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1 Introduction

Extended geometry [2, 3] has recently emerged as a unified framework, with double and

exceptional geometry as special cases where string theory dualities are geometrised. It

has been shown to have close relations to certain classes of Lie superalgebras [2–5]. The

purpose of the present paper is to demonstrate how indeed the recently invented tensor

hierarchy algebras (THA’s) [6, 7] are to be seen as the algebraic structure responsible for

and underlying extended geometry, in its most general setting. Besides unifying double

geometry [8–22] and exceptional geometry [23–44], one of the advantages of the framework

of extended geometry is that it opens a window to situations with infinite-dimensional

structure groups [42–44]. Eventually, we would like to establish contact with the E10 [45]

and E11 [46] proposals. In the present paper, we will however limit our attention to finite-

dimensional structure groups.

We consider extended geometry based on a Kac-Moody algebra g of rank r and a dom-

inant integral weight λ, as defined in ref. [2]. Here, we assume g to be finite-dimensional

and simply laced (or at least that the Dynkin labels λi corresponding to short roots αi
vanish). This still includes ordinary, double and (up to r = 8) exceptional geometry, as

well as many other, more “exotic” extended geometries. We are particularly interested

in the cases where the highest root θ of g satisfies (λ, θ) > 1, which implies that g+ is

infinite-dimensional. As shown in ref. [2], these are exactly the cases where the generalised
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diffeomorphisms do not close into themselves, but only up to “ancillary” g transforma-

tions [39, 40, 42, 47]. For this reason, they were not included in the analysis in ref. [3],

where the associated L∞ algebra structure was derived from a Borcherds superalgebra

B(g+). In the present paper, we extend the analysis and include the cases where ancillary

transformations are present by using a THA S(g+) rather than B(g+). Accordingly, also

the study of the THA’s, restricted to finite-dimensional g+ in [7], needs to be extended.

This extended study is carried out in the accompanying paper [1].

Throughout the paper, all considerations concern what in the context of e.g. double

or extended geometry, or the geometrisation of Ehlers symmetry, would be the “internal”

sector. Most situations we describe do not have an interpretation in terms of string theory

or M-theory duality, although geometrisation of any duality arising on compactification

to 3 dimensions or higher is covered. Dualities in 3 dimensions generically correspond to

extended geometry with the adjoint as coordinate representation. This is a subclass of the

models described in this paper, but not included in the analysis of ref. [3].

The paper is organised as follows. Section 2 contains a brief review of earlier work

on the gauge structure and dynamics of extended geometry in cases where (λ, θ) = 1.

Section 3 describes the THA S(g+) with focus on a particularly useful double grading. For

more detail, we refer to the companion paper [1]. We then perform a detailed investigation

of the ancillary transformations, as obtained from the THA, in section 4. The dynamics is

formulated by means of a pseudo-action, using structure constants of the THA, in section 5,

and the L∞ gauge structure is outlined in section 6. We conclude with a discussion in

section 7, with focus on the continuation to infinite-dimensional structure algebras g.

The accompanying paper [1] deals with the construction of the THA’s from generators

and relations, and other purely algebraic aspects. In order for both papers to be reasonably

self-contained, their contents have a certain overlap.

2 Review of extended geometry

The input for extended geometry [2] is a structure group G (with Lie algebra g) together

with a lowest weight “coordinate representation” (i.e., the representation of a generalised

tangent vector) R(−λ). The generalised tangent space is the lowest weight module R(−λ),

where λ is an integral dominant weight. The structure algebra can in principle be any

Kac-Moody algebra, but we will, for simplicity, take g to be simply laced (or at least that

λi = 0 when αi is a short root) and normalise the simple roots to have length squared 2.

In what follows, we often use an extension of g to a Lie algebra g+, which is obtained by

adjoining one node, corresponding to a simple root with length squared 2, to the Dynkin

diagram of g, with lines corresponding to the coefficients of λ expressed in the basis of

fundamental weights, see figure 1.

2.1 Generalised diffeomorphisms and ancillary transformations

Generalised diffeomorphisms with infinitesimal parameter ξ ∈ R(−λ), acting on a vector

V ∈ R(−λ), are given in terms of the generalised Lie derivative,

LξV
M = ξN∂NV

M + ZPQ
MN∂Nξ

PV Q . (2.1)
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Figure 1. The Dynkin diagram for g+.

The second term is a local g ⊕ R transformation of V . The invariant tensor Z has the

universal expression

σZ = −ηαβtα ⊗ tβ + (λ, λ)− 1 , (2.2)

where σ is the permutation operator, tαM
N representation matrices, and η the inverse

Killing metric. Here, and in the following, we use an index-free notation, where Z is seen

as an operator Z : R(λ) ⊗ R(λ) → R(λ) ⊗ R(λ). The Killing metric and its inverse will

often be used to implicitly raise and lower adjoint indices. Note that the generalised Lie

derivative fulfils a Leibniz rule.

Calculating the commutator of two generalised diffeomorphisms, and using the section

constraint gives the result [2]

[Lξ,Lη]V =
(
L 1

2
(Lξη−Lηξ)

+ Σξ,η

)
V . (2.3)

The second term on the right hand side is a so-called ancillary transformation, which is a

restricted local g transformation.

The calculation leading to (2.3) uses the section constraint. This constraint ensures

that any two derivatives on any field or parameter lies in a linear subspace (a section) of

the minimal orbit of R(λ) under G. The stability group of a section is a parabolic subgroup

of G containing GL(d), the local structure group of gravity. The section constraint reads

Y ∂ ⊗ ∂ = 0 , (2.4)

where Y = Z + 1, i.e.,

σY = −ηαβtα ⊗ tβ + (λ, λ)− 1 + σ . (2.5)

The relation of the section constraint to minimal orbits was elaborated in refs. [2, 48]. On

a state1 φ ∈ R(2λ) ⊂ ∨2R(λ), one has

ηαβtα ⊗ tβ φ = (λ, λ)φ , (2.6)

and on ψ ∈ R(2λ− αi) ⊂ ∧2R(λ), where (λ, αi) = 1,

ηαβtα ⊗ tβ ψ = ((λ, λ)− 2)ψ . (2.7)

These relations are straightforward to derive using the eigenvalues of the quadratic Casimir

operator in the respective representations. The representations R(2λ) (symmetric) and⊕
i:λi=1R(2λ−αi) (antisymmetric) are the representations in ⊗2R(λ) which are annihilated

by Y .

1We use the notation ∨ for the symmetrised and ∧ for the anti-symmetrised product.
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The ancillary transformation Σξ,η has the generic form [2]

Σξ,ηV
M =

1

2
SαPQ

RSξP∂R∂Sη
QtαN

MV N − (ξ ↔ η) , (2.8)

the tensor S being given by the simple expression2

SαMN
PQ =

(
fαβγtβ ⊗ tγ + tα ⊗ 1− 1⊗ tα

)
MN

〈PQ〉 . (2.9)

The notation 〈PQ〉 means projection on R(2λ) or R(−2λ). Later, we will also denote the

projection on the antisymmetric
⊕

i:λi=1R(2λ − αi) or its conjugate by a curly bracket

{MN}. The tensor S is antisymmetric in its lower indices, and obeys Sα{MN}
PQ = 0.

The tensor S vanishes when g is a finite-dimensional algebra and λ is a weight with

(λ, θ) = 1, i.e., a fundamental weight dual to a simple root with Coxeter label 1. In ref. [2]

we gave the following list of cases where ancillary transformations are absent:

• g = Ar, λ = Λp, p = 1, . . . , r (p-form representations);

• g = Br, λ = Λ1 (the vector representation);

• g = Cr, λ = Λr (the symplectic-traceless r-form representation);

• g = Dr, λ = Λ1,Λr−1,Λr (the vector and spinor representations);

• g = E6, λ = Λ1,Λ5 (the fundamental representations);

• g = E7, λ = Λ1 (the fundamental representation).

In many of these cases, g+ is finite-dimensional, but the list also contains cases where g+

is infinite-dimensional:

• g = A7, λ = Λ4;

• g = Ar, r > 8, λ = Λp, p = 3, . . . , r − 2;

• g = Cr, r > 4, λ = Λr;

• g = Dr, r > 8, λ = Λr−1,Λr.

Assuming that g is simply laced, the presence of ancillary transformations implies that

g+ is infinite-dimensional. We will not consider the cases where g is not simply laced

further in the present paper, but the construction should work as long as λ is orthogonal

to all short roots.

2In ref. [2], the projection was not included in the definition of the tensor S. In addition, there is an

apparent sign difference to the expression given there; this is due to the change of conventions for the tα’s.
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2.2 Dynamics

In ref. [2], a (pseudo-)action3 was given, encoding the dynamics of any extended geometry

in the absence of ancillary transformations, and in the special cases where the coordinate

representation is the adjoint.

The generalised metric GMN parametrises the coset G/K×R. It is convenient, in order

to write an action without reference to any “external” dimensions, to let GMN transform as

a tensor density with weight −2w = 1−2(λ, λ). The generalised metric induces a preferred

involution on g through tαM
N 7→ −t?αMN = −(G−1tαG)NM , i.e., t? = GttG−1.

Define

(∂MGG
−1)N

P = ΠαM t
α
N
P + ΠMδ

P
N (2.10)

(this decomposition follows from G being a group element in G× R). Checking the trans-

formation of a Lagrangian up to total derivatives, only the inhomogeneous transformations

∆ξ ≡ δξ −Lξ are needed. They are

∆ξΠM = −2w∂M∂Nξ
N ,

∆ξΠαM = (tα + t?α)P
N∂M∂Nξ

P . (2.11)

It was then shown that the combination of terms

L0 =
1

2
A−B − 2C − (λ, λ)

(λ, λ)− 1
2

D , (2.12)

with

A = GMNηαβΠαMΠβN ,

B = GPQtαP
M tβQ

NΠαNΠβM ,

C = (G−1tα)MNΠMΠαN ,

D = GMNΠMΠN , (2.13)

has the inhomogeneous transformation, up to a total derivative,

∆ξL0 = −2SαPQ
MNGPSΠαS∂M∂Nξ

Q . (2.14)

The calculation relies on the section condition, both its symmetric part on the two deriva-

tives on ξ and its general form on Π and one of the derivatives, in order to cancel terms

produced by the σ term in the Y tensor, and thereby relating terms with adjoint and

scalar parts of Π. The weight of each derivative is −(λ, λ)+1 and that of an inverse metric

2(λ, λ) − 1, so each term in the Lagrangian has weight 1. This is the correct weight for

a density ω so that being a divergence ω = ∂Mv
M of a vector density v is a covariant

property [2]. The Lagrangian L0 thus describes the dynamics in the absence of ancillary

transformations.

3We are reluctant to use the term action as long as the section constraint needs to be imposed by hand.
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Kp0

[
��

oo
d

Kp0+1

[
��

oo
d

Kp0+2

[
��

oo
d
· · ·

C1
oo
d
· · · oo

d
Cp0−1

oo
d

Cp0
oo

d
Cp0+1

oo
d

Cp0+2
oo
d
· · ·

Table 1. The typical structure of the action of the 1-bracket between the ghost modules, with

ancillary ghosts appearing from level p0 > 1.

2.3 Gauge structure, L∞ and the Borcherds superalgebra B

In refs. [3, 4], the generalised tangent space was identified with a subspace of a Borcherds

superalgebra, here denoted B(g+), or simply just B. This superalgebra is obtained by

a double extension of the structure algebra g, first to g+ by a node corresponding to the

weight λ, attached to node i in the Dynkin diagram of g with a number of lines equalling

the Dynkin labels λi of λ, and then by a “grey” node attached with a single line to the first

extending node. The simple root corresponding to the grey node is an odd null root. The

resulting Dynkin diagram is shown as the right diagram in figure 2. The left diagram in the

same figure is equivalent. The Borcherds superalgebra B has a consistent (Z×Z)-grading,

corresponding to the two leftmost nodes in the left diagram. We denote the corresponding

grades by p and q (where q corresponds to the leftmost node) and refer to them as level

and height, respectively.

Our notation for the basis elements in the local part of the algebra with respect to the

level p is given in table 2. At height q = 0, we have the subalgebra B(g)⊕R, and at p = q

the subalgebra g+⊕R. Elements at a given (Z×Z)-grade form g-modules. The modules at

even and odd p+ q belong to the even and odd parts of the Lie superalgebra, respectively.

We refer to refs. [1, 3] for more detail.

The subspace where the vector fields live is the one at (p, q) = (1, 0), with basis EM , but

in order to describe the gauge structure it is convenient to define a generalised Lie derivative

for any pair of elements A and B at p > 0 and q = 0, which are also allowed to have odd

(fermionic) components. The generalised Lie derivative is then constructed [2–5] as

LAB = δpA,1

(
[[A,F [M ], ∂MB] + (−1)|B|[[∂MA

], F [M ], B]
)
, (2.15)

where |B| is the total statistics of B and pA is the level of A. The bracket [·, ·] is that of

the Borcherds superalgebra B(g+) (we use this notation also for the symmetric bracket

between two totally fermionic elements).

The ghosts Cp reside at height q = 0, and the ancillary ghosts Kp at q = 1, see

table 1. They can be combined into C =
∑∞

p=1Cp and K =
∑∞

p=p0
Kp. Both the ghosts

and ancillary ghosts are totally bosonic, |C| = |K| = 0. The ghost number is p + q.

Note that p0 > 1, which means that the Borcherds superalgebra can not accommodate

ancillary transformations, corresponding to ancillary ghosts with ghost number 1, which

would reside at (p, q) = (0, 1) and transform as the adjoint. This will be remedied by the

introduction of the tensor hierarchy algebras.
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We denote C = c + C ′, where c = C1. In ref. [3] it was shown that the ghosts satisfy

an L∞ algebra [49–52]. The full list of non-vanishing brackets is:

[[C ′]] = dC ′ ,

[[K]] = dK +K[ ,

[[Cn]] = kn

(
(adC)n−2(LCC +XCC) +

n−3∑
i=0

(adC)iRC(adC)n−i−3LCC

)

[[Cn−1,K]] =
kn
n

(
(adC)n−2LCK +

n−3∑
i=0

(adC)iadK(adC)n−i−3LCC

)
, (2.16)

where the coefficients kn have the universal model-independent expression in terms of

Bernoulli numbers

kn+1 =
2nB+

n

n!
, n > 1 . (2.17)

We here use the convention that the brackets are graded symmetric, all brackets carry

ghost number −1, and “Cn” represents “C,C, . . . , C”. All non-vanishing brackets except

the 1-bracket contain at least one level 1 ghost c. No brackets contain more than one

ancillary ghost.

The meaning of the symbols in eq. (2.16) will be explained in detail in section 6. Here,

it suffices to mention that X and R represent ancillary contributions, and that the nilpotent

“derivatives” d and [ act to the left and down, respectively (see table 1), in the double

grading of table 2.

3 The tensor hierarchy algebra S

When g = An−1, i.e., when extended geometry is geometry with structure group GL(n),

the tensor hierarchy algebras are W (An−1) = W (n), and S(An−1) = S(n), the finite-

dimensional non-contragredient superalgebras of Cartan type in Kac’s classification [53].

The definition of these superalgebras in terms of generators and relations derived from

a Dynkin diagram — in spite of them being non-contragredient — was given in ref. [7].

This construction is extended in the accompanying paper [1] to W (g+) and S(g+) for

finite-dimensional g.

Here we will focus on S = S(g+), where g+ is obtained, as explained above, by adding

one node to a finite-dimensional Lie algebra g, which is the structure algebra of the extended

geometry under consideration. The superalgebra S turns out to be appropriate for the

description of extended geometry; the extra elements in W = W (g+) are not required.

Both W and S can be described by the same Dynkin diagram as B, but with different

assignment of generators and relations [1]. This doubly extended diagram was described

in the preceding section and is given schematically in figure 2.

For the construction of gauge transformations etc. (and ultimately the L∞ algebra),

we use the same double grading as for B, splitting the superalgebra into finite-dimensional

representations of g, labelled by two integers (p, q). The subalgebra W (g) ⊂ S(g+) is on

– 7 –
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Figure 2. Two equivalent Dynkin diagrams for B(g+), W (g+) and S(g+).

p = −1 p = 0 p = 1

q = 1 f0 E]M

q = 0 FM k Tα k̃ EM

q = −1 F [M e0

Table 2. Basis elements for B at p = −1, 0, 1.

the line q = 0, and the Lie subalgebra g+ ⊂ S(g+) is on the diagonal p = q (generically

together with other elements).

A way of deriving the content of S is to note that the generators EM , which form a basis

for R1 = R(−λ), have a covariant Serre relation in R(−2λ), so that the anticommutator

[EM , EN ] lies in R2 = ∨2R1 	 R(−2λ). Any element at (p, q) = (−1, 0) must respect the

ideal generated by the Serre relations. This allows for the introduction of generators Φα
M

with anticommutators

[EN ,Φα
M ] = ϕβN,α

MTβ , (3.1)

where ϕ is a linear combination of projection operators on the irreducible modules appear-

ing in ϕ. They respect the ideal in R(−2λ) if

tβ〈M
PϕβN〉,α

Q = (tβ ⊗ ϕβα)〈MN〉
PQ = 0 , (3.2)

or equivalently, (φαβ ⊗ tβ)MN
〈PQ〉 = 0. where 〈MN〉 is projection on R(±2λ). Eq. (3.2)

is the condition for the representation of the embedding tensor, or the “big torsion repre-

sentation”4 The content of Φ in terms of irreducible representations can be determined by

decomposing g into levels ` with respect to λ (so that the level of a root α is (λ, α)) [1]. If

we then let H0 be the set of highest roots at level 0 and L` the set of lowest roots at level

`, then the content of Φ is

(N − 1)R(λ)⊕
⊕
γ∈H0

R(λ+ γ)⊕
(λ,θ)⊕
`=2

⊕
β∈L`

R(λ− β) , (3.3)

where N is the number of non-vanishing Dynkin labels of λ.

4Although we have not performed a complete analysis, we have noted that in cases when λ is attached

to a short root, there is typically no solution to this algebraic condition.
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p = −1 p = 0 p = 1

q = 2 L]αM

q = 1 Φ]M
α T ]α E]M LαM

q = 0 Φα
M HM Tα k̃ EM

q = −1 H[M e0

Table 3. Basis elements for S at p = −1, 0, 1.

p = −1 p = 0 p = 1

q = 2 L]αM

q = 1 Φ]M
α G]M f0 T ]α E]M LαM

q = 0 FM Φα
M GM k Tα k̃ EM

q = −1 F [M e0

Table 4. Basis elements for W at p = −1, 0, 1.

The difference at p = 1 between tables 2 and 3 illustrates the shortcoming of B(g+),

namely that it does not contain a module R̃1, and thus is unable to encode ancillary

transformations (ancillary ghosts with ghost number 1). The THA’s, on the other hand,

contain R̃1 precisely when ancillary transformations occur — the corresponding generators

are LαM and L]αM in table 3. There are of course further differences. At p = 0, q = 1, the

THA has an adjoint element, which is where the ancillary ghost will reside. At p = −1,

there is also room for generalised torsion. We comment on the inclusion of dynamical

variables in the discussion in section 7.

In a single grading with respect to the leftmost node in the second diagram of figure 2,

i.e., where the grading where each grade n = p− q forms a g+-module, the positive levels

of W agree with those of the corresponding Borcherds superalgebra B. Also the positive

levels of S essentially agree with those of B, but in some cases, there may be an issue of

further ideals arising at positive levels in the definition of the algebra S [1]. Up to such

ideals (further discussed in ref. [1]), both S and B are subalgebras of W , with the grading

shown in table 4. The elements in the subalgebras denoted by the same symbols as in W

are identified. In addition, the elements F [ and H[ are the same, although F and H are

– 9 –



J
H
E
P
0
2
(
2
0
2
0
)
1
4
5

not; H is the linear combination5 HM = FM + 1
(λ,λ)G

M . The criterion determining this

combination (apart from H[ = F [) is that the bracket [EM , H
N ] may contain k̃ but not k.

The lowering operation is defined as A[ = −[A, e0] on any element. The raising operator

is defined so that A] = 0 for an upper element in a pair, and A[] +A][ = A. Although we

use the same notation for raising and lowering as for the Borcherds superalgebra in ref. [2],

these are different operations (which is illustrated by H and H[ above). The ones in the

Borcherds superalgebra are inherited from W , where raising is not defined at p = 0. On

the other hand, in S, raising and lowering are well defined operations at level p = 0, but it

is not completely clear how to define the raising operator in general.

We refer to ref. [1] for the mathematical details concerning the definition and construc-

tion of S. For the class of algebras considered here, the representation content of R̃1 can

be explicitly determined,

R̃1 =

(λ,θ)⊕
`=2

⊕
β∈L`

R(−(λ− β)) . (3.4)

Note that the earlier criterion for the absence of ancillary transformations [2], namely

(λ, θ) = 1, implies that the grading is a 3-grading with ` = −1, 0, 1, and the sum in (3.4)

becomes empty. The simplest class of examples with non-vanishing R̃1 is when λ = θ, so

that R1 is the adjoint of g. Then (λ, θ) = 2, and the sum contains a single irreducible

representation, the singlet.

It is a peculiar property of the THA’s, that when they are the super-extension of

an infinite-dimensional Kac-Moody algebra (here, g+), already the level n = 0 (in the

double grading, p− q = 0) contains elements beyond the adjoint of g+ [48]. This property

follows [1] from the natural generalisation of the identities for the generators associated

to the Dynkin diagram given in ref. [7]. It also provides exactly the structure needed for

the description of the ancillary transformations, which will be explained in the following

section. See ref. [1] for more detail.

Some non-trivial brackets in S include

[k̃, EM ] = (1− (λ, λ))EM ,

[k̃, e0] = −e0 ,

[EM , H
N ] = −

(
1− 1

(λ, λ)

)
tαM

NTα + δNM k̃ ,

[EM , H
[N ] = δNMe0 ,

[E]M , H
[N ] = −tαMNTα + δNM k̃ ,

[E]M , H
N ] = − 1

(λ, λ)
tαM

NT ]α ,

[T ]α, H
[M ] = tαN

MHN + Φα
M ,

[T ]α, EM ] = tαM
NE]N + LαM . (3.5)

5The special case (λ, λ) = 1 requires a different treatment. In that case W (g) 6⊂ S(g+). This happens

for g = Dr, λ = Λ1, i.e., for double geometry. Since no ancillary ghosts appear, we have not investigated

this case further.
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The last two of these can be taken as definitions of Φ and L, containing the modules (3.3)

and (3.4), respectively. We also postulate

[EN ,Φα
M ] = ϕβN,α

MTβ ,

[LαM , H
[N ] = `αM

βNTβ . (3.6)

These relations serve to define the g-invariant tensors ϕ and `, which by construction are

some linear combinations of projectors on the irreducible modules in Φ and L.

Using the commutators, one can also check explicitly that Φ respects the ideal⊕
i:λi=1R(−(2λ− αi)) in [E]M , E

]
N ]. The condition becomes

L]β{Nϕ
β
P},α

M = 0 . (3.7)

This is automatically satisfied, since the highest representations in ϕ and ` are R(λ+ γ0)

and R(λ − β2), where γ0 is a highest root at level 0. The tensor product can not contain

R(2λ− αi).
Consider the Jacobi identity between T ]α, EM and H[N . This turns out to be the only

non-trivial Jacobi identity within the local superalgebra at p = −1, 0, 1, in the sense that

all others can be obtained from it by raising and lowering operations. A short calculation

leads to the necessary and sufficient condition for this Jacobi identity to be fulfilled:

ϕβM,α
N − `αMβN = δβαδ

N
M − fαβγtγMN − 1

(λ, λ)
(tβtα)M

N ≡ QαMβN , (3.8)

i.e.,

ϕβα − `αβ = δβα − fαβγtγ −
1

(λ, λ)
tβtα ≡ Qαβ . (3.9)

If we now make use of the algebraic condition (3.2) on ϕ, the part of this relation only

involving ` becomes, using the section constraint,

`βM
α〈P tβN

Q〉 = fαβγt
β
M
〈P tγN

Q〉 + tαM
〈P δ

Q〉
N − δ

〈P
M tαN

Q〉

=
(
fαβγt

β ⊗ tγ + tα ⊗ 1− 1⊗ tα
)
MN

〈PQ〉 . (3.10)

We recognise the right hand side as the S tensor of eq. (2.9), and thus

(`β
α ⊗ tβ)MN

〈PQ〉 = SαMN
PQ . (3.11)

The tensor S is antisymmetric in its lower indices. In addition, it satisfies S{MN}
PQ = 0,

thanks to the identity

SαMN
PQ =

(
1− σ

2
Y (1⊗ tα)

)
MN

〈PQ〉 . (3.12)

We would ideally like to show that there always is a solution of this form to eq. (3.9).

This follows from the existence of the THA as defined in ref. [1], but seems surprisingly

difficult to prove in a more direct manner, only using representation theory for g. The
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difficulty with analysing this equation lies in the translation between the projectors on

irreducible representations in adj⊗ R(λ) of the types PαM
βN and P βM,α

N , used to char-

acterise ` and ϕ, respectively, which are not known explicitly (in any useful form) in the

general case.

In ref. [1], we discuss the remarkable identity (3.9) in more detail, and show that the

matrix Q on the right hand side in a certain sense has corank 2, which makes the solution

in terms of ϕ and ` possible for any integrable highest weight representation of a finite-

dimensional simply laced g. Some highly non-trivial examples of this relation are also given

in ref. [1].

4 Ancillary transformations from S

We can perform the calculation of the ancillary term in the commutator of two generalised

diffeomorphisms with the expressions for the derived brackets directly in terms of the

superalgebra brackets. The expression for the generalised Lie derivative is identical to the

one using the Borcherds superalgebra [3] (but there the ancillary transformations could not

be derived in terms of the superalgebra brackets).

Let

LξV = [[ξ,H[M ], ∂MV
]]− [[∂Mξ

], H[M ], V ] , (4.1)

where ξ has bosonic components, and where ξ = ξMEM , V = VMEM . Consider the ξ∂2η

terms in [Lξ,Lη]V −L 1
2
(Lξη−Lηξ)

V . They become

− [[ξ,H[M ], [[∂M∂Nη
], H[N ], V ]]]

+
1

2
[[[[ξ,H[M ], ∂M∂Nη

]]], H[N ], V ]

+
1

2
[[[[∂M∂Nη

], H[M ], ξ]], H[N ], V ]− (ξ ↔ η) . (4.2)

In the last term, we pull out the H[M at the price of a term with [ξ,H[M ] = ξMe0. Then

this term cancels the first two terms, and the remainder is

−1

2
[[[[ξ, ∂M∂Nη

]], H[M ]], H[N ], V ]− (ξ ↔ η) . (4.3)

In the first step, the transformation parameter becomes

− 1

2
[[[ξ, ∂M∂Nη

]], H[M ]], H[N ]− (ξ ↔ η)

= − (λ, λ)

2((λ, λ)− 1)
[[[ξ, ∂M∂Nη

]], H[M ], HN ]− (ξ ↔ η) ,

= − (λ, λ)

2((λ, λ)− 1)
[[[ξ, ∂M∂Nη

]], HM ], H[N ]− (ξ ↔ η) , (4.4)

where the prefactor is to compensate for the factor in front of the T term in [E,H], and

where potential k̃ terms have been disregarded (they are easily shown to vanish). The two
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right hand sides of this equation can be calculated explicitly. In the Borcherds superalge-

bra, they give the same result (there, the prefactor is absent). In S, they give “different”

expressions. The first one is identical to the Borcherds algebra calculation: roughly speak-

ing, [B[
MN , H

[M ] gives only R1, but the second one goes through an intermediate R̃1:

[B[
MN , H

M ] gives a combination of R1 and R̃1. We use ξ = ξMEM etc. and calculate

the expression contracting ξP∂M∂Nη
Q. A straightforward calculation, using the section

constraint, gives the two alternative expressions

− (λ, λ)

2((λ, λ)− 1)

(
[[[EP , H

[M ], E]Q], HN ] + [[EP , [E
]
Q, H

[M ]], HN ]
)

≈ 1

2
(2δM[P t

α
Q]
NTα − fαβγtαPM t

β
Q
NTγ) (4.5)

and

− (λ, λ)

2((λ, λ)− 1)

(
[[[EP , H

M ], E]Q], H[N ] + [[EP , [E
]
Q, H

M ]], H[N ]
)

≈ (λ, λ)

2((λ, λ)− 1)

(
2δM[P t

α
Q]
NTα − fαβγtαPM t

β
Q
NTγ

)
+

1

2((λ, λ)− 1)
`αP

βM tαQ
NTβ (4.6)

respectively (the “≈” sign denotes equality when the indices are section-projected 〈MN〉
and antisymmetrised [PQ]). We recognise the S tensor in the first expression. The algebra

now identifies the result obtained by going through R1 with the one obtained by going

through R̃1, and the result becomes

−1

2
`αP

βM tαQ
NTβ . (4.7)

Unfortunately, the above calculation does not work for (λ, λ)=1, probably because the q=0

subalgebra then is not W (g), but quite degenerate. This does not exclude that the super-

algebra S(Dr+1) provides a good description. There, ancillary transformations are absent.

It is straightforward to show by explicit calculation that the ancillary transformation

also can be expressed as

Σ = −1

2
[[[ξ], ∂M∂Nη

]], H[M ], H[N ]− (ξ ↔ η)

= −X[
ξη +X[

ηξ . (4.8)

The innermost bracket [ξ], ∂M∂Nη
]] is in R̃2, i.e., a level 2 element in g+. An ancillary

element at ghost number 1 can be characterised as [[BMN , H
[M ], H[N ], where MN are

symmetric and in section (the antisymmetric part vanishes due to the section constraint).

Note, however, that its appearance relies on a non-vanishing R̃1.

The ancillary ghosts at ghost number 1 are thus characterised as doubly section-

constrained objects constructed (through R̃1) from R̃2. This is unlike higher ancillary

ghosts Kp, p > 1, which only need a single section-constrained index, and are obtained as

K[
p = [BM , H

[] with BM in R̃p+1.
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Let us consider the commutator of two ancillary transformations Σ and Σ′. We write

Σ = −[[[ξ], ∂M∂Nη
]], H[M ], H[N ] = [[BMN , H

[M ], H[N ] . (4.9)

Let V ∈ R̃2 at (p, q) = (2, 2) and let sMNP be a tensor whose all indices are in section.

Then sMNP [[[V,H[M ], H[N ], H[P ] = 0. This follows from the observation that V contains

irreducible representations R(2λ− αi − δ) with δ in the positive root lattice. The con-

secutive commutators with H[ contribute R(3λ). The result must be in R(λ), but this

representation is not part of R(3λ)⊗R(2λ− αi − δ), since R(λ)⊗R(2λ−αi− δ) does not

contain R(3λ). If we then commute two ancillary generators, we immediately get

[Σ,Σ′] = [[[Σ, B′MN ], H[M ], H[N ] = [[[BMN ,Σ
′], H[M ], H[N ] (4.10)

which again is of the same type.

The same two-derivative form of the ancillary transformations is also obtained by

considering reducibility. In the absence of ancillary transformations we had LK[V = 0,

where K is an ancillary ghost with ghost number 2, obtained as K[ = [BM , H
[M ] with

BM in R̃2 (for higher ancillary ghosts the statement is trivial). Inserting this into the

generalised diffeomorphisms gives

LK[V + [(dK)[, V ] = 0 , (4.11)

so that now K represents reducibility involving both the generalised diffeomorphisms and

the ancillary transformations. Note that this consideration also gives ancillary ghosts at

ghost number 1 constructed with two section-constrained indices from R̃2.

5 Dynamics

The remainder (2.14) in the transformation of the part L0 of the action contains the tensor

S and arises only in situations when ancillary transformations are present. A candidate

term, that is non-zero only in these cases, is suggested by the “new” invariant tensor `,

occurring as structure constants in S in eq. (3.6), and projecting (with some weights) on

the irreducible modules in R̃1:

L1 = ηαγGMP `αM
βNΠPβΠNγ . (5.1)

It has the right indices to contract a bilinear in Π (together with an inverse metric to match

the weights) and vanishes in the absence of ancillary transformations. A straight-forward

calculation gives at hand that the inhomogeneous transformation cancels the one of L0.

The calculation relies on the behaviour of ` under the involution,

`αM
βN tα ⊗ tβ = GMPG

NQ`βQ
αP t?α ⊗ t?β . (5.2)

This property implies (thanks to ΠMαt
α = ΠMαt

?α) that the tensor contracting the Π’s

in L1 is effectively symmetric under Pβ ↔ Nγ. The inhomogeneous part of the variation

becomes

∆ξL1 = 2`αM
βNGMP

(
tαQ

RΠP β∂N∂Rξ
Q + tβQ

RΠN
α∂P∂Rξ

Q
)
. (5.3)
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The first term gives the S tensor, thanks to the identity (3.10), and precisely cancels ∆ξL0

in eq. (2.14). In the second term, we need a “new” identity involving the section condition

in the indices NR. Consider the invariant tensor occurring in the second term,

mαM,Q
NR ≡ `αMβ〈N tβQ

R〉 + `αM
β{N tβQ

R} . (5.4)

The lower indices are in sums of R(λ)⊗R(λ− β), where again the β’s are lowest roots at

level 2 or higher. This tensor product contains neither R(2λ) nor R(2λ− αi) (λi = 1), so

m is identically 0. The second term in the variation above vanishes.

The Lagrangian L = L0 + L1 thus encodes the complete dynamics for all extended

geometries with finite-dimensional structure group.

It is encouraging that the structure constants of the THA can be used to construct an

invariant Lagrangian. It seems quite clear that it will be possible to form the Lagrangian

as a combination of invariant contractions bilinear in the projections of dGG−1 on the tor-

sion modules at level −1 in W (g). A task in continued investigations will be to see if this

specific combination has a natural origin in the superalgebra. However, dGG−1 does not

transform as a connection, but as the symmetrised (with respect to the involution) part of

a connection. An alternative, but equivalent construction (see ref. [40] for a discussion) is

based on the Weitzenböck connection dEE−1, where E is a generalised vielbein parametris-

ing the coset G/K. The torsion part of this connection does transform as a tensor, but

then a specific combination of terms will instead be dictated by invariance under local K

transformations, in complete analogy with the construction of the action in the teleparallel

formulation of gravity. It remains to be seen which is the most efficient way of formulating

the dynamics in terms of the superalgebra.

6 L∞ algebra

The infinite tower of ghosts in exceptional field theory was first described in ref. [30],

then without the introduction of ancillary ghosts. Ref. [4] showed how the generalised

diffeomorphisms in exceptional field theory are constructed using a Borcherds superalgebra,

and this was generalised to the framework of extended geometry in refs. [2, 3]. The L∞
algebra for double geometry was constructed in refs. [51, 54, 55]. In this case, there

are no ancillary ghosts, and the algebra stops at ghost number 2 and a 3-bracket. This

corresponds to the Borcherds superalgebra being finite-dimensional. In ref. [3] the picture

of ref. [30] was refined by the introduction of ancillary ghosts (with ghost number > 1) and

the construction of the L∞ algebra (2.16), which completely encodes the gauge structure

of extended geometry in the absence of ancillary gauge transformations. We will now

demonstrate that the THA S is the correct underlying algebraic structure in the more

general case.

As discussed in section 3, the THA S essentially agrees with the Borcherds superalgebra

B(g+) at positive levels p − q. A few differences arise that are relevant for the ghost

structure, i.e., for the L∞ algebra. The first is the presence of R̃1, which makes it possible

to address the issue with ancillary ghosts at ghost number 1. The second is the presence

of T ] (but not f0), which is where these ancillary ghosts actually reside. Table 5 shows the

– 15 –



J
H
E
P
0
2
(
2
0
2
0
)
1
4
5

K0
oo
d

K1

[
��

oo
d

K2

[
��

oo
d

K3

[
��

oo
d
· · ·

C1
oo
d

C2
oo
d

C3
oo
d
· · ·

Table 5. The typical structure of the action of the 1-bracket between the ghost modules, with

ancillary ghosts appearing from level p = 0.

generic structure of the ghosts, with arrows showing the action of the nilpotent “derivative”,

the L∞ 1-bracket.

The only difference from the construction with the Borcherds superalgebra in ref. [3]

is that we now may have ghosts in K0 = k. When formulating the L∞ brackets as derived

brackets based on S instead of B, we can to a large extent rely on the previous calculations,

and ask how they are modified by k.

The ghosts come in two kinds: the “ordinary” or non-ancillary ones at p > 0 and q = 0,

and the ancillary ones at p > p0 and q = 1, where R̃p0+1 is the lowest occurrence of an R̃p.

In B, we had p0 > 1. For the cases presently under consideration, with finite-dimensional

g, the corresponding limit in S is p0 > 0. (For infinite-dimensional g, ancillary fields may

appear at lower p, see the discussion in section 7.) As for B, the non-ancillary ghosts

are collectively denoted C and the ancillary ones K, but now seen as elements in S. The

ancillary ghosts are defined as in section 4.

We will not derive a full set of brackets and prove all identities, but content ourselves

with some low brackets, together with conjectures on the general structure.

6.1 Definitions and identities

In ref. [3], we needed to assume the closure of the generalised diffeomorphisms, on the

form LCLC = −1
2LLCC . The absence of ancillary transformations had to be assumed,

and did not follow from the content of the Borcherds superalgebra — even in situations

with ancillary transformations, there was no support for them in the superalgebra. This

prevented us from treating cases with ancillary transformations.

As in ref. [2], the generalised Lie derivative, with one non-ancillary element A as

parameter, acting on another non-ancillary element B, both of arbitrary statistics, was

defined as

LAB = δpA,1

(
[[A,H[M ], ∂MB] + (−1)|B|[[∂MA

], H[M ], B]
)
. (6.1)

This expressions (now adapted to our notation for the basis elements of S) still holds, since

it does not involve ancillary elements, and thus derives from isomorphic subalgebras of B

and S. Let c = C1 ∈ R1 be non-ancillary ghost at ghost number 1. In the presence of

ancillary transformations, we have (see eq. (4.8))

LcLcA = −1

2
LLccA+

1

2
[A,X[

cc] , (6.2)
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where

X[
aB = −1

2
(−1)|B|[[[∂M∂Na

], B]], H[M ], H[N ] , (6.3)

for a at (p, q) = (1, 0) and B at q = 0.

The 1-bracket contains a horizontal part and a vertical part. The vertical part is

obtained from the lowering operator,

A[ = −[A, e0] . (6.4)

The horizontal part is defined as

dA = [∂MA
], H[M ] (6.5)

for any element A such that A[ = 0, i.e., for the lower element in a pair. It is then extended

to the upper elements in the pairs (the ancillary ghosts) by (dK)[ = −dK[ for K such that

K] = 0. Then d + [ acts as a nilpotent 1-bracket. Also the generalised Lie derivative is

extended to elements K at height 1 by (LaK)[ = −LaK
[.

The generalised Lie derivative has the usual reducibility LdC2A = 0, where C2 is an

element at (p, q) = (0, 2). In addition, there is a reducibility coming from parameters

[[K1]] = dK1 +K[
1, where K1 is an ancillary element at (p, q) = (1, 1). The corresponding

identity,

LK[
1
A− [A, (dK1)

[] = 0 , (6.6)

was derived in section 4.

The 2-derivative expression XaB of eq. (6.3) appeared already in the previous con-

struction with the Borcherds superalgebra [3], however only for B at p > 2. There it arose

from the non-covariance of the derivative d as

(dLa + Lad)B = −X[
aB , (6.7)

while we obtained it above from the commutator of two generalised derivatives. (For

a discussion of the connection between non-covariance and the appearance of ancillary

transformations, see ref. [40].) We need to check that eq. (6.7) still holds when the derivative

acts on an ancillary ghost K1, i.e., from (p, q) = (1, 1) to (0, 1). This is an issue, since the

corresponding (lowered) action from (p, q) = (1, 0) to (0, 0) is never covariant, not even in

the absence of ancillary transformations. We have

(dLa + Lad)b = −X[
ab+ Yab , (6.8)

where the non-ancillary contribution is

Yab = −(−1)|b|∂M∂Na
P bN tαM

PTα . (6.9)

If b is ancillary, i.e., b = [βM , H
[M ] for βM in R̃2, Yab vanishes thanks to the antisymmetric

section constraint. The identity (6.7) can be used on all ghosts.
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In ref. [3], identities for commutators between derivatives, generalised Lie derivatives

and ancillary operators were derived, and used in order to check the identities for the L∞
brackets. We only need to consider modifications involving the presence of R̃1 and the

ghost k.

The entities involved are the derivative d, the generalised Lie derivative LaB, the

two-derivative ancillary element XaB of eq. (6.3) and the one-derivative ancillary element

R(A,B) defined by

R[(A,B) = (−1)|B|
pB∂

(A)
M − pA∂(B)

M

pA + pB
[[A], B]], H[M ][ . (6.10)

The latter expression roughly indicates the deviation of d from being a derivation. Let a, b

and A,B be elements at q = 0 and let pa = pb = 1, pA, pB > 1. Then,

d[a, b] = Lab− (−1)|a||b|Lba−R[(a, b) ,

d[a,B] = [a, dB] + LaB −R[(a,B) ,

d[A,B] = [A, dB] + (−1)|B|[dA,B]−R[(A,B) . (6.11)

In addition it is straightforward to derive

d[a, α[] = Laα
[ −R[(a, α[) , (6.12)

where a is an element at (p, q) = (1, 0) and α is an ancillary element in the adjoint at

(p, q) = (0, 1).

We will not give a full list of identities. Most of them, except for very low ghost number,

coincide with the ones in ref. [3]. From the expression (6.7) it immediately follows that

(dXa +Xad)B = 0 . (6.13)

The explicit expression for R(a, b) gives

dR(a, b) = Xab− (−1)|a||b|Xba . (6.14)

Another identity at (p, q) = (0, 1) is

LcXcc+XcLcc = −1

2
XLccc+

1

2
R(c,X[

cc) (6.15)

which can be proven by comparing the explicit expressions. It generalised the correspond-

ing relation “LcXcA+XcLcA = −1
2XLccA” in the Borcherds case.

6.2 Some L∞ brackets

When we truncate to the ghost sector, we in addition postulate that the 1-bracket annihi-

lates the lowest ghosts. The 1-bracket is

[[c]] = 0 ,

[[Cp]] = dCp , p > 2 ,

[[k]] = 0 ,

[[Kp]] = dKp +K[
p , p > 1 , (6.16)
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where we denote the ghost number 1 non-ancillary ghost c = C1 and the ancillary one

k = K0 (the subscript is the p eigenvalue, not the ghost number). This is depicted in table 5.

Let us start with the 2-brackets between elements at ghost number 1. We let c ∈ R(1,0)

and k ∈ R(0,1). The 1-bracket by definition annihilates c+ k, [[c+ k]] = 0. The 2-brackets

reflect the commutators between transformations, and we have, using the form of the

ancillary transformations derived in section 4,

[[c, c]] = Lcc+Xcc ,

[[c, k]]0 = Lck ,

[[k, k]] = −[k, k[] (6.17)

The 2-bracket identities are of course trivially satisfied. The second of these brackets have

been equipped with subscript 0, since it will be modified. When the ghost k is present, the

bracket [[c, k]] is not uniquely determined by the commutator of a generalised Lie derivative

and an ancillary transformation. The action of the commutator on e.g. a vector is of course

unique, but the corresponding set of parameters is not. We can choose to add a trivial

term proportional to

[[[c, k][]]] = −(d[c, k[])] + [c, k[] = Lck +R(c, k[) + [c, k[] , (6.18)

where we have used eq. (6.12) in the last step, representing a vanishing tranformation due

to reducibility. The operation [] ensures that the parameter lies in R1 at height 1, and

not in R̃1. The choice made here will have repercussions for the brackets containing higher

ghost number ghosts and for higher brackets. A goal is to connect as closely as possible to

the results of ref. [3], where choices for low brackets enabled us to give universal expressions

for all brackets between all ghosts. In particular, we then had [[C,K]] = 1
2LCK, with a

factor which contrasts with the middle equation in (6.17). It will serve our purposes to

add the trivial transformation of eq. (6.18) with coefficient −1
2 to obtain

[[c, c]] = Lcc+Xcc ,

[[c, k]] = Lck +
1

2
[[[c, k][]]] =

1

2
Lck −

1

2
R(c, k[)− 1

2
[c, k[] ,

[[k, k]] = −[k, k[] (6.19)

The “algebra” of eq. (6.17) is a simple choice of representative in that it contains no

generalised diffeomorphisms in the commutator between a generalised diffeomorphism and

an ancillary transformation. The representative in eq. (6.19), on the other hand, is not of

this kind, but has other advantages.

In ref. [3], the coefficient of the n-brackets contained the Bernoulli number Bn−1. The

vanishing of the Bernoulli numbers for odd argument > 3 implied the vanishing of the even

brackets, starting from the 4-bracket. It would be desirable to maintain this property. This

turns out to be possible, using the choice above and further choices for higher brackets.

Before completing the 2-brackets, we consider the 3-bracket [[c, c, c]]. The identity is

[[[[c, c, c]]]] + 2[[c, [[c, c]]]] = 0 . (6.20)
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The second term is calculated as

2[[c, [[c, c]]]] = 2[[c,Lcc+Xcc]]

= LcLcc+ LLccc

+XcLcc+XLccc+ LcXcc−R(c,X[
cc)− [c,X[

cc] . (6.21)

The terms at q = 0 (the first two terms, together with the last one, coming from the

modification of the bracket [[c, k]]) can be rewritten using the first equation in (6.11) together

with eq. (6.2) as

LcLcc+ LLccc− [c,X[
cc] = −1

3

(
d[c,Lcc] +R[(c,Lcc) + [c,X[

cc]
)
. (6.22)

This immediately gives the full 3-bracket as

[[c, c, c]] =
1

3

{
[c,Lcc] +R(c,Lcc) + [c,Xcc]

}
(6.23)

It remains to be verified that the q = 1 part of the identity is satisfied. This demands that

1

3
dR(c,Lcc) +

1

3
d([c,Xcc]

[]) + LcXcc+XcLcc+XLccc−R(c,X[
cc) = 0 . (6.24)

A short calculation, using eqs. (6.14) and (6.12), shows the q = 1 part of the identity holds,

thanks to eq. (6.15). Note that 3-bracket has the same formal expression as in eq. (2.16).

In particular, the coefficients of [c,Lcc] and [c,Xcc] are the same, and this happens only

for our particular choice of representative for [[c, k]].

Let us now address the vanishing of the 4-bracket [[c, c, c, c]]. The identity to be

fulfilled is

[[[[c, c, c, c]]]] + 2[[c, [[c, c, c]]]] + 3[[c, c, [[c, c]]]] = 0 , (6.25)

and we will for now only consider the q = 0 part. Assuming that [[c,K1]] does not contain

a q = 0 part (see below), it can be calculated as

[[[[c, c, c, c]]]]|q=0 +
2

3

[
c,LcLcc+

1

2
LLccc

]
+ 3[[c, c,Xcc]]|q=0

= [[[[c, c, c, c]]]]|q=0 +
1

3
[c, [c,X[

cc]] + 3[[c, c,Xcc]]|q=0 . (6.26)

A necessary condition for the consistency of the vanishing of the 4-bracket is that [[c, c, k]]

contains a q = 0 part −1
9 [c, [c, k[]]. This can be arranged by choosing a representative by

the suitable addition of a trivial term proportional to [[[c, [c, k]][]]]. It also becomes clear

— by the calculations in the Borcherds case together with the ancillary term in LcLc

in eq. (6.2) — that this happens to all orders, and that we can reproduce the collective

brackets

[[Cn]] = kn

(
(adC)n−2(LCC +XCC) +

n−3∑
i=0

(adC)iRC(adC)n−i−3LCC

)
, (6.27)

as before, with the new extended meaning of XCC.
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Let us now consider brackets with one ancillary ghost. The lowest identity is

0 = [[[[c,K1]]]] + [[c, [[K1]]]]

= [[[[c,K1]]]] + [[c, dK1]] + [[c,K[
1]] . (6.28)

The last two terms become, using eq. (6.19),

[[c, dK1]] + [[c,K[
1]] = LcdK1 −

1

2
R(c, dK1)−

1

2
[c, (dK1)

[]

+
1

2
LcK

[
1 +

1

2
LK[

1
c+

1

2
XcK

[
1 +

1

2
XK[

1
c . (6.29)

Using the reducibility LK[
1
c−[c, (dK1)

[] = 0, the height 0 terms become −1
2LcK1, implying

that

[[c,K1]] =
1

2
LcK1 , (6.30)

which agrees with the expression in the Borcherds case. The remaining terms at height 1

of the identity demand are

1

2

(
dLcK1 + LcdK1 +XcK

[
1 +XK[

1
c−R(c, (dK1)

[
)

=
1

2

(
XK[

1
c−R(c, (dK1)

[)
)

= 0 . (6.31)

This result is readily extended to

[[C,K ′]] =
1

2
LCK

′ , (6.32)

where K ′ = K − k is the p > 1 part of K, in accordance with the Borcherds case.

For the 2-brackets with two ancillary ghosts one easily obtains

[[k,K ′]] = −1

2
[K ′, k[] ,

[[K ′,K ′]] = 0 . (6.33)

This completes the 2-brackets between all ghosts. It is possible to introduce the nota-

tion MKA = −[A, k[] and YKA = −R(A, k[) (in analogy with LCA = LcA), in order to

write the 2-brackets collectively as

[[C,C]] = LCC +XCC ,

[[C,K]] =
1

2
(LCK + MKC + YKC) ,

[[K,K]] = MKK . (6.34)

It is clear that the construction works, and that there are solutions to the identities

that make the higher brackets take forms close to the ones in the Borcherds case. We

conjecture that all brackets reduce to the formal expressions for the Borcherds ones under

k → 0, that all brackets with more than two ancillary ghosts vanish, and that all even

brackets above the 2-bracket vanish.
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p = −1 p = 0 p = 1

q = 2 π]

1

L]M
1

q = 1 Φ]M

0

T ]Am
1

K]

1

π
0

L]1
0

E]M
1

LM
0

q = 0 ΦM

−1

HM

0

TAm
0

K
0

d
0

L1

−1

EM
0

q = −1 H[M

−1

e0
−1

Table 6. Basis elements for S(g+) when g is an affine algebra. The shifts specifying the action of

d are given in red.

7 Discussion

We have given a description of the dynamics and gauge structure of extended geometry

with a finite-dimensional structure group G and lowest weight coordinate representation

R(−λ). The tensor hierarchy algebra S = S(g+) plays a central rôle, in that it (unlike the

corresponding Borcherds superalgebra) naturally harbours the ancillary transformations.

Ingredients from the THA were also used for a description of the dynamics.

One main purpose of the paper, and its companion [1], is to find the underlying alge-

braic structure behind extended geometry. The THA S, in every respect, shows promise

to contain exactly the correct information precisely when it is needed. One of the relevant

aspects for the present investigation is the peculiar appearance of new elements (in the

present case, a lowest weight g+-module, starting with the generators LαM ) along with

g+ at level 0 (cf. ref. [48]). It is tempting to extrapolate to more complicated situations,

especially with infinite-dimensional structure groups [42], and follow the lead given by the

THA. For G = E9, the relevant THA algebra is S(E10). The central part of this super-

algebra (or more generally, for any affine G), decomposed into E9 representations along

the same principles as previous tables, is given in table 6. In order to construct this part

of the algebra, one needs to include the generator d (the Virasoro generator L0, roughly

speaking) in order to have a non-degenerate Cartan matrix (bilinear form).

Here, the generators at (p, q) = (0, 0) are the affine generators, including d, which is

L0, but acting with a “shift” compared to L0, indicated in red below the generators. There

is also L1, which we have already encountered in S(E9). The elements at p = −1 and p = 1

are (shifted) fundamentals and anti-fundamentals of E9. It is noteworthy that now even

R̃0 is non-empty, and consists of a singlet. We have seen that the presence of R̃p indicates

ancillary ghosts at ghost number p, compensating for an apparent failure in the (p + 1)-
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bracket. It will be interesting to see what this means for the 1-bracket in E9 geometry.

In the E9 case, or more generally in the affine case, including the geometrisation of the

Geroch group, this seems to point at the appearance of ancillary fields already at ghost

number 0, represented by constrained fields in the unshifted fundamental representation

at (p, q) = (−1, 1). This would corroborate and provide an algebraic basis for the results

of ref. [43], and will be the subject of a forthcoming study.

The main purpose of the invention of THA’s [6] was to have the embedding tensor

at level −1. This representation (Φ) together with a “fundamental” (H) form the repre-

sentations in which torsion comes in extended geometry. It is likely that the ghost sector

can be complemented with dynamical fields at level 0, “torsion” antifields at level −1,

and further higher antifields corresponding to torsion Bianchi identities etc. (“syzygies”)

in the algebraic framework. This is of course completely beyond the reach of a Borcherds

superalgebra.

The fact that the generalised Lie derivative fulfils a Leibniz rule means that the vector

fields satisfy a Leibniz algebra [56, 57]. It has recently been shown that any Leibniz algebra

canonically (via a differential graded Lie algebra, or equivalently, an infinity-enhanced

Leibniz algebra [58]) gives rise to an L∞ algebra [59]. It would be interesting to compare

the L∞ algebra constructed in that way with the one presented here, not least since in

the application to gauged supergravity, the relevant differential graded Lie algebra can be

understood as coming from a tensor hierarchy algebra [60, 61].

In some cases, notably in the exceptional series, the THA’s of S type possess a non-

degenerate invariant bilinear form [6, 48], which is invariant under the algebra but not

centered around level 0. For S(Er+1), a g-module at (p, q) in the double grading is paired

with the conjugate module at (9 − r − p, 1− q). Given an involution on g, one may use it

to define a “dualisation” map ? ∈ End (S(g+)) and, as proposed in [48], the bilinear form

might be used in an action.
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