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1 Introduction

The AdS/CFT correspondence [3] relates two autonomously defined mathematical

structures. Namely, perturbative string theory on AdSd+1 backgrounds (defined in terms

of a worldsheet sigma model), and conventional quantum field theories at their confor-

mal fixed points. One can therefore independently make computations on both sides and

compare them using the dictionary that translates their observables to one another [4, 5].

And indeed much effort has gone into this over twenty years and given strong evidence

for the correspondence. However, one might ideally like to derive this correspondence by

having a concrete way to transform observables on one side to the dual ones, manifesting

thus their equality. Having such a transformation can give deeper insights into why this

correspondence holds apart from obviating the need to check in a case by case manner.1

One context, where such a program can potentially be carried to completion, is string

theory on AdS3 backgrounds with NS-NS flux. The worldsheet theories are relatively con-

ventional sigma model CFTs without the complication entailed by RR fluxes. The dual 2d

spacetime CFTs are also much more tractable than their higher dimensional counterparts.

The dictionary relates correlators of primary fields in the spacetime CFTs with those of

physical vertex operators in the worldsheet CFT which are integrated then over the moduli

space of Riemann surfaces with marked points,∫
Mg,n

〈
Vw1
h1

(x1; z1)Vw2
h2

(x2; z2) . . .Vwn
hn

(xn; zn)
〉

Σg,n

=
〈
O(w1)
h1

(x1)O(w2)
h2

(x2) . . .O(wn)
hn

(xn)
〉

S2

∣∣∣∣
g

. (1.1)

The spacetime CFT n-point function on S2 (the r.h.s.) is organised in a genus expansion

in a suitable large N limit, and the genus-g contribution is equated to the worldsheet CFT

computation on a Riemann surface Σg,n of genus-g with n marked points (the l.h.s.).2 We

might reasonably expect to be able to mathematically relate these two separately well-

defined quantities.

1There have been several attempts over the years to derive the AdS/CFT correspondence, or more

generally, gauge-string duality at varying levels of specificity. A partial list of references include [6–17].
2The {hi} label conformal dimensions in the spacetime CFT, while the {wi} are additional labels e.g.

for the spectrally flowed sectors in the worldsheet CFT.
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The spacetime CFTs on the r.h.s. are believed to be deformations of a symmetric

orbifold CFT. The simplest examples are for the backgrounds AdS3×S3×M4 withM4 =

T4 or K3. Here the corresponding CFT is SymN (M4) which involves taking N copies of

M4, and orbifolding by the permutation group SN acting on these copies. To compare

with perturbative string theory we take a large N limit. The simplest case where we can

address our question of mapping the two sides of eq. (1.1) is at the actual orbifold point

where the dual CFT is tractable.

Recently it has been proposed [1, 2] that these orbifold CFTs are exactly dual to

string backgrounds with pure NS-NS flux [18–20]. The tensionless string case, which arises

when the amount of NS-NS flux is minimal k = 1 [21, 22], is the simplest such instance

where the dual orbifold CFT is simply SymN (M4) with M4 = T4 or K3 [1, 2]. Nontrivial

evidence including a detailed match of the full perturbative string spectrum as well as the

selection rules for three point correlators was provided [1, 2]. Many of the considerations

also generalise to the case with k > 1 where it was seen that the perturbative long string

spectrum matches precisely with that of the symmetric orbifold SymN (M̃4) where M̃4 has

a Liouville factor in addition to M4 [23]. It was also shown in [23] that a DDF-like [24]

construction on the worldsheet generates the correct spacetime symmetry algebra.

In this paper we will identify a more structural reason underlying this agreement which

goes quite some way towards establishing the mapping between the two sides of eq. (1.1).

We will start with the l.h.s. of eq. (1.1) for g = 0 and provide strong evidence that, for the

worldsheet path integral with k = 1 units of NS-NS flux, the correlator of physical vertex

operators delta-function-localises to a few discrete sets of points in the moduli space M0,n.

These are the worldsheet Riemann surfaces which admit a holomorphic covering map to the

spacetime S2 (the boundary of AdS3) such that the marked points zi on Σ0,n are mapped to

the xi on the spacetime S2 (with a specified branching wi at zi). The worldsheet correlator,

we claim, is thus generically zero apart from at these special points in moduli space!3

The primary evidence for this statement comes from a careful analysis of the Ward

identities that are obeyed by the correlators of spectrally flowed primaries in the (bosonic)

SL(2,R)k+2 WZW model. These Ward identities lead to a set of complicated recursion

relations, which can be solved by correlators with this unusual delta-function-localisation

property. This special solution exists provided that

n∑
i=1

ji =
k

2
(n− 2) + 1 , (1.2)

where ji labels the Casimir of the SL(2,R)k+2 WZW primary, C(j) = −j(j − 1). For

k = 1, the entire world-sheet spectrum comes from the bottom of the continuum with

ji = 1
2 [2], and thus (1.2) is automatically satisfied for all n. Therefore all the physical

vertex operators in the perturbative string spectrum at k = 1 obey this condition.

This result matches beautifully with some known facts about correlators in the orbifold

CFT on the r.h.s.. Lunin and Mathur, in a series of papers [25, 26], showed how one can

3These special points in moduli space are exactly where, for generic k > 1, one found singularities in

correlators (see section 2.4 of [20]) or in the one-loop partition function (see section 4.1 of [19]).
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compute correlators (of twisted sector states) in a symmetric orbifold CFT in terms of an

auxiliary covering surface with a branching structure over the points xi dictated by the

(single-cycle) twists wi of the operators. They noticed that this auxiliary surface had a

nontrivial genus and that it seemed to play the role of the dual worldsheet. This conjecture

was formalised in works of Pakman, Rastelli and Razamat [27, 28] where they elucidated

this covering space picture from the point of view of the orbifold CFT. At the time there

was no comparison to a bonafide worldsheet theory. Our results show that this picture

is indeed realised at the level of the worldsheet theory for NS-NS backgrounds, in the

tensionless limit of k = 1. The nontrivial localisation of the worldsheet path integral, that

this picture demands, is something we now see explicitly from the sigma model, at least

for this special solution.

While the Ward identities do not uniquely pick out this particular solution, additional

support that the delta-function-localised worldsheet correlator is indeed the correct one

comes from a semiclassical picture. We argue that classical string solutions corresponding

to states at the bottom of the continuum, i.e. with ji = 1
2 , are essentially pinned to the

S2 boundary of the AdS3. (As we mentioned before, these correspond to all the physical

states that are present for k = 1 [2].) The solutions corresponding to spectrally flowed

states in a sector labelled by an integer w have locally a behaviour which is that of a w-

branched cover of the boundary S2. We also find an exact classical solution corresponding

to the global holomorphic covering map from the worldsheet to S2 that contributes to an

n-point correlator. A schematic picture of these classical solutions is given in figure 1.

The action of this semi-classical configuration agrees exactly with the Liouville action that

appears in the Lunin-Mathur computation of the orbifold CFT correlator. Moreover, since

these solutions are localised at the boundary of AdS3, one can argue that the semiclassical

approximation should be exact!

The overall picture that emerges is that correlators of physical vertex operators in

the k = 1 theory have the rather remarkable feature that they are localised onto a set of

semiclassical configurations corresponding to holomorphic covering maps of the boundary

of AdS3 by the worldsheet. We see this from the Ward identities of the sigma model

CFT, as well as from a semiclassically exact analysis of classical string solutions. This

worldsheet CFT analysis reproduces all the features of the Lunin-Mathur approach to the

computation of the spacetime CFT correlators. Together with the results in [1, 2], we

believe this essentially demonstrates how the string theory on AdS3 × S3 ×M4 at k = 1

becomes equivalent to the spacetime orbifold CFT SymN (M4) in a large N expansion.

The organisation of this paper is as follows. In section 2 we set out in more detail

the general structure of our argument and give markers for how the different pieces of

the analysis fit together. Sections 3–5 discuss the world-sheet approach to calculating the

correlation functions. More specifically, after defining our conventions and explaining a

few basic facts about spectrally flowed vertex operators in section 3, we explain how to

formulate the Ward identities for their correlators in section 4. Section 5 describes then

the, in general, delta-function-localised solutions of these Ward identities.

In preparation for the comparison to the classical solutions, we explain in section 6 how

these correlation functions can be expressed in terms of the Wakimoto free field realisation
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Figure 1. A cartoon of the semiclassical string solution in the example of a 4-point function. The

worldsheet is pinned to the boundary sphere via the covering map and has ramification indices wi

at the insertion points.

for which the relation to the covering map becomes manifest. In section 7 we discuss

the relevant classical solutions and show that they match precisely with the results from

section 6, thus linking our quantum analysis to the Lunin-Mathur description of symmetric

orbifold correlators. Finally, we sketch in section 8 how one should expect the analysis to

generalise to arbitrary genus on the world-sheet, and we summarise our findings and suggest

further directions for the future in section 9.

There are three appendices: appendix A gives the detailed argument that our ansatz

for the correlators in the general case (see section 5.4) satisfies indeed the Ward identities

of section 4, while appendices B and C explain various technical issues that arise in the

context of the Wakimoto free field realisation of section 6.

2 From worldsheet CFT to spacetime CFT

This section firstly gives an overview of the big goal as well as the concrete strategy we adopt

towards realising it. It then reviews some of the ingredients in this strategy, in particular,

the Lunin-Mathur approach to computing correlators in symmetric orbifold CFTs.

2.1 Goal and roadmap

As mentioned in the introduction, the big goal is to derive the AdS3/CFT2 correspondence

(at k = 1) by recasting the correlators of the worldsheet CFT (the l.h.s. of eq. (1.1)) in a

way which makes them manifestly equivalent to the spacetime CFT correlators (the r.h.s.

of eq. (1.1)). Showing the equality in this way would then bypass explicit computation of

individual correlators and their comparison. The latter, is in any case, usually prohibitive

beyond the simplest cases and not always particularly illuminating. We will focus largely

– 4 –
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on the k = 1 tensionless limit where the orbifold CFT is relatively simple and we do not

have the complications arising from the presence of the long string continuum [18, 29].4

The strategy we will adopt is twofold. The bulk of the paper (sections 3–5) is devoted

to a CFT analysis of the correlators of spectrally flowed states in the bosonic SL(2,R)k+2

WZW model. These are the building blocks in any covariant analysis of the worldsheet

theory on AdS3 as well as for the evaluation of the string amplitudes defined on the l.h.s. of

eq. (1.1). This is the case, irrespective of whether one uses the NSR formulation of [18–20]

(or rather its supersymmetric extension developed in [22, 30–32]), or the hybrid formalism

of [33] that was employed in [2]. (In either case, one can decouple the fermions and deal

with the decoupled bosonic sl(2,R)k+2 algebra at level k + 2.)

For simplicity, we will concentrate on vertex operators for the physical ground state

in each spectrally flowed sector. From the detailed matching of the spectrum between the

symmetric product CFT and the string theory, we know that the w-spectrally flowed sector

corresponds to the w-cycle twisted sector in the orbifold [1, 2], see also [34, 35]. We thus

have a correspondence

Vwh (x; z)←→ O(w)
h (x) . (2.1)

Here the spacetime CFT operator on the r.h.s. is the twist field creating the ground state

in the w-twisted sector. The operator on the l.h.s., on the other hand, creates the state

|j = 1
2 ,m〉

(w) which sits at the bottom of the continuous representations in the w-spectrally

flowed sector of the SL(2,R)k+2 WZW model. The J3
0 quantum number m is fixed by

the physical state conditions and related to the spacetime conformal dimension as h =

m+ k+2
2 w. Since we are considering the ground states, we will not really need the rest of

the contributions (i.e. the degrees of freedom from S3×M4 as well as the ghosts) to the full

string theory vertex operator. We will thus denote the sl(2,R) vertex operators, which we

will focus on, by V w
h (x; z) to distinguish them from the full string vertex operators Vwh (x; z)

that appear in eq. (1.1).

The main aim of the world-sheet analysis is to calculate the (unintegrated) correlators

on the sphere

〈V w1
h1

(x1; z1)V w2
h2

(x2; z2) · · ·V wn
hn

(xn; zn)〉 , (2.2)

and constrain them using the Ward identites obtained by additional sl(2,R)k+2 current

insertions Ja(z).5 Unlike in the case of the spectrally unflowed sector, where this reduces to

the action of zero modes, here near each zi the first wi positive modes of J+ act nontrivially

since they do not annihilate the spectrally flowed ground state, see in particular eq. (4.3)

below. This is compensated by the fact that for a suitable combination involving J− the

situation is reversed, and one has a zero of order wi − 2 near zi, see eq. (4.7). This allows

4Much of the quantum analysis will be carried out for general k, and some of these results are likely to

be useful in studying the general case. In fact, these give a systematic way to study correlators of spectrally

flowed operators through the Ward identity constraints. However, as we will see in section 5.5 and later,

there are major simplifications when the condition of eq. (1.2) holds, and we will restrict to that case which

is in anyway of direct relevance to the k = 1 theory.
5As in [20], we will be considering the Euclidean Wick rotation on both the spacetime as well as the

worldsheet. Thus strictly speaking, we are looking at sl(2,C) Ward identities. The distinction is immaterial

since we are looking only at the chiral sector.
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us to evaluate the current correlators in terms of a number of unknown coefficients (see

eq. (4.4)), which however satisfy corresponding constraints.

Unlike in the unflowed sector, solving this set of unknowns and constraints is non-trivial

in general. Nevertheless, we find a rather remarkable solution to this set of equations which

are determined in terms of the data of a holomorphic covering map

x = Γ(z) , (2.3)

which maps the worldsheet to the target S2 and has branching number wi at z = zi. (We

review basic facts about covering maps in section 5.1.) However, once one fixes three points

in the target space, the covering map specifies the other points xi in the image of the (n−3)

worldsheet points zi. (Alternatively, the covering map specifies the remaining world-sheet

insertion points zi in terms of the spacetime insertion points xi). In fact, we find that the

correlator in (2.2) has (n− 3) delta functions δ(xi − Γ(zi)), see eq. (5.38). This is a rather

unusual behaviour for a correlator in a 2-dimensional CFT.6 Therefore it is not surprising

that this solution does not generically exist — we need the condition (1.2) to be satisfied.

As mentioned in the introduction, this condition is satisfied for the physical states at the

bottom of the continuum i.e. for ji = 1
2 at k = 1 (and any value of hi).

This is a particular solution of the Ward identities. That it is the relevant one, is but-

tressed by the second prong of our analysis which starts with the semiclassical description

of string theory on AdS3 for which the bosonic degrees of freedom are controlled by the

effective action

SAdS3 =
k

4π

∫
d2z
√
g
(

4 ∂Φ ∂̄Φ + e2Φ∂γ̄ ∂̄γ
)
. (2.4)

In this parametrisation of AdS3, Φ is the radial coordinate and γ and γ̄ are the coordinates

of the boundary sphere [30]. The boundary of AdS3 is located at Φ→∞.

We will start with the semiclassical solutions which correspond to the ground states of

the spectrally flowed sector i.e. sit at the bottom of the continuum. These arise in taking a

certain scaling limit of a family of solutions. The end result (the details will be described

in section 7.1 below) is a solution

Φ(z, z̄) = − log(ε)− (w − 1)

2
log(z̄)− (w − 1)

2
log(z) , (2.5a)

γ(z) = zw . (2.5b)

Here ε is a parameter that goes to zero as one takes the scaling limit. What this means is

that the radial coordinate Φ of the string worldsheet is essentially at the boundary (Φ →∞)

in this limit. Furthermore, the local map from the worldsheet to the target S2 parametrised

by γ is holomorphic, and has a branching of order w (near z = 0). What is important

here is that for wavefunctions localised at the boundary, the semiclassical description is

exact (see for example [36]) even though we are considering a highly curved spacetime

at k = 1. Furthermore, the worldsheet theory actually becomes free in this limit. This is

6Note that the sl(2,R)k+2 WZW model is non-unitary, so this is not in conflict with constraints like

reflection positivity. We should also mention that a similar delta function localisation was already observed

in the k = 1 one-loop worldsheet partition function in [2].
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essentially because in writing the action (2.4) in first order form, see eq. (7.1), the nontrivial

interaction term vanishes when Φ → ∞. Put differently, only when γ is holomorphic, Φ

can reach the boundary and the action (2.4) stays finite.

In fact, as we will see in section 7, one can find a classical solution which describes the

general correlator in (2.2) and has the right behaviour as in (2.5) near each of the zi. It is

given in terms of the global covering map (2.3) and therefore exists only if xi = Γ(zi) — in

particular, the correlator (with the correct behaviour near each of the insertions) can only

be nonzero if this covering map exists. Furthermore, based on the Wakimoto realisation

of section 6, this classical solution agrees precisely with the special solution of the WZW

model found in section 5 (where the solutions were delta-function-localised to the points

in moduli space where the covering map exists). This justifies post hoc, that the solution

of the Ward identities of section 5 is indeed the right one.7

This outlines the strategy to show that the unintegrated vertex operators on the l.h.s.

of eq. (1.1) are delta-function-localised to the isolated points which admit holomorphic

covering maps to the target space. Once we integrate over the moduli space we then pick

up these localised contributions. Because the theory is semiclassically exact, the correlator

itself is then obtained by evaluating the action on-shell with these (isolated) covering map

solutions. We find that this semiclassical contribution matches exactly with the Lunin-

Mathur approach to computing the twisted sector ground state correlators in symmetric

orbifold CFTs, as we shall now review.

2.2 Review of the Lunin-Mathur construction

Correlators in orbifold theories can be evaluated by going to the covering space [37, 38].

In the special case of symmetric product orbifolds of a seed CFT, Lunin and Mathur [25],

have an elegant way of implementing this in a path integral approach.

Very briefly, the idea is that, restricting to correlators of twist fields without excitations,

we only need to evaluate a path integral on the covering space with specified branching

at the corresponding branch points. The effect of the twist field, which is to introduce a

multi-valuedness on the fields of the seed CFT, is taken into account by defining a single

valued field in the covering space. Thus a twist field corresponding to a w-cycle twist in

SN is associated with a branch point of order w of an N -sheeted covering of the original

spacetime (an S2) that the CFT lived on. A correlator of twist fields as in the r.h.s. of (1.1)

is then evaluated by going to a covering space determined by the covering map which has

the right branching behaviour wi at each pre-image of the point xi on the spacetime S2.

There are no insertions now in the covering space path integral and only one copy of the

seed CFT. We plotted one example of such a covering map in figure 2 for the case of two

twist-2 fields, leading to two branch points of order 2.

7A similar argument for k > 1 shows that for states at or near the bottom of the continuum, the

classical solutions are localised near the boundary and one can use semiclassical arguments. However, now

the presence of the continuum (which was absent for k = 1) leads to an additional integral over the radial

momentum, and this smears the delta-functions into pole-like singularities as in the discussion around

eq. (2.35) of [20]. Note that their reasoning should also hold in the spectrally flowed sector, as long as the

states are near the bottom of the continuum.
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Figure 2. A covering surface with two branch points of order 2. We plot the real part of the

inverse of the covering map, which has two sheets. We show the two sheets from a side view (left)

and a top view (right). There are two branch points in the picture and monodromy around them

interchanges the two sheets.

To define the path integral on the covering space requires a careful analysis of cutting

out open discs around the insertion points as well as at infinity, and imposing appropriate

boundary conditions [25]. These act as regulators in the path integral, and it can be shown

that the final answer is independent of the exact choices made here. We will refer the

reader to [25] for the details of this, and will implicitly assume this as being done whenever

we talk of evaluating the path integrals.

To be more specific, let us denote the coordinates on the original CFT spacetime by

x, and those on the covering space (soon to be identified with the worldsheet) by z. For

the case of SymN (M4), we then have a path integral of the seed CFT M4, but now lifted

to the covering space. There is a nontrivial metric on the covering space, which is induced

from the branched cover x = Γ(z). This is given by a conformal factor

eφ =
∣∣∂zΓ∣∣2 . (2.6)

Thus the partition function of M4, evaluated on the covering space, gets an additional

Liouville term from this scale factor φ, see [39, eq. (13.2)]

SL[φ] =
c

48π

∫
d2z
√
g
(

2 ∂φ ∂̄φ+Rφ
)
. (2.7)

Note that near a branch point of order w, we locally have Γ(z) ∼ zw and thus eφ → 0

(for w > 1). All the nontrivial spacetime dependence of the correlators comes from this

“on-shell action” and is encoded in the covering map. In general, the covering map is not

very easy to write down explicitly. However, we will not really need the actual form of

– 8 –
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the covering map to show that the correlators of the spacetime CFT, evaluated using the

Lunin-Mathur approach, agree with the worldsheet.

This is because, for the classical solution given in section 7, the AdS3 radial field Φ(z)

is essentially the same as the conformal factor φ(z) in (2.6)

∂φ(z) = −2∂Φ(z) , (2.8)

see the discussion in section 7.3. Furthermore, as already mentioned above, the field γ(z)

in (2.4) is holomorphic (and in fact equal to Γ(z)), and hence does not contribute to the

on-shell action of the worldsheet. With this identification, the Liouville action (2.7) then

agrees exactly with the on-shell AdS3 action (2.4) as rewritten in first order form, see

eq. (7.1), for k = 1 (with c = 6k).8

Thus the worldsheet computation of the correlator reduces, because of semi-classical

exactness, to that of the on-shell action on this solution, which in turn agrees with that of

the Liouville action in (2.7) provided we identify the worldsheet with the covering space

introduced by Lunin and Mathur. In fact, this was conjectured by Lunin-Mathur and later

elaborated on in [27]. We now see a full realisation of this idea in our present setup where

we have started with a bonafide worldsheet description of the k = 1 string theory on AdS3.

This concludes our sketch of how we can manifestly exhibit the equivalence between

the two sides of (1.1), at least for genus zero. We will also briefly describe in section 8,

why we expect the considerations to go through even for higher genus.

3 The basic worldsheet CFT setup

In this section we begin with the worldsheet analysis of the correlators in eq. (1.1). Thus

we will study the correlation functions of spectrally flowed affine primaries of the bosonic

SL(2,R)k+2 WZW model. The reason why we are interested in these states is that they

correspond to the ground states of the corresponding twisted sector of the dual symmetric

orbifold theory [1, 2].

For the following it will be very important to understand precisely how the relevant

vertex operators (that we shall denote as V w
h (x; z), where w labels the spectral flow sector)

are defined. From the viewpoint of the dual CFT the ground states of the twisted sectors

are quasiprimary — in fact, they are even primary — with conformal weight h, and thus

the associated vertex operators transform under the action of the global Möbius generators

of the spacetime CFT (whose coordinates we shall denote by x) as

[Ja0 , V
w
h (x; z)] = −Da V w

h (x; z) , (3.1)

where the Da are the differential operators

D+ = − ∂

∂x
, D3 = −h− x ∂

∂x
, D− = −2hx− x2 ∂

∂x
. (3.2)

8The linear dilaton term in the AdS3 action is generated through renormalisation at the quantum

level [30].
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This requirement fixes the x-dependence of the vertex operators; in particular, since J+
0 is

the translation operator in x-space, we have

V w
h (x+ y; z + ζ) = eyJ

+
0 eζL−1 V w

h (x; z) e−ζL−1e−yJ
+
0 , (3.3)

where we have also used that the translation operator on the worldsheet, i.e. in z, is L−1.

Note that L−1 and J+
0 commute, and thus there is no ordering ambiguity.

Since the sl(2,R) zero modes change the value of x, we may think of x (from a world-

sheet perspective) as describing the different states in a given sl(2,R) representation; this

viewpoint is sometimes referred to as the ‘x-basis’. We should also mention that the Casimir

of this representation is

C = −(D3)2 +
1

2

(
D+D− +D−D+

)
= −h(h− 1) . (3.4)

For the following it will be important to understand the structure of the OPE of the

affine sl(2,R)k+2 currents with these vertex operators. We identify fields and states at

(x; z) = (0; 0), and on these states the spectral flow automorphism of the affine sl(2,R)k+2

algebra is defined to be, see e.g. [23]

σw(J±)(z) = z∓wJ±(z) , (3.5)

σw(J3)(z) = J3(z) +
(k + 2)w

2z
. (3.6)

For an affine primary field in the w’th spectrally flowed sector the OPEs are thus

J+(z)V w
h (0; 0) ∼

w+1∑
p=2

(J+
p−1V

w
h )(0; 0)

zp
+
∂xV

w
h (0; 0)

z
, (3.7a)

J3(z)V w
h (0; 0) ∼

hV w
h (0; 0)

z
, (3.7b)

J−(z)V w
h (0; 0) ∼ O(zw−1) , (3.7c)

where in (3.7a) we have separated out the term involving J+
0 , which can be identified with

the differential operator because of (3.2). We should mention that the last OPE (3.7c) is

not only regular, but that the first w−1 regular terms vanish. On the other hand, in (3.7a)

the positive modes J+
p−1 generically do not annihilate the spectrally flowed state, since they

act as σw(J+
p−1) = J+

p−1−w, and hence we typically have a pole of order (w + 1).

We should note that the vertex operators V w
h (x; z) also depend on the quantum number

j that we often suppress in our notation. To understand the origin of this quantum number

we recall that the modes

J̃+
0 = J+

w , J̃3
0 = J3

0 −
(k + 2)w

2
, J̃−0 = J−−w (3.8)

form an sl(2,R) algebra, which is to be identified with the zero mode algebra before spectral

flow. These zero modes act on a highest weight representation (before spectral flow),
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J3
0

L0

J+
2

J−−2

J+
1

J+
0 J+

0

Figure 3. The spectrally flowed representation of sl(2,R)k+2 in the example w = 2. The ‘edge

states’ (inside the red strip) are the spectrally flowed affine primaries and they form an sl(2,R)

representation under J±
±w and J3

0 −
(k+2)w

2 , see eq. (3.8). The states away from the edge have higher

multiplicity and can be reached with the affine oscillators. The global sl(2,R) zero-mode algebra

acts horizontally and is resummed in the x-basis.

and the spin of this representation will be denoted by j. We will always work with the

conventions that

J̃+
0 |j,m〉 = (m+ j) |j,m+ 1〉 (3.9a)

J̃3
0 |j,m〉 = m |j,m〉 (3.9b)

J̃−0 |j,m〉 = (m− j) |j,m− 1〉 . (3.9c)

We do not put any restrictions on j and assume generically that the representation does

not truncate (as can happen for j ∈ R). Note that it follows from the middle equation

of (3.8) together with (3.9b) that the parameter m here is related to the conformal weight

by, see also [1, eq. (2.14)]

h = m+
(k + 2)w

2
. (3.10)

Finally, the worldsheet conformal dimension takes the form

∆ = −j(j − 1)

k
− wh+

(k + 2)w2

4
, (3.11)

but it will not play an important role in this paper. A schematic picture of these modules

is given in figure 3.

The above OPE relations of eq. (3.7) specify the OPEs for states inserted at (x; z) =

(0; 0), and the general case can now be obtained from this using (3.3). In particular, we

note that

Ja(ζ)V w
h (x; z) = Ja(ζ) exJ

+
0 V w

h (0; z) e−xJ
+
0

= exJ
+
0
[
Ja(x)(ζ)V w

h (0; z)
]
e−xJ

+
0 , (3.12)

with

J+(x)(z) = J+(z) , (3.13a)

J3(x)(z) = J3(z) + xJ+(z) , (3.13b)

J−(x)(z) = J−(z) + 2xJ3(z) + x2J+(z) . (3.13c)
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We shall use these OPEs in the following section to derive Ward identities for the corre-

sponding correlation functions.

4 The Ward identities

In this section we want to determine the Ward identities for the correlation functions

〈V w1
h1

(x1; z1)V w2
h2

(x2; z2) · · ·V wn
hn

(xn; zn)〉 (4.1)

on the sphere. Here V w
h (x, z) is the w-spectrally flowed image of an affine primary vertex

operator as described above. If all wi are equal to zero, the Ward identities are well-known,〈
Ja(z)

n∏
i=1

V 0
hi

(xi; zi)

〉
= −

n∑
i=1

Dai
z − zi

〈
n∏
j=1

V 0
hj

(xj ; zj)

〉
. (4.2)

Here we have used that all V 0
hi

(xi; zi) are highest weight operators, and hence the OPE of

Ja(z) with any such operator has only a first order pole, which is given by the right-hand-

side of (4.2). As we have seen above, this is no longer true for w > 0 since then J+(z) has

a pole of order w + 1, and the same is also true for the other Ja(z) because of (3.13). In

the following we want to find the spectrally flowed analogue of these identities.

4.1 The constraint equations

The direct analogue of (4.2) for a = + is〈
J+(z)

n∏
i=1

V wi
hi

(xi; zi)

〉
=

n∑
i=1

∂xi
(z − zi)

〈
n∏
l=1

V wl
hl

(xl; zl)

〉

+

n∑
i=1

wi∑
`=1

1

(z − zi)`+1

〈
(J+
` V

wi
hi

)(xi; zi)
∏
l 6=i

V wl
hl

(xl; zl)

〉
, (4.3)

because the right-hand-side accounts for all the poles (in z) of the left-hand-side, see

eq. (3.7a). However, as it stands, this is not particularly useful because we do not know

how to evaluate the terms

F̂ i` =
〈

(J+
` V

wi
hi

)(xi; zi)
∏
l 6=i

V wl
hl

(xl; zl)
〉

(4.4)

for ` = 1, . . . , wi that appear in the second line. In order to determine them, we take a

small detour and first compute the correlator with J3(z) or J−(z) inserted instead of J+(z).

Using (3.13) and accounting again for the poles in z (using eqs. (3.7b) and (3.7c)) we find〈
J3(z)

n∏
i=1

V wi
hi

(xi; zi)

〉
= −

n∑
i=1

D3
i

z − zi

〈
n∏
l=1

V wl
hl

(xl; zl)

〉

+

n∑
i=1

wi∑
`=1

xi
(z − zi)`+1

〈
(J+
` V

wi
hi

)(xi; zi)

n∏
l 6=i

V wl
hl

(xl; zl)

〉
, (4.5)
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and〈
J−(z)

n∏
i=1

V wi
hi

(xi; zi)

〉
= −

n∑
i=1

D−i
z − zi

〈
n∏
l=1

V wl
hl

(xl; zl)

〉

+

n∑
i=1

wi∑
`=1

x2
i

(z − zi)`+1

〈
(J+
` V

wi
hi

)(xi; zi)
n∏
l 6=i

V wl
hl

(xl; zl)

〉
. (4.6)

Here the sum over ` starts at ` = 1, and we have used that the zero mode term (` = 0)

combines with the zero mode term of J3
0 to produce exactly the differential operators D3

and D−, respectively. (Note that we could have also written the terms in the first line

of (4.3) in terms of D+.)

The key observation is now that all of these correlators contain the same ‘unknown

terms’ F̂ i` . On the other hand, we can use the fact that J−(z) has the correct OPEs with

the primary fields, see (3.7c), which implies that〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉
= O((z − zj)wj−1) . (4.7)

Here the combination of currents in the bracket has been chosen such that(
J−(xj)(z)− 2xjJ

3(xj)(z) + x2
jJ

+(xj)(z)
)

= J−(z) , (4.8)

see eq. (3.12), so that near z = zj we can apply directly (3.7c).

Using the correlators from above, it is straightforward to write out the left-hand-side

of (4.7) explicitly, and one finds〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉

=
∑
i 6=j

(
2(xi − xj)hi + (xi − xj)2∂xi

(z − zi)

〈 n∏
l=1

V wl
hl

(xl; zl)
〉

+

wi∑
`=1

(xi − xj)2

(z − zi)`+1
F̂ i`

)
, (4.9)

where F̂ i` was defined above, see eq. (4.4).

In particular, it is clear that the left-hand-side is regular as z → zj , but we still get

wj − 1 equations by requiring that the coefficients of the terms

1 , (z − zj) , (z − zj)2 , . . . , (z − zj)wj−2 (4.10)

vanish. This leads to
∑n

j=1(wj − 1) constraints, and we can try to solve them in terms of

the
∑n

i=1wi unknowns F̂ i` . While we have not managed to solve these conditions in closed

form — and in fact, a solution only exists under certain conditions, see the discussion in

the following section — we can evaluate them for any choice of n-point function (and any

choice of the wi), and this is what we shall do below.
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4.2 The fusion rules

Before we continue, it is worth pausing to analyse these constraint equations for the simple

case of a 3-point function for generic wj , j = 1, 2, 3. We have found experimentally that

the constraint equations (4.7) generically only have a solution provided that9

wi + wj ≥ wl − 1 , (4.11)

where (i, j, l) are all mutually disjoint. Thus the 3-point function〈
V w1
h1

(x1; z1)V w2
h2

(x2; z2)V w3
h3

(x3; z3)
〉

(4.12)

can only be non-zero provided that eq. (4.11) is satisfied, i.e. (4.11) are part of the fusion

rules. This result was already anticipated in [2], see eq. (6.5) of that paper;10 however,

here we have directly deduced this from a Ward identity analysis on the worldsheet.

One would similarly expect that the constraint equations (4.7) for a generic n-point

function will only have a solution provided that∑
i 6=j

wi ≥ wj − 1 (4.13)

for all j. We have tested this extensively in explicit examples and it does seem to be true,

but we do not have an analytic proof for it.11

4.3 The recursion relations

We can actually do a little better since we can say something about those terms that

correspond to the zero mode action before spectral flow. In particular, it follows from

eq. (3.9a) that

(J+
wi
V wi
hi

)(xi; zi) =

(
hi −

(k + 2)wi
2

+ ji

)
V wi
hi+1(xi; zi) , (4.14)

where ji is the sl(2,R) spin before spectral flow, and we have used that for the w-spectrally

flowed representation, h is related to m via (3.10). As a consequence, one of the ‘unknown’

terms can be written as

F̂ iwi
=

(
hi −

(k + 2)wi
2

+ ji

)〈
V wi
hi+1(xi; zi)

∏
l 6=i

V wl
hl

(xl; zl)

〉
, (4.15)

9The constraint equations can be thought of as a matrix equation for the coefficients F̂ i
` . This problem

generically only has a solution provided that the rank of this matrix is maximal. Tim Röthlisberger has

recently shown that the matrix is indeed only of maximal rank if (4.11) holds. He has furthermore shown

that if (4.11) does not hold, the only solution to the constraint equations is the trivial solution where all

correlators vanish.
10Note that as explained there, eq. (6.5) has to be convoluted with the ±1 shift from the direct fusion rules,

so that the bounds are |w1−w2|−1 ≤ w ≤ w1 +w2 + 1. This then agrees precisely with the above formula.
11Tim Röthlisberger has again shown abstractly that eq. (4.13) is a necessary condition for the relevant

matrix to be of maximal rank. However, it is not yet clear (although this is what we expect) whether the

trivial solution is the only solution if (4.13) does not hold.
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i.e. as a correlator of spectrally flowed highest weight states but with a shifted value of hj .

By the same token we also know that

(J−−wj
V
wj

hj
)(xj ; zj) =

(
hj −

(k + 2)wj
2

− jj
)
V
wj

hj−1(xj ; zj) , (4.16)

as follows from eq. (3.9c). Actually, because of (4.8), we can obtain its correlator by

considering the term of order (z − zj)wj−1 in (4.7), i.e. we have〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉

=

(
hj −

(k + 2)wj
2

− jj
)

(z − zj)wj−1

〈
V
wj

hj−1(xj ; zj)
n∏
i 6=j

V wi
hi

(xi; zi)

〉
+O((z − zj)wj ) , (4.17)

for z near each zj . Using Cauchy’s formula we can extract the leading term on the right-

hand-side as∮
zj

dz

(z − zj)wj

〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉
. (4.18)

On the other hand, eq. (4.18) can now be evaluated in terms of the correlators from above,

see eqs. (4.3)–(4.6), which however again depend on the F̂ i` .

Recall that the constraint equations (4.7) lead to
∑n

j=1(wj − 1) conditions on the F̂ i` ,

see the discussion below eq. (4.10). Requiring that eq. (4.18) has to agree with the first

term in the second line of eq. (4.17) gives us now n additional relations. Thus we have

altogether
∑n

j=1wj equations for the
∑n

j=1wj unknowns F̂ i` . Thus if we can eliminate the

‘truly unknown’ coefficients F̂ i` with 1 ≤ ` ≤ wi − 1 — recall that F̂ iwi
can be expressed

as (4.15) — then we get n “recursion relations” involving only correlation functions of

spectrally flowed affine highest weight states (albeit with in general shifted values of hi).

We have checked experimentally that n linearly independent recursion relations can be

derived provided that the constraint equations have a solution, i.e. provided that eq. (4.13)

is satisfied.12 For instance, when wi = 1 for all i — in this case eq. (4.13) is always satisfied

— these “recursion relations” read(
hj −

k + 2

2
− jj

)〈
V 1
hj−1(xj ; zj)

n∏
`6=j

V 1
h`

(x`; z`)
〉

=
∑
i 6=j

[(
hi −

k + 2

2
+ ji

)
(xj − xi)2

(zj − zi)2

〈
V 1
hi+1(xj ; zj)

n∏
6̀=i
V 1
h`

(x`; z`)
〉

− 2hi(xi − xj) + (xi − xj)2∂xi
(zi − zj)

〈 n∏
`=1

V 1
h`

(x`; z`)
〉]

. (4.19)

12We thank Tim Röthlisberger for pointing out an error in a previous version of the manuscript.
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At this point, we find it useful to make use of the global Ward identities of the theory

(i.e. the Möbius symmetry that acts on the zi, as well as the one acting on the xi), which

allows us to set x1 = z1 = 0, x2 = z2 = 1 and x3 = z3 =∞.13 As an illustration eq. (4.19)

for j = 1, say, becomes after these steps (we have dropped the dependence of the vertex

operators on (xi; zi) to make the formula more readable)(
h1 −

k + 2

2
− j1

)〈
V 1
h1−1 V

1
h2
V 1
h3

n∏
i=4

V 1
hi

〉
=

[
h1 − h2 − h3 +

n∑
i=4

hi(zi − 2xi) + xi(zi − xi)∂xi
zi

]〈
V 1
h1
V 1
h2
V 1
h3

n∏
i=4

V 1
hi

〉
+

n∑
i=2

(
hi −

k + 2

2
+ ji

)
x2
i

z2
i

〈
V 1
h1
V 1
h2
V 1
h3
V 1
hi+1

n∏
` 6={1,2,3,i}

V 1
h`

〉
, (4.20)

with the convention 0
0 = ∞

∞ = 1. The recursion relations for higher values of wi’s can be

found accordingly, and we have implemented this in Mathematica. We have found, again

experimentally, that these n recursion relations are always mutually compatible and hence

can be simultaneously solved.

In the following we shall actually assume a slightly stronger condition than eq. (4.13),

namely ∑
i 6=j

(wi − 1) ≥ wj − 1 , for all j. (4.21)

This is a necessary condition for a covering map with the respective ramification indices

to exist, and we will only be able to find nice solutions in this case. We suspect that the

solutions to the recursion relations for the casese where only eq. (4.13) is satisfied (but not

eq. (4.21)), are somewhat pathological, but we do not understand this issue in detail at

present.

4.4 Comparison to Maldacena-Ooguri

Before we proceed, let us make another cross-check of our analysis by applying the above

arguments to the case of the 3-point function involving two unflowed representations (w1 =

w2 = 0) and one spectrally flowed representation (w3 = 1) — this correlator was determined

by some other method in [20], see eq. (5.38) of that paper. In this case we find from (4.3)

together with (4.14)

〈J+(z)V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)〉

=
3∑
i=1

1

(z − zi)
∂xi〈V 0

h1
(x1; z1)V 0

h2
(x2; z2)V 1

h3
(x3; z3)〉

+
1

(z − z3)2

(
h3 −

k̂

2
+ j3

)
〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3+1(x3; z3)〉 , (4.22)

13Sending x3 and z3 to infinity requires, as usual, some care in properly normalising the vertex operators.

Also the derivatives in (4.19) on the three special fields have to be evaluated carefully using global Ward

identities.
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where k̂ = k + 2 is the level that appears in the bosonic analysis of [20]. Similarly, we

obtain for the J3(z) and the J−(z) correlators, see eqs. (4.5) and (4.6)

〈J3(z)V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)〉

=

3∑
i=1

1

(z − zi)
(hi + xi∂xi)〈V 0

h1
(x1; z1)V 0

h2
(x2; z2)V 1

h3
(x3; z3)〉

+
x3

(z − z3)2

(
h3 −

k̂

2
+ j3

)
〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3+1(x3; z3)〉 , (4.23)

and

〈J−(z)V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)〉

=

( 3∑
i=1

1

(z − zi)
(2hixi + x2

i ∂xi)

)
〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)〉

+
x2

3

(z − z3)2

(
h3 −

k̂

2
+ j3

)
〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3+1(x3; z3)〉 . (4.24)

Then imposing the condition that the regular (i.e. the (z − z3)0 term) of the correlator in

eq. (4.17) satisfies〈(
J−(z)− 2x3J

3(z) + x2
3J

+(z)
)
V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)
〉∣∣∣

(z−z3)0

=

(
h3 −

k̂

2
− j3

)
〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3−1(x3; z3)〉 , (4.25)

leads to the condition that

〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3−1(x3; z3)〉 (x1 − x2)

(x1 − x3)(x2 − x3)

=
h1 + h2 − h3

h3 − k̂
2 − j3

〈V 0
h1

(x1; z1)V 0
h2

(x2; z2)V 1
h3

(x3; z3)〉 , (4.26)

which is compatible with eq. (5.38) of [20]. (Here we have used that h1 = j3, h2 = j4 and

J = h3; we have also set jMO
1 = 1 − j3.) Thus our analysis is compatible with the results

of [20].

5 A simple solution

While we do not yet have a clear understanding of what the most general solution of the

recursion relations is, there is a remarkably simple (and suggestive) solution that works

very generally. It involves critically the covering map, whose structure we shall now review.

5.1 The covering map

Suppose {zi}i=1,...,n and {xi}i=1,...,n are two collections of n points on the Riemann sphere,14

and {wi}i=1,...,n are positive integers, describing the ramification indices near zi. We call

14In section 8 below, we shall also comment on the case where the xi live on the Riemann sphere, but

the zi may be taken to lie on any Riemann surface of genus g.
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Γ(z) the covering map of this configuration provided that Γ(z) is an analytic function

satisfying

Γ(z) = xi + aΓ
i (z − zi)wi +O((z − zi)wi+1) (5.1)

near z = zi. In addition, we assume that Γ(z) does not have any other critical points, i.e.

the only points where ∂Γ(z) = 0 is for z = zi with i = 1, . . . , n.

There are a few general statements about covering maps one can make. Let us first

consider the case that n = 3. By composing the covering map with suitable Möbius

transformations, we may assume, without loss of generality, that xi = zi, i = 1, 2, 3.

Provided that the wi satisfy the selection rule

wi + wj ≥ wk + 1 , w1 + w2 + w3 ∈ 2Z + 1 , (5.2)

a covering map exists, and it is unique. We should mention in passing that, up to the parity

constraint that the sum of the wi must be odd, this agrees precisely with the conditions

under which a solution to the recursion relations can be found, see eq. (4.21).

For example, for wi = 1, the covering map is simply Γ(z) = z, while for the case

w1 = w2 = 2, w3 = 1 it is

Γ(z) =
z2(z1 + z2 − z3)− 2zz1z2 + z1z2z3

z2 − 2zz3 + (z1z3 + z2z3 − z1z2)
, (5.3)

as one can verify easily. Note that this covering map is 2-to-1, i.e. every generic point in

S2 has two preimages. (In particular, since the denominator is a quadratic polynomial in

z, there are two points that are mapped to infinity.) In general the degree of the covering

map, i.e. the number of preimages of a generic point, equals

N = 1 +
1

2

n∑
i=1

(wi − 1) , (5.4)

as follows from the Riemann-Hurwitz formula. Incidentally, this result is true for any n

(not just n = 3).

While the covering map always exists for n = 3 (provided that (5.2) is satisfied), the sit-

uation for n ≥ 4 is significantly different: in this case, the covering map generically does not

exist. While there is a natural analogue of (5.2), which in the general case takes the form15∑
i 6=j

(wi − 1) ≥ wj − 1 ,
∑
i

(wi − 1) ∈ 2Z , (5.5)

this is in general not enough to guarantee the existence of the covering map. In order to see

this let us consider the simple case that n = 4 with wi = 1. We may again use the Möbius

symmetry to arrange for xi = zi for i = 1, 2, 3, but now we do not have any freedom left

to choose x4 and z4. Since wi = 1, the covering map must be Γ(z) = z, but this now maps

15We note again the similarity of the first condition to (4.21). We should also mention that both condi-

tions in (5.5) follow from the Riemann-Hurwitz formula (5.4): the inequality comes from the fact that by

construction N ≥ wi for every i, while the parity constraint comes from the requirement that N has to be

an integer.
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Γ(z4) = z4, which only agrees with x4 provided that x4 = z4. Thus, in the 4-point case, the

covering map only exists provided the xi satisfy one constraint. This analysis generalises

to n ≥ 4 (and arbitrary wi), and in general the xi have to satisfy n− 3 such constraints.

To illustrate this phenomenon, let us look at the covering map for the case w1 = w2 =

w3 = w4 = 2. Assuming (for simplicity) that z1 = x1 = 0, z2 = x2 = 1, as well as

z3 = x3 =∞, it is explicitly given by

Γ(z) =
z2
(
±z
√
z2

4 − z4 + 1− zz4 − z + 3z4

)
±(3z − 2)

√
z2

4 − z4 + 1 + 3zz4 − 3z − z4 + 2
. (5.6)

In this case there are actually two possible covering maps corresponding to the two possible

sign choices in front of the square root. Furthermore, in either case this only defines an

actual covering map provided that x4 satisfies the constraint

x4 = Γ(z4) = z4

(
± 2(1− z4)

√
1− z4 + z2

4 + 2z2
4 − 3z4 + 2

)
. (5.7)

Since the correlation functions will naturally involve the covering map, this structural

difference between n = 3 and n ≥ 4 will also be reflected in the correlation functions.

We shall therefore describe the relatively simple case of a 3-point function first, before

explaining how the analysis generalises to n ≥ 4.

5.2 The 3-point case

Let us denote by aΓ
i , i = 1, 2, 3, the coefficients that appear in the covering map as in (5.1).

We claim that a solution to the above recursion relations is given by setting〈
V w1
h1

(x1; z1)V w2
h2

(x2; z2)V w3
h3

(x3; z3)
〉

= C(j1, j2, j3)

3∏
i=1

(aΓ
i )−hi

∏
i 6=j

(zi − zj)∆0
`−∆0

i−∆0
j , (5.8)

where in the above product ` labels the third index, not equal to either i or j. The overall

coefficient C(j1, j2, j3) is just a normalisation constant, and we have assumed that the ji
satisfy the relation

3∑
i=1

ji =
k + 2

2
, (5.9)

where k is the level of the supersymmetric sl(2,R)
(1)
k affine algebra. (The decoupled bosonic

algebra has then level k̂ = k + 2.) In addition, we have set

∆0
j = ∆j − wjhj , (5.10)

where ∆j is the conformal dimension of the corresponding vertex operator, see eq. (3.11),

although this does not play a role in the following. (The zi dependence is largely irrelevant

for our analysis.)
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We should note that the expression in (5.8) depends implicitly also on the xi’s, since

the coefficients aΓ
i of the covering map depend on all xi’s as well as the zi’s. In fact, we

have explicitly [25]

aΓ
i =

( 1
2

(wi+wi+1+wi+2−1)
1
2

(−wi+wi+1+wi+2−1)

)
( 1

2
(−wi+wi+1−wi+2−1)
1
2

(wi+wi+1−wi+2−1)

) (xi − xi+1)(xi+2 − xi)(zi+1 − zi+2)wi

(xi+1 − xi+2)(zi − zi+1)wi(xi+2 − xi)wi
, (5.11)

where indices are understood to be mod 3. Hence, the 3-point function in (5.8) has indeed

the expected xi and zi dependence,〈
V w1
h1

(x1; z1)V w2
h2

(x2; z2)V w3
h3

(x3; z3)
〉

= C(j1, j2, j3)
3∏
i=1


( 1

2
(wi+wi+1+wi+2−1)

1
2

(−wi+wi+1+wi+2−1)

)
( 1

2
(−wi+wi+1−wi+2−1)
1
2

(wi+wi+1−wi+2−1)

)

−hi

×
∏
i 6=j

(zi − zj)∆`−∆i−∆j (xi − xj)h`−hi−hj . (5.12)

We shall show in the following subsection (section 5.3) that this ansatz satisfies in fact the

recursion relations of section 4.3. We have also checked this for many explicit examples by

direct computation.

It is sometimes convenient to use the Möbius symmetry on the worldsheet and in

spacetime to fix z1 = x1 = 0, z2 = x2 = 1 and z3 = x3 = ∞; here for z3 = x3 = ∞, the

relevant condition on the covering map is16

Γ(z) = (−1)w3+1 z
w3

aΓ
3

+O(zw3−1) . (5.13)

We then simply have

〈
V w1
h1

(0; 0)V w2
h2

(1; 1)V w3
h3

(∞;∞)
〉

= C(j1, j2, j3)

3∏
i=1

(aΓ
i )−hi , (5.14)

where aΓ
i is given by the (xi and zi independent) ratio of binomial coefficients that appears

in the first factor of (5.11).

5.3 The proof of the 3-point solution

In this section we want to prove that the ansatz (5.8) satisfies indeed all the recursion

relations of section 4.3. In order to treat the insertion points uniformly, we assume here

that xi and zi are generic.

Our basic strategy is to first show that the constraint equations of section 4.1 can be

reformulated as a functional identity (see eq. (5.32)) for a function whose definition involves

the covering map, see eq. (5.18). Implicitly, this therefore solves the constraint relations,

16This can be seen by a coordinate transformation z → − 1
z

and x→ − 1
x

.
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and allows us to write the recursion equations as the equality of eqs. (5.34) and (5.35).

Finally, we show that our ansatz (5.8) satisfies indeed these relations.

We start by rewriting the constraint equation (4.7) by dividing both sides of (4.9) by

the correlator. Then the constraint equations are equivalent to

0 =

〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
)∏3

i=1 V
wi
hi

(xi; zi)
〉

〈∏3
l=1 V

wl
hl

(xl; zl)
〉

∣∣∣∣∣∣
(z−zj)m

=
1

m!
∂mz

∑
i 6=j

(
−2(xj − xi)hj

z − zi
+

wi∑
`=0

(xj − xi)2

(z − zi)`+1
F i`

)∣∣∣∣∣∣
z=zj

, (5.15)

where m = 0, 1, . . . , wj − 2 and j = 1, . . . , n. We have also defined

F i` =
F̂ i`〈∏3

l=1 V
wl
hl

(xl; zl)
〉 =

〈
(J+
` V

wi
hi

)(xi; zi)
∏
l 6=i V

wl
hl

(xl; zl)
〉

〈∏3
l=1 V

wl
hl

(xl; zl)
〉 , (5.16)

see eq. (4.4). (Here the derivative term of (4.9) is included in the sum as ` = 0.) If we

denote by Γ(z) the relevant covering map, we can rewrite the right-hand-side of (5.15) as

1

m!
∂mz

3∑
i=1

(
−2(Γ(z)− xi)hj

z − zi
+

wi∑
`=0

(Γ(z)− xi)2

(z − zi)`+1
F i`

)∣∣∣∣∣
z=zj

, (5.17)

where we have first replaced xj = Γ(zj), and then extended the sum also over i = j; the

first operation will only affect the result at order m = wj , while extending the sum to i = j

will also have an affect at order m = wj − 1, see below. Thus, defining the function

G(z) =

3∑
i=1

(
−2(Γ(z)− xi)hi

z − zi
+

wi∑
`=0

(Γ(z)− xi)2

(z − zi)`+1
F i`

)
, (5.18)

the constraint equations on the F i` are equivalent to the requirement that

∂mz G(z = zj) = 0 (5.19)

for m = 0, . . . , wj − 2 and j = 1, . . . , n. Assuming that we have solved these constraints,

G(z) is a rational function with the following properties:

1. G(z) has double poles at {z∗a}, a = 1, . . . , N , where z∗a are the poles of Γ(z). Here N

is given by the Riemann-Hurwitz formula, see eq. (5.4).

2. G(z) has zeros of order wi − 1 at the insertion points.

3. G(z) behaves asymptotically as O(z−2).

The last property requires some explanation. The asymptotic expansion of G(z) reads

G(z) =
1

z

3∑
i=1

(
Γ(∞)2F i0 − 2Γ(∞)(hi + xiF

i
0) + (2xihi + x2

iF
i
0)
)

+O(z−2) . (5.20)
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Global SL(2,R) invariance, on the other hand, implies the Ward identity

0 =
3∑
i=1

∂xi〈V
w1
h1

(x1; z1)V w2
h2

(x2; z2)V w3
h3

(x3; z3)〉 =
3∑
i=1

F̂ i0 , (5.21)

and similarly for the zero modes J3
0 and J−0 ; this leads to17

3∑
i=1

F i0 = 0 ,

3∑
i=1

(hi + xiF
i
0) = 0 , and

3∑
i=1

(2xihi + x2
iF

i
0) = 0 , (5.22)

which implies the vanishing of the 1
z term in (5.20).

The three properties above now imply that G(z) must be of the form

G(z) = A

∏3
i=1(z − zi)wi−1∏N
a=1(z − z∗a)2

, (5.23)

where A is a normalisation constant, and we have used that

3∑
i=1

(wi − 1)− 2N = −2 , (5.24)

as follows from eq. (5.4). (In particular, there cannot be any additional powers of z in the

numerator because of property 3.) The key observation is now that G(z) therefore has

exactly the same properties as the derivative of the covering map, and hence that

G(z) = α∂Γ(z) , (5.25)

where α is some constant.18 We can compute the proportionality constant α by summing

over all poles of the covering map — there are always N such poles, where N is determined

by the Riemann-Hurwitz formula (5.4), and we denote them by z∗a with a = 1, . . . , N

αN = −
N∑
a=1

∮
z∗a

dz
G(z)

Γ(z)
(5.26)

= −
N∑
a=1

3∑
i=1

∮
z∗a

dz

(
−2(Γ(z)− xi)hi

(z − zi)Γ(z)
+

wi∑
`=0

(Γ(z)− xi)2

(z − zi)`+1Γ(z)
F i`

)
(5.27)

= −
N∑
a=1

3∑
i=1

wi∑
`=0

∮
z∗a

dz
Γ(z)

(z − zi)`+1
F i` (5.28)

=
3∑
i=1

wi∑
`=0

(∮
zi

dz
Γ(z)

(z − zi)`+1
F i` +

∮
∞

dz
Γ(z)

(z − zi)`+1
F i`

)
(5.29)

=
3∑
i=1

wi∑
`=0

(∮
zj

dz
xi + aΓ

i (z − zi)wi + · · ·
(z − zi)`+1

F i` − δ`,0 Γ(∞)F i0

)
(5.30)

=

3∑
i=1

(
(xi − Γ(∞))F i0 + aΓ

i F
i
wi

)
=

3∑
i=1

(
aΓ
i F

i
wi
− hi

)
. (5.31)

17In going from (5.21) to (5.22) we have divided by the correlator and used the definition (5.16).
18The constant α still depends on the remaining variables xi, zi, as well as ji and k.
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Here we have used the first and second Ward identity of (5.22) in the last step. We therefore

conclude that the constraint equations (4.7) are equivalent to requiring that G(z), as defined

by (5.18), equals

G(z) =
2

w1 + w2 + w3 − 1

3∑
i=1

(
aΓ
i F

i
wi
− hi

)
∂Γ(z) . (5.32)

(Here we have written N = w1+w2+w3−1, see eq. (5.24).) In particular, by equating (5.18)

with (5.32), this allows us to determine the F i` (with 0 ≤ ` ≤ wi−1) in terms of the hi, F
i
wi

,

as well as the covering map Γ(z). This solves at least in principle the constraint equations.

Next we turn to the recursion relations of section 4.3. Expanding G(z) to order wj − 1

around zj leads to

∂
wj−1
z G(z = zj)

(wj − 1)!
=

∂
wj−1
z

(wj − 1)!

∑
i 6=j

(
−2(xj − xi)hj

z − zi
+

wi∑
`=0

(xj − xi)2

(z − zi)`+1
F i`

)∣∣∣∣∣∣
z=zj

+
(
−2aΓ

j hj + (aΓ
j )2F jwj

)
, (5.33)

where the two terms in the second line come from the contribution with i = j, see the

comment below eq. (5.17). Using eqs. (4.17) and (4.15), this leads to

∂
wj−1
z G(z= zj)

(wj−1)!
=

(
hj−

(k+2)wj
2

−jj
) 〈V wj

hj−1(xj ;zj)
∏3
i 6=j V

wi
hi

(xi;zi)
〉

〈∏3
i=1V

wi
hi

(xi;zi)
〉 −2aΓ

j hj (5.34)

+(aΓ
j )2

(
hj−

(k+2)wj
2

+jj

) 〈V wj

hj+1(xj ;zj)
∏3
i 6=j V

wi
hi

(xi;zi)
〉

〈∏3
i=1V

wi
hi

(xi;zi)
〉 ,

where G(z) is the function that was determined before in (5.32), i.e.

∂
wj−1
z G(z = zj)

(wj − 1)!
=

2wja
Γ
j

w1 + w2 + w3 − 1

3∑
i=1

(
aΓ
i F

i
wi
− hi

)
. (5.35)

The equality of the right-hand-sides of eqs. (5.34) and (5.35) is therefore the recursion

relation for the case of 3-point functions. Note that here we have used the constraint

equations to eliminate the ‘truly unknown’ coefficients.

It now only remains to show that our ansatz (5.8) satisfies these conditions. Insert-

ing (5.8) into (5.34), we obtain

∂
wj−1
z G(z = zj)

(wj − 1)!
= −(k + 2)aΓ

j wj (5.36)

while inserting (5.8) into (5.35) leads to

∂
wj−1
z G(z = zj)

(wj − 1)!
=

2aΓ
j wj

w1 + w2 + w3 − 1

3∑
i=1

(
ji −

(k + 2)wi
2

)
. (5.37)

These two expressions are precisely equal to one another provided that the constraint (5.9)

holds. We have therefore shown that our ansatz (5.8) solves the recursion relations.
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5.4 The solution in the general case

For the general case of an n-point function, we claim that the recursion relations are solved

by

〈
V w1
h1

(0; 0)V w2
h2

(1; 1)V w3
h3

(∞;∞)
n∏
i=4

V wi
hi

(xi; zi)
〉

=
∑

Γ

n∏
i=1

(aΓ
i )−hi

n∏
i=4

δ(xi − Γ(zi))WΓ(z4, . . . , zn) . (5.38)

Here, each WΓ is an arbitrary function depending on the remaining cross-ratios on the

covering sphere (as well as on all ji’s and k). We will see that this is a solution of the

recursion relations, provided that

n∑
i=1

ji =
(k + 2)

2
(n− 2)− (n− 3) . (5.39)

(This is the generalisation of eq. (5.9) to n ≥ 4.) For an n-point function, there are

typically several possible covering maps Γ(z), see e.g. the example of eq. (5.6), and we

should naturally consider the sum over all of them.

Before we proceed we need to explain what precisely is meant by Γ in (5.38). As was

mentioned above, the covering map generically does not exist for n ≥ 4. Here and in the

following we will always take Γ(z) to be the map that has ramification points of order wi
at zi, and satisfies

Γ(zi) = xi , i = 1, 2, 3 . (5.40)

Such a function Γ(z) always exists, provided that (5.5) is satisfied (but it may not be

unique, see e.g. the example in eq. (5.6)). It defines a relevant covering map if xi = Γ(zi)

for i = 4, . . . , n, i.e. if the arguments of the delta-functions in (5.38) vanish.

For illustration, we can test eq. (5.38) for the case when all wi = 1, for which we have

given the recursion relations explicitly in eq. (4.20). In this case, the unique map Γ is

Γ(z) = z, and hence aΓ
i = 1 for all i. Using the distributional identity

xδ′(x) = −δ(x) , (5.41)

eq. (4.20) becomes(
h1 −

k + 2

2
− j1

) n∏
i=4

δ(xi − zi)WΓ(z4, . . . , zn) (5.42)

=

( n∑
i=2

(
hi −

k + 2

2
+ ji

)
+ (n− 3) + h1 −

n∑
i=2

hi

) n∏
i=4

δ(xi − zi)WΓ(z4, . . . , zn) ,

which holds indeed provided that (5.39) is obeyed. We should note that the correction

n− 3 on the right-hand-side of (5.39) is produced by the presence of the (n− 3) δ(xi − zi)
functions. We have also checked explicitly that eq. (5.38) satisfies the recursion relations

for some other cases with small values of wi.
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One can also generalise the argument of section 5.3 to the general case and prove that

this is always a solution to the recursion relations. Since, the presence of the δ-functions

requires extra care, this is described in appendix A.

5.5 The j condition

In the previous subsections we have seen that a solution for these correlation functions can

be found provided that eq. (5.39) is satisfied. One may wonder what the meaning of this

condition on the ji is (and how one may satisfy it in general). A natural solution that

works for general n and k is given by setting19

j1 = 1− k

2
, ji =

k

2
, i ≥ 2 . (5.43)

The value of j = k
2 describes precisely the worldsheet representation that corresponds to

the twisted sector ground states in the symmetric product orbifold [40], while j = 1− k
2 is

the conjugate representation.

Actually, the situation is particularly clean for the case k = 1. Recall that it was

recently shown in [2], see also [1], that the spectrum of superstring theory on AdS3×S3×T4

at k = 1 agrees exactly with that of the symmetric product orbifold of T4. A key step in

making this precise was to note that at k = 1 the only allowed worldsheet representations

have j = 1
2 [2]. Our main observation now is that

Eq. (5.39) is always solved for ji = 1
2 and k = 1.

(Another way of saying this is that all ji in (5.43) are actually equal to ji = 1
2 for k = 1.)

In particular, our arguments therefore show that the corresponding correlation func-

tions for the theory that is dual to the symmetric orbifold always localise. This ties in very

nicely with the expectations from the dual symmetric orbifold. It also suggests strongly

that this part of the k = 1 theory is in some sense topological, as was already noted based

on the structure of the torus partition function in [2].

6 The covering map as a correlator

As we have seen above, the covering map plays an important role in the construction of

the solution to the recursion relations. However, much more is actually true: one can also

obtain the covering map directly as a correlator, provided one considers the Wakimoto

representation of the sl(2,R)k+2 current algebra.

19Alternatively, one could also modify the condition on the j’s of eq. (5.39) by sending some ji → 1− ji.
Then there also exists a natural solution to the recursion relations, for which the factor of aΓ

i in (5.38)

is modified by some additional binomial coefficients. However, here we shall always work with the simple

solution that arises if we impose (5.39).

– 25 –



J
H
E
P
0
2
(
2
0
2
0
)
1
3
6

6.1 The Wakimoto representation

The Wakimoto representation of the sl(2,R)k+2 current algebra is given by [30, 41]

J+ = kβ , (6.1a)

J3 = −k∂Φ + k(βγ) , (6.1b)

J− = −2k(∂Φγ) + k(βγγ)− (k + 2)∂γ , (6.1c)

where β(z), γ(z) and ∂Φ(z) are free fields with defining OPEs

β(z)γ(w) ∼ − 1

k(z − w)
, ∂Φ(z)∂Φ(w) ∼ − 1

2k(z − w)2
. (6.2)

The energy-momentum tensor takes the form

T (z) = −k(∂Φ)2 − ∂2Φ− k(β∂γ) . (6.3)

Thus, we see that γ(z) has conformal weight zero (and sl(2,R) charge −1) while β(z) has

conformal weight one (and sl(2,R) charge +1). Importantly, we also see that the boson

Φ(z) has a background charge, which will lead to an anomalous conformal transformation

behaviour.

6.2 The correlator of γ

Our main claim is that, provided the condition (5.39) on j holds, we have the identity〈
γ(z)

n∏
i=1

V wi
hi

(xi; zi)
〉

= Γ(z)
〈 n∏
i=1

V wi
hi

(xi; zi)
〉
. (6.4)

In particular, γ(z) is therefore the field, which when inserted in a correlation function,

yields the corresponding covering map. This idea was already anticipated in [23], but now

we can make this more precise.

There are several subtleties associated to this statement. First of all, the covering map

Γ(z) has poles away from the insertion points zi. (There are alwaysN such poles, whereN is

determined by (5.4), and their location will be denoted by z∗a with a = 1, . . . , N .) Thus, the

correlator with γ(z) inserted has to have the property that there are poles at z = z∗a 6= zj .

Initially, this does not seem to make any sense since the only field insertions are at z = zj .

The resolution to this problem is that effectively charge conservation requires that there

are additional (“secret”) fields present in the correlator. These secret fields behave as the

vacuum with respect fo the sl(2,R) currents, but have non-trivial OPEs with the Wakimoto

fields γ(z) (and ∂Φ); we show that such fields do in fact exist in appendix B. While this

does not directly explain why these secret fields have to sit at the z∗a, it shows at least that

this is not in contradiction with what we have done so far (where we have only used Ward

identities involving the affine currents, for which these secret fields are invisible).

Secondly, we observe that (6.4) is in general an equation between distributions since the

covering map Γ(z) only exists when the points xi and zi are suitably chosen. In particular,

the correlator on the right-hand-side has delta-function support localising it to the points
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where the covering map exists. For a given choice of xi and zi then only one term in the

sum (5.38) can be non-zero, and the correlator picks out the corresponding covering map.

After these preliminary comments, let us now summarise the evidence we have for

eq. (6.4). Using the Wakimoto representation and the defining OPEs (3.7) and (3.13), it

follows that the OPE of γ(z) with a spectrally flowed affine primary field takes the form

γ(z)V wi
hi

(xi; zi) ∼ xiV wi
hi

(xi; zi) + (z − zi)wiV wi
hi−1(xi; zi)

+ (z − zi)wi+1(γ−wi−1V
wi
hi

)(xi; zi) +O((z − zi)wi+2) . (6.5)

We can therefore determine the behaviour of the correlator on the left-hand-side of eq. (6.4)

order by order in z − zi for each i, and then compare to the right-hand-side. For example,

to the order O((z − zi)wi), the left-hand-side of (6.4) equals〈
γ(z)

n∏
i=1

V wi
hi

(xi; zi)
〉

= xi

〈 n∏
`=1

V w`
h`

(x`; z`)
〉

+ (z − zi)wi

〈
V wi
hi−1(xi; zi)

n∏
` 6=i

V w`
h`

(x`; z`)
〉

+O((z − zi)wi+1) (6.6)

= (xi + aΓ
i (z − zi)wi)

〈 n∏
`=1

V w`
h`

(x`; z`)
〉

+O((z − zi)wi+1) , (6.7)

where we have used the solution (5.38). This therefore equals the right-hand-side of (6.4)

to this order. We have also checked the equality to the next order. To this end we have

used the Wakimoto representation to rewrite

γ−wi−1V
wi
hi

= − 1

k + 2ji

(
J+
wi−1V

wi
hi−2 − 2J3

−1V
wi
hi−1 + J−−wi−1V

wi
hi

)
. (6.8)

Inserting this into the correlator〈
(γ−wi−1V

wi
hi

)(xi; zi)

n∏
`6=i

V w`
h`

(x`; z`)
〉
, (6.9)

and using the usual contour techniques, we can rewrite this in terms of a contour integral

of correlators with the insertion of Ja(z), which we know how to compute.20 We have

confirmed explicitly for low values of wi that this then reproduces the corresponding term

in the expansion of the actual covering map. We should stress that in this calculation we

did not assume from the outset that the correlator (6.4) had additional poles, nor made

any assumption about what their residues are (except that, if they exist, they are invisible

to the sl(2,R) currents so that we can perform the usual contour deformation arguments

for the currents).

6.3 The correlators of ∂Φ

It is similarly very instructive to compute the correlator with the field ∂Φ(z) inserted.

Using essentially the same methods as for the calculation of the correlator with γ(z), we

20Because of the presence of the secret representations we cannot use the usual contour deformation

arguments for the Wakimoto fields themselves, but only for the sl(2,R) currents.
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have found that the answer is of the form〈
∂Φ(z)

n∏
i=1

V wi
hi

(xi; zi)
〉

=

(
n∑
i=1

ji
k −

1
2wi

z − zi
+

N∑
a=1

1

z − z∗a

)〈 n∏
i=1

V wi
hi

(xi; zi)
〉
, (6.10)

where the z∗1 , . . . , z
∗
N are again the positions of the poles of the covering map Γ(z). We

should mention that it is very natural that the correlator (6.10) only has first order poles

in z since ∂Φ is a spin one field. The residue at ∞ of this ∂Φ(z) correlator is then

Res
z=∞

〈
∂Φ(z)

∏n
i=1 V

wi
hi

(xi; zi)
〉

〈∏n
i=1 V

wi
hi

(xi; zi)
〉 =

n∑
i=1

(
−ji
k

+
1

2
wi

)
−N (6.11)

= −
n∑
i=1

ji
k
− 1

2
(2− n) = −1

k
, (6.12)

where we have used the Riemann-Hurwitz formula (5.4), as well as the condition on the

j’s of eq. (5.39). This is what one should have expected since Φ has a background charge,

which leads to an anomalous conformal transformation behaviour (see appendix C), and

in turn to the charge conservation law∑
i

Qi = −1

k
. (6.13)

Thus we can think of the condition on the j’s in eq. (5.39) as the charge conservation

condition for ∂Φ. If it were not satisfied, one has to include screening charges in the cor-

relator to compute them in the Wakimoto representation. This would make the correlator

non-holomorphic in z and thus γ(z) would lose its interpretation as a covering map.

Finally, we note that the residue of ∂Φ at z∗` is always 1. We also give some explanation

of this in appendix C.

6.4 The ground state solution

We recall from section 5.5 that a natural solution to eq. (5.39) is given by setting, see (5.43)

j1 = 1− k

2
, ji =

k

2
, i ≥ 2 , (6.14)

and that for these values of ji the vertex operators describe the ground states of the twisted

sector representations of the dual symmetric orbifold CFT [40]. If we place the conjugate

field (i.e. the one for which j1 = 1− k
2 ) at z =∞, the ∂Φ(z) correlator actually simplifies to

〈
∂Φ(z)

n∏
i=1

V wi
hi

(xi; zi)
〉

= −1

2

(
n∑
i=2

wi − 1

z − zi
−

N∑
a=1

2

z − z∗a

)〈 n∏
i=1

V wi
hi

(xi; zi)
〉

(6.15)

= − ∂
2Γ(z)

2 ∂Γ(z)

〈 n∏
i=1

V wi
hi

(xi; zi)
〉
. (6.16)

Thus, we can also express the ∂Φ(z) correlator in a very simple way in terms of the covering

map. This formula has an important interpretation, see sections 7.2 and 7.3.
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6.5 Relation to the Schwarzian

Let us end this section by noting that the correlators of the currents are actually closely

related to the Schwarzian of the covering map. In order to see this, we take the conformal

weights to match the value of the twisted sector ground states of the symmetric product

orbifold

hi =
k(w2

i − 1)

4wi
, (6.17)

and choose the spins as in (5.43). Then we observe experimentally that〈
J+(z)

n∏
i=1

V wi
hi

(xi, zi)

〉
= −k

2

S[Γ](z)

∂Γ(z)

〈
n∏
i=1

V wi
hi

(xi, zi)

〉
+ ∂z

(
· · ·
)

(6.18a)

〈
J3(z)

n∏
i=1

V wi
hi

(xi, zi)

〉
= −k

2

Γ(z)S[Γ](z)

∂Γ(z)

〈
n∏
i=1

V wi
hi

(xi, zi)

〉
+ ∂z

(
· · ·
)

(6.18b)

〈
J−(z)

n∏
i=1

V wi
hi

(xi, zi)

〉
= −k

2

Γ(z)2 S[Γ](z)

∂Γ(z)

〈
n∏
i=1

V wi
hi

(xi, zi)

〉
+ ∂z

(
· · ·
)
, (6.18c)

where the functions in
(
· · ·
)

are single-valued, and S[f ] denotes the Schwarzian,

S[f ](z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (6.19)

Interpreted in terms of classical fields, this means for example

J+(z) = −k
2

S[Γ](z)

∂Γ(z)
+ ∂z

(
· · ·
)
, (6.20)

and similarly for the other cases. Hence, we have, in particular, that

J+
0 =

∮
0

dz J+(z) = −k
2

∮
0

dz
S[Γ](z)

∂Γ(z)
, (6.21a)

J3
0 =

∮
0

dz J3(z) = −k
2

∮
0

dz
S[Γ](z)

∂Γ(z)
Γ(z) , (6.21b)

J−0 =

∮
0

dz J−(z) = −k
2

∮
0

dz
S[Γ](z)

∂Γ(z)
Γ(z)2 . (6.21c)

These generators are to be identified with the Möbius generators L−1, L0 and L1 of the

dual CFT.21

In fact, one can construct the entire ‘dual’ Virasoro algebra of Brown & Henneaux [42]

within the SL(2,R) WZW model by defining [30]

Lm = k

∮
dz
(
−(m+ 1)γm∂Φ + γm+1β

)
(z) = −k

2

∮
dz

S[Γ](z)

∂Γ(z)
Γ(z)m+1 , (6.22)

21Note that in (6.18a) the Ja(z) refer to the decoupled bosonic currents. However, since the V wi
hi

(xi, zi)

correspond to spectrally flowed affine primary states, the result would be the same if we replaced them by

the full superaffine currents that are relevant for the definition of the dual CFT Möbius generators.
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where the last identity holds for this classical solution. Eq. (6.22) now has a nice inter-

pretation: since the energy-momentum tensor of a CFT is a quasiprimary field, it has the

anomalous transformation property that

T
(
f(z)

)
=
(
∂f(z)

)−2
(
T (z)− c

12
S[f ](z)

)
, (6.23)

where f(z) is any analytic function. Thus we can write (6.22) as

Lm =

∫
dx T st(x)xm+1 =

∫
dz

(
T cov(z)− c

12
S[Γ](z)

)(
∂Γ(z)

)−1
Γ(z)m+1 , (6.24)

where T st is the spacetime stress-energy tensor, T cov its lift to the covering surface, and

they are related to one another via (6.23) with x = Γ(z). We have also used that for the

ground states of the twisted sectors T cov = 0, together with c
12 = k

2 since c = 6k. Thus the

full spacetime Virasoro algebra arises essentially just from the Schwarzian transformation

behaviour of the energy-momentum tensor.

7 The classical solution

In this section we will start again by studying classical solutions of string theory on AdS3.

We are, in particular, interested in the solutions which correspond to the ground states in

the w-spectrally flowed sector with j = 1
2 . They sit at the bottom of what is usually a

long string continuum, but are actually the only allowed representations for k = 1 [2]. As

we will see, they can be obtained by taking a suitable limit of a family of solutions that

localises them to the boundary of the AdS3 space — this is natural since they have no

radial momentum. This is also the reason, as we will see, why the theory at k = 1 can

be studied semi-classically on the worldsheet despite describing a highly curved spacetime.

The limiting solutions will have the right behaviour near the boundary, and we show in

section 7.2 that the same solutions emerge also from the quantum analysis of correlators

that was performed in sections 5 and 6. Furthermore, we explain in section 7.3 that their

worldsheet action (2.4) reproduces exactly the Liouville action of Lunin-Mathur (2.7), as

already sketched in section 2.1.

7.1 Classical solutions at the boundary of AdS3

The bosonic action on AdS3 given in (2.4) can also be written in a first order form as

SAdS3 =
k

4π

∫
d2z (4∂Φ∂̄Φ + β̄∂γ̄ + β∂̄γ − e−2Φββ̄ − k−1RΦ) . (7.1)

Here the equations of motion fix β = e2Φ∂γ̄ and β̄ = e2Φ∂̄γ, and hence reduce (7.1) to (2.4).

The last term arises from a quantum renormalisation. In terms of these fields, the group

elements can be written as — we are using the conventions of [43]

g =

(
eΦ eΦ γ̄

eΦ γ eΦγγ̄ + e−Φ

)
with g−1 =

(
eΦγγ̄ + e−Φ −eΦ γ̄

−eΦ γ eΦ

)
, (7.2)
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and the currents are defined via

− k ∂g g−1 =

(
J3 −J+

J− −J3

)
and k g−1∂̄g =

(
J̄3 −J̄+

J̄− −J̄3

)
. (7.3)

Thus these variables can be identified with the Wakimoto fields given in eq. (6.1).22 The

equations of motion then take the form

∂̄β = 0 (7.4a)

−∂̄∂Φ + β ∂̄γ = 0 (7.4b)

2 ∂Φ∂̄γ + ∂̄∂γ = 0 , (7.4c)

and similarly for β̄ and γ̄. The general solution to these equations of motion can be

parametrised by three holomorphic (ρ(z), b(z) and a(z)) and three anti-holomorphic (ρ̄(z̄),

b̄(z̄) and ā(z̄)) functions. In the notation of [36], we have

Φ(z, z̄) = ρ(z) + ρ̄(z̄) + log
(
1 + b(z)b̄(z̄)

)
, (7.5a)

γ(z, z̄) = a(z) +
e−2ρ(z)b̄(z̄)

1 + b(z)b̄(z̄)
, (7.5b)

γ̄(z, z̄) = ā(z̄) +
e−2ρ̄(z̄)b(z)

1 + b(z)b̄(z̄)
, (7.5c)

where

β(z) = e2ρ(z) ∂b(z) , β̄(z̄) = e2ρ̄(z̄) ∂̄b̄(z̄) . (7.6)

Thus the fields γ and γ̄ are not, in general, holomorphic or anti-holomorphic, respectively,

and Φ is, in general, not a sum of a holomorphic and an anti-holomorphic function.

However, there is a limit one can take in which we scale

b(z) = b0 + ε c(z) , ρ(z) = −1

2
log ε+ σ(z) , (7.7)

and similarly for b̄(z̄) and ρ̄(z̄), and then take ε → 0, while keeping b0 constant, and

c(z), σ(z) finite. In this limit we find

Φ(z, z̄) = − log ε+ log(1 + b0b̄0) + σ(z) + σ̄(z̄) (7.8a)

β(z) = e2σ(z) ∂c(z) (7.8b)

γ(z) = a(z) . (7.8c)

Thus β and γ are now holomorphic (and similarly β̄ and γ̄ are anti-holomorphic), and Φ is

a sum of a holomorphic and an anti-holomorphic function. This solution reflects the fact

that Φ has an infinite additive constant (− log ε) which essentially places the worldsheet at

the boundary. As can be seen from (7.1) the term ββ̄e−2Φ drops out in this limit and we

are left with a free theory [36] (which is, in particular, semiclassically exact).

22The shift k → k + 2 in the formula for J− is a result of a correction in the quantum theory due to

normal ordering.
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In order to understand this limit further, let us look at a family of solutions that

describe the two-point functions 〈V w
h (∞;∞)V w

h (0; 0)〉 for spectrally flowed affine primary

states in the w-spectrally flowed sector. They are characterised by the property that the

currents only have their (spectrally flowed) zero modes excited and therefore take the form

J3(z) =
h

z
, J±(z) = α z∓w−1 , (7.9)

where h and α are constants. We will find it convenient to parametrise them as

α =
kp

ν
, h =

k

2

(
p

√
ν2 + 4

ν
+ w

)
. (7.10)

The mass-shell condition requires that h2 = α2, which allows us to solve for ν in terms of

p as

ν = − 4wp

w2 − p2
, (7.11)

provided that w2 6= p2. Up to one integration constant, which we have set to zero, the

most general solution of the form (7.9), fixes the functions entering into (7.5) as

a(z) =
1

2
zw
(√

ν2 + 4 + ν
)
, (7.12a)

ρ(z) = −1

2
log ε+

1

2
(p− w) log(z) , (7.12b)

b(z) = b0 −
ε

ν
z−p . (7.12c)

Here we have suggestively denoted the two remaining constants in the solution by ε and

b0, which puts them precisely in the form of eq. (7.7).

We can now implement the scaling limit of ε → 0 on this family of solutions — as

discussed, this is the limit where the solutions have support only on the boundary. In this

limit, the expressions for the Wakimoto fields γ and Φ become holomorphic

γ(z) =
1

2

(
ν +

√
ν2 + 4

)
zw , (7.13a)

Φ(z, z̄) = − log ε− (w − p)
2

log(z)− (w − p)
2

log(z̄) . (7.13b)

By comparison with (6.10) we see that the parameter p should be identified with the spin

of the affine primary as23

p =
2j

k
. (7.14)

For k = 1 and j = 1
2 , we should thus take p = 1, and then ν and h equal

ν = − 4w

w2 − 1
, h =

k(w2 − 1)

4w
. (7.15)

23Note that this identification does not need our results obtained from the quantum analysis. It is simply

a consequence of the Wakimoto representation of affine primaries, see e.g. [23, eq. (2.12)].
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Note that h is indeed the ground state energy of the w-twisted sector, as expected. For

this choice of p, γ(z) and Φ(z) then simplify to

γ(z) =
w − 1

w + 1
zw , Φ(z, z̄) = − log ε− (w − 1)

2
log(z)− (w − 1)

2
log(z̄) , (7.16)

thus reproducing eq. (2.5). (The prefactor in the definition of γ(z) is immaterial, since for

a two-point function the little-group Möbius symmetry is non-trivial, which allows one to

change the scaling of the covering map.)

We should mention in passing that the class of solutions found by Maldacena and

Ooguri [18] — the so-called “spacelike” solutions of their section 2.4 — do not quite fit into

the above description. While they also lead to (7.9), they cannot be written in the form

of eq. (7.12) since the relevant integration constant is not zero for them. In any case, they

do not describe the ground state of the twisted sector since their conformal dimension is

always larger than h ≥ kw
4 , see eq. (41) of [18]. This can also seen geometrically since their

solution corresponds to the pulsating profile of figure 4 of [18], whereas the ground state

should not have nodes, but rather be a simple cylinder (at least for w = 1).

7.2 Relation to quantum correlators

We argued below eq. (7.8) that for solutions that are at the boundary, we have a semi-

classically exact description. In the previous subsection we have found the simplest case

of such a classical configuration which describes a two point function, see eq. (7.16). Thus

for a correlator such as (2.2), we must have a classical solution which behaves like (7.16)

in the immediate vicinity of each of the insertions zi. Since γ is furthermore holomorphic

at the boundary, it follows that γ must actually agree with the covering map.

Since the solutions of the quantum theory we have studied in sections 5 and 6 are

localised at the boundary, they should therefore directly have a classical interpretation. In

particular, the quantum correlators (6.4) and (6.16) lead to the identifications

γ(z) = Γ(z) , (7.17)

∂Φ(z) = − ∂
2Γ(z)

2 ∂Γ(z)
, (7.18)

where Γ(z) is, as before, the relevant covering map. (The expression for kβ = J+ is

more complicated.) This is consistent with the solution discussed in section 7.1, which

corresponds to the covering map Γ(z) = zw. Furthermore, since near each zi, the covering

map behaves as Γ(z) ∼ (z − zi)wi , we have

∂Φ(z) = − ∂
2Γ(z)

2 ∂Γ(z)
∼ −(wi − 1)

2

1

(z − zi)
, (7.19)

which therefore agrees precisely with eq. (7.16). Thus the correlation functions we have

found in the quantum analysis lead indeed to the correct classical solutions!

We can also express the corresponding group valued fields in terms of the Wakimoto

representation, see eq. (7.2)

g =

(
eΦ eΦ Γ̄

eΦ Γ eΦΓΓ̄ + e−Φ

)
=

(
1√
∂Γ

0
Γ√
∂Γ

√
∂Γ

)(
1√
∂̄Γ̄

Γ̄√
∂̄Γ̄

0
√
∂̄Γ̄

)
, (7.20)
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where Γ̄(z̄) is the covering map for the anti-holomorphic variables, and we note that

Φ = −1

2
log(∂Γ)− 1

2
log(∂̄Γ̄) + constant , (7.21)

as follows from (7.18) (together with its anti-holomorphic analogue). As we have discussed

in subsection 7.1, we expect this constant to be infinite, since the worldsheet is pinned to

the boundary.

7.3 The on-shell action

Now that we have assembled all the pieces, we can finally make a quantitative comparison

between the worldsheet and the classical action. Recall that the quantum correlators

correspond to solutions of the type analysed in eqs. (7.8) that are localised at the boundary

of AdS3. Now the remarkable property of our solution (7.17) is that

e−2Φ = C
∣∣∂zΓ∣∣2 , (7.22)

where C is a constant, since eq. (7.18) implies that

Φ(z, z̄) = const− 1

2
log(∂Γ)− 1

2
log(∂̄Γ̄) . (7.23)

In particular, comparing with the conformal factor in the Lunin-Mathur approach, see

eq. (2.6), we deduce that the Liouville field φ of Lunin-Mathur is to be identified with the

Wakimoto field Φ as

∂φ(z) = −2∂Φ(z) , (7.24)

see eq. (2.8). Furthermore, as was also already mentioned there, this identification (together

with that of the orbifold CFT covering space with the worldsheet) leads to the equality

of the semiclassically exact worldsheet sigma model action (2.4) (or rather its first order

form, see eq. (7.1)), with the Lunin-Mathur Liouville type action (2.7) which computes the

orbifold correlator. This makes therefore manifest that the two calculations agree.

8 The generalisation to higher genus

The above analysis suggests naturally a generalisation to higher genus which it would be

interesting to work out in detail. We have not yet tried to do so rigorously, but many

properties we have investigated seem to have a direct generalisation. In particular, the

semiclassical argument of the previous section does not depend on the topology of the

worldsheet and seems to go through. Let us therefore assume that the worldsheet theory

is defined on a higher genus Riemann surface Σg, though we keep the boundary space

(parametrised by x) to still be a sphere.24

24In [2] we considered the one-loop worldsheet CFT partition function where the spacetime was thermal

AdS3 and hence the boundary was a torus. We found in that case a delta-function localisation to points in

the moduli space which admit holomorphic covering maps, now from the worldsheet T2 to the spacetime

boundary T2, see the discussion around eq. (4.27) of [2].
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8.1 The constraint on the spins

Let us start by discussing the constraint on the spins ji that we expect in general. The

anomalous charge conservation law of the Wakimoto field ∂Φ(z) has an immediate gener-

alisation to higher genus surfaces. The anomalous charge comes from the term

− 1

4π

∫
d2z
√
g RΦ (8.1)

in the worldsheet action (7.1), which, by the Gauss-Bonnet theorem, implies that the

anomalous conservation law is proportional to the Euler characteristic χ(Σg) of the surface.

Thus eq. (6.13) becomes in general, see e.g. [44, section 9.1.3]∑
i

Qi = − 1

2k
χ(Σg) =

g − 1

k
. (8.2)

On the other hand, the residue of the field ∂Φ(z) at the insertion points should equal
ji
k −

1
2wi, while that at the poles of Γ(z) should be 1; both are local properties and hence

should not be affected by the genus. Finally, we recall that the Riemann-Hurwitz formula

becomes for generic genus g

N =
1

2

n∑
i=1

(wi − 1) + 1− g =
1

2

n∑
i=1

wi −
1

2
(n− 2 + 2g) . (8.3)

Then requiring the anomalous charge conservation law, i.e.

n∑
i=1

(
ji
k
− wi

2

)
+N =

n∑
i=1

ji
k
− 1

2
(n− 2 + 2g) =

1− g
k

, (8.4)

leads to
n∑
i=1

ji =
(k + 2)

2
(n− 2 + 2g)− dim(Mg,n) , (8.5)

where dim(Mg,n) = 3g − 3 + n is the dimension of the moduli space of genus g Riemann

surfaces with n punctures. Note that k̂ = (k+2) is the level of the bosonic sl(2,R) algebra,

and eq. (8.5) is therefore the generalisation of eq. (5.39) to the general case. As was

explained there, the second term arises from the presence of δ-functions in the correlation

function, thus suggesting that in general we will have dim(Mg,n) many δ-functions, i.e.

that the integral over moduli space will again be completely localised.

It is also striking that this constraint is always satisfied for the situation of primary

interest, where ji = 1
2 and k = 1, see also the discussion in section 5.5.

8.2 The correlation functions

It is therefore again natural to assume that the correlation functions localise, i.e. take the

form 〈
n∏
i=1

V wi
hi

(xi, zi)

〉
=
∑

Γ

δ(3g−3+n)(fΓ(x, z, τ))

n∏
i=1

(aΓ
i )−hiWΓ(x1, . . . , xn) , (8.6)
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where fΓ = 0 defines the appropriate localisation constraint so that the worldsheet coor-

dinates and worldsheet moduli localise on all possible branched covering surfaces. In this

context it is actually more convenient to express the remaining freedom in the function

WΓ as a function of (x1, . . . , xn), since this is the correct number of variables that remain

after the δ function constraints have been imposed. Finally, this number can be cut down

further to n− 3, using the global SL(2,R) Ward identities.

As an example, let us consider the torus covering the sphere branched over four points

with ramification index 2. The covering map is explicitly given by

Γ(z) =
x1(x2 − x3)℘(z; τ) + x3(x1 − x2)℘(1

2 ; τ) + x2(x3 − x1)℘( τ2 ; τ)

(x2 − x3)℘(z; τ) + (x1 − x2)℘(1
2 ; τ) + (x3 − x1)℘( τ2 ; τ)

, (8.7)

where ℘(z; τ) is the Weierstrass ℘ function. The four ramification points of order two are

given by z1 = 0, z2 = 1
2 , z3 = τ

2 and z4 = τ+1
2 . They are mapped to x1, x2, x3 and x4

respectively, where

x4 = Γ

(
τ + 1

2

)
=
−x2x3ϑ3(τ)4 + x1x3ϑ4(τ)4 + x1x2ϑ2(τ)4

x1ϑ3(τ)4 − x2ϑ4(τ)4 − x3ϑ2(τ)4
, (8.8)

and the ϑi(τ) are the usual Jacobi ϑ-functions. Note that the points z1, . . . , z4 are fixed

up to an overall shift in terms of the modulus τ , which in turn is fixed in terms of the

cross-ratio x. This fixes all moduli of the four-punctured torus and corresponds to the

constraint fΓ(x, z, τ) in this case. We also mention in passing that the covering map (8.7)

has two poles, since the Weierstrass ℘ function attains every value twice.

8.3 The classical solution

Finally, there is also a fairly natural idea for how the classical solutions generalise, at least

for the torus case g = 1. Concentrating again on the ground state solutions, we notice

that taking (n− 1 + g) fields to have spin k
2 and 1− g fields to have spin 1− k

2 solves the

general j constraint (8.5). Note that there is an obvious problem with this if g ≥ 2, since

the second number becomes negative; we are not exactly sure how to cure this (although

this should only be an artefact of our parametrisation since the representations j and 1− j
should be equivalent). This problem disappears in the situation of primary interest, where

k = 1 and j = 1
2 .

For instance, in the genus one example from the previous subsection, we still simply

have

∂Φ(z) = − ∂
2Γ(z)

2 ∂Γ(z)
, (8.9)

which has all the required properties. It is maybe worth mentioning that geometrically

the situation on the torus is actually easier than on the sphere, since the coordinate z is a

globally flat coordinate. This is no longer possible on genus g ≥ 2 surfaces, which is related

to the above problem. It would be interesting to work this out in more detail.
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8.4 String perturbation theory

The proposed localisation of these higher genus amplitudes to the solutions of the covering

map, see eq. (8.6), has a striking consequence: it demonstrates that the worldsheet theory

reproduces at least structurally all 1/N corrections of the dual CFT. In order to understand

this, we recall from [27] that the large N scaling behaviour of the symmetric orbifold

correlators has a very suggestive form: the contribution of an n-point function that comes

from a covering surface at genus g goes (in the large N limit) as

〈O1 · · · On〉 ∼ N1−g−n
2 . (8.10)

Since we should identify the string coupling constant gs (again in the large N limit) with

gs ∼
1√
N
, (8.11)

this translates into

〈O1 · · · On〉 ∼ g2g−2+n
s , (8.12)

and thus suggests that the genus g of the covering map should be identified with the genus

of the corresponding worldsheet contribution [27], see also [25]. Actually, as stressed in [27],

identifying the genus in this manner is the natural correspondence, since there are sub-

leading 1/N corrections in eq. (8.10), and thus it is difficult to express the correspondence

directly in terms of N , i.e. as in eq. (8.11).

Obviously, the simplest way of realising this idea — this was also already noted in [25,

27] — would be if the worldsheet is the covering surface, and this is what our analysis has

shown! It establishes that this beautiful picture is correct, and in effect, guarantees that

all higher genus (or 1/N) corrections are correctly reproduced by the worldsheet theory.

Furthermore, it leads to the following non-renormalisation theorem:

Any n-point function of spectrally flowed affine primaries of the

SL(2,R) WZW model vanishes identically on a Riemann surface of sufficiently

high genus. Moreover, two-point functions are only non-vanishing on the sphere.

In particular, the string theoretic two-point functions are independent of the

string coupling constant gs.

This is easily proven from the Riemann-Hurwitz formula (8.3)

2− 2g = 2N −
n∑
i=1

(wi − 1) ≥ 2 max(wi)−
n∑
i=1

(wi − 1) , (8.13)

by noting that N ≥ max(wi). Hence a covering map can only exist for25

g ≤ 1−max(wi) +

n∑
i=1

wi − 1

2
, (8.14)

25A more refined argument shows that this is the optimal bound; it follows from basic Hurwitz theory

that a covering map with N = max(wi) always exists.
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and thus the correlation function can only be non-vanishing for finitely many genera. For

n = 2, we have necessarily N = w1 = w2 and hence g = 0. In particular, this explains

why the spectrum of the dual CFT that was matched exactly from a tree-level worldsheet

analysis in [2] does not get any higher genus corrections.26

9 Conclusions

What is fascinating about the particular example of the AdS/CFT correspondence we have

studied in this paper, is its potential to demystify many aspects of gauge-string duality.

Here is a case where one can look into the machine, so to say, and see how the nuts and

bolts fit together and how the gears move. We have tried to lay bare the mechanism

which underlies the equivalence of a well defined worldsheet string theory on AdS to a

spacetime CFT on the boundary. An advantage is that we did not need to explicitly

compute observables on either side to see the equivalence.

It helped, of course, that we were working in the “tensionless” limit of a small radius

AdS. The theory essentially becomes a topological string theory in the AdS (as well as

S3 directions, as was observed in [2]) as it is too “small” to support physical transverse

excitations. But there are genuine physical string oscillators on the T4. It thus exhibits

a complexity intermediate between purely topological open-closed string dualties such as

those of [6, 12, 45, 46] and those with propagating gravity.27

Many of the features that we see in the present example are what one might also expect

of the dual to free gauge theories in other dimensions [50–52]. In the general programme

of reconstructing worldsheet theories dual to free field theories [9–11], a similar truncation

of the genus expansion was found [53], as were delta function and other distributional

features on moduli space [45, 46, 54, 55]; both of these are hallmarks of topological string

theories [56–58]. This may be an opportune time to revisit these considerations and renew

the push to connect with topological descriptions of tensionless AdS worldsheet theories

with RR-flux [15, 16]. Perhaps one might even be able to embed the present duality in

higher dimensions and capture a sector thereof as in [59]. We cannot also resist pointing

out the close resemblance to the dual string description of free 2d Yang-Mills in terms of

branched holomorphic covers of the spacetime by the worldsheet [60, 61]. Here too, the

proposals for the dual were topological string theories albeit of a somewhat non-traditional

kind [62, 63]. After all, the symmetric product 2d CFT is not too far removed from 2d

Yang-Mills — it arises as the infrared limit of 2d Super Yang-Mills-matter systems.

We also see many features of the string theory which are expected of the tensionless

limit. The fact that the correlators in the tensionless worldsheet theory get contributions

localised to certain stringy saddle points in moduli space is also very much like what was

26The spectrum of the symmetric product orbifold stabilises in the large N limit. Hence the symmetric

product orbifold at finite N has less states than the limit N → ∞. The disappearance of states is non-

perturbative in the large N expansion and is not captured by our worldsheet analysis.
27Note, however, that the dual symmetric product CFTs are complex enough to capture the microstates

and other physics of 5d black holes [47–49]. It would be very interesting to see and understand this (non-

perturbative) sector explicitly from the worldsheet point of view. Here we have been working strictly in a

genus expansion.
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seen by Gross and Mende in their classic analysis of high energy scattering in flat space

string theory [64]. In fact, the logarithmic profile of the transverse direction Φ(z, z̄) near

any of the insertions (2.5) is very much like the Coulomb potential saddle points of [64].

In our case, the full string theory and not just the high energy sector is given by a saddle

point reflecting the uniform nature of the tensionless limit in AdS.

Relatedly, we had already observed in section 7 of [2] that the enhanced higher spin

symmetries [65, 66] of the free orbifold CFT is reflected in the free worldsheet theory of

the PSU(1, 1|2)1 WZW model. Here we have seen that even in the NSR formalism, the

physical states of the k = 1 theory can be described by a free worldsheet theory. (This

observation was at the heart of the semiclassical exactness of the path integral.) This origin

of higher spin symmetries in a free worldsheet suggests many directions for exploration,

as also mentioned at the end of [2]. Moreover, the fact that we have a quasi-topological

description also fits well with old ideas about topological strings describing a symmetry

unbroken phase of string theory [67].

In particular, the Higgsing of these symmetries and their role in constraining the theory

away from the tensionless limit is something we can try to concretely address with our new

understanding of the relevant worldsheet correlators. Note that in the matching of the

spectrum in [1, 2], we had already identified the moduli of the orbifold CFT with states

in the worldsheet theory. When one deforms away from the free spacetime CFT, it is

reasonable to expect that correlation functions in the worldsheet CFT will no longer be

delta-function-localised but rather become smeared. It will be interesting to understand

how this smearing occurs. In this context, the techniques being developed in [68, 69] for

R-R deformations are likely to be useful.

We should mention that while our Ward identity analysis of the correlators determines

their structure, we have so far not yet solved them completely, see e.g. the function WΓ

in eq. (5.38) or the overall normalisation constant of the 3-point function (5.14).28 One

would expect that these data will be determined by null-vectors and crossing symmetry,

and furthermore, that the constraints on the worldsheet will correspond precisely to those

that are relevant for the dual CFT. Again, it would be interesting to work this out in

more detail. More generally, given that we now have a much better control over correlators

of spectrally flowed vertex operators for the SL(2,R) WZW model, it should be possible

to understand the structure of this CFT much better. Ultimately, a proof of crossing

symmetry generalising [70] to spectrally flowed sectors should be given.

We have discussed, in this paper, mostly the localisation for genus zero, but as we have

already explained in section 8, we expect the basic structure to be the same at arbitrary

genus. Our main argument for the localisation relied on the affine Ward identities on the

worldsheet. These exist also on higher Riemann surfaces, but become significantly more

complicated [71, 72]. It would be interesting to see whether they put similar constraints

on the correlation functions, which would give again a strong argument for localisation.

Note that the semiclassical argument for covering map saddle points dominating the path

integral goes through even for higher genus.

28The fact that the semiclassical path integral reduces to the Lunin-Mathur answer, which reproduces

the right three point functions [25, 26], suggests that this should work out correctly.
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We have concentrated on the case of AdS3 × S3 × M4 with M4 = T4 or K3, but

it would also be interesting to study the case M4 = S3 × S1, for which the detailed

worldsheet analysis was performed in [73], thereby confirming the duality proposal of [74].

The worldsheet representations that appear in [73] do not, in general, satisfy ji = k
2 , and it

would therefore be interesting to see how the analysis of the correlators works in that case.

To sum up, we now have at our disposal a concrete but yet highly nontrivial instance

of the AdS/CFT correspondence where one has insight into how and why this amazing

duality holds. It illustrates the fact that the tensionless limit of AdS string theories can

serve as a useful starting point for deriving this correspondence. We indeed hope that this

example will pave the way for a general derivation of gauge-string duality.
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A The solution in the general case

In this appendix, we essentially repeat the analysis of section 5.3 to show that (5.38) is

indeed a solution to the recursion relations of sections 4.3.

To do so, we assume again that the insertion points are generic, so that infinity does

not have to be treated as a special point. Moreover, since the relations are linear, we may

prove them term by term in the sum of (5.38). Thus, in the following we shall fix one

covering map Γ corresponding to w1, . . . , wn and show that

〈 n∏
i=1

V wi
hi

(xi; zi)
〉

=
n∏
i=1

(aΓ
i )−hi

n∏
i=4

δ(xi − Γ(zi))WΓ(z1, . . . , zn) (A.1)

solves the recursion relations. We should mention that the function WΓ is further restricted

by requiring the conformal Ward identities on the worldsheet. We also recall that Γ in

this formula denotes the covering map for which Γ(z4), . . . , Γ(zn) are unspecified, see the

discussion after (5.38).
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Because of the delta functions in the correlators, we have the distributional identity

f(Γ(zi))
〈 n∏
i=1

V wi
hi

(xi; zi)
〉

= f(xi)
〈 n∏
i=1

V wi
hi

(xi; zi)
〉

(A.2)

for any continuous function f . This means that one can effectively replace all xi by Γ(zi)

in the formulae and vice versa. The situation is however more subtle than this since

F̂ j0 = ∂xj

〈 n∏
i=1

V wi
hi

(xi; zi)
〉

(A.3)

=

n∏
i=1

(aΓ
i )−hi δ′(xj − Γ(zj))

n∏
i 6=j

δ(xi − Γ(zi))WΓ(z1, . . . , zn) + · · · , (A.4)

where the further terms arise from derivatives acting on the ai. The point to stress here is

that the expressions will in general also contain (a single) first derivative of a delta function

(in addition to the other δ functions). This single derivative can be turned into a usual δ

function by means of the identity

(xj − Γ(zj)) δ
′(xj − Γ(zj)) = −δ(xj − Γ(zj)) . (A.5)

However, because of the appearance of these derivatives, we need to be very careful when

performing the replacements xi ←→ Γ(zi).

A.1 The δ′ terms

In order to deal with this issue, we shall first extract the δ′ terms by defining

Ĝ(p)(z) = (xp − Γ(zp)) Ĝ(z) (A.6)

= (xp − Γ(zp))

n∑
i=1

wi∑
`=0

(Γ(z)− xi)2

(z − zi)`+1
F̂ i` , (A.7)

where p = 4, . . . , n, and Ĝ(z) is defined by

Ĝ(z) =

n∑
i=1

(
−2(Γ(z)− xi)hi

z − zi

〈 n∏
l=1

V wl
hl

(xl; zl)
〉

+

wi∑
`=0

(Γ(z)− xi)2

(z − zi)`+1
F̂ i`

)
. (A.8)

(This differs from the natural generalisation of the function G(z), see (5.18), by multiplying

through with the correlator.) The prefactor (xp − Γ(zp)) guarantees that the only terms

that contribute are those that contain the factor δ′(xp−Γ(zp)). Multiplying by (xp−Γ(zp))

then turns δ′(xp−Γ(zp)) into a regular δ function by means of the identity (A.5), and thus

Ĝ(p)(z) only contains δ functions (and no derivatives of δ functions). Furthermore, all of

them necessarily arise from the second term in the bracket of Ĝ(z) — the first term does

not contain any derivatives of δ functions.

It therefore follows that we can directly perform the replacements xi ←→ Γ(zi) in

the expressions of Ĝ(p)(z). By the same reasoning as in section 5.3, we have for each
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j = 1, . . . , n and each m = 0, . . . , wj − 2

0 = ∂mz Ĝ
(p)(zj) =

(xp − Γ(zp))

m!
∂mz
∑
i 6=j

wi∑
`=0

(xj − xi)2

(z − zi)`+1
F̂ i`

∣∣∣∣∣
z=zj

(A.9)

= (xp − Γ(zp))

〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉∣∣∣∣∣
(z−zj)m

, (A.10)

where we have dropped the first term in the expression for Ĝ(z) since it does not contribute

to Ĝ(p)(z) (as explained above). The same argument as in section 5.3 shows now that

Ĝ(p)(z) = α(p)∂Γ(z) , (A.11)

where α(p) is again a function of xi, zi, hi, ji and k. We can compute α(p) by the same

strategy as in the 3-point function case in section 5.3, see eqs. (5.26)–(5.31). This leads to

α(p)N = (xp − Γ(zp))
n∑
j=1

(
aΓ
j F̂

j
wj
− hj

〈 n∏
i=1

V wi
hi

(xi; zi)
〉)

= 0 , (A.12)

which vanishes since the term in brackets does not contain any derivatives of δ functions.

This is, by assumption, the case for the correlation functions, and it also applies similarly

to F̂ jwj since this also equals a correlation function, albeit one for which hj has been shifted

to hj + 1, see eq. (4.14).

Thus, we conclude that while the F̂ j` themselves generically contain derivatives of δ

functions, these cancel out once we consider Ĝ(z). Thus Ĝ(z) will only contain delta

functions themselves.

A.2 The δ terms

Let us now start again, and try to apply the arguments of section 5.3 to Ĝ(z). First we

want to show that ∂mz Ĝ(zj) = 0 for every j = 1, . . . , n and m = 0, . . . , wj − 2 is equivalent

to the constraint equations. For j = 1, 2, 3, this works exactly as for the 3-point function

case of section 5.3. Let us therefore consider the expansion around zj with j ≥ 4. For

m = 0, . . . , wj − 1 we get

∂mz
m!

Ĝ(z = zj) =
∂mzj
m!

〈(
J−(z)− 2xjJ

3(z) + x2
jJ

+(z)
) n∏
i=1

V wi
hi

(xi; zi)

〉∣∣∣∣∣
z=zj

+
∂mz
m!

n∑
i=1

wi∑
`=0

2(Γ(zj)− xj)(Γ(z)− xi)
(z − zi)`+1

F̂ i`

∣∣∣
z=zj

+ δm,wj−1

(
− 2aΓ

j hj + (aΓ
j )2F̂ jwj

)
, (A.13)

where the last term arises as in the second line of eq. (5.33), while the middle line comes

from the last term in (A.8) and requires more effort. To see how to get it, we first expand

out (Γ(z)− xi)2 near z = zj as

(Γ(z)− xi)2 =
(
(Γ(z)− xj) + (xj − xi)

)2
= (Γ(z)− xj)2 + 2(Γ(z)− xj)(xj − xi) + (xj − xi)2 . (A.14)
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The last term in (A.14) is what actually appears in the correlator, see eq. (5.15) (and hence

is already contained in the first line of (A.13)). The middle term can be simplified as

∑
i 6=j

wi∑
`=0

2(Γ(z)− xj)(xj − xi)
(z − zi)`+1

F̂ i`
∼=
∑
i 6=j

wi∑
`=0

2(Γ(zj)− xj)(xj − xi)
(z − zi)`+1

F̂ i`

∼=
∑
i 6=j

wi∑
`=0

2(Γ(zj)− xj)(Γ(z)− xi)
(z − zi)`+1

F̂ i` , (A.15)

where ∼= means up to terms of order (z − zj)wj . Here we have, in the first step, replaced

Γ(z) 7→ Γ(zj)+aΓ
j (z−zj)wj ; in the resulting expression F̂ i` is then multiplied by (Γ(zj)−xj),

and hence contains at most a δ-function (but not a δ′-function any more). Then we can

replace in a second step (xj − xi) 7→ (Γ(z)− xi).
Finally, for the first term in (A.14) we write

(Γ(z)− xj)2 =
((

Γ(z)− Γ(zj)
)

+
(
Γ(zj)− xj

))2
(A.16)

=
(
Γ(z)− Γ(zj)

)2
+ 2
(
Γ(z)− Γ(zj)

)
·
(
Γ(zj)− xj

)
+
(
Γ(zj)− xj

)2
.

The last term vanishes when multiplying F̂ i` , since F̂ i` contains at most a δ′-function, and

the first term goes as (aΓ
j )2(z − zj)2w, and hence only contributes if i = j and ` = wj − 1

— in fact, this is precisely the very last term of eq. (A.13). We therefore only have to deal

with the middle term of (A.16) which leads to

n∑
i=1

wi∑
`=0

2(Γ(z)− Γ(zj))(Γ(zj)− xj)
(z − zi)`+1

F̂ i`
∼=

wj∑
`=0

2(Γ(z)− Γ(zj))(Γ(zj)− xj)
(z − zj)`+1

F̂ j`

∼=
wj∑
`=0

2(Γ(z)− xj)(Γ(zj)− xj)
(z − zj)`+1

F̂ j` , (A.17)

where we have first used that only the term i = j contributes (because of the factor of

(Γ(z) − Γ(zj)). In the resulting expression F̂ j` is multiplied by (Γ(zj) − xj), and hence

only contains (at most) a δ-function; thus we can replace in the other factor Γ(zj) 7→ xj .

Combining (A.15) with (A.17) then leads to the middle line of (A.13), i.e. to

H(z) ≡
n∑
i=1

wi∑
`=0

2(Γ(zj)− xj)(Γ(z)− xi)
(z − zi)`+1

F̂ i` . (A.18)

Our next aim is to show that H(z) = 0. To do so, we notice that H(z) has no poles at the

insertion points zi. The residue of the potential single pole is absent since F̂ iwi
does not

contain derivatives of δ functions and hence vanishes upon multiplication with (Γ(zj)−xj).
H(z) has potentially simple poles at z∗a, the locations of the simple poles of Γ(z). Their

residue however vanishes, since

Res
z=z∗a

H(z) = −2 Res
z=z∗a

G(j)(z)

Γ(z)
= 0 , (A.19)
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and we have used that G(j)(z) vanishes identically, as shown above. Since also H(z) → 0

as z →∞, we conclude that also H(z) = 0 identically.

Coming back to eq. (A.13), it now follows that

∂mz Ĝ(z = zj) = 0 (A.20)

for m = 0, . . . , wj − 2, since then only the first line contributes, and it vanishes by virtue

of the constraint equations of section 4.1, see eq. (4.7). Thus, by the same arguments as

in section 5.3 we deduce that

Ĝ(z) = α∂Γ(z)
〈 n∏
l=1

V wl
hl

(xl; zl)
〉
. (A.21)

Finally, we compute α along the lines of eqs. (5.26)–(5.31). The first steps are identical,

and we only show the changes from eq. (5.30) onwards,

αN
〈 n∏
l=1

V wl
hl

(xl; zl)
〉

= −
N∑
a=1

∮
z∗a

dz
Ĝ(z)

Γ(z)

=

n∑
j=1

wj∑
`=0

(∮
zj

dz
Γ(zj) + aΓ

j (z − zj)wj + · · ·
(z − zj)`+1

F̂ j` − δ`,0Γ(∞)F̂ j0

)

=

n∑
j=1

(
Γ(zj)F̂

j
0 + aΓ

j F̂
j
wj

)
. (A.22)

To compute the first term further, we notice that because of (A.5) we have for j = 4, . . . , n

Γ(zj)F̂
j
0 = xjF̂

j
0 +

〈 n∏
i=1

V wi
hi

(xi; zi)
〉
. (A.23)

Then we can use the Ward identity and conclude

α =
1

N

[
n∑
j=1

aΓ
j F

j
wj

+

(n− 3)−
n∑
j=1

hj

] . (A.24)

Finally, we again compute the derivative of Ĝ at zj to order wj − 1, which will yield the

recursion relations. For Ĝ(z), we have already done this in (A.13). We then compare this

with the same derivative of α∂Γ(z)〈· · · 〉. Equality of the two expressions are the recursion

relations. It is now straightforward to check that they are solved by (5.38), provided that

eq. (5.39) holds. Note that the correction term (n−3) relative to the “naive” answer comes

from the derivatives of the delta functions.

B The “secret” representation

In this appendix we want to explain that in the Wakimoto representation of the worldsheet

theory, there exists a natural representation S that behaves as the vacuum representation
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with respect to sl(2,R)k+2, but is non-trivial with respect to the action of γ(z) and ∂Φ(z).

Abstractly, the relevant representation can be described by the short exact sequence (with

respect to sl(2,R)k+2)

0 −→ σ−1(D+

j= k+2
2

) −→ S −→ σ−1(D−
j= k

2

) −→ 0 . (B.1)

We should mention that σ−1(D+

j= k+2
2

) is the vacuum representation of sl(2,R)k+2, and

hence there is indeed a state |S〉 ∈ S with the required properties. The representation S

is indecomposable with respect to the sl(2,R)k+2 current algebra, but it is irreducible with

respect to the full (Wakimoto) algebra.

The “vacuum” state |S〉 = |0〉 in S is part of a family of states |h〉, on which the

spectrally flowed zero-modes of the currents and γ1 act as29

γ1|h〉 = |h− 1〉 , (B.2a)

J3
0 |h〉 = h|h〉 , (B.2b)

J+
−1|h〉 = (h+ k + 2)|h+ 1〉 , (B.2c)

J−1 |h〉 = h|h− 1〉 . (B.2d)

Furthermore, we have Jan |S〉 = 0 for all n ≥ 0. The eigenvalue of (∂Φ)0 on |S〉 is

(∂Φ)0|S〉 =
1

k
(−J3

0 + (J+γ)0) |S〉 (B.3)

=
1

k
J+
−1γ1 |S〉 (B.4)

=
k + 1

k
|S〉 . (B.5)

This is almost the value we would have expected (namely 1). However, since ∂Φ has

a background charge, the residues may receive shifts. The actual value of the residues

can be explained from the anomalous transformation behaviour of ∂Φ under conformal

transformations that is described in appendix C.

C The structure of ∂Φ

In this appendix, we explain the transformation behaviour of ∂Φ which in particular de-

termines its background charge. To start with we note that

[Lm, ∂Φ(z)] = −m(m+ 1)

2k
zm−1 + (m+ 1)zm∂Φ(z) + zm+1∂2Φ(z) , (C.1)

which follows from using the formula for the stress energy tensor in terms of Wakimoto

fields. This can be integrated to the transformation formula

∂̃Φ(z) =
(
∂f(f−1(z))

)−1
(
∂Φ(f−1(z)) +

∂2f(f−1(z))

2k ∂f(f−1(z))

)
. (C.2)

29Note that since γ(z) has conformal dimension zero, a pole in γ(z) corresponds to a non-trivial action

of γ1.
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Hence, under the conformal transformation z → −1
z , we find

∂̃Φ(z) =
1

z2
∂Φ

(
−1

z

)
+

1

kz
, (C.3)

and thus, in particular,

(∂Φ)†0 = −(∂Φ)0 +
1

k
. (C.4)

This implies the anomalous charge conservation (6.13). As a consequence there is the

charge − 1
k sitting at infinity in z-space.

For the computation of the background charge in the ∂Φ correlator we also need to

understand the transformation behaviour of ∂Φ with respect to the spacetime Virasoro

algebra. Using the explicit form of these generators [30]

Lm =

∮
dz

(
(1−m2)(γmJ3) +

1

2
m(m− 1)(γm+1J+) +

1

2
m(m+ 1)(γm−1J−)

)
(z) ,

(C.5)

we find

[Lm, ∂Φ(z)] =
1

2
m(m+ 1)(γm−1∂γ)(z) , (C.6a)

[Lm, γ(z)] = −γm+1(z) . (C.6b)

Upon integration this leads to the (formal) transformation rule under a finite transforma-

tion

∂̃Φ(z) = ∂Φ(z)− (∂2f)(γ(z))

2 (∂f)(γ(z))
∂γ(z) , (C.7a)

γ̃(z) = f(γ(z)) . (C.7b)

Thus under the conformal transformation x→ − 1
x , we have

∂̃Φ(z) = ∂Φ(z) + (γ−1∂γ)(z) = ∂Φ(z)− (γ̃−1∂γ̃)(z) . (C.8)

Remembering that
∮

dz γ−1∂γ = I is the spacetime identity [23, 30], we see that the

positions where x is at infinity, x = ∞, carry an additional charge of 1, thus correctly

reproducing the structure we found in the main text.
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