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1 Introduction

The tensor network (TN) is a promising approach to study lattice models with a sign

problem. Coarse-graining algorithms of tensor networks such as the tensor renormalization

group (TRG) [1] do not have any stochastic process unlike the Monte Carlo method which

is based on the stochastic interpretation of the Boltzmann factor in path integrals. So a

development of this approach could lead to deep understanding of quantum field theories

that suffer from the sign problem such as QCD at finite chemical potential, finite θ angle,

chiral gauge theories and SUSY theories. Although the TRG algorithm has been already

introduced into the research of lattice quantum field theories [2–18], further studies are

desirable to confirm if the TRG properly works for theories with a severe sign problem.

The complex φ4 theory at finite chemical potential is the simplest model that suffers

from a severe sign problem. This model exhibits the so-called Silver Blaze phenomenon

in which bulk observables do not depend on the chemical potential below the critical

point. Since it is directly related to the imaginary part of the action, various methods

that could overcome the sign problem, such as the complex Langevin approach [19], the

thimble method [20–22], and the worldline representation [23, 24], have been used to study

the model. In case of TRG, it is not straightforward to apply the algorithm to the scalar

field theory because the tensor indices are given by the field variable which takes any real

or complex number and numerical computation is not directly applied to such an infinite

dimensional tensor.

In refs. [15, 17] we have proposed a methodology of defining a finite dimensional tensor

in the scalar field theory. We employed the Gaussian quadrature rule to discretize the

scalar field so that a critical coupling constant of the Z2 symmetry breaking in the two-

dimensional real φ4 theory is evaluated with the TRG procedure. The result was consistent

with those obtained with other conventional methods. Namely, our discretization method

effectively works for the real scalar field theory. This implies that the TRG approach with

the discretized field variables can be also effective for a complex scalar field theory.
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In this paper, we study the two-dimensional complex φ4 theory at finite chemical

potential using the TRG method with the Gauss quadrature discretization for the scalar

field. The expectation values for the scalar field and the number density are evaluated

to investigate the Silver Blaze phenomenon. Furthermore, in order to confirm that the

TRG method properly works, we compare the results to those obtained from another TN

representation with the character expansion.

The rest of this paper is organized as follows: in section 2 we define the target model

and construct the TN representation for the partition function. Numerical results are

presented in section 3, where the Silver Blaze phenomenon is confirmed. We also make

a comparison of the results obtained from the naive TN representation of the partition

function and another TN representation. Section 4 is devoted to summary and future

perspectives.

2 Two-dimensional complex φ4 theory

The Euclidean continuum action of the two-dimensional complex φ4 theory at finite chem-

ical potential is defined by

Scont =

∫
d2x

{
2∑

ν=1

|∂νφ|2 +
(
m2 − µ2

)
|φ|2 + µ (φ∗∂2φ− φ∂2φ

∗) + λ |φ|4
}

(2.1)

with a complex scalar field φ(x), the bare mass m, the quartic coupling constant λ > 0, and

the chemical potential µ. This theory describes a relativistic Bose gas with finite chemical

potential. The action is complex for µ 6= 0 because the third term of eq. (2.1) is a pure

imaginary number.

In the lattice theory, the scalar field denoted as φn lives on a site n of a lattice

Γ = {(n1, n2) |nν = 1, 2, . . . , Ni } with the lattice volume V = N1×N2. The lattice spacing

a is set to 1. We assume that the scalar field satisfies the periodic boundary condition,

φn+Nν ν̂ = φn for ν = 1, 2, where ν̂ is the unit vector of the ν-direction. The lattice action

is given by

S =
∑
n∈Γ

[(
4 +m2

)
|φn|2 + λ |φn|4 −

2∑
ν=1

(
eµδν2φ∗nφn+ν̂ + e−µδν2φnφ

∗
n+ν̂

)]
. (2.2)

Note that the chemical potential is introduced as a pure imaginary constant vector potential

in the temporal direction [25]. Since the lattice action also satisfies (S(µ))∗ = S(−µ), it is

difficult to apply a naive Monte Carlo method to this model.

The partition function is defined as a standard manner:

Z =

∫
Dφ e−S , (2.3)

where the complex field φn is represented in terms of two real fields as φn = 1√
2

(An + iBn)

and the integral measure is given by Dφ ≡
∏
n∈Γ dAndBn. In the following we show that

Z is represented as a tensor network according to refs. [15, 17]. The expectation value of

any local field can also be represented as a tensor network in a similar way.
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The Boltzmann weight e−S is expressed as a product of local factors:

e−S =
∏
n∈Γ

f1

(
φn, φn+1̂

)
f2

(
φn, φn+2̂

)
, (2.4)

where

fν(w, z) = exp

{
−
(

1 +
m2

4

)(
|w|2 + |z|2

)
− λ

4

(
|w|4 + |z|4

)
+ eµδν2w∗z + e−µδν2wz∗

}
(2.5)

for w, z ∈ C. It is possible to decompose the Boltzmann weight in this way as long as the

lattice action contains only the nearest-neighbor interaction.

The continuous scalar field is discretized by the Gauss-Hermite quadrature rule to

introduce a finite dimensional tensor as in refs. [15, 17]. For one-variable integration of a

proper function g(x), the quadrature provides a discretization as follows:

∫ ∞
−∞

dx e−x
2
g (x) ≈

K∑
α=1

wαg (yα) (2.6)

where yα and wα are the α-th root of the K-th Hermite polynomial HK(x) and the cor-

responding weight defined as wα = 2K−1K!
√
π/(K2HK−1(yα)2), respectively. Here K

dictates the order of approximation and for large K the accuracy of approximation is

expected to be better.1

For the two-variable case (φ = 1√
2
(A+ iB) with A,B ∈ R), we have

∫ ∞
−∞

dA

∫ ∞
−∞

dB e−2|φ|2h (φ) ≈
K∑
α=1

K∑
β=1

wαwβ h(φ(α, β)), (2.7)

where

φ(α, β) ≡
yα + iyβ√

2
. (2.8)

Applying eq. (2.7) to each complex field, Z is approximated by Z(K) as

Z ≈ Z (K) =
∑
{α,β}

∏
n∈Γ

wαnwβn exp
(
y2
αn + y2

βn

) 2∏
ν=1

fν (φ(αn, βn), φ(αn+ν̂ , βn+ν̂)) , (2.9)

where
∑
{α,β} ≡

∏
n∈Γ

∑K
αn=1

∑K
βn=1.

As a result of the discretization, fν can be regarded as a K2 × K2 complex valued

matrix:

M
[ν]
αβ,α′β′ ≡ fν(φ(α, β), φ(α′, β′)) (2.10)

1This depends on g(x). In an actual computation, we check the convergence of result by increasing K.
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with the row index α, β = 1, 2, . . . ,K and the column index α′, β′ = 1, 2, . . . ,K. Note

that φ(α, β) is given by discretized points yα, yβ in eq. (2.8). Then the singular value

decomposition is applied to the matrix:

M
[ν]
αβ,α′β′ =

K2∑
k=1

U
[ν]
αβ,kσ

[ν]
k V

[ν]†
k,α′β′ , (2.11)

where σ
[ν]
k is k-th singular value sorted in the descending order, and U [ν] and V [ν] are

K2 × K2 unitary matrices with the row index α, β and the column index k. Plugging

eq. (2.11) into eq. (2.9), we find that Z(K) can be expressed as a tensor network,

Z (K) =
∑
{x,t}

∏
n∈Γ

Txntnxn−1̂tn−2̂
, (2.12)

where

Tijkl =

√
σ

[1]
i σ

[2]
j σ

[1]
k σ

[2]
l

K∑
α,β=1

wαwβ exp
(
y2
α + y2

β

)
U

[1]
αβ,iU

[2]
αβ,jV

[1]†
k,αβV

[2]†
l,αβ (2.13)

and
∑
{x,t} ≡

∏
n∈Γ

∑K2

xn,tn=1.

We obtain a finial expression by truncating the summation in eq. (2.12) up to D (≤ K2)

to reduce the computational complexity:

Z (K) ≈
∑
{x,t}

′∏
n∈Γ

Txntnxn−1̂tn−2̂
, (2.14)

where
∑′
{x,t} ≡

∏
n∈Γ

∑D
xn,tn=1. This truncation keeps a better precision when σ

[ν]
k in

eq. (2.11) has a sharp hierarchy structure. We should note that the initial tensor T depends

on K. D becomes the bond dimension of tensors which is fixed throughout computations,

and the convergence of results for K and D are checked numerically.

3 Numerical results

Numerical results of two-dimensional complex φ4 theory at finite chemical potential are

presented in this section. The TRG [1] is employed to coarse-grain the tensor network

eq. (2.14) on a periodic lattice with the volume V = N2 (N = 2m,m ∈ Z) and the lattice

spacing a = 1. The coarse-graining procedure of partition function is briefly described in

our previous paper [17] in which a procedure for the expectation value of a local field is

also given. In the TRG algorithm, the SVD is truncated up to a fixed integer D, which is

the bond dimension of tensors.

Figures 1 and 2 show the K-dependence and the D-dependence of the free energy

density f = − 1
V lnZ for a typical parameter set. K is the number of points used in the

discretization of scalar fields as presented in eq. (2.7). The initial tensor eq. (2.13) depends

on K since it is made of K-dependent unitary matrices associated with M in eq. (2.10).

The result converges as both K and D increase, and K = D = 64, which are fixed in the

following, are large enough to obtain converged results.
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Figure 1. Free energy density for D = 64 and m2 = 0.01, λ = µ = 1 on V = 10242.
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Figure 2. Free energy density for K = 64 and m2 = 0.01, λ = µ = 1 on V = 10242.

– 5 –



J
H
E
P
0
2
(
2
0
2
0
)
1
6
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

<
e

iθ
>

p
q

µ

V=8
2

V=16
2

V=32
2

V=64
2

V=128
2

V=256
2

Figure 3. Average phase factor as a function of µ. The parameters are m2 = 0.01, λ = 1,

K = D = 64 and V = 82, 162, . . . , 2562. The sign problem becomes severe for larger µ and V .

3.1 Average phase factor

Let 〈·〉pq be an expectation value in the phase quenched theory with partition function,

Zpq =

∫
Dφ e−Re(S). (3.1)

Then the expectation value of an operator O may be expressed as

〈O〉 =
〈Oeiθ〉pq

〈eiθ〉pq
, (3.2)

where e−S = e−Re(S)eiθ. Using the TRG, Zpq and 〈O〉pq for a local operator O can also be

evaluated from a tensor dropping the last two terms in eq. (2.5).

The sign problem appears as a difficulty in evaluating the ratio of eq. (3.2). For large

µ, since the phase factor eiθ has a large fluctuation, both the average phase factor,

〈eiθ〉pq =
Z

Zpq
, (3.3)

and 〈Oeiθ〉pq approach zero. Then, in the Monte Carlo method, it becomes difficult to

evaluate 〈O〉 due to a 0/0 problem. In other words, the severeness of the sign problem is

measured by the numerical value of eq. (3.3).

Figure 3 shows the average phase factor evaluated by the TRG for various µ and V .

We use m2 = 0.01 and λ = 1 which are the same parameters as [24]. As clearly seen, the

average phase factor decreases as µ increases for fixed space-time volume V while it also

decreases as V increases for fixed µ. We thus confirm that, in the zero temperature and

large spacial volume limits, severe sign problems happen even for small values of µ.
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Figure 4. 〈n〉 as a function of µ. The lattice volume is varied from 42 to 2562. The other parameters

(m, λ, K and D) are the same as those of figure 3.

3.2 Silver Blaze phenomenon

In the thermodynamic limit, bulk observables are independent of µ below a critical µc as

well as finite density QCD. This is called the Silver Blaze phenomenon which is a direct

outcome of an imaginary part of the action. Although the computational cost of the Monte

Carlo method has a large volume dependence, the TRG is suitable for observing the Silver

Blaze phenomenon clearly since its cost scales with the logarithm of the lattice volume and

the thermodynamic limit can be easily taken.

Figure 4 shows the µ-dependence of particle number density,

〈n〉 =
1

V

∂ lnZ

∂µ
. (3.4)

The differentiation with respect to µ in the above equation is estimated by numerical

differentiation. The Silver Blaze phenomenon is clearly observed for large volumes. The

density does not depend on µ for small µ region, and it begins to increase at µ ≈ 0.94. In

particular, the cusp structure around µ ≈ 0.94 tends to be sharper for larger volumes.

In figure 5, we compare the result of the number density to that of the phase quenched

model on V = 10242. By contrast to the full theory, the phase quenched model exhibits the

continuous behavior, and one can confirm that the µ independence of the result is a direct

consequence of the imaginary part of the action. To see the difference in more detail, the

volume dependence of the result at µ = 0.904 is shown in figure 6. In the infinite volume

limit, although the result in the full theory converges to zero, that in the phase quenched

model converges to a non-zero value.
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Figure 5. Comparison of the number density between the full and the phase quenched theories

at m2 = 0.01, λ = 1, K = D = 64 on V = 10242. The full theory clearly shows the Silver Blaze

phenomenon unlike the phase quenched case.
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Figure 7. 〈|φ|2〉 as a function of µ. The other parameters (m, λ, K, D and V ) are the same as

those of figure 4.

Figure 7 shows 〈|φ|2〉 as a function of µ for the same parameters as those of figure 4,

which is evaluated by the TRG with an impurity tensor [17]. As in the case of the density,

the result is independent of µ for µ . 0.94 and a sharp rise is seen around µ ≈ 0.94.

In order to study the stability of the Silver Blaze phenomenon against changing

the physical parameters (m and λ), we also compute the particle number density for

(m2, λ) = (0.01, 0.1) and (0.1, 0.1) as shown in figure 8. Note that, for smaller m or

λ, the exponential damping in the Boltzmann weight is weaker. Even for such cases, the

Silver Blaze phenomenon is clearly observed.

3.3 Comparison with another tensor network representation

We have represented the partition function as a TN using the Gauss-Hermite quadrature

for both the real and imaginary parts of each scalar field but one may use another rep-

resentation, for instance, with a polar coordinate and the character expansion given in

appendix A. It is known that the partition function in the case does not have an imaginary

part. This formulation is also useful for the TN method. The Gaussian quadrature is

needed only for the radial variable because the angular variable is transcribed into a tensor

index with the character expansion. Thus, the cost of making the initial tensor is basically

cheaper than making eq. (2.13). See appendix A for the details.

In figure 9, two representations are compared by showing 〈|φ|2〉 against µ. As a result

they agree with each other well and it is hard to see the difference between them at this

resolution. Thus we can conclude that choices of TN representation are basically irrelevant

to our conclusion.
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Figure 8. 〈|φ|2〉 as a function of µ at K = 64 and D = 64 on V = 10242. The Silver Blaze

phenomenon is observed irrespective of the values of the physical parameters.
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Figure 9. Comparison of 〈|φ|2〉 obtained by two different TN formulations with D = 64 on

V = 10242. We use K = 64 for the first representation without the character expansion and

NCE = 128 and K = 256 for the second one with the character expansion. See the appendix for

the details.
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4 Summary

In this paper we have derived a TN representation for the complex scalar field theory

discretizing the continuous scalar fields with the Gauss-Hermite quadrature rule. Using

the TRG procedure for the TN representation of partition function, the average phase

factor, the particle number density and 〈|φ|2〉 were evaluated.

As a result, the Silver Blaze phenomenon is clearly observed for the extremely large

volume V = 10242 which is essentially in the zero temperature and the large spacial

volume limits. We also examine another TN representation using the character expansion.

Then, our numerical results of two representations do not have a visible difference, and the

conclusion does not change for the other TN representation. Thus we confirm that the TN

method is effective for a quantum field theory with the severe sign problem.
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A Tensor network representation with a character expansion

In this appendix, an alternative TN representation of partition function is derived by a

character expansion (see [26]).2 To this end, the polar coordinate φn = rne
iθn is helpful in

using the character expansion of ex cos z:

ex cos z =
∞∑

p=−∞
Ip (x) eipz for x ∈ R, z ∈ C, (A.1)

where Ip is the p-th modified Bessel function of the first kind. In the polar coordinate, the

lattice action eq. (2.2) is written as

S =
∑
n∈Γ

[(
4 +m2

)
r2
n + λr4

n − 2

2∑
ν=1

cos(θn+ν̂ − θn − iµδν2)rnrn+ν̂

]
. (A.2)

Using the above formulas, a dual formulation of the partition function is obtained as

Z =

(∏
n∈Γ

∞∑
pn,qn=−∞

2π

∫ ∞
0

drnrn e
−(4+m2)r2n−λr4n

)
×
∏
n∈Γ

Ipn(2rnrn+1̂)Iqn(2rnrn+2̂) δ(pn+qn−pn−1̂−qn−2̂),0 e
µqn . (A.3)

2If the Taylor expansion of the hopping term is used instead of the character expansion, another dual

formulation is obtained [24].
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Integrating the angular variables turns out to be constraints for p and q variables with

Kronecker’s delta. Note that all entries of (A.3) are real and non-negative.

To define a finite dimensional tensor, we truncate the summation for pn, qn and dis-

cretize the radial variable rn with Gauss-Hermite quadrature. In this case, since rn∈ [0,∞),

we use the 2K-point Gauss-Hermite quadrature with only the positive K nodes.3 Then

the discrete version of (A.3) is given by

Z (NCE,K) =

∏
n∈Γ

NCE∑
pn,qn=−NCE

K∑
αn=1

∏
n∈Γ

4πyαnwαne
y2α

× hpn(yαn , yαn+1̂
)hqn(yαn , yαn+2̂

) δ(pn+qn−pn−1̂−qn−2̂),0 e
µqn , (A.4)

where

hp (r, s) = e
−
(

1+m2

4

)
(r2+s2)−λ4 (r4+s4)

Ip (2rs) , (A.5)

yα is the αth positive root of 2K Gauss-Hermite polynomial, and wα is the corresponding

weight given by wα ≡ 22K−1(2K)!
√
π/((2K)2H2K−1(yα)2). We have restricted the range

of the summation of the character expansion to [−NCE, NCE]. The local Boltzmann factor

hp(yα, yβ) with fixed p is now regarded as a K×K matrix to which the SVD can be applied:

hp (yα, yβ) =
K∑
x=1

U [p]
αxσ

[p]
x V

[p]†
xβ . (A.6)

Plugging eq. (A.6) into eq. (A.4) leads to a TN representation of Z (NCE,K):

Z (NCE,K) =

∏
n∈Γ

NCE∑
pn,qn=−NCE

K∑
xn,tn=1

∏
n∈Γ

T̃
pnqnpn−1̂qn−2̂

xntnxn−1̂tn−2̂
, (A.7)

where

T̃ abcd
ijkl = 4π

√
σ

[a]
i σ

[b]
j σ

[c]
k σ

[d]
l eµb δa+b,c+d

K∑
α=1

yαwαe
y2αU

[a]
αi U

[b]
αjV

[c]†
kα V

[d]†
lα . (A.8)

Note that (xn, pn), (tn, qn), (xn−1̂, pn−1̂), (tn−2̂, qn−2̂) may be interpreted as four index pairs

defined on four different links stemmed from the site n. Thus T̃ may be interpreted as a

rank-4 tensor whose bond dimension is K × (2NCE + 1) since xn, tn = 1, 2 . . . ,K and

pn, qn = −NCE, . . . , NCE.

In an actual computation, the summations
∑NCE

pn=−NCE

∑K
xn=1 (and

∑NCE
qn=−NCE

∑K
tn=1)

in eq. (A.7) are reduced by including D largest singular values σ
[p]
x of eq. (A.8) into the

computation. Let us arrange σ
[p]
x in the descending order for all x and p and suppose that

the nth largest singular value is σ
[p′]
x′ . Then a one-to-one mapping f between n and (x′, p′)

3One can of course use other quadrature rules such as the Gauss-Legendre or the Gauss-Laguerre. With

sufficiently large number of Gaussian nodes, the detail of the quadrature rule does not matter to the

accuracy.
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can be given, that is, n = f(x′, p′).4 Using this mapping, the combined index Xn and Tn
are given by

Xn = f(xn, pn), Tn = f(tn, qn). (A.9)

Once f is given, Xn is uniquely given for xn, pn and vice versa. Then the tensor is repre-

sented as

T
(CE)
XTX′T ′ ≡ T̃

pqp′q′

xtx′t′ , (A.10)

with (x, p) = f−1(X), (t, q) = f−1(T ) and the same identifications for X ′, T ′. Then trun-

cated version of the discretized partition function is given by

Z (NCE,K) ≈

∏
n∈Γ

D∑
Xn,Tn=1

∏
n∈Γ

T
(CE)
XnTnXn−1̂Tn−2̂

. (A.11)

For a given D and K, the mapping f is uniquely determined up to D (except for an issue

of degenerate singular values) because it is stable in practice when NCE is varied in a range

of sufficiently large values. So T (CE) does not depend on NCE, but only on K. In this

sense, the NCE-dependence of Z (NCE,K) is small and is not observed as long as it is

approximated by r.h.s. of eq. (A.11).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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