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1 Introduction

In the AdS/CFT correspondence, the bulk theory is generically a quantum gravity theory

on an AdS background; in the most famous examples, it is a bona fide string theory.

However, in the semiclassical limit, the partition function of the bulk theory becomes a

path integral over a special class of geometries. On-shell, these geometries are obtained

as the asymptotically-AdS saddles of a classical gravitational theory, such as the Einstein-

Hilbert action. Nevertheless, the exact controllable computation of the complete path

integral is subtle, with various issues to address. First, it is non-trivial to find all saddles

in general. Secondly, one has to introduce an appropriate measure for the path integral.

Furthermore, one needs to prescribe how to define the path integral meaningfully.

While we will not discuss all of these subtleties here, note that, to some extent, each

issue can be well-treated in a toy example with gravity in three spacetime dimensions.
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In particular, since such a system lacks any true dynamical bulk degrees of freedom, it

is rather simple to construct all of the saddles of the action by acting with appropriate

diffeomorphisms at will. We will primarily deal with this aspect1 in this article. The pre-

scription to define the path integral is, however, not limited to three spacetime dimensions;

one computes the Euclidean path integral, assuming that the Lorentzian geometry has a

smooth Euclidean section, and then uses analytic continuation to arrive at the Lorentzian

answer. The latter part certainly assumes that such an analytic continuation exists.

As, in three spacetime dimensions, dynamical bulk degrees of freedom are lacking, only

global topological data and boundary dynamics classify a given classical saddle. For smooth

asymptotically AdS3 spaces, this implies that all such geometries are locally equivalent,

differing only in their global features. There are two ingredients in the global data assuming

no singularities (such as conical defects): the genus and the number of boundaries. Any

asymptotically AdS3 geometry has a conformal Minkowski boundary, on which the CFT is

defined. Thus, in the context of AdS/CFT, the classical geometries, characterized by the

global topological data, relate to the study of the n-fold tensor product of the CFT, where

n is the number of boundaries. The special case of n = 2 corresponds to the two-sided BTZ

black hole geometry, which is dual to the thermofield double (TFD) state of the CFT [3].

The TFD state is a bipartite entangled state in the CFT, where the entangled degrees of

freedom reside on the two conformal boundaries of the eternal BTZ geometry. The n-fold

tensor product state subsequently represents a multipartite CFT state; its entanglement

properties were explored in [2].

In recent years, dynamical aspects have seen a surge of activities, especially in the

context of holography. The standard lore of addressing dynamical questions in a QFT

(or in a CFT) is the in-in formalism, also known as the Schwinger-Keldysh framework.

This formalism requires one to prepare states with the Euclidean path integral, then to

use them as the “in” state or as the “out” state. One then glues these Euclidean states

with a Lorentzian time evolution. In brief, the formalism requires evolution on a particular

complex time contour. The holographic descriptions of the Euclidean section and of the

Lorentzian section of the QFT are, respectively, described by a corresponding Euclidean

and Lorentzian geometry. In [1], this prescription has been described in detail, in the con-

text of holography.2 It is necessary, in this framework, to have multiboundary geometries

in both Euclidean and in Lorentzian signatures and, subsequently, to glue them across a

surface of zero extrinsic curvature.

In recent work on two-dimensional quantum gravity models, multiboundary geometries

with wormholes have made an explicit appearance. The structure in three dimensions is

definitely richer and more complex, but the basic ingredients may have a similar qualitative

role to play in the bigger picture. Additionally, multiboundary wormholes provide an arena

to study a wide variety of phenomena, from multipartite entanglement [6], to complexity

in spaces with n asymptotic regions and arbitrary internal topology [7], to traversability

using a double trace deformation [8–11].

1Note that similar analyses have appeared in various other works earlier, e.g. [1, 2]. Building on these

approaches, we will describe a complementary method for the same.
2See also [4, 5] for a more detailed discussion on the real-time dictionary in holography. There are several

applications and discussions on this topic, which we will not attempt to enlist here.
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With all the motivations above, we present an alternative, global method of construct-

ing multiboundary geometries with arbitrary genus in three-dimensional gravity with a

negative cosmological constant. Our construction differs from the ones already described

in the literature [12–14] in several ways. For example, the construction in [1] is not global,

and, without the clear foliation into hyperbolic planes provided by Poincaré coordinates

for AdS3, hard to extend to other spaces. On the other hand, [2] describes a somewhat

different approach by identifying geodesics, but without providing explicit Killing vectors.

In this work, we obtain the Killing vector needed for such a global construction of a three-

boundary wormhole. Furthermore, we provide a simple algorithm by which more exotic

multiboundary wormholes may be obtained.

Our results will allow for the study of multiboundary spaces in warped AdS3 and

can be useful for further investigations of holographic complexity of formation [7]. Also,

for Euclidean spaces, there is a theorem stating that any geodesically complete space of

constant negative curvature is a quotient of Euclidean AdS by a discrete subgroup of

O(3, 1). However, to the best of our knowledge, there is no proof of such a theorem

for Lorentzian signature. Prior to this work, the only known example was the two-sided

case: the BTZ black hole. Our results constitute the first explicit construction of a three-

boundary Lorentzian space as an AdS quotient.

This article is organized as follows. Section 2 is a brief review of the geometric structure

of AdS3, Riemann surfaces, and Killing vectors of H. In section 3, we review the quotient

of the two-sided BTZ setting up notation and intuition that will be useful in later sections.

Sections 4 and 5 are the main part of this paper. In section 4, we present the explicit Killing

vectors for the three-boundary, zero genus, case and compute the horizon lengths. In sec-

tion 5, we elaborate on generalizations of our methods, thereby including more boundaries,

higher genus, and rotation. We conclude with directions for future research in section 6.

2 Geometric structure of AdS3 & H

2.1 Isometries of AdS3 & quotients

Let us begin with an introductory review of AdS3 and its isometries. Recall that AdS3 can

be defined as a surface in the flat 2 + 2-dimensional spacetime,

ds2 = −dv̄2 − dū2 + dx̄2 + dȳ2 , (2.1)

In particular, it is the hyperboloid surface,

− v̄2 − ū2 + x̄2 + ȳ2 = −`2 , (2.2)

where ` is the AdS curvature scale.

Taking a four-vector x̄a = (v̄, ū, x̄, ȳ), AdS3 has six linearly independent Killing vectors

which generate rotations and boosts in the 2 + 2 spacetime. These are,

Jab = x̄b
∂

∂x̄a
− x̄a

∂

∂x̄b
. (2.3)
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Together, these Killing vectors form an so(2, 2) algebra,

[Jab, Jcd] = ηacJbd − ηadJbc − ηbcJad + ηbdJac . (2.4)

From this point on, we will be using the Poincaré metric for AdS3,

ds2

`2
=
−dt2 + dx2 + dy2

y2
. (2.5)

In this metric, the Killing vectors are as follows:

J01 =

(
`2 + t2 + x2 + y2

2`

)
∂t +

tx

`
∂x +

ty

`
∂y , (2.6)

J02 =

(
−`2 + t2 + x2 + y2

2`

)
∂t +

tx

`
∂x +

ty

`
∂y , (2.7)

J03 = −x∂t − t∂x , (2.8)

J12 = −t∂t − x∂x − y∂y , (2.9)

J13 =

(
`2 − t2 − x2 + y2

2`

)
∂x −

tx

`
∂t −

xy

`
∂y , (2.10)

J23 =

(
−`2 − t2 − x2 + y2

2`

)
∂x −

tx

`
∂t −

xy

`
∂y . (2.11)

In the literature, multiboundary wormholes are typically thought of as quotients of

AdS3 by a discrete set of isometries in the group SO(2, 2). We can write isometries in the

identity component of SO(2, 2), which is isomorphic to SL(2,R)× SL(2,R), by exponenti-

ating the Killing vectors. For example, dilitation comes from J12,

e−2πκJ12 · (t, x, y) = e2πκ(t, x, y) . (2.12)

When we talk about quotienting “by an isometry” or “by a Killing vector,” we are

actually identifying all points in the orbit of some group action. In particular, for a Killing

vector ξ, we refer to the subgroup {etξ}t∈R as the one-parameter subgroup of SO(2, 2)

generated by ξ. Then, fixing a particular t0 ∈ R, we call {et0ξ} the identification subgroup.

For example, once again using ξ = −κJ12 and (2.12), the set of isometries of the form

{e−2πnκJ12}n∈Z3 is the relevant identification subgroup, and we make the identification,

(t, x, y) ∼ e−2πκJ12 · (t, x, y) =⇒ (t, x, y) ∼ e2πκ(t, x, y) . (2.13)

If everything remains well-behaved throughout quotienting, it should yield a well-

defined spacetime which is locally AdS3 — the Riemann tensor and its associated quantities,

all of which are defined locally, will be unchanged. However, there are possible pathologies

that may arise when performing the procedure. For example, the isometry could have fixed

points, so, in the quotient space, the curvature at such points would not be well-defined.

In the multiboundary wormholes we consider, this is not be a problem. As we will show in

3As is done in [15], we take t0 = 2π.
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section 3.1, if we restrict our attention to the t = 0 slice, the fixed points will lie outside of

the fundamental domain of the quotient space. Thus, the curvature at every point in the

multiboundary wormhole is well-defined.

Another possible pathology is the manifestation of closed timelike curves (CTCs). If

we consider a Killing vector ξ which is timelike (ξ · ξ < 0) at a particular point, then the

image of that point under the corresponding finite isometry is timelike-separated. Thus,

we would have a timelike curve connecting the two points, and this curve would become a

CTC upon quotienting. Furthermore, observe that the Killing horizon ξ · ξ = 0 separates

the region with CTCs from the region where ξ · ξ > 0, so we identify the Killing horizon as

a causal singularity.

This issue of CTCs is overcome simply by excising the causally problematic regions.4

Excision eliminates the causal pathologies, but it also results in geodesic incompleteness,

since, in general, there should exist geodesics which go from the ξ · ξ > 0 region into the

ξ ·ξ < 0 region. However, although these geodesics are cut-off, they also all reach the Killing

horizon of ξ, i.e., they all hit the causal singularity. Thus, the fact that these geodesics are

cut-off prior to performing the quotienting does not matter.

At this point, we require a method to classify different quotient spaces of AdS3 cor-

responding to multiboundary wormholes. For this, we use the technology of Riemann

surfaces, which provides a simple way of visualizing the different possible topologies of

these quotient spaces.

2.2 Riemann surfaces: a brief discussion

As the t = 0 slice of AdS3 is simply the hyperbolic plane H (modeled by the upper half-

plane), it follows that the corresponding t = 0 slice of a multiboundary wormhole is a

quotient of H by a Fuchsian group, a term for any discrete subgroup of the isometry group

PSL(2,R) of H. In particular, all connected, hyperbolic Riemann surfaces of genus g and

with n boundaries, which we denote by (n, g), can be written as such quotients of H,

meaning that any such Riemann surface can be used to describe the t = 0 slice of some

multiboundary wormhole.

For these particular wormholes, the corresponding Riemann surface will retain some

information about both the topology and the geometry of the total spacetime manifold.

Specifically, a wormhole with n boundaries and genus g will be a Riemann surface (n, g)

at t = 0. The moduli space of such Riemann surfaces is known to be the Teichmüller

space T (n, g), which, when parameterized by Fenchel-Nielsen coordinates, is seen to be

isomorphic to,

T (n, g) ∼=

{
R+, if n = 2, g = 0

R3g−3+2n
+ × R3g−3+n, if otherwise

. (2.14)

In other words, (2, 0) has one (positive) geometrical parameter. In all other cases, however,

(n, g) has 6g − 6 + 3n geometrical parameters. While 3g − 3 + 2n of these parameters are

4See [15] for a detailed discussion on excision.
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Figure 1. The Riemann surface obtained by quotienting the upper half-plane by dilatation (2.13).

The fundamental domain is bounded by the red semicircles, while the fixed point of (2.13) is the

center of the semicircles. This is the t = 0 slice of the two-sided BTZ.

lengths of minimal (within homotopy classes), non-intersecting, periodic geodesics, the

other 3g − 3 + n parameters are all “twist” angles.5

At t = 0, the black hole horizons become minimal periodic geodesics on the Riemann

surface.6 With regards to the geometrical parameters, this means that n of the positive

parameters correspond to the lengths (or masses) of the horizons seen from the exterior

regions of the wormhole, while the remaining parameters describe the internal geometry

behind these horizons. If we restrict our attention to static wormholes — that is, those

with zero angular momentum — then the Riemann surface has all of the parameters of the

wormhole geometry, which is made apparent from the metric found by [1].

The constructions of [1] and [2] make heavy use of Riemann surfaces. Especially, [1]

focuses first on constructing the (n, g) Riemann surface, then lifting the isometries that they

use from H to AdS3 in order to construct the (n, g)-wormhole metric beyond the t = 0 slice.

Physically, this lifting step can be viewed as time-evolving the Riemann surface without

altering the topological data. Thus, the relevant Riemann surface provides a visualization

of the corresponding wormhole. Indeed, this procedure of constructing the Riemann surface

as the t = 0 slice first allows us to see that the identification of equation (2.13) yields the

two-sided BTZ (figure 1).

Nevertheless, [1] has a very “piecewise” feature to the construction. For instance, in

the (3, 0) (three-boundary) case, for which the corresponding Riemann surface is a pair

of pants, we know from [2] that the appropriate procedure would be to quotient by two

isometries, using two Killing vectors. Meanwhile, in [1], they cover the pair of pants with

three overlapping cylinders, construct those from subspaces of H, and glue the resulting

three metrics together in order to reconstruct the pair of pants. In short, [1] does not

describe a global quotienting procedure of AdS3.

This patchy, piecewise method is perfectly fine if we only wish to consider AdS3, since

it relies heavily on the presence of a hyperbolic t = 0 slice. However, in other cases, such as

that of warped AdS3,7 since there is not a clear idea of a sufficient hyperbolic slice of the

spacetime, we cannot repeat this procedure. A more global construction is needed should

5See [1] for a more detailed discussion of these parameters.
6Ref. [1] explicitly shows that the metric outside of these minimal periodic geodesics is precisely that of

the static BTZ.
7See [16, 17] for a more detailed discussion of warped AdS3.
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one attempt to construct such a multiboundary warped AdS3 geometry. Specifically, given

the Killing vectors used to construct an (n, g)-wormhole in AdS3, it should be possible to

extrapolate the Killing vectors needed for the analogous warped AdS3 wormhole. So, for

now, our goal is to explicitly write the two global Killing vectors which would yield the

three-boundary AdS3 solution.

There are some details regarding the overall procedure that require attention. First,

as mentioned in section 2.1, we need to ensure that there are no fixed points inside of

the fundamental domain of the Riemann surface. For instance, in the case of dilatation,

the fixed point is the origin; as seen in figure 1, this point is not contained within the

fundamental domain of the Riemann surface. In section 3.1 will confirm that this holds for

any Riemann surface to ensure smoothness.

Additionally, there is some ambiguity in the lifting. As we will see in section 2.3, some

of the Killing vectors vanish on the t = 0 slice. Thus, the lifted Killing vector could include

a linear combination of such terms. However, these terms would introduce new parameters

for the wormhole geometry; as discussed in [15], the rotating two-sided BTZ includes such

a term. So, if we only consider static wormholes, we exclude such terms when lifting in

order for the parameter counting to make sense.

2.3 Killing vectors of H

Let us go back to the Killing vectors above. Prior discussion in this section makes it clear

that we will need to have the Killing vectors of H. Setting t = 0 in equations (2.6)–(2.11)

yields these vectors; denoting them as J
(0)
ab , we write:

J
(0)
01 = J

(0)
20 = J

(0)
03 = 0 , (2.15)

J
(0)
12 = −x∂x − y∂y , (2.16)

J
(0)
13 =

(
`2 − x2 + y2

2`

)
∂x −

xy

`
∂y , (2.17)

J
(0)
23 =

(
−`2 − x2 + y2

2`

)
∂x −

xy

`
∂y . (2.18)

As expected of a maximally-symmetric, two-dimensional space, we have three linearly

independent Killing vectors, corresponding to three independent isometries.

Now, our goal is to write another more convenient basis of Killing vectors of H in

terms of J
(0)
12 , J

(0)
13 , and J

(0)
23 . Afterwards, we will use the new basis Killing vectors in order

to explicitly write isometries which yield the three-boundary geometry described in [1, 2].

Subsequently, we will verify that quotienting by these isometries yields three independent

geometrical parameters by checking the lengths of the non-intersecting, minimal, periodic

geodesics, which are related to their respective horizon masses by,

L = 2π`
√
M (2.19)

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
1
4
9

First, note that we can combine (2.17) and (2.18) to take two of the three independent

Killing vectors to be,

J
(0)
13 + J

(0)
23 =

(
−x2 + y2

`

)
∂x −

2xy

`
∂y , J

(0)
13 − J

(0)
23 = `∂x . (2.20)

At this stage, it helps to describe the upper half-plane in terms of complex coordinates

(z, z̄) instead of (x, y),

z = x+ iy , z̄ = x− iy . (2.21)

Thus, we get that:

J
(0)
12 = −z∂z − z̄∂z̄ , (2.22)

J
(0)
13 + J

(0)
23 =

1

`

(
−z2∂z − z̄2∂z̄

)
, (2.23)

J
(0)
13 − J

(0)
23 = ` (∂z + ∂z̄) . (2.24)

Now, we define the following basis Killing vectors of H, also noting which Killing

vectors they lift to in AdS3 in the static case

JT = ` (∂z + ∂z̄) −→ J̃T = J13 − J23 , (2.25)

JD = z∂z + z̄∂z̄ −→ J̃D = −J12 , (2.26)

JS =
1

`

(
z2∂z + z̄2∂z̄

)
−→ J̃S = −J13 − J23 . (2.27)

Here the tilde stands for the Killing vector lifted to AdS3. Using (2.4), we confirm that

J̃T , J̃D, and J̃S form an sl(2,R) subalgebra of so(2, 2).

[J̃D, J̃T ] = −J̃T , (2.28)

[J̃D, J̃S ] = J̃S , (2.29)

[J̃S , J̃T ] = −2J̃D . (2.30)

Each Killing vector should generate a particular linear fractional transformation in

PSL(2,R) which can be reduced to the identity. Indeed, by exponentiating each of them

with some dimensionless parameter κ and acting on a point z in H, we have:

eκJT · z =

∞∑
n=0

(κ`)n

n!
(∂z + ∂z̄)

n · z = z + κ` , (2.31)

eκJD · z =
∞∑
n=0

κn

n!
(z∂z + z̄∂z̄)

n · z =
∞∑
n=0

κn

n!
z = eκz , (2.32)

eκJS · z =

∞∑
n=0

κn

n!`n
(z2∂z + z̄2∂z̄)

n · z =

∞∑
n=0

κn

n!`n
(n!zn+1) =

z

−κz/`+ 1
. (2.33)

where each κ ∈ R. Now, we rewrite these three, independent isometries in terms of

the (x, y) coordinates (i.e., the real and imaginary components of the z coordinate), which

– 8 –
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more clearly allows us to identify them as translation, dilatation, and a special conformal

transformation (SCT), respectively.

eκJT · (x, y) = (x+ κ`, y) , (2.34)

eκJD · (x, y) = eκ(x, y) , (2.35)

eκJS · (x, y) =
`2

(`− κx)2 + (κy)2

(
x− κ

`
(x2 + y2), y

)
. (2.36)

We have not yet discussed inversions, which are defined as,

z → −α
z
. (2.37)

For this, [α] = `2. We should be able to write this isometry as a composition of translations,

dilatations, and SCTs. Indeed, define the following operator,

Ia = eaJT eJS/aeaJT , (2.38)

where a is a dimensionless parameter. We apply Ia to z.

Ia · z = eaJT eJS/aeaJT · z = eaJT eJS/a · (z + a`)

= eaJT ·
[

z + a`

−(z + a`)/(a`) + 1

]
= eaJT ·

[
−(a`)2

z
− a`

]
= −(a`)2

z
.

Let us now discuss how these isometries act on the geodesics of H. First, it is straight-

forward to find the geodesics in H by noting that such curves will extremize the following

length-functional,

I =

∫
dy

y

√
1 +

(
dx

dy

)2

, (2.39)

Using the Euler-Lagrange equation, the corresponding equation of motion is,

1

y

dx

dy

1√
1 + (dx/dy)2

= α , (2.40)

where α is an integral of motion. There are two distinct classes of solutions to (2.40),

α = 0 , x = constant , (2.41)

α 6= 0 , (x− c)2 + y2 = α−2 , (2.42)

i.e., straight lines and semicircles.

– 9 –



J
H
E
P
0
2
(
2
0
2
0
)
1
4
9

Now, we compute how the isometries act on the semicircular geodesics. For such a

geodesic centered at (c, 0) and radius R, translation yields,

eaJT /` ·
(
x1,
√
R2 − (x1 − c)2

)
=
(
x2,
√
R2 − (x2 − a− c)2

)
, x2 = x1 + a . (2.43)

So, translation parameterized by a length a will shift semicircles to the right by a.

A similar process can performed with dilatation, which yields,

eaJD
(
x1,
√
R2 − (x1 − c)2

)
=
(
x2,
√

(eaR)2 − (x2 − eac)2
)
, x2 = eax1 . (2.44)

As expected, dilatation will change both the radius and the center of a semicircle by a scale

factor ea. Semicircles at the origin thus only change in size.

Finally, we specifically consider what inversion does to semicircles centered at the

origin. To do so, note that inversion in (x, y) coordinates is,

Ia · (x, y) =
(a`)2

x2 + y2
(−x, y) . (2.45)

Applying this to a semicircle of radius R centered at the origin, we thus have,

Ia ·
(
x1,
√
R2 − x2

1

)
=

(
x2,

√
(a`)4

R2
− x2

2

)
, x2 = −(a`)2

R2
x1 . (2.46)

Note that, in the case a = R/`, the corresponding inversion operator simply flips the

orientation of the semicircle. Mathematically,

IR/` ·
(
x1,
√
R2 − x2

1

)
=

(
x2,
√
R2 − x2

2

)
, x2 = −x1 . (2.47)

At this stage, we are well-equipped to construct isometries with which we can describe the

identification of two (and more) semicircles to create the multiboundary geometry.

3 Global quotients of the two-sided BTZ

3.1 Orientation-reversing isometries

Before we proceed, let us briefly discuss the necessary identification in a purely pictorial

sense. Figure 1 already depicts the identification used to obtain the two-sided BTZ, which

is a cylinder at t = 0. However, we can further quotient this cylinder in order to obtain

more exotic Riemann surfaces, as shown in figure 2.8

This works topologically, and the combination of pinching and folding can even be

used to construct Riemann surfaces with any number of boundaries and any genus. We

will discuss this further in section 5.

However, figure 2 is not a very explicit picture. All that we can see from it is that the

isometry by which we quotient the two-sided BTZ in order to pinch a boundary has the

same sort of action as that which we use to fold two boundaries — both isometries reverse

– 10 –
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Figure 2. The three-boundary and one-boundary, one-genus Riemann surfaces as quotients of the

two-boundary Riemann surface. The three-boundary surface is obtained by “pinching” one of the

boundaries into two, while the one-boundary, one-genus surface is obtained by “folding” one of the

boundaries onto the other.

N
N

R1
R2

c1c2

Figure 3. The action of the general orientation-reversing isometry on two arbitrary semicircular

geodesics in H. Also defined are the centers and radii of the semicircles.

the orientation of some semicircle, then translate it elsewhere. Thus, in order to better

understand this procedure, we will first write this type of isometry explicitly.

Consider the picture in figure 3. We will refer to the semicircle on the right as C1 and

the semicircle on the left as C2. Our goal will be to transform C1 into C2 as shown.

We know that orientation of a semicircle of radius R centered at the origin can be

reversed by applying inversion, which is defined in (2.38), with a = R/`. It is reasonable to

think that we need to apply IR1/` at some point. As such, we will work with the following

composition of isometries, also using (2.34)–(2.36),

O = ec2JT /`eνJDIR1/`e
−c1JT /` . (3.1)

Let us define the ν parameter to be,

ν = log

(
R2

R1

)
=⇒ eν =

R2

R1
. (3.2)

So, (3.1) takes C1 to the origin, flips its orientation, dilates the newly-flipped semicircle,

and translates the result to match C2. We can confirm this sequence works by applying

8Ref. [2] shows pictorially that the three-boundary case is a quotient of the two-boundary case; we will

ultimately extend this idea to other geometries.
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each isometry, step-by-step, to an arbitrary point on C1, using (2.43), (2.44), and (2.46).

e−c1JT ·
(
x1,
√
R2

1 − (x1 − c1)2

)
=

(
x2,
√
R2

1 − x2
2

)
,

IR1/` ·
(
x2,
√
R2

1 − x2
2

)
=

(
x3,
√
R2

1 − x2
3

)
,

eνJD ·
(
x3,
√
R2

1 − x2
3

)
=

(
x4,
√
R2

2 − x2
4

)
,

ec2JT ·
(
x4,
√
R2

2 − x2
4

)
=

(
x5,
√
R2

2 − (x5 − c2)2

)
,

=⇒ O ·
(
x1,
√
R2

1 − (x1 − c1)2

)
=

(
x5,
√
R2

2 − (x5 − c2)2

)
. (3.3)

To ensure that orientation is truly flipped, we write x5 in terms of x1.

x5 = x4 + c2 =
R2

R1
x3 + c2 = −R2

R1
x2 + c2 = −R2

R1
(x1 − c1) + c2 ,

=⇒ x5 =
R2

R1
(c1 − x1) + c2 (3.4)

We can use (3.4) to show that the left (right) half of C1 indeed maps onto the right (left)

half of C2.

c1 ≤ x1 ≤ c1 +R1 =⇒ c2 ≥ x5 ≥ c2 −R2 ,

c1 ≥ x1 ≥ c1 −R1 =⇒ c2 ≤ x5 ≤ c2 +R2 .

Thus, the transformation in (3.1) is an orientation-reversing isometry that could be used

in both pinching and folding.

However, as discussed in section 2, we need to check that the fixed points of (3.1) are

contained within the semicircles. If there are fixed points, then the quotient space would

not be smooth; we would expect some sort of orbifold singularity on which the curvature

is not well-defined.

We find the fixed points in terms of the complex coordinate, defined in (2.21). Apply-

ing (3.1) to a fixed point z yields,

z = O · z = − eνR2
1

z − c1
+ c2 = −R1R2

z − c1
+ c2 . (3.5)

If we solve for z, then we get that there are two fixed points,

z± =
1

2

[
c1 + c2 ±

√
(c1 − c2)2 − 4R1R2

]
. (3.6)

As in figure 3, we impose the inequality,

|c1 − c2| > R1 +R2 . (3.7)

From this inequality, we have that the terms in the square root of (3.6) are strictly positive,

implying that the fixed points are real.
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0 c1 c2

R0

λR0

R R

L1

L2
LL3

LR3

Figure 4. The fundamental domain of the three-boundary Riemann surface. The color-coded

dashed lines L1,2,3 are the minimal periodic geodesics, whose lengths are the three physical param-

eters of the system. The variables λ, R0, R, c1, and c2 represent parameters for the picture.

Because the fixed points are real, they lie somewhere along the x-axis. In fact, uti-

lizing (3.7), we can show that the fixed points lie within the semicircles; for figure 3, in

which c1 > c2, z+ lies in C1, while z− lies in C2. Thus, in the fundamental domain of a

quotient space which involves the identification of such semicircles, the fixed points always

lie outside, meaning that the curvature is well-defined everywhere.

So, to summarize, the isometry (3.1) is an appropriate, orientation-reversing isometry,

and quotienting by it provides a manifold with well-defined curvature. Taking a quotient by

this sequence of transformations is an explicit presentation of both the pinching and folding

procedures, so we can use (3.1) to understand cases beyond the two-sided BTZ. In partic-

ular, we will use a specific version of this isometry to form the three-boundary wormhole.

3.2 Picturing the three-boundary wormhole

Figure 4 is a more explicit version of the first picture in figure 2. First, notice that we have

drawn several dashed geodesics (denoted by L1,2,3); after performing the appropriate iden-

tifications, these color-coded geodesics become closed (i.e., periodic) curves. Furthermore,

if we impose that these geodesics be minimal within their homotopy classes (i.e., within

the class of periodic geodesics which can be continuously transformed into each other by

sliding them along the Riemann surface), then they can be identified as the black hole

horizons.9

Note that we have introduced specific parameters. We will hereby refer to these as the

identification parameters ; they will appear in the coefficients of the Killing vectors that

exponentiates to the appropriate isometry. Furthermore, we have specifically chosen both

of the blue semicircles to have the same radii. We could have taken them to have different

9Ref. [1] shows that, in the wormhole geometry, the metric outside of the causal development of these

minimal periodic geodesics is simply the BTZ metric in [15].
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radii, but we will show that the three physical parameters are independent even in this

picture. Thus, figure 4 captures the full moduli space of three-boundary static wormholes.

Before we proceed, note that we will often alternate between using c1 and c2 and using

their sum and difference, which are also independent of one another.

s = c2 + c1 , (3.8)

d = c2 − c1 . (3.9)

4 Static three-boundary construction

4.1 Killing vectors for three-boundaries

In light of the discussion of section 3, the three-boundary wormhole is obtained by quoti-

enting AdS3 by dilatation, then by the orientation-reversing isometry depicted in figure 4,

Õ = ec2J̃T /`eRJ̃T /`e`J̃S/ReRJ̃T /`e−c1J̃T /` . (4.1)

However, this is a finite transformation. We thus discuss how to derive the infinitesimal

version, which is a Killing vector of the initial AdS3 geometry.

We intend to write (4.1) as a single exponential. Because the Killing vectors

{J̃T , J̃D, J̃S} form a subalgebra (described in (2.28)–(2.30)), the Baker-Campbell-Hausdorff

formula implies, taking a, b, c ∈ R,

Õ = eaJ̃T +bJ̃D+cJ̃S = eξ3B . (4.2)

Considering the t = 0 slice of AdS3, we find the action of this operator on a point

z ∈ H as follows. We temporarily set ` = 1; ` will be unnecessary in the final result. First,

consider the infinitesimal shift obtained by acting on z by the generator ξ3B,

δz = ξ3B · z =
(
a+ bz + cz2

)
= −ā

[
(z − b̄)2 − c̄2

]
. (4.3)

where we define the coefficients ā, b̄, and c̄ by:

a = ā(c̄2 − b̄2) , (4.4)

b = 2āb̄ , (4.5)

c = −ā . (4.6)

Note that ā and b̄ are real, but c̄ can be real or imaginary.10 Defining z′ as the image

of z under the finite transformation, we rewrite (4.3) and integrate to obtain,

δ

[
log

(
z − b̄− c̄
z − b̄+ c̄

)]
= log

[(
z′ − b̄− c̄
z′ − b̄+ c̄

)(
z − b̄+ c̄

z − b̄− c̄

)]
= −āc̄ (4.7)

We are then able to solve for z′ to find that the finite transformation takes the form,

z′ = b̄+ c̄
(z − b̄) cosh(āc̄) + c̄ sinh(āc̄)

(z − b̄) sinh(āc̄) + c̄ cosh(āc̄)
= b̄+

(z − b̄) cosh(āc̄) + c̄ sinh(āc̄)

(z − b̄) sinh(āc̄)/c̄+ cosh(āc̄)
. (4.8)

10The sign of c̄2 is directly related to the type of the Killing vector (discussed in [15]). This can be seen

from the Casimir invariants of ξ3B ; they are I1 = −8ā2c̄2 and I2 = 0.
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Thus, the right-hand side of (4.8) is a linear fractional transformation with real coef-

ficients (even if c̄ is imaginary) and determinant 1, making it an element of the isometry

group PSL(2,R). However, for the static three-boundary construction, which only needs

two independent parameters, we may impose the constraint,11

c̄2 = 1 =⇒ c̄ = ±1 . (4.9)

Imposing (4.9) reduces (4.8) to,

z′ = b̄+
(z − b̄) cosh(ā) + sinh(ā)

(z − b̄) sinh(ā) + cosh(ā)
. (4.10)

Now, we also demand that (4.10) match the isometry depicted in figure 4. Symbolically,

in (x, y) coordinates, if we take an arbitrary point on the semicircle y =
√
R2 − (x− c1)2,

this action is,

(x′, y′) = (c1 + c2 − x, y) . (4.11)

Using (3.8) and (3.9), (4.10) and (4.11) precisely match if we have,

s = 2b̄ , (4.12)

d = 2 coth(ā) , (4.13)

with an additional constraint on d and R,

d2

4
−R2 = 1 . (4.14)

Now, using (4.4)–(4.6), we can explicitly write the Killing vector coefficients which

appear in (4.2) as follows:

a = Coth−1

(
d

2

)(
1− s2

4

)
, (4.15)

b = sCoth−1

(
d

2

)
, (4.16)

c = −Coth−1

(
d

2

)
. (4.17)

Before presenting the Killing vector ξ3B in full, we use (4.14) to write its coefficients

in terms of ratios d/R and s/R. The ` thus becomes unnecessary, as these parameters are

dimensionless. Specifically, solve for R in terms of d/R to write,

d =
d

R

2√(
d
R

)2 − 4
, (4.18)

s =
s

R

2√(
d
R

)2 − 4
. (4.19)

11We will briefly discuss (4.8) without enforcing (4.9) in appendix A.
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Figure 5. The Riemann surface obtained by quotienting the upper half-plane by dilatation (2.13),

with three of the resulting periodic geodesics drawn. By symmetry, we can see that the vertical

geodesic is extremal.

Hence, the Killing vector in (4.2) is,

ξ3B = Coth−1

 d
R

1√(
d
R

)2 − 4

[1−
( s
R

)2 1(
d
R

)2 − 4

]
J̃T

+

 s
R

2√
( dR)2 − 4

Coth−1

 d
R

1√(
d
R

)2 − 4

 J̃D
− Coth−1

 d
R

1√(
d
R

)2 − 4

 J̃S . (4.20)

Observe that (4.20) has two independent, dimensionless parameters: d/R and s/R.

This is as expected according to (2.14). While the two-sided BTZ only has one geometrical

parameter, the three-boundary wormhole should have three, with the two new parameters

being in ξ3B.

Additionally, in the language of [15], this vector is type Ib. This can be checked by

computing the Casimir invariants of ξ3B; one is 0 and the other is negative.

4.2 Horizon length in terms of identification parameters

For the sake of completeness, we will verify that the identification of figure 4 captures the

full moduli space of three-boundary wormholes at t = 0. In other words, our goal is to

determine that the three horizons, computed as minimal periodic geodesics, are indeed

independent of one another.

We start with L1, which, in figure 4, is simply a vertical line from (0, R0) to (0, λR0).

To see why, note that identifying the geodesics related by dilatation yields a cylindrical

geometry, and the geodesics which become periodic are either circular arcs or the line

x = 0, as shown in figure 5. Furthermore, the symmetry of this picture indicates that the

periodic x = 0 geodesic is shorter than the other periodic geodesics.

The length of this line can be found using (2.5), as follows.

L1 = `

∫ λR0

R0

dy

y
= ` log

(
λR0

R0

)
= ` log λ . (4.21)
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y = α(x− c)y = −β(x− c)

c

R

φ0 φ1

LA

Figure 6. A circular arc centered at a point c and of radius R in H. Lines of slope 1/α and −1/β

bound the arc and make angles of φ0 and φ1, respectively, with the x-axis. LA is the length of

the arc.

This minimal periodic geodesic corresponds to the horizon of the two-sided BTZ. Addi-

tionally, it corresponds to one of the horizons of the three-boundary wormhole, since it is

homotopic to one of the conformal boundaries in figure 4.

For the other horizons, we need the length of a circular arc centered at a point on the

x-axis (i.e., the length of portions of the circular geodesics in H). Consider figure 6.

In this picture, we have assumed α, β > 0 for the sake of simplicity, but the following

argument works as long as α is the slope of the right bounding line while −β is the slope

of the left bounding line. We can parameterize the arc itself in terms of the angle φ,

x(φ) = R cosφ+ c, y(φ) = R sinφ (φ0 ≤ φ ≤ φ1) . (4.22)

Plugging this into the metric in (2.5) (again with t = 0) yields,

LA = `

∫ φ1

φ0

dφ

√
R2 sin2 φ+R2 cos2 φ

R2 sin2 φ
= ` log

[
tan

(
φ1

2

)
cot

(
φ0

2

)]
. (4.23)

Observe that tanφ0 = α and tan(π − φ1) = − tanφ1 = β. Additionally, we can use

trigonometric identities and the fact that 0 ≤ φ0 ≤ π/2 ≤ φ1 ≤ π to write,

tan

(
φ1

2

)
cot

(
φ0

2

)
=

(√
1 +

1

β2
+

1

β

)(√
1 +

1

α2
+

1

α

)
. (4.24)

Combining (4.24) with (4.23) yields,

LA
`

= Sinh−1

(
1

α

)
+ Sinh−1

(
1

β

)
. (4.25)

Equation (4.25) will be used quite a bit in calculating L2, LL3 , and LR3 , as shown in

figure 4. In particular, observe that LA is independent of R; only the slopes of the lines

determine LA. Thus, in order to minimize a circular arc centered at a particular point, we

need to take α and β to simultaneously be as large as possible.

We now calculate L2, for which we consider figure 7. First, note that, for any periodic

curve which connects the two blue semicircles, the endpoints must be identified when
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L2 (
x

(2)
R , y

(2)
R

)(
x

(2)
L , y

(2)
L

)

c1 c2c
(2)
0

Figure 7. The semicircles identified by the orientation-reversing isometry. L2 is the minimal

periodic geodesic obtained through this identification, and, by symmetry, it must be centered at

the midpoint of c1 and c2.

quotienting by the isometry discussed above. Specifically, we denote the endpoints of L2

as
(
x

(2)
L , y

(2)
L

)
and

(
x

(2)
R , y

(2)
R

)
. Furthermore, we define c

(2)
0 to be the midpoint of the two

semicircles.

c
(2)
0 =

c1 + c2

2
. (4.26)

To impose periodicity, the left endpoint of L2 must map to the right endpoint under

the orientation-reversing isometry. So, using (3.4) with (3.3) and noting that R1 = R2 = R

in this case, we have that,

x
(2)
R = 2c

(2)
0 + x

(2)
L , (4.27)

y
(2)
R = y

(2)
L . (4.28)

Thus, with the constraint that L2 be a periodic geodesic, taking α0 > 0 to be the slope

of the line connecting
(
c

(2)
0 , 0

)
with

(
x

(2)
R , y

(2)
R

)
, we can use (4.25) to write,

L2

`
= 2 Sinh−1

(
1

α0

)
. (4.29)

Now, need to impose minimality, which we do by maximizing α0. Note that any line

of positive slope which originates from
(
c

(2)
0 , 0

)
and intersects with the right semicircle has

maximal slope if and only if there is precisely one intersection point. We can use this

constraint to find the appropriate value of α0.

In particular, consider the following equation.√
R2 − (x− c2)2 = α0

(
x− c(2)

0

)
=⇒ x =

2c2 + α2
0(c1 + c2)±

√
4R2 + α2

0 [4R2 − (c1 − c2)2]

2(1 + α2
0)

. (4.30)

If there is only one intersection point, then the terms in the square root must sum to zero.

Thus, we conclude that, as α0 > 0,

α =
2R√

(c1 − c2)2 − 4R2
=⇒ 1

α
=

√
1

4

(
c1 − c2

R

)2

− 1 . (4.31)
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We now combine (4.31) and (4.29), incorporating the definition of d in (3.9).

L2 = 2` Sinh−1

 √1

4

(
d

R

)2

− 1

 . (4.32)

L3, the third minimal periodic geodesic obtained by combining LL3 and LR3 in figure 4,

is more difficult to solve for explicitly in terms of the identification parameters, as we will

see. As such, we only confirm that it is independent of L1 and L2. By (4.21) and (4.32),

this amounts to checking that, for any function of λ, R, and d,

L3 6= f(λ,R, d) . (4.33)

To do so, we first calculate the lengths LL3 and LR3 with arbitrary endpoints, but

still imposing periodicity. Denote the left and right endpoints of LL3 as
(
x

(3)
L , y

(3)
L

)
and(

x
(3)
R , y

(3)
R

)
, respectively, and consider the center of the arc at position (cL, 0). We can use

the Pythagorean theorem to solve for cL.(
x

(3)
L − cL

)2
+
(
y

(3)
L

)2
=
(
x

(3)
R − cL

)2
+
(
y

(3)
R

)2

=⇒ cL =

[(
x

(3)
L

)2
+
(
y

(3)
L

)2]− [(x(3)
R

)2
+
(
y

(3)
R

)2]
2
(
x

(3)
L − y

(3)
L

) . (4.34)

By construction, the left and right endpoints are on the semicircles y =
√
R2

0 − x2 and

y =
√
R2 − (x− c1)2, respectively. As such, we can rewrite cL as follows.

cL =
R2

0 −R2 + c2
1 − 2c1x

(3)
R

2
(
x

(3)
L − x

(3)
R

) . (4.35)

Now, using equation (4.25), we have,

LL3
`

= Sinh−1

(
−
x

(3)
L − cL
y

(3)
L

)
+ Sinh−1

(
x

(3)
R − cL
y

(3)
R

)

= − Sinh−1

 x
(3)
L − cL√

R2
0 −

(
x

(3)
L

)2
+ Sinh−1

 x
(3)
R − cL√

R2 −
(
x

(3)
R − c1

)2
 . (4.36)

Next, we insist on periodicity. Thus, the endpoints of LR3 are given by,(
x

(3)
L , y

(3)
L

)
→
(
λx

(3)
L , λy

(3)
L

)
, (4.37)(

x
(3)
R , y

(3)
R

)
→
(
c1 + c2 − x(3)

R , y
(3)
R

)
. (4.38)

Taking the center of this arc to be (cR, 0), we can compute it just as for cL above.(
c1 + c2 − x(3)

R − cR
)2

+
(
y

(3)
R

)2
=
(
λx

(3)
L − cR

)2
+
(
λy

(3)
L

)2

=⇒ cR =
λ2
[(
x

(3)
L

)2
+
(
y

(3)
L

)2]− [(c1 + c2 − x(3)
R

)2
+
(
y

(3)
R

)2]
2
(
λx

(3)
L + x

(3)
R − c1 − c2

) .

(4.39)
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Again, we use the fact that
(
x

(3)
L , y

(3)
L

)
is on y =

√
R2

0 − x2 and
(
x

(3)
R , y

(3)
R

)
is on

y =
√
R2 − (x− c1)2, but to rewrite cR.

cR =
λ2R2

0 −R2 − c2
2 − 2c1c2 + 2c2x

(3)
R

2
(
λx

(3)
L + x

(3)
R − c1 − c2

) . (4.40)

Now, we note that (4.25) cannot be used blindly for LR3 , because we have three possible

cases: λx
(3)
L > c1 + c2− x(3)

R , λx
(3)
L < c1 + c2− x(3)

R , and λx
(3)
L = c1 + c2− x(3)

R . As such, we

need to be careful with signs. Let us treat each case separately.

For Case I, λx
(3)
L > c1 + c2 − x(3)

R , we get,

LR,I3

`
= Sinh−1

(
−
c1 + c2 − x(3)

R − cR
y

(3)
R

)
+ Sinh−1

(
λx

(3)
L − cR
λy

(3)
L

)

= Sinh−1

 x
(3)
R + cR − c1 − c2√
R2 −

(
x

(3)
R − c1

)2
+ Sinh−1

 λx
(3)
L − cR

λ

√
R2

0 −
(
x

(3)
L

)2
 . (4.41)

For Case II, λx
(3)
L < c1 + c2 − x

(3)
R , we essentially switch the slopes which we plug

into (4.25) for Case I, which yields,

LR,II3

`
= −L

R,I
3

`
. (4.42)

Finally, for Case III, λx
(3)
L = c1 + c2−x(3)

R , we replicate the calculations used to obtain

L1 in (4.21), since the geodesic in this case would be a straight line.12

LR,III3

`
= log


√
λ2R2

0 − λ2
(
x

(3)
L

)2√
R2 −

(
x

(3)
R − c1

)2
 . (4.43)

Combining (4.36) with either (4.41), (4.42), or (4.43), depending on the case we are

analyzing, we ultimately write LL3 + LR3 as,

LL3 + LR3 =

L
L
3 +

∣∣∣LR,I3

∣∣∣ if λx
(3)
L 6= c1 + c2 − x(3)

R ,

LL3 + LR,III3 if λx
(3)
L = c1 + c2 − x(3)

R .
(4.44)

This is the quantity which we must minimize over the
(
x

(3)
L , x

(3)
R

)
parameter space.

As mentioned before, this sum is more difficult to minimize analytically; the same

geometric trick we used for L2 will not work, because there are two pieces. Additionally,

the minimum of L3 does not necessarily coincide with the minima of LL3 or LR3 . So, in

checking the independence of L3 from L1 and L2, we use numerical methods to validate

the condition (4.33), which amounts to showing that L3 depends on either R0 or s in (3.8).

12We can also obtain LR,III
3 from either LR,I

3 or LR,II
3 by taking the limit λx

(3)
L → c1 + c2 − x(R)

R from

the right or the left, respectively.
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Figure 8. Plots of the third minimal periodic geodesic L3 as a function of R0 (left) and as a

function of s (right), at ` = 1. L3 appears to depend on s.

First, we check the dependence of L3 on R0. One may expect that L3 is actually inde-

pendent of R0. Indeed, increasing R0 while keeping all other parameters fixed will increase

LR3 while decreasing LL3 . Conversely, decreasing R0 will increase LL3 while decreasing LR3 .

To check this numerically, fix λ, R, c1, and c2 as follows.13

λ = 4, R =
1

2
, c1 =

9

4
, c2 =

15

4
. (4.45)

From figure 4, we deduce that,

c2 +R

λ
< R0 < c1 −R =⇒ 17

16
< R0 <

28

16
. (4.46)

Thus, we can plug the values specified in (4.45) into (4.44), then plot the minimum of this

sum with respect to the allowed values of R0. This yields the first plot in figure 8.

This plot seems to indicate that L3 is independent of R0. So, we now check the

dependence of L3 on s, fixing λ, R, R0, and d as follows.

λ = 4, R =
1

2
, R0 =

5

4
, d =

3

2
. (4.47)

Just as we have bounds on R0, we wish to obtain bounds on s, keeping the identification

parameters listed in (4.47) fixed. We deduce from figure 4 that,

2R0 + 2R+ d < s < 2λR0 − 2R− d =⇒ 5 < s <
15

2
. (4.48)

Thus, we repeat the procedure used to draw the first plot in order to obtain a second one

depicting the dependence of L3 on s, also shown in figure 8. From this plot, L3 can be seen

to vary with s, which confirms the condition (4.33) and further verifies that the lengths

L1, L2, and L3 in figure 4 are all independent from one another.

13The parameters c1, c2, and R are technically dimensionful, but we set ` = 1 for convenience.
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2
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Figure 9. The fundamental domain of the (1, 1) Riemann surface. The color-coded dashed lines

L1,2 are non-intersecting periodic geodesics. In this system, two of the physical parameters are

lengths of the minimal periodic geodesic, while the third physical parameter is a twist.

5 General wormhole construction

Let us now discuss generalizing our construction to include genus, a larger number of

boundaries, and rotation.

5.1 Static (1,1) construction

We will briefly review the static (1, 1)-wormhole construction, in which we only have one

boundary, but introduce genus. This particular case has been explored in the past by [13,

18, 19]. [13] even provides a pair of Killing vectors which yields a (1, 1)-wormhole, but

they do not capture the full moduli space of solutions; their Killing vectors only have

one parameter. Using our Killing vector, it is possible to attain the full count of three

parameters.

Just like the three-boundary case, the (1, 1)-wormhole requires a two-step identifica-

tion, in which the second quotient is by an orientation-reversing isometry. We show this on

the t = 0 slice pictorially in figure 9, which is a more explicit version of the second picture

in figure 2.

The argument is analogous to that of the three-boundary case, so we assert that, to

obtain a generic (1, 1)-wormhole with three geometrical parameters, one must first quotient

by dilatation, then by the Killing vector in (4.20). The only difference is that the semicircle

y =
√
R2 − (x− c2)2 is on the opposite side of the fundamental domain, which means that,

c2 +R < −R0 , (5.1)

c2 −R > −λR0 . (5.2)

If we introduce additional symmetry by imposing c1 = −c2, then the Killing vector

in (4.20) reduces to a scalar multiple of J̃T − J̃S = 2J13. This appears to restrict the
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resulting class of solutions to having only two independent parameters. In particular, if we

combine c1 = −c2 with (4.14), then the only independent identification parameters shown

in figure 9 which appear in the Killing vectors can be taken to be λ and R.

In [13], they take this a step further by describing a one-parameter family of (1, 1)-

wormholes, which are obtained by taking a quotient by,

ξ1 = αJ12 , ξ2 = αJ13 . (5.3)

In other words, ξ1 generates a particular dilatation while ξ2 is a specific case of (4.20), for

which s = 0. The parameter α is, in our language, a function of R. However, ξ1 generates

dilatation by λ such that,

λ = eα . (5.4)

Thus, the orientation-reversing isometry for which we have found a Killing vector can

be used to construct not only the three-boundary wormhole, but also the (1, 1)-wormhole.

However, note that computing the geometrical parameters in this case is less obvious.14

Regardless, there are still three independent parameters available, so our procedure should

capture the full moduli space of static (1, 1) solutions.

5.2 Adding more boundaries and genus

Orientation-reversing isometries are powerful tools because we can repeat their usage in

order to construct static (n, g)-wormholes, with n boundaries and genus g. In order to see

how, we first discuss the construction of multiboundary wormholes without any genus, i.e.

(n, 0)-wormholes.

The construction of static (n, 0)-wormholes is a straightforward generalization of the

three-boundary case. Looking again at the three-boundary case as a two-step process,

recall that quotienting by an orientation-reversing isometry was equivalent to pinching one

of the boundaries of the cylinder into two boundaries on the t = 0 slice. We show this

pictorially in figure 2.

Each pinching corresponds to a pair of identified semicircles on the same boundary after

quotienting by dilatation. We can also see that pinching always results in one additional

boundary. So, to depict the fundamental domain of an (n, 0)-wormhole at t = 0, we require

the usual pair of concentric semicircles identified by dilatation and n−2 pairs of neighboring

semicircles identified by an orientation-reversing isometry.

There is a small caveat to this statement, however. When considering the geometrical

parameter counting, the Killing vector (4.20) captured the full moduli space of three-

boundary wormholes by incorporating precisely two independent parameters in the coef-

ficients. But, from (2.14), we can see that pinching anything other than a cylinder adds

three geometrical parameters.

6g − 6 + 3n
pinching−−−−−→ 6g − 6 + 3(n+ 1) = (6g − 6 + 3n) + 3 . (5.5)

14The minimal periodic geodesic obtained from dilatation is easy, as always. However, the other mini-

mal periodic geodesic length consists of a sum of four terms, and the role of the twist parameter in the

fundamental domain is unclear.
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As such, (4.20) will not capture the full moduli space of (n, 0)-wormholes for n > 3.

One possible solution to this issue could be to compute the Killing vector which generates

orientation-reversing isometries between circles of different radii. We present some work

related to this rather technical problem in appendix A, but we leave the details to the

interested reader.

Now, we are equipped to introduce genus into our scheme, thus constructing static

(n, g)-wormholes. To do so, first we look to the construction of the (1, 1) geometry. Specifi-

cally, recall that quotienting by an orientation-reversing isometry in this case was equivalent

to folding two of the boundaries together at t = 0, as depicted in figure 2.

Each folding corresponds to a pair of identified semicircles on different boundaries

after quotienting by dilatation. Furthermore, folding will always decrease the number of

boundaries by one, but increase the genus by one. Thus, we require g pairs of semicircles

which are on opposite sides of the central semicircles.

Again, we note that there is still a caveat to this statement. Just as for pinching, the

only case in which the Killing vector (4.20) provides the necessary number of geometrical

parameters is when quotienting two-sided BTZs to obtain (1, 1)-wormholes. Otherwise,

using (2.14), folding any geometries other than a cylinder will add three geometrical pa-

rameters.

6g − 6 + 3n
folding−−−−→ 6(g + 1)− 6 + 3(n− 1) = (6g − 6 + 3n) + 3 . (5.6)

Hence, using (4.20) does not allow us access to the full moduli space of all (n, g)-

wormholes, but, just as in the case of (n, 0)-wormholes for n > 0, considering more general

orientation-reversing isometries should do the job.

That aside, we may construct an (n, g)-wormhole as follows. First, perform all of the

necessary quotients in order to obtain an (n + g, 0)-wormhole. This requires quotienting

by dilatation once, then by n + g − 2 orientation-reversing isometries which correspond

to pinchings. Afterwards, quotient by an additional g orientation-reversing isometries

corresponding to foldings. As we lose g boundaries but genus increases by g, the resulting

space is an (n, g)-wormhole.

This simple algorithm also indicates how to draw the fundamental domain of (n, g)-

wormholes on the t = 0 slice. We first consider the fundamental domain of an (n + g, 0)-

wormhole, obtained by taking one pair of semicircles identified by dilatation and n+ g− 2

pairs of semicircles identified by pinchings. Then, with the appropriate placement, we take

g more pairs of semicircles which will be identified by foldings. For example, figure 10

shows the fundamental domain of a (1, 2)-wormhole at t = 0.

To conclude, note that this procedure is by no means unique. For instance, to obtain,

say, a (2, 1)-wormhole, one can first construct the (1, 1)-wormhole, then pinch the boundary

afterwards. This sequence does not follow our algorithm, but still results in the same type

of geometry. However, so long as each Killing vector introduces the correct number of

geometrical parameters, we should capture the full moduli space of any static, (n, g)-

wormhole with the steps described above.

Furthermore, the number of quotients is itself topologically-invariant. Define Q(n, g)

as the number of pinchings and foldings applied to the two-sided geometry in our algorithm.
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Figure 10. The fundamental domain of the (1, 2) Riemann surface. Step (1) is quotienting by

dilatation. Step (2) is quotienting by a pinching. Steps (3) and (4) are quotienting by foldings.

Then, by counting the steps, we have that,

Q(n, g) = (n+ g − 2) + g = −2 + 2g + n = −χ , (5.7)

where χ is the Euler characteristic of the corresponding Riemann surface. Thus, regardless

of the specific steps utilized, the procedure to obtain an (n, g)-wormhole from the two-sided

BTZ will always consist of a specific number of quotients.

5.3 Introducing rotation

Now, we discuss including rotation in the (n, g) geometries constructed earlier. Towards

that, let us begin by reviewing briefly the construction of a rotating two-sided BTZ, using

a similar identification by an isometry.15 The Killing vector is,

ξrot = aJ12 + bJ03

= −J1 (a+ b)− J̃1 (a− b)
= − (a+ b) sinu∂u − (a− b) sin v∂v , (5.8)

where we have closely followed the notation of [18, 19] and switched to boundary light cone

coordinates. We define the Killing vectors J1 and J̃1 in appendix B.

Let us also review the strategy to read-off a non-vanishing angular velocity for the

resulting geometry, since we will make explicit use of the same, later. This consists of three

steps. First one finds the conformally flat boundary metric, dŝ2, such that ξrot is a Killing

vector of dŝ2 with unit norm. This is,

dŝ2 =
dudv

(a2 − b2) sinu sin v
, −π < u < 0 , 0 < v < π . (5.9)

ξrot defines a spacelike direction in the resulting quotient space, along which rotation is a

symmetry. Now, we define a timelike direction in the same quotient space, by constructing

a timelike Killing vector, ξtime, which is orthogonal to ξrot. This yields,

ξtime = − (a+ b) sinu∂u + (a− b) sin v∂v , ||ξtime||2 = −1 . (5.10)

15The following is essentially a review of [18, 19].
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The final step is to construct the horizon-generating Killing vector. This is done by

demanding that the event horizon consists of all points which lie in the past light cone of

the last point of the conformal boundary I (described by either dŝ2 or ds2 = −dudv, since

they belong to the same conformal class). The Killing vector is,

ξhor = − sinu∂u + sin v∂v =
a

a2 − b2
(ξtime − Ωξrot) , (5.11)

where Ω = b/a is identified with angular velocity. In fact, the choice made in (5.8) is a

special one. We will not repeat the calculation for the general case; instead, we refer the

interested reader to [18, 19]. The final expression of angular velocity is,

Ω =

Cosh−1

(
1

2
Tr γL

)
− Cosh−1

(
1

2
Tr γR

)
Cosh−1

(
1

2
Tr γL

)
+ Cosh−1

(
1

2
Tr γR

) , (5.12)

where γL and γR are exponential operators. We discuss these in more detail later.

We restrict ourselves to including rotation in the simple three-boundary and (1, 1)

cases. We claim that the corresponding Killing vectors are of the form,

ξ1 = aJ12 + bJ03

= −(a+ b)J1 − (a− b)J̃1

= ξL1 + ξR1 , (5.13)

ξ2 = αJ12 + βJ13 − bJ02

= −(αJ1 − (β + b)J2)− (αJ̃1 + (β − b)J̃2)

= ξL2 + ξR2 . (5.14)

Here, we have defined ξLi and ξRi , i = 1, 2, as follows.

ξL1 = −(a+ b)J1 , (5.15)

ξR1 = −(a− b)J̃1 , (5.16)

ξL2 = −[αJ1 − (β + b)J2] , (5.17)

ξR2 = −[αJ̃1 + (β − b)J̃2] . (5.18)

We proceed to justify our claim. The Killing vector ξ1, upon quotienting, yields the

rotating BTZ geometry, in which the angular velocity is proportional to b/a. Thus, we

have two physical parameters: mass and angular momentum. Correspondingly, in the

coefficients of just this first Killing vector, we have two free parameters: a and b.

Now, suppose that α = 0 in ξ2. The corresponding identification yields a (1, 1) ge-

ometry with one rotation parameter.16 In the simplest case, minimal periodic geodesics

intersect at angle π/2 with each other, as described in [18, 19]. Furthermore, we can fix

16To see why we obtain a (1, 1) geometry, look at the t = 0 slice, and note that the resulting Killing

vector coincides with that of (4.20) with s = 0.
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β = a. The resulting construction has two independent parameters a and b, as does the

corresponding geometry; these are the mass and the angular momentum.

On the other hand, for b = 0, we get back the Killing vectors that yielded the static

three-boundary geometry, which is sensible since the angular velocity has been set to zero.

Furthermore, in this limit, setting α = 0 will specifically result in the static (1, 1) geometry

discussed in section 5.1, while values of α 6= 0 will yield a static three-boundary geometry.

Combining the observations and limits above, it is natural to think that the Killing vec-

tors in (5.13)–(5.14) can yield a rotating three-boundary geometry, with no genus. A naive

parameter counting further supports this claim: the three-boundary rotating geometry

should have three mass and one angular momentum, adding up to a total four independent

parameters. The Killing vectors in (5.13)–(5.14) clearly have four independent parameters.

Setting β = a may correspond to fixing a relation between two independent masses.

Let us now evaluate the angular velocity. We first define,

γL = [γL1 , γ
L
2 ] = eξ

L
1 eξ

L
2 e−ξ

L
1 e−ξ

L
2 , (5.19)

where γL1 and γL2 are quantities defined in terms of the Killing vectors in (5.13) and (5.14),

γL1 = eξ
L
1 = exp

(
a+ b

2
γ1

)
, γL2 = eξ

L
2 = exp

(
α

2
γ1 −

β + b

2
γ2

)
(5.20)

The matrices γ1,2 are defined in appendix B. We find,

1

2
Tr γL = 1− 2k2 sinh2

(√
α2 + (β + b)2

2

)
sinh2

(
a+ b

2

)
. (5.21)

where k is defined by,

k2 =
(β + b)2

α2 + (β + b)2
. (5.22)

For
1

2
Tr γR, we simply exchange (a+ b)↔ (a− b) and (β + b)↔ (β − b). Therefore,

using (5.12),

Ω =
σ − σ̃
σ + σ̃

(5.23)

where,

σ = Cosh−1

[
1− 2k2 sinh2

(√
α2 + (β + b)2

2

)
sinh2

(
a+ b

2

)]
, (5.24)

and,

σ̃ = Cosh−1

[
1− 2k̃2 sinh2

(√
α2 + (β − b)2

2

)
sinh2

(
a− b

2

)]
. (5.25)

where we have defined k̃ by,

k̃2 =
(β − b)2

α2 + (β − b)2
. (5.26)

Hence, we obtain a single parameter Ω, corresponding to equal angular velocities of

the resulting geometry from the perspectives of the three different boundaries. Also note
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that setting σ = σ̃ corresponds to setting b = 0. This will yield Ω = 0, as expected from

prior discussion.

As mentioned in section 2.2, the rotation parameter does not appear at the Poincaré

t = 0 slice. On this particular slice, the terms with the b coefficient will vanish. Thus, from

the perspective of multiboundary wormholes as Riemann surfaces being evolved through

some timelike direction, we can interpret the angular momentum as arising from a lifting

procedure that is alternative to that which gives us the static Killing vectors.

Furthermore, to conclude, we argue that the wormholes we have been discussing cannot

have more than a single rotation parameter. This is because rotation, physically, must occur

on a two-dimensional spatial slice of the overall spacetime. However, as we are considering

AdS3, there are only two spatial dimensions, so all of the horizons of a multiboundary

wormhole must be rotating together.

6 Conclusions

Different aspects of wormhole geometries as quotients of AdS3 have been previously studied

in the literature. However, only in the case of the two-sided BTZ was the explicit form

of the Killing vector known. In this work, we have revisited the construction of three-

dimensional wormholes as quotients of AdS3 and, in particular, we have found the Killing

vectors needed to obtain a three-boundary wormhole via the quotienting procedure. We

showed that the t = 0 slice of the quotient space indeed captures the full moduli space of

three-boundary Riemann surfaces, thus ensuring that we can construct any three-boundary

static wormhole using our Killing vectors. We also present the corresponding Killing vectors

for the rotating case and elaborate on how to extend our procedure to obtain both higher-

boundary and higher-genus spaces. Let us point out some possible future directions related

to our work:

• Multiboundary wormholes in spaces with less symmetry are difficult to explore. It is

worth investigating if our results can be used to construct multiboundary wormholes

in warped AdS3. To this effect, we must understand if the Killing vector found in

this work belongs to the sl(2,R) ⊕ u(1) Lie algebra of warped AdS3 Killing vectors.

If this is the case, our procedure should be applicable also in warped AdS3.

• In [7], the authors studied the holographic complexity of multiboundary wormholes.

They found that, relative to an appropriate reference state, the complexity is pro-

portional to the Euler characteristic, χ. It would be interesting to understand this

result in relation to the quotienting procedure.

• We have outlined the procedure to generalize our result for three boundaries and zero

genus to several boundaries and higher genus. It would be useful to flesh out this

idea with an explicit calculation of the Killing vectors and the horizon lengths in the

general case.

We plan to return to some of these questions in the near future.
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A Non-uniqueness of identifying semicircles

It is noteworthy that the explicit identification of semicircles that yields a particular geom-

etry is not unique. For example, the identification in figure 4 is not the only way to obtain

a three-boundary geometry with those particular horizon lengths.

To explicitly demonstrate this, we present a different set of semicircles which, upon

identification, yields a three-boundary geometry. On the t = 0 slice of AdS3, consider the

Killing vectors (taking coefficients λ, a, b, c ∈ R),

ξ1 = λJ̃D , (A.1)

ξ2 = aJ̃T + bJ̃D + cJ̃S , (A.2)

As discussed in section 4.1, the second Killing vector sends a point z ∈ H to z′,

z′ = b̄+
(z − b̄) cosh(āc̄) + c̄ sinh(āc̄)

(z − b̄) sinh(āc̄)/c̄+ cosh(āc̄)
, (A.3)

where the constants ā, b̄ and c̄ are defined by the relations (4.4)–(4.6). Before, we eliminated

the c̄; this time, we keep it. The only constraint we impose is making c̄ real and nonzero,

so as to ensure that the Killing vector is type Ib.

Generically, this isometry maps geodesics to geodesics. In particular, it will map

any point on a semicircle y =
√
R2

1 − (x− c1)2 to a point on another semicircle y′ =√
R2

2 − (x′ − c2)2. This is because, from (2.41) and (2.42), the only geodesics of H are

semicircles and vertical lines, but the former do not map to the latter under (A.3).

As such, even without imposing (4.9) to eliminate c̄, quotienting the two-sided geom-

etry by (A.3) to pinch the space will still result in a three-boundary geometry. From our

discussion in section 2.2, even though the two Killing vectors (even on the t = 0 slice) have

four independent coefficients, we still have three independent geometrical parameters: the

lengths of the minimal periodic geodesics.

However, if we quotient by this more generic isometry beyond the three-boundary

case, the presence of three independent coefficients in the Killing vector could allow us to

capture the full moduli space of such static (n, 0)-wormholes. Furthermore, (A.3) could

be written in such a way so that the related semicircles are identified by folding instead

of pinching. Thus, understanding how this isometry would need to be expressed to relate

arbitrary semicircles could be integral to capturing the full moduli space of any static (or,

in light of the discussion in section 5.3, rotating) (n, g)-wormhole. We leave pursuing this

line of thought to future work.
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B γ matrices

In this section, we briefly review the γ matrices that have been used in section 5.3. The

group of isometries of AdS3 is SO(2, 2); the corresponding Lie algebra, however, is iso-

morphic to sl(2,R) ⊕ sl(2,R). We can see this by taking linear combinations of Killing

vectors that we have discussed in section 2, which we write in terms of both the embedding

coordinates in section 2 and the boundary light cone coordinates discussed in [18, 19] and

section 5.3.

J1 = −1

2
(J12 + J03) = sinu∂u , J̃1 = −1

2
(J12 − J03) = sin v∂v , (B.1)

J2 = −1

2
(J02 − J13) = − cosu∂u , J̃2 = −1

2
(J02 + J13) = − cos v∂v , (B.2)

J3 = −1

2
(J01 − J23) = ∂u , J̃3 = −1

2
(J01 + J23) = ∂v . (B.3)

The sets {J1, J2, J3} and {J̃1, J̃2, J̃3} form bases of copies of sl(2,R), since the commu-

tation relations for each of these subsets are,

[J1, J2] = J3 , [J̃1, J̃2] = J̃3 , (B.4)

[J1, J3] = J2 , [J̃1, J̃3] = J̃2 , (B.5)

[J2, J3] = −J1 , [J̃2, J̃3] = −J̃1 , (B.6)

Furthermore, the two copies of sl(2,R) are distinct factors of the so(2, 2) Lie algebra be-

cause, for any i, j from 1 to 3,

[Ji, J̃j ] = 0 . (B.7)

Thus, we can express the Ji vectors in terms of γ matrices,

J1 = −1

2
γ1 , J2 = −1

2
γ2 , J3 = −1

2
γ0 , (B.8)

where we define,

γ0 =

(
0 1

−1 0

)
, γ1 =

(
0 1

1 0

)
, γ2 =

(
1 0

0 −1

)
. (B.9)
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