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1 Introduction

Decoherence leads to the emergence of classical behavior in a quantum word. Decoherence is

indeed an ubiquitous phenomenon, stemming from the entanglement of a quantum system

with its surrounding environment [1]. Its description is natural in terms of a composite

large system including both system and environment. Due to the difficulty to describe

the dynamics in such setting, (master) equations of motion governing the reduced density

matrix of the system of interest are often employed.

Prominent aspects of decoherence involve the inclusion of noise in the degrees of free-

dom of the system. Noise in the energy spectrum can be described by fluctuations in time

in the system Hamiltonian, that lead to energy-diffusion processes. As it turns out, such

kind of noise is of relevance in a wide variety of contexts. Within standard quantum me-

chanics, if the evolution of the system is described using a clock, errors in the clock time
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keeping give rise to fluctuations in the system Hamiltonian [2, 3]. A different setting in

which the system Hamiltonian is also a fluctuating operator is associated with wavefunction

collapse models [4–8]. The latter postulate that the fundamental equation of motion of an

isolated quantum system is not the (deterministic) Schrödinger equation but its stochas-

tic generalization with a single fluctuating term V = H. This feature is shared by other

modifications of quantum mechanics, e.g, entertaining the possibility that the phase of the

quantum state fluctuates in a short-time scale [9]. Yet, other scenarios characterized by

fluctuating Hamiltonians concern quantum simulation protocols in which noise is harnessed

as a resource for the emulation of open quantum systems [10] and random measurement

Hamiltonians [11].

With the emergence of classical behavior, quantum correlations such as entanglement

are suppressed. Entanglement plays a crucial role in quantum matter and is essential in

the characterization of quantum field theories. In particular, it has played a key role in

holography, that relates a conformal field theory (CFT) to a quantum theory of gravity

in anti-de Sitter space (AdS) [12]. In this context, entanglement is key to the emergence

of gravity in CFTs and several measures of entanglement admit a geometric interpreta-

tion in AdS. Remarkably, the entanglement entropy can be computed as a minimal area

in AdS [13–15]. Analogous relations hold for a variety of measures of quantum correla-

tions (so called entanglement of purification) [16, 17]. It is thus imperative to acquire an

understanding of how decoherence affects field theories in the context of AdS/CFT.

Motivated by these we will study the decoherence in CFTs induced by fluctuating

Hamiltonian V = H. This energy fluctuations can be attributed to noise in the clock time

in CFTs or equally to noise in the time component of the metric of CFTs. Therefore this

is the most fundamental class of noises for CFTs and their gravity duals.

2 Noise-induced decoherence

A noisy quantum system is described by a fluctuating Hamiltonian

HT = H0 + ~
∑
µ

√
γµξ

µ
t Vµ, (2.1)

where ξµt represent independent Gaussian random processes with zero-mean 〈ξµt 〉 = 0 and

white noise correlations 〈ξµt ξνt′〉 = δµνδ(t − t′). For a given set of realizations of these

processes {ξµt }, the dynamics is governed by the stochastic master equation

d|Ψξ
t 〉 = − i

~
H0dt|Ψξ

t 〉 − i
∑
µ

√
γµVµdWµ

t |Ψ
ξ
t 〉 −

1

2

∑
µ

γµV
2
µ dt|Ψξ

t 〉, (2.2)

where dWµ
t , defined from ξµt := dWµ

t /dt is an Itô stochastic differential. As such, it obeys

the relations dWµ
t dW ν

t = δµνdt and dWµ
t dt = dt2 = 0. The noise-averaged dynamics is

governed by the master equation

ρ̇(t) = − i
~

[H0, ρ(t)]− 1

2

∑
µ

γµ [Vµ, [Vµ, ρ(t)]] , (2.3)
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where the density matrix represents the average over different realizations of the noise

ρ(t) = 〈ρ(t)ξ〉ξ. The evolution (2.3) is Markovian (memory-less) and of Lindblad form with

Hermitian Lindblad operators Vµ = V †µ [18]. Relevant characteristic times in Markovian

open quantum dynamics can often be identified from the early-time behavior [10, 19].

In [20], it was shown that the decoherence rate D can be extracted from the short-time

asymptotics of the purity P (t) = tr[ρ(t)2], i.e.,

P (t) = P (0)(1−Dt) +O(t2), (2.4)

which is consistent with an exponential behavior to order O(t). The decoherence rate reads

D =
2

P (0)

∑
µ

γµṽarρ(0)(Vµ), (2.5)

where the modified variance reads ṽarρ(0)(X) :=
〈
ρ(0)X2

〉
ρ(0)
− 〈Xρ(0)X〉ρ(0), with

〈·〉ρ(0) := tr (ρ(0)·).
As a function of the system size, D exhibits at most a polynomial dependence on

the system size whenever the fluctuating operator is k-local. By contrast, whenever the

fluctuating operator is fully non-local (e.g., a random matrix operator), the decoherence

rate becomes proportional to the Hilbert space dimension, and this exhibits an exponential

dependence on systems of interacting qubits [20].

3 Decoherence of entangled quantum states

Consider a canonical Gibbs state associated with a system at thermal equilibrium at in-

verse temperature β = (kBT )−1, where kB is the Boltzmann constant. The state of the

system is described by a density matrix ρβ = e−βH/Z(β), where the partition function

equals Z(β) := tr(e−βH). Let the spectral decomposition of the system Hamiltonian be

given by H =
∑

k Ek|k〉〈k|, in terms of the energy eigenvalues Ek and the corresponding

eigenstates |k〉. We use the subindex k as a global quantum number that accounts for

possible degeneracies in the spectrum.

A purification of this state can be achieved by doubling the Hilbert space and consid-

ering two identical copies of the system. The resulting thermofield double (TFD) state [21]

|TFD〉 :=
1√
Z(β)

∑
k

e−
βEk

2 |k〉 |k〉 , (3.1)

is an entangled state of the two copies. The reduced density matrix obtained by tracing

over any of the two copies of the system equals the canonical thermal state ρβ .

TFD states are commonly used in finite-temperature field theory and have been widely

studied in the context of holography, e.g., in connection to the entanglement between black

holes [22], the butterfly effect [23], and quantum source-channel codes [24].

Assume now that each subsystem is perturbed by a single Gaussian real white noise

ξt [25], so that the total Hamiltonian is given by

HT = H ⊗ 1 + 1⊗H + ~
√
γ
(
ξLt H ⊗ 1 + 1⊗ ξRt H

)
, (3.2)
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where we assume independent noises acting on each copy, ξLt 6= ξRt , with identical ampli-

tudes γL = γR = γ. The dynamics of the system is governed by the Schrödinger equation

i~∂t|Ψξ
t 〉 = HT |Ψξ

t 〉, denoting ξ := {ξLt , ξRt } for simplicity.

As shown in [20], the noise-averaged density matrix ρ(t) = 〈|Ψξ
t 〉〈Ψ

ξ
t |〉ξ is governed by

the master equation (2.3), that is of Lindblad form [18] with Hermitian Lindblad operators

VL = H ⊗ 1, VR = 1⊗H. (3.3)

The decoherence rate is set by the sum of the thermal energy fluctuations of each copy,

D = 4γvarρβ (H) = 4γ
d2

dβ2
ln [Z(β)]

= 4
γ

kBβ2
C, (3.4)

where C is the heat capacity of a single copy of the system at thermal equilibrium with

inverse temperature β.

4 Thermofield double state under decoherence

The exact time evolution under noise-induced decoherence was recently discussed in chaotic

quantum systems described by fluctuating random-matrix Hamiltonians [20]. We empha-

size here the system-independent features.

Consider a thermofield double state as the initial state

ρ(0) = |TFD〉〈TFD|

=
1

Z(β)

∑
k,`

e−
β
2

(Ek+E`)|k〉|k〉〈`|〈`|, (4.1)

for a given single-copy Hamiltonian H, with eigenvectors |k〉 and eigenvalues Ek, satisfying

H|k〉 = Ek|k〉. The time-evolution of the density matrix can be obtained in a closed form

as its matrix elements fulfill

ρ̇kk,`` =
2

i~
(Ek − E`)ρkk,`` − γ(Ek − E`)2ρkk,``. (4.2)

Upon integration, the time-evolving state is found to be given by

ρ(t) =
∑
k,`

ρkk,``(t = 0)e−i
2t
~ (Ek−E`)−γt(Ek−E`)2 |k〉|k〉〈`|〈`|

=
1

Z(β)

∑
k,`

e−
β
2

(Ek+E`)e−i
2t
~ (Ek−E`)−γt(Ek−E`)2 |k〉|k〉〈`|〈`|. (4.3)

Making use of the Hubbard-Stratanovich transformation

e−tγ(Ek−E`)2
=

√
1

4πγt

∫ ∞
−∞

e
− y2

4γt e∓iy(Ek−E`)dy, (4.4)
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we can write the time-dependent density matrix in the form

ρ(t) =
1

Z(β)

(
1

4πγt

) 1
2
∫

dye
− y2

4γt

∑
k,`

e−(β2 +i 2t
~ +iy)Eke−(β2−i

2t
~ −iy)E` |k〉|k〉〈`|〈`|. (4.5)

We note that during this time-evolution, diagonal elements of the density matrix in

the energy eigenbasis are unaffected and thus energy moments 〈(H ⊗ 1 + 1 ⊗ H)n〉 are

preserved as a function of time and set by (2n times) the corresponding thermal value.

Similarly, the reduced density matrix obtained by tracing over the degrees of freedom of

any of the copies is unaffected by decoherence, as the canonical thermal state commutes

with the fluctuating operator, i.e., the system Hamiltonian.

In the absence of degeneracies in the spectrum, the fixed-point of the evolution (4.5)

is given by

ρ(∞) =
1

Z(β)

∑
k

e−βEk |k〉|k〉〈k|〈k|, (4.6)

that is a diagonal state in the energy eigenbasis containing classical correlations between the

two copies. Thus, as t→∞ the off-diagonal elements (so-called coherences) of the density

matrix decay to zero, showing that entanglement is lost under the decoherent dynamics.

In the process, the state becomes mixed. The degree of mixedness is well quantified by

the purity P (t) = tr[ρ(t)2], satisfying 1
d ≤ P (t) ≤ 1, where d is the dimension of the Hilbert

space. The purity of the time-dependent density matrix at all times of evolution reads

P (t) =
1

Z(β)2

∑
k,`

e−β(Ek+E`)−2γt(Ek−E`)2
. (4.7)

Clearly, this is a function that decays monotonically as a function of time. This feature

is a direct consequence of the unital character of the energy-dephasing dynamics. Indeed,

the master equation (2.3) is of Lindblad form [18] with Hermitian Lindblad operators, a

sufficient condition for the dynamics to be unital [26]. From the expression (4.7), it is

apparent that
Z(2β)

Z(β)2
≤ P (t) ≤ 1. (4.8)

For arbitrary time of evolution t, use of the Hubbard-Stratonovich transformation

yields the following integral expression for the purity

P (t) =

√
1

8πγt

∫ ∞
−∞

e
− y2

8γt

∣∣∣∣Z(β + iy)

Z(β)

∣∣∣∣2 dy, (4.9)

in terms of the analytic continuation of the partition function. The term
∣∣∣Z(β+iy)

Z(β)

∣∣∣2 has

been extensively studied as a characterization of the spectral properties of quantum chaotic

systems and as a proxy for information scrambling; see [27–29] and references therein.

At long-times and in the absence of degeneracies, the purity saturates at the value

P (∞) =
1

Z(β)2

∑
k

e−2βEk =
Z(2β)

Z(β)2
, (4.10)
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which is precisely the purity of a canonical thermal state. This long-time asymptotic limit

is shared by the unitary dynamics [28, 29].

In a general setting the spectrum may exhibit degeneracies. It is then convenient to

introduce the function [28]

G(β) = lim
L→∞

1

L

∫ L/2

−L/2
dyZ(β − iy)Z(β + iy), (4.11)

satisfying

Z(2β) ≤ G(β) ≤ Z(β)2. (4.12)

In terms of it, the long-time asymptotics of the purity reads

P (∞) =
G(β)

Z(β)2
. (4.13)

Thus, as time goes by, the purity decays monotonically from unit value at t = 0

approaching the asymptotic bound (4.13).

5 Quantum Rényi entropy

The preceding characterization of the purity can be extended to the family of quantum

Rényi entropies, which encode additional information as a function of the parameter α.

The quantum Rényi entropy is defined as

Sα(ρ) =
1

1− α
log trρα, α ≥ 0. (5.1)

We are interested in its use to characterize the evolution of the TFD under decoherence.

For an integer value α = n, a replica calculation yields

tr[ρ(t)n] =
1

Z(β)n

∑
{ki}ni=1

e−β
∑n
i=1 Eki−γt

∑n
i=1(Eki−Eki+1

)2

, (5.2)

which naturally reduces for n = 2 to the purity P (t), discussed in the previous section.

It is obvious that the following inequality holds

Z(nβ)

Z(β)n
≤ Tr[ρ(t)n] ≤ 1. (5.3)

Using the Hubbard-Stratonovich transformation, one finds for arbitrary time of

evolution

tr[ρ(t)n] =
1

Z(β)n

(
1

4πγt

)n
2
∫ n∏

i=1

dyie
−

∑
i

y2
i

4γt

∑
{ki}ni=1

e−β
∑n
i=1 Eki−iyi(Eki−Eki+1

)

=
1

Z(β)n

(
1

4πγt

)n
2
∫ n∏

i=1

dyie
−

∑
i

y2
i

4γt

n∏
i=1

Z(β + i(yi − yi−1)). (5.4)
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The n-th quantum Rényi entropy reads

Sn[ρ(t)] =
1

1− n
log

∑
{ki}ni=1

e−β
∑n
i=1 Eki−γt

∑n
i=1(Eki−Eki+1

)2

− n

1− n
logZ. (5.5)

Clearly, Ṡn[ρ(t)] ≥ 0, indicating that quantum Renyi entropy grows monotonically as a

function of time as a result of noise-induced decoherence.

We note that at short-times

tr[ρ(t)n] = 1− 2nγtvarρβ (H) +O(t2) = 1− n

2
D +O(t2), (5.6)

where we identify the decoherence rate D, defined in terms of the purity according to

eq. (2.4). By contrast, one finds that at long times, assuming the absence of degeneracy of

energy spectrum,

tr[ρ(t)n]→ tr[ρ(∞)n] =
Z(nβ)

Z(β)n
. (5.7)

This leads to the relation

lim
L1,L2,···,Ln→∞

n∏
i=1

1

Li

∫ Li/2

−Li/2
dyiZ(β + i(yi − yi−1)) = Z(nβ). (5.8)

In principle, using these results we can describe the behavior of the von Neumann

entropy

S(ρ) = −trρ log ρ = − ∂

∂n
trρn

∣∣
n=1

= − ∂

∂n
log trρn

∣∣
n=1

. (5.9)

However, the short-time expansion eq. (5.6) breaks down in this limit.

As for the late-time behavior, the asymptotic density matrix is given by ρ(∞) in

eq. (4.6) and its von Neumann entropy equals the thermodynamic entropy

S(ρ) = β〈H〉β + logZ = β(〈H〉β − F ), (5.10)

where F is the free energy. This is most easily seen by noticing that

S[ρ(∞)] = − ∂

∂n
log

Z(nβ)

Z(β)n

∣∣∣∣
n=1

= − ∂

∂n
log tr[e−nβ ]

∣∣
n=1

+ logZ. (5.11)

6 Logarithmic negativity

Decoherence is expected to suppress quantum correlations in the thermofield double state.

To describe the evolution of entanglement, we focus on the logarithmic negativity, that

is a convenient entanglement monotone introduced in [30]. Its study in CFTs has been

advanced in [31]. The explicit definition of the logarithmic negativity is

E = log tr|ρPT |1 = lim
n→1/2

log tr(ρ2n
PT ), (6.1)

where the trace norm is defined as |A|1 = tr
√
AA† and ρPT denotes the partial transpose

of ρ with respect to, e.g., the right copy.

– 7 –
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For its computation, we note that the partial transpose of the time-evolving density

matrix (4.3) reads

ρPT =
1

Z(β)

∑
k,`

e−
β
2

(Ek+E`)e−i
2t
~ (Ek−E`)−γt(Ek−E`)2 |k〉|`〉〈`|〈k|. (6.2)

Using it, it follows that

log tr(ρ2n
PT ) = log

[
1

Z(β)2n

∑
k`

e−nβ(Ek+E`)−2nγt(Ek−E`)2

]
, (6.3)

and taking the limit n→ 1/2, one finds the logarithmic negativity explicitly,

E(t) = log

(
1

Z(β)

∑
k`

e−
β
2

(Ek+E`)−γt(Ek−E`)2

)
(6.4)

= log

(√
1

4πγt

∫ ∞
−∞

dye
− y2

4γt
|Z(β/2 + iy)|2

Z(β)

)
. (6.5)

For the TFD (pure) state at time t = 0,

E(0) = log
Z(β/2)2

Z(β)
= β[F (β)− F (β/2)], (6.6)

where F (β) = − 1
β logZ(β) is the free energy. This is equal to the 1/2-Rényi entropy, as

expected.

Under decoherence,

Ė(0) = −4γ
d2

dβ2
Z(β/2) = −1

4
D(β/2), (6.7)

i.e., the (short-time) decay rate of the logarithmic negativity is related to (one fourth of)

the decoherence time of a thermal state at temperature β/2.

At an arbitrary time of evolution t, the rate of change is negative

Ė(t) = −γ
∑

k`(Ek − E`)2e−
β
2

(Ek+E`)−γt(Ek−E`)2∑
k` e
−β

2
(Ek+E`)−γt(Ek−E`)2

< 0. (6.8)

Thus, the logarithmic negativity decreases monotonically to the asymptotic value

E(∞) = log
G(β/2)

Z(β)
≤ E(0). (6.9)

7 Case studies

7.1 CFTs with no degenerated energy eigenvalues

To study properties of decoherence for generic CFTs, we assume that there is no degeneracy

in the energy spectrum. In the absence of degeneracies in the energy spectrum, we find in

the late time limit t→∞
Tr[ρ(t =∞)n] =

Z(nβ)

Z(β)n
. (7.1)
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Thus, in this case the late-time Rényi entropy is given by

S(n)(t =∞) =
1

1− n
log

Z(nβ)

Z(β)n
. (7.2)

In the von-Neumann entropy limit n→ 1 we obtain

S(1)(t =∞) = Sth(β), (7.3)

which is the original thermal entropy, i.e., the entanglement entropy between the CFT1 and

CFT2 for the TFD state (3.1) at t = 0. It follows that the original entanglement entropy

between CFT1 and CFT2 is converted into the entanglement entropy between CFT1,2 and

the environment, as expected from the decoherence.

For n = 2 we find

G(β) = Z(2β). (7.4)

Thus, we have

E(t =∞) = log
G(β/2)

Z(β)
= 0, (7.5)

which confirms the vanishing entanglement between the two CFTs in the late time limit

as expected. According to the EPR=ER conjecture, this corresponds to the closing of

the Einstein-Rosen bridge in the gravitational dual. We shall revisit this observation in

section 8 where we analyze the evolution of two point functions.

7.2 Decoherence of two-dimensional Dirac fermions

Next, as a special class of CFTs, that are characterized by integrability, we would like to

study the behavior of decoherence in a free fermion CFT, where the energy spectrum has

a degeneracy. Two dimensional CFTs are conveniently studied on a torus. The moduli

of the torus is parameterized by τ . The standard definition of the partition function in

statistical mechanics is then promoted to

Z(τ, τ̄) = tr
(
e−ImτH+iReτP

)
, (7.6)

where the Hamiltonian and the momentum operator in a cylinder of width L are given by

H =
2π

L

(
L0 + L̄0 −

c

12

)
, P =

2π

L

(
L0 − L̄0

)
, (7.7)

in terms of the Virasoro generators L0 and L̄0. The decoherence mechanism leading to the

master equation (2.3) and the evolution of the density matrix (4.3) stems from fluctuations

in the Hamiltonian only. For consistency, we shall focus on Reτ = 0.

The partition function of two-dimensional Dirac fermions can be written as [32]

Z(β) =
|θ3(0|τ)|2

|η(τ)|2
, (7.8)

where the Jacobi theta function reads θ3(z, τ) =
∑∞

n=−∞ exp(iπn2τ + i2πnz) and the

Dedenkin function is given by η(τ) = eiπτ/12
∏∞
m=1(1 − ei2πmτ ). The space direction is

– 9 –
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γ

Figure 1. Decoherence rate of two-dimensional Dirac fermions. The numerically-exact decoherence

rate evaluated by truncation of eq. (7.12), shown as a solid black line, is compared to the high and

low temperature asymptotes in eqs. (7.13) and (7.14) that are shown in light red and blue color,

respectively.

compactified as x ∼ x + L and τ = iβ/L. The explicit form of the partition function can

be written as an infinite product

Z(β) = e
π
6
βL

∞∏
m=1

(
1 + e−2π β

L
(m−1/2)

)4
(7.9)

= e
πL
6β

∞∏
m=1

(
1 + e

− 2πL
β

(m−1/2)
)4

= Z(L2/β), (7.10)

where the last line is a consequence of the modular invariance Z(β) = Z(L2/β). We find

the following behavior in the high temperature limit β → 0,

Z(β) ∼ e
π
6
βL. (7.11)

Expression (7.9) for the partition function is particularly convenient to determine the

decoherence rate characterizing the short-time asymptotics of the purity. One obtains

D = 4γ
d2

dβ2
ln [Z(β)] =

4γπ2

L2

∞∑
m=1

(1− 2m)2

cosh2[βπ(m− 1/2)]
. (7.12)

The explicit dependence as a function of temperature is illustrated in figure 1. The rate is

divergent in the high-temperature limit,

D ' 4π

3
γ
L

β3
. (7.13)

By contrast, in the low temperature case β � L, it is well described by

D = 16π2 γ

L2
e−π

β
L . (7.14)

For arbitrary times of evolution, the purity can be computed using its integral repre-

sentation (4.9), where the spectral form factor simplifies to

f(β, y) =

∣∣∣∣Z(β + iy)

Z(β)

∣∣∣∣2 =

∞∏
m=1

(
cos[2πy(m− 1/2)/L] + cosh[2πy(m− 1/2)/L]

1 + cosh[2πβ(m− 1/2)/L]

)4

≤ 1.

(7.15)
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In the time domain, the function f(β, y) is even f(β, y) = f(β,−y) and periodic,

satisfying f(β, y) = f(β, y + 2n) for all integer n ∈ Z, as shown in figure 2(a). In this case

we can rewrite the purity P (t) = Tr[ρ(t)2] as follows

P (t) =
1√

8πγt

∫ ∞
−∞

dye
− y2

8πγt f(β, y)

=
1√

8πγt

∞∑
n=−∞

∫ 1

−1
dye
− (y+2n)2

8πγt f(β, y)

=
1

2

∞∑
m=−∞

∫ 1

−1
dye−2π2γtm2+πiymf(β, y), (7.16)

where in the final line we employed the Poisson resummation formula

∞∑
n=−∞

e−
π(n−b)2

a =
√
a

∞∑
m=−∞

e−πam
2+2πibm. (7.17)

At the late time limit t→∞ we simply obtain

lim
t→∞

Tr[ρ(t)2] =

∫ 1

0
dyf(β, y) ≤ 1, (7.18)

and numerically we can confirm that∫ 1

0
dyZ(β − iy)Z(β + iy) > Z(2β). (7.19)

This leads to

lim
t→∞

Tr[ρ(t)2] >
Z(2β)

Z(β)2
. (7.20)

For example, when β � 1 we find

Z(β − iy)Z(β + iy)

Z(2β)
' 1 + 8 cos(πy/L)e−π

β
L + 12 cos2(πy/L)e−2π β

L , (7.21)

which obviously leads to (7.19). This means that the lowest bound of the purity (4.8) is

not saturated and this is due to the degeneracy of energy eigenvalues as we will see below.

The full decay dynamics of the purity as a function of time is shown in figure 2(b). As

already mentioned, the monotonic decay is a feature that holds for any state evolving under

the master equation (2.3), which can be associated with a unital map, and thus satisfies

the conditions for strictly purity-decreasing quantum Markovian dynamics [26]. Regarding

its late-time behavior, we note that as energy levels Em may have a degeneracy hm, the

purity approaches asymptotically the value

P (∞) =

∑
m h

2
me
−2βEm

Z(β)2
>
Z(2β)

Z(β)2
, (7.22)

where Z(β) =
∑

m hme
−βEm , in terms of the energy eigenstates. Similarly, using the replica

trick we find

tr[ρ(∞)n] =
∑
m

(
hme

−βEm

Z(β)

)n
=
∑
m

λnm, (7.23)
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Figure 2. Decoherence of two-dimensional Dirac fermions. (a) Periodicity of the function f(β, y)

as a function of the time of evolution t. (b) Time evolution of the purity for a thermofield dou-

ble state prepared at t = 0 under decoherence, when the evolution is governed by the master

equation (2.3). The asymptotic value of the purity exceeds the value Z(2β)/Z(β)2, indicating the

presence of degeneracies in the energy spectrum. Cases with β = 1/2, 1 with corresponding values

Z(2β)/Z(β)2 = 0.243, 0.718 are shown in red and blue color, respectively.

where λm are the eigenvalues of ρ(∞). The corresponding von Neumann entropy

S[ρ(∞)] = − ∂

∂n
tr[ρ(∞)n] = − ∂

∂n

∑
m

(
hme

−βEm

Z(β)

)n ∣∣∣∣
n=1

= −
∑
m

(
hme

−βEm

Z(β)

)
log

(
hme

−βEm

Z(β)

)
, (7.24)

which matches the thermal value associated with a canonical Gibbs state with degeneracies

in the energy spectrum.

Finally, the logarithmic negativity in the late time limit is found to be non-vanishing

E(t =∞) = log
G(β/2)

Z(β)
= log

Z(β/2)2
∫ 1

0 dyf(β/2, y)

Z(β)
> 0. (7.25)

This manifestly shows that a non-zero quantum entanglement between the two CFTs re-

mains in the late time limit.

7.3 Decoherence in holographic CFTs

To study the decoherence in the maximally chaotic CFTs, we would like to study the

holographic CFTs in two dimensions. Consider the case in which the Hamiltonian H is

associated with a 2d holographic CFT on a circle (with periodicity 2π such that x ∼ x+2π).

In the 2d CFTs dual to classical gravity, the partition function in the high temperature

phase (BTZ black hole) reads

Z(β) ∼ e
π2c
3β . (7.26)

From the equilibrium value of the thermal energy variance

varρβ (H) =
d2

dβ2
logZ(β) =

2π2c

3β3
, (7.27)
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we can estimate the decoherence time to be

D =
8π2

3

γc

β3
. (7.28)

This decoherence rate governs the short-time asymptotics of the purity, i.e., according to

the expansion in eq. (2.4).

In the long-time limit, since we do not expect degeneracy of energy levels in chaotic

CFTs,1 we expect

P (∞) = lim
t→∞

Tr[ρ(t)2] =
Z(2β)

Z(β)2
∼ exp

[
−π

2c

2β

]
. (7.29)

Note that this asymptotic value of the purity decays from unit value exponentially as a

function of c/β. This predicts

G(β) =

∫ ∞
−∞

dyZ(β − iy)Z(β + iy) ∼ e
π2c
6β . (7.30)

To describe the decohering dynamics at intermediate times, we estimate the purity via

the integral representation in terms of the analytically continued partition function

P (t) =

√
1

8πγt

∫ ∞
−∞

dye
− y2

8γt

∣∣∣∣Z(β + iy)

Z(β)

∣∣∣∣2 (7.31)

=

√
1

8πγt
e
− 2π2c

3β

∫ ∞
−∞

dye
− y2

8γt e
2π2c

3
β

y2+β2 . (7.32)

The preceding analysis relied on the use of the classical gravity result (i.e. BTZ black

hole) for the partition function in terms of the leading saddle. Consider now going beyond

this approximation. The correct partition function is given by the summation over all

saddles (i.e. classical solutions to Einstein equations) [28, 33]:

Z(β − iy) = Zgravity(τ, τ̄) =
∑

(p,q,r,s)∈Z,ps−qr=1

exp

[
−iπc

12

(
pτ + q

rτ + s
− pτ̄ + q

rτ̄ + s

)]
, (7.33)

where the moduli parameter read

τ = i

(
β − iy

2π

)
, τ̄ = −i

(
β − iy

2π

)
. (7.34)

The expression for Z(β + iy) follows by replacing y → −y.

The expression (7.33) takes into account only the leading classical gravity contributions

from all non-perturbative saddles (or equally SL(2,Z) summations). Therefore we ignore

loop corrections in the gravity. However, we know that at each saddle, the classical gravity

contribution dominates over its loop correction and thus the summations of all classical

1Note that the non-renormalization property due to supersymmetries can give a degeneracy of energy

levels. However, the contributions of supersymmetric states (BPS states) to the partition function is much

smaller compared with the non-supersymmetric states. Thus we ignore such contributions.
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Figure 3. Spectral form factor f(β, y) for the holographic CFT. In the numerically exact result (in

blue) using (7.33), the contribution of the sum over saddles is subdominant and orders of magnitude

smaller than that of the leading one (orange).

saddles are crucial. In this sense, we expect that the essential feature of the full gravity

partition function for our purpose can be captured by the above (7.33), neglecting loop

corrections.

The integral representation of the purity involves the integrand f(β, y) =
∣∣∣Z(β+iy)

Z(β)

∣∣∣2
that is depicted in figure 3, by truncating the sum over SL(2,Z) and checking for conver-

gence. Specifically, by restricting p, q, r, s ≤ nmax, taking nmax = 10 we find 1012 tuples

(p, q, r, s) satisfying ps − qr = 1. The contribution of higher-order saddles is clearly sub-

dominant, being many orders of magnitude below the leading saddle, even in the absence

of decoherence.

The emergence of classical gravity result associated with the leading saddle is further

guaranteed by decoherence as the peaks away of the origin are suppressed by the Gaussian

factor. Yet, as the time of evolution goes by, this factor becomes broader and broader.

We are interested in the function

G(β) =

∫ ∞
−∞

dyZ(β−iy)Z(β+iy) (7.35)

=

∫ ∞
−∞

dy

 ∑
(p,q,r,s)∈Z,ps−qr=1

e
π2c

3
β−iy

4π2s2+(β−iy)r2

 ∑
(p,q,r,s)∈Z,ps−qr=1

e
π2c

3
β+iy

4π2s2+(β+iy)r2

 .
To leading order, the absence of degeneracy suggests

G(β) =

∫ ∞
−∞

dyZ(β − iy)Z(β + iy) ∼ e
π2c
6β . (7.36)

Let us try to speculate the behavior of the spectrum function f(β, y) = |Z(β+iy)|2
Z(β)2 for

holographic CFTs from what we know. If we assume the high temperature phase β < 2π,

then the classical gravity dual is given by BTZ black hole before we add the decoherence.

The BTZ solution leads to the spectrum function given from (7.26) by

f(β, y)BTZ ∼ e−
2π2c
3β · e

2β

β2+y2 , (7.37)
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Figure 4. Behaviors of Spectrum Function f(β, y) = |Z(β+iy)|2
Z(β)2 in the high temperature phase.

The purple curve describes the contribution from the BTZ black hole saddle point. The red curve

is based on the speculation from the relation P (t =∞) = Z(2β)
Z(β) ∼ e

−π2c
2β .

which is depicted as the purple curve in figure 4. This leads to the late time behavior

of purity

P (t =∞) ' lim
L→∞

1

L

∫ L/2

−L/2
dy
Z(β − iy)Z(β + iy)

Z(β)2
∼ e−

2π2c
3β , (7.38)

On the other hand, in the absence of degeneracy of energy levels, we expect the purity

at late time P (∞), which should be obtained after the full summation over all saddle

points, to look like

P (t =∞) =
Z(2β)

Z(β)
∼ e−

π2c
2β

(
� e

− 2π2c
3β

)
. (7.39)

This is much larger than the BTZ saddle point result (7.38). To reproduce the correct

result (7.39), the spectrum function should behave like

f(β, y) ∼ e−
π2c
2β , (7.40)

in the limit y →∞. It is natural to believe that this enhancement is due to the contributions

from other saddle points other than the BTZ. Indeed, the late time behavior largely

depends on fine-grained energy level structures which are difficult to see from the semi-

classical gravity approximation.

It is also useful to study the low temperature phase β > 2π. In this case, the dominant

saddle is the thermal AdS solution if we ignore the decoherence. This simply leads to the

spectrum function

f(β, y)TAdS = 1. (7.41)

Thus, the purity P (t) remains unity at any time if we take into account this thermal AdS

saddle:

P (t) = 1. (7.42)

In other words, the state is not affected by decoherence. This is consistent with (4.10)

because in the low temperature phase we have Z(β) ' e
cβ
12 and therefore Z(2β)/Z(β)2 ' 1.

This also looks plausible because the original TFD state at t = 0 in the low temperature

phase is dual to two copies of thermal AdS solutions which are entangled with each other
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only via O(1) entropy. Thus the state is well approximated by the vacuum and thus the

state is not affected by the decoherence, which gives a random factor in front of the total

Hamiltonian.

8 Two-point functions and gravity dual interpretation

We would like to calculate the two point functions 〈OLOR〉 of two identical primary oper-

ators OL and OR, located in CFTL (the first CFT) and CFTR (the second CFT) of the

thermofield double, respectively. We write their conformal dimension as ∆O = hO + h̄O.

The behavior of two point functions will reveal the geometry of gravity duals of the deco-

herence process in holographic CFTs.

We know that the two-point function in the TFD state is equal to the two point

function on a cylinder with periodicity β, which is given by

〈TFD|eitLHL−itRHROLORe−itLHL+itRHR |TFD〉 =

 1

β
π cosh

[
π(tL−tR)

β

]
2∆O

, (8.1)

where we assumed that OL and OR are inserted in the same location with respect to the

spatial coordinate x. Notice that the time tL and tR flow oppositely such that the time

evolution of the thermofield double state is given by e−itLHL+itRHR |TFD〉. For example,

the time evolution tL = tR is trivial and does not change the thermofield double state.

Thus we find the two point function for our state ρ(t):

〈OLOR〉DEC = Tr[ρ(t)OLOR]

=
1√

4πγt

∫ ∞
−∞

dye
− y2

4γt

 1

β
π cosh

[
2π(t−y/2)

β

]
2∆O

. (8.2)

At t = 0, this reproduces the known result for the TFD state 〈OLOR〉 =
(
π
β

)2∆O

at

t = 0. We are interested in the behavior in the limit t → ∞. It is clear that for the TFD

state we have

〈OLOR〉TFD ∼ e−4π∆Ot/β , (8.3)

in the late time limit as we obtain from (8.1) by setting tL = −tR = t.

Let us assume ∆O is very large so that we can apply the saddle point approximation

y = y∗ of the integral
∫
dy. We assume t − y∗/2 > 0 at the saddle point, as it is easy to

see that t − y∗/2 < 0 is incompatible with the saddle point equation. By approximating

cosh
[

2π(t−y/2)
β

]
∼ e

2π
β

(t−y/2)
, the saddle point equation reads

d

dy

[
− y2

4γt
− 4π∆O

β
(t− y/2)

]
= 0. (8.4)

The saddle point is solved as

y∗ =
4πγ∆O

β
t, (8.5)

– 16 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
0

     

-

-









β γ



Figure 5. Plots of the coefficient A in the late time behavior of the two point function

〈OLOR〉 ∼ eAt/β as a function of β/γ. The black curve describes A in our decohered state. The

red dashed curve corresponds to the approximation given by (8.7): A = −4π∆O + 4π2∆2
Oγ/β. The

green dashed curve corresponds to the approximation given by (8.8): A = −β/γ. In these plots,

we set ∆O = 10. The blue line shows the value of A for the TFD state (8.3).

and the integral is approximated as

〈OLOR〉DEC ∼ e−4π∆Ot/βe
4π2∆2

Oγ

β2 t
. (8.6)

However, this is consistent with the assumption t− y∗/2 > 0 only if 2πγ∆O
β < 1. When

2πγ∆O
β > 1, the dominant contribution to the integral will come from the point t−y∗/2 = a∗,

where a∗ is a finite positive constant. This leads to the estimation 〈OLOR〉DEC ∼ e−t/γ .

In summary, we find for large ∆O that

When
2πγ∆O

β
< 1 : 〈OLOR〉DEC ∼ e−4π∆Ot/βe

4π2∆2
Oγ

β2 t
, (8.7)

When
2πγ∆O

β
> 1 : 〈OLOR〉DEC ∼ e−t/γ . (8.8)

We can confirm, this behavior in the plots of figure 5.

By comparing these equations with the TFD result (8.3), we find that the two point

function in the decohered state is much larger than that in the TFD state. The geodesic

length Γ in the gravity dual is related to the two point function via the standard rule

〈OLOR〉 ∼ e−∆OΓ. Thus, we expect the geodesic length from one boundary to the other

boundary in the gravity dual of the decohered state to be shorter than that in the gravity

dual of TFD state (i.e., the eternal BTZ) by the amount of the two point function, which

is substantially large. It seems the that the inner horizon regions in the eternal BTZ are

quite squeezed in the decohered geometry. In principle, we can realize such a geometry by

multiplying an overall conformal factor which is reduced only on the inner horizon regions

and which takes the unit value on the outer horizon regions. It would be an intriguing

future problem to work this out in detail.

However, we have to be careful given that the geodesic length Γ is not universally

defined as the two point function can have two different forms (8.7) and (8.8) and is not
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universal. On the other hand, since the density matrix for CFTL, ρL =TrR[ρ(t)], remains

the same as the original canonical distribution, the outer horizon region in the gravity dual

is not affected by decoherence.

9 Information loss and quantum channel dilations

The open noisy evolution we have assumed throughout can be thought of resulting from

the interaction of the CFTs with an external environment. This interaction leads to the

buildup of correlations between the CFTs and the environment. As the degrees of freedom

of the latter are unknown or inaccessible, the entropy of the composite system of the two

CFTs increases, as we have shown. This is a manifestation of information loss in the original

CFTs through its leakage to the environment. We elucidate this aspect in this section.

We first note that the noise-induced energy dephasing we have considered to introduce

decoherence is just an instance of an open quantum dynamics. A general open quantum

process can be described by a quantum channel Λ[·], that is, a completely positive and

trace preserving linear map from density operators to density operators [34],

ρ(t) = Λ[ρ(0)]. (9.1)

Any quantum channel admits a Kraus decomposition

ρ(t) =

dK∑
j=1

Kjρ(0)K†j , (9.2)

in terms of a set of Kraus operators Kj satisfying
∑

j K
†
jKj = 1. Though different Kraus

decompositions are possible, the value of dK need not be larger than d2, where d is the

Hilbert space dimension of the CFT. By Stinespring’s dilation theorem, it is possible to

represent a quantum channel as an isometry in an enlarged Hilbert space,

UΛ =

dK∑
j=1

Kj ⊗ |j〉E . (9.3)

The isometry satisfies U †ΛUΛ = 1, with UΛU
†
Λ being a projector onto the tensor product of

the joint system. The evolution of the latter is thus described by

UΛρ(0)U †Λ =
∑
j`

Kjρ(0)K†` ⊗ |j〉E〈`|E , (9.4)

making the interaction with the environment explicit. Tracing over the degrees of freedom

of the environment recovers

ρ(t) = trE [UΛρ(0)U †Λ] = Λ[ρ(0)]. (9.5)

In our setting, making use of the time-dependent density matrix (4.5) we note that

ρ(t) =

∫ ∞
−∞

dyK(y)|TFD〉〈TFD|K(y)†, (9.6)
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where

K(y) =

(
1

4πγt

) 1
4

e
− y2

8γt e−i(t−y/2)(H1+H2). (9.7)

This is analogous to describe the dynamics in terms of a quantum channel with aKraus

decomposition in terms of Kraus operators labelled by a continuous index y, satisfying∫
dyK(y)†K(y) = 1. This does not rule out an alternative Kraus decomposition with

discrete index, which indeed must exist [18, 35]. At any rate, the quantum channel can be

represented by the isometry

UΛ =

∫ ∞
−∞

dyK(y)⊗ |y〉E , (9.8)

which suggests that the role of the environment is played by an infinite-dimensional system

in this representation. The evolution in the joint system takes the form

UΛρ(0)U †Λ =
1

Z(β)

(
1

4πγt

) 1
2 ∑
k,`

∫∫
dydxe

− y
2+x2

8γt e−(β2 +i 2t
~ +iy)Eke−(β2−i

2t
~ −ix)E` |k〉|k〉〈`|〈`| ⊗ |y〉〈x|E.

(9.9)

Tracing over the degrees of freedom of the environment and using the orthonormality

relation for continuous variables 〈x|y〉 = δ(x− y), one recovers ρ(t).

10 Purification into GHZ-like states and possible gravity duals

As we have seen, in the absence of degeneracies in the energy spectrum expected in a

holographic theory, the long-time dynamics under decoherence gives rise to the mixed state2

ρ(∞) = lim
t→∞

ρ(t) =
1

Z(β)

∑
k

e−βEk |k〉|k〉〈k|〈k|. (10.1)

We note that the purification of this asymptotic state gives rise a generalization of the

thermofield double state that involves three copies of the system

|TF3(β)〉 =
1

[Z(β)]
1
2

∑
k

e−
β
2
Ek |k〉|k〉|k〉. (10.2)

Note that this definition differs from the state introduced in [38]. Equation (10.2) is in-

deed a purification satisfying |TF3(β)〉 =
√
ρ(∞) ⊗ 13|Φ〉 where

√
ρ(∞) is the positive

semidefinite square root of the asymptotic density matrix (10.1) of the two initial copies

and |Φ〉 =
∑

k |k〉|k〉|k〉 is the unnormalized (3-copies) maximally entangled state. Clearly,

given the purified state |TF3(β)〉〈TF3(β)| and tracing over any of the three copies of the

CFT leads to the recovery of the decohered state (10.1).

Importantly, only one extra copy of the CFT is needed to achieve the purification

of (10.1), by contrast to the standard doubling of the Hilbert space, that would require

two extra copies instead. This is a consequence of the fact that even under decoherence

2A holographic interpretation of the same state was discussed in [36] independently, from different view

points. Refer also to [37] for a process similar to ours in the context of information paradox.
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the density matrix is at all times of the form ρ(t) =
∑

k` ρkk,``(t)|k〉|k〉〈`|〈`|. As a result, it

can be brought to a diagonal form ρ(t) =
∑

m σm|m〉|m〉〈m|〈m| in a new basis of entangled

states over the two CFTs initially under consideration, |m〉|m〉 =
∑

k uk,m|k〉|k〉 as it follows

from the decomposition ρkk,`` =
∑

m uk,mσmu
∗
m,` in terms of the unitary matrix u that is

d × d, where d is the dimension of the Hilbert space of a single copy d = dim(H). In the

final decohered state ρ(∞) it is clear that the rank (number of nonzero eigenvalues) is at

most d, as opposed to d2, expected for a generic density matrix of a bipartite system.

At high-temperature, |TF3(β)〉 is equivalent to an equal superposition of all possible

product states in which each copy occupies the same quantum state

|TF3(β = 0)〉 =
1

d
1
2

∑
k

|k〉|k〉|k〉, (10.3)

and in this sense eq. (10.3) is a generalization of the GHZ state. Note that in the standard

GHZ state of three qubits |GHZ〉 = [|000〉+ |111〉]/
√

2, tracing over any of the subsystems

gives rise to the maximally mixed state

ρ =
1

2
(|00〉〈00|+ |11〉〈11|), (10.4)

analogous to ρ(∞) in eq. (10.1). This is an unentangled mixed state including only classical

correlations between the two copies.

We can consider the dynamics of the “thermofield triple state” (10.2) under decoher-

ence that would give rise to a new fix point of evolution

ρ3(∞) =
1

Z(β)

∑
k

e−βEk |k〉|k〉|k〉〈k|〈k|〈k|, (10.5)

that can be as well purified as

|TF4(β)〉 =
1

[Z(β)]
1
2

∑
k

e−
β
2
Ek |k〉⊗4. (10.6)

Clearly, a thermofield n-tuple state involving n copies of a system

|TFn(β)〉 =
1

[Z(β)]
1
2

∑
k

e−
β
2
Ek |k〉⊗n, (10.7)

decoheres into a mixed state

ρn(∞) =
1

Z(β)

∑
k

e−βEk(|k〉〈k|)⊗n, (10.8)

whose purification is of the form |TFn+1(β)〉. Note that the purity of

tr[ρn(∞)2] =
Z(2β)

Z(β)2
= tr[ρ2(∞)2]. (10.9)

It has been known that a holographic dual of a GHZ state cannot be describes by a classical

gravity solution [39]. Our result above suggests that a possible gravity dual involves random

noises or equally random boundary conditions.
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Figure 6. A sketch of time evolution from a thermofield state into GHZ state in AdS/CFT.

Moreover, as we mentioned, we can purify the whole mixed time-evolution (9.6) under

decoherence by adding the third CFT Hilbert space as a unitary time-evolution. In this

case, at t = 0, since the original two CFTs are in the pure state described by the thermo-

field double state, we can choose the third CFT to be simply in the vacuum state. After

the time evolution, the decoherent fluctuations induce the quantum entanglement between

the two CFTs and the third CFT, and the global state finally approaches the GHZ-like

state (10.2).

This evolution is interpreted from the viewpoint of a gravity dual as follows. We start

with an eternal BTZ black hole and a single pure AdS at t = 0. Then we introduce

interactions between these two spacetimes, which are dual to the decoherent fluctuations.

This leads to a time evolution of the geometry with the three asymptotic AdS boundaries.

In this process, the originally disconnected two universes, an eternal BTZ and a pure AdS,

are glued with each other. Finally they evolves into a gravity dual of the GHZ-like state.

This is sketched in figure 6. However, notice that since a classical geometry cannot describe

a GHZ-like state [39], we expect the final spacetime t =∞ gets highly quantum.

11 Decoherence in boundary states

So far we have analyzed the role of decoherence by focusing on two entangled copies of the

CFT, i.e., the thermofield double. As a setting to explore decoherence for a pure state in a

single 2d CFT, we next consider the time evolution of a boundary state |B〉, so-called Cardy

state [40]. The dynamics of the latter has so far been studied in the context of quantum

quenches under unitary dynamics [41, 42]. In the AdS/CFT, this setup corresponds to

the time evolution of single sided black hole in AdS [43]. It is an intriguing prospect to

ask whether one can find a decoherence process which is analogous to the previous one we

found for the thermofield double state dual to the two sided eternal black hole.

We can separate the CFT Hamiltonian into the left (chiral) and right-moving (anti-

chiral) part, H = Hl +Hr, and introduce decoherence by considering the fluctuating oper-

ators δHl =
√
γξlHl and δHr =

√
γξrHr, where ξl and ξr are independent Gaussian noises.

– 21 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
0

In general, the Cardy states |Ba〉 labeled by the index a is a linear combination of

Ishibashi states |Iα〉 [44], which are labeled by the index |α〉 of primary states. The Ishibashi

state |Iα〉 is given by an infinite summation of the descendants of the primary state |α〉,
which has the conformal dimension hα(= h̄α). A Cardy state is expressed as

|Ba〉 =
∑
α

cαa |Iα〉, (11.1)

where cαa are complex coefficients.

Since the Ishibashi state is the maximally entanglement state of the descendants

|Iα〉 =
∑

p∈descendants

|p, α〉L|p, α〉R, (11.2)

the norm 〈Iα|Iα〉 is divergent. Accordingly, we need a regularization for the Cardy state

and we can make this by setting

|Ψa〉 =
1√

Zbry(β)
e−

β
4
H |Ba〉, (11.3)

where

Zbry(β) = 〈Ba|e−
β
2
H |Ba〉, (11.4)

which is the partition function on the cylinder, this is, the open string thermal partition

function.

We consider a time evolution which starts from this state |Ψa〉 at t = 0 and take into

account the mentioned decoherence. The time evolution of density matrix in this CFT is

described by

ρ(t) =
1

Zbry(β)

∑
α,β

∑
p,q

cαa c
∗β
b e
−β

2
(Elp,α+Elq,β)e−2it(Elp,α−Elq,β)e−γt(E

l
p,α−Elq,β)2

, (11.5)

where Elp,α denotes the eigenvalue of Hl of the state |p, α〉.
For example, the purity is expressed as follows

Tr[ρ(t)2] =
1

Zbry(β)2

∑
α,β

∑
p,q

|cαa |2|c
β
b |

2e−β(Elp,α+Elq,β)e−2γt(Elp,α−Elq,β)2

. (11.6)

Thus, when there is no degeneracy in the energy spectrum, we obtain in late time limit

t→∞
Tr[ρ(∞)2] =

1

Zbry(β)2

∑
α

∑
p

|cαa |4e−2βElp,α . (11.7)

In the same way, in the absence of degeneracy, in the late time limit we find

Tr[ρ(∞)n] =
1

Zbry(β)n

∑
α

∑
p

|cαa |2ne−nβE
l
p,α . (11.8)
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Then, the von Neumann entropy reads

S[ρ(∞)] = −Tr[ρ(∞) log ρ(∞)]

= logZbry(β) + β〈El〉β −
∑

α,p |cαa |2 log |cαa |2 · e−βE
l
p,α∑

α,p |cαa |2e
−βElp,α

= Sth,bdy −
∑

α,p |cαa |2 log |cαa |2e−βE
L
p,α∑

α,p |cαa |2e
−βElp,α

, (11.9)

where Sth,bdy is the thermal entropy of the boundary conformal field theory (BCFT). Note

that at t = 0 the state is pure (i.e., given by |Ψa〉) and thus S[ρ(0)] = 0. Therefore the

above entropy S[ρ(∞)] is the entropy which corresponds to the entanglement between the

CFT and the thermal bath, produced by the decoherence.

Now let us consider the quantum entanglement between the left and right-moving

sector [45]. The reduced density matrix for the left-moving sector is computed as

ρl(t) = Trr[ρ(t)] =
1

Zbdy(β)

∑
α,p

|cαa |2e−βE
l
p,α |p, α〉〈p, α|, (11.10)

which is time-independent. This leads to the entanglement entropy between the left and

right-moving sector given by

Sl = Sth,bdy −
∑

α,p |cαa |2 log |cαa |2e−βE
l
p,α∑

α,p |cαa |2e
−βElp,α

, (11.11)

which coincides with S[ρ(∞)] given by (11.9). This is very natural as the original quantum

entanglement between left-right modes turned into the classical correlations due to the

entanglement with the thermal bath.

12 Summary

We have analyzed the decoherence dynamics induced by energy dephasing in conformal

field theories. To this end, we have first shown that the time evolution of the purity and

Rényi entropies of an initial thermofield double state is characterized by a monotonic decay

from unity to a thermal asymptotic value. This time dependence is as well shared by the

logarithmic negativity, whose long-time asymptotics crucially depends on the presence of

degeneracies in the energy spectrum. In their absence, the asymptotic logarithmic neg-

ative can be shown to vanish and the late-time state involves only classical correlations

between the two CFT copies. By contrast, degeneracies lead to a non-zero quantum en-

tanglement between the two copies that survives at long times in the decohered state, as

shown explicitly using two-dimensional Dirac fermion CFTs as a test-bed. Aiming at the

characterization of the gravity dual associated with a TFD under decoherence, an analysis

of the two-point functions suggests the shrinking of the inner horizon regions of the eternal

BTZ. We have further analyzed the information loss induced by decoherence as a result of

its leakage to a reference environment and proposed a gravitational dual interpretation of
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the decoherent dynamics. Via the AdS/CFT, this setup with the environment implies how

a gravity dual of GHZ state looks like. Finally, we have shown the effect of decoherence on

a single CFT copy by analyzing the dynamics of boundary states.

Acknowledgments

We are grateful to Herman Verlinde for useful correspondence. TT is supported by the

Simons Foundation through the “It from Qubit” collaboration. TT is supported by JSPS

Grant-in-Aid for Scientific Research (A) No.16H02182 and by JSPS Grant-in-Aid for Chal-

lenging Research (Exploratory) 18K18766. TT is also supported by World Premier Inter-

national Research Center Initiative (WPI Initiative) from the Japan Ministry of Education,

Culture, Sports, Science and Technology (MEXT). We are grateful to the long term work-

shop Quantum Information and String Theory (YITP-T-19-03) held at Yukawa Institute

for Theoretical Physics, Kyoto University, where this work was initiated.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] W.H. Zurek, Decoherence, einselection and the quantum origins of the classical, Rev. Mod.

Phys. 75 (2003) 715 [quant-ph/0105127] [INSPIRE].

[2] I.L. Egusquiza, L.J. Garay and J.M. Raya, Quantum evolution according to real clocks, Phys.

Rev. A 59 (1999) 3236 [quant-ph/9811009] [INSPIRE].

[3] R. Gambini, R. Porto and J. Pullin, Fundamental decoherence from quantum gravity: A

Pedagogical review, Gen. Rel. Grav. 39 (2007) 1143 [gr-qc/0603090] [INSPIRE].

[4] N. Gisin, Quantum Measurements and Stochastic Processes, Phys. Rev. Lett. 52 (1984) 1657.

[5] I.C. Percival, Primary state diffusion, Proc. Roy. Soc. Lond. A 447 (1994) 189.

[6] S.L. Adler, Weisskopf-Wigner decay theory for the energy driven stochastic Schrödinger

equation, Phys. Rev. D 67 (2003) 025007 [quant-ph/0208123] [INSPIRE].

[7] A. Bassi and G.C. Ghirardi, Dynamical reduction models, Phys. Rept. 379 (2003) 257

[quant-ph/0302164] [INSPIRE].

[8] A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, Models of Wave-function

Collapse, Underlying Theories and Experimental Tests, Rev. Mod. Phys. 85 (2013) 471

[arXiv:1204.4325] [INSPIRE].

[9] G.J. Milburn, Intrinsic decoherence in quantum mechanics, Phys. Rev. A 44 (1991) 5401.

[10] A. Chenu, M. Beau, J. Cao and A. del Campo, Quantum Simulation of Generic Many-Body

Open System Dynamics Using Classical Noise, Phys. Rev. Lett. 118 (2017) 140403.
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