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1 Introduction

The Sachdev-Ye-Kitaev (SYK) models [1–3] of fermions with random interactions have

been the focus of much recent attention in both the quantum gravity and the condensed

matter literature. The majority of this work has focused on the model with Majorana

fermions, which has no globally conserved charge, other than the Hamiltonian itself. In

this paper, we direct our attention to the model with N � 1 complex fermions [4], a.k.a.

the complex SYK model:

Ĥ =
∑

j1<...<jq/2,
k1<...<kq/2

Jj1...jq/2 ,k1...kq/2 A
{
ψ̂†j1 . . . ψ̂

†
jq/2

ψ̂k1 . . . ψ̂kq/2

}
(1.1)

where A{· · · } denotes the antisymmetrized product of operators. The couplings

Jj1...jq/2 ,k1...kq/2 are independent random complex variables with zero mean and the fol-

lowing variance: ∣∣∣Jj1...jq/2 ,k1...kq/2

∣∣∣2 = J2 (q/2)! (q/2− 1)!

N q−1
. (1.2)
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One advantage of the antisymmetrized Hamiltonian is that it makes the particle-hole sym-

metry manifest. For example at q = 4, the Hamiltonian has the following form

Ĥ =
∑

j1<j2 ,k1<k2

Jj1j2,k1k2

(
ψ̂†j1ψ̂

†
j2
ψ̂k1ψ̂k2 + Ĉj1j2,k1k2

)
, (1.3)

where Ĉj1j2,k1k2 collects various terms arising from anti-commuting fermion operators; more

explicitly,

Ĉj1j2,k1k2 (1.4)

=
1

2

(
δj1k1ψ̂

†
j2
ψ̂k2 − δj1k2ψ̂

†
j2
ψ̂k1 − δj2k1ψ̂

†
j1
ψ̂k2 + δj2k2ψ̂

†
j1
ψ̂k1 +

1

2
δj1k2δj2k1 −

1

2
δj1k1δj2k2

)
.

Without Ĉj1j2,k1k2 term, the Hamiltonian is not invariant under the particle-hole symmetry

ψ̂†j ↔ ψ̂j . Using the same notation, we define the globally conserved U(1) charge Q̂ by

Q̂ =
∑
j

A
{
ψ̂†j ψ̂j

}
=
∑
j

ψ̂†j ψ̂j −
N

2
. (1.5)

It is related to the ultraviolet (UV) asymmetry of the Green function

G(τ1, τ2) = −〈Tψ̂(τ1)ψ̂†(τ2)〉 , G(0+) = −1

2
+Q , G(0−) =

1

2
+Q , Q =

〈Q̂〉
N

. (1.6)

In the infrared (IR), the spectral asymmetry is characterized by the long-time behavior of

the Green function

Gβ=∞(±τ) ∼ ∓e±πEτ−2∆ for and τ � J−1 , (1.7)

or equivalently the small frequency behavior

Gβ=∞(±iω) ∼ ∓ie∓iθω2∆−1 for and 0 < ω � J , (1.8)

where β = T−1 is the inverse temperature, ∆ = 1/q is the scaling dimension of the fermion

operator, E ∈ (−∞,+∞) and θ ∈ (−∆π,∆π) are the spectral asymmetry parameters

related by the following formula

e2πE =
sin(π∆ + θ)

sin(π∆− θ)
. (1.9)

Note the value of (E, θ) can not be fixed by the IR equations; so there is a one-parameter

family of solutions in the scaling limit [1]. Ultimately, the actual value of (E, θ) is set

by the value of specific charge Q. Although charge is a UV property of the system, the

relationship between (E, θ) and Q is universal and independent of UV details [4, 5]:

Q = − θ
π
−
(

1

2
−∆

)
sin(2θ)

sin(2π∆)
. (1.10)

We will provide new derivations of eq. (1.10) here (see eqs. (2.34), (3.35) and section 5).

This universal relation is analogous to the Luttinger relation of Fermi liquid theory, which

relates the size of the Fermi surface (an IR quantity) to the total charge (a UV quantity).
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The form of eq. (1.7) also applies to fermionic fields with unit U(1) charge in asymp-

totically AdS2 black holes, as was computed by Faulkner et al. [6]; the parameter E is then

a dimensionless measure of the electric field near the AdS2 horizon [4] (see appendix G

and eq. (G.9)). For both SYK models and black holes, fields with U(1) charge p have the

asymmetry factor e±πpE.

Another key feature of the SYK models is the presence of a non-zero entropy in the

zero temperature limit [5]:

lim
β→∞

lim
N→∞

S(N,NQ, β−1)

N
= S(Q) > 0 , (1.11)

The function S(Q) is universal, in that it is determined only by the structure of the low

energy conformal theory, and is independent of the UV perturbations to the Hamiltonian

which are irrelevant to the low energy. Such a zero temperature entropy is not associated

with an exponentially large ground state degeneracy. Instead, it signals an exponentially

small many-body energy level spacing down to the ground state; see section 2.5. For each

given N , the entropy does go to zero at exponentially low temperatures. We will present a

new derivation of S(Q) in section 5 using a two dimensional bulk picture involving massive

Dirac fermions on the hyperbolic plane.

At finite but sufficiently low temperatures, the dynamics of the Majorana SYK model

is governed by a collective mode with the Schwarzian action [2, 3, 7, 8]. An analogous

effective theory of the complex SYK model also includes a U(1) mode [9]

Ieff[ϕ, λ] =
NK

2

∫ β

0
dτ
(
λ′(τ) + iEϕ′(τ)

)2 − Nγ

4π2

∫ β

0
dτ Sch

(
tan

ϕ(τ)

2
, τ

)
, (1.12)

where ϕ(τ) is a monotonic time reparameterization obeying ϕ(τ+β) = ϕ(τ)+2π, and λ(τ)

is a phase field obeying λ(τ + β) = λ(τ) + 2πn with integer winding number n conjugate

to the total charge Q. Notation Sch(f(x), x) stands for the Schwarzian derivative

Sch(f(x), x) :=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

. (1.13)

In this effective theory, the U(1) and SL(2, R) freedom are actually decoupled, which can

be demonstrated by the variable change λ(τ) = λ(τ) + iE
(

2π
β τ − ϕ(τ)

)
.

The action (1.12) is characterized by two parameters, K and γ, and these can be

specified by their connection to thermodynamics. They depend upon the specific charge

Q (or the chemical potential µ), but this dependence has been left implicit. The leading

low temperature correction to the entropy in eq. (1.11) at fixed N and Q is

S

N
= S + γ β−1 +O(β−2) , (1.14)

and so γ is the T -linear coefficient of the specific heat at fixed charge, as in Fermi liquid

theory. The parameter K is the zero temperature compressibility

K =
dQ
dµ

, at β =∞ . (1.15)
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Unlike S and E, the parameters K and γ are not universal, and depend upon details of the

microscopic Hamiltonian and not just the low energy conformal field theory.

The zero temperature entropy in eq. (1.11) and the pair of soft modes as in eq. (1.12)

are also pertinent to higher dimensional charged black holes with AdS2 horizons, and

this is discussed elsewhere [4, 9–19]. Key aspects of such black holes are summarized in

appendix G. We also note that supersymmetric higher dimensional black holes with AdS2

horizons obtained from string theory have integer values for eNS [20, 21], as does the SYK

model with N = 2 supersymmetry [22] (which we do not consider here).

An important property of both complex SYK and charged black holes with AdS2

horizons is the following relationship between the entropy S(Q) in eq. (1.11) and the

parameter E:
dS(Q)

dQ
= 2πE . (1.16)

This relationship first appeared in the study of SYK-like models by Georges et al. [5],

building upon large N studies of the multichannel Kondo problem [23]. Independently,

this relationship appeared as a general property of black holes with AdS2 horizons in the

work of Sen [24, 25], where E is identified with the electric field on the horizon [6], as noted

above. It was only later that the identity of this relationship between the SYK and black

hole models was recognized [4]. We will obtain a deeper understanding of eq. (1.16) in the

present paper, based on the global U(1) symmetry associated with the conserved charge

and the locality of effective action.

Let us summarize our notation for thermodynamic quantities. These quantities are of

the order of N : the total charge Q (which is integer for N even, and half-integer for N odd),

action I, entropy S, and the associated free energy and grand potential. N -independent

quantities include: the temperature T = β−1, chemical potential µ, spectral asymmetry

parameter E, specific charge Q, zero-temperature entropy S, charge compressibility K, and

the T -linear coefficient in the specific heat γ. Except the first two, they are defined in the

large N limit.

1.1 Outline of the paper

We begin section 2 by setting up the formalism for the complex SYK model as a path

integral over the two-time Green function and self energy. We introduce a definition of the

conserved charge Q suitable for this formalism and then derive the known universal relation

between Q and E (eq. (2.34)). In section 2.3, we find a general form of a local effective

action Ieff and derive eq. (1.12). Section 2.4 is concerned with thermodynamic quantities

and a discussion of what parameters come from the UV. In section 2.5, we evaluate the path

integral over λ and ϕ with action Ieff exactly, which yields new results for the many-body

density of states.

Section 3 sets up a renormalization theory of the complex SYK model. This will enable

us to obtain another derivation of the relationship between the specific charge Q and the

spectral asymmetry E.

In section 4, we turn to the calculation of the parameters of the effective action, in

particular charge compressibility K. We present three numerical computations that yield
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values of K in good agreement with each other. These computations and our analysis

show that all energy scales contribute to the charge compressibility. A low energy analysis

based on linear coupling, mentioned in section 2.4, or conformal perturbation theory (see

appendix C) does not yield the correct value of K, even though such methods work [7, 8]

for the Schwarzian mode.

Section 5 presents a two dimensional bulk derivation of the zero temperature entropy

of the complex SYK model. We show that the E-dependent value of the zero temperature

entropy per fermion S can be obtained from a Euclidean path integral over massive Dirac

fermions on hyperbolic plane H2. We show that the appropriate quantity is the ratio of

fermionic determinants with different boundary conditions on the boundary of H2. Another

bulk interpretation of the entropy appears in appendix G, where we recall the connection

to higher-dimensional black holes. In d+ 2 dimensions (d > 2), the AdS2 arises as a factor

in the near-horizon geometry of a near-extremal charged black hole. In this picture, S is

related to the horizon area in the d extra dimensions, and, as we noted above, this S also

obeys the differential relation (1.16).

2 Low temperature properties

In this section, we analyze the complex SYK model based on the (G,Σ) action. We provide

a general definition of charge in this framework and prove its universal relation to the IR

asymmetry of the Green function. Furthermore, we find the general form of effective action

and evaluate the path integral over the low energy fluctuations, which yield new results for

the many-body density of states.

2.1 Preliminaries

We start with a review of the basics. For convenience, we measure time in units of J−1,

which is equivalent to setting J to 1. For the Hamiltonian (1.1), we may consider either

the partition function for a fixed charge or the grand partition function. The latter can be

obtained from the (G,Σ) action:

I

N
= − ln det (−σ − Σ)−

∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ2, τ1) +

1

q
(−G(τ1, τ2)G(τ2, τ1))

q
2

]
,

where σ(τ1, τ2) = δ′(τ1 − τ2)− µδ(τ1 − τ2) . (2.1)

The Schwinger-Dyson equations are as follows:

− (Σ + σ)︸ ︷︷ ︸
Σ

G = 1, Σ(τ1, τ2) = G(τ1, τ2)
q
2 (−G(τ2, τ1))

q
2
−1 . (2.2)

The general idea of solving these equations in the IR limit is to ignore σ, which is localized

at short times. However, care should be taken because the Fourier transform of σ contains

the non-negligible, ω-independent term −µ. Fortunately, this term is absent from Σ, so we

will use G and Σ as independent variables. Thus, σ moves to the second equation in (2.2),

where it can be safely ignored as the equation is solved in the time representation.
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Since the IR equations do not depend on µ, we get a family of solutions parametrized

by a formally independent variable E. At zero temperature,

Gβ=∞(±τ) = ∓e±πEb∆τ−2∆ , Σβ=∞(±τ) = ∓e±πEb1−∆τ−2(1−∆) for τ � 1

where b =
1− 2∆

2π
· sin(2π∆)

2 cosπ(∆ + iE) cosπ(∆− iE)
.

(2.3)

We can also introduce a parameter θ to characterize the spectral asymmetry in the fre-

quency domain:

Gβ=∞(±iω) = ∓ie∓iθ
√

Γ(2− 2∆)

Γ(2∆)
b∆−

1
2ω2∆−1

Σβ=∞(±iω) = ∓ie±iθ
√

Γ(2∆)

Γ(2− 2∆)
b

1
2
−∆ω1−2∆

for 0 < ω � 1 . (2.4)

The spectral asymmetry parameters E and θ are related by the equations

e−2iθ =
cos(π(∆ + iE))

cos(π(∆− iE))
, e2πE =

sin(π∆ + θ)

sin(π∆− θ)
. (2.5)

Using these relations, we can also express the prefactor b as a function of θ:

b =
1− 2∆

2π
· 2 sin(π∆ + θ) sin(π∆− θ)

sin(2π∆)
. (2.6)

The zero-temperature solutions can be extended to finite temperature:

G(τ) ≈ Gc(τ) = −b∆
(
β

π
sin

πτ

β

)−2∆

e
2πE

(
1
2
− τ
β

)

Σ(τ) ≈ Σc(τ) = −b1−∆

(
β

π
sin

πτ

β

)−2(1−∆)

e
2πE

(
1
2
− τ
β

) for 0 < τ < β,

τ � 1 and β − τ � 1 .
(2.7)

The subscript c here means “conformal”. In the frequency domain with Matsubara fre-

quencies ωn = 2π
β

(
n+ 1

2

)
� 1, the Green function and self energy have the following

form,

G(±iωn) ≈ Gc(±iωn) = ∓ie∓iθ
√

Γ(2− 2∆)

Γ(2∆)

(
2π

β

√
b

)2∆−1 Γ
(
n+ 1

2 + ∆± iE
)

Γ
(
n+ 3

2 −∆± iE
) ,

Σ(±iωn) ≈ Σc(±iωn) = ∓ie±iθ
√

Γ(2∆)

Γ(2− 2∆)

(
2π

β

√
b

)1−2∆ Γ
(
n+ 3

2 −∆± iE
)

Γ
(
n+ 1

2 + ∆± iE
) . (2.8)

Given these exact solutions to the IR equations, it remains to be checked whether they

extrapolate at higher energies to a solution to the full UV equations which depend upon

µ. This has been examined numerically [1, 5, 26–28], and a consistent extrapolation exists

for |µ| . 0.24 [28, 29]. The IR parameter E can be determined as a smooth, odd function

of the UV parameter µ over this regime.
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In addition to the emergent reparameterization symmetry that is present in the low

energy limit of the Majorana SYK model, the complex SYK model has an extra emergent

symmetry related to phase fluctuation:

G(τ1, τ2)→ ϕ′(τ1)∆ϕ′(τ2)∆ei(λ(τ1)−λ(τ2))G(ϕ(τ1), ϕ(τ2))

Σ(τ1, τ2)→ ϕ′(τ1)1−∆ϕ′(τ2)1−∆ei(λ(τ1)−λ(τ2))Σ(ϕ(τ1), ϕ(τ2))
, (2.9)

where ϕ(τ) is a monotonic time reparameterization with winding number 1 and λ(τ) is

a phase fluctuation with possibly arbitrary integer winding number. The symmetries are

not exact in the presence of σ term in the (G,Σ) action (2.1). To make this point more

transparent, it is useful to rewrite the action in terms of (G,Σ):

I

N
= − ln det

(
−Σ
)
−
∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ2, τ1) +

1

q
(−G(τ1, τ2)G(τ2, τ1))

q
2

]
+

∫
dτ1dτ2 σ(τ1, τ2)G(τ2, τ1) .

(2.10)

Now the first line of the r.h.s. of eq. (2.10) is invariant under the symmetry transforma-

tion (2.9), while the second line changes. This point will be further discussed in section 2.3.

2.2 Charge

For an explicit UV source field σ (cf. eq. (2.1)) that arises from a microscopic Hamiltonian,

the charge is conventionally defined by the UV asymmetry of the Green function as eq. (1.6).

In this section we will derive a formula for charge in (G,Σ) action framework for general

source field σ (without assuming time translation symmetry) using ideas similar to those

in appendix C of ref. [30].

2.2.1 “Flow” of Green function G

Let us consider the action (2.10) with σ(τ1, τ2) depending on both times, not just on

τ = τ1 − τ2. If (G,Σ) is stationary (i.e. satisfies the Schwinger-Dyson equations) and

β =∞, then ∫ +∞

−∞
(σ(τ1, τ0)G(τ0, τ1)− σ(τ0, τ1)G(τ1, τ0)) dτ1 = 0 . (2.11)

This can be established by considering an infinitesimal variation δλ(τ) and the correspond-

ing variations
δG(τ1, τ2) = i (δλ(τ1)− δλ(τ2))G(τ1, τ2) ,

δΣ(τ1, τ2) = i (δλ(τ1)− δλ(τ2)) Σ(τ1, τ2) .
(2.12)

Only the σG term in (2.10) has a non-trivial variation, which is proportional to the l.h.s.

of (2.11) if δλ(τ) ∝ δ(τ − τ0). On the other hand, the variation of the action must be zero

since (G,Σ) is stationary.

Following the ideas in appendix C of ref. [30], we may call

j(τ1, τ2) = σ(τ1, τ2)G(τ2, τ1)− σ(τ2, τ1)G(τ1, τ2) :
τ1 τ2

(2.13)

– 7 –
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τ0

(a) Conservation law.

τ0

(b) Total current through a cross section.

Figure 1. (a) Conservation law: the total current through a closed (dashed) circle is zero; (b) Flow

Q, as the total current through a cross section τ0 (blue dashed line), is independent of the position

τ0. In general, there are contributions from all time scales; longer scale currents are shown in red.

the “current” flowing from τ1 to τ2. To make a closer analogy to the aforementioned

reference, let us substitute the expression σ(τ1, τ2) = Σ(τ1, τ2)−G(τ1, τ2)
q
2 (−G(τ2, τ1))

q
2
−1

(obtained from the Schwinger-Dyson equations) into the current formula:

j(τ1, τ2) = Σ(τ1, τ2)G(τ2, τ1)− Σ(τ2, τ1)G(τ1, τ2) . (2.14)

Treating G and Σ as matrices indexed by (τ1, τ2), we have Σ = −G−1. If G were a unitary

quasidiagonal matrix, the results in appendix C of ref. [30] would apply, and certain quan-

tities would be quantized. However, here Green function G has non-trivial IR asymptotics

violating the conditions of being quasidiagonal. Nevertheless, we will use similar ideas and

definitions as the aforementioned reference.

Note that eq. (2.11) can be interpreted as the conservation of the current at each

point τ0: ∫ +∞

−∞
j(τ1, τ0)dτ1 = 0, (2.15)

as illustrated in figure 1 (a). It follows that the total current through a cross section τ0,

Q =

∫ τ0

−∞
dτ1

∫ +∞

τ0

dτ2 j(τ1, τ2) , (2.16)

(see figure 1 (b)) is independent of τ0. As explained below, this quantity is a natural

generalization of the specific charge Q/N to general sources. We may call Q the “flow”

of the matrix G as it depends solely on G through eq. (2.14) with Σ = −G−1. We also

remark that the definition of the flow does not rely on the time translation symmetry.

That is, the source σ(τ1, τ2), and the Green function G(τ1, τ2), may depend on both τ1

and τ2 rather than just τ = τ1 − τ2.

We now explain the interpretation of the flow Q as charge. Plugging the defini-

tion (2.13) of the current j into eq. (2.16), we get

Q =

∫ τ0

−∞
dτ1

∫ +∞

τ0

dτ2

(
σ(τ1, τ2)G(τ2, τ1)− σ(τ2, τ1)G(τ1, τ2)

)
. (2.17)

This formula reduces to a simpler form when the source has the time translation symmetry,

i.e. for σ(τ1, τ2) = σ(τ), where τ = τ1 − τ2:

Q =

∫ +∞

0
dτ

∫ τ

0
dτ2

(
σ(−τ)G(τ)− σ(τ)G(−τ)

)
= −

∫ +∞

−∞
dτ τσ(τ)G(−τ) . (2.18)
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The last expression in turn reduces to the conventional definition of the charge when

σ(τ) = δ′(τ) − µδ(τ). In this case, for the Green function G(τ) that is discontinuous at

τ = 0, we use the average 1
2(G(0+) +G(0−)) to define its value at τ = 0. Thus,

Q = −
∫ +∞

−∞
dτ τδ′(τ)G(−τ) =

∫ +∞

−∞
dτδ(τ)G(−τ) =

G(0+) +G(0−)

2
, (2.19)

in agreement with eq. (1.6). For extremely local UV sources such as δ′(τ) and δ(τ), the

charge is a local quantity. However, if we consider a general source σ(τ), the r.h.s. of

eq. (2.18) includes contributions from all scales; see figure 1 (b) for a cartoon.

2.2.2 Invariance of the charge

We will show that the charge Q depends only on the UV and IR asymptotics of G(τ1, τ2)

and Σ(τ1, τ2) (where Σ = −G−1) as well as some topological data. The UV asymptotics

is determined by the δ′(τ1 − τ2) term in Σ. To formulate the invariance, let (G1,Σ1) and

(G2,Σ2) have the same asymptotics and in addition, let the following “relative winding

number” be zero:

ν(G1, G2) =
1

2πi

∫ +∞

0

d

dω

(
ln
G1(iω)

G2(iω)

)
dω . (2.20)

If ν(G1, G2) = 0, then (G1,Σ1) can be continuously deformed into (G2,Σ2). Here it is

important to consider the winding number in frequency domain rather than time domain,

because the Schwinger-Dyson equation Σ(ω) = −G(ω)−1 guarantees that a smooth path in

(G,Σ) space will disallow both singularities and zeros of G(ω). This will not work for G(τ),

since the other equation Σ(τ) = G(τ)
q
2 (−G(−τ))

q
2
−1 does not constrain zeros of G(τ).

To prove that the charge is invariant under such deformation, it is sufficient to consider

infinitesimal, asymptotically trivial deformations. Let us use the formula

Q =

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2 (f(τ2)− f(τ1))σ(τ1, τ2)G(τ2, τ1) , (2.21)

where f is an arbitrary function such that

lim
τ→+∞

f(τ) = 1 , and lim
τ→−∞

f(τ) = 0 :

f

τ
1 (2.22)

This formula coincides with eq. (2.17) for the step function f(τ) = θ(τ − τ0). The integral

does not depend on the details of f because of the conservation law, namely eq. (2.11).1

More intuitively, f may be interpreted as a linear combination of step functions θ(τ − τ0)

with some weights for each cross section position τ0. In other words, we can blur the cross

section, and this will not affect the flow.

We proceed by anti-symmetrizing the integrand,

Q =
1

2

∫
dτ1dτ2 (f(τ2)− f(τ1)) (σ(τ1, τ2)G(τ2, τ1)− σ(τ2, τ1)G(τ1, τ2)) . (2.23)

1More explicitly, if we vary f without changing its asymptotics, the corresponding variation of the charge

is proportional to the l.h.s. of the eq. (2.11) and therefore vanishes.
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Since σ(τ1, τ2) = Σ(τ1, τ2)−G(τ1, τ2)
q
2 (−G(τ2, τ1))

q
2
−1, we also get this equation:

Q =
1

2

∫
dτ1dτ2 (f(τ2)− f(τ1)) (Σ(τ1, τ2)G(τ2, τ1)− Σ(τ2, τ1)G(τ1, τ2)) . (2.24)

Note that the two terms cannot be integrated separately because the corresponding inte-

grals are not absolutely convergent (since G(τ1, τ2) ∼ |τ1 − τ2|−2∆, Σ ∼ |τ1 − τ2|−2+2∆,

there is a logarithmic divergence in IR). Now, consider an infinitesimal variation δG and

δΣ = Σ (δG) Σ such that δG(τ1, τ2) and δΣ(τ1, τ2) decay sufficiently fast as τ1 − τ2 →∞:

δQ =

∫
dτ1dτ2 (f(τ2)− f(τ1)) δ (Σ(τ1, τ2)G(τ2, τ1))

=

∫
dτ1dτ2 (f(τ2)− f(τ1))G(τ2, τ1)δΣ(τ1, τ2)

+

∫
dτ3dτ4 (f(τ3)− f(τ4)) Σ(τ4, τ3)δG(τ3, τ4) .

(2.25)

Substituting δΣ = Σ (δG) Σ into the first line of the last expression and using Σ(τ4, τ3) =

−
∫
dτ2dτ1Σ(τ4, τ2)G(τ2, τ1)Σ(τ1, τ3) in the second line, we get

δQ =

∫
d4τ (f(τ2)− f(τ3) + f(τ4)− f(τ1)) Σ(τ4, τ2)G(τ2, τ1)Σ(τ1, τ3)δG(τ3, τ4) . (2.26)

Now, we can regroup and integrate the terms containing f(τ2) − f(τ3) and f(τ4) − f(τ1)

separately:∫
d3τ (f(τ2)− f(τ3))

∫
dτ1 Σ(τ4, τ2)G(τ2, τ1)Σ(τ1, τ3)δG(τ3, τ4) = 0 ,∫

d3τ (f(τ4)− f(τ1))

∫
dτ2 Σ(τ4, τ2)G(τ2, τ1)Σ(τ1, τ3)δG(τ3, τ4) = 0 .

(2.27)

Each integral contains a delta function that annihilates f(τ2)− f(τ3) in the first case and

f(τ4) − f(τ1) in the second case. Therefore, we conclude that δQ = 0 for asymptotically

and topologically trivial deformations.

2.2.3 Calculation of the charge

In fact, we can calculate the charge in the complex SYK model using the IR asymptotics.

(The result for q = 4 was originally derived in ref. [5] using a different method, see ap-

pendix A for a detailed discussion.) We will use the antisymmetrized version of eq. (2.18)

to express σ in terms of Σ as we have done before:

Q = −
∫ +∞

−∞
τσ(τ)G(−τ)dτ = −1

2

∫ +∞

−∞
τ
(
σ(τ)G(−τ)− σ(−τ)G(τ)

)
dτ

= −1

2

∫ +∞

−∞
τ (Σ(τ)G(−τ)− Σ(−τ)G(τ)) dτ .

(2.28)

The two terms in the last expression almost cancel each other at τ � 1, but individually, the

corresponding integrals are logarithmically divergent. To proceed, let us replace G(τ) with

Gη(τ) =

{
G(τ) for |τ | . 1

G(τ)|τ |−2η for |τ | � 1
, (2.29)
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where η is a small positive number. This change has little effect on the integrand in (2.28),

but the two terms can now be separated. The corresponding integrals are equal to each

other due to the symmetry τ → −τ . Thus,

Q = lim
η→0

[
−
∫ +∞

−∞
τΣ(τ)Gη(−τ)dτ

]
= lim

η→0

[
1

2πi

∫ +∞

−∞

(
∂ωG(iω)−1

)
Gη(iω)dω

]
. (2.30)

It is important that the symmetric-in-time regularization (2.29) is not symmetric in

frequency, which has nontrivial consequences. The Fourier transform of Gη is(
Gη(iω)

Gη(−iω)

)
= Γ(1− 2∆′)

(
i1−2∆′ i−1+2∆′

i−1+2∆′ i1−2∆′

)(
−b∆eπE

b∆e−πE

)
ω−1+2∆′ , 0 < ω � 1 , (2.31)

where ∆′ = ∆ + η. Expanding the ω-independent coefficients in this expression to the

first order in η, we explicitly see the asymmetry:

Gη(±iω) ≈ ω2ηG(±iω)
[
1 + η

(
−2ψ(1− 2∆)− π tanπ(∆± iE)

)]
, (2.32)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. Now, we are in a position to evaluate

the integral over dω in (2.30), which should be understood as a principal value integral. For

frequencies above some threshold ω0 (such that ω0 � 1 but η ln 1
ω0
� 1), the difference be-

tween G and Gη may be neglected. On the other hand, if |ω| < ω0, then G(iω) ∼ |ω|−1+2∆,

and hence, ∂ωG(iω)−1 ≈ (1− 2∆)ω−1G(iω)−1. Using these approximations, we get∫ +∞

−∞

(
∂ωG(iω)−1

)
Gη(iω)dω

≈
∫ +∞

ω0

∂ω ln
G(−iω)

G(iω)
dω + (1− 2∆)

∫ ω0

0
ω−1

(
Gη(iω)

G(iω)
− Gη(−iω)

G(−iω)

)
dω

≈ −2iθ + (1− 2∆)η
(
−π tanπ(∆ + iE) + π tanπ(∆− iE)

) ∫ ω0

0
ω−1+2ηdω .

(2.33)

The last integral is simply 1/(2η), so the result is independent of η. Including the factor

1/(2πi) from (2.30) we obtain:

Q = − θ
π
− 1− 2∆

4i

(
tanπ(∆ + iE)− tanπ(∆− iE)

)
= − θ

π
−
(

1

2
−∆

)
sin(2θ)

sin(2π∆)
,

(2.34)

which reproduces the result in ref. [9].

2.2.4 Analogy with field-theoretic anomalies

In some sense, the calculation of the charge performed here (also see appendix A for parallel

discussions based on symmetric-in-frequency regularizations) has a flavor of perturbative

anomalies in quantum field theory. Both describe a mismatch between the IR and UV.

In the case of anomaly, there is no consistent UV cutoff respecting the symmetry; in our

case, the UV behavior is well-defined but quantifiably different from the IR. By analogy
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with the Fermi liquid theory, one might expect the charge to be given by the first term

in eq. (2.34). However, that is not correct due to the non-trivial effect of regularization,

which produces the second term,

−
(

1

2
−∆

)
sin(2θ)

sin(2π∆)
. (2.35)

In appendix A, we will further comment on this term and relate it to the Luttinger-Ward

term in the standard analysis [31].

2.3 Covariant formalism and the effective action

At the low temperatures, β � 1, the action (2.10) is almost invariant under the emergent

symmetry (2.9). In other words, we can generate “quasi-solutions” of the Schwinger-Dyson

equations by applying (ϕ, λ) transformations to the actual solution (G∗,Σ∗):

G(τ1, τ2) = ϕ′(τ1)∆ϕ′(τ2)∆ei(λ(τ1)−λ(τ2))G∗(ϕ(τ1), ϕ(τ2)) ,

Σ(τ1, τ2) = ϕ′(τ1)1−∆ϕ′(τ2)1−∆ei(λ(τ1)−λ(τ2))Σ∗(ϕ(τ1), ϕ(τ2)) .
(2.36)

Such quasi-solutions cost a small increase in action,2 which we call the “effective action”.

More exactly, Ieff[ϕ, λ] = I[G,Σ] − const, where the constant depends on convention: we

may set it to I[G∗,Σ∗] or use a different base value. The goal of this section is to determine

the general form of Ieff[ϕ, λ] to leading orders.

2.3.1 Covariant formalism

The form of the approximate solutions coincides with the transformation laws for functions

changing from one frame to another. The latter is described by a diffeomorphism of the

time circle together with a gauge transformation. For instance, a field ψ(x) with scaling

dimension ∆ and charge p defined in frame “x” can be transformed to frame (y, φ) by the

following formula:

ψy,φ(y) =

(
dy

dx

)−∆

e−ipφ(x)ψ(x) . (2.37)

It is also straightforward to define the transformation laws for G and Σ, i.e. functions of

two variables. Taking this viewpoint, the “quasi-solution” (2.36) may be interpreted as

follows. In order to generate a quasi-solution (G,Σ) in the physical frame x = τ , we start

with the frame (y, φ) = (ϕ, λ), where the Green function is given by G∗. Then we pull

back to the physical frame using the inverse transformation of (2.37), namely

ψ(x) =

(
dy

dx

)∆

eipφ(x)ψy,φ(y(x)) . (2.38)

From this perspective, the effective action Ieff[ϕ, λ] in fact measures the failure of (ϕ, λ) to

be the physical frame.

2Eq. (2.36) defines the IR part of a quasi-solution, while the UV part should be tuned to minimize the

cost.
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At first glance, introducing the notion of “frame” in this problem seems redundant

because in the end we should write all results in the physical frame. However, the condition

that the action is invariant under frame transformations (if we also transform σ) is helpful

in determining the general form of the effective action Ieff[ϕ, λ].

Now, let us consider expressing the (G,Σ) action in a general frame (ϕ, λ). (In this

setting, G and Σ are arbitrary and not related to ϕ and λ in any particular way.) In the

new frame, the fields are defined as follows:

Gϕ,λ(ϕ1, ϕ2) := ϕ′(τ1)−∆ϕ′(τ2)−∆e−i(λ(τ1)−λ(τ2))G(τ1, τ2) ,

Σϕ,λ(ϕ1, ϕ2) := ϕ′(τ1)−1+∆ϕ′(τ2)−1+∆e−i(λ(τ1)−λ(τ2))Σ(τ1, τ2) ,

σϕ,λ(ϕ1, ϕ2) := ϕ′(τ1)−1+∆ϕ′(τ2)−1+∆e−i(λ(τ1)−λ(τ2))σ(τ1, τ2) .

(2.39)

Representing G, Σ, σ in terms of Gϕ,λ, Σϕ,λ, σϕ,λ and plugging into eq. (2.10), we get

I

N
= − ln det

(
−Σϕ,λ

)
−
∫
dϕ1dϕ2

[
Σϕ,λ(ϕ1, ϕ2)Gϕ,λ(ϕ2, ϕ1) +

1

q
(−Gϕ,λ(ϕ1, ϕ2)Gϕ,λ(ϕ2, ϕ1))

q
2

]
+

∫
dϕ1dϕ2 σϕ,λ(ϕ1, ϕ2)Gϕ,λ(ϕ2, ϕ1) .

(2.40)

Naively, the ln det term transforms nontrivially under ϕ. However, the determinant needs

some UV regularization anyway, and we will use a particular regularization to make it

frame-independent:3

det(−Σ)→ det(−Σ)

det(−σ)
· 2 cosh

βµ

2
. (2.41)

The second factor is the free fermion partition function (formally equal to det(−σ)).

The expression (2.40) for the (G,Σ) action in frame (ϕ, λ) has the same general form

as in the physical frame, but the UV source in different:

σϕ,λ(ϕ1, ϕ2) := ϕ′(τ1)∆−1ϕ′(τ2)∆−1e−i(λ(τ1)−λ(τ2))(δ′(τ1 − τ2)− µ(τ1)δ(τ1 − τ2))

= ϕ′(τ1)∆ϕ′(τ2)∆
(
δ′(ϕ1 − ϕ2)− ϕ′(τ1)−1µλ(ϕ1)δ(ϕ1 − ϕ2)

)
,

(2.42)

where

µλ(ϕ) = µ(τ)− idλ(τ)

dτ
. (2.43)

We will make a few comments on this transformation.

• First of all, the non-trivial change of the source lifts the degeneracy of quasi-solutions

and induces the effective action Ieff[ϕ, λ], which can be explained as follows. If σϕ,λ
were given by the same expression as the standard source, σstd(ϕ1, ϕ2) = δ′(ϕ1 −
ϕ2) − µδ(ϕ1 − ϕ2), then (Gϕ,λ,Σϕ,λ) = (G∗,Σ∗) would be a stationary point of

the action (2.40) in frame (ϕ, λ), and therefore, its pullback (G,Σ) would satisfy

the Schwinger-Dyson equations in the physical frame. Thus, the actual distinction

3The regularized determinant depends on UV details of Σ. This issue is not important for the present dis-

cussion, but it can be mitigated by the use of a different regularization [8]: det(−Σ)→ det(−Σ)/ det(−Σ∗).
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between solutions and quasi-solutions can be attributed to the difference between σϕ,λ
and σstd. In the first approximation, the effective action is obtained by integrating

σϕ,λ − σstd against G∗.

• Following ref. [8], let us define a field εϕ(ϕ) = ϕ′(τ) which sets the length scale for

the frame ϕ. Using this notation, we have

σϕ,λ(ϕ1, ϕ2) = εϕ(ϕ1)∆εϕ(ϕ2)∆
(
δ′(ϕ1 − ϕ2)− εϕ(ϕ1)−1µλ(ϕ1)δ(ϕ1 − ϕ2)

)
. (2.44)

Let us try to understand the meaning of the powers of ε. We will use this termi-

nology: a field that scales as [length]−α and transforms in the corresponding way

under diffeomorphisms is said to have dimension α and called an “α-form”. Thus, ε

has dimension −1 and µ has dimension 0 (because its transformation law (2.43) does

not contain dϕ/dτ). The function σ(ϕ1, ϕ2) transforms as a (1−∆, 1−∆) form; as

such, it is comparable with εϕ(ϕ1)∆−1εϕ(ϕ2)∆−1 ∼ ε−2(1−∆). The actual powers of ε

in eq. (2.44) may be written as εh−2(1−∆), where h is associated with the remaining

factor, that is, δ′(ϕ1−ϕ2) or µλ(ϕ1)δ(ϕ1−ϕ2). In fact, δ′(ϕ1−ϕ2) is diffeomorphism-

invariant if treated as a (1, 1) form, i.e. its total dimension is h = 2, whereas δ(ϕ1−ϕ2)

corresponds to h = 1. So everything is consistent. In a conventional field theory, the

source (2.44) would be represented by the term∫
(εΦ + µΨ) dϕ (2.45)

in the action, where the fields Φ = Φ(ϕ) and Ψ = Ψ(ϕ) have dimensions 2 and 1,

respectively. (The exponent of ε in (2.44) differs by 2∆ − 1 because in the (G,Σ)

action, σ is multiplied by G and integrated over two variables rather than one.)

• The expression (2.43) for the chemical potential in the (ϕ, λ) frame may be interpreted

as gauge invariance. It sets a non-trivial constraint on the effective action; namely,

the dependence on the soft mode λ is tied to its dependence on µ:

i
δIeff[ϕ, λ]

δλ′
=
δIeff[ϕ, λ]

δµ
. (2.46)

2.3.2 Diffeomorphism-invariant effective action

Now we are ready to determine the general form of the effective action. Let us consider

the following quasi-solution:

G(τ1, τ2) = ϕ′(τ1)∆ϕ′(τ2)∆ei(λ(τ1)−λ(τ2))G∗(ϕ(τ1), ϕ(τ2)) , (2.47)

where ϕ maps the time circle to the standard circle of length 2π (i.e. ϕ(τ +β) = ϕ(τ)+2π)

and G∗ is the IR solution of the Schwinger-Dyson equations with β formally set to 2π:

G∗(ϕ1, ϕ2) = −b∆
(

2 sin
ϕ1 − ϕ2

2

)−2∆

eE(π−ϕ1+ϕ2), 0 < ϕ1 − ϕ2 < 2π. (2.48)
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To separate the U(1) and SL(2, R) degrees of freedom, let λ(τ) = λ(τ) + iE
(

2π
β τ − ϕ(τ)

)
so that

G(τ1, τ2) = −b∆ei(λ(τ1)−λ(τ2))

( √
ϕ′(τ1)ϕ′(τ2)

2 sin ϕ(τ1)−ϕ(τ2)
2

)2∆

e
2πE

(
1
2
− τ1−τ2

β

)
. (2.49)

In general, the effective action contains local and non-local terms.4 The local part

describes interactions between the UV sources ε, µ and some IR data. We have discussed

the origin of the fields ε, µ in last section; now let us search for the IR fields by the

intermediate asymptotic expression of G for 1� |τ1 − τ2| � β:

G(τ1, τ2) ≈ Gβ=∞(τ1, τ2)
(
1 +A(τ+)(τ1 − τ2) +B(τ+)(τ1 − τ2)2 + . . .

)
, (2.50)

where τ+ = τ1+τ2
2 , and the coefficients A, B are obtained by Taylor expanding the quasi-

solution (2.49) w.r.t. small time separation τ1 − τ2. These coefficient have the following

explicit form:

A(τ) = iλ′(τ)− 2π

β
E , B(τ) =

∆

6
Sch
(
eiϕ(τ), τ

)
+

1

2
A(τ)2 . (2.51)

Thus, all relevant IR information is contained in the fields

A(τ) = iλ′(τ)− 2π

β
E , O(τ) = Sch

(
eiϕ(τ), τ

)
. (2.52)

The local part of the action should have a covariant expression in an arbitrary frame

x. We aim to find the effective action to β−1 order. In other words, the action should

have the accuracy to recover the free energy or grand potential to T 2 order and capture,

for example, the linear dependence of the specific heat. With the UV source (ε, µ) and IR

data (A,O), the most general diffeomorphism- and gauge-invariant action is

Ieff[E, ϕ, λ]

N
=

∫
ε−1
x f(µ−A) dx− G(E)− αS

∫
(εxOx − ρx) dx . (2.53)

Let us discuss some of its features as well as defining the field ρ.

• In addition to the fluctuating fields ϕ and λ, the action depends on the global param-

eter E. Its equilibrium value will be determined by finding an extremum (actually, a

maximum) of Ieff[E, ϕ, λ] in E with fixed external parameter β, µ.

• The function f is a general even function characterizing the charge response to the

chemical potential. The gauge invariance (2.43) requires that any dependence on µ

be through the combination µ − A. The G(E) term is of order 1 and related to the

zero temperature entropy.

• We have expressed the action in a general frame x to emphasize its covariant prop-

erties. In particular, we have used the notation Ox and introduced a field ρx (see [8],

eq. (167)):

Ox(x) = Sch(eiϕ(τ(x)), x) , ρx =
(∂xεx)2

2εx
− ∂2

xεx (2.54)

4For a non-local correction to the Schwarzian effective action in the Majorana SYK model, see ref. [8].

The non-local correction is subleading in the β−1 expansion and will not be studied in this paper.
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to form an invariant expression
∫

(εxOx − ρx) dx. (Recall that εx = x′(τ) is the

field setting the local length scale, where τ is the physical frame.) To show the

diffeomorphism invariance, it is essential to check the transformation laws of the

local operators O, ρ, ε. The transformation law of O is given by the chain rule of the

Schwarzian derivative:

Oy(y) =
(
y′(x)

)−2
(Ox(x)− Sch(y, x)) . (2.55)

This can be further summarized in a matrix form. In fact, the pair (1, O) forms a

representation of Diff(S1),(
1

Oy

)
=

(
1 0

−y′(x)−2 Sch(y, x) y′(x)−2

)(
1

Ox

)
. (2.56)

Similarly, the pair (ε, ρ) also forms a representation,(
εy
ρy

)
= y′(x)

(
1 0

−y′(x)−2 Sch(y, x) y′(x)−2

)(
εx
ρx

)
. (2.57)

Thus, the following combination transform as a 1-form

εyOy − ρy = y′(x)−1(εxOx − ρx) , (2.58)

which further implies the diffeomorphism invariance of the action (2.53).

The form of the ρ field may look obscure; however, it will naturally arise when we

try to transform the Schwarzian action from the physical frame τ to a general frame

x(τ) using the chain rule and express everything in the new frame

Oτ (τ) = ε2
xOx(x) + Sch(x, τ) = ε2

xOx(x)− εxρx(x) . (2.59)

In other words, in the physical frame ε = 1, ρ = 0, and the last term in the effective

action (2.53) is just the familiar Schwarzian action −αS
∫

Sch(x, τ)dτ .

Now, let us restrict to the physical frame x = τ . Expanding f(µ − A) to the second

order in A = iλ′ − 2π
β E, we get

Ieff[E, ϕ, λ]

N
= βf(µ) + 2π(E− in)f ′(µ)− G(E)

+

∫ [
−f
′′(µ)

2

(
λ′(τ) + i

2π

β
E

)2

− αS Sch(eiϕ(τ), τ)

]
dτ ,

(2.60)

where n is the winding number of the function λ, defined by the generalized periodicity

condition λ(τ + β) = λ(τ) + 2πn. The second line in the above equation is equivalent to

the action (1.12), originally derived in ref. [9], with

K = −f ′′(µ) , γ = 4π2αS , (2.61)
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To further simplify the effective action, let

λ(τ) = λ(τ) +
2πn

β
τ . (2.62)

where λ has zero winding number. Then

Ieff[E, n, ϕ, λ]

N
= βf

(
µ+

2π

β
(E−in)

)
−G(E)+

∫ [
−f
′′(µ)

2
λ
′2 − αS Sch(eiϕ, τ)

]
dτ . (2.63)

2.4 Thermodynamics

We now use the effective action Ieff[E, n, ϕ, λ] to compute the low temperature expansion

of the grand potential Ω(β−1, µ). If N is large, we may use the saddle point field configura-

tions, ϕ(τ) = 2π
β τ , λ(τ) = 0, n = 0, and find the extremum I∗ of Ieff[E, ϕ, λ] with respect

to E:
Ω

N
=

I∗
βN

= f(µ0)− G(E)β−1 − 2π2αSβ
−2 (2.64)

where

µ0 = µ+
2π

β
E . (2.65)

The saddle point condition for E requires that

G′(E) = 2πf ′(µ0) = −2πQ. (2.66)

where Q = −N−1∂Ω(β−1, µ)/∂µ = −f ′(µ0). Eq. (2.66) implies that Q is a function of E.

This function has been calculated in eq. (2.34), so one can compute G(E) as well.

2.4.1 Free energy and entropy

We can also find the free energy F (β−1, Q) = Ω + µQ:

F

N
= F0(Q)− S(Q)β−1 − 2π2αSβ

−2 , (2.67)

where S = S(Q) is the “zero temperature entropy” per site and

F0(Q) = f(µ0) + µ0Q for f ′(µ0) = −Q , (2.68)

S(Q) = G(E) + 2πEQ for G′(E) = −2πQ . (2.69)

The formula (2.69) says that S(Q) and G(E) are related by the Legendre transformation,

where Q and 2πE are the conjugate variables. It leads to the fundamental relation (1.16)

between the entropy and the particle-hole asymmetry. Equation (2.68) is the usual Legen-

dre duality between the free energy and the grand potential at zero temperature; it implies

that µ0 = dF0(Q)/dQ. At finite temperature, the chemical potential receives a definite

correction:

µ(β−1,Q) = µ0(Q)− 2π

β
E(Q). (2.70)

Similar relations hold for the low energy limit of charged black holes [6, 18], as reviewed

in appendix G. The low T limit must be taken at fixed Q with µ obeying (G.6), to obtain

a near-horizon metric that is conformally equivalent to AdS2.
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2.4.2 Charge compressibility

As discussed in refs. [7, 8], the specific heat is determined by the prefactor αS of the

Schwarzian action, which is related to the magnitude αG of the leading UV-sourced cor-

rection to the IR Green function. Specifically,

αS =
−k′c(2)(1−∆)b

6
αG , (2.71)

where k′c(2), ∆ and b are all IR data that can be obtained in the conformal limit.

Now, for the complex SYK model we have one more thermodynamic coefficient to

determine, namely the charge compressibility K. A natural question is whether the charge

compressibility can be determined in a similar way by the same UV parameter αG. This

possibility is based on the observation that the IR degrees of freedom A(τ), B(τ) in

eqs. (2.50), (2.51) satisfy the relation

B(τ) =
∆

6
Sch
(
eiϕ(τ), τ

)
+

1

2
A(τ)2, (2.72)

which might constrain the form of the effective action. Or is the charge compressibility

independent of αS and requires a separate numerical study?

To answer this question, let us think about possible couplings between the IR degrees of

freedom and some UV data. The idea of renormalization theory, as used in ref. [8], is not to

solve the actual problem in the UV (which is hard) but to replace it with a more tractable

model with sufficiently many parameters that would reproduce the leading IR behavior

and any possible corrections to it. The simplest term to include in the (G,Σ) action is the

linear coupling
∫
dτ1dτ2 σ(τ1, τ2)G(τ2, τ1) of the UV source to the Green function, where

the latter is represented by the asymptotic expression (2.50) at intermediate time intervals

τ1 − τ2 with coefficients A
(
τ1+τ2

2

)
and B

(
τ1+τ2

2

)
. By smearing the actual, very singular

source, nonlinear effects can be reduced. In this approximation, the effective action is

a sum of terms proportional to
∫
A(τ) dτ and

∫
B(τ) dτ . Any contribution of the form∫

A(τ)2 dτ is due to the second term via eq. (2.72). But on the other hand,

Ieff[E, ϕ, λ]

N
=

∫
f(µ−A) dτ − G(E)− αS

∫
Sch
(
eiϕ(τ), τ

)
dτ , (2.73)

see eq. (2.53). Therefore, the linear model predicts the following value of the charge

compressibility K = −f ′′(µ):

Klinear =
6αS
∆

=
3

2π2∆
γ . (2.74)

However, a nonlinear coupling of the form5
∫
s(τ1, τ2, τ3, τ4)G(τ1, τ2)G(τ3, τ4) d4τ can

also generate a term proportional to
∫
A(τ)2 dτ . Let us denote this additional contribution

by Knon−linear so that

K = Klinear +Knon−linear. (2.75)

5In contrast, we won’t worry about non-linear contributions to the specific heat because they are sub-

leading in temperature.
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Its actual value is not accessible without numerics. In section 4 we will present numerical

computations for the total K at half filling, namely µ = 0 and Q = 0.

We would like to make a final remark on the ratio Klinear/γ in (2.74). It agrees

with eq. (C.45) obtained from a different analysis following the perturbation theory done

in ref. [7]. This analysis relies on the UV parameter αG, see appendix C for details.

Similarly to Klinear, it does not include the additional non-universal UV contributions to

the compressibility.

2.5 Partition function at low temperatures and the density of states

We first overview some relevant results for the Majorana SYK model. An interesting time

scale in the problem is given by the coefficient of the Schwarzian action, αSN . If the inverse

temperature β is of this order of magnitude or greater, quantum fluctuations are strong.

This regime was originally studied in ref. [32] (see also [33]). The density of states (DOS)

and the partition function for the pure Schwarzian model are as follows [34–37], where the

energy E and the temperature β−1 are measured in units of (αSN)−1:

ρSch(E) = sinh

(
2π
√

2E

)
, ZSch(β−1) =

∫
e−βEρSch(E) dE =

1

2

(
2π

β

)3/2

e2π2/β .

(2.76)

These functions are defined up to an overall factor that depends on the normalization of

the integration measure.

The DOS and the partition function for the Majorana SYK model contain some addi-

tional factors. Up to a common overall constant,

ρ(E) ∼ αSN−1/2eNSρSch

(
αSN(E − E0)

)
, Z(β−1) ∼ N−3/2e−E0β+NSZSch

(
αSNβ

−1
)
,

(2.77)

where, E0 is the ground state energy. The factor N−3/2 in the partition function has been

introduced to obtain the correct asymptotic behavior for β � 1 fixed and N going to

infinity:

lnZ = N
(
−F0β+S+2π2αSβ

−1 + · · ·
)

+N0

(
− const ·β− 3

2
lnβ+ · · ·

)
+O(N−1). (2.78)

Note the absence of a lnN term. Indeed, the logarithm of the partition function admits a

1/N expansion, where different terms correspond to different classes of Feynman diagrams.

In particular, the N0 term is given by the sum of ladders closed into a loop, yielding the

expression −1
2 Tr ln(1 −KG). Here KG is the exact ladder kernel; it has ∼ β eigenvalues

that are not too small, whereas the −3
2 lnβ contribution is due to the eigenvalues close to 1.

There is one more thing to take into account — variations between different samples:

lnZ − lnZ ≈ 1

2
(δ lnZ)2 , where δ lnZ = lnZ − lnZ . (2.79)

In eq. (2.77), E0 should be understood as the ground state energy for a particular realization

of disorder. This may or may not be important, depending on the parameter q. Indeed,

the sample-to-sample fluctuations are dominated by a particular Feynman diagram that
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contributes to lnZ but not to lnZ [8]. Assuming that N � β � 1, its value can be

estimated as follows:

lnZ − lnZ ≈ ∼ N2−qβ2 . (2.80)

Therefore, the fluctuations of the free energy are of the order of δF ∼ N1−q/2 with no

singular temperature dependence. We conclude that for β ∼ N , the sample-to-sample

fluctuations are significant if q = 4 but not at larger values of q.

For the complex SYK model, the density of states is a function of two conserved

quantities, charge and energy:

ρ(E,Q) = Tr
(

ΠQ δ
(
Ĥ − E 1̂

))
, (2.81)

where Ĥ and Q̂ are defined in eqs. (1.1) and (1.5), respectively, and ΠQ is the projector

onto the subspace with a given value of Q. For simplicity, we assume that N is even so that

Q takes on integer values. The partition function for a fixed Q and the grand partition

function are as follows:

ZQ(β−1) =

∫
e−βEρ(E,Q) dE , Z(β−1, µ) =

∞∑
Q=−∞

eβµQZQ(β−1) . (2.82)

In analytical calculations, we will be interested in the case where E is close to E0(Q), the

lowest eigenvalue of Ĥ with charge Q. We will show that

ρ(E,Q) ∼ αSN−1eNS(Q/N)ρSch

(
αSN(E − E0(Q))

)
(2.83)

up to a constant factor, or equivalently,

lnZQ(β−1) ≈ −βE0(Q) +NS(Q/N) + ln
(
N−2ZSch(αSNβ

−1)
)

(2.84)

up to a constant term. However, E0(Q) is difficult to compute with sufficient (say, 1/N)

precision; for q = 4, it depends on the realization of disorder. A simple though not very

accurate approximation is as follows:

E0(Q) = NF0(Q/N) + const +O(N−1) . (2.85)

We now derive eq. (2.84) from the effective action. Note that the integration measure

is defined up to some N -dependent factor.6 We will use the factor N−3/2 that comes with

ZSch as previously explained. The additional normalization factors in our calculation are

reasonably well motivated but not trustworthy, so the overall power of N in front of ZSch

will be checked independently.

Using the effective action (2.63), the grand partition function is expressed as follows:

Z(β−1, µ) =

∞∑
n=−∞

∫
DE

Dλ

U(1)

Dϕ

PSL(2, R)
exp
(
−Ieff[E, n, ϕ, λ]

)
= ZU(1)(β

−1, µ) ·N−3/2ZSch(αSNβ
−1) .

(2.86)

6The (G,Σ) action is free from such ambiguity. However, we have lost track of normalization when

eliminating Σ and “hard” degrees of freedom in G.
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Let us focus on ZU(1), which involves the variables n, E, and λ. The notation Dλ/U(1)

indicates that we consider λ(τ) up to an additive constant. The corresponding integral,∫
Dλ

U(1)
exp

(
−NK

2

∫
λ
′2
dτ

)
=

√
NK

2πβ
, (2.87)

may be interpreted as the partition function (per unit length) of a free particle with mass

NK. The integral over E is evaluated using the method of steepest descent. Since

∂2Ieff

∂E2
≈ −G′′(E)N = 2π

∂Q
∂E

N < 0, (2.88)

the integration path is parallel to the imaginary axis, and the symbol DE is understood as

dE/i up to some real factor of the order of 1. Thus,

ZU(1)(β
−1, µ) ∼

√
NK

2πβ

∞∑
n=−∞

∫ i∞

−i∞

dE

i
e−Ieff , where

Ieff

N
= βf

(
µ+

2π

β
(E− in)

)
−G(E) .

(2.89)

For each value of the winding number n, the effective action attains its extremum at

the value of E determined by the equation G′(E) = 2πf ′
(
µ + 2π

β (E − in)
)
. Replacing the

right-hand side with 2πf ′(µ) introduces an O(β−1) error in E and an O(β−2) error in Ieff;

the latter is within the precision of the effective action model.7 The value of ∂2Ieff/∂E
2 at

the extremum is also almost independent of n. Applying the method of steepest descent

and choosing the order 1 factor for future convenience, we get

ZU(1)(β
−1, µ) ∼

√
2πK

β

∞∑
n=−∞

exp

(
−βΩ

(
β−1, µ− i2π

β
n

))

≈

√
2πK

β
e−βΩ(β−1,µ)

∞∑
n=−∞

exp

(
−2πiQNn− 2π2KN

β
n2

)
,

(2.90)

where, as in section 2.4,

Ω(β−1, µ) = N

(
f

(
µ+

2π

β
E

)
−G(E)β−1

)
, G′(E) = 2πf ′

(
µ+

2π

β
E

)
= −2πQ . (2.91)

The sum over n in (2.90) is evaluated using the Poisson summation formula:

ZU(1)(β
−1, µ) ∼ N−1/2e−βΩ(β−1,µ)

∞∑
Q=−∞

exp

(
−(Q−QN)2

2KN

)

≈
∞∑

Q=−∞
N−1/2 exp

(
−β
(
F (β−1, Q)− µQ

))
,

(2.92)

where

F (β−1,QN) = Ω(β−1, µ) + µQN = N
(
F0(Q)− S(Q)β−1

)
. (2.93)

7Here we have assumed that n . 1, which is true if β . N . But even in the opposite limit, the error in

Ieff is relatively small.
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An important feature of the second line in (2.92) is that the argument of F is the integer

charge Q being summed over, and not the mean charge QN ; consequently the entropic

prefactor of each term in the sum is eNS(Q/N) and not eNS(Q). (Since dS/dQ = 2πE,

the ratio of such factors in the Q + 1 and Q sectors is e2πE.) So, when we multiply the

second line in (2.92) by N−3/2ZSch(αSNβ
−1), we obtain an expression for Z(β−1, µ) that

is equivalent to (2.84). Finally, this yields (2.83), where the density of states at charge Q

has a prefactor, eNS(Q/N), with entropy evaluated at the same charge Q.

On the other hand, if N is very large, the sum over n in (2.90) is reduced to the n = 0

term. Multiplying it by the same factor, we get

lnZ(β−1, µ) ≈ −βΩ(β−1, µ) +
2π2αSN

β
− 2 lnβ for N � β � 1 . (2.94)

The absence of a lnN term is consistent with 1/N expansion.

3 Renormalization theory

In this section, we describe the physics at intermediate time scales, 1 � τ � β, generalizing

the ideas in ref. [8] section 3. More exactly, we will study the renormalization of both

symmetric and anti-symmetric perturbations to the Green function and the self energy.

3.1 General idea

The (G,Σ) action (2.10) is suited for the perturbative study near conformal point (Gc,Σc),

which is an exact saddle point for σ = 0. We will work at zero temperature, i.e. Gc = Gβ=∞,

Σc = Σβ=∞, see (2.3). The actual UV source σ, consisting of a delta function and its

derivative, is strong in the UV (i.e. for τ := τ1 − τ2 ∼ 1), and therefore, is hard to study

without numerics. However, it is possible to introduce a weaker perturbation in a slightly

extended UV region such that its effect at τ � 1 reproduces the actual correction (δG, δΣ)

to the conformal solution. This method has been applied to the Majorana SYK model

in ref. [8] section 3, yielding a derivation of the Schwarzian action as well as the relation

between its coefficient and the UV-sourced correction to the Green function.

One useful property of the Majorana SYK model is anti-symmetry under time reflec-

tion. Namely, the perturbation source δ′(τ) is an anti-symmetric function of time, and

the ladder kernel that propagates the perturbation preserves this symmetry. As a conse-

quence, the responses δG(τ), δΣ(τ) are also anti-symmetric in time. However, that is not

the case for the complex SYK model, see figure 2 for an illustration. The actual UV source

σ(τ1, τ2) = δ′(τ12) − µδ(τ12) has both anti-symmetric and symmetric parts. More impor-

tantly, the ladder kernel (which will be studied later) mixes anti-symmetric and symmetric

functions. The mixing effect will be characterized by a 2 × 2 matrix that generalizes the

number kc(h) of the Majorana SYK model [7, 8].

In general, renormalization theory determines how UV sources manifest themselves at

intermediate scales, and thus, affect the IR physics. For instance, the interaction between

the UV source and the IR deformation of the conformal solution due to reparameterization

of time ϕ(τ) contributes to the local part of the effective action for the ϕ field: it generates
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Figure 2. RG flow of a perturbation σ (solid line), generating the response δG (dashed line) at

larger time scales.

the Schwarzian term, which further determines such properties as specific heat. For the

complex SYK model, the new ingredient is the perturbation due to chemical potential

(or charge Q), sourcing the asymmetry of the Green function characterized by E or θ.

The nontrivial relation (2.34) between θ and Q can be reproduced using renormalization,

which further supports the statement that the charge is determined by the intermediate

asymptotics of G.

To apply the renormalization theory for β =∞, we write the charge as

Q =

∫
σ(τ) · (−τG(−τ)) dτ (3.1)

(cf. (2.18)), with σ being small at each individual time scale but possibly spanning multiple

scales. This way, σ is regarded as a combination of infinitesimal perturbation sources.

Focusing on a particular scale ξ = ln |τ |, we may characterize the cumulative effect of all

sources at smaller scales by some value of E. The additional source at scale ξ contributes

both to Q (via integral (3.1)) and to E (via renormalization). Thus, one can calculate

dE/dQ, as elaborated in the following sections. The change in the asymmetry parameter E

is propagated by the RG flow and further augmented by any sources present at larger scales.

3.2 Linear response to the perturbation σ

3.2.1 Quadratic expansion of the (G,Σ) action

In this section, it will be convenient to treat bilocal functions f(τ1, τ2) as operators (i.e.

matrices indexed by τ1 and τ2) for which one can consider the product and the trace. A

similar interpretation is also applicable to functions of four times. For example,

Tr
(
f · g

)
=

∫
dτ1 dτ2 f(τ1, τ2) g(τ2, τ1) , (3.2)

fTAg =

∫
dτ1 dτ2 dτ3 dτ4 f(τ2, τ1)A(τ1, τ2; τ3, τ4) g(τ3, τ4). (3.3)

With this in mind, we can express the (G,Σ) action (2.10) as follows:

I[G,Σ]

N
= − ln det

(
−Σ
)
− (−1)

q
2

q
Tr
(
G
q
2 ·G

q
2
)
− Tr

(
Σ ·G

)
+ Tr

(
σ ·G

)
. (3.4)
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Here the power Gq/2 is taken element-wise. Next, we expand the action I = I[G,Σ] to the

second order in the variations around the conformal point, δG = G − Gc, δΣ = Σ − Σc,

ignoring the constant term I[Gc,Σc]:

I2

N
=

1

2

(
δΣT δGT

)(WΣ −1

−1 WG

)(
δΣ

δG

)
+ Tr (σ · δG) , WΣ =

δ2I

(δΣ)2
, WG =

δ2I

(δG)2
.

(3.5)

The matrices WΣ and WG can also be expressed as follows:

WΣ =
δG

δΣ
, WG =

δΣ

δG
, (3.6)

where the functional dependences of G on Σ and of Σ on G are given by the Schwinger-

Dyson equations:

G = −Σ−1, Σ(τ1, τ2) = G(τ1, τ2)
q
2 (−G(τ2, τ1))

q
2
−1 . (3.7)

(The equation Σ = Σ + σ is not used.) These are the explicit formulas and diagrammatic

representations of those matrices:

WΣ(τ1, τ2; τ3, τ4) = Gc(τ1, τ3)Gc(τ4, τ2) =
1

2

3

4

, (3.8)

WG(τ1, τ2; τ3, τ4) = (−1)
q
2
−1

[
q

2
Gc(τ1, τ2)

q
2
−1Gc(τ2, τ1)

q
2
−1δ(τ1, τ3)δ(τ2, τ4)

+
(q

2
− 1
)
Gc(τ1, τ2)

q
2Gc(τ2, τ1)

q
2
−2δ(τ1, τ4)δ(τ2, τ3)

]

= (−1)
q
2
−1

q
2

1

2

3

4

+
(q

2
− 1
) 1

2

3

4

 .

(3.9)

(An arrow pointing from τ ′ to τ denotes Gc(τ, τ
′).)

3.2.2 Ladder kernels

To calculate the effects of the perturbation source σ, we may first eliminate δΣ from the

quadratic action by evaluating it at the saddle point, δΣ = W−1
Σ δG:

I2[δG]

N
=

1

2
δGT

(
WG −W−1

Σ

)
δG+ Tr (σ · δG) . (3.10)

We further take the saddle point with respect to δG and find its equilibrium value,

δG = −
(
WG −W−1

Σ

)−1
σ , (3.11)

which may be interpreted as the sum of ladder diagrams. The corresponding δΣ is expressed

in a similar way:

δG = (1−WΣWG︸ ︷︷ ︸
=:KG

)−1WΣσ =
(
1 +KG +K2

G + . . .
)
WΣσ ,

δΣ = W−1
Σ δG = (1−WGWΣ︸ ︷︷ ︸

=:KΣ

)−1σ = (1 +KΣ +K2
Σ + . . .)σ .

(3.12)
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The ladder kernels KG, KΣ are products of WΣ and WG in different orders, and thus, have

the same spectrum (excluding 0). Let us give their diagrammatic representations:

KG(τ1, τ2; τ3, τ4) = (−1)
q
2
−1

q
2

1

2

3

4

+
(q

2
− 1
) 1

2

3

4

 ,

KΣ(τ1, τ2; τ3, τ4) = (−1)
q
2
−1

q
2

1

2

3

4

+
(q

2
− 1
) 1

2

3

4

 .

(3.13)

3.2.3 Calculation of KG(h) and KΣ(h)

Due to SL(2, R) symmetry, KG and KΣ preserve power-law functions such as σ(τ) ∼
τ2∆−1−h. More exactly, we will consider perturbation sources of the form

σ(τ) =

(
c+

c−

)
|τ |1−hΣc(τ) :=

{
c+|τ |1−hΣc(τ), τ > 0

c−|τ |1−hΣc(τ), τ < 0
, (3.14)

which generate the responses

δG(τ) =

(
δG+

δG−

)
|τ |1−hGc(τ) , δΣ(τ) =

(
δΣ+

δΣ−

)
|τ |1−hΣc(τ) . (3.15)

The goal is to find the 2 × 2 matrices WΣ(h), WG(h) relating such coefficient vectors,

excluding the τ -dependent factors. For example, since WΣ = δG/δΣ, we have
(
δG+
δG−

)
=

WΣ(h)
(
δΣ+

δΣ−

)
. To calculate WΣ(h), we use the equation δG(iω) = G(iω)2δΣ(iω), where

G(iω) is given by (2.4). It should be combined with the Fourier transform∫ (
a+|τ |−α, τ > 0

a−|τ |−α, τ < 0

)
eiωτdτ =

(
a′+|ω|−1+α, ω > 0

a′−|ω|−1+α, ω < 0

)
,

(
a′+
a′−

)
= M(α)

(
a+

a−

)
,

(3.16)

where

M(α) = Γ(1− α)

(
i1−α i−1+α

i−1+α i1−α

)
, M(α)−1 =

Γ(α)

2π

(
i−α iα

iα i−α

)
. (3.17)

The relevant values of α are 2∆− 1 + h for δG and 1− 2∆ + h for δΣ. Thus,

WΣ(h) = − Γ(2−2∆)

Γ(2∆)

(
−e−πE 0

0 eπE

)
M(2∆−1+h)−1

(
e−2iθ 0

0 e2iθ

)

·M(1−2∆+h)

(
−eπE 0

0 e−πE

)

=
Γ(2∆−1+h)Γ(2∆−h)

Γ(2∆)Γ(2∆−1)sin(2π∆)

(
sin(πh+2θ) −sin(2π∆)+sin(2θ)

−sin(2π∆)−sin(2θ) sin(πh−2θ)

) (3.18)
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The matrix WG(h) is obtained from (3.9); it is in fact independent of h:

WG(h) =

(
q
2

q
2 − 1

q
2 − 1 q

2

)
. (3.19)

Finally,

KG(h) = WΣ(h)WG(h) , KΣ(h) = WG(h)WΣ(h) . (3.20)

Note that

KG(1− h) =

(
0 1

1 0

)
KΣ(h)T

(
0 1

1 0

)
; (3.21)

this equation is related to the fact that KG(τ1, τ2; τ3, τ4) = KΣ(τ4, τ3; τ2, τ1). Therefore,

KG(h), KΣ(h), KG(1− h), KΣ(1− h) share the same eigenvalues.

3.2.4 Resonant response

Resonances occur at special values of h such that det(1 − KΣ(h)) = 0. In particular,

h = −1, 0, 1, 2 are solutions of this equation, also see appendix B for discussions on the other

solutions. Among them, the h = 2 and h = 1 perturbation sources determine the coefficient

αS in the effective action and the parameters E,Q, respectively. The dual values, 1 − h =

−1, 0, correspond to IR degrees of freedom, namely, the fluctuating fields ϕ(τ) and λ(τ).

Let h = hI be some resonance. The power-law source σ(τ) ∼ τ2∆−1−hI results in a

divergent response, and therefore, has to be regulated. For this purpose, we multiply the

source by a window function u(ln |τ |):

σI(τ) =

(
cI+
cI−

)
|τ |1−hIΣc(τ)u (ln |τ |) ,

∫ +∞

−∞
u(ξ)dξ = 1 . (3.22)

Assuming that u has finite support, σI vanishes in the IR so that any response at sufficiently

large scales is due to RG flow. On the other hand, the window should be sufficiently wide

and u(ξ) vary slowly with ξ, such that σI(τ) can be decomposed into power-law sources

with h close to hI .

Following the argument in ref. [8] section 3.1 we conclude that at sufficiently large τ ,

δΣ(τ)

Σc(τ)
=

(
δΣ+

δΣ−

)
|τ |1−hI , where

(
δΣ+

δΣ−

)
= Resh=hI

(
KΣ(h)− 1

)−1

(
cI+
cI−

)
. (3.23)

A similar formula can be obtained for δG. Note that this result is independent of the

details of window function u.

3.2.5 The h = 1 resonance

As already mentioned, this resonance is related to the parameter E and Q. So, let us find

the residue of (KΣ(h)− 1)−1 at h = 1.
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First, we compute WΣ(1) and W ′Σ(1):

WΣ(1) =

(
0 −1

−1 0

)
+

sin(2θ)

sin(2π∆)

(
−1 1

−1 1

)
,

W ′Σ(1) = − 1

1− 2∆
WΣ(1)− π cos(2θ)

sin(2π∆)

(
1 0

0 1

)
.

(3.24)

Thus,

KΣ(1) = WGWΣ(1) =

(
1− q

2 − q
2

− q
2 1− q

2

)
+

sin(2θ)

sin(2π∆)
(q − 1)

(
−1 1

−1 1

)
,

K ′Σ(1) = WGW
′
Σ(1) = − 1

1− 2∆
KΣ(1)− π cos(2θ)

sin(2π∆)

(
q
2

q
2 − 1

q
2 − 1 q

2

)
.

(3.25)

The matrix KΣ(1) has eigenvalues −(q − 1) and 1 as expected. The left and right eigen-

vectors associated with the eigenvalue 1 are:

vL =
(

1 −1
)
, vR =

1

2

(
1

−1

)
− (1−∆)

sin(2θ)

sin(2π∆)

(
1

1

)
, vLvR = 1 . (3.26)

By abuse of notation, we introduce the number

k′(1) := vLK ′Σ(1)vR = − 1

1− 2∆
− π cos(2θ)

sin(2π∆)
(3.27)

not actually defining k(h). Thus,

Resh=1

(
KΣ(h)− 1

)−1
=

1

k′(1)
vRvL . (3.28)

3.3 Calculation of dQ/dE

As part of the renormalization scheme for Q and E, we calculate the variations of these

parameters due to a perturbation source at a particular scale. More specifically, we consider

the source (3.22) with hI = 1:

δσ(τ) =

(
c+

c−

)
Σc(τ)u (ln |τ |) ,

∫ +∞

−∞
u(ξ)dξ = 1 . (3.29)

To find δQ, we integrate δσ(τ) against −τGc(−τ), see (3.1). The functions Gc = Gβ=∞
and Σc = Σβ=∞ are given by (2.3); notice that Σc(τ) · (−τGc(−τ)) = bτ−1. Hence,

δQ = b (c+ − c−) = bvL

(
c+

c−

)
. (3.30)

The source also determines δΣ through equations (3.23) and (3.28):

δΣ(τ)

Σ(τ)
= δQ · 1

bk′(1)
vR . (3.31)
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This result may be interpreted as a change of the asymmetry parameter E. Indeed, it

follows from eq. (2.3) that

b−1 db

dE
= −2π

sinh(2πE)

cos(2π∆) + cosh(2πE)
= −2π

sin(2θ)

sin(2π∆)
, (3.32)

and hence,

δΣ(τ)

Σ(τ)
= δE

(
π + (1−∆)b−1 db

dE

−π + (1−∆)b−1 db
dE

)
= δE · 2πvR . (3.33)

Comparing (3.31) with (3.33), we get:

dQ
dE

= 2πbk′(1) = − sin(2π∆)

cos(2π∆) + cosh(2πE)
− π(1− 2∆)

1 + cos(2π∆) cosh(2πE)

(cos(2π∆) + cosh(2πE))2
. (3.34)

This formula can be written more compactly using the θ variable,

dQ
dθ

= 2πbk′(1)
dE

dθ
= − 1

π
− (1− 2∆)

cos(2θ)

sin(2π∆)
, (3.35)

which is consistent with eq. (2.34) and the results in refs. [4, 5, 9].

4 Computation of the compressibility

This section will present three different numerical approaches to computing the charge

compressibility K of the complex SYK model. We will limit these computations to the

particle-hole symmetric case, where Q = 0 and µ = 0. These computations will involve de-

termination of the response of the particle-hole symmetric solution to small non-zero Q or µ:

1. In section 4.1, we will compute the compressibility by an exact diagonalization, eval-

uating the ground state energy E0 as a function of small Q.

The value of E0 is determined by the UV structure of the model, and we therefore

expect K to also be sensitive to the UV structure. This is as in Fermi liquid theory,

where the compressibility involves a new Landau parameter, F s0 , and is not deter-

mined by just the quasiparticle effective mass m∗. In contrast, in both Fermi liquid

theory and the SYK models, the T -linear coefficient of the specific heat is determined

by low energy physics: in Fermi liquid theory by m∗, and in the SYK model by the

leading low energy deviation of the conformal solution [2, 3, 7].

2. In section 4.2 we will numerically compute K by an alternative method: full numerical

solution of the Schwinger-Dyson equations of the SYK model.

3. Finally, numerical approach in section 4.3 employs diagonalization of the two-particle

kernel.

The values of K obtained in these subsections are in excellent agreement. Throughout the

whole section we will recover J .
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(a) E0(Q) vs. Q. (b) E0(0) vs. N .

Figure 3. (a) The ground energy E0(Q) as a function of charge Q in units J (q = 4). The

number of samples for each charge are 250000 (N = 10), 120000 (N = 11), 50000 (N = 12), 10000

(N = 13), 2000 (N = 14), 1000 (N = 15), 500 (N = 16), 200 (N = 17). Dashed lines are fit by

E0(Q) = E0 + aQ2. (b) Plot for the ground energy E0 at zero charge. The dashed line is a fit

by E0 = −0.079N − 0.479 + 1.6/N . The leading large N term to be compared with 2ε0, where

ε0 ≈ −0.0406 [34].

4.1 Exact diagonalization

In this subsection we perform exact diagonalization of the complex SYK Hamiltonian for

q = 4. The Hamiltonian (1.3) commutes with the charge operator (1.5): [Ĥ, Q̂] = 0. There-

fore we can diagonalize Ĥ in each charge sector and find the ground state energy E0(Q).

Our numerical results for the ground state energy E0(Q) are summarized in figure 3(a).

1. Fitting these results to the form E(Q) = E0 + aQ2, we obtain the values of E0 and

a as shown in the following table

N 10 11 12 13 14 15 16 17

E0 −1.105 −1.197 −1.288 −1.378 −1.462 −1.552 −1.636 −1.719

a 0.0489 0.0437 0.0400 0.0371 0.0338 0.0316 0.0292 0.0276

2. Finally, using a = 1/(2NK), we obtain the values of K in the following table

N 10 11 12 13 14 15 16 17

K 1.023 1.041 1.043 1.037 1.055 1.056 1.072 1.067

Note that there is little dependence of K on N . We also show the N dependence of E0 in

figure 3(b).

4.2 Schwinger-Dyson equation

Here we briefly review the numerical solution of the Schwinger-Dyson equations for the

complex SYK model. This has already been discussed in many papers, see particularly

refs. [7, 9]. Our main purpose is to show that this method gives compressibility K very

close to the result obtained in section 4.1 from exact diagonalization.

– 29 –



J
H
E
P
0
2
(
2
0
2
0
)
1
5
7

Figure 4. Plot of numerical solution for G(τ) at q = 4, βJ = 200 and βµ = 20. The dashed line

is conformal solution (2.7) with θ found from numerical Q using the formula (2.34).

We solve Schwinger-Dyson equation numerically using the well-known method of

weighted iterations

Σj(τ) = J2G
q/2
j (τ)G

q/2−1
j (β − τ) , Gj+1(iωn) = (1− w)Gj(iωn) +

w

iωn + µ− Σj(iωn)
.

(4.1)

For non-zero chemical potential it is convenient to start iterations with the conformal

answer, regulated at the boundaries τ = 0+ and τ = β−, and with the θ parameter corre-

sponding to specific charge Q close to expected numerical value. This prevents iterations

from falling into exponentially decaying solution. We find Q numerically using the formula

Q =
1

2
(G(0+)−G(β−)) . (4.2)

For large βJ we can use equation (2.34) to find parameter θ in conformal solution (2.7).

We plot an example of exact numerical G(τ) and its conformal fit Gc(τ) in figure 4. The

grand potential can be computed from the expression [9]

−β Ω

N
= log

(
2 cosh

βµ

2

)
+2Re

∞∑
n=0

log

(
1− Σ(iωn)

iωn + µ

)
+
q − 1

q

+∞∑
n=−∞

Σ(iωn)G(iωn) , (4.3)

from which one can obtain the entropy as

S = −β Ω

N
− βµQ+

2

q

+∞∑
n=−∞

Σ(iωn)G(iωn) , (4.4)

where Q is computed numerically using (4.2). Finally compressibility in units J can be

obtained numerically by using the formula

K = lim
µ→0

Q
µ

=
1

N
lim
µ→0

1

2µ
(G(0+)−G(β−)) . (4.5)

Numerically we fix J = 1 and compute the ratio Q/µ for small T and small µ. We first

approximate the result to the zero temperature to obtain K as a function of small µ, as
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(a) Q/µ vs. T . (b) K vs. T .

Figure 5. (a) Plot of Q/µ for different temperatures T and chemical potentials µ for q = 4. (b)

Plot of K for different µ.

shown in figure 5, left. Then we approximate such K(µ) to µ = 0 (figure 5.b, right). We

did computations for q = 4 and used 108 grid points for the two-point function. The value

of K we found is

K ≈ 1.045/J . (4.6)

This result agrees quite well with the exact diagonalization result in the previous section

and with the value of K reported in [9].

4.3 Kernel diagonalization

This type of numerics was first done in ref. [7] for the antisymmetric kernel.8 In ap-

pendix C.1 we discuss analytical approach for kernel diagonalization. (also see ref. [9]

appendix F). The fluctuation analysis here is complementary to that in section 3 in the

sense that here we expand the fluctuations around the exact saddle while in the section 3

we expand around the conformal saddle.

We remind that we are working on the saddle with Q = 0, where the general expressions

for the kernel (3.13) have additional symmetry, i.e. they commute with the operator that

switches two times, and thus we may analyze the kernel on the subspace of antisymmetric

and symmetric functions separately. For this purpose, let us consider the symmetrized

antisymmetric and symmetric kernels9

KA/S(θ1, θ2; θ3, θ4) = −
(
q

2
±
(q

2
− 1
))

J2|G(θ12)|
q−2

2 G(θ13)G(θ24)|G(θ34)|
q−2

2 , (4.7)

where we fix β = 2π so all angles take values in the interval [0, 2π]. Since these kernels

are invariant under the translation of all four times, i.e. they commute with the operator

8We thank D. Stanford for sharing his code with us.
9Comparing to the general expression (3.13), we “average” KG and KΣ in the sense that we separate

(q − 2) rungs from one side to two sides, such that the final expression is hermitian. The superscript A/S

indicate the subspaces of the antisymmetric/symmetric functions of two time the kernels act on. We also

need to replace the conformal Gc by the exact Green function since we are expanding w.r.t. the exact saddle

in this section.
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D = i(∂θ1 + ∂θ2), one can look for the eigenfunctions of the kernels Ψ
A/S
h,n (θ1, θ2), which are

simultaneously eigenfunctions of the operator D:

Ψ
A/S
h,n (θ1, θ2) = ein

θ1+θ2
2 φ

A/S
h,n (θ12) . (4.8)

Let us also define variants of the kernels with the parameter n accordingly,

KA/S
n (θ, θ′) =

∫ 2π

0
KA/S

(
s+

θ

2
, s− θ

2
;
θ′

2
,−θ

′

2

)
e−insds , (4.9)

such that φ
A/S
h,n (θ) are the eigenfunctions with eigenvalue kA/S(h, n), more explicitly,∫ 2π

0
KA/S
n (θ, θ′)φ

A/S
h,n (θ′) dθ′ = kA/S(h, n)φ

A/S
h,n (θ) . (4.10)

To numerically diagonalize kernels K
A/S
n (θ, θ′) in the space of antisymmetric/symmetric

functions (on the discretized coordinates θ, θ′), it is more convenient to impose the sym-

metry explicitly, namely, we use (KA
n (θ, θ′)−KA

n (θ,−θ′))/2 and (KS
n(θ, θ′)+KS

n(θ,−θ′))/2
in the actual calculation.

We expect to find the highest eigenvalue of the kernels KA
n (θ, θ′) and KS

n(θ, θ′) for large

βJ , where J =
√
qJ/2

q−1
2 in the form

kA(2, n) = 1−
αA
K

βJ
|n|+O

(
1

(βJ )2

)
, kS(1, n) = 1−

αS
K

βJ
|n|+O

(
1

(βJ )2

)
. (4.11)

These eigenvalues correspond to h = 2 and h = 1 modes. The Schwarzian coupling αS and

compressibility K is related to αA
K and αS

K through the formulas10

αS =
αA
K

3α0q2

1

J
, K =

αS
K

α0(q − 1)

1

J
, (4.12)

where α0 = 2πq cot(π/q)/((q − 1)(q − 2)). We compute numerically kS for q = 4 and

different values of βJ and n. The plot of kS for q = 4 and n = 1 is represented in

figure 6(a). By fitting the data points by polynomial in 1/βJ we obtain

kS(1, 1) = 1− 9.2

βJ
+

130.5

(βJ )2
− 2377

(βJ )3
. (4.13)

From this fit we find that αS
K = 9.2 and from (4.12) we obtain for q = 4

K ≈ 1.04/J . (4.14)

This agrees very well with K obtained from the Schwinger-Dyson equation (4.6) and exact

diagonalization. We also plotted nαS
K(n) in figure 6(b), where αS

K(n) obtained from fitting

kS for different n and αS
K(1) = 9.2. One can see that within computational accuracy αS

K

does not depend on n in agreement with expectation (4.11).

10We notice that we have additional factor of 2 for αS in comparison to [7] because in our case N is the

number of complex fermions.
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(a) kS(1, 1) vs. βJ . (b) nαS
K(n) vs. n.

Figure 6. (a) Plot of numerical kS(1, 1) for q = 4 and n = 1. The dashed line is the fit (4.13). (b)

Plot for nαS
K(n) for q = 4. One can see that within computational accuracy αS

K(n) almost does not

depend on n, confirming the expectation (4.11). We use 108 grid points for numerical computation

of G(θ) and 105 grid points for the kernel discretization in θ and θ′ directions, so the kernel becomes

a 105 × 105 matrix.

(a) Eigenfunctions φA
2,n. (b) Eigenfunctions φS

1,n.

Figure 7. (a) numerical eigenfunctions φA2,n for the antisymmetric kernel; note the perfect agree-

ment between numerics and the analytic solution. (b) numerical eigenfunctions φS1,n for the sym-

metric kernel. In this case one can see UV divergence near θ = 0 where the numerics disagrees with

the theoretical conformal perturbation theory.

Following the discussions in ref. [7], one might expect that the numerical result of αS
K

can be related to the deviation of the exact Green function from the conformal one similar

to the case for αA
K (cf. ref. [7] eq. (3.88)). We present a calculation following this procedure

in appendix C. The result does not agree with the numerical value of K but agrees with

the Klinear (see (2.74))

Klinear = − 2
q+1

2 αG
J
√
qα0

kA
c
′
(2)

∣∣∣∣∣
q=4

≈ 0.48/J . (4.15)

On the other hand, the numerical result for αS from the anti-symmetric kernel agrees

perfectly with the theoretical computation [7]. The reason for the disagreement for K

presumably related to the fact that K is a UV sensitive quantity, and the naive perturba-

tion theory for the symmetric kernel in 1/βJ series does not work well, e.g. the integrals
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obtained from higher corrections to the Green function have uncompensated power-law

divergences which then contribute to the first order 1/βJ term, changing the final result.

One sign of such a breakdown of perturbation theory is visible in our numerical results for

eigenvectors of the symmetric kernel. They agree with the conformal kernel eigenfunctions

everywhere except UV region, whereas for the antisymmetric eigenfunctions the agreement

is perfect everywhere; see figure 7. The conformal kernel eigenfunctions, which are simul-

taneously eigenfunctions of the Casimir with eigenvalues h = 2 (anti-symmetric) and h = 1

(symmetric) read

φA
2,n(θ) =

γn

2 sin θ
2

(
sin nθ

2

tan θ
2

− n cos
nθ

2

)
, φS

1,n(θ) =
1

2π|n|1/2
sin nθ

2

sin θ
2

,

where γ2
n =

3

π2|n|(n2 − 1)
.

(4.16)

The divergence of the eigenfunctions of the symmetric kernel in UV region is captured in

the large q limit (see appendix D).

5 Bulk picture and zero-temperature entropy

In this section, we find the zero-temperature entropy S of the complex SYK model by con-

sidering a massive Dirac fermion in AdS2. The actual calculation is done in the Euclidean

case, that is, on the hyperbolic plane. The asymmetry of the Green function (2.7) may be

interpreted as a phase factor with an imaginary phase, 2πiE, suggestive of an imaginary

U(1) field acting on the Dirac fermion. (It corresponds to a real electric field in AdS2.)

The partition function in the presence of such a field yields the dependence of S on E, and

hence, on Q via eq. (3.34). We will find that the S so obtained is exactly equal to that

obtained from direct computations for the complex SYK model [4, 5, 9].

Our computation of S should be contrasted with that for higher-dimensional charged

black holes [4, 6, 14–19, 38, 39], summarized in appendix G. In the latter case, the value of

S in eq. (G.4) is determined by the horizon area and has no direct connection to the param-

eters of the SYK model. The present section interprets S as the contribution of fermionic

fields; such matter fields [6] only make a subdominant contribution to thermodynamics in

the conventional higher dimensional AdS/CFT correspondence.

5.1 General idea

For illustrative purposes, we will use the Majorana SYK model,

ĤMajorana =
iq/2

q!

∑
j1,...,jq

Jj1···jq χ̂j1 . . . χ̂jq , J2
j1···jq =

(q − 1)!J2

N q−1
. (5.1)

Among many methods of calculating its zero-temperature entropy S = SMajorana, the

formula

SMajorana =

∫ 1
2
−∆

0

πx

tan(πx)
dx (5.2)
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can be derived by evaluating 1
2 ln det(−Σ) with proper regularization [2, 3, 40] (see also

appendix E). Indeed, S is defined as the zeroth order term in the 1/β expansion lnZ
N =

−E0
N β + S + O(β−1), where lnZ may be approximated by minus the (G,Σ) action at the

saddle point. As explained in appendix E, the double integral part of the action has β and

O(β−1) terms but no constant term.

For the complex SYK model, Z should be understood as the grand partition function,

and S should be replaced by its Legendre transform, G(E) = S(Q)−2πEQ. We will derive a

formula similar to (5.2) by considering lnZ in the β →∞ limit and extracting the constant

term:11

G(E) =

∫ 1
2
−∆

0

2πx sin(2πx)

cosh(2πE)− cos(2πx)
dx . (5.3)

For Σ asymmetric in time and frequency, the direct calculation of det(−Σ) is fraught with

regularization difficulties. This is where the bulk picture offers a crucial advantage, replac-

ing the tricky UV regularization with a simple subtraction of a boundary contribution.

In an abstract sense, the bulk is an artificial system that mimics most important prop-

erties of the real one. It may also be regarded as a heat bath for a small subset of sites [8].

The following argument seems to apply to all large N systems, but we will focus on the

Majorana SYK model for simplicity. Consider adding an extra site to N existing ones and

modifying the couplings Jj1,...,jq accordingly, multiplying them by
(

N
N+1

) q−1
2 ≈ 1− q−1

2N . In

the thermodynamic limit, the logarithm of the partition function is proportional to N , and

its change by the stated procedure is just lnZ
N . Calling the original N sites a “bath”, we get:

lnZ

N
= lnZfull − lnZbath −

q − 1

2

∂ lnZ

N∂ ln J
, (5.4)

where “full” refers to the bath and the extra site together, but with the couplings

unchanged. In the β → ∞ limit, ∂ lnZ
N∂ ln J = −E0

N β + O(β−1); hence, the last term in the

above equation may be neglected.

To calculate lnZfull − lnZbath, we may write the Hamiltonian as Ĥfull = Ĥbath + iχ̂ξ̂,

where χ̂ represents the extra site and ξ̂ is a certain operator acting on the other sites.

When N is large, ξ̂ is Gaussian, meaning that the bath is completely characterized by

the correlation function 〈Tξ̂(τ1)ξ̂(τ2)〉 = −Σ(τ1, τ2) while higher correlators are obtained

by Wick’s theorem. This suggests the replacement of the real system by a collection of

Grassmann variables Ψj with a quadratic action I = −1
2

∑
j,k BjkΨjΨk, where the indices

take values on the time circle (for the extra site) and some abstract locations (for the bath).

The full matrix B has this structure:

Bfull =

(
−σ Y

−Y T Bbath

)
, σ = ∂τ , Y B−1

bathY
T = −Σ , (5.5)

with σ and Bbath being square and skew-symmetric, and Y rectangular. Using this artificial

model, we get

lnZfull − lnZbath =
1

2
ln

detBfull

detBbath
=

1

2
ln det(−σ − Σ) , (5.6)

where we have used the identity det
(
A B
C D

)
= detD · det(A−BD−1C).

11One may have noticed that the integrand in (5.3) has a form similar to the Plancherel measure for the

universal cover of SL(2, R). This analogy will be elucidated in section 5.4.
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While the previous description leaves many possibilities for choosing Bbath, the nicest

one is a Majorana fermion with mass M = 1
2−∆ on the hyperbolic plane. All its properties

follow from those of the Dirac fermion, studied in the next subsection and appendix F. In

this preliminary discussion, we use the Poincare half-plane model with the metric ds2 =

(dτ2 + dy2)/y2 (y > 0). A Majorana spinor ψ has two components, ψ↓ and ψ↑. Solutions

of the equation of motion have this asymptotic form:

ψ(τ, y) = ψ+(τ) y∆+

(
1

1

)
+ψ−(τ) y∆−

(
1

−1

)
for y → 0 , ∆+ = 1−∆ , ∆− = ∆ . (5.7)

The boundary condition ψ−(τ) = 0 is chosen, which prescribes a sufficiently fast decay near

the boundary. We will refer to it as the “Dirichlet b.c.” and to the condition ψ+(τ) = 0

as the “Neumann b.c.”.

Assuming that only the first term in (5.7) is present, we can promote the asymptotic

coefficient ψ+(τ) to a field and identify it with the field ξ(τ) characterizing the bath. This

is reasonable because the correlator

〈ψ±(τ1)ψ±(τ2)〉 ∼ sgn(τ1 − τ2) |τ1 − τ2|−2∆± (“+” for Dirichlet, “−” for Neumann)

(5.8)

matches 〈ξ(τ1)ξ(τ2)〉 = −Σ(τ1, τ2) if the “+” sign is chosen. The part of the action involving

the boundary fermion χ(τ) is

Iboundary =

∫ (
1

2
χ∂τχ+ iψ+χ

)
dτ . (5.9)

Since we are interested in low temperature properties, or large time scales, the χ∂τχ term

may be neglected. Thus, χ becomes a Lagrange multiplier field, forcing ψ+ to vanish. This

indicates a change from the Dirichlet to Neumann boundary condition. The corresponding

asymptotic coefficient ψ−(τ) may be identified with χ(τ), whose correlator is −G(τ1, τ2).

To summarize, the zero-temperature entropy of the Majorana SYK model is

S =
[
lnZfull − lnZbath

]
reg
, (5.10)

where [· · · ]reg denotes the constant term in the 1/β expansion. The partition functions

Zbath and Zfull correspond to a Majorana fermion on the hyperbolic plane with the Dirichlet

and Neumann boundary conditions, respectively. For the complex SYK model, one should

consider G(E) instead of S and use a Dirac fermion. The calculation will follow. We

note that this procedure is similar to that used to compute the influence of double trace

operators on the free energy in the AdS/CFT correspondence [41–46].

5.2 Dirac fermion on the hyperbolic plane

Now we describe a realization of the auxiliary “bath” system for the complex SYK model.

The abstract action Ibath = −Ψ†BbathΨ is chosen in the form

IDirac =

∫
iψ (γc∇c +M)ψ

√
g d2x , ψ =

(
ψ↓
ψ↑

)
, ψ =

(
−ψ∗↑ ψ∗↓

)
, (5.11)
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~e1

~e2

∂ϕ

Figure 8. Local frame (~e1, ~e2) relative to which the Dirac spinor is defined.

where

∇αψ =

(
∂α +

1

2
ωαbcΣ

bc − iAα
)
ψ . (5.12)

Specific to two dimensions, the spin connection factors into a scalar and a constant matrix:(
ωα11 ωα12

ωα21 ωα22

)
= ωα

(
0 −1

1 0

)
, ∂αωβ − ∂βωα = −R

2
εαβ . (5.13)

(Further details, such as the expressions for the Dirac matrices γ1, γ2 and the spin matrices

Σab = 1
4

[
γa, γb

]
, can be found in appendix F.) The Majorana case differs in that ψ↓, ψ↑

are real, the U(1) gauge field A is absent, and the action has an overall factor 1
2 .

We use the Poincare disk model of the hyperbolic plane H2:

ds2 = 4
dr2 + r2dϕ2

(1− r2)2
. (5.14)

The U(1) gauge field A is imaginary (but becomes real upon the analytic continuation from

the hyperbolic plane to the global anti-de Sitter space sharing a diameter of the Poincare

disk). More specifically,

Aα = −iEωα, ∂αAβ − ∂βAα = −iEεαβ . (5.15)

Thus, the model is characterized by the Dirac mass M and the field strength E. We also

need to specify a boundary condition. To this end, we note that a general solution of the

Dirac equation (γc∇c +M)ψ = 0 has this asymptotic form near the boundary:

ψ(r, ϕ) ≈ ψ+(ϕ) η+(r, ϕ) + ψ−(ϕ) η−(r, ϕ) for r → 1 , (5.16)

where

η±(r, ϕ) =
(
1− r2

)∆± ( ei
(ϕ±γ)

2

±e−i
(ϕ±γ)

2

)
, ∆± =

1

2
±
√
M2 − E2 , γ = arcsin

E

M
. (5.17)

The dependence on the polar angle ϕ in eq. (5.17) is a consequence of gauge choice: we use

the local frame (vielbein) shown in figure 8, whose orientation relative to the tangent vector

∂ϕ depends on ϕ. For the bath model, we postulate the Dirichlet boundary condition,

ψ−(ϕ) = 0. But when the bulk fermion is coupled to a boundary fermion, the correct

condition is Neumann, ψ+(ϕ) = 0.
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The Euclidean propagator for each boundary condition,

C± = −i(γc∇c +M)−1
± , C±(x1, x0) =

〈
ψ(x1)ψ(x0)

〉
± (5.18)

with the matrix structure

C± =

(
−C↓↑± C↓↓±

−C↑↑± C↑↓±

)
, Cjk± = 〈ψjψ∗k〉± , (5.19)

is calculated in appendix F, see eq. (F.47). In particular, when both x1 = (r1, ϕ1) and

x0 = (r0, ϕ0) approach the boundary, the propagator becomes

C±(r1, ϕ1; r0, ϕ0) ≈
〈
ψ±(ϕ1)ψ±(ϕ0)

〉
η(r1, ϕ1)η(r0, ϕ0) for r1, r0 → 1 , (5.20)

where for 0 < ϕ1 − ϕ0 < 2π, we have〈
ψ±(ϕ1)ψ±(ϕ0)

〉
=

Γ
(
∆± + 1

2 + iE
)

Γ
(
∆± + 1

2 − iE
)

4π Γ(2∆±)
eE(π−ϕ1+ϕ0)

(
2 sin

ϕ1 − ϕ0

2

)−2∆±

.

(5.21)

Thus, 〈ψ+(ϕ1)ψ+(ϕ0)〉 ∼ −Σ(ϕ1, ϕ0) and 〈ψ−(ϕ1)ψ−(ϕ0)〉 ∼ −G(ϕ1, ϕ0) (up to some

constant factors), where Σ and G are defined for the complex SYK model with

∆ =
1

2
−
√
M2 − E2 . (5.22)

5.3 Subtraction of infinities and the “spooky propagator”

We are now in a position to evaluate the thermodynamic quantity

G(∆,E) =
[
lnZfull − lnZbath

]
reg

=
[
ln det(γc∇c +M)− − ln det(γc∇c +M)+

]
reg
. (5.23)

Each of the two terms in the square brackets suffers from a UV divergence and the diver-

gence due to infinite volume. The former is canceled due to the subtraction of the terms and

the latter due to the regularization [· · · ]reg, which amounts to the subtraction of a boundary

contribution. The two terms exactly cancel each other if M = |E|. For M > |E|, it is conve-

nient to take the derivative with respect to M using the relation (5.22) between M and ∆:

M

∆− 1/2

∂G(∆,E)

∂∆
=
[
Tr(γc∇c+M)−1

− −Tr(γc∇c+M)−1
+

]
reg

= i
[
Tr(C−−C+)

]
reg
. (5.24)

In the last expression, −C+ may be regarded as a propagator of a ghost particle. For

this reason, we call the difference Csp = C− − C+ the “spooky propagator”. The function

Csp(x1, x0) has no singularity at x1 = x0 and may be interpreted as the bulk fermion

propagating from point x0 to the boundary, where it mixes with the boundary fermion,

and then moving to point x1.12 This is an explicit formula:

Csp(r, ϕ; 0) =
M sin(2π∆)

4i cos(π(∆− iE)) cos(π(∆ + iE))

×

(
−A∆, 1

2
+iE,− 1

2
−iE(r2) eiϕA∆, 1

2
+iE, 1

2
−iE(r2)

e−iϕA∆, 1
2

+iE, 1
2
−iE(r2) −A∆,− 1

2
+iE, 1

2
−iE(r2)

)
,

(5.25)

12More exactly, Csp ∼ (boundary to bulk)+ · G · (bulk to boundary)+. The boundary-to-bulk and bulk-

to-boundary propagators are, actually, SL(2, R) intertwiners.
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where

Aλ,l,r(u) = u(l+r)/2(1−u)λF(λ+l, λ+r, 1+l+r;u) , F(a, b, c;u) =
2F1(a, b, c;u)

Γ(c)
. (5.26)

Let us complete the calculation of G(∆,E) using eq. (5.24). We have

TrCsp =

∫
H2

TrCsp(x, x)
√
g(x) d2x = Area(H2) · TrCsp(0, 0) . (5.27)

The area of the hyperbolic plane is obviously infinite, but it can be made finite by regular-

ization. Indeed, consider the disk Dr of radius r centered at the origin. It has the following

area and boundary length:

Area(Dr) = 4π

∫ r2

0

dx

(1− x)2
=

4πr2

1− r2
, Length(∂Dr) =

4πr

1− r2
, (5.28)

so that

lim
r→1

(
Area(Dr)− Length(∂Dr)

)
= −2π . (5.29)

Hence, [TrCsp]reg = −2πTrCsp(0, 0). Plugging this in (5.24), we get:

∂G(∆,E)

∂∆
=
iπ(1− 2∆)

M
TrCsp(0, 0) = − π(1− 2∆) sin(2π∆)

2 cos(π(∆ + iE)) cos(π(∆− iE))
. (5.30)

(This is also equal to −2π2b, where b is defined in (2.3).) Thus,

G(∆,E) =

∫ 1/2

∆

π(1− 2x) sin(2πx)

cosh(2πE) + cos(2πx)
dx . (5.31)

In conclusion, we rewrite eq. (5.30) as follows,

∂G(∆,E)

∂∆
= −π

(
1

2
−∆

)(
tanπ(∆ + iE) + tanπ(∆− iE)

)
, (5.32)

and note that it is consistent with the combination of (2.66) and (2.34):

∂G(∆,E)

∂E
= −2πQ = 2θ − iπ

(
1

2
−∆

)(
tanπ(∆ + iE)− tanπ(∆− iE)

)
. (5.33)

Indeed, both equations give the same result for the mixed derivative if we use the fact that

∂(2θ)/∂∆ = −iπ
(
tanπ(∆ + iE)− tanπ(∆− iE)

)
.

5.4 Relation to the Plancherel factor

For readers who are familiar with the Plancherel measure for SL(2, R) [47, 48], it may be

tempting to relate the key ingredient in the entropy formula,

TrCsp(0, 0) =
iM sin(2π∆)

2 cos(π(∆ + iE)) cos(π(∆− iE))
, (5.34)
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to the Plancherel factor. The latter also appears in the decomposition of the unit operator

1ν acting on ν-spinors (for an arbitrary real ν) on the hyperbolic plane [48]:

1ν =
1

2π

(∫ +∞

0
ds

s sinh(2πs)

cosh(2πs) + cos(2πν)
Πν

1/2+is +
∑

λ=|ν|−p>1/2
p=0,1,2,...

(
λ− 1

2

)
Πν
λ

)
, (5.35)

where Πν
λ is the projector onto the eigenspace of the SL(2, R) Casimir operator with the

eigenvalue λ(1−λ). The operators Πν
λ are defined by integral kernels that depend on pairs

of points x1, x0 ∈ H2; the normalization is such that Πν
λ(x, x) = 1.

We will make the connection to the Plancherel factor explicit by deriving (5.34)

from (5.35), bypassing the full calculation of the Dirac propagator. As explained in

appendix F, the components of a Dirac spinor have different effective spins ν, equal to

↓ = −1
2 − iE and ↑ = 1

2 − iE. The Dirac operator is represented by the matrix

γc∇c +M =

(
M 2∇−

2∇+ M

)
, (5.36)

where ∇+ and ∇− are certain differential operators changing the value of ν by 1 and −1,

respectively. (Here the subscripts “±” have nothing to do with boundary conditions.) The

Casimir operator is expressed in terms of ∇± by eq. (F.25), so both 4∇−∇+ for ν = ↓ and

4∇+∇− for ν = ↑ are equal to 1
4 +E2−Q. Using this and the formula ∆ = 1

2 −
√
M2 − E2,

we obtain the following expression for the propagator:

C =

(
−C↓↑ C↓↓

−C↑↑ C↑↓

)
= −i(γc∇c +M)−1 = −i

(
Q−∆(1−∆)

)−1

(
M −2∇−
−2∇+ M

)
. (5.37)

Let us first calculate the matrix element involving ν = 1
2 − iE spinors with Dirichlet

boundary condition (indicated by the subscript “+”),

C↑↓+ = −iM
(
Q−∆(1−∆)

)−1

+
. (5.38)

The general idea is to use the Casimir eigendecomposition (5.35); the role of boundary

condition will become clear later.

For the task at hand, it is convenient to transform eq. (5.35) to a different form, which

generalizes to complex values of ν:

1ν =
i

4π

∫
Γ
dλ

(
λ− 1

2

)
tan

(
π

(
λ− 1

2
− ν
))

Πν
λ , (5.39)

where the contour Γ is illustrated in figure 9(a). It is obtained by a deformation of the verti-

cal line Re(λ−ν) = 1
2 and consists of the line from 1

2−i∞ to 1
2 +i∞ and circles surrounding

the poles of tan
(
π
(
λ − 1

2 − ν
))

in the strip 1
2 < Reλ < 1

2 + Re ν or 1
2 + Re ν < Reλ < 1

2

(depending on the sign of Re ν). The rewriting is based on this representation of the

Plancherel factor,

s sinh(2πs)

cosh(2πs) + cos(2πν)
= − is

2

(
tan
(
π(is− ν)

)
− tan

(
π(−is− ν)

))
, (5.40)
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Reλ

Imλ
1
2

+ is

(a) Real ν.

Reλ

Imλ
1
2

+ is

(b) ν = 1
2
− iE.

Figure 9. Contour Γ in eq. (5.39) includes the vertical line Re λ = 1
2 and also encircles the points

λ = ν + n (for integer n) between that line and the line Re(λ− ν) = 1
2 .

and the symmetry Πν
λ = Πν

1−λ, which allows one to extend the integral in (5.35) from a

half-line to a full line. More explicitly,∫ +∞

0
ds

s sinh(2πs)

cosh(2πs) + cos(2πν)
Πν

1/2+is =
i

2

∫ 1
2

+i∞

1
2
−i∞

dλ

(
λ− 1

2

)
tan

(
π

(
λ− 1

2
− ν
))

Πν
λ .

(5.41)

The discrete series contribution (i.e. the second term in (5.35)) can be treated as residues

of the same integrand, which leads to the expression (5.39). Note that when λ and ν are

arbitrary complex numbers, Πν
λ is no longer an orthogonal projector. Formally, it is just a

function of x1, x0 ∈ H2, and 1ν should likewise be interpreted as a (generalized) function,

namely, g(x0)−1/2δ(x1 − x0), where g is the determinant of the metric tensor.

Given this caveat, we will proceed with caution. It is true that

QΠν
λ = Πν

λQ = λ(1− λ)Πν
λ . (5.42)

However, the following corollary holds only for the Dirichlet boundary condition and is

qualified by a restriction on λ:

C↑↓+ Π
1/2−iE
λ = −iM

(
λ(1− λ)−∆(1−∆)

)−1
Π

1/2−iE
λ for ∆ < Reλ < 1−∆ . (5.43)

Indeed, we should require that the left-hand side of the above equation be well-defined,

meaning the absolute convergence of the corresponding integral:(
C↑↓+ Π

1/2−iE
λ

)
(x1, x0) =

∫
C↑↓+ (x1, x)Π

1/2−iE
λ (x, x0)

√
g(x) d2x . (5.44)

To check this condition, let us use polar coordinates, x = (r, ϕ). As r tends to 1, the

propagator C↑↓+ (x1, x) scales as (1 − r)1−∆, whereas Πν
λ(x, x0) has terms proportional to

(1− r)λ and (1− r)1−λ. Since
√
g(x) ∼ (1− r)−2, the convergence condition is exactly as

indicated in eq. (5.43).

We now apply the decomposition of identity (5.39) together with eq. (5.43):

C↑↓+ = C↑↓+ · 11/2−iE =
M

4π

∫
Γ
dλ

(
λ− 1

2

)
tan
(
π(λ+ iE)

)
(λ−∆)(1− λ−∆)

Π
1/2−iE
λ . (5.45)
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Reλ

Imλ
1
2

+ is

∆+∆−

(a) Contour Γ for C+.

Reλ

Imλ
1
2

+ is

∆+∆−

(b) Contour Γ for C−.

Reλ

Imλ

∆+∆−

(c) Contour Γsp ∼ Γ− Γ for Csp.

Figure 10. Switching the boundary condition from Dirichlet to Neumann amounts to exchanging

the poles ∆− and ∆+. The procedure should be accompanied by a deformation of the integration

contour as shown in (b). The difference contour Γ − Γ is homologous (in the complement of

singularities) to the one shown in (c).

Note that the contour Γ passes between the poles of the integrand at ∆− = ∆ and ∆+ =

1−∆. The propagator C↑↓− with Neumann boundary condition cannot be obtained in the

same way, but we can use analytic continuation in M . Suppose that M > |E| initially. As

M changes to −M avoiding the branch cut between E and −E, the numbers ∆+ and ∆−
are swapped, and the propagator C↑↓+ turns into −C↑↓− for the original value of M . On

the right-hand side of (5.45), the analytic continuation should involve a deformation of the

integration contour such that it avoids the moving poles, see figure 10. Thus,

C↑↓− =
M

4π

∫
Γ
dλ

(
λ− 1

2

)
tan
(
π(λ+ iE)

)
(λ−∆)(1− λ−∆)

Π
1/2−iE
λ . (5.46)

The “spooky propagator” C↑↓sp = C↑↓− − C
↑↓
+ is given by the integral of the same function

along the difference contour Γsp ∼ Γ − Γ, which consists of circles wrapping the points

λ = ∆− (clockwise) and λ = ∆+ (counterclockwise) as shown in figure 10(c). Hence, the

spooky propagator is determined by the residues of the integrand at ∆− and ∆+:

C↑↓sp =
iM

4

(
tan
(
π(∆ + iE)

)
+ tan

(
π(∆− iE)

))
Π

1/2−iE
∆ . (5.47)

The calculation of the other diagonal element of the propagator matrix, −C↓↑ (in all

three variants) is completely analogous; we just need to use ν = −1
2−iE. Restricting to coin-

cident points and using the normalization condition Πν
λ(x, x) = 1, we obtain the final result:

TrCsp(0, 0) =
iM

2

(
tan
(
π
(
∆ + iE

))
+ tan

(
π
(
∆− iE

)))
, (5.48)

which is equivalent to eq. (5.34).

6 Discussion

One of the main new physical consequences of our computations on the complex SYK

model is the many-body density of states in eq. (2.83). For each total charge Q, the energy
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dependence of the density of states is the same as in the Schwarzian theory, with a ground

state energy E0(Q), and a zero temperature entropy S(Q/N) determined by the value of

Q. Although this result is natural from the physical point of view, we derived it from the

effective action (1.12), which describes an ensemble with fluctuating Q. The presence of

the particle-hole asymmetry parameter E in the action was essential for the consistency of

that calculation.

The other parameters in the effective action in eq. (1.12) are the charge compressibility

K, and γ, the coefficient of the T -linear specific heat at fixed Q. While the value of γ was

determined by a low-energy analysis using conformal perturbation theory [7, 8], we have

shown here that a similar procedure does not apply for K. This is highlighted by the UV

divergence in the eigenmodes of the symmetric sector of the two-particle kernel shown in

figure 7. It is necessary to account for high energy contributions to obtain the correct

value of K, and we presented three such computations in sections 4.1, 4.2, and 4.3; the

numerical values so obtained were consistent with each other. These distinct behaviors of

γ and K are analogous to those in the Fermi liquid theory: the quasiparticle effective mass

m∗ determines the specific heat, but an additional Landau parameter, F s0 , is needed for

the compressibility.

We presented a new computation of the zero temperature entropy S of the complex

SYK model in section 5. The entropy was shown to be equal to the difference in the

logarithm of the partition function of a massive Dirac fermion on H2 between Neumann

and Dirichlet boundary conditions, in a manner similar to the influence of double-trace

operators in the usual AdS/CFT correspondence [41–46]. This bulk approach correctly

reproduced the Q and E dependence of S in the SYK model.

The above computation of the entropy should be contrasted with that in higher di-

mensional black holes whose near-horizon geometry has an AdS2 factor (reviewed in ap-

pendix G), where the entropy is given by the horizon area in the higher-dimensional space,

and arises from degrees of freedom unrelated to the fermions. While all entropies mentioned

here obey eq. (1.16), the functional form of S(Q) is different for the higher-dimensional

black holes [4]. Probe Dirac fermions can be added to such higher-dimensional black

holes [6, 49], and their Green function agrees with those of the SYK model [4, 10]; how-

ever such fermions only contribute O(1) entropy in the distinct large-N limit of the usual

AdS/CFT correspondence.
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A Luttinger-Ward analysis and the anomalous contribution to charge

In this section, we will discuss frequency domain derivations of the charge formula (2.34)

for general q following the strategy in ref. [5] (GPS) appendix A. Here we aim to provide

an alternative route to the discussions in section 2.2 that may be more transparent to the

readers familiar with Luttinger’s theorem and Luttinger-Ward functional. We also draw

attention to the comparison with perturbative anomalies in quantum field theory.

A.1 IR divergence and anomaly

Instead of Feynman propagator used in ref. [5], we will work with the imaginary time Green

function for convenience and express the charge as the following integral

Q = G(0+) +
1

2
=

∫ ∞
−∞

dω

2π
G(iω)eiω0− +

1

2
. (A.1)

We proceed by the standard Luttinger-Ward procedure (see ref. [31]), i.e. inserting the

identity 1 = ∂z
(
G(z)−1 + Σ(z)

)
, which leads to the expression

Q− 1

2
=

∫ i∞

−i∞

dz

2πi
G(z)

(
∂zG

−1(z) + ∂zΣ(z)
)
ez0
−
. (A.2)

This manipulation is similar to the manipulations done in eq. (2.28). However, instead of

further anti-symmetrizing the integrand, we split the two terms in braces with an explicit

cut-off:

r.h.s. = P

∫ i∞

−i∞

dz

2πi
G(z)∂zG

−1(z)ez0
−

︸ ︷︷ ︸
I1

+ P

∫ i∞

−i∞

dz

2πi
G(z)∂zΣ(z)ez0

−

︸ ︷︷ ︸
I2

, (A.3)

where the principal value is implemented by a symmetric cut-off in frequency-domain:

P

∫ +i∞

−i∞
:= lim

η→0

(∫ −iη
−i∞

+

∫ +i∞

iη

)
. (A.4)

We emphasis that the regularization is crucial in the discussion here: the integral I1 and I2

are logarithmically divergent, so their value depends on the regularization-scheme. More

explicitly, the logarithmic divergence arises from the IR asymptotics of the Green function

(non-Fermi liquid behavior) G(z) ∼ z2∆−1. On the contrary, the analogous integrals in

the standard Luttinger-Ward analysis for the Fermi liquid are well defined (i.e. with no

divergence) and one can further prove the second integral actually vanishes due to the

existence of the Luttinger-Ward functional [31].

The situation here is very similar to the perturbative anomalies in quantum field theory

(e.g. see the discussions in [50] chapter 19). A particularly simple example is the two
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dimensional massless QED, where the Feynman diagrams formally satisfy the Ward identity

both for vector and axial current. However, the regularizations will make it impossible to

have both gauge invariance and the axial current conservation.

In this section, we choose to use a regulator (A.4) (following GPS) that let I1 term

inherit the physical meaning as in the Fermi liquid, while let I2 term carries the anomalous

contribution. As a comparison, the time domain symmetric regulator used in section 2.2

will set I2 = 0 but shift the value of I1 integral. In any case, the sum I1+I2 is regularization-

scheme independent and determines the physical charge.

A.2 Calculation of I1 integral

Let us first evaluate the I1 integral explicitly

I1 = −P

∫ i∞

−i∞

dz

2πi
∂z logG(z)ez0

−
= −

(∫ ∞+iη

0+iη
−
∫ ∞−iη

0−iη

)
dz

2πi
∂z logG(z)ez0

−
. (A.5)

In the second step we bend the contour close to the real axis so that we can proceed using

the analytic properties of Green function, thus

I1 = −
∫ +∞

0+

dz

2πi
∂z log

G(z + iη)

G(z − iη)
ez0
−

= − 1

π
lim
η→0

(argG(∞+ iη)− argG(iη)) . (A.6)

We conclude that I1 is determined by the phase difference between UV and IR asymptotics

of Green function as in the usual Luttinger-Ward analysis for Fermi liquid:

I1 = −1

2
− θ

π
. (A.7)

A.3 Anomalous Luttinger-Ward term I2 at q = 4

Now, we calculate I2 integral in the present regularization-scheme. Before moving to the

evaluation of I2 for general q, let us first review/simplify and remark on the detailed

calculations performed in ref. [5] appendix A for q = 4 model.

In the reference aforementioned, I2 is expressed using spectral function:

I2 = P

∫ i∞

−i∞

dzez0
−

2πi

∫ +∞

−∞

dω0

π

∫
{ω}

d3ω

π3

ρ(ω0)ρ(ω1)ρ(ω2)ρ(ω3)

(z − ω0)(z − (ω1 + ω2 − ω3))2
, (A.8)

where the domain {ω} is defined as {ω} := {ω1, ω2 > 0, ω3 < 0} ∪ {ω1, ω2 < 0, ω3 > 0}.13

The spectral function ρ(ω) = − ImGR(ω) has the following IR asymptotics

ρ(±ω) = sin (θ ±∆π)

√
Γ(2− 2∆)

Γ(2∆)
b∆−

1
2︸ ︷︷ ︸

s±

ω2∆−1 for 0 < ω � 1 . (A.9)

The UV behavior of ρ(ω) has to be determined by numerics. However, I2 integral only

depends on the IR asymptotics and therefore universal. A simple argument is as follows.

13The sign here is due to the sign structure of the time arguments in self energy Σ(τ) =

G(τ)q/2(−G(−τ))q/2−1.
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Without the cutoff, the z integration in eq. (A.8) will run into a logarithmic divergence at

small frequency, which can be seen by power counting of the IR asymptotics of ρ(ω). Now

assume we consider a variation of the spectral function δρ(ω) that does not change the IR

asymptotics of ρ(ω), e.g. δρ(ω) ∼ ω−1/2+s with s > 0 at ω → 0. Then the corresponding

variation of the integral δI2 is free of IR divergence as the ω integrations contribute a term

asymptotic to z−1+s at small z and the z integration is IR finite now. Therefore, for the

variation δI2, there is no obstruction to take the η → 0 limit first, namely replacing the

principal value by an integration along imaginary axis. Then we can integrate z first by

deforming the contour to right half plane and picking up the residues:∫ i∞

−i∞

ez0
−
dz

2πi(z − x)(z − y)2
=

{
sgn(x)(x− y)−2 xy < 0

0 xy > 0
, (A.10)

where x = ω0 and y = ω1 + ω2 − ω3 in I2. Next, we finish the d4ω integration and have

δI2 =

∫ +∞

0

d4ω

π4

δ(ρ(ω0)ρ(ω3)ρ(−ω1)ρ(−ω2)− ρ(−ω0)ρ(−ω3)ρ(ω1)ρ(ω2))

(ω0 + ω3 − ω1 − ω2)2
= 0 . (A.11)

That is to say, for a variation δρ(ω) that does not change the IR asymptotics of spectral

function, the integral I2 is unchanged. This conclusion also allows us to substitute the

exact ρ(ω) by its IR form while calculating I2. Thus,

I2 = P

∫ i∞

−i∞

dzez0
−

2πi

∫ +∞

0

d4ω

π4

1
√
ω0ω1ω2ω3

s3
+s− − s3

−s+

(z − ω0)(z − (ω1 + ω2 + ω3))2
, (A.12)

where s± are defined in eq. (A.9) and characterize the spectral asymmetry. Finally, we

evaluate the explicit integrals, first for d4ω and then dz:

I2 = P

∫ i∞

−i∞

dzez0
−

2πiz

s3
+s− − s3

−s+

π
= −

s3
+s− − s3

−s+

2π
= −sin 2θ

4
. (A.13)

We may call I2 the “anomalous” Luttinger-Ward term as it arises from a formally vanishing

integral. As we mentioned before, its counterpart in Fermi liquid is well-defined and indeed

vanishes. The anomaly discussed here also shares some similarity with the perturbative

anomaly in quantum field theory.

A.4 Dimensional regularization

It may be useful to also present a “dimensional regularization” version of the calculation

for the anomalous term I2. More explicitly, we use the following form for Green function

Gη(iω) =

{
G(iω) for |ω| & 1

G(iω)|ω|2η for |ω| � 1
, (A.14)

where η is a small positive number that will be taken to zero in the end. Note that the

regulator here is symmetric in ω.14 In other words, the present regulator has the same

symmetry as the hard cut-off used above and they should give the same value for I2.

14In contrast to the one used in section 2.2 which is symmetric in τ .
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The small shift in the scaling of Green function will induce a small shift in both the

scaling and the prefactor in the spectral function:

ρη(±ω) = ω2η sin (θ ± (∆ + η)π)

√
Γ(2− 2∆)

Γ(2∆)
b∆−

1
2︸ ︷︷ ︸

sη,±

ω2∆−1 for 0 < ω � 1 . (A.15)

The shift in the prefactor follows from the analyticity of Green function Gη(z) on the upper

half plane. On the other hand, the shift in scaling saves the I2 integral from IR logarithmic

divergence and allows us to do the dz integration first. Therefore,

I2 =

∫ +∞

0

d4ω

π4

(ρη(ω0)ρ(ω3)ρ(−ω1)ρ(−ω2)− ρη(−ω0)ρ(−ω3)ρ(ω1)ρ(ω2))

(ω0 + ω3 − ω1 − ω2)2
. (A.16)

We can proceed by inserting the explicit expressions for ρ and ρη with an intermediate

transition scale ωΛ above which the integrand identically cancels,

I2 = (sη,+s− − sη,−s+)s+s−

∫ ωΛ

0

dω0

π

∫ ∞
0

dω3

π3

ω2η
0√

ω0ω1ω2ω3

1

(ω0 + ω3 − ω1 − ω2)2
. (A.17)

The actual value of ωΛ is not important and will not enter the final result. Now the dω

integration are straightforward to perform. After taking the limit η → 0, we have

I2 = −(sη,+s− − sη,−s+)s+s−
2π2η

= −sin 2θ

4
. (A.18)

A.5 Generalization to q > 4

It is straightforward to generalize the explicit calculations to q > 4 using the same

regularization-scheme. First of all, the argument that the I2 term only relies on the IR

asymptotics of the spectral function (A.9) still applies. Therefore, we end up with an

explicit integral that generalizes eq. (A.12):

I2 = P

∫ i∞

−i∞

dzez0
−

2πi

∫ +∞

0

dqω

πq
(s
q/2+1
+ s

q/2−1
− −sq/2+1

− s
q/2−1
+ )

(ω0ω1ω2 . . .ωq−1)1−2∆ (z−ω0)(z−(ω1 +ω2 + . . .+ωq−1))2
.

(A.19)

It is useful to note that the dqω integration is the “multivariate Beta function”. Or more

explicitly, we can use the following formula∫ +∞

0

dnx

(x1x2 . . . xn)α
δ(y − x1 − x2 − . . .− xn) = yn−1−nα Γ(1− α)n

Γ(n− nα)
, 0 < α < 1 . (A.20)

Thus, the integral simplifies and we insert the expressions for s± to get

I2 = P

∫ i∞

−i∞

dzez0
−

2πi

∫ +∞

0

dxdyy1−2∆

πqx1−2∆

(s
q/2+1
+ s

q/2−1
− − sq/2+1

− s
q/2−1
+ )

(z − x)(z − y)2

Γ(2∆)q−1

Γ(2− 2∆)

= −
(

1

2
−∆

)
sin(2θ)

sin(2π∆)
.

(A.21)

Putting together with I1, we reproduce the charge formula

Q = − θ
π
−
(

1

2
−∆

)
sin(2θ)

sin(2π∆)
. (A.22)
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B Operator spectrum

The solutions of the equation det(1 − KG(h)) = 0 contain important information about

the OPE of two fermions ψ̂†j(τ)ψ̂j(0). For instance, at θ = 0, the matrix

WΣ(h) =
Γ(2∆− 1 + h)Γ(2∆− h)

Γ(2∆)Γ(2∆− 1) sin(2π∆)

(
sin(πh) − sin(2π∆)

− sin(2π∆) sin(πh)

)
(B.1)

is symmetric, and therefore, the eigenvectors of KG(h) = WΣ(h)WG(h) are v1 =
(

1 1
)T

and v2 =
(

1 −1
)T

with eigenvalues denoted as kA/S [7, 51, 52]

KG(h)v1 = kA(h)v1 , kA(h) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 2)Γ(2∆ + 1)

(
1− sin(πh)

sin(2π∆)

)
, (B.2)

KG(h)v2 = kS(h)v2 , kS(h) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 1)Γ(2∆)

(
1 +

sin(πh)

sin(2π∆)

)
. (B.3)

Using the reflection symmetry h ↔ 1 − h (cf. eq. (3.21)), we restrict our discussion to

h > 1/2 and label them in ascending order in this section, i.e. 1/2 6 h
A/S
0 < h

A/S
1 <

h
A/S
2 . . . are solutions of kA/S(h) = 1 respectively. In particular, the anti-symmetric sector,

corresponding to the solutions of kA(h) = 1, reproduces the scaling dimensions of the

operators appearing in χ̂j(τ)χ̂j(0) OPE of the Majorana SYK (which is determined by the

equation kc(h) = 1 in the notation of refs. [7, 8]). The leading one hA
0 = 2 corresponds to

the Schwarzian sector and responsible for the energy fluctuation. Analogously, the leading

one in the symmetric sector hS
0 = 1 is related to the U(1) charge in the complex SYK model

as we discussed in section 3.

For general θ, the matrix WΣ(h) has no symmetry and the symmetric/anti-symmetric

sectors generally mix via 2×2 ladder kernel KG (or KΣ). Let us denote the two eigenvalues

by kA(h, θ) (anti-symmetric branch) and kS(h, θ) (symmetric branch) as a generalization

of the notation kA/S(h). Their explicit formulas are as follows,

kA(h, θ) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆ + 1)Γ(2∆− 1)
·

(
2∆− 1 +

cos(2θ) sin(πh)

sin(2π∆)
(B.4)

−

√
sin(2θ)2

(
1−

(
sin(πh)

sin(2π∆)

)2)
+

(
cos(2θ) + (2∆− 1)

sin(πh)

sin(2π∆)

)2
)
,

kS(h, θ) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆ + 1)Γ(2∆− 1)
·

(
2∆− 1 +

cos(2θ) sin(πh)

sin(2π∆)
(B.5)

+

√
sin(2θ)2

(
1−

(
sin(πh)

sin(2π∆)

)2)
+

(
cos(2θ) + (2∆− 1)

sin(πh)

sin(2π∆)

)2
)
.

To illustrate, we plot kA(h, θ) (blue lines) and kS(h, θ) (red lines) as functions of h for

∆ = 1/4 and θ = π/8, π/6, π/4 together with θ = 0 (black lines, as a reference) in

figure 11. Here are some comments:
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(a) kA(h) with θ = π/8. (b) kA(h) with θ = π/6. (c) kA(h) with θ = π/4.

(d) kS(h) with θ = π/8. (e) kS(h) with θ = π/6. (f) kS(h) with θ = π/4.

Figure 11. Plots of kA(h) and kS(h) for ∆ = 1/4 and θ = π/8, π/6 and π/4. Black lines are for

reference, represent the value of kA/S(h, θ) for θ = 0.

1. For integer value h = n ∈ Z, one can check that kA/S(h, θ) is independent of θ, i.e.

kA/S(h, θ) = kA/S(h, 0) for any θ.

An immediate corollary is that kA(2, θ) = 1 and kS(1, θ) = 1 for all θ, i.e. the scaling

dimensions of the energy and charge operator are protected (as well as their dual

field with h = −1 and 0 respectively).

2. General solutions of kA/S(h, θ) = 1 depend on θ. In figure 12 we plot the value of

h
A/S
1 (θ) as functions of θ for ∆ = 1/4.

3. From figure 11, we notice that for ∆ = 1/4, there is a critical value θc = π/6 which

is determined by the following equation

cos(2θc) = 1− 2∆ . (B.6)

Above the critical value, namely for θ > θc, the solutions hS
n>1 disappear. In other

words, the only solutions for kS(h, θ > θc) = 1 are hS
0 = 1 and its dual 0.

To explain why eq. (B.6) is relevant, let us analyze the pole structure of kS(h, θ).

Naively the expression (B.5) has simple poles at h = 2∆ + m with m ∈ Z>0 due to

the overall factor Γ(2∆− h). However, the expression in big parentheses in (B.5),

2∆− 1 + (−1)m cos(2θ) + |cos(2θ) + (2∆− 1)(−1)m)| at h = 2∆ +m. (B.7)

has zeros that cancel some of the poles. Indeed the poles at odd m, i.e. at h = 2∆+1,

2∆+3, . . . are canceled in kS(h, θ). Furthermore, when cos(2θ) < 1−2∆, the poles at

even m i.e. at h = 2∆, 2∆+2, . . . are also canceled. At critical value cos(2θ) = 1−2∆,
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(a) hA/S(θ). (b) kA/S′(h
A/S
0 , θ). (c) kA/S′(h

A/S
1 , θ).

Figure 12. We set ∆ = 1/4 for all plots in this figure. (a) Plots of hA(θ) and hS(θ) as functions

of θ. All dimensions hSk for k > 1 disappear at θ = π/6 and reappear in the anti-symmetric

branch. (b) Plots of kA
′
(2, θ) and kS

′
(1, θ) (derivative w.r.t. h, not θ) as functions of θ. Note

that kS
′
(1, θ) = −(1 − 2∆)−1 − π cos(2θ)/ cos(2π∆) (for an arbitrary ∆) is denoted by k′(1) in

eq. (3.27). (c) Plots of kA
′
(hA1 , θ) and kS

′
(hS1 , θ) as functions of θ. Note kS

′
(hS1 , θ) → −∞ as θ

approaches the critical value π/6 from the left. For θ slightly above π/6, the solution reappears in

the anti-symmetric branch with a divergent (+∞) derivative kA
′
.

there is a discontinuity for kS(h, θc) at h = 2∆ + 2k for k > 1. Explicit calculation

yields (for ∆ = 1/4)

lim
h→(2∆+2k)−

kS(h, θc) = −
√

3

4k
, lim

h→(2∆+2k)+
kS(h, θc) =

√
3

4k
. (B.8)

Parallel discussions apply to the anti-symmetric branch kA(h, θ) where an additional

set of solutions to the equation kA(h, θ) = 1 emerges when θ > θc, as shown in

figure (11.c). Technically, this is related to the additional set of poles at h = 2∆+2k.

4. An immediate consequence of the “branch switching” phenomenon described above

is as follows. If we write the scaling dimensions (i.e. the solutions of the equation

kA/S(h) = 1) as h = 2∆ + m + δh, then δh changes sign for those solutions that

move from the symmetric to the anti-symmetric branch. This happens as the slope

kA/S′(h) diverges (see figure 12 (c)). The divergence of the slope seems to suggest

the vanishing of the corresponding OPE coefficient (cf. ref. [7] eq. (3.54), assuming

the Plancherel factor part does not diverge at these points).

One final remark is that for general ∆ 6= 1/4, there is an additional subtlety that the

eigenvalues kA/S can be generally complex numbers for certain range of θ, but we will not

discussed the details in this paper.
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C Low energy contribution to K

Our computations of fluctuations in this appendix, and in section 4.3, follow the methods

of ref. [7]; these methods are related to those in section 3. The key difference is that in

section 3 we expand the (G,Σ) action w.r.t. the conformal saddle, while in this appendix

and section 4.3 we expand (G,Σ) action w.r.t. the exact saddle. We will use subscript “c”

and “exact” to emphasis the contrast.

As we discussed in section 4, we expect that all energy scales contribute to the nu-

merical value of the compressibility K, and a low energy conformal perturbation approach

(similar to that used successfully for the specific heat in ref. [7]) does not yield the correct

value of K, instead it reproduces Klinear discussed in section 2.4.2 (cf. eq. (2.74)). The UV

divergence of the symmetric kernel eigenmodes in section 4.3 provides explicit evidence for

this claim. Nevertheless, we will present the low energy analysis of the symmetric kernel

here, as it could be useful for other investigations.

C.1 Effective action for fluctuations around the saddle point

In this section we consider the (G,Σ) action for the complex SYK model with zero chemical

potential and derive effective action for quadratic fluctuations around the saddle point of

the action. In this section we recover J .

The (G,Σ) action for the complex SYK with zero chemical potential is (cf. eq. (2.1))

I

N
= − ln det(−∂τ − Σ)−

∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ2, τ1) +

J2

q
(−G(τ1, τ2)G(τ2, τ1))

q
2

]
.

(C.1)

The crucial difference from the Majorana SYK model is that now the bilocal fields G(τ1, τ2)

and Σ(τ1, τ2) are not necessarily antisymmetric under exchange of variables τ1 ↔ τ2.

The saddle point Gexact,Σexact of the action (C.1) is the exact solution of the Schwinger-

Dyson equations (2.2). Now we consider small fluctuations around the exact saddle point

Gexact,Σexact:

G(τ1, τ2) = Gexact(τ12) + δG(τ1, τ2), Σ(τ1, τ2) = Σexact(τ12) + δΣ(τ1, τ2) , (C.2)

and expand the (G,Σ) action up to quadratic terms. Next we integrate out Gaussian

fluctuations of the δΣ field and obtain the Gaussian action for the fluctuations δG, which

is convenient to parametrize as δG(τ1, τ2) = |Gexact(τ12)|
2−q

2 g(τ1, τ2)

I

N
=

1

2
J2(q − 1)

∫ β

0
d4τ gA(τ1, τ2)

(
(KA

exact(τ1, τ2; τ3, τ4))−1 − 1
)
gA(τ3, τ4)

− 1

2
J2

∫ β

0
d4τ gS(τ1, τ2)

(
(KS

exact(τ1, τ2; τ3, τ4))−1 − 1
)
gS(τ3, τ4) ,

(C.3)

where we also decomposed fluctuations g(τ1, τ2) on symmetric and antisymmetric parts

g(τ1, τ2) = gS(τ1, τ2) + gA(τ1, τ2), so gS/A(τ2, τ1) = ±gS/A(τ1, τ2) and introduced the an-

tisymmetric and symmetric kernels K
A/S
exact whose explicit expressions have been shown in
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eq. (4.7). We copy the formulas here with the emphasis of subscript “exact”

KA
exact(τ1, τ2; τ3, τ4) = −J2(q − 1)|Gexact(τ12)|

q−2
2 Gexact(τ13)Gexact(τ24)|Gexact(τ34)|

q−2
2 ,

KS
exact(τ1, τ2; τ3, τ4) = −J2|Gexact(τ12)|

q−2
2 Gexact(τ13)Gexact(τ24)|Gexact(τ34)|

q−2
2 . (C.4)

In the large βJ limit the exact Green function Gexact in the kernels KA
exact and KS

exact

can be approximated by the conformal solution Gc, so one obtains conformal kernels KA
c

and KS
c . The spectrum of the conformal kernels can be computed exactly and was given

in (B.3)

kS
c (h) =

Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 2)Γ(2∆ + 1)

(
1− sin(πh)

sin(2π∆)

)
,

kA
c (h) =

Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 1)Γ(2∆)

(
1 +

sin(πh)

sin(2π∆)

)
,

(C.5)

where h labels the SL(2, R) representations: for the antisymmetric case h = 2, 4, 6, . . . and

for the symmetric case h = 1, 3, 5, . . . and there is also a principal series h = 1/2 + is,

s ∈ R+ for both cases. Note kA
c (h = 2) = 1 and kS

c (h = 1) = 1, i.e. if one uses conformal

kernels in (C.3) then the effective action for these special modes is zero, which would also

indicates instability [53]. Actually, this problem appeared because we replaced the exact

kernels by conformal ones. The exact eigenvalues kA and kS which correspond to h = 2

and h = 1 modes differ from 1 by 1/(βJ) corrections. In order to find these corrections

one uses 1/(βJ) correction to the conformal Green function [7, 8]

Gc(τ)→ Gc(τ)

(
1− αG

βJ
f0(τ)

)
, f0(τ) = 2 +

π − 2π|τ |/β
tan π|τ |

β

, (C.6)

where J =
√
qJ/2

q−1
2 and αG is a UV dependent constant, which can be found numeri-

cally. Next using the corrected Green function in the kernels one finds corrections to their

eigenvalues.

We find the 1/(βJ) correction to the conformal kernels using perturbation theory [7].

At the first order one computes diagonal matrix elements of the perturbation. In our case

the perturbation to the conformal kernels consists of two parts and reads

V A/S(τ1, τ2; τ3, τ4) = −2αG
βJ

KA/S
c (τ1, τ2; τ3, τ4)

(
q − 2

2
f0(τ12) + f0(τ13)

)
. (C.7)

The part of V which involves f0(τ12) is called the rung term and the part with f0(τ13) is

called the rail term. The corrections to the eigenvalues are simply

δkA = 〈ΨA|V A|ΨA〉, δkS = 〈ΨS|V S|ΨS〉 , (C.8)

where for |ΨA〉 and |ΨS〉 we take unperturbed conformal eigenfunctions, so KA
c |ΨA〉 =

kA
c |ΨA〉 and KS

c |ΨS〉 = kS
c |ΨS〉.

For the antisymmetric case the correction for h = 2 mode was already found in [7, 8]

and reads (kA = 1 + δkA)

δkA(2, n) = −
αA
K

βJ
|n|, αA

K = −αGqkA
c
′
(2) . (C.9)
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In the next subsection we are going to compute correction to h = 1 eigenvalue of the sym-

metric kernel. We expect to find a similar to (C.9) form, but with some other coefficient

αS
K . We will find that such obtained value αS

K does not agree with the numerical computa-

tion in the section 4.3. The reason for this disagreement is hidden in the fact that when we

use conformal Green function in the kernels instead of the exact one, we implicitly assume

that the eigenvalues kA(h = 2) and kS(h = 1) are not affected by the UV domain (τ < 1/J

or τ > β − 1/J), where the conformal Green function Gc diverges, but the exact Gexact

goes to 1/2. And in fact this turned out to be correct for the antisymmetric case. But it

is not correct for the symmetric case. On a technical level the exact h = 1 eigenfunctions

Ψexact
1,n (τ1, τ2) of the symmetric kernel do not approach completely conformal eigenfunctions

Ψ1,n(τ1, τ2) at the βJ → ∞ limit. There is always a discrepancy in the UV domain. The

exact eigenfunctions grow as βJ at the coincident points τ1 = τ2, whereas the conformal

ones approach a constant. This effect is nicely captured in the large q limit, which we

discuss in the appendix D.

C.2 Symmetric sector

The rung and rail integrals in the symmetric sector are (we omit factor −2αG
βJ for brevity)

δkS
rung =

(q − 2)

2

∫ +π

−π
dθ1dθ2dθ3dθ4ΨS∗

1,n(θ1, θ2)KS
c (θ1, θ2; θ3, θ4)f0(θ12)ΨS

1,n(θ3, θ4) ,

δkS
rail =

∫ +π

−π
dθ1dθ2dθ3dθ4ΨS∗

1,n(θ1, θ2)KS
c (θ1, θ2; θ3, θ4)f0(θ13)ΨS

1,n(θ3, θ4) , (C.10)

where the conformal kernel, h = 1 wave functions and the correction to the conformal

propagator are

KS
c (θ1, θ2; θ3, θ4) = − 1

4(q − 1)α0

sgn(θ13)sgn(θ24)

| sin θ12
2 |1−2∆| sin θ13

2 |2∆| sin θ24
2 |2∆| sin θ34

2 |1−2∆
, (C.11)

ΨS
1,n(θ1, θ2) =

e−in
θ1+θ2

2

2π|n|1/2
sin nθ12

2

sin θ12
2

, f0(θ) = 2 +
π − |θ|
tan |θ|2

, α0 =
2πq cot(πq )

(q − 1)(q − 2)
,

where we fix β = 2π so all angles take values in the interval [−π, π]. It is convenient to

represent different integrals by Feynman diagrams. Let us introduce Feynman rules. We

denote propagators as

θ1 θ2α =
1

(sin2 θ12
2 )α

, θ1 θ2α =
sgn(θ12)

(sin2 θ12
2 )α

(C.12)

A very useful tool for computation in a conformal theory is the star-triangle identities [54]∫ +π

−π

dθ0

(sin2 θ01
2 )α1(sin2 θ02

2 )α2(sin2 θ03
2 )α3

=
bα1,α2

(sin2 θ12
2 )

1
2
−α3(sin2 θ13

2 )
1
2
−α2(sin2 θ23

2 )
1
2
−α1

,∫ +π

−π

dθ0sgn(θ01)sgn(θ02)

(sin2 θ01
2 )α1(sin2 θ02

2 )α2(sin2 θ03
2 )α3

=
fα1,α2sgn(θ31)sgn(θ32)

(sin2 θ12
2 )

1
2
−α3(sin2 θ13

2 )
1
2
−α2(sin2 θ23

2 )
1
2
−α1

,

(C.13)
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where α1 + α2 + α3 = 1 and

bα1,α2 = 2
√
π

Γ(1
2−α1)Γ(1

2−α2)Γ(1
2−α3)

Γ(α1)Γ(α2)Γ(α3)
, fα1,α2 = 2

√
π

Γ(1−α1)Γ(1−α2)Γ(1
2−α3)

Γ(1
2 +α1)Γ(1

2 +α2)Γ(α3)
.

(C.14)

Graphical representation of the star-triangle identities is

α1
α2α3

θ1

θ2θ3

= bα1,α2

θ1

θ2θ3

1/2−α31/2−α2

1/2−α1

α1
α2α3

θ1

θ2θ3

= fα1,α2

θ1

θ2θ3

1/2−α31/2−α2

1/2−α1

(C.15)

In addition to the star-triangle identities we also list a couple of useful integrals. One is

the integral, which gives the delta-function∫ π

−π
dθ0

sgn(θ10)sgn(θ02)

(sin2 θ10
2 )1−α(sin2 θ02

2 )α
= θ1 θ01− α θ2α = f1−αfαδ(θ12) , (C.16)

where fα = i22α+1 cos(πα)Γ(1 − 2α). The other useful integral, where α1, α2, α3 are arbi-

trary real numbers is

∫ +π

−π

dθ1dθ2dθ3

(sin2 θ12
2 )α1(sin2 θ23

2 )α2(sin2 θ13
2 )α3

=

∫ π

−π
dθ1dθ2dθ3

θ1

θ2θ3

α1α3

α2

= bα1,α2,α3 ,

(C.17)

where

bα1,α2,α3 = 8π
3
2

Γ(1
2 − α1)Γ(1

2 − α2)Γ(1
2 − α3)Γ(1− α1 − α2 − α3)

Γ(1− α1 − α2)Γ(1− α1 − α3)Γ(1− α2 − α3)
. (C.18)

The integral (C.17) can be computed by setting one angle to zero and projecting to a line,

where one can use Feynman parameters.

Since the correction to the conformal propagator f0(θ12) is obtained from three point

function of two fermions with the operator of dimension h = −1, it can be represented as

the integral

f0(θ12) =

∫ +π

−π
dθ0

(sin2 θ01
2 )

1
2 (sin2 θ02

2 )
1
2

(sin2 θ12
2 )

1
2

=

θ0

θ2θ1

−1/2−1/2

1/2

(C.19)

Since the integrals δkS
rung and δkS

rail are logarithmically divergent we introduce a soft cutoff

η → 0 by multiplying f0(θ) by (sin2 θ
2)η, so the new graphical representation for fη0 (θ12) is

fη0 (θ12) =

∫ +π

−π
dθ0

(sin2 θ01
2 )

1
2 (sin2 θ02

2 )
1
2

(sin2 θ12
2 )

1
2
−η

=

θ0

θ2θ1

−1/2−1/2

1/2− η
(C.20)
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Finally we notice that f1−∆f∆ = −4(q− 1)α0 and the conformal kernel can be depicted as

KS
c (θ1, θ2; θ3, θ4) =

1

f1−∆f∆

θ1 θ3

θ2 θ4

∆

∆

1/2−∆ 1/2−∆ (C.21)

C.3 Computation of the rung integral

In case of the rung integral we can simply integrate over θ3 and θ4 to obtain

δkS
rung =

(q − 2)

2

∫ +π

−π
dθ1dθ2f

η
0 (θ12)|Ψ1,n(θ1, θ2)|2 . (C.22)

Next, it is convenient to use decomposition

sin2 nθ

2
=

n∑
k=1

ck

(
sin2 θ

2

)k
, ck =

2n(−4)k−1Γ(n+ k)

Γ(n− k + 1)Γ(2k + 1)
, (C.23)

which can be derived from multiple-angle formula and properties of the Chebyshev polyno-

mials. Therefore the integral (C.22) takes the form (in what follows we assume that n > 0,

so |n| = n).

δkS
rung =

(q − 2)

8π2n

n∑
k=1

ck

θ0

θ2θ1

−1/2−1/2

3/2− k − η

=
(q − 2)

8π2n

n∑
k=1

ckb− 1
2
,− 1

2
, 3
2
−k−η . (C.24)

For k = 1 we have c1 = n2 and we find using (C.18)

b− 1
2
,− 1

2
, 1
2
−η = 8π2

(
1

2η
− log 2 + 1

)
+O(η) . (C.25)

For k > 1 there is no divergence and we can set η = 0 and compute

n∑
k=2

ckb− 1
2
,− 1

2
, 3
2
−k =

n∑
k=2

ck
8π3/2Γ

(
k + 1

2

)
(k − 1)Γ(k)

= 8π2n2

(
−Hn +

1

2n
+

1

2

)
, (C.26)

where Hn =
∑n

m=1
1
m is the Harmonic number. Therefore we finally find

δkS
rung = n(q − 2)

(
1

2η
− log 2−Hn +

1

2n
+

3

2

)
. (C.27)

C.4 Computation of the rail integral

In this case we represent h = 1 eigenmodes ΨS
1,n(θ1, θ2) in the form

ΨS
1,n(θ1, θ2) =

i

4π
√
n

(e−inθ1 − e−inθ2)
sgn(θ12)

(sin2 θ12
2 )

1
2

, (C.28)
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therefore we find

ΨS∗
1,n(θ1, θ2)ΨS

1,n(θ3, θ4) =
1

16π2n
(einθ13−einθ14−einθ23 +einθ24)

sgn(θ12)sgn(θ34)

(sin2 θ12
2 sin2 θ34

2 )
1
2

. (C.29)

Since the integral δkS
rail is real we can take only real part in ΨS∗

1,n(θ1, θ2)ΨS
1,n(θ3, θ4), so we

get

ΨS∗
1,n(θ1,θ2)ΨS

1,n(θ3,θ4)→ −1

8π2n

(sin2 nθ13
2 −sin2 nθ14

2 −sin2 nθ23
2 +sin2 nθ24

2 )sgn(θ12)sgn(θ34)

(sin2 θ12
2 sin2 θ34

2 )
1
2

.

(C.30)

Thus finally we decompose δkS
rail into a sum of four integrals

δkS
rail =

−1

8π2nf1−∆f∆

×



θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+∆−η

∆

1−∆ 1−∆

(A)

+

θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+∆−η

∆

1−∆ 1−∆

(B)

−

θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+∆−η

∆

1−∆ 1−∆

(C)

−

θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+∆−η

∆

1−∆ 1−∆

(D)


where the dashed lines represent sin2(nθij/2). Applying the integral (C.16) it is easy to

see that parts (C) and (D) vanish. For the part (A) we also can use the integral (C.16)

and get

δkS
rail,A =

1

8π2n

∫ +π

−π
dθ1dθ3f

η
0 (θ13)

sin2 nθ13
2

sin2 θ13
2

=
1

q − 2
δkS

rung , (C.31)

thus we find

δkS
rail,A(k) = n

(
1

2η
− log 2−Hn +

1

2n
+

3

2

)
. (C.32)

To compute the part (B) in δkS
rail we use the formula (C.23)

δkS
rail,B =

n∑
k=1

ckδk
S
rail,B(k) . (C.33)

We notice that for k > 1 the integrals δkS
rail,B(k) are convergent, so we can set the regulator

to zero η = 0 and take the integrals using the star-triangle identities and the integral (C.17)

θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+ ∆

∆− k

1−∆ 1−∆
= f 1

2
+∆,1−∆

θ0

θ1

θ2 θ4

∆− 1

∆− k

1−∆

−∆

1
= f 1

2
+∆,1−∆f1−∆,∆−1

θ0

θ2 θ43/2− k

−1/2−1/2

(C.34)
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We find

n∑
k=2

ckδk
S
rail,B(k) = −

n∑
k=2

ck
f 1

2
+∆,1−∆f1−∆,∆−1b− 1

2
,− 1

2
, 3
2
−k

8π2nf∆f1−∆
=

(1− q)
8π2n

n∑
k=2

ckb− 1
2
,− 1

2
, 3
2
−k

= n(1− q)
(
−Hn +

1

2n
+

1

2

)
. (C.35)

Now we compute the remaining integral δkS
rail,B(k) for k = 1. We have

δkS
rail,B(1) =

−1

8π2nf1−∆f∆

θ0

θ1 θ3

θ2 θ4

−1/2−1/2

1
2

+ ∆− η

∆− 1

1−∆ 1−∆
(C.36)

Since this integral is symmetric under θ1, θ2 ↔ θ3, θ4 we can make a trick introducing

additional regulator ε, by multiplying the integrand by (sin2 θ01
2 )−ε(sin2 θ03

2 )ε [55]. Such

obtained integral is even under the change ε → −ε, therefore at the limit of ε → 0 it only

acquires correction of order ε2. So now if we set ε = η this will not affect the result for 1/η

and the constant term. This trick allows to apply the star-triangle identity, and we obtain

δkS
rail,B(1) =

−1

8π2nf1−∆f∆

θ0

θ1 θ3

θ2 θ4

−1/2 + η−1/2− η

1
2

+ ∆− η

∆− 1

1−∆ 1−∆
= −

f 1
2

+∆−η,1−∆

8π2nf1−∆f∆

θ0

θ1

θ2 θ4

∆− 1− η

∆− 1

1−∆

−∆ + η

1− η

(C.37)

Next we are going to use two integrals assuming that θ1,2 ∈ [0, 2π]∫ 2π

0
dθ0

sgn(θ10)sgn(θ02)

(sin2 θ10
2 )α−1(sin2 θ02

2 )−α
=−π (1−α)sin(α(π−|θ12|))+αsin((1−α)(π−|θ12|))

sin(πα)
,∫ 2π

0
dθ0

sgn(θ10)sgn(θ02)

(sin2 θ10
2 )α(sin2 θ02

2 )−α
=−2π

sin(α(π−|θ12|))
sin(πα)

, (C.38)

which can be computed using the Fourier transform. We notice that the integrand in (C.37)

is periodic under the shift of any variable θj → θj + 2π, therefore we can set one variable

to zero and multiply the whole integral by 2π. We set θ4 = 0, then integrate over θ0 and

θ2 using (C.38). Finally we integrate over θ1 and obtain

δkS
rail,B(1) = −

f 1
2

+∆−η,1−∆

8π2nf1−∆f∆

(2π)(2π2)

sin(π(1−∆)) sin(π(∆− η))

[
1

2
(1−∆ + η)

(
I(1− 2∆ + η)

− I(1− η)
)

+
1

2
(∆− η)

(
I(−η)− I(2− 2∆ + η)

)]
, (C.39)

where we denoted

I(α) =

∫ π

−π
dθ

cos(αθ)

(cos2 θ
2)1−η

=
23−2ηπΓ(2η − 1)

Γ(η + α)Γ(η − α)
. (C.40)
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Taking the limit η → 0 we find

δkS
rail,B(1) =

1

n
(1− q)

(
1

2η
− log 2 +

q3 − 4q2 + 4

2(q − 2)(q − 1)
− π

sin(2π
q )

)
. (C.41)

We notice that this can be written as

δkS
rail,B(k) =

1

n
(1− q)

(
1

2η
− log 2 + kA

c
′
(2) + 1

)
, (C.42)

where kA
c (h) is defined in (C.5). So finally we find for the rail integral

δkS
rail = −δkS

rung − n(q − 1)kA
c
′
(2) . (C.43)

Combining the rung and rail integrals and restoring the factor −2αG
βJ we find for the cor-

rected symmetric kernel eigenvalue

kS(1, n) = 1 + δkS
rail + δkS

rung = 1 +
2αG(q − 1)kA

c
′
(2)

βJ
|n| . (C.44)

Using equations (4.12), (C.9) and (C.44) we find

Klinear

γ
=

1

4π2

3q2

q − 1

αS
K

αA
K

=
3q

2π2
, (C.45)

where γ = 4π2αS.

Unfortunately, the result (C.44) gives only a partial contribution for corrected sym-

metric kernel eigenvalue at order 1/βJ , and (C.45) agrees with the Klinear value in (2.74).

Presumably integrals obtained from higher corrections to the Green function have un-

compensated power-law divergences which then contribute to the first order 1/βJ term,

changing the final result.

We also notice that the computation we did can be drastically simplified if we take

large n limit as in [7]. Doing this we indeed find the result (C.44). The caveat of such

approach in our case is that a priori we can not guarantee that the final result contains

only linear in n terms, because each integral is divergent, so in principle we could miss

some other corrections in n.

D Large q for symmetric kernel

In the large q limit, we take q →∞, keeping J =
√
qJ/2

q−1
2 fixed. Then in the first order

the Green function reads

G(θ) =
sgn(θ)

2

(
1 +

g(θ)

q
+ . . .

)
, e

1
2
g(θ) =

cos πv2

cos(πv2 (1− |θ|π ))
, (D.1)

where we set β = 2π and v is a function of βJ , which is found from the equation

πv/ cos πv2 = βJ , so v → 1, when βJ → ∞. Now consider the symmetric kernel

KS(θ1, θ2; θ3, θ4) = −J2|G(θ12)|
q−2

2 G(θ13)G(θ24)|G(θ34)|
q−2

2 . (D.2)
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Using the large q Green function (D.1) we find in the leading q order

KS
q=∞(θ1, θ2; θ3, θ4) = − 1

2q
J 2e

1
2
g(θ12)sgn(θ13)sgn(θ24)e

1
2
g(θ34) . (D.3)

In this expression the dependence on q remained only in 1/q prefactor, the rest depends

only on βJ , which is our parameter. Therefore, evidently, the eigenvalues of the large q

kernel ∫ 2π

0
dθ3dθ4K

S
q=∞(θ1, θ2; θ3, θ4)ΨS

h,n(θ3, θ4) = kS
q=∞ΨS

h,n(θ1, θ2) (D.4)

will be proportional to 1/q: kS
q=∞ ∝ 1/q. Parametrizing kS

q=∞ = 2
qh(h−1) , which is consis-

tent with the large q limit of the conformal eigenvalues kS
c (h) we find15

− J
2

4
h(h− 1)

∫ 2π

0
dθ3dθ4sgn(θ13)sgn(θ24)e

1
2
g(θ34)ΨS

h,n(θ3, θ4) = e−
1
2
g(θ12)ΨS

h,n(θ1, θ2) ,

(D.5)

where dependence on q is gone and the eigenvalues h depend only on βJ . The advantage

of the large q limit is the possibility to reduce the integral equation (D.5) to the second

order differential equation. To do this, one uses ∂θsgn(θ) = 2δ(θ). Differentiating the

expression (D.5) by θ1 and θ2 we find

e−
1
2
g(θ12)∂θ1∂θ2

(
e−

1
2
g(θ12)ΨS

h,n(θ1, θ2)
)

= −J 2h(h− 1)ΨS
h,n(θ1, θ2) . (D.6)

Now changing variables to x = θ12 and y = (θ1 + θ2)/2 and using the anzats

ΨS
h,n(x, y) = e−iny

ψS
h,n(x)

sin x
2

, x = π(1− v) + v|x| , (D.7)

after some computations we reduce (D.6) to a simple ordinary differential equation for

ψS
h,n(x): (

4∂2
x + n2 − h(h− 1)v2

sin2 x
2

)
ψS
h,n(x) = 0 . (D.8)

Since we are diagonalizing the symmetric kernel the wave-functions ψS
h,n(x) must obey the

symmetric boundary conditions

ψS
h,n(−x) = ψS

h,n(x), ψS
h,n(2π − x) = (−1)n+1ψS

h,n(x) , (D.9)

where in the second condition x ∈ [0, 2π]. The first condition reduces x domain to x ∈
[0, 2π] and also implies that ∂xψ

S
h,n(0) = 0, which leads to quantization of h. A general

solution of (D.8) which obeys the second boundary condition (D.9) reads

ψS
h,n(x) =


(−1)

n−1
2

1
2π
√
n

(sin x
2 )h 2F1

(
h−n/v

2 , h+n/v
2 , 1

2 , cos2 x
2

)
, n = odd

(−1)
n
2

+1
√
n

2π cos x2 (sin x
2 )h 2F1

(
1+h−n/v

2 , 1+h+n/v
2 , 3

2 , cos2 x
2

)
, n = even

(D.10)

15We notice that the large q limit does not commute with setting h = 1 first, because kS
c (1) = 1 for all q.
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Figure 13. Plot of the wave functions φS1,n(x) for n = 3, βJ = 100. The red and blue lines

correspond to q = 4 and q = 8 wave functions, obtained by numerical diagonalization of the

symmetric kernel (see section 4.3). The dashed line is the conformal function (4.16). The purple

line is the large q result (D.12).

The normalization is chosen in such a way that for v → 1 in the IR region these functions

coincide with the conformal ones. Indeed, setting v = 1 and h = 1 in (D.10) one reproduces

conformal eigenfunctions ψS
h,n(x) = 1

2πn1/2 sin nx
2 . But this already contradicts the first

boundary condition ∂xψ
S
h,n(0) = 0, which is obtained assuming that the functions ψS

h,n(x)

are differentiable everywhere. This clash of limits is a sign that UV domain is important

for spectrum of the symmetric kernel.

Using properties of the hypergeometric functions one finds h from the first boundary

condition ∂xψ
S
h,n(0) = 0 as series in 1− v → 0:

h= 1+n
1
2 (1−v)

1
2 +n(1−v) log(1−v)+n

(
Hn−1 +logπ+

1

2n

)
(1−v) (D.11)

+
3

2
n

3
2 (1−v)

3
2 log2(1−v)+n

3
2

(
3

(
Hn−1 +logπ+

1

2n

)
−1

)
(1−v)

3
2 log(1−v)+ . . . .

In the leading order in βJ this gives for the kernel eigenvalues kS
q=∞ =

√
2

q
√
n

√
βJ + . . . .

Finally the wave functions φS
h,n(x) = ψS

h,n(x)/ sin x
2 are simply

φS
h,n(x) =


(−1)

n−1
2

1
2π
√
n

(sin x
2 )h−1

2F1

(
h−n/v

2 , h+n/v
2 , 1

2 , cos2 x
2

)
, n = odd

(−1)
n
2

+1
√
n

2π cos x2 (sin x
2 )h−1

2F1

(
1+h−n/v

2 , 1+h+n/v
2 , 3

2 , cos2 x
2

)
, n = even

(D.12)

and they are indeed diverging near the boundaries for large βJ :

φS
h,n(x)→ 1

4

(1− v)1/2

sin

(
π(1−v)+πx

2

) + . . . . (D.13)

We compare the large q wave functions (D.12) and numerical results for h = 1 and n = 3

in figure 13.
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E Zero temperature entropy and ln det term

For the Majorana model at large N , the free energy can be obtained by extremizing the

(G,Σ) action:

F ≈ min
Σ

max
G

β−1I(G,Σ) . (E.1)

Inserting the solution of the Schwinger-Dyson equation G and Σ, we have

F

N
= − 1

2β
ln det(−∂τ − Σ)︸ ︷︷ ︸

F1

+
1

2

∫
dτ

(
Σ(τ)G(τ)− 1

q
|G(τ)|q

)
︸ ︷︷ ︸

F2

. (E.2)

At low temperature, F
N = F0

N − β
−1S + O(β−2) . We would like to calculate F to the first

order in β−1 and extract the linear coefficient S, namely the zero temperature entropy.

Moreover, the linear term is only present in F1, not in F2. One way to see this is to

calculate the F2 integral in the conformal limit β →∞, and try to extract the finite piece

in βF2:

βF2 ∼
q − 1

2q
2πb

∫ 2π

0

dθ(
2 sin θ

2

)2 at β →∞, θ =
2π

β
τ . (E.3)

The integral has a UV divergence that contributes to the ground state energy F0. We are

interested in the finite piece, which can be obtained after a regularization. For instance,

one can use a cut-off ε and evaluate the integral∫ 2π−ε

ε

dθ

(2 sin θ
2)2

=
2

ε
− ε

6
+O(ε3) , (E.4)

which has vanishing constant piece. The absence of even power in ε terms in the above

integral is due to the θ → −θ symmetry of the integrand. Thus, we conclude that the zero

temperature entropy is only contained in F1, i.e. the ln det term.

To actually calculate S = 1
2 ln det(−∂τ − Σ), we substitute −∂τ − Σ = G−1 by the

conformal solution and properly regularize the following sum

S = −
∞∑
n=0

lnG(iωn), G(iωn) = const ·β1−2∆ ·
Γ(n+ 1

2 + ∆)

Γ(n+ 3
2 −∆)

. (E.5)

More explicitly, we consider the partial sum with a cutoff nΛ ∼ β →∞ and single out the

nΛ independent term as the zero temperature entropy

−
nΛ∑
n=0

lnG(iωn) ≈ const ·nΛ + S . (E.6)

The analytic formula for the finite piece S turns out to be easier to be found by evaluating

its ∆ derivative S ′(∆), which amounts to summing digamma functions ψ(x) = Γ′(x)/Γ(x)

by the following formula

nΛ∑
n=0

ψ(n+ x) = nΛ(lnnΛ − 1) + x lnnΛ +

[
x− 1

2
+ (1− x)ψ(x)

]
+O

(
n−1

Λ

)
. (E.7)
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Finally, integrating S ′(∆) to the desired position with boundary value, we have the entropy

formula for the Majorana model

S(∆) =

∫ 1
2
−∆

0

πxdx

tan(πx)
. (E.8)

This procedure has been described in [2, 3, 40]. The emphasis here is to support the claim

S = 1
2 ln det(−∂τ − Σ), which will be given a bulk interpretation.

F Dirac fermion on H2

F.1 Dirac operator and spinors in two dimensions

In a Lorentzian space, the Dirac Lagrangian is L = −iψ (γc∇c +M)ψ, where

ψ =

(
ψ↓
ψ↑

)
, ψ = ψ†γ0 , γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
. (F.1)

We will work in Euclidean signature. In the case of flat space, the Wick rotation takes x0

to x2 = ix0. The Dirac matrices γc and spin matrices Σab = 1
4

[
γa, γb

]
are

γ1 =

(
0 1

1 0

)
, γ2 = iγ0 =

(
0 i

−i 0

)
, Σ21 = −Σ12 =

i

2

(
1 0

0 −1

)
= Λ0 (F.2)

(Λ0 represents an infinitesimal counterclockwise rotation.) The Euclidean action is

IDirac =

∫
iψ (γc∇c +M)ψ

√
g d2x . (F.3)

The Majorana case differs in that ψ↓, ψ↑ are real and that the action has an overall factor
1
2 .

Note that the Dirac spinor ψ splits into two irreducible representations of the uni-

versal cover of SO(2) (or the Lorentz group): ψ↓ has spin −1
2 , and ψ↑ has spin 1

2 . A

general ν-spinor ξ is one-dimensional and transforms as Λ0ξ = −iνξ. In the absence of

electromagnetic field, the covariant derivative may be written as

∇αψ =

(
∂α +

1

2
ωαbcΣ

bc

)
ψ = (∂α + ωαΛ0)ψ , (F.4)(

ωα11 ωα12

ωα21 ωα22

)
= ωα

(
0 −1

1 0

)
. (F.5)

Here, (ωαbc) is a spin connection defined relative to some local orthonormal frame (vielbein),

whereas (ωα) may be regarded as a vector potential such that

∂αωβ − ∂βωα = −R
2
εαβ . (F.6)

To take advantage of the splitting of the tangent space under SO(2), let us replace the

local orthonormal frame (~e1, ~e2) with

~e+ =
1

2
(~e1 − i~e2) , ~e− =

1

2
(~e1 + i~e2) . (F.7)
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This transformation is modeled on the transition from the Cartesian coordinates (x1, x2)

to (x+, x−) = (z, z) = (x1 + ix2, x1 − ix2), in which case(
x1

x2

)
=

1

2

(
1 1

−i i

)(
x+

x−

)
=

(
e1

+ e1
−

e2
+ e2
−

)(
x+

x−

)
(F.8)

In the new frame, the metric ηab = (~ea, ~eb) and other relevant matrices are as follows:(
η++ η+−
η−+ η−−

)
=

1

2

(
0 1

1 0

)
,

(
ωα++ ωα+−
ωα−+ ωα−−

)
= ωα ·

i

2

(
0 −1

1 0

)
, (F.9)

γ+ =

(
0 0

2 0

)
, γ− =

(
0 2

0 0

)
, Σ+− = −Σ−+ = 2iΛ0 . (F.10)

The individual components ∇+, ∇− of the covariant derivative are themselves co-

variant, i.e. they commute with gauge transformations. More generally, let us define the

operator

∇± = ∂± − iνω± (F.11)

taking a ν-spinor to a (ν ± 1)-spinor. The operators ∇+, ∇−, ν satisfy the following

commutation relations:

[ν,∇±] = ±∇± , [∇+,∇−] = −R
4
ν . (F.12)

In this notation, the Dirac operator becomes

D = γc∇c +M =

(
M 2∇−

2∇+ M

)
, (F.13)

where ∇+ acts on the ν = −1
2 spinor ψ↓, and ∇− acts on the ν = 1

2 spinor ψ↑.

If a U(1) gauge field is present, (F.11) should be replaced with

∇± = ∂± − iνω± − iA± . (F.14)

Let us consider a special case where the field strength is imaginary and proportional to the

curvature:

Aα = −iEωα , E = const . (F.15)

This is equivalent to changing the spin by −iE. Thus, ψ↓ and ψ↑ have spins −1
2 − iE and

1
2 − iE, respectively.

F.2 Spinors on H2 and SL(2, R) symmetry

The hyperbolic plane H2 is described by the Poincare disk model with the metric

ds2 =
4 dz dz

(1− zz)2
, z = x1 + ix2 . (F.16)
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The local frame is chosen to be proportional to the coordinate frame:(
e1

1 e
1
2

e2
1 e

2
2

)
=

(
e+

+ e+
−

e−+ e−−

)
= f−

1
2

(
1 0

0 1

)
, f =

4

(1− zz)2
. (F.17)

This choice is called the “disk gauge” in ref. [48]. It is a special case of conformal gauge,

which is defined for any metric in the conformal form, ds2 = f(z, z) dz dz. In this gauge,

∇+ = f−
1
2 (∂z − iνωz) , ωz = − i

2
∂z ln f =

−iz
1− zz

,

∇− = f−
1
2 (∂z − iνωz) , ωz =

i

2
∂z ln f =

iz

1− zz
.

(F.18)

The operators ∇+, ∇− commute with isometries of the underlying manifold.

Let us introduce modified polar coordinates (u, ϕ) such that

z =
√
ueiϕ , z =

√
ue−iϕ . (F.19)

A ν-spinor with angular momentum m is proportional to ei(m−ν)ϕ (in the disk gauge),

hence,

m = −i∂ϕ + ν . (F.20)

We now discuss SL(2, R) symmetry following ref. [48]. The abstract symmetry genera-

tors L−1, L0, L1, have two different realizations. The more natural one is by Killing vector

fields, acting on spinors as follows:

LL0 = −m, LL±1 = e±iϕ
(
±(1− u)u

1
2∂u +

−m− ν
2

u
1
2 +
−m+ ν

2
u−

1
2

)
. (F.21)

The second set of operators (commuting with the first) is denoted by LRn ; they change the

spin by −n:

LR0 = ν , LR±1 = e±iϕ
(
∓(1− u)u

1
2∂u +

−m− ν
2

u
1
2 +

m− ν
2

u−
1
2

)
. (F.22)

Both sets have the same commutators and Casimir operator Q:

[Ln, Lk] = (n− k)Ln+k , Q = −L2
0 +

1

2
(L−1L1 + L1L−1) . (F.23)

Note that

LR1 = −2∇− , LR−1 = 2∇+ (F.24)

and that the commutation relations between these operators are just a special case

of (F.12). This is an explicit expression for the Casimir operator:

Q = −4∇−∇+ − ν − ν2 = −4∇+∇− + ν − ν2 (F.25)

= −(1− u)2
(
u∂2

u + ∂u
)

+
1− u

4u

(
(m− ν)2 − (m+ ν)2u

)
. (F.26)
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The eigenvalues of Q may be parametrized as ∆(1 −∆). The joint eigenspace of this

and the angular momentum operator, m = −i∂ϕ + ν, is spanned by the ν-spinors ξν∆,m,

ξν1−∆,m defined by the formula

ξν∆,m(u, ϕ) = ei(m−ν)ϕu
m−ν

2 (1− u)∆F(∆ +m,∆− ν, 2∆; 1− u) , (F.27)

where F(a, b, c;x) = Γ(c)−1
2F1(a, b, c;x) is the scaled hypergeometric function. The

asymptotic behavior near the boundary is as follows:

ξν∆,m(u, ϕ) ≈ 1

Γ(2∆)
ei(m−ν)ϕ(1− u)∆ for u→ 1 . (F.28)

We will also need the asymptotics at the origin,

ξν∆,m(Z) ≈ Γ(ν −m)

Γ(∆ + ν) Γ(∆−m)
zm−ν +

Γ(m− ν)

Γ(∆− ν) Γ(∆ +m)
zν−m for z → 0 , (F.29)

where one term usually dominates. In the special case m = ν, we have

ξν∆,ν(Z) ≈ −2

Γ(∆ + ν) Γ(∆− ν)
ln |z| for z → 0 . (F.30)

Here and below, Z stands for a point in H2 with coordinate (z, z). This way, we distinguish

general functions like ξν∆,m from analytic functions of z.

The operators LR±1 act on the basis spinors as follows:

LR±1ξ
ν
∆,m = (−ν ±∆)ξν∓1

∆,m . (F.31)

Using this fact, we can construct solutions of the Dirac equation Dψ = 0 away from the

origin. Indeed, it follows from (F.13), (F.24) that

D =

(
M −LR1
LR−1 M

)
. (F.32)

Recall that the Dirac operator D acts on a vector whose components have spins −1
2−iE and

1
2−iE. A simple calculation yields a pair of fundamental solutions with angular momentum

m:

ψM±,m =

 e±i
γ
2 ξ
− 1

2
−iE

∆±,m

±e∓i
γ
2 ξ

1
2
−iE

∆±,m

 , ∆± =
1

2
±
√
M2 − E2 , γ = arcsin

E

M
. (F.33)

The solutions ψM+,m and ψM−,m correspond to the “Dirichlet” and “Neumann” boundary

conditions, respectively. More exactly, they have the following asymptotic form:

ψ(u, ϕ) ≈ ψ(ϕ)η±(u, ϕ) for u→ 1 ,
+ : Dirichlet

− : Neumann
(F.34)

where

η±(u, ϕ) = (1− u)∆±

(
ei

(ϕ±γ)
2

±e−i
(ϕ±γ)

2

)
. (F.35)
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F.3 The propagator

For a general Fermi system described by Grassmann variables ψj , ψ
∗
j , the Euclidean

propagator is simply the correlation function Cjk = 〈ψjψ∗k〉. If the action is quadratic,

I = −
∑

j,k Bjkψ
∗
jψk, the propagator is given by C = −B−1. For the Dirac fermion, it is

convenient to multiply B by (γ0)−1 on the left and C by γ0 on the right so that

I = −ψBψ , (F.36)

C = 〈ψψ〉 =

(
−C↓↑ C↓↓

−C↑↑ C↑↓

)
, Cjk = 〈ψjψ∗k〉 , (F.37)

where the indices j, k include both spin and spatial coordinates. (The relation C = −B−1

still holds.) In this case, B = −iD, where D is the Dirac operator. Thus,

iD(1)C(Z1, Z0) = δ(Z1, Z0)

(
1 0

0 1

)
. (F.38)

Here, the superscript (1) indicates that D acts on Z1 = (z1, z1), whereas

δ(Z1, Z0) =
δ(Re(z1 − z0)) δ(Im(z1 − z0))√

|g(Z0)|
.

To solve (F.38), we first determine the asymptotic behavior of C(Z1, Z0) for Z1−Z0 →
0. In this limit, the mass term and spin connection in (F.13), (F.18) may be neglected so

that

D ≈ 2f−
1
2

(
0 ∂z
∂z 0

)
, f =

√
|g| = 4

(1− zz)2
. (F.39)

Hence,

C(Z1, Z0) ≈ 1− z0z0

4πi

(
0 (z1 − z0)−1

(z1 − z0)−1 0

)
for z1 − z0 → 0 . (F.40)

Next, we consider the case Z0 = 0. The columns of the C matrix must be proportional

to the fundamental solutions (F.33) with suitable values of m. Matching the z → 0

asymptotics (F.29) with (F.40), we get this result:

C±(Z; 0) =
Γ(∆±− ↓) Γ(∆±+ ↑)

4πi

(
±e±iγξ↓∆±,↓(Z) ξ↓∆±,↑(Z)

ξ↑∆±,↓(Z) ±e∓iγξ↑∆±,↑(Z)

)
(F.41)

where ↓ = −1
2 − iE and ↑ = 1

2 − iE.

Now, let us compute the propagator C±(Z1, Z0) for arbitrary Z1, Z0. To this end, let

V be the conformal map of the unit disk such that V (z0) is 0 and V (z1) is some positive

real number, denoted as z10:

V (z) =
w

v
· z − z0

1− zz0
, (F.42)

v =

√
z1 − z0

z1 − z0
, w =

√
1− z1z0

1− z1z0
, z10 =

∣∣∣∣ z1 − z0

1− z1z0

∣∣∣∣ . (F.43)
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Conformal maps of the Poincare disk transform a ν-spinor ξ to

(V −1ξ)(z, z) = a(z, z)ν ξ
(
V (z), V (z)

)
, a(z, z) =

√
dV (z)/dz

dV (z)/dz
. (F.44)

Therefore,

C±(Z1, Z0) =

(
a(Z1)−

1
2
−iE 0

0 a(Z1)
1
2
−iE

)
C±(Z10, 0)

(
a(Z0)

1
2

+iE 0

0 a(Z0)−
1
2

+iE

)
. (F.45)

Plugging the concrete expression (F.41) for C(Z, 0) together with

a(Z1) =
1

vw
, a(Z0) =

w

v
, (F.46)

we obtain the final answer:

C±(Z1;Z0) =
Γ(∆±− ↓) Γ(∆±+ ↑)

4πi
w2iE

(
±we±iγξ↓∆±,↓(Z10) vξ↓∆±,↑(Z10)

v−1ξ↑∆±,↓(Z10) ±w−1e∓iγξ↑∆±,↑(Z10)

)
,

(F.47)

where ↓ = −1
2 − iE, ↑ = 1

2 − iE, γ = arcsin(E/M); the numbers v, w, z10 are defined

in (F.43), and the functions ξν∆,m in (F.27).

Finally, we examine the near-boundary asymptotics of the propagator. Let

z0 =
√
u0e

iϕ0 , z1 =
√
u1e

iϕ1 , 0 < ϕ1 − ϕ0 < 2π , u0 , u1 → 1 . (F.48)

Then

v ≈ ei(ϕ1+ϕ0+π)/2 , w ≈ ei(ϕ1−ϕ0−π)/2 , 1− z2
0 ≈

(1− u1)(1− u0)

4 sin2 ϕ1−ϕ0

2

. (F.49)

Hence,

C±(Z1;Z0) ≈ Γ(∆±− ↓) Γ(∆±+ ↑)
4π Γ(2∆±)

eE(π−ϕ1+ϕ0)

(
2 sin

ϕ1 − ϕ0

2

)−2∆±

η±(Z1)η±(Z0)

(F.50)

where η±(Z) is defined in (F.35). Importantly, the scalar factor

eE(π−ϕ1+ϕ0)
(
2 sin ϕ1−ϕ0

2

)−2∆±
coincides with −Σ(ϕ1, ϕ0) (for Dirichlet b.c.) or −G(ϕ1, ϕ0)

(for Neumann b.c.) up to an overall constant.

G Higher dimensional black holes in asymptotically AdS space

This appendix will begin by recalling the basic thermodynamic properties of charged spher-

ical black holes in global AdSd+2 [6, 38] in d+ 2 spacetime dimensions (d > 2). We denote

the T = 0 radius of the black hole by Rh. Then we will discuss the universal structure of

the theory of such black holes at temperature T � 1/Rh [4, 14–19], where the effective

action in eq. (1.12) applies. See ref. [18] for more details.

In the AdS/CFT correspondence, AdSd+2 spacetimes are dual to conformal field theo-

ries (CFTs) in d+ 1 spacetime dimensions. With an Einstein-Hilbert gravitational action,
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the CFT is the large N maximally supersymmetric SU(N) Yang-Mills theory for d = 3,

and a suitable large N limit of the ABJM theory for d = 2. We place the CFT on a

sphere, Sd, and add a chemical potential conjugate to a global U(1) symmetry. This in-

duces a total charge Q on Sd. In the holographic description, the asymptotically AdSd+2

spacetime crosses over to a charged black hole with a with a near-horizon AdS2 × Sd
geometry [6, 38, 56], which was identified with the physics of SYK models [10].

The Einstein-Maxwell theory of a metric g and a U(1) gauge flux F = dA has Euclidean

action

IEM =

∫ [
− 1

2κ2

(
Rd+2 +

d(d+ 1)

L2

)
+

1

4g2
F

F 2

]
√
g dd+2x , (G.1)

where κ2 = 8πGN , Rd+2 is the Ricci scalar, L is the radius of AdSd+2, and gF is a gauge

coupling constant. The properties of the black hole are fully specified by the temperature

T and the chemical potential µ. The later is specified by a boundary condition on the time

component of the U(1) gauge potential A

lim
r→∞

Aτ (r, τ) = iµ . (G.2)

At T = 0, let the radius of the black hole horizon equal Rh, the total charge equal Q,

and the chemical potential equal µ0. These quantities are related to each other by

Q =
sdR

d−1
h

√
d
[
(d+ 1)R2

h + (d− 1)L2
]

LκgF
,

µ0 =
gF

Lκ(d− 1)

[
d
(
(d+ 1)R2

h + (d− 1)L2
)]1/2

,

(G.3)

where sd is the area of the d-dimensional surface of a unit sphere. We will treat Rh as

the independent variable below, the dependence on Q and µ0 = µ(T = 0) follows from the

above.

Moving to non-zero T � 1/Rh, we find the entropy S(Q,T ) has the form in eq. (1.14)

(we do not track factors of N in this appendix) with

S(Q) =
2πsd
κ2

Rdh , γ =

(
∂S

∂T

)
Q

=
4π2dsdL

2Rd+1
h

κ2(d(d+ 1)R2
h + (d− 1)2L2)

. (G.4)

Note that the entropy is simply given by the area of the horizon in the higher-dimensional

geometry. The contribution of fermion determinants to the action is subdominant in the

large N limit of the AdS/CFT correspondence, unlike the computation in section 5.

The low T behavior of the chemical potential is given as follows,

µ = µ0 − 2πET , T → 0 and Q fixed (G.5)

where

2πE = −
(
∂µ

∂T

)
Q

=
2πgFRhL

√
d
[
(d+ 1)R2

h + (d− 1)L2
]

κ
[
d(d+ 1)R2

h + (d− 1)2L2
] . (G.6)
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We can now verify that the Maxwell relation

−
(
∂µ

∂T

)
Q

=

(
∂S

∂Q

)
T

=
∂S/∂Rh
∂Q/∂Rh

(G.7)

is obeyed as T → 0, which then implies the fundamental identity in eq. (1.16). Finally, we

also note the value of the compressibility

K =
dQ

dµ

∣∣∣∣
T=0

=
dQ/dRh
dµ0/dRh

=
(d− 1)sdR

d−3
h

[
d(d+ 1)R2

h + (d− 1)2L2
]

(d+ 1)g2
F

. (G.8)

Now we turn to the universal structure for T � 1/Rh. The near-horizon metric takes

the AdS2 × Sd form with metric and gauge field (at T = 0, see ref. [18] for T > 0)

ds2 = R2
2

[
−dt2 + dζ2

ζ2

]
+R2

hdΩ2
d , A =

E

ζ
dt , (G.9)

where

R2 =
LRh√

d(d+ 1)R2
h + (d− 1)2L2

, (G.10)

and the dimensionless parameter E determining the strength of the near-horizon electric

field is the same as that in eq. (G.6). The Green function of a massive Dirac fermion at

the AdS2 boundary was computed in refs. [6, 49], and was found to have the same spectral

asymmetry as that in eq. (1.7), also determined by E.

Several works [4, 9–19] have discussed the nature of the theory of AdS2 horizons,

which is applicable to the higher dimensional black holes at T � 1/Rh. Under these

conditions, all modes which are non-constant on Sd can be ignored, and we can focus on

the fluctuations of the AdS2 sector. These fluctuations are also described by the 0 + 1

dimensional Schwarzian theory [9, 11–13] in eq. (1.12). A recent analysis [18] has shown

that the parameters K, γ, and E appearing in this Schwarzian theory are precisely those

specified by the thermodynamic results recalled in this appendix.
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