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the interface between the related two-dimensional conformal field theories. If the largest

symmetry algebra is Virasoro, we find that the reflection and transmission coefficients are

independent of the details of the initial state, and are fixed in terms of the central charges

and of the two-point function of the displacement operator. The situation is more elabo-

rate when extended symmetries are present. Positivity of the total energy flux at infinity

imposes bounds on the coefficient of the two-point function of the displacement operator,

which controls the free-energy cost of a small deformation of the interface. Finally, we study

out-of-equilibrium steady states of a critical system connecting two reservoirs at different

temperatures. In the absence of extended symmetries, our result implies that the energy

flux across an impurity is proportional to the difference of the squared temperatures and

controlled by the reflection coefficient.
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1 Introduction

Although the Euclidean and the Lorentzian formulations of a quantum field theory (QFT)

are in principle equivalent [2], very different properties of the theory are accessible in one

or the other setup. This is true in particular for a conformal field theory (CFT), as it has

become more and more apparent in recent years. The a-theorem [3], the conformal collider
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Figure 1. The interface is the worldline of an impurity placed at x = 0, which separates a CFTL

from a CFTR.

bounds [4, 5] the averaged null energy condition (ANEC) [6, 7], the analytic structure

constraining the spectrum of every CFT [8–12], all these results have been obtained by

exploiting the way in which unitarity and causality are encoded in the Lorentzian regime

of the theory. In this work, we study the real time dynamics of a CFT in the presence of

an interface. This has two complementary purposes. On the one hand, real time evolution

allows to probe the conformal interface via a scattering process, whose associated observ-

ables provide qualitative information about the interface, and constraints on the attached

CFT data. On the other hand, the interface itself, like any other operator, is essentially

a probe of the CFT: by scattering conformal matter against an interface, we also gather

information on the conformal matter itself. For instance, one can excite the vacuum with

different local operators, and study the dependence of the scattering observables on the

initial state. In fact, interfaces are special probes, since in general they glue together two

different CFTs. One might hope that, measuring the transparency of the set of conformal

interfaces, it is possible to learn general facts about the space of CFTs [13].

Our setup will be two dimensional. The restriction to two dimensions is not concep-

tually necessary, but practically helpful for explicit calculations. We shall consider a pair

of CFTs, denoted CFTL and CFTR, glued at an interface as depicted in figure 1. We can

then prepare an excitation far from the interface and let it propagate until it collides with

the interface. We define transmission and reflection coefficients as the fraction of energy

that is transmitted or reflected across the interface:

T =
transmitted energy

incident energy
, R =

reflected energy

incident energy
. (1.1)

Energy conservation implies T +R = 1 and positivity of the total energy transmitted and

reflected leads to T ≥ 0 and R ≥ 0. Clearly, we can also define analogous transmission

and reflection coefficients associated to other conserved quantities. In the context of 2d

conformal field theory, scattering processes involving an impurity have been considered

before [14]. There, the reflection/transmission process is assumed to admit a description

in terms of chiral propagating fields, being glued at the interface by a linear map. We
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do not make this assumption here, although it definitely holds, in two dimensions, for

theories which admit a particle description. With the exception of subsection 3.8, we do

not discuss exclusive processes, rather we focus on the observables described in eq. (1.1).

The advantage of measuring this type of inclusive quantities in CFT was emphasized in [4],

where the expectation value of the energy flux operator, or of multiple insertions thereof,

was measured in a state created by a local operator.

A priori we expect T and R to depend on what excitations we are shooting at the in-

terface. Remarkably, we shall show that in a generic CFT they are completely independent

of the details of the incoming excitation. More precisely, we will see that they are entirely

determined in terms of the central charges cL and cR of the left and right CFTs and the

two point function of the stress tensor across the interface,

〈TL(z1)TR(z2)〉I =
cLR/2

(z1 − z2)4
, (1.2)

where TL (TR) denotes the holomorphic stress tensor of the left (right) CFT. Our main

result, is that for any excitation colliding with the interface the transmission coefficients

are given by

TL =
cLR
cL

, TR =
cLR
cR

, (1.3)

where the subscript of T indicates the origin of the incoming excitation. The combination
cLR
cL+cR

was prophetically termed transmission coefficient in [1]. Our results show that this

combination is indeed a weighted average of the physical energy transmission coefficients

TL and TR. Furthermore, (1.3) leads to the bounds

0 < cLR < min(cL, cR) , 0 < TL < min

(
1,
cR
cL

)
, 0 < TR < min

(
1,
cL
cR

)
. (1.4)

This shows that it is impossible to fully transmit energy from the CFT with larger central

charge to the CFT with smaller central charge.

The situation changes if the spectrum of one of the CFTs contains more than one spin

2 conserved quasi-primary. This is commonly the case when the theory is endowed with

an extended symmetry. In this case, eqs. (1.3) and (1.4) are only valid, in general, if the

excitation is created by the stress tensor. The reflection and transmission coefficients are

state dependent, and can be computed from the knowledge of the relevant CFT data.

The paper is organized as follows. Section 2 contains preliminary remarks on the

propagation of matter in a 2d CFT. In section 3 we define the reflection and transmission

coefficients and derive the main results (1.3) and (1.4). In section 4, we check and illustrate

the results in a few examples. Section 5 is dedicated to an application of our main result to

the physics of non-equilibrium steady states. Finally, we draw our conclusions and discuss

future directions in section 6. A few technical details are relegated to appendices.

2 Propagation of conformal matter

We begin by highlighting a simple consequence of holomorphy on the propagation of con-

formal matter, which will provide intuition when we construct the initial state for our
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collider experiment. In a 2d CFT, the stress tensor splits into a holomorphic and an anti-

holomorphic part. In particular, the expectation value of the energy density in any state

of the theory splits accordingly:

〈T 00(x, t)〉 = − 1

2π

(
〈T (z)〉+ 〈T (z̄)〉

)
, z = x− t , z̄ = x+ t . (2.1)

Our conventions are summarized in appendix A. Eq. (2.1) teaches us that the energy

density in any state consists of a (holomorphic) right-moving and a (antiholomorphic) left-

moving parts, both propagating rigidly and both at the speed of light. In particular, the

left-moving and right-moving wave packets cross each other without exchanging energy.

Two interesting observables compute the flux of energy, which equals the flux of spatial

momentum, that reaches infinity towards the right or towards the left respectively [4] —

see figure 2:

E = − 1

2π

∫ +∞

−∞
dz T (z) , Ē = − 1

2π

∫ +∞

−∞
dz̄ T (z̄) . (2.2)

Notice that the operators E and Ē are ANEC operators. In fact, in 2d they simply measure

the total momentum Pµ along the null directions t±x. Therefore, E = Pz and Ē = −Pz̄ have

non-negative expectation value in any state. We can, for instance, measure the fraction of

energy carried away in the two directions in a state created by acting with a local operator

in a region of spacetime:

|O, f〉 =

∫
d2x f(x)O(x) |0〉 , (2.3)

where f(z, z̄) is some appropriate wave packet. The state can be made normalizable by

moving the local operator O in imaginary time. The fraction of energy which propagates

on average towards the right and the left is computed respectively by the expectation value

of E and Ē in the state (2.3), and is therefore completely fixed by conformal invariance and

by the choice of wave packet. As an example, let us compute the transmitted and reflected

energy in a plane wave state

|O, pµ〉 =

∫
d2x eip·xO(x) |0〉 . (2.4)

Such a state is actually an eigenstate of the ANEC operators (2.2):1

E |O, pµ〉 =
p̄

2
|O, pµ〉 , Ē |O, pµ〉 = −p

2
|O, pµ〉 . (2.5)

This is the expected result if the CFT is made of massless carriers of energy and momentum

— see figure 3. It is also instructive to compute the norm of the state (2.4), which contains

the same information as the spectral density of the two-point function of the operator O.

1This is obtained by projecting eqs. (2.5) onto a state created by a string of generic local operators. In the

resulting correlator, the iε prescription implies that the contour of integration of the ANEC operators (2.2)

separates O from the other insertions. We then close the contour towards the operator O, and Fourier

transform the result. Notice that only the single pole in the OPE of the stress tensor with the operator O

contributes, hence eq. (2.5) is valid for any linear combination of primaries and descendants.
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w

w̄

Ē

E

Figure 2. The Penrose diagram of 2d Minkowski space. The coordinates w, w̄ are related to the

z, z̄ coordinates as z = tanw and similarly for z̄. The dashed lines mark the integration contours

of the ANEC operators (2.2), which in these coordinates read E = −1/2π
∫
dw cos2wT (w) — up

to the vacuum energy which we subtracted off — and similarly for Ē . The contours can be freely

translated, therefore E measures the total energy — equal to the z̄ component of the momentum

— which reaches infinity on the right, and similarly Ē .

p̄−p p0

p1

pµ

p̄
2

−p
2

Figure 3. The timelike momentum pµ uniquely decomposes in the lightlike momenta of the right

and left movers. The time components of the latter coincide with the energy carried to infinity

towards the right and towards the left.

For simplicity, we choose O to be a scaling operator with dimensions (h, h̄), and denote

the corresponding state |h, h̄, pµ〉. The state is delta-function normalizable:

〈h, h̄, pµ|h, h̄, p′µ〉 =
(2π)4

2

1

Γ(2h)Γ(2h̄)

( p̄
2

)2h−1 (
−p

2

)2h̄−1
δ2(pµ − p′µ)θ(p0 − |p1|) . (2.6)

The holomorphic limit must be understood in the sense of distributions:

〈h, 0, pµ|h, 0, p′µ〉 =
(2π)4

Γ(2h)
(p0)2h−1δ2(pµ − p′µ)δ(p0 − p1)θ(p0) . (2.7)

We see that a holomorphic field only creates right moving plane waves.

Let us now consider the situation in the presence of a conformal interface, which we

think of as an impurity placed at x = 0 — see figure 1. Since the holomorphic splitting

in eq. (2.1) is a local property, conformal matter still propagates freely until it hits the

interface. On the interface, the stress tensor is subject to the following gluing condition:

TL(z) + TR(z̄) = TL(z̄) + TR(z) , z + z̄ = 0 , (2.8)
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where TL (TR) is the stress tensor of the CFT on the left (right). We shall come back to

this condition in subsection 3.1. For now, let us only point out that matter is allowed to be

reflected at the interface, but not absorbed. The perturbations incoming from the left and

from the right — which add up to the left hand side of eq. (2.8) — are glued to the outgoing

perturbations — the right hand side of eq. (2.8). The amount of energy being reflected

and transmitted is not fixed, it depends on the details of the boundary condition and,

in principle, on the state. As previewed in the introduction, the amount of transmitted

and reflected energy is the observable we would like to focus on in the following. The

expectation value of the ANEC operators (2.2) precisely measures these quantities.

As we just saw, matter propagation is only altered by the presence of the interface

locally, at x = 0. On the contrary, the construction of the state is a Euclidean process,

strongly influenced by the lack of translational invariance of the vacuum. In fact, the

crucial step in our construction will be the definition of an appropriate class of states

where reflection and transmission of energy can easily be measured. We do so in the next

section, after a brief reminder of some basics of 2d defect conformal field theory.

3 Reflection and transmission coefficients from a collider experiment

In this section, we consider a one dimensional conformal interface which preserves a given

(higher spin) symmetry. We define reflection and transmission coefficients, by computing

the flux at infinity of the charge associated to this symmetry in a specific class of states. As

we review in the next subsection, a conformal interface by definition preserves the maximal

possible amount of symmetry generated by the stress tensor, and in particular it conserves

energy. Therefore, we focus on the reflection and transmission of energy, whose flux is

measured by the operators (2.2). In subsection 3.9, we consider the case of a global charge.

3.1 Generalities on defect CFT

Let us consider an interface between two CFTs in Euclidean signature. The interface runs

vertically as in figure 1, but we now replace the coordinate t with the Euclidean counterpart

τ = it, and we take τ to be real. The plane is spanned by the complex coordinate z = x+iτ .

Imposing that the interface is invariant under τ -translations and scale transformations, we

find the following operator equations:2∫ ∞
−∞

dτ
[
TL(z = iτ)− TL(z̄ = −iτ)− TR(z = iτ) + TR(z̄ = −iτ)

]
= 0 , (3.1)∫ ∞

−∞
dτ τ

[
TL(z = iτ)− TL(z̄ = −iτ)− TR(z = iτ) + TR(z̄ = −iτ)

]
= 0 . (3.2)

2The integrated operators in eqs. (3.2) have vanishing matrix elements between the states created by

insertions on the left and on the right of the interface. Such insertions generate the full Hilbert spaces on

the left and on the right. This is not true if we consider a junction among multiple CFTs rather than an

interface. The argument can be easily modified by use of the folding trick. The system can be replaced by

a boundary condition for the tensor product of the CFTs. Then, the operator whose integral vanishes in

any state is the sum of the appropriate component of the stress tensors of all the CFTs.

– 6 –
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Notice that the stress tensors are evaluated at the location of the interface: holomorphy

and translational invariance ensure that no singularities arise. These equations could be

satisfied with a local operator θ on the interface such that

TL(z = iτ)− TL(z̄ = −iτ)− TR(z = iτ) + TR(z̄ = −iτ) = ∂2
τ θ(τ) . (3.3)

However, θ has dimension zero, and scale invariance requires its two-point function to be

a constant. Then 〈∂τθ ∂τθ〉I = 0, and unitarity of the Hilbert space at constant τ requires

∂τθ = 0 [15]. In other words, there is no defect stress tensor, and we get the gluing

condition [16]

TL(z = iτ)− TL(z̄ = −iτ) = TR(z = iτ)− TR(z̄ = −iτ) , τ ∈ R . (3.4)

The gluing condition actually implies that all the infinitesimal conformal transformations

which do not displace the interface correspond to conserved charges in radial quantization

around a point on the defect. This amounts to one copy of the Virasoro algebra. Actually,

the gluing condition (3.4) is not sufficient to define a consistent interface. Further condi-

tions follow from the requirement that the partition function on the strip has the correct

interpretation of counting defect states, but we will not need the details in this work.

Let us first discuss two special classes of solutions to eq. (3.4). The first is the set of

the topological interfaces, which obey

TL(z = iτ) = TR(z = iτ) , TL(z̄ = −iτ) = TR(z̄ = −iτ) , τ ∈ R . (3.5)

Since the stress tensor is continuous across the interface, two copies of the Virasoro alge-

bra are preserved, and all correlation functions are independent from the position of the

interface. The second extreme case is the following:

TL(z = iτ) = TL(z̄ = −iτ) , TR(z = iτ) = TR(z̄ = −iτ) , τ ∈ R . (3.6)

Interfaces of this kind are sometimes called factorizing. The two sides are uncorrelated.

Indeed, eq. (3.6) implies that τ -translations are implemented by independent conserved

charges on the left and on the right of the interface, and this is incompatible with a non

vanishing connected correlator involving operators both on the left and on the right.

A topological interface can be freely deformed. On the contrary, an infinitesimal

deformation of a generic defect is implemented by the insertion of the so called displacement

operator, a protected defect operator which is easily seen to be3

D = 2(TL − TR) . (3.7)

The coefficient of the two-point function of the displacement, which we call CD, measures

the free energy cost of an infinitesimal deformation of the interface — see e.g. [18]. Com-

paring with eq. (3.5), we indeed see that, in a unitary theory, CD = 0 implies that the

interface is topological. On the other hand, the maximal value for this coefficient is at-

tained by a factorizing interface [17], where CD = 2(cL + cR), cL and cR being the central

3The normalization differs by a factor 2π from the usual choice in higher dimensions [17].
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ĒR

ERĒL

EL
w

w̄
CFTL CFTR

Figure 4. The Penrose diagram associated to the defect CFT. Due to the non trivial gluing

conditions, now EL and ER do not need to have the same expectation value in a generic state, and

similarly for ĒL and ĒR. Energy can be reflected.

charges of the two CFTs. The two-point function of the displacement is simply related to

the quantity called reflection coefficient in [1]:

R[1] =
CD

2(cL + cR)
. (3.8)

As mentioned in the introduction, we shall provide a precise meaning for R[1] in terms of

reflected energy in an excited state. Hence, eq. (3.8) showcases a nice connection between

dynamics and statistical mechanics. A practical consequence of this connection is that the

bounds (1.4) translate into bounds on CD.

There are similar gluing conditions for conserved currents of any spin. However, the

gluing of the left and right movers is less constrained. The linear combination in eq. (3.4) is

fixed by requiring that the preserved symmetries are those which do not deform the defect.

Consider instead the spin one case, which is relevant to the discussion of subsection 3.9.

Given a set of global symmetry currents (Ja, J̄a), it makes sense for the interface to preserve

the flux of any twisted current (J,ΩJ̄), where Ω is an automorphism of the algebra which

leaves the stress tensor invariant. We then obtain the following gluing condition:

JL(iτ) + ΩLJ̄L(iτ) = JR(iτ) + ΩRJ̄R(iτ) , τ ∈ R . (3.9)

Before ending the subsection, let us point out that the gluing conditions (3.4) and (3.9)

are easily Wick rotated into eq. (2.8). Unless otherwise stated, from now on the stress

tensor is always inserted on the Lorentzian slice where the defect is timelike. The Penrose

diagram of the defect CFT is then shown in figure 4, where we also define the energy flux

operators EL, ER and their antiholomorphic counterparts. They are analogous to the ones

in eq. (2.2), and they are built out of the left and right stress tensors respectively.

3.2 The state

Let us prepare a state by acting with a local operator as in eq. (2.3) on the left of the

interface, at some time t = 0. As we follow the time evolution, the peak splits into a left

and a right moving part. While the former propagates away, the latter hits the interface,

– 8 –
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t = 0 t = t1 > 0

-�

t = t2 > t1

�

�

-

Figure 5. Three snapshots in the time evolution of a state created by acting with a local operator

on the vacuum at t = 0, at some position on the left of the interface, with a finite shift in imaginary

time. The curves show the expectation value of the energy density. The pictures are obtained using

a two-particle state in the free boson example of subsection 4.1.

and splits again in a reflected and a transmitted wave — see figure 5. We would like

to measure the amount of energy and charge contained in these waves. However, if we

choose a generic wave function, the state is significantly affected by the interface already

at t = 0. Indeed, the energy density has power-law tails and does not vanish at the location

of the interface and on its right. Therefore, we need a way to isolate the reflection and

transmission processes. Ideally, we would like to prepare the state very far away from the

interface. We shall implement this via a limiting procedure. We choose a normalized wave

function with compact support of size `:∫ ∞
−∞
|f(x)|2 dx = 1 , f(x) = 0 if |x| > ` . (3.10)

Then we fix ideas by placing the perturbation on the left, so we pick a local operator OL
belonging to the CFTL. Let us stress that, unless stated otherwise, OL is an unrestricted

linear combination of quasi-primaries and descendants, i.e. it creates a generic state in

the Hilbert space of the CFTL. Obviously, an analogous construction exists with matter

incoming from the right. We then choose a second scale, D > `, and define a one-parameter

family of states:

|OL, D〉I =

∫
d2x f(z)f(z̄ +D)OL(z, z̄) |0〉I . (3.11)

Here and in the rest of the paper, the subscript I on a state means that it belongs to the

constant time Hilbert space of the defect CFT, which contains the impurity at x = 0.

Similarly, the same subscript denotes the correlation functions computed in the presence

of the defect. While the state (3.11) depends on the specific choice of f , the reflection and

transmission coefficients will not, therefore we only denoted explicitly the important scale

D. In fact, one may even apply the operator at a single point in spacetime, with a finite

shift in imaginary time. As we increase D, the operator OL is applied in the far past in

a region further and further away from the interface, so we gain control over the state of

the system in the past.4 The setup, depicted in figure 6, clearly resembles a scattering

experiment. Let us stress that we do not need the limiting state |OL,∞〉I to be part of the

Hilbert space. The D → ∞ limit will always be understood in the weak sense: as a limit

4The reason for choosing a frame where the operator is sent to the past along a light ray, rather than

just far away at constant time, is technical: we want the scattering of the wave packet against the interface

to happen around some fixed position along the z axis, independent of the value of D.
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CFTL CFTR

ĒL ER

z

z̄pµ

�
�
���

Figure 6. The scattering experiment which defines the reflection and transmission coefficients.

The expectation values of the ANEC operators ĒL and ER are computed in a state created by

acting with a local operator on a compact region in the far past. We may increase the size ` of the

wave function, as long as ` < D, and create a state with an approximate momentum pµ.

of overlaps and matrix elements, rather than of states. For instance, we can compute the

limit of the norm and obtain:

lim
D→∞

〈OL, D|OL, D〉I = 〈OL, D|OL, D〉 , (3.12)

where |OL, D〉 is the state obtained as in eq. (3.11), but now acting on the translational

invariant vacuum of the CFTL, i.e. in the absence of the interface. Its norm is in fact

independent of D. It is simple to derive eq. (3.12). The norm is determined by a two-

point function, evaluated in a region where the OL × OL OPE converges. The identity

contribution is the only one left in the strict D =∞ limit, so the norm of the state can be

computed in the translational invariant theory.

Before moving to the definition of the reflection and transmission coefficients, we would

like to look back at the time evolution of the state (3.11). It is easy to see that the full

history of the state is as depicted in figure 7. The red wavy lines are the bumps we are

interested in, and the role of the D →∞ limit is to separate them from the other regions

of non vanishing energy density. It is interesting to notice that a scattering process has

happened in the past, in order to create the simple situation depicted in the t = 0 frame in

figure 5. The left and right moving black bumps which scatter on the interface are perfectly

entangled so that the result is the unique left moving bump which we see at t = 0. The

process can be easily computed explicitly in the free examples of section 4, but we can

understand it in general as the result of time reversing the reflection and transmission

process which we study in this work.

The bumps in the energy density correspond to singularities in the three-point function

〈OLTµνOL〉I, ordered as written. Some of these singularities are determined by the OPE,

while others are singularities which result from light rays being reflected or transmitted by

the interface [19, 20]. We summarize the situation in table 1. The singularities which are

not governed by an OPE are in general branch points, as we shall see in the example of

subsection 4.2. What makes the reflection and transmission processes simple and universal

– 10 –
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12

3

4

5 6

w

w̄

Figure 7. The Penrose diagram associated to the time evolution of |OL, D〉I, for some finite D, up

to a time translation which makes explicit the time reversal invariance of the process. In the picture

the operator is applied at t = 0. The wavy lines denote the bumps in the expectation value of the

energy density, and the orange diamond denotes the support of the wave packet. The numbering

of the lines refers to table 1.

position bump

TR(z̄) z̄ = z̄i 1

TL(z)
z = −z̄i 2

z = zi 3 OPE

TL(z̄)
z̄ = z̄i 4 OPE

z̄ = −zi 5

TR(z) z = zi 6

Table 1. Relevant singularities in the three-point function 〈OL(z1, z̄1)Tµν(z, z̄)OL(z2, z̄2)〉I, for

fixed (zi, z̄i) with i = 1, 2. For each component of the stress tensor, we report the position of the

singularities, the bump they cause as numbered in figure 7, and their nature.

is that even these singularities become poles when we take the limit D → ∞. We shall

prove this statement in subsection 3.5, but first let us define our observables.

3.3 The observable

Having described the state where we want to perform the measurement, it is easy to define

the energy reflection and transmission coefficients:

TL = lim
D→∞

〈OL, D|ER|OL, D〉I
〈OL, D|EL|OL, D〉

,

RL = lim
D→∞

〈OL, D|ĒL|OL, D〉I − 〈OL, D|ĒL|OL, D〉
〈OL, D|EL|OL, D〉

,

TR = lim
D→∞

〈OR, D|ĒL|OR, D〉I
〈OR, D|ĒR|OR, D〉

,

RR = lim
D→∞

〈OR, D|ER|OR, D〉I − 〈OR, D|ER|OR, D〉
〈OR, D|ĒR|OR, D〉

.

(3.13)
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Let us point out a few features of this definition. Firstly, TR and RR measure reflection and

transmission in a state created by an operator of the CFTR with a construction analogous

to eq. (3.11). Secondly, the states |OL, D〉 and |OR, D〉 are created in the same way as

their counterparts with the subscript I, but this time on top of the translational invariant

vacuum of the left or right CFTs. This means in particular that the flux of energy in

these states is independent of D. Finally, recall that the subscript L or R of the ANEC

operator means that the corresponding stress tensor is employed in the definition (2.2) —

see figure 4. The meaning of the definition is obvious given the considerations in section 2

and subsection 3.2: the flux of energy at infinity is normalized by the energy of the red

bump in figure 7, which travels towards the interface in the far past. As we send D →∞,

this incoming energy can be computed in the absence of the interface. Additionally, we

subtract from the reflection coefficient the fraction of energy which flows away, carried by

the black bump in figure 7, again estimated without the interface. Of course, all states

must be normalized, but the norms all cancel out due to eq. (3.12).

While this definition makes intuitive sense, it should pass at least two basic tests. First,

reflection and transmission should sum up to one, since, as we mentioned, the interface lacks

a local stress tensor, and therefore cannot absorb energy. This is a check that the D →∞
limit correctly disentangles the relevant process. Second, the transmission coefficients

should vanish for a factorizing interface and should equal one for a topological one:

T +R = 1 ,{
factorizing interface =⇒ TL = TR = 0 ,

topological interface =⇒ TL = TR = 1 .
(3.14)

The items in the wish list are true thanks to the gluing conditions (3.4). In order to fix

ideas, let us focus on the coefficients TL, RL, i.e. we create the state with a local operator

belonging to CFTL. Let us adopt the following definition, to avoid cluttering:

GL/R(z) = 〈OL(z1, z̄1)TL/R(z)OL(z2, z̄2)〉
I
, (3.15)

and similarly for ḠL/R with T̄L/R. Then, eq. (3.4) implies the following:

ḠL(z̄) +GR(−z̄) =

2∑
i=1

Resw=zi

[
GL(w)

−w − z̄

]
−

2∑
i=1

Resw̄=z̄i

[
ḠL(w̄)

w̄ − z̄

]
. (3.16)

This is derived in appendix C for the Euclidean correlator — see eqs. (C.4) and (C.5) —

but the relation remains valid after the analytic continuations required to reach the relevant

Lorentzian kinematics. Eq. (3.16) encodes a new useful information about the singularities

described in table 1. In the sum TL(z̄) + TR(−z̄), the singularity at z̄ = −z1(z2) is a

pole determined by the OPE TL × OL, despite the individual singularities are not of the

OPE type. This is the technical way in which conservation of energy in the reflection

and transmission process is encoded in the correlator. Starting from eq. (3.16), it is easy

to derive TL + RL = 1, by just performing the integrals which define ĒL and ER. The

contours can be closed on either side, because the pole at infinity vanishes exactly by time
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translational invariance. Then the sum TL +RL is determined by the simple poles on the

r.h.s. of eq. (3.16). Crucially, the residues are fixed by translational invariance in terms of

derivatives of the lower point function 〈OL(x1)OL(x2)〉I. Here, again, the OL × OL OPE

can be used to conclude that in the D →∞ limit the interface disappears, and the result

follows. Notice that the computation only relies on the gluing conditions and on the simple

pole in the OPE of the stress tensor with a local operator, and is therefore valid in any

state of the kind (3.11). An identical computation proves the same for a state created on

the right.

From now on, therefore, we shall focus on the transmission coefficient. It is then trivial

to show that also the second point in the wishlist (3.14) is met: T = 0 for a factorizing

interface and 1 for a topological one. The first result is a consequence of the following

simple equation:

GR(z) = 0 , factorizing interface, (3.17)

which is derived in appendix C, eq. (C.7). In fact, the right stress tensor is not correlated

with any of the left local operators if the interface is factorizing. Analogously, we derive

that T = 1 for a topological interface from the following — see eq. (C.6):

GL(z) = GR(z) = −Σi Resw=zi

[
GL(w)

w − z

]
, topological interface. (3.18)

The stress tensor is insensitive to a topological interface. Let us anticipate an important

comment. While we have proven the implications in eq. (3.14), the reverse implications

are true as well. We shall prove this statement in subsection 3.7.

The definition (3.13) is ready to be used, but it requires performing multiple integrals

and limits on a three point function in the presence of the interface. This is in general a

complicated object, a function of two cross-ratios. In the following, we shall show that,

remarkably, T andR do not depend on the wave function used to construct the state (3.11),

and are determined by a single piece of CFT data, which has been previously studied in [1].

The final result is contained in eq. (3.31), but let us first describe a special case.

3.4 Energy reflection in a holomorphic state

Let us consider a state created, as in eq. (3.11), with a holomorphic operator OL(z) belong-

ing to the CFTL. In particular, OL might be the stress tensor TL, which always exists. As

we discussed in section 2, a holomorphic operator does not excite left movers when acting

on the translational invariant vacuum. Therefore, the black bump in figure 7 is absent.

Accordingly, the state is independent from the position of the wave packet along z̄, and

the D → ∞ limit in eq. (3.13) can be dropped. Let us now first assume that OL is a

linear combination of quasi-primaries. Then the reflection and transmission coefficients are

determined by the following three-point function

〈O1
L(z1)TR(z)O2

L(z2)〉I =
c12TR

(z1 − z2)h1+h2−2(z1 − z)h1−h2+2(z2 − z)h2−h1+2
. (3.19)

Here O1
L and O2

L are quasi-primaries of weights (h1, 0) and (h2, 0) respectively. Even in

the presence of the interface, the correlator (3.19) is fixed up to a single number. The
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coefficient c12TR can then be fixed in terms of lower point functions, by using the fusion

O1
L×O2

L. We obtain a sum over two-point functions of holomorphic operators on opposite

sides of the interface. As explained in appendix B, only holomorphic quasi-primaries with

equal weight correlate:

〈OL(z1)OR(z2)〉I =
bOLOR

δhL,hR
(z1 − z2)2hL

. (3.20)

Therefore, c12TR is fixed in terms of the correlators of quasi-primaries of weight (2, 0) in

the CFTL with the stress-tensor TR. Let us now assume that there is a unique (2, 0)

quasi-primary which is a singlet under all the symmetries preserved by the interface, i.e.

the stress-tensor TL. In subsection 3.6, and in the example 4.3, we shall comment on the

case where this assumption does not hold. Let us further denote with cLR the coefficient

appearing in the two-point function

〈TL(z1)TR(z2)〉I =
cLR/2

(z1 − z2)4
. (3.21)

We then easily find the following:

〈O1
L(z1)

(
TR(z)− cLR

cL
TL(z)

)
O2
L(z2)〉I = 0 , (3.22)

where cL is the central charge of the CFTL. In deriving this equation we made use of the

fact that, since the correlator of holomorphic operators does not depend on the distance

from the interface, then

〈O1
L(z1)TL(z)O2

L(z2)〉I = 〈O1
L(z1)TL(z)O2

L(z2)〉 . (3.23)

Clearly, taking derivatives in z1 and z2 does not change the validity of eq. (3.22), which is

therefore true for generic local operators O1
L and O2

L. Therefore, by comparison with the

definition (3.13), we obtain

TL =
cLR
cL

. (3.24)

Remarkably, the coefficient does not depend on the holomorphic local operator used to

construct the state, nor on the choice of wave packet.

A completely analogous computation fixes the transmission coefficient for a state cre-

ated by an antiholomorphic operator belonging to the CFTR:

TR =
cLR
cR

. (3.25)

In deriving this last equation, we assumed that cL = c̄L and cR = c̄R. This implies in

particular that c̄LR = cLR, where the former is the coefficient in the two-point function

〈TLTR〉I. Relaxing the constraint is trivial, and we shall mention the result in the con-

cluding remarks, section 6.

Let us conclude this subsection with a few comments on the intermediate eq. (3.22).

This equation is in fact more general than the result (3.24). Indeed, if we evaluate the linear

combination TR−TLTL on the interface, we obtain a local defect operator. Eq. (3.22) then
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affirms that this local operator vanishes in the subspace of the Hilbert space generated by

holomorphic operators. It is not surprising that such a defect operator does not vanish

in the full Hilbert space, since the latter contains states in which matter is incoming

towards the interface both from the left and from the right. One might ask if the more

general combination TR − TLTL −RRTR instead vanishes in the larger subspace spanned

by (products of) holomorphic operators of the CFTL and antiholomorphic operators of the

CFTR.5 The answer is again negative. In the generic state of this subspace, right and

left movers are entangled. Interference effects are then responsible for the failure of the

putative eq. TR − TLTL − RRTR = 0, as it is easy to verify in the free theory examples

of section 4. In fact, the same interference effects are at play in the history of a generic

state as described in figure 7. If we look at the black bump, we see that the right and left

movers labeled 1 and 2 do not scatter independently with the interface: there is no energy

being transmitted towards the right.

Let us now go back to the reflection and transmission coefficients as defined in eq. (3.13),

and tackle the most general case.

3.5 Energy reflection in a generic state

In this subsection, we generalize the analysis to states created by generic local operators.

We shall show that eqs. (3.24) and (3.25) are still valid in this general case.

Let us start again with a state created by a linear combination of quasi-primary oper-

ators OiL of dimensions (hi, h̄i), belonging to the CFTL. The correlation function of two

quasi-primaries with the stress tensor TR contains two cross ratios:

〈O1
L(z1, z̄1)TR(z)O2

L(z2, z̄2)〉I =(
(z2 + z̄2)(z1 − z)

(z1 + z̄1)(z2 − z)

)h̄1−h̄2 f(ξ, u)

(z1 − z)h1−h2+2(z2 − z)h2−h1+2(z1 − z2)h1+h2−2(z̄1 − z̄2)h̄1+h̄2
,

ξ =
z12z1̄2̄

(z1 + z̄1)(z2 + z̄2)
, u =

z12(z + z̄1)

(z1 + z̄1)(z − z2)
, (3.26)

Like in the previous subsection, the strategy will involve the use of the O1
L×O2

L OPE, but

this time we need to be more careful with the analytic properties of the correlator and the

region of convergence of the OPE. Let us first make the iε prescription explicit:

z1 → z1 + iε , z̄1 → z̄1 − iε ,

z2 → z2 − iε , z̄2 → z̄2 + iε , (3.27)

while we keep z ∈ R. This ensures that the correlator is evaluated with the ordering

shown in eq. (3.26), and that the states created by the operator O acting on the left and

right vacua are normalizable. As long as ε is finite, the correlation function is analytic

for |Iz| < ε [21]. We assume that the correlator stays analytic in z also in the D → ∞
limit, which corresponds to z̄1, z̄2 → −∞. This is true in examples, and we believe it

5Notice that TR−TLTL−RRTR cannot vanish in a generic state. Indeed, when evaluated on the defect,

this combination is a local operator whose two-point function does not vanish.
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to be a mild assumption, given the physical picture developed in subsection 3.2. In the

whole derivation, we shall keep ε finite. While the state |OL, D〉I now depends on ε, the

transmission coefficient will not.

The ANEC operator ER is defined by integrating z on the real axis. At fixed z1, z2, z̄1,

z̄2, one possible contour in spacetime is shown in figure 8. It is important that part of the

contour lies in a region where TR is spacelike separated from O1
L and O2

L. Therefore, the

O1
L×O2

L OPE converges here. The contour in cross ratio space is a circle in the u plane at

fixed ξ, since u is an SL(2,C) transformation of z — see eq. (3.26). We draw the contour

in figure 9 for the limiting value ξ = 0, which corresponds to z̄1, z̄2 = −∞ with z̄12 finite,

together with the region of convergence of the O1
L × O2

L OPE. The latter is discussed in

appendix D. The special points u = 1 and u = ∞ correspond to the singularities z = z1

and z = z2. While in the absence of the interface these are poles, they are generically

branch points in a defect CFT. A crucial simplification occurs at ξ = 0, i.e. in the D →∞
limit.

Consider first the region where the O1
L×O2

L OPE converges. This is best characterized

using the following ρ coordinates:

ξ =
4ρρ̄

(1− ρρ̄)2
, u =

2ρ(1− ρ̄)

(1 + ρ)(1− ρρ̄)
. (3.28)

As we explain in appendix D, the O1
L ×O2

L OPE converges in the region ρ, ρ̄ ∈ C, |ρ| < 1,

|ρ̄| < 1.6 It has the familiar structure

O1
L(ρ, ρ̄)O2

L(0, 0) ∼ ρ−h1−h2+hexch ρ̄−h̄1−h̄2+h̄exchOexch(0, 0) + . . . (3.29)

As explained in eqs. (B.2), (B.3), only quasi-primaries with spin 2 correlate with the stress

tensor of the CFTR, therefore only the corresponding conformal blocks contribute to the

function f(ξ, u) in eq. (3.26). Now, the ξ → 0 limit, at fixed u, corresponds to the lightcone

limit ρ̄ → 0 at fixed ρ. In this limit, only the blocks with h̄exch = 0 survive. We are left

with the set of quasi-primaries with weights (h, h̄) = (2, 0), and for the moment we assume

that this set consists of the stress tensor TL only. The contribution of the conformal block

of the stress tensor is easily computed by noticing that it has to coincide with the whole

correlator in the case of a trivial defect. Therefore:

lim
D→∞

〈O1
L(z1 + iε, z̄1 −D − iε)TR(z)O2

L(z2 − iε, z̄2 −D + iε)〉I

=
cLR
cL
〈O1

L(z1 + iε, z̄1 − iε)TL(z)O2
L(z2 − iε, z̄2 + iε)〉 . (3.30)

The coefficient cLR was defined in eq. (3.21). Recall that the absence of the subscript I

in the r.h.s. means that the correlator is computed in the translational invariant vacuum

of the CFTL. In particular, the r.h.s. vanishes if O1
L 6= O2

L. While this equation was

derived in the region of convergence of the O1
L × O2

L OPE, the correlator is analytic in u

in a neighborhood of the integration contour, and part of the contour runs in the region

6In fact, the region described by these bounds is optimal only at ξ = 0. For finite ξ, the OL ×OL OPE

converges in a strictly larger region. See appendix D for details.
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1
2

z = z1

z = z2

z

z̄

CFTL CFTR

Figure 8. The arrows mark the path of the operator TR(z), at fixed z1, z̄1, z2, z̄2. Due to holo-

morphy, the path can be freely deformed in the z̄ direction. The marked points along the path, at

z = z1 and z = z2, are the Landau singularities listed in table 1.

0 1

u

Figure 9. The path in cross ratio space corresponding to the following configuration in the cor-

relator (3.26): z̄1,2 = −∞, z̄12 finite, z ∈ (−∞,+∞) with the iε prescription of eq. (3.27). In this

case, ξ = 0, and the path is a circle with radius 1 + (z1 − z2)2/4ε2. The region <u < 1, shaded in

orange, is the region of convergence of the OL × OL OPE. As usual, the iε shift prescribes how to

avoid the singular points, located at u = 1 and u = ∞. In general, u = 1 and u = ∞ are branch

points, so that the path starts on the second sheet — the dashed part — and ends in the Euclidean

region — the solid part. Compare with the path in spacetime, figure 8. The picture is qualitatively

the same at finite ξ, but at ξ = 0 the branch points reduce to poles.

where (3.30) holds. We conclude that eq. (3.30) is valid for all z ∈ R. It is now not hard

to convince oneself that eq. (3.30) is valid even if O1
L and O2

L are not quasi-primaries.7

The only wrinkle left to discuss is whether we can switch the integral in z with the

D → ∞ limit, i.e. if the order ξ corrections to eq. (3.30) can change the final result.

7Both ξ and u, when evaluated with the shifts z̄i → z̄i − D, have a regular Taylor expansion around

D =∞. Therefore, derivatives of ξ vanish at least as fast as ξ. In the region of convergence of the O1
L×O2

L

OPE, the function f(ξ, u) in eq. (3.26) starts with a constant if the fusion contains the stress tensor TL,

otherwise is suppressed by a power of ξ. Therefore, derivatives in z1, z2, z̄1, z̄2 are suppressed, unless

h̄1 = h̄2 and they are all applied to the kinematical prefactors in eq. (3.26). But this precisely yields the

functional form of the correlator in the translational invariant theory.
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Although we do not have enough control over such corrections, it is physically clear that

the order in which we perform the two operations is irrelevant. The right hand side of

eq. (3.30) computes the limiting value of the energy deposited at a specific point at null

infinity. By summing up the contribution at every point, we will obtain the limiting value

of the total transmitted energy. The only way this may fail is if a fraction of energy which

stays finite as D →∞ was spread over a region whose position or size depends on D: for

instance, a region centered around z ∼ D or whose size grows with D. But we saw in

section 2 that energy is transported rigidly along a lightlike trajectory: there is no spread.

It is clear from figure 7 that if we perform a set of experiments with identical wave packets

which are further and further away along the z̄ direction, the fraction of transmitted energy

will be closer and closer to the limiting case.8 We can therefore safely assume that the

transmitted energy is completely determined by eq. (3.30). By comparison of eq. (3.30)

with the definition (3.13), we conclude that

TL =
cLR
cL

, TR =
cLR
cR

, where 〈TL(z1)TR(z2)〉I =
cLR/2

(z1 − z2)4
, (3.31)

for any state constructed as in eq. (3.11). This is the main result of the paper. It shows

that the fraction of energy transmitted through the interface is a constant, which only

depends on the central charge and on a single piece of defect CFT data, the coefficient

cLR of a two-point function. As a side comment, it is interesting to notice that TL = TR
if cL = c̄L = cR = c̄R. No discrete symmetry of the interface is necessary to establish this

fact: specifically, it is true even if the defect breaks time reversal symmetry, which would

also exchange right and left movers.

As we review in section 4, the constant cLR can be computed every time the boundary

state corresponding to the interface is known. Before moving to the examples, we dedicate

a few words to the discussion of the physical meaning and of some of the consequences of

this result.

3.6 Discussion

The universality of the result (3.31) deserves some comments. In principle, we could have

expected the reflection and transmission coefficients to depend on the wave packet f(z) in

eq. (3.11), as well as on the operator used to create the state.

In fact, independence of the coefficients from the wave packet could be expected.

Indeed, let us choose a basis of wave packets which create states with well defined incoming

momentum pµ = (p, p̄). Although we cannot use plane waves due to the presence of the

interface, we can approximate a plane wave arbitrarily well by taking the support ` of the

wave packet defined in eq. (3.10) to be large, specifically ` → ∞ with `/D → 0. Due to

scale invariance, T and R can only depend on the ratio p̄/p. But from the discussion in

8For comparison, consider the reflection coefficient. If we replace TR → TL in eq. (3.26), the correlator

is singular when z = z̄1 and z̄2 — see table 1. These poles are responsible for the bump labeled 4 in

figure 7, which is moving away as D grows. In this case the D →∞ limit and the integral do not commute.

Technically, the hypotheses of the dominated convergence theorem are violated. Notice however that the

contribution of this bump is precisely the one subtracted out in the definition (3.13).
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section 2, we know that p is the momentum carried away from the interface towards the

left. Therefore we expect TL, RL to be independent from it, thus constant.

The complete independence of the transmission and reflection coefficients from the

way we act on the vacuum to create the state is more interesting. Different local operators

create conformal matter with a different momentum distribution — see eq. (2.7) — but the

carriers all behave exactly in the same way when scattered against a conformal interface,

at least as far as the average fraction of transmitted and reflected energy is concerned.

The situation is very different from a generic interactive quantum field theory, where the

strength of the coupling to the interface could depend on the particle type. It would be

interesting to study the reflection and transmission coefficients along an RG flow, and

analyze in detail the approach to the fixed points.

The only way to violate the universality of eq. (3.31) is to allow for multiple holomor-

phic quasi-primary operators of spin two. It is of course straightforward to modify the

discussion to accommodate this more general situation. For instance, if the CFTL is the

direct product of independent theories, the transmission coefficient for states belonging

to each sector is determined by the coupling of the stress tensor of that sector with the

stress tensor of the CFTR. There is at least one more interesting class of theories where

multiple (2, 0) quasi-primaries exist, i.e. WZW models, which enjoy an affine Lie Algebra

symmetry. The fusion of two currents generates various (2, 0) quasi-primaries, only one of

which is the Sugawara stress tensor.9 Operators belonging to different representations of

the affine symmetry couple differently to the additional spin two holomorphic operators.

As a consequence, the reflection and transmission coefficients are now state dependent.

We consider one example of this kind in subsection 4.3, but let us make now two general

comments. Firstly, eq. (3.31) still computes the transmission coefficients in a state created

by the stress tensor, a result that is completely universal, and simply follows from the

fact that the fusion of the identity with itself only contains the identity. Secondly, this

class of examples fits in well with the following qualitative picture. When the CFT has a

global symmetry, different states can be characterized by the additional conserved quanti-

ties. Correspondingly, conformal matter with different quantum numbers is reflected and

transmitted differently across a conformal interface.

3.7 Bounds on reflection, the relation with [1] and the displacement operator

We should expect the fractions of energy reflected and transmitted to be both non negative.

The simple inequalities 0 ≤ TL/R ≤ 1 can be refined in light of eq. (3.31):

0 ≤ TL ≤ min

(
1,
cR
cL

)
, 0 ≤ TR ≤ min

(
1,
cL
cR

)
. (3.32)

These bounds correspond to the unique equation

0 < cLR < min(cL, cR) . (3.33)

Therefore when TL saturates one of the bounds, TR saturates the corresponding one.

9In fact, if they are not sl(2) descendants, these operators are actually Virasoro primaries, since the

only weight (0, 0) Virasoro primary is the identity. Since a primary is in particular a quasi-primary, in this

paper we do not keep track of the distinction unless necessary.
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The relation between the transmission coefficients and the two-point function of

the stress tensors allows us to further characterize the interfaces which saturate the

bounds (3.32). Let us first point out that, due to the gluing conditions, all the non van-

ishing two-point functions of the stress tensors are fixed in terms of cLR and the central

charges [1, 17]:10

〈TLTL〉I = 〈TLTL〉I ∝ cL/2 , (3.34a)

〈TRTR〉I = 〈TRTR〉I ∝ cR/2 , (3.34b)

〈TLTL〉I ∝ (cL − cLR)/2 , (3.34c)

〈TRTR〉I ∝ (cR − cLR)/2 , (3.34d)

〈TLTR〉I ∝ 〈TLTR〉I ∝ cLR/2 . (3.34e)

For brevity, we omitted the obvious kinematics, which can be inferred from appendix B.

We start with the reflective case: TL = TR = cLR = 0. Consider the two-point function of

the energy flux Txt ∝ TL − TL = TR − TR on the interface. Due to eqs. (3.34a), (3.34c), it

vanishes. Unitarity then implies TL = TL and TR = TR as operator equations. This is the

converse of the first of the implications in eq. (3.14):

TL = TR = 0 ⇐⇒ factorizing interface. (3.35)

For the maximally transparent case, it is best to distinguish two cases. If cL = cR = cLR,

then TL = TR = 1. This time, we consider the displacement operator (3.7) D = 2(TL−TR).

Due to eqs. (3.34a), (3.34e), its two-point function vanishes, and with it the displacement

as an operator. We conclude that

TL = TR = 1 ⇐⇒ cL = cR ∧ topological interface. (3.36)

Finally, if cL 6= cR, let us take cL > cR to fix ideas. Then the maximally transparent

interface has TL = cR/cL and TR = 1. As first noticed in [1], this situation is realized by a

class of interfaces between two theories with extended symmetries. A subset of the currents

of the CFTL is preserved through the interface and coincides with the full set of currents

in the CFTR. Then the interface is completely transparent to the excitations coming from

the right. We review this example in more detail in subsection 4.3.

The coefficient cLR has already appeared in connection with the transparency of an

interface in [1]. The authors defined the following reflection and transmission coefficients,

which are routinely computed to characterize interfaces in 2d CFT:

T[1] =
〈TL(−y)TR(y)〉I + 〈TL(−y)TR(y)〉I
〈(TL(−y) + TR(y))(TL(−y) + TR(y))〉

,

R[1] =
〈TL(−y)TL(−y)〉I + 〈TR(y)TR(y)〉I
〈(TL(−y) + TR(y))(TL(−y) + TR(y))〉

, y > 0 . (3.37)

10The same is true of the three-point functions as well.
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However, no precise physical interpretation was available for the coefficients (3.37). Now,

using eqs. (3.34), it is easy to see that the coefficients defined in [1] are an average of the

left and right transmission and reflection coefficients:

T[1] =
cLTL + cRTR
cL + cR

, R[1] =
cLRL + cRRR

cL + cR
. (3.38)

Notice that the relation is invertible:

TL =
cL + cR

2cL
T[1] , TR =

cL + cR
2cR

T[1] . (3.39)

Despite eq. (3.39), there is a conceptual advantage in TL/R with respect to T[1]. Indeed, T[1]

depends on both the left and the right central charges. On the contrary, TL, say, can be

computed by exclusively measuring correlators of the CFTL, as it is physically reasonable —

see eq. (3.34c). For similar reasons, the reflection and transmission coefficients TL/R were

already proposed in [22], as a generalization of [1], in the context of mutliple junctions

between critical systems. In fact, it is simple to generalize our analysis to the case of a

junction of n wires. The fraction of energy transmitted from wire i to wire j is given

by cij/ci where ci is the central charge of the i-th CFT and cij is the coefficient of the

two-point function 〈TiTj〉.
Positivity of the reflected and transmitted energy, as expressed through (3.32), implies

the following bounds on the coefficients (3.37):

|cL − cR|
cL + cR

≤ R[1] ≤ 1 . (3.40)

This bound was conjectured in [1]. On the other hand, a weaker unitarity bound was

proven in [17], where the left hand side of (3.40) appeared squared. The weaker bound

followed from reflection positivity applied to the set of two-point functions of the stress

tensors of the left and right CFTs. We see that the ANEC tightens the result. Finally,

we would like to point out that, through eq. (3.8), eq. (3.40) also provides a bound on the

two-point function of the displacement operator:

2|cL − cR| ≤ CD ≤ 2(cL + cR) , 〈D(iy)D(0)〉I =
CD

y4
. (3.41)

In the next subsection, we show that the Euclidean bound can be recovered from unitarity

of an exclusive process, thus gaining some insight into its relation with the stronger bound

coming from the ANEC.

3.8 Scattering in a defect CFT

So far, we focused on the expectation value of a flux operator, which is an inclusive ob-

servable. Here we make a few simple observations on an alternative class of exclusive

observables. We would like to measure the overlap of two states. The in-state describes

the time evolution of a beam which moves towards the interface in the far past. The

out-state, when observed in the far future, looks like either a reflected or a transmitted

beam. The simplest instance of this process occurs if the in and out states are created by
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holomorphic or antiholomorphic operators. Let us focus on the stress tensor insertion. We

would like to measure the overlap between the following unit normalized states:

in 4ε2
√

2

cL
TL(z = −iε) |0〉I

4ε2
√

2

cR
TR(z̄ = +iε) |0〉I

out 4ε2
√

2

cR
TR(z = −iε) |0〉I

4ε2
√

2

cL
TL(z̄ = iε) |0〉I .

(3.42)

Notice that the in states are orthogonal with each other, and the same is true for the out

states. The overlap of these states defines an S matrix, which is easily computed by means

of eq. (3.34):

S =

 cLR√
cLcR

cR−cLR
cR

cL−cLR
cL

cLR√
cLcR

 (3.43)

The eigenvalues of S†S are

λ1 = 1 , λ2 =

(
1− cL + cR

cLcR
cLR

)2

. (3.44)

The presence of a unit eigenvalue is easy to understand: the eigenvector is proportional

to the in-state (TL + TR) |0〉I, which by the gluing conditions eq. (2.8) is mapped with

probability one to the out-state proportional to (TR + TL) |0〉I. The second eigenvalue,

instead, imposes the following unitarity bounds:

0 < cLR < 2
cLcR
cL + cR

. (3.45)

Notice that this condition is strictly weaker than the one found in the main text, eq. (3.33).

This is not surprising, since eq. (3.33) guarantees the positivity of the transmitted and re-

flected energy in any in-state, while eq. (3.45) follows from a smaller number of constraints.

On the other hand, the bounds (3.45) are precisely the same as the Euclidean bounds found

in [17]. This is easily explained, by reinterpreting the overlap of the states (3.42) in Eu-

clidean signature. The matrix of scalar products among the full set of in and out vectors

can be written as follows:

G =

(
1 S

S† 1

)
(3.46)

Using properties of block matrices it is easy to prove that each eigenvalue λS†S of S†S is

related to two eigenvalues λ± of G as follows:

λ± = 1±
√
λS†S . (3.47)
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Therefore, the condition λS†S ≤ 1 is the same as the constraint that follows from reflection

positivity, i.e. λ− ≥ 0. The analysis generalizes to the case where the CFTL and the

CFTR possess multiple holomorphic and antiholomorphic operators. The S matrix is

appropriately enlarged and its eigenvalues provide theory dependent constraints, which are

the same as the ones coming from reflection positivity in Euclidean signature.

The Euclidean bounds (3.45) are in fact equivalent to reflection positivity in a larger set

of states. These are generated by the full Verma modules of the following defect Virasoro

primaries:

W1 = cRTL − cLTR + cRTL − cLTR , (3.48)

W2 = cRTL − cLTR − cRTL + cLTR . (3.49)

All the operators are meant to be evaluated on the defect. W1 and W2 are primaries with

respect to the copy of the Virasoro algebra preserved by the defect [1], and are orthogonal.

By requiring their norm to be positive, one easily recovers eq. (3.45) [17]. On the other

hand, positivity of the full Verma modules follows from the usual Kac determinant. Indeed,

the central charge of the preserved Virasoro algebra is ctot = cL + cR, and if both CFTL

and CFTR are unitary, ctot ≥ 1. Standard arguments then show that the representation

whose primary has weight 2 is unitary.

Reflection positivity of these defect modules, together with the one of the identity, can

be translated in the unitarity of a larger scattering matrix. Indeed, consider the alternative

linear combinations W = cRTL − cLTR and W = cRTL − cLTR. They are not orthogonal,

but they create an in and an out-state respectively, and their descendants preserve the same

property.11 The relation between the scalar products between states in these modules and

the S matrix is again as in eq. (3.46). By the same argument as before, the S matrix

between these in and out-states is unitary.

One can create more complicated in and out-states by multiple applications of W and

W , or equivalently by acting with other primary operators appearing in the fusion of W

and W with themselves. It would be interesting to study these more general unitarity

constraints. However, at least in the absence of extended symmetry, if the in-state is

created by a single stress tensor, then it is orthogonal to all of these more complicated out-

states, which belong to different Verma modules on the defect. The discrepancy between

the Euclidean bound (3.45) and the ANEC bound (3.33) then teaches us that the single

stress tensor in-state must have a non vanishing overlap with final states which cannot be

created by combinations of chiral operators.

One may wonder if the S matrix can be extended to include the overlap between in and

out-states created by general non chiral operators. A difficulty immediately arises. Even

in the absence of the interface, the overlap between a state created by a local operator in

11One way to see this is to go to the folded picture, i.e. to map the defect CFT to a boundary condition

for the product theory CFTL×CFTR. The holomorphic/antiholomorphic stress tensors are Ttot = TL+TR,

T tot = TL + TR. Notice that Ttot creates an in state and T tot an out state. Descendants of W and W are

obtained by acting with the sum Ltot
−m + L̄tot

−m in radial quantization around a point on the defect. But W

can be thought of as a holomorphic bulk operator, and therefore only Ltot
−m acts on it non trivially. Similarly

for W .
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the past and the state created by the same local operator in the future falls off with the

distance in time between the two operators.12 The problem arises because of the spread

between left and right carriers, which was discussed in section 2. In the far future, the

state created by a local operator consists of two beams, moving in opposite directions. If

we are only allowed to convolve the operator with a wave packet with compact support,

as it happens in the presence of an interface, we cannot project out the left or the right

movers. In this sense, the problem with the S matrix is essentially a manifestation of the

absence of well defined asymptotic states in an interacting theory with massless degrees of

freedom: in the presence of a mass gap, a wave packet with compact support is sufficient

to perform the projection onto a well defined single particle state.

The states created by (anti)holomorphic operators are then the only members of a

natural basis of in and out-states. Generically, these only amount to the states created by

(products of) insertions of the appropriate in or out components of the stress tensor —

see (3.42). This set does not form a basis for the Hilbert space of the theory — for instance,

in the absence of an interface they are orthogonal to any state obtained by applying on

the vacuum a local operator which is not a Virasoro descendant of the identity. It would

be interesting to understand if the basis of in and out-states could be enlarged to contain

the chiral parts of every local operator in the theory, perhaps along the lines of [23].

3.9 Reflection of a global charge

It is straightforward to extend the analysis to other conserved quantities. Here, we sketch

the example of the symmetry associated to a global charge. In principle, one could measure

the flux of charge at infinity even if the associated symmetry is broken by the interface,

but for simplicity we assume that the symmetry is preserved. This request is equivalent to

the gluing condition (3.9), which we repeat here:

JL(z) + ΩLJ̄L(z̄) = JR(z) + ΩRJ̄R(z̄) , z + z̄ = 0 , (3.50)

where ΩL and ΩR are automorphisms of the algebra which preserve the stress tensor.

In this case, the total charge flowing towards the right and towards the left are mea-

sured by

Q = − 1

2πi

∫
dzJ(z) , Q̄ =

1

2πi

∫
dz̄J̄(z̄) . (3.51)

Indeed, consider for instance a quasiprimary operator with charges (q, q̄):

J(z)O(w, w̄) ∼ q

z − w
O(w, w̄) + regular , (3.52)

and similarly for J̄ . It is then immediate to see that the expectation value of the opera-

tors (3.51) in a state created by O is the correct one:13

〈O|Q|O〉
〈O|O〉

= q ,
〈O|Q̄|O〉
〈O|O〉

= q̄ . (3.53)

12Notice that the states should be normalizable. Hence, even when the operators are light-like separated

on the Minkowski slice, their square distance is still of order ε T , ε being the shift in Euclidean time, and

T being the time separation between the two insertions.
13Of course, the bra 〈O| is obtained by inserting the operator O†, which has charge −q.
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The definition of the reflection and transmission coefficients for the global charge is anal-

ogous to eq. (3.13), and the rest of the discussion goes through unchanged as well. The

transmission coefficient in a state created by a charged local operator on the left of the

interface is determined by the coupling of the (1, 0) quasi-primaries of the CFTL with JR.

If JL is the only current which couples to JR, then the transmission coefficients are

T QL =
kLR
kL

, T QR =
kLR
kR

. (3.54)

Here we defined the following quantities:

〈JL(z)JL(z′)〉 =
kL

(z − z′)2
, 〈JL(z)JR(z′)〉 =

kLR
(z − z′)2

. (3.55)

We further assumed that kL = k̄L, and similarly for kR. The charge transmission coefficient

defined in [24], which was derived by analogy with [1], is, again, an average of the coeffi-

cients (3.54). Notice, however, that when JL — say — is part of a non-abelian symmetry

algebra, the CFTL contains in general other currents which commute with JL. Depending

on the specific boundary conditions, they could couple with JR. The transmission and

reflection coefficients may then depend in a more detailed way on the weight vector de-

scribing the representation of the operator which creates the state. It would be interesting

to analyze this scenario in detail.

4 Examples

One of the nice features of the result (3.31) is that in many cases reflection and transmission

are exactly computable. Although we shall not need it in the following, let us briefly review

a general procedure to compute the crucial coefficient cLR, following [1]. To each conformal

interface between the theories CFTL and CFTR, one associates a conformal boundary

condition for the theory CFTL × CFTR obtained by applying a parity transformation

x → −x to the CFTR. This is the so-called folding trick. The parity transformation

interchanges holomorphic and antiholomorphic operators, so in particular T̃R(z̄) ≡ TR(z′),

with z′ = −z̄, is a (0, 2) operator of the CFTR. The knowledge of the Cardy state |b〉
associated to this boundary condition is equivalent to the knowledge of all the one-point

functions of local operators in the presence of the interface. The coefficient cLR is then

computed as the one-point function of the quasi-primary TLT̃R:

cLR = 2 〈TLT̃R|b〉 . (4.1)

The authors of [1] used this method to compute the averaged coefficients T[1] and R[1]

defined in (3.37) for a variety of defect CFTs with the feature that the folded theory

CFTL × CFTR is rational. Of course, the reflection and transmission coefficients defined

in this paper can be easily extracted from their results. The same is true for the interfaces

considered in various later works — see e.g. [22, 25–27]. We refer to [1] for further details,

and in the following we focus instead on some very simple examples in order to check and

exemplify the universality of the result (3.31).
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4.1 The free boson

The theory of a single free boson φ admits a simple family of conformal interfaces, which

was constructed in [28]. The interface is completely specified by a gluing matrix:(
∂φL
∂̄φR

)
= S±

(
∂̄φL
∂φR

)
, S± =

(
cos 2θ ± sin 2θ

sin 2θ ∓ cos 2θ

)
. (4.2)

Here, all operators are evaluated at the interface z = −z̄, although the equation can be

analytically continued inside correlation functions. The matrix S is labeled by an angle θ,

and is fixed by requiring the gluing condition (3.4) to hold. Notice that the two choices in

eq. (4.2) are obtained one from the other by acting with T-duality on one side only, e.g.

∂φR → −∂φR, ∂̄φR → ∂̄φR. Below, we choose the upper sign, i.e. S+. It is convenient to

think of the boson φL as compactified with a radius RL, while the radius of compactification

of φR is RR. Then tan θ = qRL
RR

for some rational q, so that the gluing condition preserves

the periodicities.

From eq. (4.2) we get

TL = TR = cLR = (sin 2θ)2 . (4.3)

The universality of the coefficient is physically clear: the S matrix fixes the amplitude for

a particle to be transmitted, which means that the transmitted energy in any multiparticle

state is fixed as well. Technically, the same result easily follows from Wick theorem. From

the gluing condition eq. (4.2), one gets the following Euclidean propagators:

〈φL(z1, z̄1)φL(z2, z̄2)〉I = − log |z1 − z2|2 + cos 2θ log |z1 + z̄2|2 ,
〈φR(z1, z̄1)φR(z2, z̄2)〉I = − log |z1 − z2|2 − cos 2θ log |z1 + z̄2|2 , (4.4)

〈φL(z1, z̄1)φR(z2, z̄2)〉I = − sin 2θ log |z1 − z2|2 .

The most general local operator on the left of the interface is a linear combination of

products of the following building blocks: a vertex operator Vk,k̄(z, z̄) with dimensions

(k2/2, k̄2/2), and derivatives of the field φL. The bulk operators are defined in the transla-

tional invariant theory, therefore they are normal ordered by only subtracting the singular

part of the propagators (4.4). It is convenient to also define a different normal ordering

— which we denote : : — by subtracting the complete propagator. When the operator

: Vk,k̄(z, z̄) : is inserted in a correlator, the only contractions left to be performed are with

other operators in the correlator. In particular, it is easy to verify that

Vk,k̄(z1, z̄1)V−k,−k̄(z2, z̄2) =
(ξ + 1)cos 2θ kk̄

(z1 − z2)k2(z̄1 − z̄2)k̄2
: Vk,k̄(z1, z̄1)V−k,−k̄(z2, z̄2) : . (4.5)

Since the interface preserves the target U(1) symmetry, the most general three-point func-

tion which we need to consider is the following:

〈Vk,k̄(z1, z̄1)O1(z1, z̄1)TR(z)V−k,−k̄(z2, z̄2)O2(z2, z̄2)〉
I
, (4.6)

where O1 and O2 are products of derivatives of φL and TR = 1/2 ∂φR∂φR. After plugging in

eq. (4.5), all the remaining contractions involve derivatives of the propagators (4.4). As we
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send D →∞, ξ → 0 and the prefactor in eq. (4.5) simplifies. Moreover, all the additional

contractions involving (z1+z̄2) and (z2+z̄1) are suppressed. The result equals the correlator

obtained by removing the interface and replacing TR → TL, except for a factor (sin 2θ)2,

which arises from the prefactor in the third line of eq. (4.4). This explicitly verifies that

eq. (4.3) gives the transmission coefficient for any state in the theory.

4.2 The free fermion and the Ising model

The theory of a single Majorana fermion admits a class of defects analogous to the one

discussed for the free boson: an amplitude for transmission and reflection is assigned to

left and right movers. In this case, the gluing condition (3.4) imposes the following form

for the S matrix: (
ψL
ψ̄R

)
= S±

(
ψ̄L
ψR

)
, S± =

(
i sinχ ± cosχ

cosχ ±i sinχ

)
. (4.7)

The angle χ is fixed to be real by the reality conditions ψ† = iψ, ψ̄† = −iψ̄. Also in this

case, the two families of interfaces are related by the chiral transformation ψR → −ψR,

ψ̄R → ψ̄R, which in the Ising description corresponds to applying Kramers-Wannier duality

to the CFTR only. In the following, we choose S+ in eq. (4.7), that is, we choose the family

which is connected with the trivial defect at χ = 0. This family of defects was considered

in [29].

Multiparticle states can be proven to have the same reflection coefficient via Wick the-

orem, analogously to what has been done in the previous subsection. A trivial computation

yields

TL = TR = 2cLR = (cosχ)2 . (4.8)

The Ising model has a description in terms of a free Majorana fermion. However, the

primary σ, with dimensions (1/16, 1/16), is not a local operator of the free fermion theory,

and by applying it on the vacuum we gain access to a state which cannot be expressed

as a superposition of a finite number of particles. It is interesting to check that eq. (4.8)

provides the correct transmission coefficient also in this case. The conformal interfaces

which can be embedded in the Ising model are known [30] thanks to the fact that the

folded theory is equivalent to an orbifolded free boson.14 The reflection and transmission

coefficients for these interfaces are given in [1]. The authors also provide the map between

the S+ family in eq. (4.7) and a family of defects in the Ising model.

Although it would be interesting to compute the exact three point function 〈σLTRσL〉I,
we shall content ourselves with a perturbative computation around the trivial interface at

χ = 0. In this setup, it is easy to see how to construct the S+ interface [34, 35]. The energy

field ε = iψψ̄ has weight
(

1
2 ,

1
2

)
, and can be used to generate a one parameter family of

interfaces, by inserting in the path integral the following operator:

D = exp

{
− g

2π

∫ +∞

−∞
dτ ε(x = 0, τ)

}
. (4.9)

14The known interfaces in the Ising model correspond to Neumann and Dirichlet boundary conditions

for the free boson. There is however a third class of boundary conditions for the free boson [31–33], whose

corresponding defect in the Ising model has not been studied.
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We match g to χ by computing the two-point functions of the fermions at the leading non

trivial order:

χ = g +O(g3) . (4.10)

We are now ready to compute the transmission coefficient in the state created by σ, at

lowest order in g. We start in a Euclidean configuration, with the interface on the imaginary

axis. We expect the first non trivial contribution to TL to arise at order g2, therefore we

define

〈σL(z1, z̄1)TR(z)σL(z2, z̄2)〉I

= G0(z1, z2, z̄1, z̄2, z) +
g

2π
G1(z1, z2, z̄1, z̄2, z) +

( g
2π

)2
G2(z1, z2, z̄1, z̄2, z) + . . . (4.11)

The zeroth order is simply given by the correlator without interface,

G0(z1, z2, z̄1, z̄2, z) = 〈σ(z1, z̄1)T (z)σ(z2, z̄2)〉 . (4.12)

Although we do not expect a contribution to TL at order g, it is interesting to consider the

leading order as an example of the structure of singularities in a defect CFT:15

G1(z1, z2, z̄1, z̄2, z) = i

∫ +i∞

−i∞
dw 〈σ(z1, z̄1)T (z)σ(z2, z̄2)ε(w,−w)〉 . (4.13)

The integrand is16

〈σ(z1, z̄1)T (z)σ(z2, z̄2)ε(w,−w)〉 =

(
1/16

(z−z1)2
+

1/16

(z−z2)2
+

1

z−z1

∂

∂z1
+

1

z−z2

∂

∂z2

)
〈σ1σ2ε〉

+

(
1/2

(z−w)2
− 1

z−w

(
∂

∂z1
+

∂

∂z2

))
〈σ1σ2ε〉 , (4.15)

where we used the following shorthand notation:

〈σ1σ2ε〉 = cσσε
[(z1 − z2)(z̄1 − z̄2)]3/8

[(z1 − w)(z̄1 + w)(z2 − w)(z̄2 + w)]1/2
. (4.16)

We will not need the value of cσσε. The contour and the singularities in the w plane are

shown in figure 10. It is important that <z1,<z2 < 0, and <z > 0. It is possible to

analytically continue the correlator as a function of zi, z̄i and z, before integrating in w, as

15Notice that from here on the arguments of the operator ε are the usual holomorphic and antiholomorphic

coordinates, contrary to eq. (4.9), where we used Cartesian coordinates.
16It is possible to recast the integral (4.13) in the following covariant form:

G1(z1, z2, z̄1, z̄2) =
1

(z − z1)2(z − z2)2(z1 − z2)−15/8(z̄1 − z̄2)1/8

× i

∫
C
dw

(
1

16
√
w

+
(1− u)

√
w

2 (1 + (u− 1)w)2

)√
ξ

(w − 1) ((1 + ξ)w − 1)
, (4.14)

where the contour C runs upwards, and leaves to the left the cut joining w = 0 to w =∞, and to the right

both the cut which joins w = 1 to w = 1/(1 + ξ) and the pole at w = 1/(1− u).
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z1

z2

−z̄1

−z̄2

z

w

Figure 10. The contour of integration in eq. (4.13) runs on the imaginary axis and is marked by

arrows. The position of the singularities of the integrand refers to a Euclidean configuration.

long as we are careful to deform the contour of integration such that z1, z2 lie on the left,

and −z̄1, −z̄2, z lie on the right. Hence, we can study the nature of the singularities as z

collides with other insertions without performing the integral. There are no singularities

as z → z̄i, as expected. On the contrary, there are branch cuts originating from z = z1 and

z = z2, which correspond to u = 1 and u =∞ in figure 9. Indeed, when we move z to the

region on the left of the contour, we pick up the contribution of the pole at w = z in the

second line of eq. (4.15):

G1(z1, z2, z̄1, z̄2, z)|<z<0 = i

∫ +i∞

−i∞
dw 〈σ(z1, z̄1)T (z)σ(z2, z̄2)ε(w,−w)〉

+ 2πResw=z

{(
1/2

(z − w)2
− 1

z − w

(
∂

∂z1
+

∂

∂z2

))
〈σ1σ2ε〉

}
.

(4.17)

While the first line in the previous equation has no monodromies as z goes around z1 or z2,

the second line has square root branch points, as it is immediate to verify using eq. (4.16).

We shall not attempt to compute G1 explicitly. Rather, in appendix E we show that

the result does not contribute to the transmission coefficient.

Let us move on to the order g2:

G2(z1, z2, z̄1, z̄2, z) = −1

2

∫ +i∞

−i∞
dw1dw2 〈σ(z1, z̄1)T (z)σ(z2, z̄2)ε(w1,−w1)ε(w2,−w2)〉

+
1

2
〈σ(z1, z̄1)T (z)σ(z2, z̄2)〉

∫ +i∞

−i∞
dw1dw2 〈ε(w1,−w1)ε(w2,−w2)〉 .

(4.18)

The relevant five-point function can be easily found as in eq. (4.15), in terms of the following

four-point function [36]:

〈σ(z1, z̄1)σ(z2, z̄2)ε(w1, w̄1)ε(w2, w̄2)〉 =
F (x)F (x̄)

(z12z̄12)1/8w12w̄12
, F (x) =

2− x
2
√

1− x
, (4.19)
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z1

z2

−z̄1

−z̄2

z

w

Figure 11. The deformed contours of integrations in w1 and w2 which give a nonvanishing con-

tribution to G2 in the D →∞ limit. The effect of the limit is to carry the points −z̄1 and −z̄2 to

infinity, as shown by the arrows.

where

x =
(z1 − z2)(w1 − w2)

(z1 − w1)(z2 − w2)
. (4.20)

Let us first notice that a power law singularity arises in eq. (4.18) as w1 → w2, due to the

fusion rule ε × ε ∼ 1. This divergence is harmless and can be ignored. We refer to the

appendix for an explicit demonstration of this fact. We would like to extract the D →∞
limit of the integral (4.18). Let us focus on the connected contribution. The position of

the singularities in the w1 and w2 planes is the same as in figure 10. Our strategy is the

following: we shift both contours of integration to the right of the z insertion, and we keep

them at a distance of order D ' |z1 + z̄1| from both zi and z̄i as D grows. It is clear that,

unless we pick the residues at the pole wi = z, the two insertions of ε factorize in the limit,

and this contribution cancels against the second line in eq. (4.18). It is also easy to see that

the term where we only pick the pole in z, say, in the w1 integral, falls off as D →∞. The

only non vanishing contribution then comes from integrating along the contours shown in

figure 11. The result is

lim
D→∞

〈σL(z1, z̄1 −D)TR(z)σL(z2, z̄2 −D)〉I = (1− g2 + . . . )
1/16

z̄
1/8
12 z

−15/8
12 (z − z1)2(z − z2)2

= (1− g2 + . . . ) 〈σ(z1, z̄1)T (z)σ(z2, z̄2)〉 .
(4.21)

By comparing with (4.8), we see that eq. (4.21) reproduces the general result (3.30). It

also establishes that, as expected, the transmission coefficient in states created by the spin

field or by a finite number of free fermions are equal.

As a final check, in appendix E we show that the D → ∞ limit commutes with the

integration of the stress tensor, by explicitly performing the integration first.

4.3 An example with multiple operators of weight (2, 0)

If a CFT is endowed with an extended symmetry, the holomorphic stress tensor is gener-

ically not the only (2, 0) quasi-primary. Hence, permeable interfaces between theories of

this kind provide examples where the reflection and transmission coefficients are not fully
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determined by cLR, and in particular depend on the local operator used to create the state.

Familiar instances of theories with extended symmetry are the rational CFTs whose chiral

algebra A(gk) is generated by the currents of an affine Lie Algebra g at level k. In [37],

a procedure was devised to construct rational interfaces between theories whose partition

function is the charge conjugated modular invariant of two chiral algebras AL and AR.

Here, we shall consider a simple example, which is sufficient to illustrate the new features

of this setup.

Consider a WZW model based on the su(2)k chiral algebra. There is an interface

between this theory — the CFTL, for definiteness — and a compact free boson with radius

R =
√

2k, which we denote as u(1)k — the CFTR. Indeed, u(1)k is an affine subalgebra

of su(2)k, and the integrable representations of su(2)k can be decomposed in finitely many

representations of the (extended) algebra generated by the currents of u(1)k [38]. The

technology of [37] allows to construct a rational interface which preserves the reduced

chiral algebra su(2)k/u(1)k⊕u(1)k out of the full su(2)k of the CFTL. The currents which

generate the extended symmetry of the u(1)k subalgebra are glued with totally transmittive

boundary conditions, JL = JR, while the currents in the coset su(2)k/u(1)k — for generic

k only the stress tensor — obey the factorizing boundary condition (3.6).

We should expect the energy reflection and transmission coefficients to be able to

distinguish between the two kinds of degrees of freedom.17 Let us see that this is indeed

the case. TL is determined by the set of (2, 0) left quasi-primaries which couple with the

stress tensor of the CFTR. From the su(2)k characters, we see that for a generic value of k

the CFTL contains two (2, 0) quasi-primaries which are neutral under the u(1) generated

by j3, the generator of the Cartan subalgebra. We can identify these operators with the

stress tensors of the coset T su(2)/u(1) and of the u(1) subalgebra T u(1). Since their modes

commute, they are orthogonal in the homogeneous theory. Their sum is the stress tensor

of the CFTL. The gluing conditions precisely state that T su(2)/u(1) does not correlate with

TR, while T u(1) is identified with it:

T su(2)/u(1) = T
su(2)/u(1)

, T u(1) = TR , at the interface, (4.22)

which means

〈T su(2)/u(1)(z)TR(z′)〉I = 0 , 〈T u(1)(z)TR(z′)〉I =
cu(1)/2

(z − z′)4
. (4.23)

Here, cu(1) = 1 is the central charge of the free boson. As an immediate consequence,

TL = 1 in all the states created by operators which project to the identity field in the coset.

Indeed, their self OPE only contains T u(1) at level (2, 0). These include of course all the

states created by the modes of the u(1)k currents out of the vacuum.18 At the opposite

extreme, the transmission coefficient vanishes in the states created by the modes of the

coset stress tensor T su(2)/u(1). More generally, let us consider an operator OL of su(2)k

17In fact, the coset su(2)k/u(1)k has an interpretation in terms of parafermions [38]. The interface is

then factorizing for the parafermions, and topological for the bosons.
18The identity representation of the coset theory appears in two representations of su(2)k: the identity

and, due to field identifications [38], the representation whose primary has maximal su(2) spin, i.e. k/2.
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which is both a quasi-primary under T su(2)/u(1) and under T u(1). The simplest example is

the current j+. Then the relevant part of the fusion rules read

OL ×O†L ∼
2hsu(2)/u(1)

csu(2)/u(1)
T su(2)/u(1) +

2hu(1)

cu(1)
T u(1) , (4.24)

where the meaning of the subscript in the holomorphic weights and the central charges is

the obvious one. It follows that the transmission coefficient in the state created by OL is

T (OL) =
hu(1)

hsu(2)
, (4.25)

where the denominator is the holomorphic weight as measured by the stress tensor TL of

the complete su(2)k theory. For instance, T (j+) = 1/k. In particular, the transmission

coefficients become unity when k = 1, since in that case the free boson theory on the right,

which is at the self-dual radius, is precisely the same as the su(2)1 WZW model on the left.

As mentioned in subsection 3.6, cLR still determines the reflection coefficient in the

states created by the modes of the stress tensor TL. Indeed, the only (2, 0) quasi-primary

appearing in the OPE of TL with itself is again the stress tensor. Hence, eq. (3.31) is

always valid at least in this subset of the states of the defect CFT, and with it the bounds

discussed in subsection 3.7. Here,

cLR = cu(1) , T (TL) =
1

csu(2)
=
k + 2

3k
. (4.26)

Finally, it is easy to check that the energy coming from the right is completely trans-

mitted, i.e.

TR = 1. (4.27)

We refrain from analysing more general interfaces built with the method of [37], but let

us at least emphasize some features which are common to all the cases where the CFTL and

the CFTR are generated by two affine algebras AL and AR, with a common subalgebra

C to which the interface is transparent. First of all, the transmission coefficient T = 1

for the states created by the generators of C. On the contrary, T = 0 for the generators

of the cosets AL/C and AR/C, i.e. the currents which commute with the generators of

C.19 Finally, as first noticed in [1], the coefficient cLR always coincides with the central

charge of C.

19The proof of that T = 1 for elements of C goes as follows. Given the currents Ja ∈ C, the commutation

relations imply that the non singular term in the OPE Ja×Jb corresponds, up to a descendant, to the state

Ja
−1J

b
−1 |0〉. When rearranging in irreducible representations of C, the only neutral operator is the Casimir,

i.e. the Sugawara T C . The result then follows by comparing, for instance, 〈T CLTR〉I with 〈T CLTL〉. Instead,

the proof that T = 0 for the generators JL of the coset AL/C follows from the fact that these generators

obey the factorizing boundary conditions JL + J̄L = 0. It is then easy to see that the three-point function

〈JLTRJL〉I vanishes.
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βL βR

T

T

Figure 12. Depiction of a quantum wire in a non-equilibrium steady state. The thermal reservoirs

are denoted as boxes.

βL βR

TL

TL

TR

TR

Figure 13. Same as in figure 12, with an impurity depicted as a black circle.

5 Non-equilibrium steady states

The general result (1.3) has a simple and powerful consequence on the physics of non-

equilibrium steady states at criticality. These are systems characterized by non vanishing

fluxes which are however time independent, see [39] for a review. Consider a wire which

is well described by a 1+1 dimensional CFT. In thermal equilibrium, there is the same

energy flux of left and right movers along the wire, given by

〈T (z)〉 = 〈T̄ (z̄)〉 = −π
2c

6β2
(5.1)

where c is the central charge and β is the inverse temperature. Thus, the total energy

density and energy flux are given by

〈T tt〉 = − 1

2π

(
〈T (z)〉+ 〈T̄ (z̄)〉

)
=

πc

6β2
, 〈T tx〉 = − 1

2π

(
〈T (z)〉 − 〈T̄ (z̄)〉

)
= 0 .

(5.2)

On the contrary, if we place two ends of the wire at different temperatures as in

figure 12, energy flows from one reservoir to the other. Since in CFT left-moving and

right-moving excitations do not see each other, the energy flux in steady state is given by

〈T tx〉 = − 1

2π

(
〈T (z)〉 − 〈T̄ (z̄)〉

)
=
πc

12

(
1

β2
L

− 1

β2
R

)
. (5.3)

Notably, the energy flux between the thermal reservoirs does not depend on the length of

the wire connecting them. Such ballistic transport has been studied in [40, 41].

Let us now consider two wires connected by a conformal interface and attached to

thermal reservoirs as in figure 13. If there is a unique (2, 0) current, then given the uni-

versality of the transmission coefficient and the decoherent nature of thermal radiation we

conclude that

〈TL(z)〉 = −πcL
6β2

L

, 〈T̄L(z̄)〉 = 〈T̄R(z̄)〉TR + 〈TL(z)〉RL , (5.4)

〈T̄R(z̄)〉 = −πcR
6β2

R

, 〈TR(z)〉 = 〈TL(z)〉TL + 〈T̄R(z̄)〉RR . (5.5)
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Using (1.3), we conclude that the energy flux through the wire is given by

〈T tx〉 = − 1

2π

(
〈TL(z)〉 − 〈T̄L(z̄)〉

)
= − 1

2π

(
〈TR(z)〉 − 〈T̄R(z̄)〉

)
=
πcLR

12

(
1

β2
L

− 1

β2
R

)
.

(5.6)

Remarkably, the heat current is still proportional to the difference of the squares of the

temperatures of thermal reservoirs as in the case (5.3) without interface. This fact has

been noticed before in examples [14]. Here, we see that it is true in general as long as the

stress tensor is the unique spin 2 and dimension 2 quasi-primary operator. It would be

interesting to study the case where extended symmetries are present, but we leave this for

future work.

6 Conclusion

In this work, we studied the scattering of conformal matter against an impurity, in 1+1

dimensions. We defined coefficients which measure the fraction of energy reflected and

transmitted across the conformal interface. For two CFTs whose maximal symmetry alge-

bra is Virasoro, the reflection and transmission coefficients depend on the central charges

and on the single additional coefficient cLR, which is seen to provide a universal measure

of the transparency of a conformal interface. There is no dependence on the initial mo-

mentum of the perturbation, and no dependence on the local operator used to perturb the

vacuum. The coefficient cLR can be extracted from the two-point function of the stress

tensor, together of course with the central charges — see eq. (3.34).

The construction easily generalizes to other conserved quantities, and as an example

we described the case of a global symmetry. One may also study the reflection and trans-

mission coefficients of the conserved charges associated to dilations or special conformal

transformations. These are naturally defined using flux operators as in (2.2) with a factor

of z or z2 inserted inside the integrals for E and z̄ or z̄2 for Ē . Remarkably, the reflection

and transmission coefficients for these charges are exactly the same as the ones for energy.

This follows from integrating eq. (3.30) times z or z2 over
∫∞
−∞ dz.

Positivity of the reflected and transmitted energy bounds the coefficient of the two-

point function of the displacement operator, (3.41), and with it the dependence of the free

energy of the defect CFT on a small deformation of the interface. The same bound can

be reinterpreted as a bound on the coefficient R[1], which was dubbed reflection coefficient

in [1], and is indeed an average of the reflection coefficients for matter incoming from the

left and from the right.

The reflection and transmission coefficients capture a richer physics when one of the

CFTs possesses an extended symmetry algebra. Carriers with different charges scatter dif-

ferently against the impurity. Correspondingly, the pattern of energy reflection is captured

by a larger set of CFT data, which give a more detailed description of the transparency of

the interface than the sole coefficient cLR. An example of this general situation is described

in subsection 4.3.

So far we have considered interfaces betweens parity invariant CFTs. However, it is

not hard to generalize our results to parity violating CFTs. If cL 6= c̄L and cR 6= c̄R,
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then also cLR 6= c̄LR, and the transmission coefficient for matter incoming from the right

is modified to TR = c̄LR/c̄R, while TL = cLR/cL remains unchanged. Notice, however,

that a conformal interface between CFTL and CFTR only exists if the anomalies match:

cL − c̄L = cR − c̄R [17]. From the two-point function of the stress tensor and the gluing

condition (2.8), it is easy to see that

cLR − c̄LR = cL − c̄L = cR − c̄R .

In the extreme case of two chiral theories, we conclude that they can only be glued together

at an interface if they have the same chirality. Moreover, their interfaces are necessarily

fully transmissive or topological, as can be deduced from the vanishing of the two-point

function of the displacement operator. In other words, excitations of a chiral CFT are

insensitive to any impurities. If only one of the CFTs is chiral, there are two inequivalent

situations. Firstly, if the carriers of the chiral theory go towards the interface, they are fully

transmitted. Excitations coming from the other side of the interface are totally reflected.

Secondly, if instead the carriers of the chiral theory move away from the interface, their

reflection and transmission coefficients are not defined. The excitations coming from the

other side of the interface can be partially reflected and transmitted.

Various lines of research remain open for the future. It would be interesting to fully ex-

plore reflection and transmission in theories with extended symmetries. Rational interfaces

exist in these models [37], where the coefficients are computable.

The coefficients defined in this paper only contain averaged information. It is worth

looking at higher moments of the energy distribution at infinity, which may provide more

detailed information on the nature of the interface and of the theories on the two sides.

Our reflection and transmission coefficients are inclusive quantities: it would be inter-

esting to try and define observables related to exclusive processes. We made a few remarks

on this kind of observables in subsection 3.8. In this context, it might be fruitful to study

our interface setup using the description of CFT in terms of massless particles with inte-

grable scattering [42, 43]. A related direction is the study of reflection and transmission of

energy in theories deformed away from the fixed point. It would be interesting to clarify

the interplay between the reflection and transmission amplitudes for the particles in the

(possibly integrable) massive theory and the reflection and transmission coefficients that

we studied at the UV fixed point. It would also be important to check the role of the

two-point function of the stress tensor in connection to reflection and transmission, in the

deformed theory [26].

It is also natural to tackle reflection and transmission processes in higher dimensional

CFTs. In dimension higher than two, there is a richer variety of defects: similar techniques

to the ones developed here should be useful not only in studying the transparency of an

interface, but also scattering problems involving heavy classical static particles, or sources

of other codimension.

Finally, the bounds on the reflection and transmission coefficients, while having a

convincing physical origin, technically rely on the assumption that the averaged null energy

condition (ANEC) is true in the Hilbert space built on top of the impurity. It was recently

noticed [44, 45] that validity of the ANEC in the vacuum in the presence of a conformal
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defect implies positivity of the one-point function of the stress tensor. It would be important

to fill this gap and prove the ANEC in a generic defect CFT.
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A Conventions

Our metric convention is such that

v2 < 0, v timelike. (A.1)

Lightcone coordinates are defined as follows:

z = x− t , p = p1 − p0 , (A.2)

z̄ = x+ t , p̄ = p1 + p0 , (A.3)

so that

p · x =
1

2
(pz̄ + p̄z) , (A.4)

and

d2x =
1

2
dzdz̄ . (A.5)

The iε convention is as follows: operators at larger imaginary time stand on the right.

Therefore, a correlator of operators O1O2 ordered as written depends on the differences

z12 + iε, z̄12 − iε, z1 + z̄2 + iε and z̄1 + z2 − iε, the last two being relevant in the presence

of an interface.

For the stress tensor, we stick to the usual 2d convention, such that the OPE with a

Virasoro primary operator reads

T (z)O(w, w̄) ∼ h

(z − w)2
O(w, w̄) +

1

z − w
∂O(w, w̄) + regular . (A.6)

T (z) and T̄ (z̄) are related as follows to the response to a deformation of the metric:

Tµν = − 2
√
g

δS

δgµν
, T (z) = −2πTzz(z) , (A.7)

and similarly for T̄ .

The OPE of a current ja(z) with a primary operator under the affine symmetry is

ja(z)O(w, w̄) ∼ 1

z − w
fa(O)(w, w̄) + regular , (A.8)

where fa(O) is the action of the algebra element ja in the appropriate representation.
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Correlation functions in a translational invariant vacuum are denoted as 〈 〉, while

correlation functions in the presence of an interface have a subscript: 〈 〉I. When we

compute overlaps in canonical quantization, we still write only one subscript: 〈 | | 〉I.
The interface always extends along the time direction. When Wick rotating to Eu-

clidean signature, this naturally places the interface on the imaginary axis. This is slightly

unconventional. Our setup is related to the standard one by a rotation of π/2: z → iz.

Therefore, our formulae are obtained from the analogous ones where the interface lies on

the real axis, by rotating every operator: O → ih̄−hO.

The two-point function of a scaling operator is normalized as follows

〈O†(z, z̄)O(0, 0)〉 =
eiπ(h−h̄)

z2hz̄2h̄
. (A.9)

The phase is easily justified by evaluating the correlator at (z, z̄) = i(τ,−τ) and requiring

it to be positive — the cut of z2h is as usual on the negative real axis.

B Kinematics

In this appendix, O is always a quasi-primary, and the signature is Euclidean, with z =

x+iτ and the interface located at x = 0. O can acquire a one-point function in the presence

of a conformal interface if it is a scalar:

〈Oh,h̄(z, z̄)〉
I

=
aO δh,h̄

(z + z̄)2h
. (B.1)

A two-point function in which at least one operator is purely (anti)holomorphic is also

fixed up to a coefficient:

〈O1(z1, z̄1)O2(z2)〉I =
b12

zh1+h2−h̄1
12 (z1 + z̄1)h1−h2+h̄1(z̄1 + z2)−h1+h2+h̄1

. (B.2)

If O2 is on the opposite side of the interface with respect to O1, then the correlator vanishes

unless h1 − h̄1 − h2 = 0 :

b12 = 0 , if <z1<z2 < 0 and h1 − h̄1 − h2 6= 0 . (B.3)

This is easily seen by mapping the configuration on a sphere, with the interface on the

equator and the two quasi-primaries at the two poles. Rotational invariance then forces

the spin of the operators to match. The constraint also avoids the unphysical singularity at

z̄1 = −z2, i.e. when the operators are in mirroring positions with respect to the interface.

As a special case of eq. (B.2), when both operators are (anti)holomorphic, the correlator

requires the non vanishing weights to be equal. For instance,

〈Ō1(z̄1)O2(z2)〉I =
b12 δh̄1,h2

(z̄1 + z2)2h̄1
. (B.4)

The constraint (B.3) now implies that the two-point function of operators of opposite

chirality and on opposite sides of the interface vanishes.
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Formulae similar to eqs. (B.2) and (B.4) are valid for different combinations of holo-

morphic and antiholomorphic fields. In particular, the equation equivalent to (B.4) for a

pair of holomorphic operators implies that their two-point function is independent of the

location of the interface. Therefore, if both operators are on the same side of the interface,

b12 can be computed in the translational invariant theory, and defines the normalization of

the operator.

The two-point function of generic quasi-primaries contains one cross ratio:

〈O1(z1, z̄1)O2(z2, z̄2)〉I =
b12(ξ)

zh2−h̄2
12 z̄h̄1−h1

12 (z1 + z̄1)h1+h̄1(z2 + z̄2)h2+h̄2(z1 + z̄2)h1−h2−h̄1+h̄2

,

ξ =
z12z1̄2̄

(z1 + z̄1)(z2 + z̄2)
. (B.5)

The three-point function of purely (anti)holomorphic quasi-primary operators is fixed

up to a single coefficient:

〈O1(z1)O2(z2)Ō3(z̄3)〉I =
c123̄

(z1 − z2)h12,3(z1 + z̄3)h13,2(z2 + z̄3)h23,1
, (B.6)

with h12,3 = h1 + h2 − h̄3 and similarly for the other exponents. There is a constraint

analogous to (B.3):

c123̄ = 0 ,
if <z3<z1 < 0 and <z1<z2 > 0 ,

if <z3<z1 < 0 and <z3<z2 > 0 , and h13,2 6= 0 .
(B.7)

This is easily proven by fusing the operators on the same side of the interface, and reducing

to the constraint (B.3), or the analogous one with opposite chiralities. Some constraints for

higher-point functions can be obtained in the same way, but we will not need them here.

Of course, a formula similar to (B.6) holds if the number of antiholomorphic opera-

tors is zero, two, or three. In particular, when all three operators are (anti)holomorphic,

the correlator becomes independent of the distance from the interface. Therefore, if the

operators are all on the same side, the coefficient c123 equals the OPE coefficient as in a

translational invariant theory.

When some of the operators have both holomorphic and anti-holomorphic dimensions,

the three-point function depends on cross ratios. In particular, we are interested in the

coupling of two generic quasi-primaries with a conserved (higher spin) current, in the

presence of the interface. In this case, there are two independent cross ratios. The following

representation is useful in subsection 3.5:

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3)〉I =(
(z2+z̄2)(z1−z3)

(z1+z̄1)(z2−z3)

)h̄1−h̄2 f123(ξ, u)

(z1−z3)h1−h2+h3(z2−z3)h2−h1+h3(z1−z2)h1+h2−h3(z̄1−z̄2)h̄1+h̄2
,

ξ =
z12z1̄2̄

(z1+z̄1)(z2+z̄2)
, u =

z12(z̄1+z3)

(z1+z̄1)z32
, (B.8)
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C Stress tensor insertions: constraints from the gluing conditions

In this appendix, the defect CFT is taken to be in Euclidean signature, the setup is the

same as in subsection 3.1. Consider the set of correlation functions with one stress tensor

and an arbitrary number of other insertions, all of which on the left of the interface. We

use the following notation:

GL/R(z) = 〈O1(z1, z̄1) . . . On(zn, z̄n)TL/R(z)〉
I
, (C.1)

while ḠL/R denotes the analogous correlator with the insertion of TL/R. Using Cauchy

theorem, or equivalently, the fact that the stress tensor is a descendant of the identity, one

easily obtains the following equations

GL(z) = −
∑
i

Resw=zi

[
GL(w)

w − z

]
+

1

2πi

∫ +i∞

−i∞
dw

ḠL(−w) +GR(w)− ḠR(−w)

w − z
, (C.2)

ḠL(z̄) = −
∑
i

Resw̄=z̄i

[
ḠL(w̄)

w̄ − z̄

]
+

1

2πi

∫ +i∞

−i∞
dw̄

GL(−w̄)−GR(−w̄) + ḠR(w̄)

w̄ − z̄
. (C.3)

In the second term in each line, we used the gluing condition (3.4). The last integrals can

be performed by closing the contour always in the physical half-plane, i.e. such that TL
and TL are evaluated on the left of the interface and vice versa for TR and TR — notice

that we treat z̄ as a holomorphic coordinate. Then GR does not contribute to eq. (C.2)

and ḠR to eq. (C.3). On the other hand, the poles of GL and ḠL are fixed by the OPE.

Finally:

GL(z) + ḠR(−z) = −
∑
i

Resw=zi

[
GL(w)

w − z

]
−
∑
i

Resw=−z̄i

[
ḠL(−w)

w − z

]
, (C.4)

ḠL(z̄) +GR(−z̄) = −
∑
i

Resw̄=−zi

[
GL(−w̄)

w̄ − z̄

]
−
∑
i

Resw̄=z̄i

[
ḠL(w̄)

w̄ − z̄

]
. (C.5)

Let us stress that the r.h.s. of eqs. (C.4) and (C.5) is fixed by the Ward identities of the

stress-tensor in terms of the n-point function without the stress tensor insertion. The

precise form of this relation depends whether the operators are primaries or descendants.

Finally, let us briefly consider the two limiting cases of a topological and of a factor-

izing interface, defined by the conditions (3.5) and (3.6) respectively. If the interface is

topological, the correlation function is the same as in the absence of the interface:

GL(z) = GR(z) = −
∑
i

Resw=zi

[
GL(w)

w − z

]
, (C.6a)

ḠL(z̄) = ḠR(z̄) = −
∑
i

Resw̄=z̄i

[
ḠL(w̄)

w̄ − z̄

]
. (C.6b)

If the interface is factorizing, we easily find that eqs. (C.4) and (C.5) are complemented by

GR(z) = ḠR(z̄) = 0 . (C.7)

This is consistent with the general fact, explained in subsection 3.1, that no correlation

exists between the two theories if the stress tensors on the interface obey eq. (3.6).
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D The three-point function 〈OLOLOR〉I: the OL × OL OPE

Consider the correlator of two quasi-primaries O1,L, O2,L of the CFTL and a quasi-primary

O3,R of the CFTR:

〈O1,LO2,LO3,R〉I . (D.1)

We are interested in the region of convergence of the OL×OL OPE in complex cross ratio

space. We follow a standard strategy, first analyzing the problem in Euclidean signature.

The correlator has three cross ratios [20], and it is not hard to see that we can use con-

formal transformations to place the operators and the defect in the configuration shown in

figure 14. We can take the cross ratios to be the complex coordinates (ρ, ρ̄) of the operator

O1,L, together with the distance R of O3,R from the origin:

cross ratios: ρ = ρ̄∗ = reiθ , R . (D.2)

These cross ratios have the following crucial property: the region of convergence of the

Euclidean OPE equals the radius of convergence of the expansion of the correlator in

powers of r2 = ρρ̄, i.e. r < 1. This kind of ρ-coordinates were introduced for the four-point

function of local operators in [46], studied in [47] and later extended to other contexts,

including the domain of defect CFTs [20]. The power expansion of the correlator reads

〈O1,L(ρ)O2,L(−ρ)O3,R(R)〉I = (2ρ)−h1−h2(2ρ̄)−h̄1−h̄2
∑
h,h̄≥0

ah,h̄(R)ρhρ̄h̄ , ρ̄ = ρ∗ ,

(D.3)

where it is important that the powers of ρ and ρ̄ are bounded from below. Although the

coefficients ah,h̄(R) are not positive, the expansion converges absolutely [46]. It is then

easy to show that the following is true for independent complex (ρ, ρ̄):20

O1,L ×O2,L OPE converges if |ρ| < 1 ∧ |ρ̄| < 1 , ∀R ≥ 1 . (D.5)

Let us now specialize to the case where O3,R is holomorphic, which is relevant for the

transmission coefficient, see eq. (3.26). The relation of the ρ coordinates with ξ and u is

ξ =
4ρρ̄

(1− ρρ̄)2
=

4ωω̄

(1− ωω̄)2
, u =

2ρ(1−Rρ̄)

(ρ+R)(1− ρρ̄)
=

2ω(1− ω̄)

(1 + ω)(1− ωω̄)
. (D.6)

We introduced the combinations ω = ρ/R and ω̄ = ρ̄R, consistently with the fact that

only two of the three cross ratios survive. We are interested in the intersection of the

domain (D.5) with the complex u plane at fixed ξ. This is obtained as follows. Fix a

20The proof goes as follows: start with |ρ̄| ≤ |ρ| < 1. Then the expansion is bounded by the following

chain of inequalities:∣∣∣∣∣∣
∑

h,h̄≥0

ah,h̄(R)ρhρ̄h̄

∣∣∣∣∣∣ ≤
∑

h,h̄≥0

|ah,h̄(R)||ρh||ρ̄h̄| ≤
∑

h,h̄≥0

|ah,h̄(R)||ρ|h+h̄ <∞ . (D.4)

The last inequality follows from the absolute convergence of the Euclidean OPE. Exchanging ρ and ρ̄ the

general result is obtained.
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r

R

1

2

3
θ

CFTL

CFTR

Figure 14. The configuration which defines the ρ-coordinates for the correlator 〈O1,LO2,LO3,R〉I.
The defect is a sphere with unit radius, and the points 1 and 2 are aligned with its center, both at

distance r < 1 from it. The right operator lies at distance R ≥ 1 from the center of the spherical

defect. The ρ-coordinates are the complex coordinates of the operator O1,L, ρ = reiθ, together with

the positive real parameter R.

1

u

Figure 15. The u plane at fixed ξ = 4r2/(1 − r2)2, for some choice of r with |r| < 1. The

region of convergence of the OL ×OL OPE is shaded in orange. The boundary is the straight line

<u+ α Iu− 1 = 0, with α = 2 Ir2/(1− |r|4).

complex r2 = ωω̄, thus fixing ξ, and consider the image of the domain r2/R < |ω| < 1/R

under the map (D.6). Then vary R ≥ 1 and take the union: this is the largest region of

convergence of the OPE in the u plane. Obviously, the union of the domains is the region

in the u plane corresponding to 0 < |ω| < 1. The result is shown in figure 15. Notice that

one of the boundaries (|ω| = 1) passes through u = 1 and u =∞, which correspond to the

Lorentzian configurations where the O3,R is lightlike separated from either O1,L or O2,L

— see figure 8. The other boundary is the point u = −2r2/(1 − r2), which corresponds

to ω = 0: here the OPE in fact converges. Indeed, this point can be reached by choosing

R =∞, at fixed |ρ|, |ρ̄| < 1. To summarize, the region of convergence of the OL×OL OPE

in the correlator 〈O1,LO2,LO3,R〉I where O3,R is holomorphic is |ω| < 1 |ωω̄| < 1.
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z1

z2

w z

Figure 16. Contours which define the expectation value 〈σL|ER|σL〉I at order g. The solid hori-

zontal line is the contour of integration in z, while the dashed line is the contour of integration in

w. The integrand, eq. (4.15) has poles in z at z = z1, z2, w. The position of z1 and z2 is compatible

with the kinematics described in subsection 3.5.

E Details on 〈σL|ER|σL〉I in the Ising model

This appendix gathers some details on the computations performed in subsection 4.2.

We start by proving that the transmission coefficient, as computed from 〈σL|ER|σL〉I,
vanishes at order g. We need to compute — see eq. (2.2):

− 1

2π

∫ +∞

−∞
dz G1(z1, z2, z̄1, z̄2, z) . (E.1)

G1 was defined in subsection 4.2. The kinematics in this case is the one explained in

subsection 3.5: z1 + z̄1 and z2 + z̄2 are real, and Iz1 > 0 > Iz2. It is convenient to perform

the z integration first. We need to integrate the stress tensor on the real axis, but the

contour of integration in w must be kept on the left of z. Hence, we first deform the w

contour as in figure 16. By first closing the z contour, say, above, we pick up a contribution

from the pole at z = z1, and a contribution from the pole at z = w in eq. (4.15). The first

contribution is given by the following integral:

− 1

2π

∫ +∞

−∞
dz G1(z1, z2, z̄1, z̄2, z)→ ∂

∂z1

∫ +i∞

−i∞
dw 〈σ1σ2ε〉 . (E.2)

〈σ1σ2ε〉 is defined in eq. (4.16). Let us analyze its behavior in the D →∞ limit, i.e. when

z̄1 z̄2 → −∞ at fixed z̄1− z̄2. The contour of integration in w can be freely shifted towards

the right — see figure 10, so that w lies at a distance at least of order D from both z̄1, z̄2

and z1, z2. It is then immediate to show, looking at eq. (4.16), that the integral falls off

as D−1. The contribution from the pole at z = w only involves an integral over the upper

part of the dashed contour in figure 16. We can then deform the w contour on the z1

branch cut of figure 10, and obtain the following expression

− 1

2π

∫ +∞

−∞
dz G1(z1, z2, z̄1, z̄2, z)

→ −2i

(
∂

∂z1
+

∂

∂z2

){
(z12z̄12)3/8

|z1+z̄1|

∫ +∞

0

dx√
x(x+1)

(
−x+

z1−z2
|z1+z̄1|

)−1/2(
x+1+

z̄1−z̄2
|z1+z̄1|

)−1/2}
,

(E.3)
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z1

z2

−z̄1

−z̄2

w2
w1

w2

Figure 17. Contours of integration responsible for the value of TL at order g2. The integrand

is proportional to Resz=w2 〈σ(z1, z̄1)T (z)σ(z2, z̄2)ε(w1,−w1)ε(w2,−w2)〉. The dashed circle is the

contour of integration in w1, which picks up the pole at w1 = w2. Finally, the solid line is the contour

of integration in w2. The singularities at w2 = z1, z2, −z̄1, −z̄2 are poles for the final integrand,

even before taking the D →∞ limit, whose effect on the position of z̄1 and z̄2 is illustrated by the

arrows.

where all the square root cuts run on the negative real axis. It is easy to see that the integral

has a logarithmic behavior as |z1 + z̄1| → ∞, so that also this contribution vanishes, and

we confirm that the transmission coefficient only deviates from 1 at order g2.

We now turn to the subleading order. First of all, let us address a regularization issue.

The double integral in eq. (4.18) is UV divergent, since the integrand goes like (w1−w2)−2

as w1 → w2. We regulate with a hard cutoff, and ignore power-law divergences, which is

equivalent to the following prescription:∫ i∞

−i∞
dw1dw2 →

∫ i∞

−i∞
dw1

(∫ i∞+η

−i∞+η
dw2 −

1

2

∮
w1

dw2

)
, (E.4)

where η is a finite positive number, and the second integral in parenthesis would pick up

a simple pole at w2 = w1. However, a simple pole is absent from the ε× ε OPE, hence we

can drop the second term in parenthesis in eq. (E.4). In practice, we can freely shift the

two contours independently.

We showed in the main text that the correlator has the limiting behavior prescribed

in eq. (3.30). Here we also verify that the integration over z commutes with the D → ∞
limit. In other words, we would like to compute

− 1

2π
lim
D→∞

∫ +∞

−∞
dz G2(z1, z2, z̄1 −D, z̄2 −D, z) , (E.5)

where G2 was defined in subsection 4.2. As before, we first perform the z integral. The

deformation of the w1 and w2 contours in the first line of eq. (4.18) proceeds like in figure 16.

Then we close the z contour, say, up. It is not hard to see that the only contribution which

does not vanish in the D →∞ limit, or does not cancel against the second line in eq. (4.18),

comes from picking the pole at z = w2, where the w2 contour is the right-most one — see

eq. (E.4). Then we shift the w1 contour to the right, and in doing so we pick up the pole

at w1 = w2. The final integration contours in w1 and w2 is illustrated in figure 17. At this
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point, the D →∞ limit can be safely taken inside the integral, and the result is

− 1

2π

( g

2π

)2
lim
D→∞

∫ +∞

−∞
dz G2(z1, z2, z̄1−D, z̄2−D, z) = ig2Resw2=z1

1/16

z̄
1/8
12 z

−15/8
12 (z1−w2)2(z2−w2)2

=
g2

2π

∫ ∞
−∞

dz 〈σ(z1, z̄1)T (z)σ(z2, z̄2)〉 . (E.6)

This is compatible with the integral of both sides of eq. (4.21), and thus confirms that

the transmission coefficient can be computed by first taking the D → ∞ limit and then

integrating the stress tensor.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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JHEP 07 (2016) 076 [arXiv:1511.06713] [INSPIRE].

[19] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01

(2017) 013 [arXiv:1509.03612] [INSPIRE].

[20] E. Lauria, M. Meineri and E. Trevisani, Radial coordinates for defect CFTs, JHEP 11 (2018)

148 [arXiv:1712.07668] [INSPIRE].

[21] T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP

05 (2016) 099 [arXiv:1509.00014] [INSPIRE].

[22] T. Kimura and M. Murata, Transport Process in Multi-Junctions of Quantum Systems,

JHEP 07 (2015) 072 [arXiv:1505.05275] [INSPIRE].

[23] G. Delfino, Parafermionic excitations and critical exponents of random cluster and O(n)

models, Annals Phys. 333 (2013) 1 [arXiv:1212.3178] [INSPIRE].

[24] T. Kimura and M. Murata, Current Reflection and Transmission at Conformal Defects:

Applying BCFT to Transport Process, Nucl. Phys. B 885 (2014) 266 [arXiv:1402.6705]

[INSPIRE].

[25] D. Gang and S. Yamaguchi, Superconformal defects in the tricritical Ising model, JHEP 12

(2008) 076 [arXiv:0809.0175] [INSPIRE].

[26] I. Brunner and C. Schmidt-Colinet, Reflection and transmission of conformal perturbation

defects, J. Phys. A 49 (2016) 195401 [arXiv:1508.04350] [INSPIRE].

[27] I. Makabe and G.M.T. Watts, Defects in the Tri-critical Ising model, JHEP 09 (2017) 013

[arXiv:1703.09148] [INSPIRE].

[28] C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and

holography, JHEP 06 (2002) 027 [hep-th/0111210] [INSPIRE].

[29] G. Delfino, G. Mussardo and P. Simonetti, Statistical models with a line of defect, Phys. Lett.

B 328 (1994) 123 [hep-th/9403049] [INSPIRE].

[30] M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical

two-dimensional Ising model with a defect line, Nucl. Phys. B 495 (1997) 533

[cond-mat/9612187] [INSPIRE].

[31] D. Friedan, The space of conformal boundary conditions for the c = 1 Gaussian model,

private notes (1999).

[32] D. Friedan, The space of conformal boundary conditions for the c = 1 Gaussian model

(more), private notes (2003).

– 45 –

https://doi.org/10.1088/1751-8113/48/5/05FT01
https://arxiv.org/abs/1411.0470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0470
https://doi.org/10.1103/PhysRevD.87.046005
https://arxiv.org/abs/1210.6439
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.6439
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(84)90241-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B240,514%22
https://doi.org/10.1007/JHEP04(2016)091
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.02883
https://doi.org/10.1007/JHEP07(2016)076
https://arxiv.org/abs/1511.06713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.06713
https://doi.org/10.1007/JHEP01(2017)013
https://doi.org/10.1007/JHEP01(2017)013
https://arxiv.org/abs/1509.03612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03612
https://doi.org/10.1007/JHEP11(2018)148
https://doi.org/10.1007/JHEP11(2018)148
https://arxiv.org/abs/1712.07668
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07668
https://doi.org/10.1007/JHEP05(2016)099
https://doi.org/10.1007/JHEP05(2016)099
https://arxiv.org/abs/1509.00014
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00014
https://doi.org/10.1007/JHEP07(2015)072
https://arxiv.org/abs/1505.05275
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05275
https://doi.org/10.1016/j.aop.2013.02.009
https://arxiv.org/abs/1212.3178
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3178
https://doi.org/10.1016/j.nuclphysb.2014.05.026
https://arxiv.org/abs/1402.6705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.6705
https://doi.org/10.1088/1126-6708/2008/12/076
https://doi.org/10.1088/1126-6708/2008/12/076
https://arxiv.org/abs/0809.0175
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0175
https://doi.org/10.1088/1751-8113/49/19/195401
https://arxiv.org/abs/1508.04350
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04350
https://doi.org/10.1007/JHEP09(2017)013
https://arxiv.org/abs/1703.09148
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09148
https://doi.org/10.1088/1126-6708/2002/06/027
https://arxiv.org/abs/hep-th/0111210
https://inspirehep.net/search?p=find+EPRINT+hep-th/0111210
https://doi.org/10.1016/0370-2693(94)90439-1
https://doi.org/10.1016/0370-2693(94)90439-1
https://arxiv.org/abs/hep-th/9403049
https://inspirehep.net/search?p=find+EPRINT+hep-th/9403049
https://doi.org/10.1016/S0550-3213(97)00219-8
https://arxiv.org/abs/cond-mat/9612187
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B495,533%22


J
H
E
P
0
2
(
2
0
2
0
)
1
3
8

[33] R.A. Janik, Exceptional boundary states at c = 1, Nucl. Phys. B 618 (2001) 675

[hep-th/0109021] [INSPIRE].

[34] B.M. McCoy and J.H.H. Perk, Two Spin Correlation Functions of an Ising Model With

Continuous Exponents, Phys. Rev. Lett. 44 (1980) 840 [INSPIRE].

[35] A.C. Brown, Critical properties of an altered ising model, Phys. Rev. B 25 (1982) 331.

[36] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in

Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[37] T. Quella and V. Schomerus, Symmetry breaking boundary states and defect lines, JHEP 06

(2002) 028 [hep-th/0203161] [INSPIRE].

[38] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in

Contemporary Physics, Springer-Verlag (1997).

[39] D. Bernard and B. Doyon, Conformal field theory out of equilibrium: a review, J. Stat. Mech.

1606 (2016) 064005 [arXiv:1603.07765] [INSPIRE].

[40] D. Bernard and B. Doyon, Energy flow in non-equilibrium conformal field theory, J. Phys. A

45 (2012) 362001 [arXiv:1202.0239] [INSPIRE].

[41] D. Bernard and B. Doyon, Non-Equilibrium Steady States in Conformal Field Theory, Ann.
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