

The conditions that we have imposed in order to solve the equations of motion are the

same than those imposed for the original supergravity solution, namely

• regularity of the event horizon located at r = 0,

• fixed asymptotic value of the scalars: φ̂→ φ̂∞ and c→ c∞,

• the metric is asymptotically flat,

• absence of additional free charges at order α′.

The last point means that we do not introduce artificial shifts in the charges. In fact,

performing a transformation of the form Q→ Q+ α′δQ in the original solution generates

a new solution which, apparently, contains α′-corrections. The integration constants of

the equations of motion have to be appropriately chosen so that this type of shift does

not occur.

Observe that in the previous solution, V contains no corrections. Also, note that F

is not a closed form, dF 6= 0, so its local expression is no longer given by the exterior

– 6 –
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derivative of the vector field A. This is due to the form of the decomposition (2.1) and to

the fact that H is not a closed 3-form at first order in α′. Thus, F will have an expression of

the form F = dA+α′W for some 2-form W . Nevertheless, the correct identification of the

charges carried by these vector fields can be expressed in terms of F and G as follows,6,7

qA =
1

8π

∫
S2∞

c2
∞
c2
e−2(φ−φ∞) ? F ,

pA =
1

8π

∫
S2∞

F ,

qV =
1

8π

∫
S2∞

e−2(φ−φ∞) ? G ,

pV =
1

8π

∫
S2∞

G . (2.8)

We have checked that the evaluation of the integrals yields qA = pA = −qV = pV = Q/2,

so that the charges of the solution are indeed unmodified and Q is the total charge. One

might think that corrections to the charges should not be expected, as they are defined by

asymptotic integrals, where the curvature goes to zero. However, there are many exam-

ples of solutions for which higher-curvature interactions behave as delocalized sources of

charge [31, 32, 37, 38], and hence it is always convenient to perform this computation.

The ADM mass of the black hole can be read from the asymptotic expansion of the

metric according to

lim
r→∞

grr = 1 +
2M

r
+ . . . (2.9)

From (2.7) on sees that M = Q, so the charge-to-mass ratio of this extremal black hole is

not modified at this order,
Q

M
= 1 +O(α′2) . (2.10)

It is also interesting to compute the correction to the entropy of this black hole. The

application of Wald’s formula for this family of solutions of the heterotic theory is described

in appendix C. Upon evaluation of the resulting expression (C.10) for the background (2.7)

we get

S =
π

G
(4)
N

(
Q2 +

α′

4

)
. (2.11)

The first term in the expression coincides with the value of the entropy before the cor-

rections are incorporated, for a fixed value of the charge Q. Therefore, we find a positive

6These integral expressions for the charges are valid in the asymptotic sphere S2
∞. At a generic sphere

some of the expressions contain additional higher-derivative terms, which vanish asymptotically.
7In the case of the charges associated with F , these can be written in terms of the ten-dimensional

Kalb-Ramond field strength as follows,

qA = =
g2s

8π(2π`s)5

∫
S2∞×T5

e−2φ̂ ? Ĥ ,

pA =
1

8πc∞(2π`s)

∫
S2∞×S1

Ĥ .
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contribution to the entropy, that can be interpreted as capturing additional microscopic

degrees of freedom that are frozen in the truncation to the two-derivative supergravity

theory. At the computational level, this deviation is originated from an increase in the

area of the event horizon, while the contributions in Wald’s formula coming explicitly from

the higher-derivative terms vanish.

2.3 Case 2: qV > 0

Let us now consider the case with qA = qV = pA = −pV = Q/2. The first-order in α′

corrections turn out to be quite different. The solution reads

ds2 = A2

(
1 +

Q

r

)−2

dt2 −B2

(
1 +

Q

r

)2 (
dr2 + r2dΩ2

(2)

)
,

F =
Q

(r +Q)2

(
1 + α′

3Q2 − 10Qr − 3r2

120(r +Q)4

)
dt ∧ dr +Q

(
1− α′Q2

2(r +Q)4

)
sin θdθ ∧ dϕ ,

V =
Q

(r +Q)

(
1− α′ r(63Q+ r)

120(r +Q)4

)
dt+Q cos θdϕ ,

φ̂ = φ̂∞ −
α′r
(
19Q2 + 12Qr + 3r2

)
60Q(r +Q)4

,

c = c∞

(
1− α′Q2

4(r +Q)4

)
, H = 0 , (2.12)

where

A =1 + α′
6Q3 + 13Q2r + 8Qr2 + 2r3

40Q(r +Q)4
, (2.13)

B =1− α′ 5Q
3 + 9Q2r + 7Qr2 + 2r3

40Q(r +Q)4
. (2.14)

In order to obtain this solution we have imposed the same conditions as in the previous

case. Notice that now V receives corrections, while F is again not closed. Still, one can

check that the charges have the correct values qA = pA = qV = −pV = Q/2, and therefore,

Q is indeed the total charge. We also note that, unlike in the previous solution, the dilaton

acquires a non-trivial charge that cannot be removed, and it reads8

Qφ̂ =
α′

20Q
. (2.15)

On the other hand, the metric component grr behaves asymptotically as

grr = 1 +
1

r

(
2Q− α′

10Q

)
+ . . . (2.16)

and therefore, the mass receives corrections in this case

M = Q− α′

20Q
+O(α′2) . (2.17)

8It is identified by the asymptotic expansion φ̂ = φ̂∞ −Qφ̂/r +O(1/r2).
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Correspondingly, the extremal charge-to-mass ratio is modified

Q

M
= 1 +

α′

20M2
+O(α′2) , (2.18)

and it is larger than one, in agreement with the mild form of the WGC. It is important to

notice that the deviation from one becomes larger as the mass of the black hole decreases,

which would allow the decay of the black hole (in terms of energy and charge conservation)

without the need to emit a superextremal particle.

The Wald entropy of this solution is obtained from the evaluation of (C.10). In this

case there is a negative contribution from the modification of the area of the event horizon

as well as a positive one from the higher-derivative terms. The result reads

S =
π

G
(4)
N

(
Q2 +

α′

4

)
, (2.19)

which surprisingly enough, coincides with the value found in the previous case, even though

the rest of the properties of the solution are different.

3 Discussion

In this article we have analyzed the effect produced by higher-curvature corrections to a

family of extremal, non-supersymmetric black holes in the context of heterotic superstring

theory. We have found the first example of modification of the charge-to-mass ratio of

an extremal black hole explicitly embedded in string theory. This example defies previous

expectations that the charge-to-mass ratio of extremal black holes in a supersymmetric the-

ory is not modified by higher-curvature corrections. Likewise, we have presented evidence

that such modifications are not necessarily in correspondence with the corrections to the

entropy of the black hole, as argued in refs. [22–24]. While this differs from the result of

the explorations performed in Einstein-Maxwell theory, it agrees with earlier results on the

supersymmetric three- and four-charge systems of the heterotic theory, as we mentioned

in the introduction. The difference with the results in refs. [22, 23] can be understood if

one takes into account two facts. First of all, topological terms such as the Gauss-Bonnet

invariant — which implicitly appears in the heterotic string effective action — modify the

black hole entropy while keeping the solution unchanged. Thus, in this case corrections to

the entropy are independent from deviations of the extremal charge-to-mass ratio. On the

other hand, the models considered in the previous literature do not include scalars, which

are a key ingredient of stringy effective actions. As we have seen in the examples presented,

these scalars are activated by higher-derivative corrections even if they are trivial in the

zeroth-order solution. Scalar fields usually affect the thermodynamic description of black

holes — see e.g. [39] — and it would be interesting to explore whether this could modify

the conclusions of [22, 23].9

9The fact that corrections to the entropy and the charge-to-mass ratio are not necessarily correlated has

been clarified in [35].

– 9 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
5

The string coupling constant and the curvature can be kept sufficiently small in the

exterior region of the black hole for the cases we have considered, hence the low energy field

theory description gives a good approximate description of the system. In our analysis,

we focused on the case |qA| = |qV | for simplicity, but it would be interesting to study

the corrections to the solution (2.5) for general values of qA and qV , so that the two

dyonic vectors are independent. In that case, we expect that the extremality bound will

be modified according to

Q

M
≤ 1 +

α′

M2
f(qA, qV ) +O(α′2) , (3.1)

where f is a certain homogeneous function of degree 0 of the charges qA and qV , which,

according to the WGC, should be non-negative. In this paper, we have shown that

f(q,−q) = 0 , f(q, q) =
1

20
. (3.2)

In addition, in appendix D we consider the case qV = 0 and we show that f(q, 0) =
1
80 .10 Furthermore, since the result must be invariant under T-duality we conclude that

f(0, q) = f(q, 0). Given the values found, it is an interesting problem to search for the

general expression of the function f(qA, qV ) and to check its non-negativity.

An important piece in our analysis is that the higher-curvature corrections to the the-

ory are directly taken from the ten-dimensional heterotic string theory. This differs from

the approach usually taken in the literature, where given a four-dimensional effective the-

ory, all possible four-derivative terms that can be constructed with the corresponding field

content are considered. As we have mentioned in the main text, consistency may require

to enlarge the field content of an effective theory when perturbative corrections are being

considered. Of course, the details depend on the UV theory on which the system is embed-

ded. It is interesting to mention here the example of the dyonic Reissner-Nordstrom black

hole solution of Einstein-Maxwell-Dilaton theory embedded in the heterotic theory (f(q, 0)

configuration), which requires the activation of additional fields that can be truncated at

the two-derivative level [35].

The mild version of the WGC affects solutions well above Planck mass. Hence, it has

little predictive power about low energy effective theories in itself. It has been recently

suggested that it might be possible to relate the mild and strong versions of the WGC

using modular invariance of string theory [15]. Given the growing amount of evidence in

favor of the mild WGC, this seems a promising idea and it would be interesting to test it

for a regular extremal black hole system of string theory.11
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A The heterotic theory

In this article we work in the context of the heterotic superstring effective action at first

order in the α′ expansion as constructed in [40]. We consider black hole solutions with small

string coupling gs and sufficiently large horizon such that the supergravity approximation is

valid at least outside the event horizon. Still, we are interested in looking at the information

that the dominant corrections of higher order in curvature produce in some properties of

the solutions. The effective action of the heterotic superstring at first order in α′ is given by

S =
g2
s

16πG
(10)
N

∫
d10x

√
|ĝ| e−2φ̂

{
R̂− 4(∂φ̂)2 +

1

2 · 3!
Ĥ2 − α′

8
R̂(−)µν

a
bR̂(−)

µν b
a + . . .

}
.

(A.1)

We use hats to denote the ten-dimensional heterotic fields. We have not included Yang-

Mills fields in the theory for simplicity.12 The curvature of the torsionful spin connection,

defined as ω̂(−)
a
b = ω̂ab − 1

2Ĥµ
a
b dx

µ, is

R̂(−)
a
b = dω̂(−)

a
b − ω̂(−)

a
c ∧ ω̂(−)

c
b . (A.2)

The field strength H of the Kalb-Ramond 2-form B includes a Chern-Simons term

Ĥ = dB̂ +
α′

4
Ω̂L

(−) , (A.3)

where

Ω̂L
(−) = dω̂(−)

a
b ∧ ω̂(−)

b
a −

2

3
ω̂(−)

a
b ∧ ω̂(−)

b
c ∧ ω̂(−)

c
a . (A.4)

Then, the corresponding Bianchi identity reads

dĤ =
α′

4
R̂(−)

a
b ∧ R̂(−)

b
a . (A.5)

The equations of motion derived from the action (A.1) are

R̂µν − 2∇µ∂ν φ̂+
1

4
ĤµρσĤν

ρσ − α′

4
R̂(−)µρ

a
bR̂(−)ν

ρ b
a = O(α′2) , (A.6)

(∂φ̂)2 − 1

2
∇2φ̂− 1

4 · 3!
Ĥ2 +

α′

32
R̂(−)µν

a
bR̂(−)

µν b
a = O(α′2) , (A.7)

d
(
e−2φ̂ ?Ĥ

)
= O(α′2) . (A.8)

The (zeroth-order) supergravity theory can be recovered from these expressions by

setting α′ = 0. The action includes a tower of corrections of all powers in α′ due to the

12Some examples with non-trivial Yang-Mills fields were given in [31, 32, 41].
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recursive definition of the Kalb-Ramond field strength, which breaks the supersymmetry

of the supergravity theory. The term of quadratic order in curvature at (A.1) was found

imposing supersymmetry of the theory at first order in α′ after inclusion of the Chern-

Simons term in the field strength [42]. Further corrections of higher power in the curvature

R(−) of the torsionful spin connection are required to recover supersymmetry order by order.

Additional higher-curvature corrections unrelated to the supersymmetrization of the Kalb-

Ramond kinetic term are also present, although those appear first at cubic order in α′.

B Solving the equations of motion

We consider the ansatz for the 10-dimensional fields introduced in eq. (2.1),

dŝ =
c∞
c
e2(φ̂−φ̂∞)ds2 − c2(dz + V/c∞)2 − dyidyi ,

Ĥ =F ∧ (c∞dz + V ) +H ,

and we assume the following form of the building blocks

ds2 = (1 + α′a)2

(
1 +

Q

r

)−2

dt2 − (1 + α′b)2

(
1 +

Q

r

)2 (
dr2 + r2dΩ2

(2)

)
, (B.1)

F =
Q

(r +Q)2

(
1 + α′d(r)

)
dt ∧ dr +Q

(
1 + α′e(r)

)
sin θdθ ∧ dϕ , (B.2)

V = − εQ

(r +Q)

(
1 + α′f(r)

)
dt− εQ cos θdϕ , (B.3)

H = α′g(r) sin θdt ∧ dθ ∧ dϕ , (B.4)

φ̂ = φ̂∞ + α′δφ̂(r) , (B.5)

c = c∞(1 + α′δc(r)) , (B.6)

where Q > 0 and ε = ±1 is a sign.13 For ε = +1 and ε = −1 we have, respectively, the

cases 1 and 2 discussed in sections 2.2 and 2.3. In the limit α′ → 0, this ansatz reduces

to the zeroth-order solution in eq. (2.7). The α′ corrections are introduced through the

functions a, b, δc, d, e, f , g and δφ, and one can see that this ansatz is general enough in

order to solve the first-order-in-α′ equations.

On the one hand, keeping only the terms up to linear order in α′, the Bianchi iden-

tity (A.5) reads

dĤ − α′

4
R̂(−)

a
b ∧ R̂(−)

b
a

= α′ sin θ

[
dt ∧ dr ∧ dθ ∧ dϕ

(
dQ2ε

(Q+ r)2

+
Q3(Q−Qε+ r(5 + 3ε))

(Q+ r)6
+
Q2εe′

Q+ r
− Q2ε (e+ f − (Q+ r)f ′)

(Q+ r)2
− g′

)
+Qc∞dr ∧ dθ ∧ dϕ ∧ dz

(
Q(Q(−1 + ε) + 3r(1 + ε))

(Q+ r)5
+ e′

)]
. (B.7)

13One could add an additional function at the magnetic component of the KK vector V taking the form

−εQ(1 + α′u(r)) cos θdϕ, but the equations of motion give u(r) = 0 at this order.
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On the other hand, the equations (A.8), (A.7) and the relevant components of Einstein’s

equations (A.6) yield

d
(
e−2φ̂ ? Ĥ

)
= −Qα′ sin θdr ∧ dθ ∧ dϕ

(
gε

r2
+
(
a′ − b′ − d′ + δc′ + 2δφ′

))
, (B.8)

Eφ̂ = α′
(
Q2

(
Q2 − 12r2

8(Q+ r)8
+

(a− b− d+ e)

2(Q+ r)4

)
+

(r2δφ′)′

2(Q+ r)2

)
, (B.9)

Ett =
α′

(Q+ r)4

[
eQ4

(Q+ r)2
− 2aQ2r2

(Q+ r)2
+
dQ2(−Q+ r)

Q+ r
+
fQ2

(
Q2 + r2

)
(Q+ r)2

+
Q2r2δc

(Q+ r)2
− 2Q2r2δφ

(Q+ r)2
− gQ2ε

Q+ r

−
Q2r2

(
12Qr(−1 + ε) + 6r2(−1 + ε) +Q2(5 + 17ε)

)
4(Q+ r)6

+
r2
(
Q2 − 3Qr − 2r2

)
a′

Q+ r
−Qr2b′ −

Q2
(
Q2 + r2

)
f ′

Q+ r

+
r(2Q+ r)

(
Q2 −Qr + r2

)
δc′

Q+ r
−

2r2
(
−Q2 +Qr + r2

)
δφ′

Q+ r

− r4a′′ +Q2r2f ′′ +

(
Q2r2 +

r4

2

)
δc′′ − r4δφ′′

]
, (B.10)

Err = α′
[

2aQ2

r2(Q+ r)2
− dQ2

r2(Q+ r)2
− fQ2

r2(Q+ r)2
− Q2δc

r2(Q+ r)2
+

2Q2δφ

r2(Q+ r)2

+
Q4(1 + ε)− 2Q2r2(5 + ε)

4r2(Q+ r)6
+

3Qa′

r(Q+ r)
+

(Q+ 2r)b′

Qr + r2

+
Q2f ′

r2(Q+ r)
− δc′

r
+

2δφ′

r
+ a′′ + 2b′′ − δc′′

2
+ δφ′′

]
, (B.11)

Ezz =
α′c2
∞

(Q+ r)2

[
− dQ2

(Q+ r)2
+

eQ2

(Q+ r)2
+

fQ2

(Q+ r)2

− 3Q2r2ε

(Q+ r)6
− Q2f ′

Q+ r
+ 2rδc′ + r2δc′′

]
, (B.12)

Etz =
α′c∞

(Q+ r)3

[
gQ

2(Q+ r)
+

dQ3ε

(Q+ r)2
− eQ3ε

(Q+ r)2
− fQ3ε

(Q+ r)2

+
Q2r2(−3r(−1 + ε) +Q(7 + ε))

2(Q+ r)6
− Qr2εa′

2(Q+ r)
+

Qr2εb′

2(Q+ r)
+
Q3εf ′

Q+ r

− Qr(4Q+ r)εδc′

2(Q+ r)
− Qr2εδφ′

Q+ r
− 1

2
Qr2εf ′′ −Qr2εδc′′

]
, (B.13)

Eϕz =
α′c∞ cos θ

(Q+ r)2

[
3Q3r2

(Q+ r)6
+

dQ3ε

(Q+ r)2
− eQ3ε

(Q+ r)2

− fQ3ε

(Q+ r)2
+
Q3εf ′

Q+ r
− 2Qrεδc′ −Qr2εδc′′

]
. (B.14)

Note that here we have written nine equations for eight variables, but of course not

all of them are independent, since they are related by Bianchi identities. Nevertheless,

it is convenient to use all of the equations above in order to simplify the problem. By
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combining the equations in an appropriate way it is possible to find the general solution,

which contains a large number of integration constants. These constants are then fixed by

the conditions specified in the main text, which, more precisely, can be expressed as follows:

• Regularity at r = 0: all of the functions a, b, δc, d, e, f , g, δφ are finite at r = 0.

• Fixed asymptotic values of the scalars: δφ̂(r)→ 0, δc(r)→ 0, g(r)→ 0 when r →∞.

• Asymptotic flatness: a(r)→ 0, b(r)→ 0 when r →∞.

• Absence of additional free charges at order α′: d(r) → 0, e(r) → 0, f(r) → 0 when

r →∞.

These conditions completely determine the solution and one finds

a =
Q3(1− 11ε) + (1− ε)(13Q2r + 8Qr2 + 2r3)

80Q(Q+ r)4
, (B.15)

b =
10εQ3 + r

(
9Q2 + 7Qr + 2r2

)
(ε− 1)

80Q(Q+ r)4
, (B.16)

δc =
εQ2

4(Q+ r)4
, (B.17)

d =
(ε− 1)(10Qr + 3r2) +Q2(57ε+ 63)

240(Q+ r)4
, (B.18)

e =
Q(Qε+ 2r(1 + ε))

2(Q+ r)4
, (B.19)

f =
r(63Q+ r)(ε− 1)

240(Q+ r)4
, (B.20)

g = 0 , (B.21)

δφ̂ =
r
(
19Q2 + 12Qr + 3r2

)
(ε− 1) + 15Q3(ε+ 1)

120Q(Q+ r)4
. (B.22)

For ε = ±1 one gets the results shown in sections 2.2 and 2.3.

C Wald entropy

The Wald entropy formula of the ten-dimensional theory is

S = −2π

∫
Σ
d8x
√
|h|Eabcdεabεcd , (C.1)

where Σ is a cross-section of the horizon with induced metric hµν , εab is the binormal to Σ

normalized as εabε
ab = −2 and Eabcd is defined as

Eabcd =
g2
s

16πG
(10)
N

δL
δR̂abcd

, (C.2)
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where L is the Lagrangian of the theory (A.1). We can apply this formula to the action of

the heterotic theory for the family of regular solutions we study in this article. In order to

compute the integrand it is convenient to use flat indices. We define the vielbein

e0 = eφ−φ∞eGdt , e1 = eφ−φ∞e−Udr ,

e2 = eφ−φ∞e−Urdθ , e3 = eφ−φ∞e−Ur sin θdϕ ,

e4 = c

(
dz +

V

c∞

)
, ei = dyi . (C.3)

Here e2G = gtt and e−2U = grr, with gµν the four-dimensional metric in the Einstein frame.

The non-vanishing components of the binormal in flat indices are ε01 = −ε10 = 1. The

volume form entering Wald’s formula is

d8x
√
|h| = dθdϕdzd4yc∞e

2(φ̂−φ̂∞)e−2Ur2 sin θ . (C.4)

The variation of the Lagrangian with respect to the Riemann tensor contains three

non-vanishing contributions. The first one comes from the Einstein-Hilbert term in (A.1),

which amounts to

Eabcd0 =
e−2(φ̂−φ̂∞)

16πG
(10)
N

δR̂

δR̂abcd
=
e−2(φ̂−φ̂∞)

16πG
(10)
N

ηacηbd , (C.5)

where ηab is the inverse flat metric. This term is responsible for the Bekenstein-Hawking

leading order term in the entropy, S0 = AΣ/4G
(10)
N . Following [38], one can see that there

are two additional contributions arising from the variation of the Chern-Simons 3-form in

the Kalb-Ramond field strength. Each of those is coming from one of the two factors in

the decomposition

Ω̂L
(−) = A + Ω̂L , (C.6)

where Ω̂L is the standard Lorentz Chern-Simons term in terms of the spin connection

ω̂ab, and

A =
1

2
d(ω̂ab ∧ Ĥb

a) +
1

4
Ĥa

b ∧DĤb
a − R̂ab ∧ Ĥb

a +
1

12
Ĥa

b ∧ Ĥb
c ∧ Ĥc

a . (C.7)

Here Ĥa
b = Ĥ a

µ bdx
µ and DĤa

b = dĤa
b + ω̂ac ∧ Ĥc

b − ω̂cb ∧ Ĥa
c. Notice that the last term

in (A.1) gives no contribution to the entropy, since it is quadratic in the curvature of the

torsionful spin connection, which vanishes at the horizon.

Using this rewriting, in first place we get

Eabcd1 =
e−2(φ̂−φ̂∞)

16πG
(10)
N

δ

δR̂abcd

(
α′

3!4
ĤefgAefg

)
=
e−2(φ̂−φ̂∞)

16πG
(10)
N

α′

8
Ĥabf Ĥf

cd . (C.8)

To obtain the last correction to the entropy, we notice that when Eabcd gets contracted

with the binormal, the only relevant values of the flat indices a, . . . , d are 0, 1. Therefore,
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the remaining non-vanishing contribution to the entropy comes from the variation of Ω̂L
014,

and amounts to

Eabcd2 =
e−2(φ̂−φ̂∞)

16πG
(10)
N

δ

δR̂abcd

(
α′

3!4
ĤefgΩL

efg

)
=
e−2(φ̂−φ̂∞)

16πG
(10)
N

α′

8
Ĥab4 c

c∞
Gcd , (C.9)

Putting everything together, Wald’s entropy is

S =
1

4G
(10)
N

∫
dθdϕdzd4yc∞e

−2Ur2 sin θ

[
1− α′

4
Ĥ014

(
Ĥ4

01 +
c

c∞
G01

)]
. (C.10)

D Case 3: qA · qV = 0

As we have seen in the main text, the cases qA ·qV > 0 and qA ·qV < 0 are qualitatively very

different when higher-curvature corrections are incorporated. It is interesting to consider

the transition between one and another, qA · qV = 0. In particular let us consider the

configuration qV = pV = 0, qA = pA = Q/
√

2. Then we find the following solution,

ds2 = A2

(
1 +

Q

ρ

)−2

dt2 −B2

(
1 +

Q

ρ

)2 (
dρ2 + ρ2dΩ2

(2)

)
, (D.1)

F =
c

c∞

e2(φ̂−φ̂∞)
√

2QA

(ρ+Q)2B
dt ∧ dρ+

√
2QE sin θdθ ∧ dϕ , (D.2)

V =
α′ρ2

(
Q
(
11Q2 + 15Qρ+ 6ρ2

)
− 6(Q+ ρ)3 log

(
1 + Q

ρ

))
3
√

2Q2(Q+ ρ)5
dt , (D.3)

φ̂ = φ̂∞ +
α′

1120Q2(Q+ ρ)4

[
Q
(
−189Q3 − 196Q2ρ+ 1646Qρ2 + 1304ρ3

)
(D.4)

+28(Q+ ρ)2
(
5Q2 + 10Qρ− 47ρ2

)
log

(
1 +

Q

ρ

)]
,

c(ρ) = c∞ +
α′

560Q2(Q+ ρ)4

[
Q
(
259Q3 + 896Q2ρ+ 1614Qρ2 + 876ρ3

)
(D.5)

−28(Q+ ρ)2
(
5Q2 + 10Qρ+ 31ρ2

)
log

(
1 +

Q

ρ

)]
,

H = − α′Q2ρ2

(Q+ ρ)5
dt ∧ sin θdθ ∧ dϕ− F ∧ V , (D.6)

where

A = 1 + α′
83Q3 + 189Q2ρ+ 84Qρ2 + 6ρ3 − 60(Q+ ρ)3 log

(
1 + Q

ρ

)
480Q(Q+ ρ)4

, (D.7)

B = 1 + α′
Q(5Q+ 3ρ)

(
6Q2 + 13Qρ+ 18ρ2

)
− 60ρ(Q+ ρ)3 log

(
1 + Q

ρ

)
480Q2(Q+ ρ)4

, (D.8)

E = 1 +
α′Q(Q+ 4ρ)

4(Q+ ρ)4
. (D.9)

(D.10)
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We observe that there are logarithmic singularities that cannot be avoided. Now, the

charges of the solution are indeed qA = pA = Q/
√

2. Thus, Q still represents the total

charge Q =
√
q2
A + p2

A. In addition, we note that the KK vector field V does not carry any

charge. However, we get

gρρ = 1 +
1

ρ

(
2Q− α′

40Q

)
+ . . . (D.11)

Therefore, the mass is

M = Q− α′

80Q
+ . . .⇒ Q

M
= 1 +

α′

80M2
+O(α′2) . (D.12)
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