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1 Introduction

The experimental studies of two-body Bc → BM decays have provided important informa-

tion for the theoretical understanding of the hadronization in the weak interaction, where

Bc = (Ξ0
c ,Ξ

+
c ,Λ

+
c ) are the lowest-lying anti-triplet charmed baryon states, and B(M) the

baryon (meson) state. For example, the BESIII collaboration has recently measured the

purely non-factorizable decays, of which the branching fractions are given by [1]

B(Λ+
c → Ξ0K+) = (5.90± 0.86± 0.39)× 10−3 ,

B(Λ+
c → Ξ∗0K+) = (5.02± 0.99± 0.31)× 10−3 , (1.1)

with Ξ∗0 ≡ Ξ(1530)0. This implies that the non-factorizable effects can be as significant as

the factorizable ones in Bc → BM [2, 3], although being often neglected in the b-hadron

decays [4–7].

Some theoretical approaches have tried to deal with the non-factorizable effects [8–12].

Nonetheless, B(Λ+
c → Ξ0K+) is calculated to be 2–6 times smaller than the observa-

tion. Without involving the detailed dynamics, the approach based on the SU(3) flavor

(SU(3)f ) symmetry is able to receive all contributions [13–31], such that B(Bc → BM)

can be explained [22–25]; particularly, B(Λ+
c → Ξ0K+). However, the SU(3)f symmetry

mixes the factorizable and non-factorizable effects, instead of quantifying their individual

contributions.

As depicted in figure 1, one can identify the (non-)factoriable effects by the topo-

logical diagrams, and parameterize them as the topological amplitudes [32–34]. Accord-

ingly, Λ+
c → Ξ(∗)0K+ is seen to decay through the two W -exchange ones in figures 1(d,e).

Since the topological diagrams have been commonly used in the calculations and measure-

ments [1, 8–12, 32, 35, 36], their information can be important. Therefore, we propose to

perform the numerical analysis with the topological amplitudes, such that we can deter-

mine the sizes and relative phases for the different effects. Note that the same numerical

analysis known as the diagrammatic approach has been well performed to extract the

topological amplitudes in the D decays [37–42]. In this paper, we will demonstrate that
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Figure 1. Topological diagrams for the Bc → BM decays.

the topological amplitudes can explain the data. Particularly, in our fit we will be able

to accommodate the experimental measurements of B(Λ+
c → pπ0) < 2.7 × 10−4 [3] and

B(Ξ0
c → Ξ−K+)/B(Ξ0

c → Ξ−π+) = (0.56 ± 0.12)s2
c [43], where sc = Vus. We will also

predict the branching fractions for the Bc → BM decays that have not been observed yet.

2 Diagrammatic approach

For the two-body charmed baryon decays, the relevant effective Hamiltonian is given by [44]

Heff =
∑
i=1,2

GF√
2
ci
(
VcsVudOi + VcqVuqO

q
i + VcdVusO

′
i

)
, (2.1)

with q = (d, s), where GF is the Fermi constant, c1,2 are the Wilson coefficients, and Vij

the CKM matrix elements. The four-quark operators O
(q)
1,2 and O′1,2 are written as

O1 = (ūd)(s̄c) , O2 = (s̄d)(ūc) ,

Oq1 = (ūq)(q̄c) , Oq2 = (q̄q)(ūc) ,

O′1 = (ūs)(d̄c) , O′2 = (d̄s)(s̄c) , (2.2)

with q = (d, s) and (q̄1q2) = q̄1γµ(1 − γ5)q2. The decays with |VcsVud| ' 1, |VcqVuq| ' sc
and |VcdVus| ' s2

c are classified as the Cabibbo-favored (CF), singly Cabibbo-suppressed

(SCS) and doubly Cabibbo-suppressed (DCS) processes, respectively.

By using Heff in eq. (2.1), we draw different topological diagrams in Bc → BM [32–

34], where the quark lines should be in accordance with the operators in eq. (2.2). As

seen in figure 1, we obtain six topological diagrams. The external and internal W -emission

diagrams in figures 1a and b can be parameterized as the topological amplitudes T and C,

respectively. Since one can factorize T and C as A ∝ 〈M |(q̄1q2)|0〉〈B|(q̄3c)|Bc〉 [4], which

consists of two calculable matrix elements, the T and C are regarded as the factorizable am-

plitudes [7, 22, 32]. The other internal W -emission diagram in figure 1c has no factorizable
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form, parameterized as C ′. In figures 1(d,e,f), the W -exchange amplitudes of (E′, EB, EM )

need an additional gluon to relate M and B. Besides, EB(EM ) has the W -boson to con-

nect B and M , with the c-quark transition to be a valence quark in B(M), whereas M in

the E′ amplitude is unable to connect to the W -boson. In addition to C ′, (E′, EB, EM )

are the non-factorizable amplitudes according to the factorization approach [32, 35]. As

a result, we clearly identify each (non-)factorizable effect that contribute to the two-body

Bc → BM decays.

To present the amplitudes of Bc → BM with (T,C) and (C ′, E′, EB, EM ), we need the

suitable insertions of the final states to match the quark lines, such as π0 =
√

1/2(uū−dd̄),

which adds a pre-factor of ±
√

1/2 to the topological parameters. Likewise, the (η, η′)

meson states that mix with ηq =
√

1/2(uū+ dd̄) and ηs = ss̄ lead to the other pre-factors.

Specifically, the mixing matrix is presented as [45](
η

η′

)
=

(
cosφ − sinφ

sinφ cosφ

)(
ηq
ηs

)
, (2.3)

with the mixing angle φ = (39.3 ± 1.0)◦. We hence obtain the amplitudes of Bc →
BM , given in table 1. The topological amplitudes are in fact complex, presented as 11

parameters:

T,CeiδC , C ′eiδC′ , EBe
iδEB , EMe

iδEM , E′eiδE′ , (2.4)

with T set to be relatively real. To obtain the decay widths, we depend on the integration

of the phase space for the two-body decays, given by [43]

Γ(Bc → BM) =
|~pB|

8πm2
Bc

|A(Bc → BM)|2 ,

|~pB| =

√
[m2

Bc
− (mB +mM )2][m2

Bc
− (mB −mM )2]

2mBc

. (2.5)

with A(Bc → BM) from table 1.

3 Numerical results

In the numerical analysis, we perform a minimum χ2-fit, with the equation written as [25]

χ2 =
∑
i

(Bith − Biex

σiex

)2

+
∑
j

(Rjth −Rjex

σjex

)2

, (3.1)

where B (R) denotes (the ratios of) the branching ratios. The subscripts th and ex stand for

the theoretical inputs from the amplitudes in table 1 and the experimental data in table 2,

respectively, with σi,jex the experimental uncertainties. By putting the recent observation

of B(Ξ0
c → Ξ−π+) = (1.80± 0.55)× 10−2 [46] into R1,2(Ξ0

c) in table 2, we determine that

B(Ξ0
c → Ξ−K+) = (5.0±1.9)×10−4 and B(Ξ0

c → Λ0K̄0) = (7.6±2.6)×10−3. The B(Ξ+
c →

Ξ0π+) is extracted from the ratio of B(Ξ+
c → Ξ0π+)/B(Ξ+

c → Ξ−π+π+) = 0.55± 0.16 [43]

– 3 –
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Decay modes Amplitudes/(GF√
2

)

Ξ0
c → Σ+K− VcsVud(EM + E′)

Ξ0
c → Σ(Λ)0K̄0 VcsVud(C + C ′ + EM + E′)

Ξ0
c → Ξ0π0 VcsVud

1√
2
(EB − C ′)

Ξ0
c → Ξ0η VcsVud[

1√
2
(C ′ + EB)cφ− (EM + E′)sφ]

Ξ0
c → Ξ0η′ VcsVud[

1√
2
(C ′ + EB)sφ+ (EM + E′)cφ]

Ξ0
c → Ξ−π+ VcsVud(T + EB)

Ξ0
c → Σ+π− λdEM + λsE

′

Ξ0
c → Σ−π+ λd(T + EB)

Ξ0
c → Σ(Λ)0π0 1√

2
[λd(−C − C ′ − EM + EB) + λs(EB − E′)]

Ξ0
c → Σ(Λ)0η 1√

2
[λd(C + C ′ + EM + EB) + λs(EB + E′)]cφ

−[λdE
′ + λs(C + C ′ + EM )]sφ

Ξ0
c → Σ(Λ)0η′ 1√

2
[λd(C + C ′ + EB + EM ) + λs(EB + E′)]sφ

+[λdE
′ + λs(C + C ′ + EM )]cφ

Ξ0
c → Ξ−K+ λdEB + λs(T + EB)

Ξ0
c → Ξ0K0 λdEM + λs(C

′ + E′)

Ξ0
c → pK− λdE

′ + λsEM

Ξ0
c → nK̄0 λd(C

′ + E′) + λsEM

Ξ0
c → pπ− VcdVus(EM + E′)

Ξ0
c → Σ−K+ VcdVus(T + EB)

Ξ0
c → Σ(Λ)0K0 VcdVus(C + C ′ + EM + E′)

Ξ0
c → nπ0 VcdVus

1√
2
(EB − EM − E′)

Ξ0
c → nη VcdVus

1√
2
(EB + EM + E′)cφ −VcdVusC ′sφ

Ξ0
c → nη′ VcdVus

1√
2
(EB + EM + E′)sφ +VcdVusC

′cφ

Decay modes Amplitudes/(GF√
2

)

Ξ+
c → Σ+K̄0 VcsVud(C + C ′)

Ξ+
c → Ξ0π+ VcsVud(T + C ′)

Ξ+
c → Σ(Λ)0π+ λs(EB + E′) + λd(T + C ′)

Ξ+
c → Σ+π0 1√

2
[λs(EB + E′)− λdC]

Ξ+
c → Σ+η 1√

2
[λdC + λs(EB + E′)]cφ− λs(C + C ′ + EM )sφ

Ξ+
c → Σ+η′ 1√

2
[λdC + λs(EB + E′)]sφ+ λs(C + C ′ + EM )cφ

Ξ+
c → Ξ0K+ λs(T + C ′ + EB + E′)

Ξ+
c → pK̄0 λdC

′ + λsEM

Ξ+
c → Σ(Λ)0K+ VcdVus(T + C ′ + EB + E′)

Ξ+
c → Σ+K0 VcdVus(C + EM )

Ξ+
c → pπ0 VcdVus

1√
2
(EB + E′ − EM )

Ξ+
c → pη VcdVus

1√
2
(EB + EM + E′)cφ− VcdVusC ′sφ

Ξ+
c → pη′ VcdVus

1√
2
(EB + EM + E′)sφ+ VcdVusC

′cφ

Ξ+
c → nπ+ VcdVus(EB + E′)

Decay modes Amplitudes/(GF√
2

)

Λ+
c → Σ(Λ)0π+ VcsVud(T + C ′ + EB + E′)

Λ+
c → Σ+π0 VcsVud

1√
2
(−C ′ + EB + E′)

Λ+
c → Σ+η VcsVud[

1√
2
(C ′ + EB + E′)cφ− EMsφ]

Λ+
c → Σ+η′ VcsVud[

1√
2
(C ′ + EB + E′)sφ+ EMcφ]

Λ+
c → Ξ0K+ VcsVud(EB + E′)

Λ+
c → pK̄0 VcsVud(C + EM )

Λ+
c → Σ+K0 λdEM + λsC

′

Λ+
c → Σ(Λ)0K+ λd(EB + E′) + λs(T + C ′)

Λ+
c → pπ0 λd

1√
2
(−C − C ′ − EM + EB + E′)

Λ+
c → pη λd

1√
2
(C + C ′ + EM + EB + E′)cφ− λsCsφ

Λ+
c → pη′ λd

1√
2
(C + C ′ + EM + EB + E′)sφ+ λsCcφ

Λ+
c → nπ+ λd(T + C ′ + EB + E′)

Λ+
c → pK0 VcdVus(C + C ′)

Λ+
c → nK+ VcdVus(T + C ′)

Table 1. Amplitudes of Bc → BM , where λq ≡ VcqVuq with q = (d, s) and (sφ, cφ) ≡ (sinφ, cosφ)

for the η-η′ mixing.

and the newly observed B(Ξ+
c → Ξ−π+π+) = (2.86 ± 1.21 ± 0.38) × 10−2 [49]. We adopt

the CKM matrix elements in the Wolfenstein parameterization, given by [43]

(Vcs, Vud, Vus, Vcd) = (1− λ2/2, 1− λ2/2, λ,−λ) , (3.2)

with λ = sc = 0.22453± 0.00044. Subsequently, we fit that

(T,C,C ′) = (0.41± 0.02, 0.47± 0.08, 0.25± 0.02) GeV3 ,

(EB, EM , E
′) = (0.43± 0.04, 0.14± 0.03, 0.14± 0.07) GeV3 ,

(δC , δC′ , δEB
, δEM

, δE′) = (31.3±9.6, 158.1±5.3,−81.0±8.8,−32.8±21.6,−88.0±1.9)◦ ,

χ2/n.d.f = 0.5, (3.3)
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Branching ratios Data

102B(Λ+
c → pK̄0) 3.16± 0.16 [43]

102B(Λ+
c → Λ0π+) 1.30± 0.07 [43]

102B(Λ+
c → Σ0π+) 1.29± 0.07 [43]

102B(Λ+
c → Σ+π0) 1.24± 0.10 [43]

102B(Λ+
c → Ξ0K+) 0.59± 0.09 [1]

102B(Λ+
c → Σ+η) 0.41± 0.20 [47]

102B(Λ+
c → Σ+η′) 1.34± 0.57 [47]

(Ratios of) Branching ratios Data

104B(Λ+
c → pπ0) 0.8± 1.4 (< 0.27) [3, 48]

104B(Λ+
c → Λ0K+) 6.1± 1.2 [43]

104B(Λ+
c → Σ0K+) 5.2± 0.8 [43]

104B(Λ+
c → pη) 12.4± 3.0 [43]

102B(Ξ0
c → Ξ−π+) 1.80± 0.55 [46]

R1(Ξ0
c) ≡ B(Ξ0

c→Ξ−K+)
B(Ξ0

c→Ξ−π+)
(0.56± 0.12)s2

c [43]

R2(Ξ0
c) ≡ B(Ξ0

c→Λ0K̄0)
B(Ξ0

c→Ξ−π+)
0.42± 0.06 [43]

102B(Ξ+
c → Ξ0π+) 1.57± 0.84 [43, 49]

Table 2. The data for Bc → BM .

with n.d.f = 4 as the number of degrees of freedom, by which we present the branching

ratios of the Bc → BM decays in table 3, together with the recent theoretical results

for comparison.

4 Discussions and conclusions

Since χ2/n.d.f = 0.5 presents a good fit, we demonstrate that the diagrammatic approach

can explain the data well. Moreover, the non-factorizable effects depicted in figure 1 now

have clear information. The fit of |EB| ' (|T |, |C|) ' 0.4 and |C ′| ' 2(|EM |, |E′|) ' 0.3

shows that the non-factorizable effects can be as significant as the factorizable ones;

nonetheless, neglected in the factorization approach. While the theoretical computations

are unable to explain B(Λ+
c → Ξ0K+) [8–12], we explicitly present the two W -exchange

effects as EB and E′ that contribute to Λ+
c → Ξ0K+, together with the relative phases.

Besides, we point out that EB has the main contribution. The EM term as the rarely stud-

ied W -exchange process is found to have a significant interference with C in Λ+
c → pK̄0. In

contrast, the SU(3)f parameters cannot distinguish the three W -exchange contributions.

As seen in table 1, the Λ+
c → Σ+η(′),Σ+K0 decays only receive the non-factorizable ef-

fects. Particularly, C ′ and EM in Λ+
c → Σ+K0 give a constructive interference, leading to

B(Λ+
c → Σ+K0) = (19.1±4.8)×10−4 accessible to the BESIII experiment. We hence have

a better understanding for the non-factorizable effects.

In the SU(3)f symmetry, the B(Λ+
c → pπ0) was once overestimated as two times larger

than the experimental upper bound [22]. By recovering one of the previously neglected

parameters, which gives the destructive interference, the number has been reduced to agree

with the data [30, 31]. It is interesting to note that the recovered parameter is recognized

as a factorizable effect, which corresponds to our C term in Λ+
c → pπ0. The SU(3)f

symmetry derives that A(Ξ0
c → Ξ−π+) = scA(Ξ0

c → Ξ−K+) [22, 23, 50]. This causes

R1(Ξ0
c) ≡ B(Ξ0

c → Ξ−K+)/B(Ξ0
c → Ξ−π+) ' 1.0s2

c to be 4σ away from the observation.

According to the topological diagrams in figure 2, we find that

ĀK ≡ A(Ξ+
c → Ξ−K+)/

(
GF√

2

)
= VcsVusT + VcsVusEB + VcdVudEB ,

Āπ ≡ A(Ξ+
c → Ξ−π+)/

(
GF√

2

)
= VcsVud(T + EB) , (4.1)

– 5 –
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Ξ0
c SU(3)f Cheng et al. Our work Expt.

103BΣ+K− 7.6± 1.4 7.8 22.0± 5.7

103BΣ0K̄0 0.9+1.1
−0.9 0.4 7.9± 4.8

103BΞ0π0 10.0± 1.4 18.2 4.7± 0.9

103BΞ0η 13.0± 2.3 26.7 8.3± 2.3

103BΞ0η′ 9.1± 4.1 7.2± 1.9

103BΞ−π+ 29.5± 1.4 64.7 19.3± 2.8 18.0± 5.5

103BΛ0K̄0 14.2± 0.09 13.3 8.3± 5.0 7.6± 2.6

104BΣ+π− 4.9± 0.9 7.1 2.4± 1.5

104BΣ−π+ 18.3± 0.9 26.2 11.1± 1.6

104BΣ0π0 5.0± 0.9 3.8 1.0± 0.5

104BΣ0η 1.8± 1.1 0.5 2.5± 1.3

104BΣ0η′ 3.2± 2.2 0.1± 0.1

104BΞ−K+ 12.8± 0.6 39.0 5.6± 0.8 5.0± 1.9

104BΞ0K0 9.6± 0.4 13.2 6.3± 1.9

104BpK− 6.0± 1.3 3.5 2.5± 1.6

104BnK̄0 10.7± 0.6 14.0 7.8± 2.3

104BΛ0π0 3.1± 1.1 2.4 1.0± 0.5

104BΛ0η 7.9± 2.7 7.7 2.6± 1.3

104BΛ0η′ 16.4± 10.6 0.2± 0.1

105Bpπ− 3.1± 0.7 7.6± 2.0

105BΣ−K+ 6.1± 0.4 5.5± 0.7

105BΣ0K0 2.5± 0.2 2.3± 1.4

105Bnπ0 1.5± 0.4 3.3± 0.9

105Bnη 5.2± 2.1 4.2± 0.8

105Bnη′ 10.2± 7.1 1.2± 0.3

105BΛ0K0 0.6± 0.2 2.4± 1.4

Ξ+
c SU(3)f Cheng et al. Our work Expt.

103BΣ+K̄0 7.8+10.2
− 7.8 2.0 24.1± 7.1

103BΞ0π+ 4.2± 1.7 17.2 9.3± 3.6 15.7± 8.4

104BΣ0π+ 26.5± 2.5 43.0 13.4± 4.9

104BΣ+π0 26.1± 6.7 13.6 16.4± 3.2

104BΣ+η 15.0± 10.6 3.2 14.1± 3.9

104BΣ+η′ 34.6± 21.9 8.7± 3.7

104BΞ0K+ 7.6± 1.6 22.0 12.3± 3.1

104BpK̄0 46.4± 7.2 39.6 48.6± 12.2

104BΛ0π+ 12.3± 4.2 8.5 13.9± 5.1

105BΣ0K+ 11.9± 0.7 7.2± 1.8

105BΣ+K0 19.5± 1.7 16.9± 5.4

105Bpπ0 6.0± 1.4 1.5± 1.5

105Bpη 20.4± 8.4 16.6± 3.1

105Bpη′ 40.1± 27.7 5.8± 1.5

105Bnπ+ 12.1± 2.8 5.2± 1.5

105BΛ0K+ 3.3± 0.8 7.5± 1.9

Λ+
c SU(3)f Cheng et al. Our work Expt.

102BΣ0π+ 1.26± 0.06 2.24 1.26± 0.32 1.29± 0.07

102BΣ+π0 1.26± 0.06 2.24 1.23± 0.17 1.24± 0.10

102BΣ+η 0.29± 0.12 0.74 0.47± 0.22 0.41± 0.20

102BΣ+η′ 1.44± 0.56 0.93± 0.28 1.34± 0.57

102BΞ0K+ 0.57± 0.09 0.73 0.59± 0.17 0.59± 0.09

102BpK̄0 3.14± 0.15 2.11 3.14± 1.00 3.16± 0.16

102BΛ0π+ 1.27± 0.07 1.30 1.32± 0.34 1.30± 0.07

104BΣ+K0 10.5± 1.4 14.4 19.1± 4.8

104BΣ0K+ 5.2± 0.7 7.2 5.5± 1.6 5.2± 0.8

104Bpπ0 1.1+1.3
−1.1 1.3 0.8+0.9

−0.8 0.8± 1.4

104Bpη 11.2± 2.8 12.8 11.4± 3.5 12.4± 3.0

104Bpη′ 24.5± 14.6 7.1± 1.4

104Bnπ+ 7.6± 1.1 0.9 7.7± 2.0

104BΛ0K+ 6.6± 0.9 10.7 5.9± 1.7 6.1± 1.2

105BpK0 1.2+1.4
−1.2 3.7± 1.1

105BnK+ 0.4± 0.2 1.4± 0.5

Table 3. The numerical results of the Bc → BM decays with BBM ≡ B(Bc → BM), in comparison

with the results from the SU(3)f symmetry [31, 35] and the calculation with the pole model, current

algebra and MIT bag model [32, 35]. The data of B(Ξ0
c → Ξ−K+,Λ0K̄0) are extracted with

R1,2(Ξ0
c), respectively.

where ĀK is reduced as ĀK = VcsVusT with VcsVus = −VcdVud, resulting in R1(Ξ0
c) '

(1+EB/T )2s2
c with the value of (0.54±0.04)s2

c to agree with the data. Indeed, the effects of

the SU(3)f symmetry breaking can give rise to the new parameters added to Ξ0
c → Ξ−K+,

instead of Ξ0
c → Ξ−π+, such thatR1(Ξ0

c) can be fit [25]. Here, our interpretation forR1(Ξ0
c)

relies on the additional diagram in figure 2 without invoking the SU(3)f symmetry breaking.

By relating the topological diagrams in figure 1 to the symmetry properties of the

baryon wave functions, such as the (anti-)symmetric quark ordering of Σ0(Λ0) ∼ (ud±du)s

or the irreducible forms in the SU(3)f and SU(2) spin symmetries, one can derive the more

restrict parameterization of the topological amplitudes [33, 34]. This leads to R1(Ξ0
c) '

1.0s2
c inconsistent with the data. Moreover, the T term, which contributes to Λ+

c → Σ0M+

with M+ = (π+,K+) in table 1, becomes forbidden in refs. [33, 34]. We hence turn off
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Figure 2. Decay processes (a,b,c) and (d,e) for Ξ0
c → Ξ−K+ and Ξ0

c → Ξ−π+, respectively.

the T term in Λ+
c → Σ0M+ as a test fit, and obtain χ2 ∼ 30. Clearly, the more restrict

representations cannot explain the data well. Without considering the symmetry properties

of the baryon wave functions, our topological amplitudes present the most general forms,

which are able to receive the short and long-distance contributions both. The long-distance

effect has been proposed in the pole model to contribute to the W -exchange process [32, 35].

In the Ξ0
c → Ξ−M+ decay, Ξ0

c transforms as the Λ0 (Σ0) pole followed by the strong decay

Λ0(Σ0) → Ξ−M+, which contributes to figures 2b and c; nonetheless, the latter diagram

is forbidden with the more restrict representations. Another example comes from the

rescattering effect. With Λ∗ denoting the higher-wave Λ state, the Λ+
c → Λ∗ρ+ decay

has a T amplitude (T ∗). Through the π0 exchange, Λ∗ρ+ rescatter into Σ0π+, such that

T ∗ contributes to T in Λ+
c → Σ0π+. In fact, the symmetry properties of the meson

wave functions are not involved in the D → MM decays, such that the long-distance

contributions have been absorbed into the topological amplitudes [39, 40, 42, 51].

In table 3, the SU(3)f parameters and topological amplitudes that respect the SU(3)f
symmetry are found to explain the data of B(Λ+

c → BM) well, indicating that the SU(3)f
symmetry in Λ+

c → BM has no sizeable broken effects. In the D → KK̄ decays, the W -

exchange processes with VcsVus and VcdVud are parameterized as E(d) and E(s), respectively.

One needs the sizeable broken effect of |E(s)| > |E(d)| to explain B(D0 → K+K−)/B(D0 →
π+π−) and B(D0 → K0K̄0) [39–42]. Likewise, since we can present A(Ξ0

c → Ξ−K+) as

ĀK ∝ T + ∆EB with ∆EB ≡ E
(s)
B − E

(d)
B , eq. (4.1), whether ∆EB is equal to zero or not

can be a test of the broken SU(3)f symmetry. This requires more accurate measurements

from BELLEII and LHCb.

We compare the three theoretical results in table 3, which all agree with the observed

B(Λ+
c → BM). However, the SU(3)f symmetry gives B(Ξ+

c → Ξ0π+) at least 2 times

smaller than the observation [31, 35]. Moreover, the SU(3)f symmetry and the compu-

tations that involve the factorization, pole model, current algebra and MIT bag model

present B(Ξ0
c → Ξ−π+,Ξ−K+,Λ0K̄0) with large deviations from the data [31, 32, 35].

Since we are able to explain B(Ξ+
c → Ξ0π+) and B(Ξ0

c → Ξ−π+,Ξ−K+,Λ0K̄0), the

– 7 –
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topological amplitudes are shown to have the advantage to explain the two-body Ξ0,+
c

decays. To further investigate the Ξ0,+
c → BM decays, we present our predictions in ta-

ble 3. It is worth noting that EM and E′ give a constructive (destructive) interference

to Ξ0
c → Σ+K−(π−), such that we obtain B(Ξ0

c → Σ+K−) = (22.0 ± 5.7) × 10−3 and

B(Ξ0
c → Σ+π−) = (2.4 ± 1.5) × 10−4, bigger and smaller than the other predictions, re-

spectively. In addition to Λ+
c → pπ0, there are three singly Cabibbo-suppressed Λ+

c decay

modes to be measured. Their branching ratios are predicted as B(Λ+
c → nπ+, pη′,Σ+K0) =

(7.7±2.0, 7.1±1.4, 19.1±4.8)×10−4, where B(Λ+
c → nπ+) is consistent with the value from

the SU(3)f symmetry, whereas B(Λ+
c → Σ+K0) agrees with the theoretical computation

in [32, 35].

In summary, we have studied the Bc → BM decays within the framework of the

diagrammatic approach that respects the SU(3)f symmetry. With the extraction of the

topological amplitudes, we have explicitly presented the two W -exchange effects as EB

and E′ that contribute to the non-factorizable Λ+
c → Ξ0K+ decay, together with the

relative phases, where EB gives the main contribution. We have obtained B(Λ+
c → pπ0) =

(0.8+0.9
−0.8) × 10−4, which agrees with the experimental upper bound. We have presented

that B(Ξ+
c → Ξ0π+) = (9.3 ± 3.6) × 10−3, B(Ξ0

c → Ξ−π+,Λ0K̄0) = (19.3 ± 2.8, 8.3 ±
5.0)× 10−2 and B(Ξ0

c → Ξ−K+) = (5.6± 0.8)× 10−4 to agree with the data, whereas the

other theoretical results have shown sizeable deviations. We have predicted that B(Λ+
c →

nπ+, pη′,Σ+K0) = (7.7 ± 2.0, 7.1 ± 1.4, 19.1 ± 4.8) × 10−4, in order to be compared with

future BESIII, BELLEII and LHCb measurements.
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