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1 Introduction

Topological phases of matter have attracted a lot of attentions in recent years among

physicists because they go beyond Landau’s paradigm of phases and phase transitions (see

a recent review [109] and references therein). In this work and part II [80], we develop

a unified mathematical theory of the gapped and gapless edges of 2d topological orders.
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Some results of this two-part work were announced in [79] without providing the details.

In Part I, we focus on chiral gapless edges.

Throughout this work, we use “nd” to mean the spatial dimension and “n`1D” to

mean the spacetime dimension, and by a “2d topological order”, we mean an anomaly-free

2d topological order without symmetry. We use “Theorem” to represent a mathematical

(rigorous) result and “Theoremph” to summarize important physical (unrigorous) results.

Topological orders are the universal classes of gapped local Hamiltonian lattice models

at zero temperature. Since the system is gapped, correlation functions decay exponentially.

In the long wave length limit, the only local observables are topological excitations. It was

known that a 2d topological order is determined by its (particle-like) topological excitations

uniquely up to E8 states. Mathematically, the fusion-braiding properties of the topolog-

ical excitations in a 2d topological order can be described by a unitary modular tensor

category (UMTC) (see for example [27, 28] and a review [62], appendix E). Therefore, a

2d topological order is described mathematically by a pair pC, cq, where C is the UMTC

of topological excitations and c is the chiral central charge. If a topological order pC, 0q

admits a gapped edge, it is called a non-chiral topological order. The mathematical theory

of gapped edges is known. More precisely, a gapped edge can be mathematically described

by a unitary fusion category (UFC) M such that its Drinfeld center ZpMq coincides with

C [37, 64, 69]. The fact that the bulk phase is determined by an edge as its Drinfeld center

is called the boundary-bulk relation.

When a 2d topological order is chiral, it has topologically protected gapless

edges [45, 89, 105, 106] (see reviews [93, 106, 107] and references therein). Observables

on a gapless edge is significantly richer than those on a gapped edge because gapless edge

modes are described by a 1+1D conformal field theory (CFT) [7, 90], the mathematical

structures of which are much richer than that of a UFC [47, 88, 90, 100]. It seems that a

categorical description of a gapless edge as simple as that of a gapped edge is impossible.

Nevertheless, in the last 30 years, the mathematical theory of boundary-bulk (or open-

closed) CFT’s has been successfully developed at least in three different approaches:

1. the conformal-net approach (see [59, 88, 97, 98] and references therein),

2. the 2+1D-TQFT approach (see [23, 25, 33, 35] and references therein),

3. the vertex-operator-algebra approach (see [49, 54, 55, 67] and references therein).

These mathematical developments have revealed a universal phenomenon: the mathemat-

ical structures of a boundary-bulk CFT can be split into two parts.

1. One part consists of a chiral algebra V (or a conformal net), also called a vertex

operator algebra (VOA) in mathematics (see for example [86]), such that the category

ModV of V -modules is a modular tensor category [51].

2. The other parts are purely categorical structures, including certain algebras in ModV
and an algebra in the Drinfeld center ZpModV q of ModV (see Theorem 4.7 and 4.21).

– 2 –
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This suggests that it might be possible to describe a chiral gapless edge of a 2d topological

order pC, cq by a pair pV,X7q, where V is a VOA and X7 is a purely categorical structure that

can be constructed from ModV ,C and perhaps some additional categorical data. The main

goal of this paper is to show that this is indeed possible. More precisely, the main result of

this work, summarized in Theoremph 6.7, says that X7 is an ModV -enriched unitary fusion

category (Definition 6.4) satisfying some additional properties.

We explain the layout of this paper. In section 2, we briefly review the mathematical

theory of 2d topological orders and that of gapped edges. We emphasize previously over-

looked details, such as the so-called spatial fusion anomalies, so that it makes our study of

chiral gapless edge looks like a natural continuation. In section 3, we carefully describe all

possible observables (at a RG fixed point) on the 1+1D world sheet of a chiral gapless edge

of a 2d topological order pC, cq. In particular, we show that the observables on the 1+1D

world sheet of a chiral gapless edge include a family of topological edge excitations, 0+1D

boundary CFT’s [12–14], 0D domain walls between boundary CFT’s [31] and two kinds

of fusions among domain walls. These boundary CFT’s and domain walls are required to

preserve a chiral symmetry given by a VOA V such that ModV is assumed to be a UMTC.

This symmetry condition allows us to describe all boundary CFT’s, domain walls and their

fusions as objects or morphisms in ModV . As a consequence, all observables organize them-

selves into a single categorical structure X7 called an ModV -enriched monoidal category.

Therefore, a chiral gapless edge can be described by a pair pV,X7q.

In order to further explore the additional hidden structures in X7 (in section 6), we need

nearly all important mathematical results of rational CFT’s in last 30 years. These results

are unknown to most working physicists especially to those in the field of condensed matter

physics. A briefly review of these results is necessary. In section 4, we review the mathemat-

ical theory of boundary-bulk rational CFT’s in the VOA approach [49, 51, 57, 67, 86, 112].

This mathematical theory is not only a rigorous version of the physical theory but also a

reformulation in terms of new and efficient categorical language, which, together with a

classification result, play a crucial role in this work. In particular, in section 4.1, we recall

a Segal-type mathematical definition of a boundary-bulk CFT. In section 4.2, we recall the

classification theory of boundary-bulk rational CFT’s [25, 33, 67, 71, 88, 97, 98]. In sec-

tion 4.3, we explain the notion of an internal hom. In section 4.4, we discuss issues related

to unitary CFT’s and show that boundary CFT’s and domain walls among them can all

be constructed from internal homs, and summarize all useful results in Theoremph 4.21.

After the preparation in section 4, we are able to give a natural and explicit con-

struction of chiral gapless edges in section 5.1. It turns out that the enriched monoidal

categories appearing there are only special cases of the so-called canonical construction (see

Theorem 5.3) [91]. In section 5.2, we will construct more general gapless edges by fusing

the gapless edges constructed in section 5.1 with gapped domain walls, or equivalently,

by the so-called topological Wick rotations. We will leave a loophole of our reasoning in

section 5.2 and fix it in section 6.3. Interestingly, these mathematical constructions au-

tomatically include all the gapped edges as special cases. Therefore, we obtain a unified

mathematical theory of both gapped and chiral gapless edges.

– 3 –
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In section 6, we continue our exploration of the additional hidden structures in X7. In

particular, in section 6.1, using the classification theory of boundary-bulk rational CFT’s

summarized in Theoremph 4.21, we reveal the hidden relations between ModV and the

underlying category X of X7, and show that X7 is an ModV -enriched unitary fusion category

(see Definition 6.4). In section 6.2, using the boundary-bulk relation [75] and the results

in [78], we obtain a precise and complete mathematical description and a classification

theory of chiral gapless edges of 2d topological orders. This is the main result of this

paper, and is summarized in Theoremph 6.7. In the process of deriving the classification

result, we will also discuss and propose a definition of a phase transition between two

gapless phases via topological Wick rotations. In section 6.3, motivated by a recurring

phenomenon in this work, we propose a very general principle:

Principle of Universality at RG fixed points. A physical theory at a RG

fixed point always satisfies a proper universal property in the mathematical

sense.

We use it to fix the last loophole of our reasoning introduced in section 5.2. This principle

also provides a mathematical formulation of the spatial fusion anomaly.

In section 7, we provide some outlooks for the study of gapless boundaries of higher

dimensional topological orders. In particular, we will propose a surprising correspondence

between gapped phases and gapless phases in all dimensions. In appendix, we provide the

mathematical definitions of some categorical notions in the enriched settings.

It is worthwhile to point out what is new in this paper. The main result Theoremph 6.7

was first announced in [79] without providing any proofs. This paper contain many missing

details and a complete proof. All physical (mathematically unrigorous) arguments used

in the proof are explicitly spelled out. They are the No-Go Theorem (see section 3.3),

Naturality Principle in physics (see section 6.1), the generalization of the mathematically

rigorous Theorem 4.10 to unitary cases (see Theoremph 4.21), our definition of a purely

edge phase transition (see section 6.2) and Principle of Universality at RG fixed points

(see section 6.3). All the rest steps in the proof are mathematically rigorous. In this

work, we also introduce a few brand new physical concepts for the first time, including

spatial fusion anomaly, topological Wick rotation, a model-independent definition of a

phase transition between gapless edges (see section 6.2), Principle of Universality and

Gapped-Gapless Correspondence (see section 7).

In Part II [80], we will develop a mathematical theory of non-chiral gapless edges and

0d defects on a gapless edge. We will also give explicit calculations of various dimensional

reduction processes and a complete mathematical description of boundary-bulk relation

including both gapped and gapless edges. It is also worthwhile to mention that our theory

of gapless edge provides a mathematical description of the critical points of topological

phase transitions on the edges of 2d topological orders. An example was explained in [16].

– 4 –
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2 Gapped defects of 2d topological orders

In this section, we review some of the basic facts of 2d topological orders, including the

categorical description of its particle-like topological excitations, that of gapped edges and

the boundary-bulk relation.

2.1 Particle-like topological excitations

An nd topological order is called anomaly free if it can be realized by an nd local Hamil-

tonian lattice model, and is called anomalous if otherwise [73].

Before the discovery of fractional quantum Hall effect, a 2d gapped local Hamilto-

nian lattice model at zero temperature was viewed as “trivial” because all the correlation

functions decay exponentially. It seems that there is no “local observables” in the long

wave length limit. It was realized latter, however, the ground state degeneracy (GSD) of

such 2d systems on surfaces with non-trivial topology, such as spheres with holes, torus,

higher genus surfaces (with edges), etc., are non-trivial and different for different sys-

tems [94, 95, 101]. It means that there are different kinds of “trivialness” of such “trivial”

systems, which are, therefore, non-trivial.

Note that the GSD is a global observable [3]. But the notion of a phase or a topological

order is a local concept that is defined on an open disk (in the infinite system size limit). It

was realized later that the local observables that are responsible for the non-trivial global

observable GSD are the particle-like topological excitations (or anyons).

It is well known that all particle-like topological excitations form a mathematical struc-

ture called a unitary modular tensor category (UMTC) (see a review [62], appendix E). The

physical meanings of some (not all) ingredients of a UMTC C are precisely the observables

in the long wave length limit, and are explained below.

1. An object in C represents a particle-like topological excitation (or an anyon). The

tensor unit 1C represents the trivial topological excitation. A simple object represents

a simple anyon, and a non-simple object, i.e. a direct sum of simple objects (e.g. ‘ixi
for simple xi), represents a composite anyon.

2. For any two anyons x and y, a morphism from x to y is an instanton, which is a

localized defect on time axis (e.g. at t “ t0), with two boundary conditions x (for

t ă t0) and y (for t ą t0). If x and y are simple, then the space of instantons from

the boundary condition x to y is given by homCpx, yq “ δx,yC. For two composite

anyons ‘nxn and ‘mym, where xn, ym are simple, we have

homCp‘nxn,‘mymq “ ‘n,mδxn,ymC.

3. The fusion of instantons along the time axis, called a temporal fusion, defines a

composition of morphisms

homCpy, zq ˆ homCpx, yq Ñ homCpx, zq

pf, gq ÞÑ f ˝ g (2.1)

– 5 –
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Our convention is that the time coordinate of f is later than that of g. There

is a distinguished morphism 1x P homCpx, xq, which is called the identity morphism,

represents the trivial instanton. It is trivial in the sense that f ˝1x “ f and 1y ˝f “ f

for f P homCpx, yq.

4. The tensor product functor b : C ˆ C Ñ C defined by px, yq ÞÑ x b y describes the

fusion between two anyons in spatial dimensions, called a spatial fusion. The trivial

anyon is denoted by 1C. We have 1C b x » x » xb 1C.

5. The spatial fusion b of anyons also induces a spatial fusion of instantons. The naive

guess of the space of instantons after the fusion is homCpx, yq bC homCpx
1, y1q. But

this naive guess is wrong because an anyon, viewed as a 0d topological order, is

anomalous. The correct one is homCpx b y, x1 b y1q. In general, there is a map

(induced from the universal property of homCpxb y, x
1 b y1q)

homCpx, yq bC homCpx
1, y1q

b
ÝÑ homCpxb y, x

1 b y1q (2.2)

for x, x1, y, y1 P C. Its failure of being an isomorphism is called spatial fusion anoma-

lies. This is a recurring phenomenon in this work, and will be discussed in section 6.3.

It is also worthwhile to point out that the spatial fusion anomaly vanishes when

x “ y “ x1 “ y1 “ 1C. This result has a non-trivial analogue for chiral gapless edges

(see Remark 6.3).

6. The creation and annihilation of a particle-antiparticle pair are described by the

duality morphisms

ux : 1C Ñ xb x˚, vx : x˚ b xÑ 1C, (2.3)

where x˚ is the anti-particle of x, satisfying some natural properties. Mathematically,

this amounts to the rigidity of a UMTC.

7. Since the associated Hamiltonian model is gapped, one can adiabatically move one

anyon around another one. This adiabatic movement defines a braiding isomorphism

cx,y : xb y Ñ ybx for x, y P C. The composed morphism xb y
cx,y
ÝÝÑ ybx

cy,x
ÝÝÑ xb y

is called a double braiding, which amounts to adiabatically moving anyon x around

y (say clockwise) in a full circle.

The coherence conditions satisfied by the above data are all physically obvious. The non-

degeneracy condition of the double braiding of a UMTC is stated as follows:

p‹q For a given simple anyon x, if its double braiding with all anyons y (including x itself)

is trivial, i.e. px b y
cx,y
ÝÝÑ y b x

cy,x
ÝÝÑ x b yq “ idxby, then x is the trivial anyon, i.e.

x » 1C.

The condition p‹q is an anomaly-free condition, which says that all anyons in a topological

order should be able to detect themselves via double braidings. If a system of anyons does

not satisfy the condition p‹q, it must represent an anomalous 2d topological order, which

must be a gapped boundary of a non-trivial 3+1D topological order [73].

– 6 –
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UFC’s: L NM

UMTC’s: C “ ZpLq “ ZpMq “ ZpNq

Figure 1. This picture depicts a 2d topological order pC, 0q, where C is a UMTC, with three gapped

edges given by UFC’s L,M,N. The 2d bulk is oriented as the usual R2 with the normal direction

pointing out of the paper in readers’ direction. The arrows indicate the induced orientation on

the edge.

Remark 2.1. The space of instantons homCpx, yq has another physical meaning. It is also

the space of ground states of the topological order defined on a 2-sphere together with

two anyons x˚, y. Two physical meanings of the same hom-space is a manifestation of the

state-field correspondence of a TQFT or a topological order.

For each UMTC C, one can define a topological central charge ctopC , which is defined

modulo 8. We use C to denote the same monoidal category as C but equipped with the

braidings given by the anti-braidings in C. C is also a UMTC. It was known that the

Drinfeld center ZpCq of C is given by C b C [92], where b is the Deligne tensor product.

The simplest UMTC is the category of finite dimensional Hilbert spaces, denoted by H.

In the long wave length limit, are there any other physical observables in a 2d topologi-

cal order? It turns out that there is a special state called the E8-state (see for example [63]),

which is a non-trivial topological order but has no non-trivial anyon. It was known that

its 1d edge is gapless and is given by the E8 chiral conformal field theory of central charge

c “ 8. It was generally accepted that a 2d topological order is completely determined by its

anyons up to the E8-states (i.e. EbN
8 ) (see a review [108]). We summarize this well-known

result below.

A 2d (anomaly-free) topological order can be described mathematically by a

pair pC, cq, where C is a UMTC and c is the chiral central charge such that

ctopC “ c pmod 8q.

The pair pH, 0q describes the trivial 2d topological order.

2.2 1d gapped edges

A 2d topological order pC, 0q admitting a gapped edge is called a non-chiral 2d topological

order. As depicted in figure 1, the bulk phase pC, 0q might have several different gapped

edges, each of which represents a 1d anomalous topological order. Such an anomalous 1d

topological order can be described mathematically by a unitary fusion category (UFC) L,

in which

1. an object represents a particle-like topological edge excitation;

– 7 –
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2. for topological edge excitations x, y P L, the space of morphisms homLpx, yq is the

space of instantons (or localized defects on time axis) with boundary conditions x

and y;

3. the composition of two morphisms describes the fusion of two instantons along the

time axis;

4. the fusion product b in L represents the fusion of two such edge excitations in the

spatial dimension according to the orientation of the edge. 1L denote the trivial

topological edge excitation, i.e. 1L b x » x » xb 1L.

5. This fusion also induces a fusion of two instantons in the spatial dimension. Again,

the naive guess homLpx, yqbC homLpx
1, y1q for the space of instantons after the fusion

is wrong. The correct one is homLpxb x
1, y b y1q. In general, there is a map

homLpx, yq bC homLpx
1, y1q

b
ÝÑ homLpxb x

1, y b y1q, (2.4)

for x, x1, y, y1 P L. This map is not an isomorphism in general. Its failure of being

an isomorphism is an indication of spatial fusion anomaly. This phenomenon is a

recurring theme of this work. We will further explore this phenomenon as a special

case of a more general principle in section 6.3.

Note that there is no braiding because these topological excitations are restricted on the

edge, thus cannot be braided.

The relation between the boundary phase and the bulk phase, or simply boundary-bulk

relation, was known [64, 69].

Boundary-bulk relation. The 2d bulk phase is uniquely determined by the

anomalous 1d topological order on its boundary (or edge), and the UMTC C

describing the 2d bulk phase is given by the Drinfeld center of the UFC L (or

M,N) describing a 1d edge (as depicted in figure 1), i.e. C » ZpLq » ZpMq »

ZpNq.

Mathematically, different gapped edges L,M,N that share the same bulk or Drinfeld center

if and only if they are Morita equivalent as UFC’s [22, 92].

Importantly, although a UFC L determines an anomalous 1d topological order, it does

not fix a gapped edge of a 2d topological order completely. The same UFC might be

realized as different edges of the same bulk. For example, the Z2 2d topological order has

two different gapped edges [5], both of which realize the same 1d anomalous topological

order defined by the UFC ReppZ2q.

The additional physical data that is needed to uniquely determine the edge is the

information of how anyons in the bulk can be fused onto the edge. This information

is given by a monoidal functor L : C Ñ L which factors through the forgetful functor

f : ZpLq Ñ L, i.e. there exists a braided monoidal functor L1 : C Ñ ZpLq such that the

– 8 –
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following diagram

C
L1 //

L !!

ZpLq

f
��
L

(2.5)

is commutative. Such a functor L is called a central functor [19].

Remark 2.2. The mathematical theory of 0d domain walls between different gapped edges

is also known [3, 64, 69].

2.3 What happens to gapless edges?

We have seen that we have a beautiful mathematical theory of gapped edges of 2d topo-

logical orders. Ironically, experimentally discovered 2d topological orders, such as those

discovered in quantum Hall effects, all have topologically protected gapless edges. The

natural question is whether there is a similar mathematical theory for gapless edges. As

depicted in figure 2, this question contains at least the following three parts:

1. What is the mathematical description of a gapless edge of pC, cq?

2. Does the boundary-bulk relation, i.e. bulk = the center of the edge, still hold?

3. What is the mathematical description of a 0d gapless domain wall between two gapless

1d edges?

In [75], using a very formal argument, we have shown that the bulk topological order (in

any dimensions) should be given by the center of its boundary, i.e.

C » ZpLq » ZpMq » ZpNq.

regardless whether the boundary is gapped or gapless ([75], Remark 5.7), and regardless

what the mathematical description of a gapless boundary is.

Remark 2.3. A reader might be puzzled by the above statement. How could one know the

notion of the center of certain algebraic object before we have a complete mathematical

definition of the algebraic object. This is because the notion of center is defined by its

universal property, which only depends on the notion of a morphism between two such

algebraic objects. In [75], the notion of a morphism between two anomalous nd topological

orders was introduced without knowing how to define an nd topological order.

This result ([75], Remark 5.7) convinced us that there should be a unified mathematical

theory of gapped and gapless edges of 2d topological orders. We will answer the first

question for chiral gapless edges in this work, and answers the second and third questions

in [80].

Remark 2.4. The result of ([75], Remark 5.7) and the success of this work have non-trivial

and exciting predictions for the study of higher dimensional gapped and gapless phases.

We will briefly discuss them in section 7.

– 9 –
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gapless edges: L “? N “?M “?

? ?

C “ ZpLq “ ZpMq “ ZpNq?

Figure 2. Obvious questions about gapless edges of a 2d chiral topological order.

3 Chiral gapless edge I

In this section, we will try to find all observables living on the 1+1D world sheet of a chiral

gapless edge of a 2+1D topological order, which is fixed to be pC, cq.

3.1 Vertex operator algebras

Suppose that the 2d bulk phase pC, cq is realized on an open 2-disk as depicted in figure 3.

We choose a complex coordinate z on the 1+1D world sheet of the chiral gapless edge (i.e.

the 2D boundary of the solid cylinder) such that the time axis is the real axis.

We assume that gapless edge modes are completely chiral. It is known that the chi-

ral edge modes are states in a chiral conformal field theory with the central charge c

(see [45, 89, 105, 106], reviews in [93, 106, 107] and references therein). This chiral CFT

is defined on the 1+1D world sheet of the edge. We denote this chiral CFT by U . By the

state-field correspondence in a 2D CFT, there is a bijective map Y from U to the space of

chiral fields, still denoted by U :

Y : φ ÞÑ Y pφ, zq “ φpzq.

The notation φpzq is commonly used in physics literature and Y pφ, zq is commonly used in

mathematics literature. We prefer to use the mathematical notation Y pφ, zq sometimes in

this work because the first notion can be quite ambiguous whenever we discuss intertwining

operators. We should view these chiral fields as “local observables” on the world sheet.

Since these chiral fields can live on the entire 1+1D world sheet, they cannot be multi-

valued. Therefore, these chiral fields, say φpzq, contains only integer powers of the complex

variable z, i.e.

φpzq “
ÿ

nPZ

φnz
´n´1,

where φn P EndpUq. Any two chiral fields in U can have the so-called operator product

expansion (OPE) as shown below:

φpz1qψpz2q „
pψkφqpz2q

pz1 ´ z2qk`1
`
pψk´1φqpz2q

pz1 ´ z2qk
` ¨ ¨ ¨ , for some k P N.

This OPE is commutative, i.e. φpz1qψpz2q „ ψpz2qφpz1q. It provides U with an algebraic

structure, which is called a chiral algebra in physics, and is rigorously defined in math-

ematics under a different name: a vertex operator algebra (VOA) (see for example [86]
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pC, cq

ˆφpzqPU

Figure 3. This picture depicts a 2d topological order pC, cq on a 2-disk, together with a 1d gapless

edge, propagating in time. A chiral field φpzq P U is depicted on the 1+1D world sheet.

for a review). In this work, we use the following working definition of a VOA, which is

sometimes called a CFT-type VOA. We avoid to use formal variables that are commonly

used in mathematics literature.

Definition 3.1. A vertex operator algebra (VOA) U consists of the following data:

• a C-linear vector space U graded by non-negative integers (called conformal weights),

i.e. U “ ‘nPNUpnq,

• a distinguished element 1 P Up0q called vacuum state,

• a map Y : pU bC Uq ˆ Cˆ Ñ U :“
ś

nPN Upnq called vertex operator

pubC v, zq ÞÑ Y pu, zqv “
ÿ

nPZ

unv z
´n´1,

• a distinguished element ωU P Up2q called Virasoro element,

satisfying the following axioms:

1. dimUpnq ă 8 and Up0q “ C1;

2. if u P Upkq, then un maps Upmq into Upm`k´n´1q;

3. Y p1, zq “ idU and u´11 “ u for u P U ;

4. for u, v, w P U and w1 P U 1 :“ ‘nU
˚
pnq, the following three expressions

xw1, Y pu, z1qY pv, z2qwy, xw1, Y pv, z2qY pu, z1qwy, xw1, Y pY pu, z1 ´ z2qv, z2qwy

converge absolutely in three different domains |z1| ą |z2| ą 0, |z2| ą |z1| ą 0,

|z2| ą |z1 ´ z2| ą 0, respectively, to the same rational function fpz1, z2q (with poles

only at z1, z2 “ 0,8 and z1 “ z2);

5. we have Y pωU , zq “
ř

nPZ Lpnqz
´n´2 such that Lpnq, n P Z generate the famous

Virasoro algebra, i.e.

rLpmq, Lpnqs “ pm´ nqLpm` nq `
c

12
pm3 ´mqδm`n,0

where the number c is called the central charge;
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t “ 0 aPC

φprqˆ

Ax “ a boundary CFT

A1 “ U

x

Figure 4. This picture depicts a 2d topological order pC, cq on a 2-disk, together with a 1d gapless

edge, propagating in time. At t “ 0, we move a bulk particle a to the edge. The blue world line is

supported on x.

6. for u P Upnq, we have Lp0qu “ nu;

7. for u P U , we have Y pLp´1qu, zq “ d
dzY pu, zq.

Remark 3.2. Y pωU , zq is called the energy momentum tensor in physics. It generates a

sub-VOA xωUy, which is the smallest sub-VOA of U . The number c is the same central

charge as the one in the 2d bulk phase pC, cq.

3.2 Open-string vertex operator algebras

Is this VOA U the only observables on the 1+1D world sheet of the edge? Consider the

situation depicted in figure 4. At t “ 0, a topological excitation a in the bulk is moved

to the edge. It becomes a topological edge excitation x. As a typical quantum quenching

scenario, this movement suddenly changes the microscopic physics at the location of x. As

a consequence, the RG flow will drive the world line supported on x to a fixed point theory,

which is denoted by Ax. In particular, Ax should contain all the physical observables on the

world line at the RG fixed point. It is clear that when a “ 1C, x is the trivial topological

edge excitations, denoted by 1. Therefore, we must have A1 “ U . More general topological

edge excitations can be created by inserting impurities from outside. In other words, there

are potentially more topological edge excitations than those obtained from moving bulk

excitations to the edge.

At the RG fixed point, the conformal symmetry is restored. The observables in Ax are

again chiral fields that can have OPE along the world line. But the chiral fields in Ax are

potentially different from those in U . By our choice of complex coordinate, the world line

(or the time axis) is the real axis. There is no multi-value issue here because the chiral

fields are restricted on the real axis. As a consequence, the chiral fields on the world line

can have non-integer powers, i.e.

φprq “
ÿ

nPR

φnr
´n´1,

Moreover, two chiral fields on the world line can also have OPE as follows:

ψpr1qφpr2q „
pψkφqpr2q

pr1 ´ r2qk`1
`
pψk´1φqpr2q

pr1 ´ r2qk
` ¨ ¨ ¨ , for some k P R.
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This OPE is potentially non-commutative, i.e.

ψpr1qφpr2q  φpr2qψpr1q.

More precisely, OPE among all these chiral fields defines an algebraic structure on Ax
called an open-string vertex operator algebra (OSVOA) [54]. We recall this notion below.

Definition 3.3. An open-string vertex operator algebra (OSVOA) A of central charge c

consisting of the following data:

• an R-graded vector space A “ ‘nPRApnq,

• a map YA : pAbC Aq ˆ R` Ñ A :“
ś

nPRApnq defined by pub v, rq ÞÑ YApu, rqv,

• two distinguished elements 1 P Ap0q and ωA P Ap2q,

satisfying the following conditions:

1. dimApnq ă 8 and Apnq “ 0 for n ! 0;

2. Y p1, rq “ idA and u´11 “ u for u P A;

3. for u1, ¨ ¨ ¨ , un, w P A and w1 P A1 “ ‘nA
˚
pnq, the series:

xw1, YApu1, r1q ¨ ¨ ¨YApun, rnqwy :“
ÿ

m1,¨¨¨ ,mn´1

xw1, YApu1, r1qPm1 ¨ ¨ ¨Pmn´1YApun, rnqwy ,

where Pk : A� Apkq is the projection operator, converges absolutely when r1 ą ¨ ¨ ¨ ą

rn ą 0 and can be extended to a potentially multi-valued complex analytic function

in pCˆqn with only possible singularities at zi “ zj for i, j “ 1, ¨ ¨ ¨ , n and i ‰ j;

4. the following two expressions

xw1, YApu1, r1qYApu2, r2qwy, xw1, YApYApu, r1 ´ r2qv, r2qwy

converge absolutely in two different domains r1 ą r2 ą 0 and r2 ą r1 ´ r2 ą 0,

respectively, and equal on the intersection of the above two domains;

5. we have YApωA, rq “
ř

nPZ Lpnqr
´n´2 such that tLpnqunPZ generate the Virasoro

algebra of central charge c;

6. for u P Apnq, we have Lp0qu “ nu;

7. for u P A, we have YApLp´1qu, rq “ d
drY pu, rq.

An OSVOA is a non-commutative generalization of the notion of a VOA. In particular,

a VOA is automatically an OSVOA. An OSVOA contains a smallest subalgebra xωAy Ă A

generated by ωA. Actually, xωAy is a VOA. More generally, the following subspace of an

OSVOA A:

C0pAq “ tu P ‘nPZApnq|YApu, rq “
ÿ

nPZ

unr
´n´1, YApv, rqu “ erLp´1qY pu,´rqv,@v P Au,

(3.1)

defines a subalgebra of A called the meromorphic center of A. Moreover, it is a VOA. The

defining property of C0pAq is equivalent to the following condition:
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p‚q For u P C0pAq, v, w P A and w1 P A1, there exists a (possibly multi-valued) analytic

function on

tpz1, z2q P C2|z1 ‰ 0, z2 ‰ 0, z1 ‰ z2u.

such that it is single valued in z1 and equals to

xw1, YApu, z1qYApv, r2qwy, xw
1, YApv, r2qYApv, z1qwy, xw

1, YApYApu, z1´ r2qv, r2qwy

in the domains |z1| ą r2 ą 0, r2 ą |z1| ą 0, r2 ą |z1 ´ r2| ą 0, respectively;

It is clear that A is a C0pAq-module. For v P A, it can be shown that there exist vn such

that YApv, rq “
ř

nPR vnr
´n´1 ([54], Prop. 1.4). We introduce a formal vertex operator:

Y f
A pv, xq :“

ÿ

nPR

vnx
´n´1,

where x is a formal variable.

Theorem 3.4 ([54]). The condition (‚) is equivalent to the statement that the formal

vertex operator Y f
A p´, xq´ is an intertwining operator of C0pAq.

3.3 Boundary CFT’s and domain walls

More general situations can occur on the same world line as depicted in figure 5 (a). More

precisely, one can insert an impurity at t “ t1 ą 0 on the world line so that the topological

edge excitation is changed from x to y. As a consequence, the OSVOA living on the

tt ą t1u-part of the world line is given by Ay. The domain wall between Ax and Ay also

contains chiral fields (sometimes called defect fields in CFT’s). This domain wall is similar

to the instantons on a gapped edge (recall section 2.2). We denote the space of such defect

fields by Mx,y. Then it is clear that the space of defect fields localized around x is M1,x.

Moreover, we should have Mx,x “ Ax and M1,1 “ A1 “ U . This space Mx,y should also

be an R-graded vector space, i.e. Mx,y “ ‘nPRpMx,yqpnq, such that dimpMx,yqpnq ă 8.

Similar to the fusion of instantons along the time axis in the gapped edge case, defect

fields in different domain walls can also have OPE along the world line. This type of OPE

defines a vertex operator:

Ypz,y,xq : pMy,z bC Mx,yq ˆ R` ÑMx,z, pubC v, rq ÞÑ Ypz,y,xqpu, rqv. (3.2)

This OPE should also be associative. More precisely, it satisfies the following condition.

• Associativity of OPE: for u P My,z, v P Mx,y, w P Mw,x and w1 P M 1
w,z, the following

two expressions

xw1, Ypz,y,wqpu, r1qYpy,x,wqpv, r2qwy, xw1, Ypz,x,wqpYpz,y,xqpu, r1 ´ r2qv, r2qwy

converge absolutely in the domains: r1 ą r2 ą 0 and r2 ą r1 ´ r2 ą 0, respectively,

and coincide in the domain r1 ą r2 ą r1 ´ r2 ą 0.
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t “ 0

t “ t1

t

a P C
Ax

Ay

Mx,y

A1 “ U

x

Ax

Ay

Mx,y

A1 “ U

M1,x

Abulk

paq pbq

Figure 5. The picture (a) depicts a 2d topological order pC, cq on a 2-disk, together with a 1d

gapless edge, propagating in time. At t “ 0, a topological edge excitation x is created. At t “ t1 ą 0,

the edge excitation is changed to y. This change creates a domain wall Mx,y between OSVOA’s Ax

and Ay. The picture (b) depicts the 1+1D world sheet obtained by squeezing the picture (a).

It is important to note that we have not yet discussed the issue if these Mx,y or Ax are

really different from U . At least, it is clear that there should be some relations among U ,

Ax and Mx,y. For example, Ax acts on Mx,y from one side and Ay acts from the other side,

and U acts on Mx,y from above (or below) the time axis, and U can be mapped into Ax,

etc. In order to formulate them precisely, we need first to show that these Ax are more than

just OSVOA’s. They are actually boundary CFT’s [12–14] that share the same bulk 1+1D

CFT. Indeed, consider a dimensional reduction process, which starts from figure 5 (a),

and gradually squeeze the solid cylinder, and ends up in the 1+1D world line depicted in

figure 5 (b). The 0+1D boundary of this 1+1D world sheet is precisely given by the world

line supported on x. Observables on this world line remain the same during this process. It

is clear that both chiral and anti-chiral fields live on the resulting 1+1D world sheet. It was

shown in ([11], section 2.1) that they form a modular invariant bulk CFT Abulk. This fact

was emphasized in [84, 99] as a consequence of the following “no-go theorem”: Any 1+1D

CFT’s realized by 1d lattice Hamiltonian models should be modular invariant. Therefore,

the OSVOA’s Ax and Ay must be the boundary CFT’s sharing the same modular invariant

bulk CFT Abulk, and Mx,y is a domain wall between them and is also compatible with the

same bulk. Mathematically, however, it is not a clear statement because there are different

mathematical definitions of a boundary-bulk CFT. Here we prefer to make this statement

mathematically precise. We propose a stronger “no-go theorem”.

No-go Theorem. A 1+1D boundary-bulk CFT realized by a 1d lattice Hamil-

tonian model with boundaries should satisfy all the axioms in the mathematical

definition of a boundary-bulk CFT given in Definition 4.1 or 4.4.

In particular, the boundary-bulk CFT should satisfy all the consistence conditions, includ-

ing the famous modular invariant condition [7, 90] and Cardy condition [13, 14].
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Remark 3.5. Using boundary CFT’s to study 0d defects or impurities in other condensed

matter systems has a long history [1, 2]. But we are not aware of any earlier works

mentioning the appearance of the boundary CFT’s on the gapless edges of 2d topological

orders. That a chiral vertex operator living in M1,x was known in 90’s (see [110, 111]).

Remark 3.6. Once we established the precise mathematical description of a chiral gapless

edge, we can compute this dimensional reduction process and identify precisely which

modular invariant bulk CFT is obtained at the end of this process [79] (see more details

in [80]).

In summary, observables on the 1+1D world sheet of the edge of a 2d topological order

form a “not-yet-categorical” structure:

1. objects are topological edge excitations: x, y, ¨ ¨ ¨ ;

2. the space of morphisms are Mx,y (boundary CFT’s and domain walls);

3. there is a map given by the associative OPE Ypz,y,xq : pMy,z bC Mx,yq ˆ R` ÑMx,z.

We can not yet claim it is a categorical structure not only because the OPE is not yet a

composition map but also because the “identity morphisms” are missing. We will discuss

this important missing data in the next subsection.

3.4 Chiral symmetries

The no-go theorem demands Ax to be a boundary CFT, which requires many additional

structures beyond that of an OSVOA. One of them is called the boundary condition of a

boundary CFT. It says that, as a boundary CFT, Ax should satisfy a conformal invariant

boundary condition (as the minimal requirement) or a V -invariant boundary condition in

general, where V is called the chiral symmetry. We explain this in detail in this subsection.

Consider moving chiral fields in U into those in Ax along a path γ (e.g. γ1, γ2 in figure 6).

This process defines a linear map ιγ : U Ñ Ax, which is clearly independent of the homotopy

type of the path. Therefore, as shown in figure 6, there are essentially two independent

ways of mapping U into Ax along the paths γ1, γ2, respectively, i.e. ιγ1 , ιγ2 : U Ñ Ax. It

is clear that the vacuum state and the OPE of the chiral fields must be preserved in these

processes. Therefore, ιγ1 , ιγ2 are two OSVOA homomorphisms. The minimal requirement

for Ax to give a consistent boundary CFT is that ιγ should satisfy the following condition:

• Conformal-invariant boundary condition [12, 66]:

1. ιγ1 |xωU y
“ ιγ2 |xωU y

;

2. ιγ1 |xωU y
: xωUy Ñ xωAxy defines an isomorphism of VOA.

Let V be a sub-VOA of U , i.e. xωUy Ă V Ă U . In most general situation, we expect the

following condition to be true.

• V -invariant boundary condition ([66], Definition 1.25):
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t “ 0 t

γ2

γ1
γ3

ˆ

φpzq P V Ă U

YAxpv, tq P Ax

M1,x

Figure 6. This picture depicts how the chiral fields in U can be mapped to Ax.

1. ιγ1 |V “ ιγ2 |V ;

2. ιγ1 |V : V Ñ Ax is injective.

We denote that path independent map by ιx : V ãÑ Ax

In other words, chiral fields in V can move transparently on the entirely 1+1D world (except

those 0D walls Mx,y for x ‰ y). If the V -invariant boundary condition holds for all Ax,

then, for a sub-VOA V 1 of V , the V 1-invariant boundary condition holds automatically. If

we require the set of topological edge excitations to be fixed, then there will be the maximal

sub-VOA V in U that Ax is V -invariant for all x. This VOA V will be called the chiral

symmetry of the edge. From now on, we take V to be the chiral symmetry of the edge.

Remark 3.7. If we demands V 1 Ĺ V to be the chiral symmetry, then the set of topological

edge excitations can be enlarged accordingly. We will discuss this issue in section 6.2.

Remark 3.8. It can happen that the chiral symmetry is maximal, i.e V “ U , as we will

show in section 5.1. We will also show in section 5.2 that xωUy Ĺ V Ĺ U in general.

By the V -invariant boundary condition, Mx,y are all V -modules in the usual sense [29].

We denote the category of V -modules by ModV . We obtain the following property of YAx :

• for φ P V , v, w P Ax and w1 P A1x, the operator products

xw1, φpzqYAxpv, tqwy, xw1, YAxpv, tqφpzqwy, xw1, YAxpφpzqv, t´ zqv, zqwy

converge absolutely in the domains |z| ą t ą 0, t ą |z| ą 0, |z| ą |t ´ z| ą 0,

respectively, and are analytic continuation of each other along any path in the z-

plane (for example γ3 ˝ γi for i “ 1, 2 as depicted in figure 6).

By the results in section 3.2, this implies that V lies in the meromorphic center of Ax. By

Theorem 3.4, YAx is an intertwining operator of V .

This analysis can be generalized to more general vertex operators introduced in (3.2),

where Ypz,y,xq defines the OPE between defect fields in My,z and those in Mx,y. Similarly,

by the V -invariant boundary condition, we obtain the following property of Ypz,y,xq:
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• for φ P V , v PMy,z, w PMx,y and w1 PM 1
x,z, the operator products

xw1, φpzqYpz,y,xqpv, tqwy, xw1, Ypz,y,xqpv, tqφpzqwy, xw1, Ypz,y,xqpφpzqv, t´ zqv, zqwy

converge absolutely in the domains t ą |z| ą 0, |z| ą t ą 0, |z| ą |t ´ z| ą 0,

respectively, and are analytic continuation of each other along any paths in the z-

plane.

By Theorem 3.4 again, Ypz,y,xq is an intertwining operator of V [29]. Note that

Ypx,x,xq “ YAx .

Until the end of this section, we make the following assumption as a natural require-

ment in physics: the chiral symmetry V is a unitary rational VOA such that the category

of unitary V -modules, still denoted by ModV , is a UMTC.

Remark 3.9. There is a list of conditions on the VOA V that guarantees ModV to be a

modular tensor category by Huang’s theorem [51, 52]. In general, it is not clear if ModV is

a UMTC when V is unitary. See [42–44] for discussion of the relation between the unitarity

of a VOA V and that of ModV .

According to the tensor category theory of rational VOA developed by Huang and

Lepowsky [48, 57, 58], the intertwining operator Ypz,y,xq of V is equivalent to a morphism

e : My,z bV Mx,y ÑMx,z

in ModV , where bV is the tensor product in ModV . Note that we have chosen the conven-

tion that the left factor of the relative tensor product ´bV ´ has a higher time coordinate.

This convention is compatible with our OPE (recall (3.2)) and our convention in eq. (2.1).

The associativity of OPE of intertwining operators of V (recall the paragraph below

eq. (3.2))

My,z bV Mx,y bV Mw,x
1bV e //

ebV 1

��

My,z bV Mw,y

e

��
Mx,z bV Mw,x

e // Mw,z

(3.3)

is commutative [51]. When w “ x “ y “ z, this commutative diagram together with

the unit property V bV Ax » Ax imply that the triple pAx,e, ιxq defines an algebra in

ModV (see Definition 4.5) [54], Theorem 4.3. Similarly, one can see that Mx,y is an Ay-Ax-

bimodule, which also induces the same V -action on Mx,y because the V -action on Mx,y is

path independent. This leads to the following commutative diagrams:

Mx,y bV Mx,x

e

$$
Mx,y bV V

» //

1Mx,ybιx
::

Mx,y

My,y bV Mx,y

e

$$
V bV Mx,y

» //

ιyb1Mx,y
::

Mx,y .

(3.4)

In summary, all the observables on the 1+1D world sheet of a chiral gapless edge of

a 2d topological order pC, cq can be described by a pair pV,X7q, where X7 is a categorical

structure:
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• objects in X7 are topological edge excitations: x, y, z, ¨ ¨ ¨ ;

• for each pair px, yq of objects in X7, there is a space of morphisms: homX7px, yq :“

Mx,y, which is an object in ModV ;

• there is a map idx : V “ 1ModV Ñ Mx,x “ Ax given by the canonical embedding

ιx : V ãÑ Ax, which is a morphism in ModV ;

• there is a map e : My,z bV Mx,y ÑMx,z, which is also a morphism in ModV ,

satisfying the commutative diagrams in (3.3) and (3.4). By Definition A.1, the categorical

structure X7 is nothing but a category enriched in ModV , or an ModV -enriched cate-

gory [60].

There is a canonical C-linear category X associated to X7 defined as follows:

• the objects are the objects in X7 (i.e. topological edge excitations);

• the space of morphisms homXpx, yq :“ homModV p1ModV ,Mx,yq;

• the identity morphism is given by idx “ ιx : V ãÑMx,x;

• the composition morphism ˝ : homXpy, zq b homXpx, yq Ñ homXpx, zq is defined by

the following composed morphism:

homModV p1ModV ,My,zq bC homModV p1ModV ,Mx,yq Ñ homModV p1ModV ,My,z bV Mx,yq

e˝´
ÝÝÝÑ homModV p1ModV ,Mx,zq. (3.5)

Note that idx is indeed the identity morphism in the usual sense, i.e. idy ˝f “ f “ f ˝ idx
for f P homXpx, yq, because of the commutative diagrams in (3.4).

Mathematically, this category X is called the underlying category of X7. Physically, X

is nothing but the category of topological edge excitations. We will call the UMTC ModV
the background category of X7.

3.5 X7 is an enriched monoidal category

Two topological edge excitations x1 and x can be fused along the edge (in the spatial

dimension) to give a new edge excitation x1 b x as depicted in figure 7. This spatial

fusion automatically induces the spatial fusion of all observables on two world lines. If

Mx1,y1 and Mx,y can both be viewed as defects in the spatial dimension, we should expect

this spatial fusion to be given by Mx1,y1 bU Mx,y, where Mx1,y1 and Mx,y are viewed as

U -U -bimodules and the relative tensor product bU is well-defined in ModV . However,

it turns out to be wrong in general. The spatial fusion of observables (or instantons) in

temporal dimension are very different from those in spatial dimensions. Recall that this

is the recurring phenomena also happening on the gapped edges and when we move a

bulk particle to the edge. The spatial fusion of Ax1 and Ax is again a typical quantum

quenching scenario. When we move x1 closer to x at t “ 0, the Hamiltonian around

x changes suddenly. Renormalization flow will drive the world line theory Ax1 bU Ax
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t “ 0

t

Ax

Ay

Mx,y

My,z

Az

Mx1,y1

My1,z1

Ax1

Ay1

Az1

U

x
x1

ñ

Mx1x,y1y

My1y,z1z

Ay1y

Ax1x

Az1z

U

x1x

paq pbq

Figure 7. This picture depicts how to fuse spatially or horizontally two topological edge excitations

x and x1, together with boundary CFT’s Ax, Ay, Ax1 , Ay1 and walls Mx,y, Mx1,y1 .

supported on x1 b x to a new fixed point theory, which is given by Ax1bx. If the flow is

non-trivial, then Ax1 bU Ax fi Ax1bx. But we expect that the RG flow gives a natural

morphism from Ax1 bU Ax to Ax1bx because Ax1bx is not only physically universal but also

universal in a mathematical sense, which automatically demands such a morphism (see

Remark 3.10 below). By generalizing the above argument to Mx1,y1 and Mx,y, we expect

that there is a natural morphism, for x, y, x1, y1 P X7,

Mx1,y1 bU Mx,y ÑMx1bx,y1by, (3.6)

which is not an isomorphism in general. Its failure of being an isomorphism is an indication

of spatial fusion anomaly.

Remark 3.10. The universal property of Ax and Mx,y will be explained in details in

section 4.3 and section 6.3. This is a recurring theme that will be summarized as a principle

in section 6.3 for theories at RG fixed points. It is worthwhile to pointing out that, in some

important situations, spatial fusion anomalies vanish (see section 5.1 and Remark 6.3).

Composing the morphism (3.6) with the canonical morphism Mx1,y1 bV Mx,y Ñ

Mx1,y1 bU Mx,y defined by the universal property of the tensor product bU , we obtain

a morphism

b : Mx1,y1 bV Mx,y ÑMx1bx,y1by.

The morphism b should satisfy some natural properties:

1. The chiral symmetry condition should be preserved under the spatial fusion. In other

words, V should be mapped into Mxby,xby canonically (as ιxby : V Ñ Mxby,xby)

and independent of the paths we choose. In particular, this implies that the following
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diagram

V bV V » V
ιxbV ιy

vv

ιxby

''
Mx,x bV My,y

b // Mxby,xby

(3.7)

is commutative.

2. Consider the situation depicted in figure 7. If we fuse Mx,y,My,z,Mx1,y1 ,My1,z1 hori-

zontally and vertically and let it flows to the fixed point theory Mx1x,z1z. For conve-

nience, we abbreviated x1 b x to x1x. This process should be independent of which

fusion (horizontal or vertical) we do first. This implies that the following commutative

diagram (called the braided interchange property [91]):

My1,z1 bV Mx1,y1 bV My,z bV Mx,y

ebV e

��

1bV cM
x1,y1

,My,zbV 1
// My1,z1 bV My,z bV Mx1,y1 bV Mx,y

pbqbV pbq

��
My1y,z1z bV Mx1x,y1y

e

��
Mx1,z1 bV Mx,z

b // Mx1x,z1z ,

(3.8)

where cMx1,y1 ,My,z : Mx1,y1 bV My,z
»
ÝÑ My,z bV Mx1,y1 is the braiding in ModV . Our

braiding convention is explained in Remark 3.11 below.

Mathematically, these two properties simply says that the spatial fusion b defines an

enriched functor X7 ˆ X7 Ñ X7.

This spatial fusion is clearly associative and unital with respect to the tensor unit given

by the trivial edge excitation 1. As a consequence, this spatial fusion upgrades X7 to an

ModV -enriched monoidal category (see Definition A.8) [78, 91].

Remark 3.11. Our convention of the braidings in ModV is that when Mx1,y1 is moving

around My,z along a path sitting on the left side of the world line supported on x, i.e.

along the world line supported on x1 in figure 7, then Mx1,y1 will stay on the top during

the braiding. More precisely, in this case, the initial (resp. final) time coordinate of

Mx1,y1 is higher (resp. lower) than that of My,z, the adiabatic move gives the braiding

cMx1,y1 ,My,z : Mx1,y1 bV My,z Ñ My,z bV Mx1,y1 . We will use this convention throughout

this work.

Remark 3.12. Note that the braiding c used in the top horizontal arrow in eq. (3.8) is

replaced by the anti-braiding in ([91], Definition 2.1). Therefore, our definition of braided

interchange property given in eq. (3.8) actually makes X7 an ModV -enriched monoidal

category in the sense of Morrison and Penneys in ([91] Definition 2.1).

We summarize the main result of this section as a physical theorem.
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Theorem 3.13. The complete set of observables on a chiral gapless edge of a 2d topological

order forms a pair pV,X7q, where

• V is the chiral symmetry, which is a unitary rational VOA such that ModV is a

UMTC;

• X7 is an ModV -enriched monoidal category, whose objects are topological edge ex-

citations x, y, z, ¨ ¨ ¨ , and whose morphisms Mx,y are boundary CFT’s (if x » y) or

domain walls consisting of boundary condition changing operators (if x fi y).

As a consequence, the underlying category X, i.e. the category of topological edge excita-

tions, is a C-linear monoidal category.

4 Boundary-bulk CFT’s

Further study of X7 needs the classification theory of rational CFT’s (see Theoremph 4.21

and Remark 4.26). In this section, we review the mathematical theory of rational CFT’s

based on the representation theory of VOA’s.

4.1 Definitions of boundary-bulk CFT’s

The theory of conformal field theory (CFT) was developed by physicists at the end of 80’s

(see [7, 90] and [26] for a lengthy review). It took, however, about 20 years for mathe-

maticians to develop a successful mathematical foundation of CFT’s. This foundation is

not merely a rigorization of the existing physical theory in its old formalism, but a new

mathematical theory written in a beautiful new language with powerful new tools, and it

leads to many new results far beyond those in [26]. These new results play a crucial role

in this work, and are quite unfamiliar to most condensed matter physicists. Therefore, we

briefly outline here where these results come from. See [68] for a more detailed review.

When physicists Belavin, Polyakov and Zamolodchikov published the first systematic

study of 2D CFT’s in 1984 [7], mathematicians Frenkel, Lepowsky and Meurman published

their independent discovery of similar mathematical structures also in 1984 [32]. In 1987,

the preprint of Segal’s mathematical definition of a 2D CFT [100] came out and have made

a big impact to mathematics community since then. We will give a sketchy presentation

of an open-closed (or boundary-bulk) generalization of Segal’s definition [46, 49, 68].

We define Bordcpx
op´cl to be the category, in which (1) the objects are finite ordered set

with two colors: “c” (for closed strings) and “o” (for open strings), e.g. to1, c2, o3, c4, c5u; (2)

the spaces of morphisms are those of the conformal equivalence classes of open-closed com-

plex bordisms, i.e. the moduli spaces of Riemann surfaces with boundary components being

either completely parametrized or not parametrized but having none or some parametrized

line segments, e.g.
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where the label “in{out” is associated to domain/codomain of the morphism and is deter-

mined by the relation between the orientation of the boundary component induced from

that of the surface and that induced from the parametrization.

The category Bordcpx
op´cl has the structure of a symmetric monoidal category with the

tensor product defined by the disjoint union. Moreover, it has a ˚-structure defined by

flipping the orientation of the Riemann surfaces. This flipping exchanges the domains

with the codomains. Let H8 be the category of Hilbert spaces. It also has a ˚-structure

homH8px, yq
:
ÝÑ
»

homH8py, xq defined by taking adjoint.

Definition 4.1 ([46, 49, 100]). A boundary-bulk (or open-closed) CFT is a real-analytic

projective symmetric monoidal functor from Bordcpx
op´cl to H8. It is called unitary if it is

also a ˚-functor.

Remark 4.2. Since the spaces of morphisms in Bordcpx
op´cl are moduli spaces naturally

equipped with complex structures, “real-analytic” means that the functor, restricting on

the spaces of morphisms, gives real-analytic functions. If the functor is complex analytic,

then such CFT’s are called holomorphic CFT’s.

Remark 4.3. A CFT functor F maps tc1u, i.e. the set containing a single “c”-colored

element, to Hbulk, and maps to1u to Hbdy. The monoidalness of F means that

F pto1, c2, o3, c4, c5uq » Hbdy bC Hbulk bC Hbdy bC Hbulk bC Hbulk.

This definition of CFT includes all consistence conditions, such as the modular invari-

ant condition and the famous Cardy condition, etc. Unfortunately, this definition is not

directly workable because chiral fields φpzq in a CFT are associated to insertion at a point

instead of a boundary component (or a line segment). It suggests to consider Riemann

surfaces with parametrized punctures in the interior (closed strings stretched to infinity)

or on the boundaries (open strings stretched to infinity) [47, 68, 104]. We will denote this

surface-with-puncture variation of Bordcpx
op´cl by Bordcpx,8

op´cl . Actually, Bordcpx,8
op´cl is not a

category because the composition of morphisms are only partially defined, thus is called a

partial category. Similarly, we replace H8 by a partial category of graded vector spaces

(with a subtle definition of morphisms and their compositions), denoted by GV [47]. It

is also possible to endow each of Bordcpx,8
op´cl and GV with a ˚-structures [42]. Then we

obtain a working definition of a CFT.

Definition 4.4 ([68]). A boundary-bulk (or an open-closed) CFT is a real-analytic pro-

jective symmetric monoidal functor F : Bordcpx,8
op´cl Ñ GV. It is unitary if it is also a

˚-functor.
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To distinguish it from the first definition, we denote F ptc1uq by Vbulk and F pto1uq

by Vbdy.

4.2 Classification theory of boundary-bulk CFT’s

If we restrict a CFT functor F to the partial subcategory consisting of only bordisms of

genus zero (Riemann spheres) from tc1, ¨ ¨ ¨ , cnu
8
n“0 to tc1u and assume F is complex ana-

lytic, it was proved by Huang that this restricted F endows Vbulk with the structure of a

vertex operator algebra (VOA) [47]. Therefore, a VOA is a substructure of a CFT. In gen-

eral, a VOA is not modular invariant except for holomorphic VOA’s (such as the Monster

Moonshine VOA [32]). The idea to find a modular invariant bulk (or closed) CFT Vbulk is

to realize it as certain extension of V bC V , where V is a VOA and V is the same as the

VOA V in the formal variable but contains only the anti-chiral fields φpz̄q “
ř

n φnz̄
´n´1.

Therefore, we need study the representation theory of VOA. Building on many earlier

works by Huang and Lepowsky on tensor category theory for VOA’s [48, 57, 58], Zhu’s

influential work on modular invariance [112] and Huang’s proof of Verlinde formula [51],

Huang proved that the category ModV of V -modules for V satisfying certain rationality

conditions is a modular tensor category [52]. As a consequence, a bulk CFT Vbulk is a

commutative algebra in the category of V bC V -modules [65], or equivalently, in the cat-

egory ModV bModV , which is also the Drinfeld center ZpModV q of ModV . Similarly, the

boundary CFT Vbdy is a chiral extension of a VOA.

Before we state the classification result, we need recall some basic notions in tensor

categories.

Definition 4.5. An algebra in a monoidal category A is a triple A “ pA,m, ηq where A

is an object of A, m (the multiplication) is a morphism A b A Ñ A and η (the unit) is a

morphism 1A Ñ A such that

m ˝ pmb 1Aq “ m ˝ p1A bmq, m ˝ p1A b ηq “ 1A “ m ˝ pη b 1Aq.

An algebra A in a braided monoidal category is called commutative if mA ˝ cA,A “ mA.

Similarly, one can define a coalgebra A “ pA,∆, εq, where ∆ : A Ñ A b A and

ε : AÑ 1A obey the following coassociativity and counit conditions:

p∆b 1Aq ˝∆ “ p1A b∆q ˝∆, pεb 1Aq ˝∆ “ 1A “ p1A b εq ˝∆.

Definition 4.6. A Frobenius algebra A “ pA,m, η,∆, εq is both an algebra and a coalgebra

such that the coproduct ∆ is an A-A-bimodules map, i.e.

p1A bmq ˝ p∆b 1Aq “ ∆bm “ pmb 1Aq ˝ p1A b∆q.

We will use the following graphical representation:

m “

A A

A

, η “
A

, ∆ “

A A

A

, ε “
A

.
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Let B be a modular tensor category with the tensor product b and a tensor unit 1B.

The duality maps are expressed graphically (read from bottom to top) as follows:

x˚ x
“ vx : x˚ b xÑ 1B ,

x x˚
“ u:x : xb x˚ Ñ 1B ,

x x˚

“ ux : 1B Ñ xb x˚ ,
x˚ x

“ v:x : 1B Ñ x˚ b x .

(4.1)

A Frobenius algebra A in a modular tensor category B is called special if m˝∆ “ λ11A
and ε ˝ η “ λ2 dimA for some λ1λ2 “ 1. It is called symmetric if it satisfies the following

identity:

A

A˚

“

A

A˚

. (4.2)

Let B “ ModV for a rational VOA V such that it is a modular tensor category [51].

We have ZpBq “ B b B [92]. We denote the right adjoint functor to the tensor product

functor b : B b BÑ B by bR, which maps Frobenius algebras in B to Frobenius algebras

in B b B [71]. We denote the finite set of isomorphism classes of simple objects in B by

IrrpBq. For A P ZpBq, we also choose a basis tb
pibj;αq
A u of homCpA, ib jq and its dual basis

tbA
pibj;βqu of homCpi b j, Aq for i, j P IrrpBq, i.e. b

pibj;αq
A ˝ bA

pibj;βq “ δαβ 1ibj , and use the

following graphical notations

b
pibj;αq
A “ α

ib j

A

, bApibj;αq “
α

ib j

A

.

For an algebra A in B, its full center ZpAq in ZpBq will be defined in Definition 4.20. If A

is Frobenius algebra, ZpAq can be defined by the subalgebra of bRpAq given by the image

of the morphism in eq. (4.4) for Abdy “ A [25, 71].

Now we are ready to state a classification result for boundary-bulk CFT’s.

Theorem 4.7 ([67, 71]). A boundary-bulk CFT containing a single boundary condition,

which preserves a rational chiral symmetry V , is necessary to be a triple pAbdy|Abulk, ιq,

where

1. Abdy is a symmetric Frobenius algebra in B “ ModV ;

2. Abulk is a commutative symmetric Frobenius algebra in ZpBq;

3. ι : Abulk Ñ bRpAbdyq is an algebra homomorphism factoring through ZpAbdyq ãÑ

bRpAbdyq
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satisfying the modular invariant condition, for all i, j P IrrpModV q,

dim i dim j

dimB

Abulk

Abulk

ib j

ib j

“
ÿ

α

Abulk

ib j

ib j

Abulk

Abulk

α

α

(4.3)

and the Cardy condition

ι ˝ ι˚ “

bRpAbdyq

bRpAbdyq

bRpAbdyq

(4.4)

where ι˚ is the right dual of ι. The conjecture is that this triple is sufficient to give a

boundary-bulk CFT defined in Definition 4.4 [87].

Remark 4.8. The complete structure of a boundary-bulk CFT, including spectrums, cor-

relation functions, OPE, partition functions, etc., is rather complicated. The drastic sim-

plification achieved in Theorem 4.7 might looks surprising to physicists. This miracle

happens because ModV has not only the structure of a modular tensor category but also a

much richer structure called “vertex tensor category” [52, 57], which makes the reduction

possible.

Definition 4.9. An algebra A in a fusion category is called separable if the multiplication

morphism m splits as an A-A-bimodule map. A separable algebra A is called simple if A is

a simple A-A-bimodule. A commutative separable algebra A in a braided fusion category A

is called connected if dim homAp1A, Aq “ 1. A connected commutative separable algebra is

also called a condensable algebra [69]. A condensable algebra in a modular tensor category

A is called a Lagrangian algebra if pdimAq2 “ dimA.

Using the results in [33], it is easy to show that a condensable algebra in a modular

tensor category can be automatically upgraded to a commutative simple special symmetric

Frobenius algebra (CSSSFA), which is unique up to a scalar factor in the definition of the

counit (or equivalently, the comultiplication).

Theorem 4.10. For a given boundary-bulk CFT, if all its the boundary conditions preserve

the same rational chiral symmetry V , and the bulk CFT has a unique vacuum, then

• the bulk CFT Abulk is a Lagrangian algebra in ZpBq, which can be upgraded to a

CSSSFA (unique up to a scalar factor for the counit) [71];

• boundary CFT’s that share the same bulk Abulk are simple special symmetric Frobe-

nius algebras (SSSFA) Abdy in B such that Abulk » ZpAbdyq as algebras, where

ZpAbdyq is the full center of Abdy [25, 33, 71];
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Morita equivalent SSSFA’s in B: A1 A2A3

M N

Abulk “ ZpA1q “ ZpA2q “ ZpA3q P ZpBq

Figure 8. This picture depicts a 1+1D world sheet, on which lives boundary CFT’s A1, A2, A3 P B

and a bulk CFT Abulk P ZpBq given by the full center of the boundary CFT’s. The domain wall M

is an invertible A1-A2-bimodule and N is an invertible A2-A3-bimodule.

• a domain wall between two different boundary CFT’s A1 and A2 is given by a canon-

ical invertible A1-A2-bimodule in ModV [18, 31].

Two boundary CFT’s are Morita equivalent if and only if their full centers are isomorphic

as algebras [70]. These results are illustrated in figure 8.

Example 4.11. In the so-called Cardy case [23, 33, 67]

• the boundary CFT’s are given by the SSSFA’s in B that are Morita equivalent to the

trivial SSSFA 1B “ V . More precisely, these SSSFA’s are precisely xb x˚ for x P B

equipped with the structure of a Frobenius algebra defined by

xb x˚ b xb x˚
∆ :“ 1v:x1

m :“ 1vx1
xb x˚, 1B

ε :“ u:x

η :“ ux
xb x˚; (4.5)

• the bulk CFT is given by the full center Zpx b x˚q “ Zp1Bq “ ‘iPIrrpBqi
˚ b i in the

category ZpBq with the multiplication map defined by

à

i,j,kPIrrpBq

ÿ

α

i˚ j˚

k˚

α b

i j

α

k

(4.6)

and the unit map defined by the canonical embedding 1B b 1B ãÑ Zp1Bq (see for

example [30, 71]). Note that Zp1Bq gives the famous charge conjugate modular

invariant partition function;

• the domain wall between two boundary CFT’s A “ y b y˚ and B “ x b x˚ is given

by the invertible A-B-bimodule y b x˚ [31].

4.3 Internal homs

It turns out that the object ybx˚, appeared in Example 4.11, is the simplest example of a

universal construction called the internal hom. Since the notion of an internal hom plays

a crucial role in this work, we review its definition.
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Definition 4.12. Let A be a monoidal category. A left A-module M is a category equipped

with an action functor d : AˆMÑM, pa, xq ÞÑ ad x and natural isomorphisms:

1A d x
»
ÝÑ x and pab bq d x

»
ÝÑ ad pbd xq @a, b P A, x PM, (4.7)

satisfying the following commutative diagrams:

ppab bq b cq d x //

��

pab pbb cqq d x // ad ppbb cq d xq

��
pab bq d pcd xq // ad pbd pcd xqq

and pab 1Aq d x //

&&

ad p1A d xq

��
ad x .

Example 4.13. A itself is a left A-module with the action functor defined by the tensor

product functor b : AˆAÑ A.

Definition 4.14 (Internal hom by adjunction). The internal hom rx, ysA, or rx, ys for

simplicity, is an object in A uniquely determined (up to unique isomorphism) by a family

of isomorphisms:

homMpad x, yq
»
ÝÑ homApa, rx, ysq (4.8)

which are natural in all variables a, x, y.

If f : ad xÑ y is mapped to g : aÑ rx, ys under the isomorphism (4.8), then f and

g are called the mates of each other. Taking a “ rx, ys, we denote the mate of the identity

map 1rx,ys : rx, ys Ñ rx, ys by ev : rx, ys d xÑ y.

Example 4.15. When A is a UFC and M “ A, we have rx, ys » ybx˚ and ev : rx, ysdxÑ

y is precisely given by 1y b vx : y b x˚ b xÑ y.

We can equivalently define the notion of an internal hom by its universal property.

Definition 4.16 (Internal hom by the universal property). The internal hom is a pair

prx, ys, rx, ys b x
ev
ÝÑ yq,

which is universal among all such pairs. It means that for any such a pair pQ,Qb x
f
ÝÑ yq

there exists a unique morphism f : Q Ñ rx, ys rendering the following diagram commuta-

tive:

rx, ys d x

ev

$$
Qb x

f //

D! fb1
99

y .

(4.9)

Remark 4.17. The standard mathematical symbol D! represents the phrase “there exists

a unique”. It is an important and enjoyable exercise to show that this universal property

determines rx, ys up to unique isomorphism. Intuitively, the internal hom rx, ys is in some

sense the “maximal” one among all possible pQ, fq.

– 28 –



J
H
E
P
0
2
(
2
0
2
0
)
1
5
0

There are two canonical morphisms defined by their mates shown as follows:

ry, zs b rx, ys Ñ rx, zs ÐÑ ry, zs b rx, ys b x
ev ˝p1bevq
ÝÝÝÝÝÝÑ z (4.10)

1A Ñ rx, xs ÐÑ 1A b x
»
ÝÑ x. (4.11)

When x “ y “ z, these morphisms endow rx, xs with the structure of an algebra.

Example 4.18. When A is a fusion category and M “ A, the algebra structure on rx, xs

coincides with that of xb x˚ defined in Example 4.11.

Example 4.19. Let A be a fusion category with the tensor product b and A a simple

separable algebra in A. The category AA of right A-modules is naturally an indecomposable

semisimple left A-module category with the left A-action d : A ˆ AA Ñ AA defined by

pa, xq ÞÑ ab x. For x, y P AA, rx, ysA exists and we have

rx, ysA » pxbA y
˚q˚. (4.12)

In particular, rA,´s : AA Ñ A is the precisely the forgetful functor.

The notion of full center can also be defined as an internal hom [17]. Let A be a fusion

category and ZpAq be its Drinfeld center. Let A be a simple separable algebra in A. Then

the category AA|A of A-A-bimodules in A is a fusion category [96]. There is an action

functor ZpAq ˆAA|A Ñ AA|A defined by pz, xq Ñ z b x.

Definition 4.20. The full center ZpAq of A is the internal hom rA,AsZpAq.

4.4 Unitary boundary-bulk CFT’s

We have discussed the classification result of boundary-bulk rational CFT’s. What about

unitary rational CFT’s? The representation theory of a unitary VOA has not been seriously

studied until recently [42–44]. As far as we know, the classification theory of unitary

rational CFT’s derived directly from Definition 4.1 or 4.4, is not yet available. There

is, however, another formulation of a unitary rational CFT based on the representation

theory of rational conformal nets, and its classification theory was known [88, 97, 98]. It

is essentially the same as that of boundary-bulk CFT’s given in Theorem 4.7 but with a

rational VOA replaced by a rational conformal net, whose module category is a UMTC,

and the two types of Frobenius algebras replaced by two types of :-Frobenius algebras

(see [72] for a review). A :-Frobenius algebra in a UMTC is a Frobenius algebra satisfying

the conditions ∆ “ m: and ε “ η:. For example, the Frobenius algebra constructed in (4.5)

is a :-SSSFA. We will assume that this classification also works for the unitary boundary-

bulk CFT’s defined in Definition 4.1 or Definition 4.4. We make the classification result

more precise below.

From now on, we assume that V is a unitary rational VOA of central charge c such

that the category of unitary V -modules (see [42]), still denoted by ModV , is a UMTC.

If B is a UMTC and M is an indecomposable unitary left B-module, then the category

FunBpM,Mq of B-module functors from M to M can be upgraded to a UFC [38]. Therefore,
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for non-zero x P M, the category Brx,xs|rx,xs » FunBpM,Mq can be upgraded to a UFC.

In this case, the simple separable algebra rx, xs is automatically a Frobenius algebra with

∆ :“ m: and ε :“ η:. Moreover, it is a :-SSSFA because m: is automatically a bimodule

map by the unitarity of Brx,xs|rx,xs.

Conversely, all :-SSSFA’s in B can be realized by internal homs. Indeed, for a :-SSSFA

A, the category BA of right A-modules is an indecomposable unitary left B-module. If x

is a right A-module, then x˚ is automatically a left A-module. For x, y P BA, we have [96]

rx, ys “ pxbA y
˚q˚ » y bA x

˚.

In particular, A » rA,As as Frobenius algebras.

If B is a :-SSSFA in B that is Morita equivalent to A, we can also realize B as an

internal hom in the following way. Suppose that an invertible B-A-bimodule x defines the

Morita equivalence. Since ´bB x : BB Ñ BA defines an equivalence between the two left

B-modules and maps B to x, we obtain B » rB,Bs » rx, xs as :-SSSFA’s.

For applications in unitary boundary-bulk CFT’s with only V -invariant boundary con-

ditions, we set B “ ModV . For a given unitary boundary CFT A, i.e. a :-SSSFA in B,

all unitary boundary CFT’s that share the same bulk with A are those :-SSSFA’s in B

that are Morita equivalent to A [70]. Therefore, all of them can be recovered as internal

homs rx, xs for x P BA. The category BA is an indecomposable unitary left B-module,

which is uniquely determined by the unitary bulk CFT ZpAq up to equivalence. Moreover,

there is a bijection from the set of the equivalence classes of indecomposable unitary left

B-modules to that of the equivalence classes of Lagrangian algebras in ZpBq defined by

M ÞÑ ridM, idMsZpBq [19, 70], where idM is the tensor unit of the UFC FunBpM,Mq and the

action functor ZpBqˆFunBpM,Mq Ñ FunBpM,Mq is defined by pz, F q Ñ zdF p´q. When

M “ BA, we have FunBpM,Mq “ BA|A and idM “ A.

Combining the above discussion with the assumption that unitary boundary-bulk

CFT’s based on VOA’s is equivalent to those based on conformal nets [88, 97, 98], we

obtain the following physical “theorem”.

Theoremph 4.21. Let B “ ModV be a UMTC. For a given unitary bulk CFT Abulk in

ZpBq with a unique vacuum, we have the following assertions.

• The category of boundary conditions of Abulk is given by an indecomposable unitary

left B-module M which is canonically associated to Abulk. We have M » BA for a

unitary boundary CFT A, i.e. a :-SSSFA in B such that ZpAq » Abulk as algebras.

An object x PM is called a boundary condition.

• Abulk “ ridM, idMsZpBq is a Lagrangian algebra in ZpBq.

• For x P M, the unitary boundary CFT associated to the boundary condition x is

given by rx, xsB, which is a :-SSSFA in B such that Zprx, xsBq » Abulk;

• For x, y P M, the domain wall between the two boundary CFT’s rx, xsB and ry, ysB
is precisely given by the invertible bimodule rx, ysB.
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Remark 4.22. What we are saying above is that upgrading a rational CFT (Theorem 4.10)

to a unitary rational CFT (Theoremph 4.21) amounts to replacing the adjective “Frobenius”

by “:-Frobenius”.

Remark 4.23. Strictly speaking, we should require not only the bulk CFT to have a

unique vacuum, but each boundary CFT also to have a unique vacuum. Usually, a QFT

(defined on Sn or Rn) with multiple vacuums is not stable. It will flow to a stable one (with

a unique vacuum) under perturbation. This requirement amounts to consider only simple

boundary conditions in M and boundary CFT’s rx, xsB for simple x P M, or equivalently,

haploid :-SSSFA’s A (i.e. dim homBp1B, Aq “ 1). For this reason, we sometimes discuss

only simple boundary conditions and simple topological edge excitations in many physical

discussions.

Remark 4.24. For the category of boundary condition M of a given bulk CFT Abulk, we

have a B-enriched category BM via the canonical construction (see Example A.3). For

a condensable algebra A in B, the category M :“ BA is a UFC and ´ b A : B Ñ M

is a central functor. We obtain a B-enriched monoidal category BM via the canonical

construction given in Theorem 5.3.

Example 4.25. The unique unitary rational VOA of central charge c “ 0 is V “ C. In

this case, Theoremph gives a classification of 1+1D unitary wall-boundary-bulk TQFT’s.

In particular, in this case, B “ H, the only Lagrangian algebra in H is C. The category of

boundary conditions associated to the algebra C is H, which is the unique indecomposable

semisimple H-module. For x, y P H, the associated boundary TQFT’s are matrix algebras

rx, xs “ xbC x
˚ “ homHpx, xq and ry, ys, respectively, and the domain wall between them

is rx, ys “ y b x˚ “ homHpx, yq. Note that the full center of rx, xs is just the usual center

Zprx, xsq “ C.

Remark 4.26. Theoremph 4.21 plays a crucial in this work. We want physics readers to

keep in mind that this radical simplification of wall-boundary-bulk CFT’s to internal homs

does not lose any physical information. More precisely, a single internal hom rx, ysB or

ridM, idMsZpBq (for B “ ModV ) automatically includes the information of the spectrum,

chiral (or non-chiral) fields, correlation functions, OPE, structure constants and partition

functions on torus or any other higher genus surfaces, etc. The key point of this miracle is

stated in Remark 4.8.

5 Constructions of gapless edges

In section 5.1, we give an explicit construction of the so-called canonical gapless edge of

a 2d chiral topological order, and show that it is a special case of the so-called canonical

construction. In section 5.2, we construct more gapless edges by fusing canonical gapless

edges with gapped domain walls.

5.1 A natural construction of chiral gapless edge of pB, cq

We are ready to give an explicit construction of a chiral gapless edge for a 2d chiral

topological order defined by a pair pB, cq, where B is a UMTC realized by a unitary
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t “ 0

t “ t1

t

a P C

Ax “ rx, xs

Ay “ ry, ys

Mx,y“rx, ys

U “ V

a

Figure 9. This picture depicts a 2d topological order pB, cq, together with the canonical gapless

edge pV,BBq, in which homBBpx, yq :“ rx, ys “ y b x˚ P B for x, y P B.

rational VOA V , i.e. B “ ModV and c is the central charge of V . We denote the tensor

product in B by b “ bV
In this case, we give a very natural construction of a chiral gapless edge of the 2d

topological order pB, cq. We describe its ingredients explicitly as follows (also illustrated

in figure 9):

• Topological edge excitations are all obtained from moving topological bulk excitations

to the edge. They are labeled by objects in B.

• U “ M1B,1B
“ r1B,1Bs “ 1B “ V , namely, all the boundary CFT’s Ax and walls

between them Mx,y are required to preserve the largest chiral symmetry V . As a

consequence, Mx,y are objects in B.

• Mx,y “ rx, ys “ y b x˚ P B. In particular, M1,x “ r1, xs “ x.

• Defect fields in Mx,y can be fused with those in My,z to give defect fields in Mx,z.

This amounts to a morphism ry, zs b rx, ys Ñ rx, zs in B, which is defined as follows:

ry, zs b rx, ys “ z b y˚ b y b x˚
1zbvyb1x˚
ÝÝÝÝÝÝÝÑ z b x˚ “ rx, zs. (5.1)

In this case, rx, ys is automatically an invertible ry, ys-rx, xs-bimodule.

• The spatial fusion of topological edge excitations Mx1,y1 bMx,y Ñ Mx1bx,y1by (de-

picted in figure 7) is a morphism in B defined as follows:

rx1, y1sbrx, ys “ y1bx1˚bybx˚
1y1bcx1˚,ybx˚

ÝÝÝÝÝÝÝÝÝÑ py1byqbpx1bxq˚ “ rx1bx, y1bys, (5.2)

where we have used our braiding convention: the braiding cx1,ybx˚ : x1 b py b x˚q Ñ

py b x˚q b x1 is defined by moving x1 from tx1 ą tyx˚ to tx1 ă tyx˚ along a path lying

entirely to the left of the world line supported on x in figure 7.
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Remark 5.1. This chiral gapless edge of pB, cq is the most studied edge in physics. But

our description of the complete set of observables and their fusions in (5.1) and (5.2) is new.

Remark 5.2. For a generic pB, cq, it is not known if there exists any unitary rational VOA

V of central charge c such that B » ModV . If it indeed exists, it is not known how many

there are. In a special case, when c “ 0, the only unitary VOA of central charge zero is

V “ C [40]. It means that, in this case, a 2d topological order pB, 0q can have gapped edges

(V “ C) but does not have any non-trivial chiral gapless edges. It may have non-chiral

gapless edges [16, 80].

These observables on the above chiral gapless edge of pB, cq can be summarized by a

pair pV,B7q, where B7 is a B-enriched monoidal category defined as follows:

• an object in B7 is a topological edge excitation, i.e. an object in B;

• homB7px, yq “ rx, ys “ y b x˚;

• the identity morphism idx : 1B Ñ rx, xs “ xb x˚ is defined by ux : 1B Ñ xb x˚;

• the composition morphism e : ry, zs b rx, ys Ñ rx, zs is defined by eq. (5.1);

• the morphism b : rx1, y1s b rx, ys Ñ rx1 b x, y1 b ys is defined by eq. (5.2).

It was proved by Morrison and Penneys in [91] that this categorical structure B7 is indeed a

B-enriched monoidal category. Moreover, it is just a special case of the so-called canonical

construction.

Theorem 5.3 (Canonical Construction [91]). Let D be a braided monoidal category

and Y a monoidal category equipped with a braided oplax monoidal functor FY : DÑ ZpYq

such that FYp1q “ 1. It endows Y with structure of an action functor d : D ˆ Y Ñ Y

defined by pc, yq ÞÑ c d y :“ FYpcq b y. We assume that internal hom rx, ys in D exists

for all x, y P Y. Then we obtain from the triple pD,Y, FYq a D-enriched monoidal category,

denoted by DY, as follows:

1. objects in DY are precisely the objects in Y;

2. for x, y P Y, homDYpx, yq :“ rx, ys in D;

3. the identity morphism idx : 1D Ñ rx, xs is the morphism in D given by the mate of

the canonical isomorphism 1D d x » x in Y;

4. the composition morphism ˝ : ry, zs b rx, ys Ñ rx, zs is the mate of the following

composed morphism:

pry, zs b rx, ysq d xÑ ry, zs d prx, ys d xq
1ry,zsdev
ÝÝÝÝÝÝÑ ry, zs d y

ev
ÝÑ z;
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5. b : rx1, y1sb rx, ys Ñ rx1bx, y1b ys is the mate of the following composed morphism:

prx1, y1s b rx, ysq d px1 b xq “ FYprx
1, y1s b rx, ysq b x1 b x

Ñ FYprx
1, y1sq b FYprx, ysq b x

1 b x

1bβFYprx,ysq,x
1b1x

ÝÝÝÝÝÝÝÝÝÝÝÝÑ FYprx
1, y1sq b x1 b FYprx, ysq b xÑ y1 b y,

where βFYprx,ysq,x1 : FYprx, ysq b x
1 Ñ x1 b FYprx, ysq is the half-braiding.

The underlying category of DY is Y, and the background category of DY is D.

Using the notation of the canonical construction, we see that B7 “ BB. From now

on, we denote pV,B7q by the pair pV, BBq. As we will show later, only physically relevant

FY are braided monoidal functors (NOT oplax). Hence, among all possible Y (viewed as a

finite left B-module), Y “ B is the canonical choice. For this reason, from now on, we will

refer to pV, BBq as the canonical chiral gapless edge of pB, cq.

Remark 5.4. Strictly speaking, for a given 2d topological order pB, cq, there is no canonical

chiral gapless edge even if we assume the existence of a VOA V such that B » ModV
because such VOA’s are often not unique (see [10] and [20, 21, 81]). Once V is fixed,

however, the categorical data BB is indeed canonical with respect to B.

We would like to provide a graphical notation for this canonical gapless edge as shown

below.

pV, BBq “
pB, cqpV,BBq

“ pB, cq
pB, cq

B

pV,BBq

(5.3)

In the second picture, we try to provide different “physical meanings” to the two “B”s

in BB.

• The background category “B”, as a UMTC, can be interpreted as a 2d topological

order. Therefore, we use this “B” to label a “fictional 2d phase” in the time direction

(depicted as the vertical plane). Note that the fictional vertical plane also remind us

the 1+1D world sheet of this chiral gapless edge.

• The underlying category “B”, viewed as a UFC (by forgetting its braiding), is the

category of topological edge excitations. It can be interpreted as a “fictional gapped

domain wall” between the fictional 2d phase in the time direction and the physical 2d

phase pB, cq in the spatial dimensions. Notice that B is indeed a legitimate gapped

domain wall (actually the trivial one) between two 2d phases pB, cq and pB, cq.

Note that the whole fictional vertical plane, including the fictional “wall” labeled by

B, should be viewed as a single gapless edge pV, BBq. This graphical notation of canonical

gapless edge in (5.3) has an immediate advantage. It seems to suggest that this gapless
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edge can be obtained, as illustrated below, by starting from a horizontal plane in the spatial

dimensions then folding the left half of the plane to a vertical spacetime plane.

pB, cq

pB, cq

B topological Wick rotation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pB, cqpB, cq

pV,BBq

B
(5.4)

Of course, such a folding process is physically impossible. A picture might be closer to the

physical reality is the following one. Imagine that we cut out the left half of a 2d topological

order pB, cq defined on R2 by brutal force. It takes the system in the neighborhood of the

edge away from a RG fixed point. As time goes by, the edge will undergo a self-healing

process by flowing to a new RG fixed point. One of the possible RG fixed point is the

canonical chiral gapless edge pV, BBq. We will show later that, in general, there are other

RG fixed points corresponding to different chiral gapless edges. What makes this picture so

amazing is its holographical nature. That is, the information lost through the brutal force

cutting in the spatial dimensions can be completely restored in the temporal dimension!

Therefore, we believe that this fictional folding process can not be just an ad hoc

bookkeeping trick. It should have some yet-to-be-clarified deep physical meanings, and

will be proved to be very useful later. Therefore, we would like to refer to this fictional

folding trick as a “topological Wick rotation”.

Remark 5.5. It is generally accepted that a chiral gapless edge of a 2d topological order

is given by a so-called “chiral CFT”, the precise meaning of which has never been clarified.

Our result in this subsection gives a precise meaning to a “chiral CFT” as a pair pV, BBq.

Note that the spaces of conformal blocks do not live on the 1+1D world sheet of the gapless

edge directly. It can, however, be recovered by the underlying category of BB.

Remark 5.6. The unitary boundary-bulk CFT obtained by applying the dimensional

reduction depicted in figure 5 on the canonical gapless edge is precisely the Cardy case

presented in Example 4.11.

It turns out that the canonical construction of enriched monoidal categories also nat-

urally includes the mathematical description of a gapped edge of a 2d topological order,

i.e. a UFC, as a special case. Indeed, for an ordinary UFC M, there is a unitary braided

monoidal functor H ãÑ ZpMq defined by C ÞÑ 1ZpMq. The UFC M can be viewed as the

H-enriched monoidal category obtain from the triple pH,M,H ãÑ ZpMqq via the canonical

construction, i.e. M “ HM. Moreover, H can be viewed as the UMTC ModV for V “ C,

which should be viewed as the trivial unitary rational VOA of central charge c “ 0. As a

consequence, a gapped edge M of a 2d topological order is described by the pair pC,HMq,

where the underlying category is again the category of topological edge excitations M and

the background category is H. In this case, rx, xsH “ homMpx, xq, as a direct sum of

matrix algebras, should be viewed as a boundary TQFT of the trivial bulk TQFT given

by its full center Zprx, xsHq “ C.
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5.2 General gapless edges

Let B “ ModV . Let pC, cq be a 2d topological order that is Witt equivalent to pB, cq.

In other words, the 2d topological orders pB, cq and pC, cq can be connected by a gapped

domain wall, which is described by

• a UFC M equipped with a unitary braided monoidal equivalence φM : BbC
»
ÝÑ ZpMq

(i.e. a closed fusion B-C-bimodule [77], Definition 2.6.1).

In this case, by fusing this gapped domain wall M with the canonical gapless edge pV, BBq

of pB, cq, we obtain a gapless edge of pC, cq. We illustrate this fusion process below:

pC, cq
B

pB, cq

pV,BBq

B
M

H

pC,HMq

ù
pC, cqBbH

pV,BMq

B bBM“M

(5.5)

The superscripts for BB and HM can be viewed as fictional topological orders in the time

direction and the UFC’s B and M can be viewed as fictional gapped domain walls. If we

take this for granted, then it suggests immediately the following fusion formula:

pV, BBqbpB,cq pC,
HMq “ pV bC C, BbHpB bB Mqq “ pV, BMq. (5.6)

Note that the unitary braided monoidal equivalence φM : B b C Ñ ZpMq provides a

composed braided monoidal functor B ãÑ B b C
φM
ÝÝÑ ZpMq. Therefore, BM is a well-

defined enriched monoidal category via the canonical construction. In this case, B is the

background category, and M is the underlying category and the category of topological

edge excitations.

The fusion formula (5.6) is a little bit mysterious. Another perhaps equally mysterious

way to understand this chiral gapless edge pV, BMq is by the topological Wick rotation

illustrated below:

pC, cq

pB, cq

M topological Wick rotation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

pC, cqpB, cq

pV,BMq

M
(5.7)

Remark 5.7. Note that our left-right convention in φM : B b C
»
ÝÑ ZpMq is that if the

orientation of the wall is the same (resp. the opposite) as the induced orientation of a bulk,

then this bulk phase acts on the wall from right (resp. left). We will use this convention

throughout this work.

We will postpone the proof of (5.6) until section 6.3. Let us take (5.6) for granted for

now. We list a few basic ingredients of the gapless edge pV, BMq.
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1. Topological edge excitations x, y, z, ¨ ¨ ¨ are objects in M, and the trivial topological

edge excitation 1 is given by the tensor unit 1M of M.

2. The VOA U “ M1,1 that can live on the entire 1+1D world sheet is given by

r1M,1MsB, which a condensable algebra in B [19]. According to [53], U is indeed

a VOA extension of V . More generally, we have Mx,y “ rx, ysB for x, y PM.

From the explicit construction of the gapless edge pV, BMq, we can see some general

features of gapless edges.

• In general, V Ĺ U . For example, when pC, cq is obtained by condensing a non-trivial

condensable algebra U in pB, cq (i.e. dimU ą 1), we have C “ B0
U , where B0

U is the

category of local U -modules in B [19, 69]. This condensation also produces a gapped

domain wall between pB, cq and pC, cq described by the UFC BU of right U -modules

in B. In this case, M “ BU , and U “ r1M,1MsB ‰ V is a non-trivial VOA extension

of V . By results in [53], we have B0
U “ ModU . Therefore, C fi ModV in this case.

• In general, ModV fi C fi ModU . For example, when B “ ModV is obtained by

condensing a non-trivial condensable algebra A in C, i.e. B “ C0
A, the condensation

produces a gapped domain wall M “ CA. In this case, the central functor B Ñ M

is the canonical embedding C0
A ãÑ CA. Therefore, U “ r1M,1MsB “ V . Note that

dimC ą dimC{ dimA “ dimB because dimA ą 1. Therefore, we have C fi ModV “

ModU “ B in this case.

Recall that the category of boundary conditions of the unitary bulk CFT ZpUq is given

by the category BU of right U -modules in B (Theoremph 4.21). It is illuminating to study

the relation between the category BU of boundary conditions and that of topological edge

excitations M on the gapless edge pV, BMq.

• The composed functor L : B Ñ B b C
φM
ÝÝÑ ZpMq

f
ÝÑ M has a right adjoint functor

LR : M Ñ B, which factors as M
R
ÝÑ BU

f
ÝÑ B, where U “ LRp1Mq “ r1M,1MsB

is a condensable algebra in B ([19], Lemma 3.5). Moreover, the left adjoint functor

RL : BU Ñ M of R is monoidal and fully faithful ([19] Lemma 3.5), i.e. a monoidal

embedding

RL : BU ãÑM. (5.8)

Namely, the category of boundary conditions BU is a fusion subcategory of that of

topological edge excitations. We illustrate these functors in the following diagram:

B
´bU

,,

L

��

BU

f

Kll

RL

��
M

R

K

EE

LR

K

XX (5.9)

where left (resp. right) adjoints form a commutative diagram. The functor L :

B Ñ M is a central functor. It endows M with a structure of a unitary left B-

module with the action functor d : B ˆM Ñ M defined by the composed functor

BˆM
LˆidM
ÝÝÝÝÑMˆM

b
ÝÑM.
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• In general, we have BU ĹM. For example, let A be a non-trivial condensable algebra

A P C. When ModV “ B “ C0
A and M “ CA, on the gapless edge pV, BMq, we have

U “ A “ V and BU Ĺ M. In this case, M splits as a direct sum of indecomposable

unitary left B-modules, i.e.

M » BU ‘M1 ‘ ¨ ¨ ¨ ‘MN .

For two simple objects x P BU and y P Mi for i “ 1, ¨ ¨ ¨ , N , we have Rpyq “ 0

and Mx,y “ 0 because homBpb,Mx,yq » homMpb d x, yq “ 0 for all b P B. But

M1,yby˚ ‰ 0. Moreover, the boundary CFT My,y “ ry, ys ‰ 0 because 1B ãÑ ry, ys

is non-zero. In general, the boundary CFT’s My,y and Mx,x are not compatible in

the sense that they have different bulk CFT’s. By Theorem 4.21, each unitary left

B-modules is associated to a unique bulk CFT. The bulk CFT’s associated to BU

and Mi are different in general. In other words, the dimensional reduction process

depicted in figure 5 might produce different bulk CFT’s in general. Also note that

both L and RL are monoidal functors, but LR and R are not monoidal in general.

6 Chiral gapless edges II

In this section, we continue the analysis started in section 3 on the structures and properties

of observables on the 1+1D world sheet of a chiral gapless edge. This analysis leads us to

a classification theory of all chiral gapless edges of any 2d topological orders.

6.1 X7 is an enriched unitary fusion category

At the end of section 3, we conclude that the observables on the 1+1D world sheet of a

chiral gapless edge of the 2d topological order pC, cq can be summarized by a pair pV,X7q,

where V is the chiral symmetry and X7 is an ModV -enriched monoidal category. The

objects in X7 are topological edge excitations, and the hom spaces homX7px, yq :“Mx,y are

boundary CFT’s (if x » y) or domain walls between boundary CFT’s (if x fi y). In order

to gain a better understanding of the hidden structure of X7, it is crucial to understand the

mysterious relation between the objects in X7 and the morphisms in X7. In terms of the

underlying category X of X7, it amounts to ask for the relation between X and B “ ModV .

Consider the 1+1D world sheets depicted in figure 10 (a), which is essentially the same

as figure 5 (b). The boundary CFT’s Ax0 , Ay0 , Az0 are compatible with U in the sense that

they share the same bulk CFT ZpUq. As we have shown at the end of section 5, it is possible

that there are x P X such that M1,x “ 0, i.e. there is no boundary condition changing

operator that can change the boundary condition associated to 1 to that associated to x.

As a consequence, the whole enriched category X7 splits into a direct sum of connected

components:

X7 » X
7
0 ‘ X

7
1 ‘ ¨ ¨ ¨ ‘ X

7

N ,

where 1 P X
7
0 and Mxi,xj “ 0 for xi P X

7

i , xj P X
7

j , i, j “ 0, ¨ ¨ ¨ , N and i ‰ j. Within

each connected component X
7

i , all boundary CFT’s and domain walls Mxi,yi (for xi, yi P
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Ay0

Az0

My0,z0

Ax0

Mx0,y0

U “ A1

ZpUq

Ayi

Azi

Myi,zi

Axi

Mxi,yi

Ax˚i
ZpAxiq

paq pbq

Figure 10. These two pictures depicts two possible 1+1D world sheets obtained by applying

dimensional reduction to figure 5 (a). The associated two sets of boundary CFT’s tA1, Ax0 , Ay0u

and tAxi
, Ayi

, Aziu are potentially incompatible and Mx0,xi
“ 0 for x0 P X0, xi P Xi.

Xi) are necessarily compatible. Figure 10 (b) depicts three compatible boundary CFT’s

Axi , Ayi , Azi for xi, yi, zi P X
7

i and their domain walls and the associated bulk CFT.

By the Naturality Principle in physics, if Axi appears as a boundary CFT on the

1+1D world sheet of the gapless edge pV,X7q, then all boundary CFT’s and their domain

walls that are compatible with Axi should appear on this world sheet.1 As a consequence,

by Theorem 4.21 and Remark 4.24, each connected component X
7

i of X7, is precisely the

enriched category BXi via the canonical construction (see Example A.3), where Xi is an

indecomposable unitary left B-module and, at the same time, the category of boundary

conditions associated to the bulk CFT ZpAxiq. Therefore, we obtain

X7 » BX0 ‘
BX1 ‘ ¨ ¨ ¨ ‘

BXN

as B-enriched categories and

X » X0 ‘ X1 ‘ ¨ ¨ ¨ ‘ XN

as unitary left B-modules. We denote the left B-action on X by d : Bˆ XÑ X. In other

words, X7 » BX as B-enriched categories with rx, ysB » Mx,y for x, y P X. We want to

show that it is also an equivalence of enriched monoidal categories.

Remark 6.1. When V “ C, B “ H and the edge pC,HXq is gapped. In this case, H has a

unique indecomposable unitary left H-module H. Therefore, X » H‘ ¨ ¨ ¨ ‘H as unitary

left H-modules, i.e. Xi “ H. In this case, Mxi,xj “ 0 for xi P Xi, xj P Xj and i ‰ j. For

xi P Xi “ H, the matrix algebra rxi, xisH “ homXpxi, xiq is actually a 0+1D boundary

TQFT, which has a trivial bulk TQFT given by its center Zprxi, xisq “ C. The ordinary

center is also the full center in this case.

1unless there are additional unknown symmetry principles that forbid certain boundary CFT’s or walls

to appear.
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Remark 6.2. By Theorem 4.21 and ([18], Proposition 7.3), the result X7 » BX implies

that

Myi,zi bMyi,yi
Mxi,yi »Mxi,zi , for non-zero objects xi, yi, zi P Xi.

Morrison-Penneys’ classification of B-enriched monoidal categories [91] indicates that

X7 is necessarily obtained from a triple pB,X, FXq via the canonical construction, where

FX : B Ñ ZpXq is a braided oplax monoidal functor such that the composed functor

L : B
FX
ÝÝÑ ZpXq

f
ÝÑ X is left adjoint to a functor M1,´ : X Ñ B, which will be defined

later, i.e.

B
FX //

L !!

ZpXq

f
��

X .

(6.1)

In our case, since X is already a unitary left B-module with rx, ysB “ Mx,y, the result

turns out to be even stronger: FX is a unitary braided monoidal functor (NOT oplax), or

equivalently, L is a central functor (recall Diagram (2.5)). To see this, let us go through

some parts of Morrison-Penneys’ proof that are adapted and simplified to suit our case.

1. There is a well-defined C-linear functor M1,´ : XÑ B defined by y ÞÑM1,y and

f ÞÑ pM1,y
»
ÝÑ V bV M1,y

fbV 1
ÝÝÝÑMy,y1 bV M1,y

e
ÝÑM1,y1q for f : y Ñ y1 in X.

It is clear that M1,´pXiq “ 0 for i ą 0.

2. Let L : BÑ X be the left adjoint functor of M1,´. The category of topological edge

excitations X is monoidal. The natural physical requirement is that each topological

edge excitation should have its anti-particle. This requires X to be rigid thus a UFC.

We want to show that L is a central functor.

3. By definition (see [91], section 2.7), X7 is rigid if and only if X is rigid. The rigidity of

X7 implies the Frobenius reciprocity: Mx,ybz˚ »Mxbz,y »Mz,x˚by ([91], section 2.7).

In particular, we have

Mx,y »M1,x˚by »M1,ybx˚ »My˚,x˚ . (6.2)

4. We have Lp1Bq » 1 because homXpLp1Bq, xq » homBp1B,M1,xq » homXp1, xq for

x P X. Moreover, we have

homXpLpaq b x, yq » homXpLpaq, y b x
˚q » homBpa,M1,ybx˚q » homBpa,Mx,yq

» homXpad x, yq.

Thus Lpaq b x » a d x for a P B and x, y P X. Then Lpaq » a d 1. This further

implies the following isomorphisms:

Lpaq b Lpbq » ad pbd 1q » Lpab bq.

Therefore, L is monoidal.
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5. The monoidal functor L : B Ñ X is a central functor. This amounts to show that

each Lpaq can be endowed with the structure of a half-braiding [19]. Indeed, we have

homXpLpaq b x, yq » homBpa,Mx,yq » homBpa,M1,x˚byq » homXpLpaq, x
˚ b yq

» homXpxb Lpaq, yq.

Therefore, we obtain a half-braiding isomorphism Lpaq b x » xb Lpaq as desired by

Yoneda Lemma. Further details of the proof could be found in [91].

6. Moreover, by the physical requirement, the natural isomorphisms in eq. (6.2) should

be unitary.2 Consequently, the natural isomorphisms Lpaq b Lpbq » Lpa b bq and

Lpaq b x » x b Lpaq are all unitary. Namely, FX : B Ñ ZpXq is a unitary braided

monoidal functor.

The physical meaning of above proof is not very explicit. In the rest of this subsection,

we would like to explain some of its hidden structures in more physical terms and some

physical consequences.

1. Since 1 P X0 and A1 “ U , by Theorem 4.21, we must have X0 » BU as left B-

modules. We want to construct a canonical equivalence X0 » BU explicitly. Note

that, for x0 P X0, there is a natural right U -action on M1,x0 (see figure 11):

e : M1,x0 bV M1,1 ÑM1,x0 ,

which endows M1,x0 with the structure of a right U -module. Therefore, the functor

M1,´ : X Ñ B factors through the forgetful functor f : BU Ñ B, i.e. M1,´ “ f ˝ R,

where R : X Ñ BU is defined by x ÞÑ M1,x. We want to show that the functor

R : X0 Ñ BU is the canonical equivalence we are looking for.

2. It is clear that RpXiq “ 0 for i ą 0. By Theorem 4.21, each boundary condition

X P BU can be realized as the domain wall rU,XsB “ X between the boundary

CFT’s U and rX,XsB because rX,´sB : BU Ñ B is precisely the forgetful functor

(recall Example 4.19). Therefore, M1,x0 for x0 P X0 recovers all boundary conditions

in BU , or equivalently, R : X0 Ñ BU is essentially surjective. Moreover, for x P X0,

the domain wall Rpxq “ M1,x as an invertible domain wall uniquely determines the

boundary CFT Mx,x, which has to be rRpxq, RpxqsB by Theorem 4.21. Then, for

x, y P X0, we must have Mx,y » rRpxq, RpyqsB and

homXpx, yq “ homBp1B,Mx,yq » homBp1B, rRpxq, RpyqsBq » homBU
pRpxq, Rpyqq.

It is implies that R is fully faithful. Therefore, R : X0
»
ÝÑ B is an equivalence of finite

unitary categories.

2An isomorphism f in a ˚-category is unitary if f : “ f´1
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3. Let RL be the left adjoint functors of R. The left adjoint functor of f is ´bV U . we

obtain the following diagram (similar to the diagram (5.9)):

B

´bV U
--

L

��

BU

f

Kmm

RL

��
X

R

K

@@

M1,´

K

]]

where the right and left adjoint functors form two commutative diagrams, respec-

tively. Since RpXiq “ 0 for i ą 0, RL factors as BU Ñ X0 ãÑ X.

4. We explain that BU is also a UFC. Mathematically, for y P X0, the right U -module

M1,y may have more than one possible left U -actions. But there is only one that is

physically meaningful. It is determined3 by the adiabatic move along the path γ3
depicted in figure 11. According to our braiding convention (recall Remark 3.11),

this left U -action is defined by

U bV M1,y

cU,M1,y
ÝÝÝÝÝÑM1,y bV U ÑM1,y,

where c´,´ is the braiding in B. This left U -action allows us to fuse M1,y1 with M1,y

horizontally (in figure 11) to give M1,y1 bU M1,y. As a consequence, BU is a UFC

with the tensor product bU and the tensor unit U . Moreover, the functor ´bV U is

monoidal.

5. Since L : BÑ X is a central functor, by ([19], Lemma 3.5), the functor RL defineds

a monoidal equivalence from BU to its image in X. Since the left B-module structure

on X is induced from the monoidal functor L, the monoidal functor RL is also a

left B-module functor. Since X0 » BU as left BU -modules, RL : BU Ñ X0 must

be an equivalence of left BU -modules. Therefore, R : X0 Ñ BU is an equivalence

of left BU -modules and a monoidal equivalence. In particular, we have a canonical

isomorphism:

M1,y1by »M1,y1 bU M1,y, for y, y1 P X0. (6.3)

6. Note that (6.3) does not hold for general x, y P X. For example, if x P Xi for i ą 0,

then M1,x “ 0 but M1,xbx˚ ‰ 0. For a gapped edge pC,HXq, (6.3) is almost never

true as we have seen in (2.4). On the other hand, (6.3) is always true for either y » 1

or y1 » 1.

Remark 6.3. Using R : X0
»
ÝÑ BU , we can identify X0 with BU . For x, y, x1, y1 P X0,

by the properties of internal homs, we obtain Mx,y » M1,y bU Mx,1. It means that Mx,y

3Mathematically, it means that the OPE between the fields in U and those in M1,y along the t “ t2-line

is determined by that along the vertical line via an analytic continuation along the path γ´1
3 [52].
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t “ t2

t “ t1

Ay1

Ax1

Ay

Ax

M1,y1

Mx1,1

M1,y

Mx,1

γ3

φpzqPU
ˆ

Figure 11. This picture depicts a special situation on the 1+1D world sheet of the chiral gapless

edge pV,X7q for x, y, x1, y1 P X0. It shows that the horizontal U -actions on M1,y1 ,Mx,1,M1,y,Mx,1

are determined by the vertical U -actions via the braidings long the fours paths, respectively.

can be split into M1,y and Mx,1 without altering the physics (depicted in the right half of

figure 11). It is also clear that the dual formula of (6.3):

Mx1,1 bU Mx,1 »Mx1bx,1, for x, x1 P X0.

also holds. As a consequence, the spatial fusion of Mx1,y1 and Mx,y can be achieved by

fusing M1,y1 ,Mx1,1,M1,y,Mx,1 as shown in figure 11. The braided interchange property

(recall Diagram 3.8) implies that the morphism (3.6) must be an isomorphism:

Mx1,y1 bU Mx,y »Mx1bx,y1by, for x, x1, y, y1 P X0. (6.4)

This formula does not hold for general x, x1, y, y1 P X. This also explain why (5.2) is an

isomorphism because X “ X0 for the canonical chiral gapless edge. When V “ 0 (i.e. edge

is gapped), X0 “ H and (6.4) simply says that the tensor product of two matrix algebras

is again a matrix algebra. More formula of this type will be given and studied in [76].

The results in this subsection motivates us to introduce the following definition.

Definition 6.4. An enriched monoidal category BX obtained by the canonical construction

from a triple pB,X, FXq is called a B-enriched (unitary) multi-fusion category if

1. B is a (unitary) braided multi-fusion category;

2. X is a (unitary) multi-fusion category;

3. FX : BÑ ZpXq is a (unitary) braided monoidal functor.

It is called a B-enriched (unitary) fusion category if both B and X are also fusion categories.

Then the results in this subsection can be summarized as follows:

• A chiral gapless edge pV,X7q of a 2d topological order pC, cq is precisely given by

pV, BXq, where B “ ModV is a UMTC and BX is a B-enriched unitary fusion category.
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6.2 Classification theory of chiral gapless edges

The last constraint on the mathematical description of a chiral gapless edge is that it must

satisfy the so-called boundary-bulk relation, which says that the center of a gapped/gapless

edge should coincide with the UMTC describing the bulk phase [75]. Motivated by the

physical meaning of the boundary-bulk relation for 2d topological orders, we introduced

the notion of the center of an enriched monoidal category in [78]. We will not give the

precise definition of this notion in this work. Instead, we will do that in Part II [80].

Theorem 6.5 ([78]). For a B-enriched fusion category BX obtained from a triple

pB,X, FXq, its center ZpBXq is given by the centralizer of the image of B in ZpXq, denoted

by FXpBq
1|ZpXq.

Therefore, the requirement of boundary-bulk relation, i.e. ZpBXq » C, is equivalent

to the condition: FXpBq
1|ZpXq » C as UMTC’s. Since B is a UMTC, the functor FX

is necessarily a braided monoidal embedding. Therefore, we obtain B b C » ZpXq as

UMTC’s [19]. Similar to gapped edges, to uniquely determine the edge, we need specify

how the topological excitations in the bulk are mapped to those on the edge [69]. This is

given by a central functor C Ñ X (recall Diagram (2.5)). Together with FX, we obtain a

unitary braided monoidal equivalence:

φX : B b C
»
ÝÑ ZpXq, (6.5)

which should be viewed as a defining data of the edge. This completes our analysis.

Remark 6.6. The existence of a braided monoidal equivalence φX in (6.5) should be viewed

as an anomaly-free condition. Namely, the bulk pC, cq should resolve all the anomalies of

the edge pV, BXq viewed as an anomalous 1d phase.

How do we know whether we have found all the physical requirements of BX? We

have indeed found all of them because the pairs pV, BXq are precisely those chiral gapless

edges constructed in section 5.2 via the physical process of fusing canonical gapless edges

with gapped domain walls (with a loophole to be fixed in section 6.3). In other words,

topological Wick rotations realize all chiral gapless edges.

We have found the precise mathematical description of the observables on the 1+1D

world sheet of a chiral gapless edge as a pair pV, BXq. We need to answer a few physical

questions before we claims that this mathematical description actually classify all chiral

gapless edges.

1. What do we mean by a chiral gapless edge physically? In reality, if a chiral gapless

edge of a 2d topological order is realized in lab, it might not have any topological

edge excitations on it at all before we introduce topological defects (or impurities)

onto the edge. In this context, by a chiral gapless edge described by pV, BXq, we mean

the maximal way of inserting topological defects onto the edge without breaking the

chiral symmetry V .
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2. How do we know different pairs describes different edges? We provide three answers.

First, two different edges can be obtained by fusing canonical edges with two different

gapped domain walls along two potentially different 2d topological orders. There-

fore, a transition between two chiral gapless edges can be understood as a gap-closing

topological phase transition between two 2d topological orders, together with a gap-

closing transition between two gapped domain walls. Secondly, for two different BX

and B1X1, the categories of topological edge excitations are different; mathematically,
BX and B1X1, as two E1-algebras, can be viewed as different topological invariants

defined on open 1-disks. They lead to different global topological invariant by inte-

gration or factorization homology [3]. Changing of topological invariants is associated

with a phase transition in general. Thirdly, for a given chiral gapless edge pV, BXq,

when we introduce more defects that break the chiral symmetry V to a smaller one

(see Remark 6.11), we believe that this process of breaking of chiral symmetry should

cause a purely edge phase transition.

3. How to define a phase transition between two 1+1D gapless phase? A phase transi-

tion between two gapped phases are defined by closing the gap. But a phase tran-

sition between two gapless phases is not so clear from this perspective. As far as

we know, there is no model-independent definition of such a phase transition. In-

terestingly, the physical intuition of chiral gapless edges actually provides us three

possible model-independent definitions of a phase transition between two potentially

anomalous 1+1D gapless phases.

(a) We can define such a phase transition as a process of changing or breaking local

quantum symmetries (i.e. chiral symmetries in this case).

(b) Since all chiral gapless edges can be obtained by fusing the canonical chiral

gapless edges with gapped domain walls along two 2d bulk phases, we can define

the phase transition between two chiral gapless edges by a gap-closing topological

phase transition between two bulk phases and that between two gapped domain

walls.

(c) We can define such a 1+1D phase transition by a 2d topological phase transition

via a topological Wick rotation. More precisely, a 2d topological phase transition

from a 2d topological order pB, cq to a new one pD, cq can be achieved by first

introducing some islands of pD, cq-phases into the 2d topological order pB, cq

as depicted in the first picture in figure 12. When these islands proliferated,

a topological phase transition from pB, cq to pD, cq occurs. By Wick rotating

this process, we obtain a description (or a definition) of a purely edge 1+1D

phase transition as depicted in the second picture in figure 12. This definition

automatically makes sense in any dimensions. We will return to this point in

section 7.

As a consequence of these definitions, any chiral gapless edge pV 1, B
1

X1q can be ob-

tained from another one pV, BXq via a purely edge phase transition.
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topological Wick rotation
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ

Figure 12. These two pictures depict a physical description of pure edge phase transition via a

topological Wick rotation.

We conclude that the mathematical description of observables on a 1+1D world sheet

of a chiral gapless edge as a pair pV, BXq provides a classification of all chiral gapless edges.

We summarize this result as a physical theorem.

Theoremph 6.7. Gapped and chiral gapless edges of a 2d topological order pC, cq are

precisely described and classified by pairs pV, BXq, where

• V is a unitary rational VOA of central charge c such that B :“ ModV is a UMTC;

• X is a UFC equipped with a unitary braided monoidal equivalence φX : BbCÑ ZpXq;

• BX is the B-enriched UFC obtained via the canonical construction from the triple

pB,X, FXq, where FX is the unitary braided monoidal functor defined as follows:

FX : B ãÑ B b C
φX
ÝÝÑ ZpXq.

Equivalently, for the convenience of numerical computation,

• all gapped and chiral gapless edges of pC, cq are classified by pairs pV,Aq, where A is

a Lagrangian algebra in ModV b C.

When V “ C, the edge is gapped. In this case, ModV “ H.

Remark 6.8. Unstable edges naturally occur if we fuse a chiral gapless edge with a gapped

domain wall. If we allow unstable edges in our mathematical description, we can simply

replace the condition that X is UFC by a weaker condition that X is a unitary multi-fusion

category (see also Remark 6.15).

Remark 6.9. There is a nice classification of gapless edges for abelian 2d topological orders

given in [9]. It will be very interesting to compare their results with ours. Constructing new

gapless edges via anyon condensations of a non-abelian bulk phase pC, cq was considered in

some special cases in [6]. Our constructions of gapless edges are more general than those

obtained by condensing the bulk [19, 69].

Example 6.10. Consider a conformal embedding V Ă A of unitary rational VOA’s of

central charge c, e.g.

supmqn ˆ supnqm Ă supmnq1, spp2mqn ˆ spp2nqm Ă sop4mnq1,

sopmqn ˆ sopnqm Ă sopmnq1, sopmq4 ˆ sup2qm Ă spp2mq1, ¨ ¨ ¨ .
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Then A can be viewed as a condensable algebra in B “ ModV [19, 53] and we have

ModA » B0
A. Therefore, the two topological orders pB, cq and pModA, cq can be connected

by a gapped domain wall given by BA. By topological Wick rotations, we obtain

• a chiral gapless edge of pB, cq defined by pA,ModApBAqq, in which M1,1 “ A;

• a chiral gapless edge of pModA, cq defined by pV, BpBrev
A qq, in which M1,1 “ A.

Remark 6.11. Recall Remark 3.7, for a given chiral gapless edge, the chiral symme-

try is chosen to be the maximal one that is transparent on the entire 1+1D world sheet

of the edge. If we choose a smaller one, i.e. V 1 Ĺ V , then the category of bound-

ary conditions for the same bulk CFT ZpUq will be enlarged to pModV 1qU . Note that

pModV qU » ppModV 1q
0
V qU Ĺ pModV 1qU . The category of topological edge excitations will

be enlarged to pModV 1qV bModV X.

It is not yet possible to list explicitly all chiral gapless edges for a given chiral 2d

topological order because, for a fixed UMTC B, how many unitary rational VOA’s V

satisfy ModV » B as UMTC’s is still an open question. It was conjectured that every

UMTC C (without fixing c) can be realized by the category of unitary modules over a

unitary VOA (see for example [39, 102]). It is not true if we also fix c. More precisely, for

a pair pC, cq, in general, it is not possible to find a VOA V of central charge c such that

C » ModV . For example, when C is non-chiral and C fi H, such V does not exist because

the only unitary VOA of central charge 0 is the trivial one V “ C. In other words, the

non-chiral 2d topological order pC, 0q does not have any chiral gapless edges. It has only

gapped and non-chiral gappable gapless edges (recall Remark 5.2). It is, however, possible

to find V of central charges of 8Z such that C » ModV [39]. It is interesting to note that

our classification result actually supports a different conjecture:

Conjecture 6.12. For a UMTC C and a central charge c such that ctopC “ c pmod 8q,

there is at least one unitary VOA V of central charge c such that ModV is a UMTC Witt

equivalent to C.

Remark 6.13. Interestingly, if there are only finitely many chiral gapless edges of a given

bulk phase pC, cq, an assumption which is not totally unreasonable, then our theory suggests

that there are only finitely many unitary rational VOA’s with central charge c such that

their module categories are UMTC’s that are Witt equivalent to C.

Remark 6.14. A domain wall between two 2d topological orders can be realized as an

edge by the folding trick. Therefore, the classification theory of the gapped and chiral

gapless edges also provides that of the gapped and chiral gapless domain walls.

6.3 Universality at RG fixed points

The reasoning behind our classification theory of chiral gapless edges given in section 6.2

will not be complete unless we fill the one last loophole. Note that we have not yet provided

any explanation of the mysterious formula (5.6). We will do that in this subsection.
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pVB,
BNqpVA,

AMq

M

pA, c2q

N

pB, c3q

x P M p P N

y P M q P N

pC, c1q pD, c1 ` c2q

pE, c1 ` c2 ` c3q
rx, ysA rp, qsB

pC,c1q

pE, c1 ` c2 ` c3q

M bD N

AbB

xp

yq

rxp,yqs

pVAbCVB,
AbBpM bDNq

paq pbq

Figure 13. The picture (a) depicts two chiral gapless domain walls pVA,
AMq and pVB,

BNq. The

vertical direction is the direction of time. The picture (b) depicts the new wall obtained after the

fusion, where xp :“ x bD p, yp :“ y bD q P M bD N. The arrows on the dotted lines are the

orientation of the wall. It determines the order of the fusion product of wall excitations.

Instead of explaining the mysterious formula (5.6), we would like to explain a more

general formula, which describes the fusion of two chiral gapless domain walls (recall Re-

mark 6.14). We illustrate two chiral gapless walls before the fusion in figure 13 (a) and

after the fusion in figure 13 (b). More precisely, A,B,C,D,E are UMTC’s, and M and N

are UFC’s equipped with unitary braided monoidal equivalences φM : C b A b D
»
ÝÑ ZpMq

and φN : D b B b E
»
ÝÑ ZpNq.4 The vertical direction is the direction of time. Two ver-

tical planes depict the 1+1D world sheets (or fictional bulk phases) of two chiral gapless

domain walls pVA,
AMq and pVB,

BNq. Note that VA and VB have central charge c2 and c3,

respectively. They precisely make up the difference of the chiral central charges of the two

sides of the wall. Now we propose a formula for the spatial fusion of these two walls:

pVA,
AMqbpD,c1`c2q pVB,

BNq “ pVA bC VB,
AbBpM bD Nqq. (6.6)

Note that this formula covers the formula (5.6) as a special case.

Remark 6.15. Note that M bD N is in general a multi-fusion category even if both M

are N are fusion ones. In this case, it describes an unstable domain wall, which can flow

to a stable one under RG flow [3]. Since the multi-fusion categories naturally appear in

such a fusion process, it is also natural to use unitary multi-fusion categories to describe

the category of topological wall excitations.

Before we explain the formula (6.6), we first recall that Mx,y “ rx, ysB. By Defini-

tion 4.16, Mx,y is universal in the mathematical sense. More precisely, rx, ysB, as a space of

boundary condition changing operators, is equipped with a map ev : rx, ysBdxÑ y, which

4Our convention is that the fictional bulk phase A (or B) sits on the left side of the oriented wall (recall

Remark 5.7).
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specifies how the boundary condition changing is done. For any space of boundary condi-

tion changing operators, i.e. pQ, f : Qd xÑ yq, where Q is the space and f specifies how

the boundary condition changing is done, there exists a unique morphism f : QÑ rx, ysB
exhibiting the following diagram

rx, ysB d x

ev

$$
Qd x

f //

D!fd1x
88

x

(6.7)

commutative. We believe that it is just a special case of a more general principle for physics

at a RG fixed point. More precisely, we propose

Principle of Universality at RG fixed points: A physical theory at a RG

fixed point always satisfies a proper universal property in the mathematical

sense.

Another example of the Principle of Universality is the boundary-bulk relation, i.e.

bulk = the center of a boundary [75]. More precisely, the unique gapped n`1d bulk BpXq

of a (gapped or gapless) nd boundary X satisfies the following universal property:

BpXqb X

m

$$
Q b X

g //

D! gbidX
88

X.

(6.8)

where BpXq is viewed as an nd topological order by forgetting additional structures, b is

the stacking operation of two phases, and both m and g are morphisms between potentially

anomalous nd (gapped or gapless) phases (introduced in [75]) and define a unital BpXq-

action and a unital Q-action on X, respectively. When X is a gapped boundary of a 2d

topological order, the 2d bulk BpXq is precisely given by the Drinfeld center ZpXq of X,

which is viewed as a unitary fusion category. Mathematically, in this case, b is the Deligne

tensor product; m is just the tensor product functor b of X, and is unital and monoidal; and

the unital action g is also monoidal; and (6.8) is nothing but the mathematical universal

property of the Drinfeld center.

More examples will appear below. Note that the condition “at RG fixed point” is

crucial. This principle can not be true for general QFT’s or many-body condensed matter

systems that are not at RG fixed point. However, for general QFT’s, we believe that

observables (such as those in the bulks, boundaries, walls or other defects, instantons, etc.)

should factor through the universal ones.

Now we return to the physical situation depicted in figure 13. A typical example of

physical observables on the 1+1D world sheet of each gapless wall before the fusion are

rx, ysA for x, y PM and rp, qsB for p, q P N. If we treat two vertical planes as two real bulk

phases in space, then, when we fuse them, the observables rx, ysA and rp, qsB should also

fuse and give rx, ysA b rp, qsB P A b B (see figure 13 (b)). This naive picture contradicts

to both the formula (6.6) and the Principle of Universality.
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It is again a typical quantum quenching scenario. When we fuse two walls in the

spatial dimensions, only thing we should expect is that the categories of wall excitations

M and N are fused together to give M bD N. Indeed, the topological excitations in D

acts on those in M from right according to pm, dq ÞÑ m d d and on those in N from left

according to pd, nq ÞÑ dd n. Assume that this fusion produces a functor F from M b N to

the not-yet-known category of topological excitations in the final wall. We should expect

that F pmd d, nq » F pm, dd nq for m PM, n P N. Such F is called a D-balanced functor.

The relative tensor product bD : M ˆ N Ñ M bD N, defined by pm,nq ÞÑ m bD n, is an

example of such D-balanced functors, i.e. pm d dq bD n » m bD pd d nq, and is universal

among all D-balanced functors. That is, for any D-balanced functor G : MbNÑ Y, there

exists a unique G : M bD NÑ Y such that the following diagram

M b N
bD //

G
&&

M bD N

D!G
��
Y

is commutative. By the Principle of Universality, we conclude that the category of topo-

logical excitations on the wall after the fusion is given by M bD N. It is worthwhile to

remind the readers that this is precisely how two gapped walls are fused [37, 64, 69]. As a

consequence, by ([77], Theorem 3.3.6) and the boundary-bulk relation (recall Theorem 6.5),

the background category of the wall after the fusion has to be A b B.

Assume that this fusion happens at t “ 0. Then two wall excitations x P M and

p P N are fused into a new wall excitation xp :“ x bD p P M bD N. According to the

discussion in section 3.2, observables living on the world line support on it will be changed

to the boundary CFT Mxp,xp, which is precisely given by rxp, xpsAbB. Similarly, topological

excitations y PM and q P N is fused to yq :“ y bD q. Therefore, the domain wall between

the two boundary conditions xp and yq should be given by Mxp,yq “ rxp, yqsAbB.

In general, the spatial fusion of instantons rx, ysA b rp, qsB is not invariant under

RG flow,5 which will drive it to a new RG fixed point given by rxp, yqsAbB. Indeed,

rx, ysA b rp, qsB is a space of boundary condition changing operators because it is equipped

with a natural way to do the “boundary condition changing”:

prx, ysA b rp, qsBq d pxbD pq :“ prx, ysA d xqbD prp, qsB d pq
ev bD ev
ÝÝÝÝÝÑ y bD q.

Therefore, there exists a canonical morphism g : rx, ysAbrp, qsB Ñ rxp, yqs by the universal

property of the internal hom (6.7). When g is not an isomorphism, it means that additional

operators such as excitations tunneling between two 1d walls becoming local as the walls

getting close, and it is a manifestation of the spatial fusion anomaly and, at the same time,

a mathematical description of the RG flow. The appearance of spatial fusion anomaly is

due to the fact that both domain walls are anomalous 1d phases which allows additional

operators to become local as two 1d walls getting close. Indeed, when both of the 1d phases

5For example, in the case discussed in (5.5), take x “ y “ 1B and p “ q “ 1M. On the one hand, we

have r1B,1BsB b r1M,1MsH » 1B “ V . On the other hand, we have r1M,1MsB “ U ‰ V in general (see

section 5.2).
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are anomaly-free, what live on two world sheets are modular invariant bulk CFT’s. In this

case, g is indeed an isomorphism, or equivalently, spatial fusion anomaly vanishes.

In summary, we have provided an explanation of the formula (6.6) in terms of RG

flow and Principle of Universality. Therefore, the reasoning behind our main result

Theoremph 6.7 is complete.

7 Conclusions and outlooks

In this work, for a 2d topological order pC, cq, we have found a complete and precise

mathematical description of all observables on the 1+1D world sheet of a 1d chiral gapless

edge. This description also provides a mathematical classification of all chiral gapless edges

as summaried in Theoremph 6.7. As a consequence, all chiral gapless edges can be obtained

from topological Wick rotations.

The significance of this work is manifold. As we will show in [80], the mathematical

theory of chiral gapless edges immediately implies a theory of non-chiral gapless edges and

a generalization of the old boundary-bulk relation ([77], Theorem 3.3.7) to include gapless

edges. Besides these immediate generalizations, there are more surprising and exciting

implications of this work.

1. It provides a new and systematic way of describing and classifying all gapless edges

of 2d symmetry protected/enriched topological orders.

2. It provides a new and systematic way of studying all 1+1D phase transitions among

gapped or gapless 1d phases.

More importantly, this work also suggests that we can study higher dimensional gapless

boundaries similarly because many of the physical arguments used in this works, such as

dimensional reductions, topological Wick rotations and Principle of Universality at RG

fixed points, should work automatically in any dimensions.

1. As we mentioned in section 2.3, the main results of [75] says that a topological order

in any dimension is determined by one of its boundaries by taking center regardless

if this boundary is gapped or gapless (see [75], Remark 5.7). As a consequence, if

an n`1d topological order has a precise mathematical description based on higher

categories (see [73, 74]), so does its nd gapless boundary. This prediction is already

highly non-trivial and rather surprising. In particular, this work can be viewed as a

consequence of this prediction.

2. This work also suggests that we should be able to construct gapless boundaries of

higher dimensional topological orders via the topological Wick rotations together

with additional information of local quantum symmetries such as the chiral sym-

metry in this work. Note that the topological Wick rotation depicted in (5.7) au-

tomatically makes sense in all dimensions. This provides a new way to construct

and describe potentially anomalous gapless phases in higher dimensions by certain

enriched higher categories. Although the topological Wick rotation alone can not de-

termine local quantum symmetries, it does provide a severe constraint on the possible
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local quantum symmetries. Moreover, many results can be derived without knowing

local quantum symmetries. If this surprising speculation is indeed correct, it will be

a very exciting progress for a systematic study of gapless phases in higher dimen-

sions. Moreover, this work also suggests that a phase transition between two n`1D

gapless phases can be defined by a gap-closing n`2D topological phase transitions

via topological Wick rotations as illustrated in figure 12, which automatically makes

sense in any dimensions.

We summarize above observations by a correspondence between gapped and gapless

phases. It will be called Gapped-Gapless Correspondence, and will serve as a guiding

principle for our future studies.

Gapped-Gapless Correspondence: All nd gapless boundaries (or poten-

tially anomalous nd gapless phases), including higher codimensional domain

walls, of an n`1d topological order can be obtained from topological Wick

rotations together with additional information of local quantum symmetries.

Moreover, a phase transition between two gapless boundaries (without altering

the bulk topological order) can be defined by a gap-closing topological phase

transition via a topological Wick rotation (see figure 12).

The typical structures of local quantum symmetries for QFT’s in higher dimension will be

briefly discussed in ([80], Remark 3.1).
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A Enriched monoidal categories

We first recall the notion of a category enriched in a monoidal category [60]. Let A be a

monoidal category with tensor unit 1A and tensor product b : AˆAÑ A.

Definition A.1. A category C7 enriched in A, or an A-enriched category, consists of a

set of objects ObpC7q, an object homC7px, yq in A for every pair x, y P C7, a morphism

idx : 1A Ñ homC7px, xq for every x P C7, and a morphism ˝ : homC7py, zq b homC7px, yq Ñ
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homC7px, zq for x, y, z P C7, such that the following diagrams commute for x, y, z, w P C7:

homC7px, yq b homC7px, xq

˝

((
homC7px, yq

1 //

1bidx
66

homC7px, yq,

(A.1)

homC7py, yq b homC7px, yq

˝

((
homC7px, yq

1 //

idy b1
66

homC7px, yq,

(A.2)

homC7pz, wq b homC7py, zq b homC7px, yq
1b˝ //

˝b1
��

homC7pz, wq b homC7px, zq

˝

��
homC7py, wq b homC7px, yq

˝ // homC7px,wq.

(A.3)

Remark A.2. We distinguish the notation idx and 1x, where the former one is the identity

morphism in an enriched category, and 1x is the identity morphism in an ordinary category.

Note that an ordinary category is a category enriched in the category of sets. We will

call an element f P homAp1, homC7px, yqq a morphism from x to y, denoted by f : x Ñ y.

A morphism f : x Ñ y is called an isomorphism (or invertible) if there is a morphism

g : y Ñ x such that g ˝ f “ idx and f ˝ g “ idy.

Now we define the underlying category of C7, denoted by C. The category C consists

of the same objects as those in C7 and

• homCpx, yq :“ homAp1, homC7px, yqq for x, y P ObpC7q;

• the identity morphism 1x P homCpx, xq is just idx : 1 Ñ homC7px, xq;

• the composition map homCpy, zqˆhomCpx, yq
˝
ÝÑ homCpx, zq is defined by the following

composed map

homAp1, homC7py, zqqˆhomAp1, homC7px, yqq
b
ÝÑ homAp1, homC7py, zq b homC7px, yqq

Ñ homAp1, homC7px, yqq.

Example A.3. (Canonical Construction) Let M be a left A-module category which has

internal homs in A, i.e. the functor ´d x : AÑM admits a right adjoint rx,´s : MÑ A

for every x P M. Then M can be promoted to an A-enriched category M7 which has the

same objects as M and homM7px, yq “ rx, ys. The composition ˝ is given by the canonical

morphism ry, zs b rx, ys Ñ rx, zs and idx is given by the canonical morphism 1 Ñ rx, xs.

We also denote this enriched category by AM. Note that its underlying category is just M

because homMpx, yq » homAp1, rx, ysq.

Example A.4. If A is rigid, then it can be promoted to an A-enriched category A7.

In this case, homA7px, yq “ y b x˚ where x˚ is the left dual of x, homA7p1,1q “ 1,

˝ : pz b y˚q b py b x˚q Ñ z b x˚ is induced by the counit map vy : y˚ b y Ñ 1, and

idx is given by the unit map ux : 1 Ñ xb x˚.
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Definition A.5. An enriched functor F : C7 Ñ D7 between A-enriched categories consists

of a map F : ObpC7q Ñ ObpD7q and a morphism F : homC7px, yq Ñ homD7pF pxq, F pyqq for

every pair x, y P C7 such that the following diagrams commute for x, y, z P C7:

1
idx

yy

idF pxq

''
homC7px, xq

F // homD7pF pxq, F pxqq,

homC7py, zq b homC7px, yq
˝ //

FbF
��

homC7px, zq

F
��

homD7pF pyq, F pzqq b homD7pF pxq, F pyqq
˝ // homD7pF pxq, F pzqq.

(A.4)

It is clear that the composition of two enriched functor is again an enriched functor.

The enriched functor F : C7 Ñ D7 naturally induces an ordinary functor F : CÑ D.

Example A.6. Let AM and AN be two A-enriched categories obtained from the canonical

construction in Example A.3. Then an A-module functor F : MÑ N naturally defines an

enriched functor F : M7 Ñ N7.

Definition A.7. An enriched natural transformation ξ : F Ñ G between two enriched

functors F,G : C7 Ñ D7 consists of a morphism ξx : F pxq Ñ Gpxq for every x P C such that

the following diagram commutes for x, y P C7:

homC7px, yq
G //

F
��

homD7pGpxq, Gpyqq

´˝ξx
��

homD7pF pxq, F pyqq
ξy˝´ // homD7pF pxq, Gpyqq.

(A.5)

An enriched natural transformation ξ is called an enriched natural isomorphism if each ξx
is an isomorphism.

Now we assume A is a braided monoidal category equipped with braiding cx,y : xby Ñ

y b x for x, y P A. Let C7,D7 be A-enriched categories. The Cartesian product C7 ˆD7 is

an A-enriched category defined as follows:

• ObpC7 ˆD7q “ ObpC7q ˆObpD7q;

• homC7ˆD7ppx, yq, px
1, y1qq “ homC7px, x

1q b homD7py, y
1q;

• the composition

˝ : homC7ˆD7ppx
1, y1q, px2, y2qqbhomC7ˆD7ppx, yq, px

1, y1qq Ñ homC7ˆD7ppx, yq, px
2, y2qq

is given by

homC7px
1, x2q b homD7py

1, y2q b homC7px, x
1q b homD7py, y

1q

1bc´1b1
ÝÝÝÝÝÝÑ homC7px

1, x2q b homC7px, x
1q b homD7py

1, y2q b homD7py, y
1q (A.6)

˝b˝
ÝÝÝÝÝÑ homC7px, x

2q b homD7py, y
2q.
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Definition A.8. An A-enriched monoidal category consists of a category C7 enriched in

A, an object 1C7 , an enriched functor b : C7ˆC7 Ñ C7, and enriched natural isomorphisms

λ : 1C7 b´ Ñ idC7 , ρ : ´b 1C7 Ñ idC7 , α : b ˝ pb ˆ idC7q Ñ b ˝ pidC7 ˆbq

such that the underlying category C, together with b, λ, ρ, α, defines a monoidal category.

Remark A.9. An enriched monoidal category is strict if λ, ρ, α are the identity natural

transformations ([91], Definition 2.1). In the strict case, an A-enriched monoidal category

defined here is equivalent to “an A-enriched monoidal category” defined in [91].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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