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1 Introduction

The study of spacetime symmetries has proved to be fundamental for analyzing and un-

derstanding various physical models. For instance, think of Newtonian gravity, Maxwell’s

electromagnetism, special and general relativity, string and supergravity theory. Most of

these theories are based on relativistic symmetries. On the other hand, during the years

models with non-relativistic symmetries have also been developed and analyzed, and and

are still the subject of in-depth studies.

In this context, Carroll symmetries [1, 2], arising when the velocity of light is sent to

zero (i.e., in the ultra-relativistic limit, c → 0), have attracted some interest over recent

years. In fact, models with Carroll symmetries occurred in the literature in the study of
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tachyon condensation [3], warped conformal field theories [4], and tensionless strings [5–

9]. Moreover, a study exploring the Carroll limit corresponding to M2- as well as M3-

branes propagating over D = 11 supergravity backgrounds in M-theory has been recently

presented in [10].

Concerning gravity theories, models of Carrollian (i.e., ultra-relativistic) gravity have

been developed and analyzed in [11–13]. In particular, non- and ultra-relativistic Chern-

Simons (CS) type actions in 2 + 1 dimensions were constructed in [12], where the authors

included a spin-3 field coupled to gravity. The geometry of flat and Anti-de Sitter (AdS)

Carroll spaces were investigated, both in the bosonic as well as in the supersymmetric case,

in [14], were the authors focused on the symmetries of a particle moving in such spaces.

Afterwards, in [15], the AdS Carroll CS gravity theory was discussed for the first time.1

Non-relativistic symmetry groups play a remarkable role also in holography [18–34].

More specifically, in the work [24], connections among Carrollian physics, holography of

flat space, and the Bondi-Metzner-Sachs (BMS) algebra were discovered and followed up

in [25] (see also refs. [26, 27] and [28]). Besides, conformal extensions of the Carroll group

were explored and related to the BMS group in [29, 30], while in [31–34] it was shewed

the way in which Carrollian structures and geometry emerge in the flat holography and

fluid/gravity correspondence framework.

Recently, in [35] the construction of the three-dimensional N = 1 CS supergravity

theory invariant under the so-called AdS Carroll superalgebra (ultra-relativistic contraction

of the N = 1 AdS superalgebra, see [14]), together with the study of its flat limit, has been

presented for the first time. In the study done in [35], the method introduced in [36] was

adopted. In [36] a generalization of the standard Inönü-Wigner (IW) contraction [37, 38]

was presented, consisting in rescaling not only the generators of a Lie (super)algebra but

also the arbitrary constants appearing in the components of the invariant tensor; the latter

is the key ingredient for formulating an action à la CS, that is invariant under the IW

contracted (super)algebra by construction. This procedure was further improved in [35] by

considering dimensionful generators from the very beginning, on the same lines of [39]. As

shown in the same paper, this allows to obtain, for instance, the Poincaré limit from the

osp(2|2)⊗ sp(2) CS supergravity action directly considering the flat limit `→∞, being `

the length parameter related to the cosmological constant.

Moving to higher N , we have that the N = 2 supersymmetric extensions of the

Poincaré and AdS algebras are not unique, and can be subdivided into two inequivalent

classes: the (2, 0) and the (1, 1) cases. Here we mention that, in the extension to the (p, q)

case, when either p or q is greater than one some subtleties arise. Indeed, even though

the (p, q) Poincaré superalgebra can be derived as an IW contraction of the (p, q) AdS

superalgebra, the Poincaré limit applied at the level of the (CS) action requires to enlarge

the AdS superalgebra, considering, in particular, a direct sum of an so(p)⊕so(q) algebra and

the (p, q) AdS superalgebra osp(2|p)⊗ osp(2, q) [40–42]; this is related to the fact that, as

it was proven in [40], the semi-direct extension of the so(p)⊕ so(q) automorphism algebra

1Here let us also mention that the geometric realization of the (A)dS Carroll algebra corresponds to a

null surface of (A)dS space (see refs. [16, 17]).
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by the (p, q) Poincaré superalgebra allows to produce a non-degenerate invariant tensor

which is used to construct a well-defined three-dimensional CS (p, q) Poincaré supergravity

theory (in particular, when either p or q is greater than one, it is not possible to obtain a

non-degenerate invariant tensor without considering this extension).

It is well assumed that a (super)gravity theory in three spacetime dimensions can be

described by a CS action as a gauge theory, providing a useful toy model to approach higher-

dimensional models [43–51]. In the last decades, diverse three-dimensional supergravity

theories have been studied, and, in this context, there has also been a growing interest

to extend AdS and Poincaré supergravity theories to other symmetries (see [39, 52] and

references therein).

In the present work, we apply the method of [36] with the improvements of [35] to

develop in a systematic way the ultra-relativistic N -extended AdS CS supergravity theories

in three (that is 2 + 1) spacetime dimensions invariant under N -extended AdS Carroll

superalgebras. In particular, we will distinguish between the two N -extended cases N =

(N , 0) and N = (p, q), generalizing the results presented at the algebraic level in [14]

and also developing the associated CS supergravity theories in three dimensions. More

specifically, we start by considering the (2, 0) and (1, 1) cases, and then generalize our

analysis to N = (N , 0), with N even, and to N = (p, q), that is N = p + q, with

p, q > 0.2 The N -extended AdS Carroll superalgebras are obtained through the Carrollian

(i.e., ultra-relativistic) contraction applied to an so(2) extension of osp(2|2) ⊗ sp(2), to

osp(2|1)⊗ osp(2, 1), to an so(N ) extension of osp(2|N )⊗ sp(2) (with N even), and to the

direct sum of an so(p)⊕so(q) algebra and osp(2|p)⊗osp(2, q), respectively. Let us mention

that the N = (N , 0) case (and thus also the N = (2, 0) one) will be more subtle, since

it will require the definitions of new supersymmetry generators in order to properly study

the Carroll limit, on the same lines of what was done in [14] (see also [53], which deals with

non-relativistic superalgebras, and references therein). The ultra-relativistic N -extended

AdS Carroll supergravity actions are constructed à la CS, by exploiting the non-vanishing

components of the corresponding invariant tensor. The aforementioned actions are all

based on a non-degenerate, invariant bilinear form (i.e., an invariant metric). The results

we have obtained in the present work were also open problems suggested in ref. [14], and

represent N -extended generalizations of [35].

Subsequently, we study the flat limit (` → ∞, being ` the length parameter) of

the aforesaid N -extended CS AdS Carroll supergravities, in which we recover the ultra-

relativistic N -extended (flat) CS supergravity theories invariant under N -extended super-

Carroll algebras. The flat limit is applied at the level of the superalgebras, CS actions,

supersymmetry transformation laws, and field equations.

The remain of the paper is organized as follows: in section 2, we first introduce a new

N = (2, 0) AdS Carroll superalgebra, which is obtained as the ultra-relativistic contraction

of an so(2) extension of osp(2|2) ⊗ sp(2). Here, the so(2) extension is necessary in order

to end up with an invariant non-degenerate inner product in the ultra-relativistic limit,

2We concentrate on the N = (N , 0) case with N even in order to reproduce a well-defined ultra-

relativistic limit at the supersymmetric level (see also [53] and references therein, which deals with similar

situations but in the non-relativistic limit c→∞).
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providing a well-defined CS action. In fact, this allows us to subsequently develop the three-

dimensional CS supergravity action invariant under the (2, 0) AdS Carroll superalgebra,

which we call (2, 0) CS AdS Carroll supergravity in 2 + 1 dimensions. In section 3, we

repeat the same analysis for the (1, 1) case, ending up with the CS supergravity action

invariant under the (1, 1) AdS Carroll superalgebra. Subsequently, we generalize our study

to the cases of N = (N , 0), with N even, and N = (p, q), with p, q > 0, respectively in

sections 4 and 5. In section 6, we discuss the flat limit `→∞ of the N -extended CS AdS

Carroll supergravities introduced in the previous part of the work. Section 7 contains some

final comments and remarks.

2 (2, 0) AdS Carroll supergravity in 2 + 1 dimensions

In this section, we first introduce a new N = (2, 0) AdS Carroll superalgebra, which

is obtained as the ultra-relativistic contraction of an so(2) extension of osp(2|2) ⊗ sp(2).

The so(2) extension of osp(2|2)⊗ sp(2) is needed in order to end up with an invariant non-

degenerate inner product in the ultra-relativistic limit, namely with a well-defined invariant

tensor (this is reminescent of what was done in [40] in the case of relativistic theories), in

such a way to be able to construct a well-defined CS action. Indeed, this allows us to

subsequently develop the three-dimensional CS supergravity action invariant under this

N = (2, 0) AdS Carroll superalgebra, which we call (2, 0) CS AdS Carroll supergravity.

Let us mention, here, that a N = (2, 0) AdS Carroll superalgebra has been first

introduced in [14]. Nevertheless, due to the degeneracy of the invariant tensor for that

superalgebra, one could not construct a well-defined CS action in that case. On the other

hand, as we will see in the following, our N = (2, 0) AdS Carroll superalgebra will be

different from the one presented in [14], allowing, in particular, the formulation of a three-

dimensional CS action in the supergravity context.

2.1 N = (2, 0) AdS Carroll superalgebra

An N = (2, 0) supersymmetric extension of the AdS Carroll algebra was obtained in [14]

as the ultra-relativistic contraction of osp(2|2) ⊗ sp(2), the latter being generated by the

set {J̃AB, P̃A, Z̃ij , Q̃iα}, with A,B, . . . = 0, 1, 2, α = 1, 2, and i = 1, 2, where J̃AB are

the Lorentz generators, P̃A represent the spacetime translations, Z̃ij = εijZ̃ are internal

symmetry generators, and Q̃iα are the supersymmetry generators (2-components Majorana

spinor charges). The (anti)commutation relations of osp(2|2)⊗ sp(2) read as follows:[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,[

P̃A, P̃B

]
=

1

`2
J̃AB ,[

J̃AB, Q̃
i
α

]
= −1

2

(
ΓABQ̃

i
)
α
,

[
P̃A, Q̃

i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,[

Z̃, Q̃iα

]
= −εijQ̃jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+

1

`
εijCαβZ̃ , (2.1)
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where ` is a length parameter, C is the charge conjugation matrix, and ΓA and ΓAB
represent the Dirac matrices in three dimensions. The generators J̃AB, P̃A, Z̃ij , and Q̃iα
have a dual description in terms of 1-form fields, ω̃AB (spin connection), Ṽ A (vielbein), z̃ij
(1-form field dual to the generator Z̃ij), and ψ̃αi (gravitinos), respectively.

Here, we consider the ultra-relativistic contraction of an so(2) extension of osp(2|2)⊗
sp(2), involving an extra generator S̃ij = εijS̃. This will allow the formulation of a well-

defined ultra-relativistic CS action, based on a non-degenerate invariant tensor, which

would not be possible by considering the N = (2, 0) superalgebra of [14]. In particular, we

extend (2.1) by adding the extra S̃ generator and we perform, on the same lines of [40],

the redefinition

T̃ ≡ Z̃ − `S̃ , (2.2)

to eliminate Z̃ in favour of T̃ (this redefinition is particularly convenient for discussing the

flat limit, see also [40]). Consequently, we rewrite the (anti)commutation relations (2.1) as

follows (we consider dimensionful generators from the very beginning, on the same lines

of [39]):3[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,[

P̃A, P̃B

]
=

1

`2
J̃AB ,[

J̃AB, Q̃
i
α

]
= −1

2

(
ΓABQ̃

i
)
α
,

[
P̃A, Q̃

i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,[

T̃ , Q̃iα

]
= −εijQ̃jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+ εijCαβ

(
1

`
T̃ + S̃

)
. (2.3)

Note that, in the flat limit ` → ∞, S̃ becomes the central element of the N = (2, 0)

Poincaré superalgebra extended with the extra so(2) generator T̃ (see [40]).

The non-vanishing components of an invariant tensor for the superalgebra (2.3), which

will be useful in the sequel, are given by

〈J̃ABJ̃CD〉 = α0 (ηADηBC − ηACηBD) ,

〈J̃ABP̃C〉 = α1εABC ,

〈P̃AP̃B〉 =
α0

`2
ηAB ,

〈T̃ T̃ 〉 = − 2α0 ,

〈T̃ S̃〉 = 2α1 ,

〈S̃S̃〉 = − 2α1

`
,

〈Q̃iαQ̃
j
β〉 = 2

(
α1 −

α0

`

)
Cαβδ

ij , (2.4)

3We use the metric ηAB with the signature (−,+,+).
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where εABC is the Levi-Civita symbol in three dimensions and α0 and α1 are arbitrary

constants.

To take the Carrollian (i.e., ultra-relativistic) contraction of the superalgebra (2.3), we

decompose the indices A,B, . . . as

A→ (0, a) , a = 1, 2 . (2.5)

This first step induces the following decomposition of the generators:

J̃AB → {J̃ab, J̃a0 ≡ K̃a} , P̃A → {P̃a, P̃0 ≡ H̃} . (2.6)

We also have

ΓAB → {Γab,Γa0} , ΓA → {Γa,Γ0} . (2.7)

Furthermore, we define new supersymmetry charges by

Q̃±α =
1√
2

(
Q̃1
α ± (Γ0)αβ Q̃

2
β

)
, (2.8)

on the same lines of what was done in [54] (see also references therein) in the study of

supersymmetric non-relativistic models. Then, we rescale the generators with a parameter

σ as follows:

H̃ → σH , K̃a → σKa , S̃ → σS , Q̃±α →
√
σQ±α . (2.9)

Taking the limit σ →∞,4 and removing the tilde symbol also on the generators that we have

not rescaled, we end up with a new N = (2, 0) AdS Carroll superalgebra (differing from the

one of [14], due to the presence of the generator S), whose non-trivial (anti)commutation

relations read as follows:

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,

[Pa, Pb] =
1

`2
Jab ,

[Pa, H] =
1

`2
Ka ,[

Jab, Q
±
α

]
= − 1

2

(
ΓabQ

±)
α
,[

Pa, Q
±
α

]
= − 1

2`

(
ΓaQ

∓)
α
,[

T,Q+
α

]
= (Γ0)αβ Q

+
β ,[

T,Q−α
]

= − (Γ0)αβ Q
−
β ,

4Let us highlight that σ → ∞ corresponds to the limit 1
c
→ ∞ (where c denotes the velocity of light),

that is c→ 0 (ultra-relativistic limit).
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{
Q+
α , Q

+
β

}
=
(
Γ0C

)
αβ

(H + S) ,{
Q+
α , Q

−
β

}
= − 1

`

(
Γa0C

)
αβ
Ka ,{

Q−α , Q
−
β

}
=
(
Γ0C

)
αβ

(H − S) . (2.10)

We will now construct a CS supergravity action in three dimensions invariant under the

N = (2, 0) AdS Carroll superalgebra (2.10): the (2, 0) AdS Carroll CS supergravity action.

2.2 (2, 0) AdS Carroll supergravity action

The general form of a three-dimensional CS action is given by

ICS =
k

4π

∫
M

〈
AdA+

2

3
A3

〉
=

k

4π

∫
M

〈
AdA+

1

3
A [A,A]

〉
, (2.11)

where k = 1/(4G) is the CS level of the theory,5 A is the gauge connection 1-form, and 〈. . .〉
denotes the invariant tensor. The integral in (2.11) is over a three-dimensional manifold

M.6 The CS action (2.11) can also be rewritten as

ICS =
k

4π

∫
M

〈
AF − 1

3
A3

〉
, (2.12)

in terms of the curvature 2-form F = dA+A2 = dA+ 1
2 [A,A].

In the case of the N = (2, 0) AdS Carroll superalgebra (2.10), the connection 1-form

reads7

A =
1

2
ωabJab + kaKa + V aPa + hH + tT + sS + ψ+Q+ + ψ−Q− , (2.13)

where ωab, ka, V a, h, t, s, ψ+, and ψ− are the 1-form fields dual to the generators Jab, Ka,

Pa, H, T , S, Q+, and Q−, respectively.

The corresponding curvature 2-form F is

F =
1

2
RabJab +KaKa +RaPa +HH + T T + SS +∇ψ+Q+ +∇ψ−Q− , (2.14)

with

Rab = dωab +
1

`2
V aV b = Rab +

1

`2
V aV b ,

Ka = dka + ωabk
b +

1

`2
V ah+

1

`
ψ̄+Γa0ψ− = Ka +

1

`2
V ah+

1

`
ψ̄+Γa0ψ− ,

Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− = H− 1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− ,

T = dt ,

5For gravitational theories, the CS level is related to the gravitational constant G.
6In the sequel, we will omit the wedge product “∧” between differential forms.
7Here and in the following, for simplicity, we will omit the spinor index α.
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S = ds− 1

2
ψ̄+Γ0ψ+ +

1

2
ψ̄−Γ0ψ− ,

∇ψ+ = dψ+ +
1

4
ωabΓabψ

+ +
1

2`
V aΓaψ

− − tΓ0ψ
+ ,

∇ψ− = dψ− +
1

4
ωabΓabψ

− +
1

2`
V aΓaψ

+ + tΓ0ψ
− . (2.15)

Now, in order to formulate a CS action of the form (2.11) invariant under theN = (2, 0)

super-AdS Carroll group, we make use of the connection 1-form given in (2.13) and of the

corresponding non-vanishing components of the invariant tensor.

Concerning, in particular, the invariant tensor, we now apply the method of [36],

meaning that we rescale not only the generators but also the coefficients appearing in the

invariant tensor before applying the, in the present case, ultra-relativistic contraction, in

order to end up with a non-trivial invariant tensor for the contracted (super)algebra on

which the CS theory will be based. Specifically, we consider the non-vanishing components

of the invariant tensor for the so(2) extension of osp(2|2)⊗sp(2) (see (2.3)) given in (2.4), we

decompose the indices as in (2.5) and consider the new supersymmetry charges (2.8), and

then we rescale not only the generators in compliance with (2.9) but also the coefficients

appearing in (2.4) as follows:

α0 → α0 , α1 → σα1 . (2.16)

Taking the limit σ → ∞, we end up with the following non-vanishing components of an

invariant tensor for the N = (2, 0) AdS Carroll superalgebra:

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈PaPb〉 =
α0

`2
δab ,

〈TT 〉 = − 2α0 ,

〈TS〉 = 2α1 ,

〈Q+
αQ

+
β 〉 = 〈Q−αQ−β 〉 = 2α1Cαβ . (2.17)

This bilinear form is non-degenerate if α1 6= 0.

After that, using the connection 1-form in (2.13) and the non-vanishing components of

the invariant tensor given in (2.17) in the general expression (2.11) for a three-dimensional

CS action, we can finally write the (2, 0) AdS Carroll CS supergravity action in three

spacetime dimensions invariant under (2.10), which reads as follows:

I
(2,0)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa − 4tdt

)
+α1

(
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh

+ 4tds+ 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−
)
− d
(
α1

2
εabω

abh− α1εabk
aV b − 2α1ts

)}
, (2.18)
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written in terms of the curvatures appearing in (2.15). We can see that in (2.18) we have

two different sectors, one proportional to α0 and the other proportional to α1. Observe that

the term proportional to α0 corresponds to the exotic Lagrangian involving the Lorentz

contribution, a torsional piece, and a contribution from the 1-form field t, while it does not

contain any contribution from the 1-form fields ψ+ and ψ−. Let us mention that the CS

action (2.18) can also be rewritten up to boundary terms as

I
(2,0)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa − 4tdt

)
+ α1

(
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh+ 4tds+ 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−
)}

.

(2.19)

The CS action (2.18), characterized by two coupling constants α0 and α1, is invariant

by construction under the N = (2, 0) AdS Carroll superalgebra (2.10). In particular, the

local gauge transformations δλA = dλ+ [A, λ] with gauge parameter

λ =
1

2
λabJab + κaKa + λaPa + τH + ϕT + ςS + ε+Q+ + ε−Q− (2.20)

are given by

δωab = dλab +
2

`2
V [aλb] ,

δka = dκa − λabkb + ωabκ
b − 1

`2
λah+

1

`2
V aτ − 1

`
ε̄+Γa0ψ− − 1

`
ε̄−Γa0ψ+ ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δt = dϕ ,

δs = dς + ε̄+Γ0ψ+ − ε̄−Γ0ψ− ,

δψ+ = dε+ − 1

4
λabΓabψ

+ +
1

4
ωabΓabε

+ − 1

2`
λaΓaψ

− +
1

2`
V aΓaε

− + ϕΓ0ψ
+ − tΓ0ε

+ ,

δψ− = dε− − 1

4
λabΓabψ

− +
1

4
ωabΓabε

− − 1

2`
λaΓaψ

+ +
1

2`
V aΓaε

+ − ϕΓ0ψ
− + tΓ0ε

− .

(2.21)

Restricting ourselves to supersymmetry, we have

δωab = 0 ,

δka = −1

`
ε̄+Γa0ψ− − 1

`
ε̄−Γa0ψ+ ,

δV a = 0 ,

δh = ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

– 9 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
8

δt = 0 ,

δs = ε̄+Γ0ψ+ − ε̄−Γ0ψ− ,

δψ+ = dε+ +
1

4
ωabΓabε

+ +
1

2`
V aΓaε

− − tΓ0ε
+ ,

δψ− = dε− +
1

4
ωabΓabε

− +
1

2`
V aΓaε

+ + tΓ0ε
− . (2.22)

The equations of motion obtained from the variation of the action (2.18) with respect

to the fields ωab, ka, V a, h, t, s, ψ+, and ψ− are, respectively,

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a :
α0

`2
Ra + 2α1εabKb = 0 ,

δh : α1Rab = 0 ,

δt : −α0T + α1S = 0 ,

δs : α1T = 0 ,

δψ+ : α1∇ψ+ = 0 ,

δψ− : α1∇ψ− = 0 , (2.23)

up to boundary terms, and we can see that when α1 6= 0 they reduce to the vanishing of

the (2, 0) super-AdS Carroll curvature 2-forms, namely

Rab = 0 , Ka = 0 , Ra = 0 , H = 0 , T = 0 , S = 0 , ∇ψ+ = 0 , ∇ψ− = 0 .

(2.24)

Here, we can also observe that α1 6= 0 is a sufficient condition to recover (2.24), meaning

that one could consistently set α0 = 0, which corresponds to the vanishing of the exotic

term in the CS action (2.18).

3 (1, 1) AdS Carroll supergravity in 2 + 1 dimensions

In this section, we repeat the analysis done in section 2 in the (1, 1) case. To this aim, we

first review the derivation of the N = (1, 1) AdS Carroll superalgebra introduced in [14],

which is obtained as the ultra-relativistic contraction of osp(2|1) ⊗ osp(2, 1). Then, we

write the non-vanishing components of the invariant tensor of the N = (1, 1) AdS Carroll

superalgebra (obtained as the Carrollian contraction of the non-vanishing components of

the invariant tensor for osp(2|1)⊗osp(2, 1)). This allows us to construct a three-dimensional

CS supergravity action invariant under the N = (1, 1) AdS Carroll superalgebra, which we

call the (1, 1) AdS Carroll CS supergravity action.
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3.1 Review of the N = (1, 1) AdS Carroll superalgebra

Let us briefly review the derivation of the N = (1, 1) AdS Carroll superalgebra of [14] as

the Carrollian contraction of osp(2|1)⊗ osp(2, 1).

The superalgebra osp(2|1)⊗osp(2, 1) is generated by the set {J̃AB, P̃A, Q̃+
α , Q̃

−
α } obeying

the following (anti)commutation relations:[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,[

P̃A, P̃B

]
=

1

`2
J̃AB ,[

J̃AB, Q̃
±
α

]
= − 1

2

(
ΓABQ̃

±
)
α
,

[
P̃A, Q̃

±
α

]
= ∓ 1

2`

(
ΓAQ̃

±
)
α
,{

Q̃+
α , Q̃

+
β

}
= − 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A ,{

Q̃−α , Q̃
−
β

}
=

1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A . (3.1)

Note that by taking the flat limit ` → ∞ of (3.1) one recovers the N = (1, 1) Poincaré

superalgebra.

The non-vanishing components of an invariant tensor for the superalgebra (3.1) are

〈J̃ABJ̃CD〉 = α0 (ηADηBC − ηACηBD) ,

〈J̃ABP̃C〉 = α1εABC ,

〈P̃AP̃B〉 =
α0

`2
ηAB ,

〈Q̃+
α Q̃

+
β 〉 = 2

(
α1 −

α0

`

)
Cαβ ,

〈Q̃−α Q̃−β 〉 = 2

(
α1 +

α0

`

)
Cαβ , (3.2)

being α0 and α1 arbitrary independent constants.

Now, to take the Carrollian contraction of the superalgebra (3.1), we decompose the

indices A,B, . . . = 0, 1, 2 as in (2.5), which induces the decomposition (2.6), together

with (2.7). Then, we rescale the generators with a parameter σ as

H̃ → σH , K̃a → σKa , Q̃±α →
√
σQ±α . (3.3)

Subsequently, taking the limit σ →∞ (and removing the tilde symbol also on the generators

that we have not rescaled), we end up with the N = (1, 1) AdS Carroll superalgebra

introduced in ref. [14], whose (anti)commutation relations read

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,
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[Ka, Pb] = − δabH ,

[Pa, Pb] =
1

`2
Jab ,

[Pa, H] =
1

`2
Ka ,[

Jab, Q
±
α

]
= − 1

2

(
ΓabQ

±)
α
,

[
Pa, Q

±
α

]
= ∓ 1

2`

(
ΓaQ

±)
α
,{

Q+
α , Q

+
β

}
= − 1

`

(
Γa0C

)
αβ
Ka +

(
Γ0C

)
αβ
H ,{

Q−α , Q
−
β

}
=

1

`

(
Γa0C

)
αβ
Ka +

(
Γ0C

)
αβ
H . (3.4)

In the sequel we will construct a CS action in three-dimension invariant under the N =

(1, 1) AdS Carroll superalgebra (3.4).

3.2 (1, 1) AdS Carroll supergravity action

We will now construct a three-dimensional CS supergravity action invariant under the

N = (1, 1) AdS Carroll superalgebra (3.4), which we call the (1, 1) AdS Carroll CS super-

gravity action.

To this aim, we introduce the connection 1-form A associated with (3.4), that is

A =
1

2
ωabJab + kaKa + V aPa + hH + ψ+Q+ + ψ−Q− , (3.5)

being ωab, ka, V a, h, ψ+, and ψ− the 1-form fields respectively dual to the generators Jab,

Ka, Pa, H, Q+, and Q− obeying the (anti)commutation relations given in (3.4), and the

related curvature 2-form F , which reads

F =
1

2
RabJab +KaKa +RaPa +HH +∇ψ+Q+ +∇ψ−Q− , (3.6)

with

Rab = dωab +
1

`2
V aV b = Rab +

1

`2
V aV b ,

Ka = dka + ωabk
b +

1

`2
V ah+

1

2`
ψ̄+Γa0ψ+ − 1

2`
ψ̄−Γa0ψ− (3.7)

= Ka +
1

2`
ψ̄+Γa0ψ+ − 1

2`
ψ̄−Γa0ψ− ,

Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− (3.8)

= H− 1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− ,

∇ψ+ = dψ+ +
1

4
ωabΓabψ

+ +
1

2`
V aΓaψ

+ ,

∇ψ− = dψ− +
1

4
ωabΓabψ

− − 1

2`
V aΓaψ

− . (3.9)
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Now, we move to the explicit construction of a CS action invariant under the N = (1, 1)

super-AdS Carroll group, on the same lines of what we have previously done in section 2

for N = (2, 0). Thus, we consider the non-vanishing components of the (relativistic)

invariant tensor given in (3.2), we decompose the indices as in (2.5), and we rescale not

only the generators in compliance with (3.3) but also the coefficients appearing in (3.2)

as in (2.16). Then, taking the ultra-relativistic limit σ → ∞, we get the following non-

vanishing components of an invariant tensor for the N = (1, 1) AdS Carroll superalgebra:

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈PaPb〉 =
α0

`2
δab ,

〈Q+
αQ

+
β 〉 = 〈Q−αQ−β 〉 = 2α1Cαβ . (3.10)

This invariant tensor is non-degenerate if α1 6= 0.

Substituting the connection 1-form in (3.5) and the non-vanishing components of the

invariant tensor (3.10) in the general expression (2.11) for a three-dimensional CS action,

we end up with the (1, 1) AdS Carroll CS supergravity action in 2+1 spacetime dimensions,

that is

I
(1,1)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa

)
+ α1

(
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh

+ 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−
)
− d
(
α1

2
εabω

abh− α1εabk
aV b

)}
, (3.11)

which can also be rewritten omitting boundary terms as follows:

I
(1,1)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa

)
+ α1

(
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh+ 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−
)}

. (3.12)

The action (3.11) has been written in terms of the curvatures appearing in (3.7), it involves

two different sectors, respectively proportional to α0 (which corresponds to the exotic

Lagrangian) and to α1, and it is invariant by construction under the N = (1, 1) AdS

Carroll superalgebra (3.4). The local gauge transformations δλA = dλ+ [A, λ] with gauge

parameter

λ =
1

2
λabJab + κaKa + λaPa + τH + ε+Q+ + ε−Q− (3.13)

are

δωab = dλab +
2

`2
V [aλb] ,

δka = dκa − λabkb + ωabκ
b − 1

`2
λah+

1

`2
V aτ − 1

`
ε̄+Γa0ψ+ +

1

`
ε̄−Γa0ψ− ,
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δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δψ+ = dε+ − 1

4
λabΓabψ

+ +
1

4
ωabΓabε

+ − 1

2`
λaΓaψ

+ +
1

2`
V aΓaε

+ ,

δψ− = dε− − 1

4
λabΓabψ

− +
1

4
ωabΓabε

− +
1

2`
λaΓaψ

− − 1

2`
V aΓaε

− , (3.14)

and, restricting ourselves to supersymmetry, we are left with the following transforma-

tion rules:

δωab = 0 ,

δka = −1

`
ε̄+Γa0ψ+ +

1

`
ε̄−Γa0ψ− ,

δV a = 0 ,

δh = ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δψ+ = dε+ +
1

4
ωabΓabε

+ +
1

2`
V aΓaε

+ ,

δψ− = dε− +
1

4
ωabΓabε

− − 1

2`
V aΓaε

− . (3.15)

The equations of motion obtained from the variation of the action (3.11) with respect

to the 1-form fields ωab, ka, V a, h, ψ+, and ψ− are

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a :
α0

`2
Ra + 2α1εabKb = 0 ,

δh : α1Rab = 0 ,

δψ+ : α1∇ψ+ = 0 ,

δψ− : α1∇ψ− = 0 , (3.16)

respectively; for α1 6= 0, they reduce to the vanishing of the (1, 0) super-AdS Carroll

curvature 2-forms, namely

Rab = 0 , Ka = 0 , Ra = 0 , H = 0 , ∇ψ+ = 0 , ∇ψ− = 0 . (3.17)

Analogously to what happened in the (2, 0) case discussed in section 2, we can see that

α1 6= 0 is a sufficient condition to recover (3.17), which means that one could consistently

set α0 = 0, making the exotic term in the CS action (3.11) disappear.
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4 (N , 0) AdS Carroll supergravity theories in 2 + 1 dimensions

Now, we generalize our analysis to the (N , 0) case, with N even. First, we present the

derivation of the N = (N , 0) AdS Carroll superalgebra as the Carrollian contraction of an

so(N ) extension of osp(2|N )⊗sp(2). This also provides us with a non-degenerate invariant

tensor in the ultra-relativistic limit. Then, we can subsequently formulate a well-defined

three-dimensional CS supergravity action invariant under the aforesaid N = (N , 0) AdS

Carroll superalgebra.

4.1 N = (N , 0) AdS Carroll superalgebra

Let us first take the direct sum of osp(2|N ) ⊗ sp(2) and an so(N ) algebra (we consider

N even), that is reminiscent of what was done in ref. [40]. In this case, the non-trivial

(anti)commutation relations are[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,

[
P̃A, P̃B

]
=

1

`2
J̃AB ,[

Z̃ij , Z̃kl
]

= δjkZ̃il − δikZ̃jl − δjlZ̃ik + δilZ̃jk ,[
S̃ij , S̃kl

]
= − 1

`

(
δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk

)
,[

J̃AB, Q̃
i
α

]
= − 1

2

(
ΓABQ̃

i
)
α
,

[
P̃A, Q̃

i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,[

Z̃ij , Q̃kα

]
= δjkQ̃iα − δikQ̃jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+

1

`
CαβZ̃

ij , (4.1)

with A,B, . . . = 0, 1, 2, i, j, . . . = 1, . . . ,N (where we have considered N = 2x, x =

1, . . . , N2 ), and where Z̃ij = −Z̃ji, S̃ij = −S̃ij . Then, we do the following redefinition (on

the same lines of [40]):

T̃ ij ≡ Z̃ij − `S̃ij , (4.2)

which is a generalization of the one performed in section 2. Thus, we can now rewrite the

(anti)commutation relations (4.1) as[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,[

P̃A, P̃B

]
=

1

`2
J̃AB ,[

T̃ ij , T̃ kl
]

= δjkT̃ il − δikT̃ jl − δjlT̃ ik + δilT̃ jk ,[
T̃ ij , S̃kl

]
= δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk ,[

S̃ij , S̃kl
]

= − 1

`

(
δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk

)
,
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[
J̃AB, Q̃

i
α

]
= − 1

2

(
ΓABQ̃

i
)
α
,[

P̃A, Q̃
i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,[

T̃ ij , Q̃kα

]
= δjkQ̃iα − δikQ̃jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+ Cαβ

(
1

`
T̃ ij + S̃ij

)
. (4.3)

Observe that, taking the limit `→∞ of (4.3), we get theN = (N , 0) Poincaré superalgebra

involving a semi-direct so(N ) extension (with N even).

The non-vanishing components of an invariant tensor for (4.3), which will be useful in

the sequel, are given by

〈J̃ABJ̃CD〉 = α0 (ηADηBC − ηACηBD) ,

〈J̃ABP̃C〉 = α1εABC ,

〈P̃AP̃B〉 =
α0

`2
ηAB ,

〈T̃ ij T̃ kl〉 = 2α0

(
δilδkj − δikδlj

)
,

〈T̃ ijS̃kl〉 = − 2α1

(
δilδkj − δikδlj

)
,

〈S̃ijS̃kl〉 =
2α1

`

(
δilδkj − δikδlj

)
,

〈Q̃iαQ̃
j
β〉 = 2

(
α1 −

α0

`

)
Cαβδ

ij , (4.4)

being α0 and α1 arbitrary independent constants.

In order to take the ultra-relativistic contraction of (4.3), we decompose the indices

A,B, . . . = 0, 1, 2 as in (2.5), which induces the decomposition (2.6), together with the

gamma matrices decomposition (2.7).

Moreover, we define, on the same lines of what was done in [53] (see also references

therein) in the case of non-relativistic theories, new supersymmetry charges by

Q̃±λα =
1√
2

(
Q̃λα ± (Γ0)αβ Q̃

x+λ
β

)
, (4.5)

where in (4.5) we consider λ, µ, . . . = 1, . . . , x (these new indices must not be confused with

the spinor ones α, β, . . . = 1, 2), generalizing to the N = (N , 0) case, with N even, what we

have previously done in section 2 (see, in particular, (2.8)). We remind that x = 1, . . . , N2 .

This also reflects on the generators T̃ ij and S̃ij , which are now respectively described by

T̃ λµ , T̃ ′λµ ≡ T̃ λ+x µ+x , Ũλµ ≡ T̃ x+λ µ , Ũ ′λµ ≡ T̃ λ x+µ ,

S̃λµ , S̃′λµ ≡ S̃λ+x µ+x , Ṽ λµ ≡ S̃x+λ µ , Ṽ ′λµ ≡ S̃λ x+µ ,
(4.6)
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which satisfy the symmetry properties

T̃ λµ = −T̃µλ , T̃ ′λµ = −T̃ ′µλ , Ũλµ = −Ũ ′µλ ,

S̃λµ = −S̃µλ , S̃′λµ = −S̃′µλ , Ṽ λµ = −Ṽ ′µλ .
(4.7)

In particular, using (4.5), (4.6), and (4.7), together with the decomposition (2.6)

and (2.7), and defining

X̃ [λµ] ≡ 1

2

(
T̃ λµ + T̃ ′λµ

)
, X̃ ′[λµ] ≡ 1

2

(
T̃ λµ − T̃ ′λµ

)
,

Ỹ [λµ] ≡ 1

2

(
S̃λµ + S̃′λµ

)
, Ỹ ′[λµ] ≡ 1

2

(
S̃λµ − S̃′λµ

)
,

(4.8)

the (anti)commutation relations in (4.3) become

{Q̃±λα , Q̃±µβ } = δλµ
[
− 1

2`

(
ΓabC

)
αβ
J̃ab +

(
Γ0C

)
αβ
H̃

]
+ Cαβ

(
1

`
X̃ [λµ] + Ỹ [λµ]

)
∓
(
Γ0C

)
αβ

(
1

`
Ũ (λµ) + Ṽ (λµ)

)
,

{Q̃+λ
α , Q̃−µβ } = δλµ

[
−1

`

(
Γa0C

)
αβ
K̃a + (ΓaC)αβ P̃a

]
+ Cαβ

(
1

`
X̃ ′[λµ] + Ỹ ′[λµ]

)
−
(
Γ0C

)
αβ

(
1

`
Ũ [λµ] + Ṽ [λµ]

)
, (4.9)

where

Ũ (λµ) =
1

2

(
Ũλµ + Ũµλ

)
, Ũ [λµ] =

1

2

(
Ũλµ − Ũµλ

)
,

Ṽ (λµ) =
1

2

(
Ṽ λµ + Ṽ µλ

)
, Ṽ [λµ] =

1

2

(
Ṽ λµ − Ṽ µλ

)
. (4.10)

The generators X̃ [λµ] in (4.9) amount to k(k−1)
2 generators, and the same holds for X̃ ′[λµ],

Ũ [λµ], Ỹ [λµ], Ỹ ′[λµ], and Ṽ [λµ], while the generators Ũ (λµ) are k(k+1)
2 generators, and the

same holds for the generators Ṽ (λµ).

Furthermore, from the commutation relations involving the generators T ij and Sij , we

get the following non-vanishing ones (recall that we have Ũ ′λµ = −Ũµλ and Ṽ ′λµ = −Ṽ µλ):[
T̃ λµ, T̃ νρ

]
= δµν T̃ λρ − δλν T̃µρ − δµρT̃ λν + δλρT̃µν ,[

T̃ λµ, Ũνρ
]

= δµρŨνλ − δλρŨνµ ,[
T̃ ′λµ, T̃ ′νρ

]
= δµν T̃ ′λρ − δλν T̃ ′µρ − δµρT̃ ′λν + δλρT̃ ′µν ,[

T̃ ′λµ, Ũνρ
]

= δµνŨλρ − δλνŨµρ ,[
Ũλµ, Ũνρ

]
= − δλν T̃µρ − δµρT̃ ′λν ,[

T̃ λµ, S̃νρ
]

= δµν S̃λρ − δλν S̃µρ − δµρS̃λν + δλρS̃µν ,[
T̃ λµ, Ṽ νρ

]
= δµρṼ νλ − δλρṼ νµ ,
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[
T̃ ′λµ, S̃′νρ

]
= δµν S̃′λρ − δλν S̃′µρ − δµρS̃′λν + δλρS̃′µν ,[

T̃ ′λµ, Ṽ νρ
]

= δµν Ṽ λρ − δλν Ṽ µρ ,[
Ũλµ, S̃νρ

]
= − δµρṼ λν + δµν Ṽ λρ ,[

Ũλµ, S̃′νρ
]

= − δλρṼ νµ + δλν Ṽ ρµ ,[
Ũλµ, Ṽ νρ

]
= − δλν S̃µρ − δµρS̃′λν ,[

S̃λµ, S̃νρ
]

= − 1

`

(
δµν S̃λρ − δλν S̃µρ − δµρS̃λν + δλρS̃µν

)
,[

S̃λµ, Ṽ νρ
]

= − 1

`

(
δµρṼ νλ − δλρṼ νµ

)
,[

S̃′λµ, S̃′νρ
]

= − 1

`

(
δµν S̃′λρ − δλν S̃′µρ − δµρS̃′λν + δλρS̃′µν

)
,[

S̃′λµ, Ṽ νρ
]

= − 1

`

(
δµν Ṽ λρ − δλν Ṽ µρ

)
,[

Ṽ λµ, Ṽ νρ
]

=
1

`

(
δλν S̃µρ + δµρS̃′λν

)
, (4.11)

and [
T̃ λµ, Q̃± να

]
=

1

2

[
δµν

(
Q̃+λ
α + Q̃−λα

)
− δλν

(
Q̃+µ
α + Q̃−µα

)]
,[

T̃ ′λµ, Q̃± να

]
= ± 1

2

[
δµν

(
Q̃+λ
α − Q̃−λα

)
− δλν

(
Q̃+µ
α − Q̃−µα

)]
,[

Ũλµ, Q̃± να

]
= ∓ 1

2
(Γ0)αβ

[
δλν
(
Q̃+µ
β + Q̃− µ

β

)
± δµν

(
Q̃+λ
β − Q̃−λβ

)]
. (4.12)

Now, let us rescale the generators with a parameter σ as

H̃ → σH , K̃a → σKa , S̃λµ → σSλµ ,

S̃′λµ → σS′λµ , Ṽ λµ → σV λµ , Q̃±λα →
√
σQ±λα , (4.13)

where we have also removed the tilde symbol on the generators. Taking the limit σ →
∞ (and removing the tilde symbol also on the generators that we have not rescaled),

we end up with the N = (N , 0) AdS Carroll superalgebra (with N even), whose non-

trivial (anti)commutation relations read as follows (recall the definitions (4.8), (4.10), since

we have expressed the anticommutation relations in terms of the combinations given in

that expressions, together with the fact that Ũ ′λµ = −Ũµλ and Ṽ ′λµ = −Ṽ µλ, and the

(anti)commutation relations (4.9), (4.11), and (4.12)):

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,

[Pa, Pb] =
1

`2
Jab , [Pa, H] =

1

`2
Ka ,
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[
T λµ, T νρ

]
= δµνT λρ − δλνTµρ − δµρT λν + δλρTµν ,[

T λµ, Uνρ
]

= δµρUνλ − δλρUνµ ,[
T ′λµ, T ′νρ

]
= δµνT ′λρ − δλνT ′µρ − δµρT ′λν + δλρT ′µν ,[

T ′λµ, Uνρ
]

= δµνUλρ − δλνUµρ ,[
Uλµ, Uνρ

]
= − δλνTµρ − δµρT ′λν ,[

T λµ, Sνρ
]

= δµνSλρ − δλνSµρ − δµρSλν + δλρSµν ,[
T λµ, V νρ

]
= δµρV νλ − δλρV νµ ,[

T ′λµ, S′νρ
]

= δµνS′λρ − δλνS′µρ − δµρS′λν + δλρS′µν ,[
T ′λµ, V νρ

]
= δµνV λρ − δλνV µρ ,[

Uλµ, Sνρ
]

= − δµρV λν + δµνV λρ ,[
Uλµ, S′νρ

]
= − δλρV νµ + δλνV ρµ ,[

Uλµ, V νρ
]

= − δλνSµρ − δµρS′λν ,[
Jab, Q

±λ
α

]
= − 1

2

(
ΓabQ

±λ
)
α
,

[
Pa, Q

±λ
α

]
= − 1

2`

(
ΓaQ

∓λ
)
α
,[

T λµ, Q± να

]
=

1

2

[
δµν

(
Q+λ
α +Q−λα

)
− δλν

(
Q+µ
α +Q−µα

)]
,[

T ′λµ, Q± να

]
= ± 1

2

[
δµν

(
Q+λ
α −Q−λα

)
− δλν

(
Q+µ
α −Q−µα

)]
,[

Uλµ, Q± να

]
= ∓ 1

2
(Γ0)αβ

[
δλν
(
Q+µ
β +Q− µ

β

)
± δµν

(
Q+λ
β −Q−λβ

)]
,

{Q+λ
α , Q+µ

β } =
(
Γ0C

)
αβ

(
δλµH − V (λµ)

)
+ CαβY

[λµ] ,

{Q+λ
α , Q−µβ } = − 1

`
δλµ

(
Γa0C

)
αβ
Ka + CαβY

′[λµ] −
(
Γ0C

)
αβ
V [λµ] ,

{Q−λα , Q−µβ } =
(
Γ0C

)
αβ

(
δλµH + V (λµ)

)
+ CαβY

[λµ] . (4.14)

Notice that if we restrict ourselves to the special case N = (2, 0), that is x = 1, after some

algebraic calculations, exploiting the definitions (4.6), (4.8), (4.10), and the symmetry

properties (4.7), we exactly reproduce the N = (2, 0) AdS Carroll superalgebra obtained

in section 2, given by (2.10).8

In the sequel, we will construct a CS action in 2 + 1 dimensions invariant under (4.14).

8In particular, when restricting ourselves to N = (2, 0), namely x = 1, we have λ, µ, . . . = 1 and

Tλµ = T 11 = 0, T ′λµ = T ′11 = 0, Sλµ = S11 = 0, S′λµ = S′11 = 0, Uλµ = U11 = −T 12 = −ε12T = −T ,

V λµ = V 11 = −S12 = −ε12S = −S, and (4.5) restricts itself to (2.8) (when performing the Carroll limit, we

also remove the tilde symbol on the generators); then, one can show that the superalgebra (4.14) reduces

to the one given by (2.10).
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4.2 (N , 0) AdS Carroll supergravity

We can now move to the formulation of a three-dimensional CS supergravity action invari-

ant under the superalgebra (4.14). We call this action (N , 0) AdS Carroll CS supergravity

action (where, in our analysis, N is even).

To this aim, let us start by introducing the connection 1-form A associated with the

superalgebra (4.14), that is

A =
1

2
ωabJab + kaKa + V aPa + hH

+
1

2
tλµTλµ +

1

2
t′λµT ′λµ + uλµUλµ +

1

2
sλµSλµ +

1

2
s′λµS′λµ + vλµVλµ

+ ψ+
λQ

+λ + ψ−λQ
−λ , (4.15)

where ωab, ka, V a, h, tλµ, t′λµ, uλµ, sλµ, s′λµ, vλµ, ψ+
λ , and ψ−λ are the 1-form fields dual to

the generators Jab, Ka, Pa, H, Tλµ, T ′λµ, Uλµ, Sλµ, S′λµ, Vλµ, Q+λ, and Q−λ, respectively.

The corresponding curvature 2-form F is

F =
1

2
RabJab +KaKa +RaPa +HH

+
1

2
T λµTλµ +

1

2
T ′λµT ′λµ + UλµUλµ +

1

2
SλµSλµ +

1

2
S ′λµS′λµ + VλµVλµ

+∇ψ+
λQ

+λ +∇ψ−λQ
−λ , (4.16)

with

Rab = dωab +
1

`2
V aV b = Rab +

1

`2
V aV b ,

Ka = dka + ωabk
b +

1

`2
V ah+

1

`
ψ̄+λΓa0ψ−λ = Ka +

1

`2
V ah+

1

`
ψ̄+λΓa0ψ−λ ,

Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄+λΓ0ψ+λ − 1

2
ψ̄−λΓ0ψ−λ

= H− 1

2
ψ̄+λΓ0ψ+λ − 1

2
ψ̄−λΓ0ψ−λ ,

T λµ = dtλµ + tλνt
νµ + u′[λνu

ν|µ] ,

T ′λµ = dt′λµ + t′λνt
′νµ + u[λνu

′ν|µ] ,

Uλµ = duλµ + uλνt
νµ + t′λνu

νµ ,

Sλµ = dsλµ + 2tλνs
νµ + 2u′[λνv

ν|µ] − 1

2
ψ̄+λψ+µ − 1

2
ψ̄−λψ−µ − ψ̄+ [λψ−µ] ,

S ′λµ = ds′λµ + 2t′λνs
′νµ + 2u[λνv

′ν|µ] − 1

2
ψ̄+λψ+µ − 1

2
ψ̄−λψ−µ + ψ̄+ [λψ−µ] ,

Vλµ = dvλµ + vλνt
νµ + t′λνv

νµ + uλνs
νµ + s′λνu

νµ +
1

2
ψ̄+λΓ0ψ+µ

− 1

2
ψ̄−λΓ0ψ−µ + ψ̄+ [λΓ0ψ−µ] ,
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∇ψ+λ = dψ+λ +
1

4
ωabΓabψ

+λ +
1

2`
V aΓaψ

−λ +
1

2
tλµψ+

µ +
1

2
tλµψ−µ +

1

2
t′λµψ+

µ

− 1

2
t′λµψ−µ + u(λµ)Γ0ψ

+
µ + u[λµ]Γ0ψ

−
µ ,

∇ψ−λ = dψ−λ +
1

4
ωabΓabψ

−λ +
1

2`
V aΓaψ

+λ +
1

2
tλµψ+

µ +
1

2
tλµψ−µ −

1

2
t′λµψ+

µ

+
1

2
t′λµψ−µ − u(λµ)Γ0ψ

−
µ − u[λµ]Γ0ψ

+
µ , (4.17)

where we have used

uλµ = tλ+x µ = −tµ λ+x = −u′µλ ,

vλµ = sλ+x µ = −sµ λ+x = −v′µλ , (4.18)

and where we have

u(λµ) =
1

2

(
uλµ + uµλ

)
,

u[λµ] =
1

2

(
uλµ − uµλ

)
. (4.19)

In order to develop a CS action invariant under (4.14), we have to consider the non-

vanishing components of the invariant tensor in (4.4), decompose the indices as in (2.5),

exploit (4.5), (4.6), (4.7), and rescale not only the generators in compliance with (4.13)

but also the coefficients appearing in (4.4) as in (2.16). Consequently, in the ultra-

relativistic limit σ → ∞ we get the following non-vanishing components of an invariant

tensor for (4.14):

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈PaPb〉 =
α0

`2
δab ,

〈T λµT νρ〉 = 〈T ′λµT ′νρ〉 = 2α0

(
δλρδνµ − δλνδρµ

)
,

〈UλµUνρ〉 = − 2α0δ
λνδρµ ,

〈T λµSνρ〉 = 〈T ′λµS′νρ〉 = −2α1

(
δλρδνµ − δλνδρµ

)
,

〈UλµV νρ〉 = 2α1δ
λνδρµ ,

〈Q+λ
α Q+µ

β 〉 = 〈Q−λα Q−µβ 〉 = 2α1Cαβδ
λµ . (4.20)

The invariant tensor for (4.14) above is non-degenerate if α1 6= 0.

Then, substituting the connection 1-form in (4.15) and the non-zero components of

the invariant tensor (4.20) into (2.11), we end up with the three-dimensional (N , 0) AdS
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Carroll CS supergravity action, which reads

I
(N ,0)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa + 2tλµdt

µ
λ +

4

3
tλµt

µ
νt
ν
λ + 2t′λµdt

′µ
λ

+
4

3
t′λµt

′µ
νt
′ν
λ + 4uλµdu

′µ
λ − 4tλµu

′λ
νu

νµ − 4t′λµu
λ
νu
′νµ
)

+ α1

[
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV b − 2tλµ (dsµλ + tµνs
ν
λ)

− 2t′λµ
(
ds′µλ + t′µνs

′ν
λ

)
− 4uλµdv

′µ
λ − 2u′λµu

µ
νs
ν
λ − 2uλµu

′µ
νs
′ν
λ

− 4u′λµv
µ
νt
ν
λ − 4uλµv

′µ
νt
′ν
λ + 2ψ̄+λ∇ψ+λ + 2ψ̄−λ∇ψ−λ

]
− d
(
α1

2
εabω

abh− α1εabk
aV b + α1t

λ
µs
µ
λ + α1t

′λ
µs
′µ
λ + 2α1u

λ
µv
′µ
λ

)}
, (4.21)

where we have also exploited (4.18). The action (4.21) has been written in terms of the

curvatures appearing in (4.17) and it involves two coupling constants, that are α0 and α1.

Up to boundary terms, (4.21) can be rewritten as

I
(N ,0)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa + 2tλµdt

µ
λ +

4

3
tλµt

µ
νt
ν
λ + 2t′λµdt

′µ
λ

+
4

3
t′λµt

′µ
νt
′ν
λ + 4uλµdu

′µ
λ − 4tλµu

′λ
νu

νµ − 4t′λµu
λ
νu
′νµ
)

+ α1

[
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV b − 2tλµ (dsµλ + tµνs
ν
λ)

− 2t′λµ
(
ds′µλ + t′µνs

′ν
λ

)
− 4uλµdv

′µ
λ − 2u′λµu

µ
νs
ν
λ − 2uλµu

′µ
νs
′ν
λ

− 4u′λµv
µ
νt
ν
λ − 4uλµv

′µ
νt
′ν
λ + 2ψ̄+λ∇ψ+λ + 2ψ̄−λ∇ψ−λ

]}
. (4.22)

The contribution proportional to α0 corresponds to the exotic Lagrangian, and, in the

present case, it involves, besides the Lorentz and torsional terms, also pieces including the

1-form fields tλµ, t′λµ, and uλµ. On the other hand, the contribution proportional to α1

also includes terms involving the 1-form fields sλµ, s′λµ, and vλµ, plus the spinor 1-form

fields ψ+λ and ψ−λ.

The CS action (4.21) is invariant by construction under (4.14), and the local gauge

transformations δλA = dλ+ [A, λ] with gauge parameter

λ =
1

2
λabJab + κaKa + λaPa + τH +

1

2
%λµtλµ +

1

2
%′λµt′λµ + ϕλµuλµ

+
1

2
ϑλµsλµ +

1

2
ϑ′λµsλµ + ςλµvλµ + ε+λQ+

λ + ε−λQ−λ (4.23)

are given by

δωab = dλab +
2

`2
V [aλb] ,

δka = dκa − λabkb + ωabκ
b − 1

`2
λah+

1

`2
V aτ − 1

`
ε̄+λΓa0ψ−λ − 1

`
ε̄−λΓa0ψ+λ ,
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δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+λΓ0ψ+λ + ε̄−λΓ0ψ−λ ,

δtλµ = d%λµ − 2%[λνt
ν|µ] − 2ϕ′[λνu

ν|µ] ,

δt′λµ = d%′λµ − 2%′[λνt
′ν|µ] − 2ϕ[λ

νu
′ν|µ] ,

δuλµ = dϕλµ − ϕλνtνµ + uλν%
νµ − %′λνuνµ + t′λνϕ

νµ ,

δsλµ = dϑλµ − 2%[λνs
ν|µ] + 2t[λνϑ

ν|µ] − 2ϕ′[λνv
ν|µ] + 2u′[λνς

ν|µ] + ε̄+ [λψ+µ]

+ ε̄− [λψ−µ] + ε̄+ [λψ−µ] + ε̄− [λψ+µ] ,

δs′λµ = dϑ′λµ − 2%′[λνs
′ν|µ] + 2t′[λνϑ

′ν|µ] − 2ϕ[λ
νv
′ν|µ] + 2u[λνς

′ν|µ] + ε̄+ [λψ+µ]

+ ε̄− [λψ−µ] − ε̄+ [λψ−µ] − ε̄− [λψ+µ] ,

δvλµ = dςλµ − ςλνtνµ + vλν%
νµ − %′λνvνµ + t′λνς

νµ − ϕλνsνµ + uλνϑ
νµ − ϑ′λνuνµ

+ s′λνϕ
νµ − ε̄+λΓ0ψ+µ + ε̄−λΓ0ψ−µ − ε̄+ [λΓ0ψ−µ] + ε̄− [λΓ0ψ+µ] ,

δψ+λ = dε+λ − 1

4
λabΓabψ

+λ +
1

4
ωabΓabε

+λ − 1

2`
λaΓaψ

−λ +
1

2`
V aΓaε

−λ

− 1

2
%λµψ+

µ +
1

2
tλµε+µ −

1

2
%λµψ−µ +

1

2
tλµε−µ −

1

2
%′λµψ+

µ +
1

2
t′λµε+µ +

1

2
%′λµψ−µ

− 1

2
t′λµε−µ − ϕ(λµ)Γ0ψ

+
µ + u(λµ)Γ0ε

+
µ − ϕ[λµ]Γ0ψ

−
µ + u[λµ]Γ0ε

−
µ ,

δψ−λ = dε−λ − 1

4
λabΓabψ

−λ +
1

4
ωabΓabε

−λ − 1

2`
λaΓaψ

+λ +
1

2`
V aΓaε

+λ

− 1

2
%λµψ+

µ +
1

2
tλµε+µ −

1

2
%λµψ−µ +

1

2
tλµε−µ +

1

2
%′λµψ+

µ −
1

2
t′λµε+µ −

1

2
%′λµψ−µ

+
1

2
t′λµε−µ + ϕ(λµ)Γ0ψ

−
µ − u(λµ)Γ0ε

−
µ + ϕ[λµ]Γ0ψ

+
µ − u[λµ]Γ0ε

+
µ , (4.24)

where we have also used the properties and definitions

ϕλµ = −ϕ′µλ ,

ϕ(λµ) ≡ 1

2

(
ϕλµ + ϕµλ

)
,

ϕ[λµ] =
1

2

(
ϕλµ − ϕµλ

)
. (4.25)

Restricting ourselves to supersymmetry, we get the following supersymmetry transforma-

tion laws:

δωab = 0 ,

δka = −1

`
ε̄+λΓa0ψ−λ − 1

`
ε̄−λΓa0ψ+λ ,
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δV a = 0 ,

δh = ε̄+λΓ0ψ+λ + ε̄−λΓ0ψ−λ ,

δtλµ = 0 , δt′λµ = 0 , δuλµ = 0 ,

δsλµ = ε̄+ [λψ+µ] + ε̄− [λψ−µ] + ε̄+ [λψ−µ] + ε̄− [λψ+µ] ,

δs′λµ = ε̄+ [λψ+µ] + ε̄− [λψ−µ] − ε̄+ [λψ−µ] − ε̄− [λψ+µ] ,

δvλµ = −ε̄+λΓ0ψ+µ + ε̄−λΓ0ψ−µ − ε̄+ [λΓ0ψ−µ] + ε̄− [λΓ0ψ+µ] ,

δψ+λ = dε+λ +
1

4
ωabΓabε

+λ +
1

2`
V aΓaε

−λ +
1

2
tλµε+µ +

1

2
tλµε−µ +

1

2
t′λµε+µ

− 1

2
t′λµε−µ + u(λµ)Γ0ε

+
µ + u[λµ]Γ0ε

−
µ ,

δψ−λ = dε−λ +
1

4
ωabΓabε

−λ +
1

2`
V aΓaε

+λ +
1

2
tλµε+µ +

1

2
tλµε−µ −

1

2
t′λµε+µ

+
1

2
t′λµε−µ − u(λµ)Γ0ε

−
µ − u[λµ]Γ0ε

+
µ . (4.26)

Finally, one can prove that from the variation of the action (4.21) with respect to

the 1-form fields ωab, ka, V a, h, tλµ, t′λµ, uλµ, sλµ, s′λµ, vλµ, ψ+λ, and ψ−λ, we get,

respectively, the equations of motion

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a :
α0

`2
Ra + 2α1εabKb = 0 ,

δh : α1Rab = 0 ,

δtλµ : α0T λµ + α1Sλµ = 0 ,

δt′λµ : α0T ′λµ + α1S ′λµ = 0 ,

δuλµ : −α0Uλµ + α1Vλµ = 0 ,

δsλµ : α1T λµ = 0 ,

δs′λµ : α1T ′λµ = 0 ,

δvλµ : α1Uλµ = 0 ,

δψ+λ : α1∇ψ+λ = 0 ,

δψ−λ : α1∇ψ−λ = 0 , (4.27)

written up to boundary contributions. We observe that, for α1 6= 0, the equations (4.27)

reduce precisely to the vanishing of the (N , 0) super-AdS Carroll curvature 2-forms given
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in (4.16), that is to say

Rab = 0 , Ka = 0 , Ra = 0 , H = 0 ,

T λµ = 0 , T ′λµ = 0 , Uλµ = 0 ,

Sλµ = 0 , S ′λµ = 0 , Vλµ = 0 ,

∇ψ+λ = 0 , ∇ψ−λ = 0 . (4.28)

Also in this case, we notice that α1 6= 0 is a sufficient condition to recover (4.28), which

means that we can consistently impose α0 = 0 in the CS action (4.21), making the exotic

term disappear.

Let us also mention that, restricting ourselves to the special case N = (2, 0), that is

x = 1, after some algebraic calculations, we exactly reproduce the results of section 2, that

is to say, in fact, the (2, 0) AdS Carroll supergravity theory.

5 (p, q) AdS Carroll supergravity theories in 2 + 1 dimensions

We finally extend our analysis to the (p, q) case, where both p and q are integers > 0.

We first derive the N = (p, q) AdS Carroll superalgebra as the Carrollian contraction

of the direct sum of an so(p) ⊕ so(q) algebra and osp(2|p) ⊗ osp(2, q). This allows us

to end up with a non-degenerate invariant tensor in the ultra-relativistic limit, and to

consequently construct the three-dimensional CS supergravity theory invariant under the

aforesaid N = (p, q) AdS Carroll superalgebra.

5.1 N = (p, q) AdS Carroll superalgebra

Let us begin by considering the direct sum of the osp(2|p) ⊗ osp(2, q) superalgebra and

an so(p)⊕ so(q) algebra. The non-zero (anti)commutation relations are the following ones

(see [40]): [
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,

[
P̃A, P̃B

]
=

1

`2
J̃AB ,[

Z̃ij , Z̃kl
]

= δjkZ̃il − δikZ̃jl − δjlZ̃ik + δilZ̃jk ,[
Z̃IJ , Z̃KL

]
= δJKZ̃IL − δIKZ̃JL − δJLZ̃IK + δILZ̃JK ,[

S̃ij , S̃kl
]

= − 1

`

(
δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk

)
,[

S̃IJ , S̃KL
]

= − 1

`

(
δJK S̃IL − δIK S̃JL − δJLS̃IK + δILS̃JK

)
,[

J̃AB, Q̃
i
α

]
= − 1

2

(
ΓABQ̃

i
)
α
,

[
J̃AB, Q̃

I
α

]
= −1

2

(
ΓABQ̃

I
)
α
,[

P̃A, Q̃
i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,

[
P̃A, Q̃

I
α

]
=

1

2`

(
ΓAQ̃

I
)
α
,
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[
Z̃ij , Q̃kα

]
= δjkQ̃iα − δikQ̃jα ,

[
Z̃IJ , Q̃Kα

]
= δJKQ̃Iα − δIKQ̃Jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+

1

`
CαβZ̃

ij ,{
Q̃Iα, Q̃

J
β

}
= δIJ

[
1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
− 1

`
CαβZ̃

IJ , (5.1)

with A,B, . . . = 0, 1, 2, i, j, . . . = 1, . . . , p, I, J, . . . = 1, . . . , q, and where Z̃ij = −Z̃ji,
S̃ij = −S̃ij , and Z̃IJ = −Z̃JI , S̃IJ = −S̃JI .

We now perform, on the same lines of [40], the redefinition

T̃ ij ≡ Z̃ij − `S̃ij , T̃ IJ ≡ Z̃IJ − `S̃IJ , (5.2)

which is analogous to the ones we have done in sections 2 and 4. Consequently, we can

rewrite the (anti)commutation relations (5.1) as[
J̃AB, J̃CD

]
= ηBC J̃AD − ηAC J̃BD − ηBDJ̃AC + ηADJ̃BC ,[

J̃AB, P̃C

]
= ηBC P̃A − ηAC P̃B ,[

P̃A, P̃B

]
=

1

`2
J̃AB ,[

T̃ ij , T̃ kl
]

= δjkT̃ il − δikT̃ jl − δjlT̃ ik + δilT̃ jk ,[
T̃ IJ , T̃KL

]
= δJK T̃ IL − δIK T̃ JL − δJLT̃ IK + δILT̃ JK ,[

T̃ ij , S̃kl
]

= δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk ,[
T̃ IJ , S̃KL

]
= δJK S̃IL − δIK S̃JL − δJLS̃IK + δILS̃JK ,[

S̃ij , S̃kl
]

= − 1

`

(
δjkS̃il − δikS̃jl − δjlS̃ik + δilS̃jk

)
,[

S̃IJ , S̃KL
]

= − 1

`

(
δJK S̃IL − δIK S̃JL − δJLS̃IK + δILS̃JK

)
,[

J̃AB, Q̃
i
α

]
= − 1

2

(
ΓABQ̃

i
)
α
,[

J̃AB, Q̃
I
α

]
= − 1

2

(
ΓABQ̃

I
)
α
,[

P̃A, Q̃
i
α

]
= − 1

2`

(
ΓAQ̃

i
)
α
,[

P̃A, Q̃
I
α

]
=

1

2`

(
ΓAQ̃

I
)
α
,[

T̃ ij , Q̃kα

]
= δjkQ̃iα − δikQ̃jα ,[

T̃ IJ , Q̃Kα

]
= δJKQ̃Iα − δIKQ̃Jα ,{

Q̃iα, Q̃
j
β

}
= δij

[
− 1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
+ Cαβ

(
1

`
T̃ ij + S̃ij

)
,{

Q̃Iα, Q̃
J
β

}
= δIJ

[
1

2`

(
ΓABC

)
αβ
J̃AB +

(
ΓAC

)
αβ
P̃A

]
− Cαβ

(
1

`
T̃ IJ + S̃IJ

)
. (5.3)
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Notice that taking the flat limit ` → ∞ of (5.3), one recovers the N = (p, q) Poincaré

superalgebra of [40].

The non-vanishing components of an invariant tensor for the superalgebra (5.3), that

will be useful in the following study, are given by

〈J̃ABJ̃CD〉 = α0 (ηADηBC − ηACηBD) ,

〈J̃ABP̃C〉 = α1εABC ,

〈P̃AP̃B〉 =
α0

`2
ηAB ,

〈T̃ ij T̃ kl〉 = 2α0

(
δilδkj − δikδlj

)
,

〈T̃ IJ T̃KL〉 = 2α0

(
δILδKJ − δIKδLJ

)
,

〈T̃ ijS̃kl〉 = − 2α1

(
δilδkj − δikδlj

)
,

〈T̃ IJ S̃KL〉 = 2α1

(
δILδKJ − δIKδLJ

)
,

〈S̃ijS̃kl〉 =
2α1

`

(
δilδkj − δikδlj

)
,

〈S̃IJ S̃KL〉 = − 2α1

`

(
δILδKJ − δIKδLJ

)
,

〈Q̃iαQ̃
j
β〉 = 2

(
α1 −

α0

`

)
Cαβδ

ij ,

〈Q̃IαQ̃Jβ〉 = 2

(
α1 +

α0

`

)
Cαβδ

IJ , (5.4)

where α0 and α1 are arbitrary constants.

In order to take the ultra-relativistic contraction of the superalgebra (5.3), we decom-

pose, as usual, the indices A,B, . . . = 0, 1, 2 as in (2.5), which induces the decomposi-

tion (2.6), together with (2.7). After that, we rescale the generators with a parameter

σ as

H̃ → σH , K̃a → σKa , S̃ij → σSij ,

S̃IJ → σSIJ , Q̃iα →
√
σQiα , Q̃Iα →

√
σQIα . (5.5)

Then, taking the limit σ →∞ (and removing the tilde symbol also on the generators that

we have not rescaled), we end up with the N = (p, q) AdS Carroll superalgebra whose

non-trivial (anti)commutation relations read

[Ka, Jbc] = δabKc − δacKb , [Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH , [Pa, Pb] =
1

`2
Jab , [Pa, H] =

1

`2
Ka ,[

T ij , T kl
]

= δjkT il − δikT jl − δjlT ik + δilT jk ,[
T IJ , TKL

]
= δJKT IL − δIKT JL − δJLT IK + δILT JK ,
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[
T ij , Skl

]
= δjkSil − δikSjl − δjlSik + δilSjk ,[

T IJ , SKL
]

= δJKSIL − δIKSJL − δJLSIK + δILSJK ,[
Jab, Q

i
α

]
= − 1

2

(
ΓabQ

i
)
α
,

[
Jab, Q

I
α

]
= −1

2

(
ΓabQ

I
)
α
,[

Pa, Q
i
α

]
= − 1

2`

(
ΓaQ

i
)
α
,

[
Pa, Q

I
α

]
=

1

2`

(
ΓaQ

I
)
α
,[

T ij , Qkα

]
= δjkQiα − δikQjα ,

[
T IJ , QKα

]
= δJKQIα − δIKQJα ,{

Qiα, Q
j
β

}
= δij

[
−1

`

(
Γa0C

)
αβ
Ka +

(
Γ0C

)
αβ
H

]
+ CαβS

ij ,

{
QIα, Q

J
β

}
= δij

[
1

`

(
Γa0C

)
αβ
Ka +

(
Γ0C

)
αβ
H

]
− CαβSIJ . (5.6)

Notice that if we restrict ourselves to the special case N = (1, 1), that is p = q = 1,

we exactly reproduce the N = (1, 1) AdS Carroll superalgebra obtained in section 3,

namely (3.4).

In the following, we will construct a three-dimensional CS action invariant under (5.6).

5.2 (p, q) AdS Carroll supergravity

We will now construct a three-dimensional CS supergravity action invariant under the

superalgebra (5.6) just introduced. We call this action (p, q) AdS Carroll CS supergrav-

ity action.

To this aim, let us first introduce the connection 1-form A associated with (5.6), namely

A =
1

2
ωabJab + kaKa + V aPa + hH +

1

2
tijTij +

1

2
tIJTIJ

+
1

2
sijSij +

1

2
sIJSIJ + ψiQ

i + ψIQ
I , (5.7)

being ωab, ka, V a, h, tij , tIJ , sij , sIJ , ψi, and ψI the 1-form fields respectively dual to the

generators Jab, Ka, Pa, H, Tij , TIJ , Sij , SIJ , Qi, and QI (obeying the (anti)commutation

relations given in (5.6)), and the related curvature 2-form F , that is

F =
1

2
RabJab +KaKa +RaPa +HH +

1

2
T ijTij +

1

2
T IJTIJ

+
1

2
SijSij +

1

2
SIJSIJ +∇ψiQi +∇ψIQI , (5.8)

with

Rab = dωab +
1

`2
V aV b = Rab +

1

`2
V aV b ,

Ka = dka + ωabk
b +

1

`2
V ah+

1

2`
ψ̄iΓa0ψi − 1

2`
ψ̄IΓa0ψI

= Ka +
1

2`
ψ̄iΓa0ψi − 1

2`
ψ̄IΓa0ψI ,

Ra = dV a + ωabV
b ,
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H = dh+ V aka −
1

2
ψ̄iΓ0ψi − 1

2
ψ̄IΓ0ψI = H− 1

2
ψ̄iΓ0ψi − 1

2
ψ̄IΓ0ψI ,

T ij = dtij + tikt
kj ,

T IJ = dtIJ + tIKt
KJ ,

Sij = dsij + 2tiks
kj − ψ̄iψj ,

SIJ = dsIJ + 2tIKs
KJ + ψ̄IψJ ,

∇ψi = dψi +
1

4
ωabΓabψ

i +
1

2`
V aΓaψ

i + tijψj ,

∇ψI = dψI +
1

4
ωabΓabψ

I − 1

2`
V aΓaψ

I + tIJψJ . (5.9)

We can now move to the explicit construction of a CS action invariant under (5.6). To

this aim, consider the non-vanishing components of the invariant tensor given in (5.4), de-

compose the indices as in (2.5), and rescale not only the generators in compliance with (3.3)

but also the coefficients appearing in (5.4) as in (2.16). Consequently, the Carroll limit

σ → ∞ leads to the following non-vanishing components of an invariant tensor for the

superalgebra (5.6):

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈PaPb〉 =
α0

`2
δab ,

〈T ijT kl〉 = 2α0

(
δilδkj − δikδlj

)
,

〈T IJTKL〉 = 2α0

(
δILδKJ − δIKδLJ

)
,

〈T ijSkl〉 = − 2α1

(
δilδkj − δikδlj

)
,

〈T IJSKL〉 = 2α1

(
δILδKJ − δIKδLJ

)
,

〈QiαQ
j
β〉 = 2α1Cαβδ

ij ,

〈QIαQJβ〉 = 2α1Cαβδ
IJ . (5.10)

The invariant tensor whose components are given in (5.10) is non-degenerate when α1 6= 0.

Then, substituting the connection 1-form in (5.7) and the non-zero components of the

invariant tensor (5.10) into the general expression (2.11), we end up with the (p, q) AdS
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Carroll CS supergravity action in three dimensions, that is

I
(p,q)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a+

2

`2
V aRa + 2tijdt

j
i +

4

3
tijt

j
kt
k
i + 2tIJdt

J
I +

4

3
tIJ t

J
Kt

K
I

)
+ α1

[
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh− 2tij

(
dsj i + tjks

k
i

)
+ 2tIJ

(
dsJ I + tJKs

K
I

)
+ 2ψ̄i∇ψi + 2ψ̄I∇ψI

]
− d
(
α1

2
εabω

abh− α1εabk
aV b + α1t

i
js
j
i − α1t

I
Js
J
I

)}
, (5.11)

which is written in terms of the curvatures appearing in (5.9) and it involves two coupling

constants, that are α0 and α1. Up to boundary terms, the action (5.11) can be reworked

as follows:

I
(p,q)
CS =

k

4π

∫
M

{
α0

2

(
ωabR

b
a +

2

`2
V aRa + 2tijdt

j
i +

4

3
tijt

j
kt
k
i + 2tIJdt

J
I +

4

3
tIJ t

J
Kt

K
I

)
+ α1

[
εabR

abh− 2εabK
aV b +

1

`2
εabV

aV bh− 2tij

(
dsj i + tjks

k
i

)
+ 2tIJ

(
dsJ I + tJKs

K
I

)
+ 2ψ̄i∇ψi + 2ψ̄I∇ψI

]}
. (5.12)

As usual, the contribution proportional to α0 corresponds to the exotic Lagrangian, and we

can see that it involves, besides the Lorentz and torsional terms, also pieces including the

1-form fields tij and tIJ . However, it does not contain terms involving ψi and ψI . On the

other hand, the contribution proportional to α1 also includes pieces involving the 1-form

fields sij , sIJ , ψi, and ψI .

The action (5.11) is invariant by construction under (5.6), and the local gauge trans-

formations δλA = dλ+ [A, λ] with gauge parameter

λ =
1

2
λabJab+κ

aKa+λaPa+τH+
1

2
ϕijtij+

1

2
ϕIJ tIJ+

1

2
ς ijsij+

1

2
ςIJsIJ+εiQi+ε

IQI (5.13)

are given by

δωab = dλab +
2

`2
V [aλb] ,

δka = dκa − λabkb + ωabκ
b − 1

`2
λah+

1

`2
V aτ − 1

`
ε̄iΓa0ψi +

1

`
ε̄IΓa0ψI ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄iΓ0ψi + ε̄IΓ0ψI ,

δtij = dϕij − 2ϕ[i
kt
k|j] ,

δtIJ = dϕIJ − 2ϕ[I
Kt

K|J ] ,

δsij = dς ij − 2ϕ[i
ks
k|j] + 2t[ikς

k|j] + 2ε̄[iψj] ,
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δsIJ = dςIJ + 2ϕ[I
Ks

K|J ] + 2t[IKς
K|J ] − 2ε̄[IψJ ] ,

δψi = dε+ − 1

4
λabΓabψ

i +
1

4
ωabΓabε

i − 1

2`
λaΓaψ

i +
1

2`
V aΓaε

i − ϕijψj + tijεj ,

δψI = dε− − 1

4
λabΓabψ

I +
1

4
ωabΓabε

I +
1

2`
λaΓaψ

I − 1

2`
V aΓaε

I − ϕIJψJ + tIJεJ . (5.14)

Thus, the restriction to supersymmetry transformations gives us

δωab = 0 ,

δka = −1

`
ε̄iΓa0ψi +

1

`
ε̄IΓa0ψI ,

δV a = 0 ,

δh = ε̄iΓ0ψi + ε̄IΓ0ψI ,

δtij = 0 ,

δtIJ = 0 ,

δsij = 2ε̄[iψj] ,

δsIJ = −2ε̄[IψJ ] ,

δψi = dε+ +
1

4
ωabΓabε

i +
1

2`
V aΓaε

i + tijεj ,

δψI = dε− +
1

4
ωabΓabε

I − 1

2`
V aΓaε

I + tIJεJ . (5.15)

Finally, the equations of motion obtained from the variation of (5.11) with respect

to the 1-form fields ωab, ka, V a, h, tij , tIJ , sij , sIJ , ψi, and ψI are, respectively (up to

boundary contributions),

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a :
α0

`2
Ra + 2α1εabKb = 0 ,

δh : α1Rab = 0 ,

δtij : −α0T ij + α1Sij = 0 ,

δtIJ : −α0T IJ − α1SIJ = 0 ,

δsij : α1T ij = 0 ,

δsIJ : α1T IJ = 0 ,

δψi : α1∇ψi = 0 ,

δψI : α1∇ψI = 0 , (5.16)
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and, for α1 6= 0, they reduce precisely to the vanishing of the (p, q) super-AdS Carroll

curvature 2-forms given in (5.8), that is to say

Rab = 0 , Ka = 0 , Ra = 0 , H = 0 ,

T ij = 0 , T IJ = 0 , Sij = 0 , SIJ = 0 ,

∇ψi = 0 , ∇ψI = 0 . (5.17)

We observe that, as usual, α1 6= 0 is a sufficient condition to recover (5.17), meaning that

α0 can be consistently set to zero, making the exotic term in the CS action (5.11) disappear.

Let us finally mention that, if we restrict ourselves to the case p = q = 1, we exactly

reproduce the results of section 3, that is to say, as properly expected, the (1, 1) AdS

Carroll supergravity theory.

6 Study of the flat limit ` → ∞

In the sequel, we study the flat limit ` → ∞, which can be directly applied to

the N -extended AdS Carroll superalgebras (2.10), (3.4), (4.14), and (5.6), to the cor-

responding curvature 2-forms, respectively given by (2.15), (3.7), (4.17), and (5.9),

to the related CS actions (2.18), (3.11), (4.21), and (5.11), to the transformation

laws (2.21), (3.14), (4.24), (5.14) (and, in particular to the supersymmetry transforma-

tion laws (2.22), (3.15), (4.26), (5.15)), and to the field equations of the respective theories,

namely (2.23), (3.16), (4.27), and (5.16).

6.1 (2, 0) Carroll supergravity from the ` → ∞ limit

In the limit `→∞, the (anti)commutation relations of the N = (2, 0) AdS Carroll super-

algebra (2.10) reduce to the following non-vanishing ones:

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,[
Jab, Q

±
α

]
= − 1

2

(
ΓabQ

±)
α
,[

T,Q+
α

]
= (Γ0)αβ Q

+
β ,[

T,Q−α
]

= − (Γ0)αβ Q
−
β ,{

Q+
α , Q

+
β

}
=
(
Γ0C

)
αβ

(H + S) ,{
Q−α , Q

−
β

}
=
(
Γ0C

)
αβ

(H − S) . (6.1)

These are the (anti)commutation relations of a new N = (2, 0), D = 3 super-Carroll al-

gebra, involving an extra generator S, which could also have been derived by considering
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the ultra-relativistic contraction of the N = (2, 0), D = 3 Poincaré superalgebra sup-

plemented with an so(2) extension consisting in the extra generator S̃ introduced at the

relativistic level.

As `→∞, the 2-form curvatures (2.15) become

Rab = dωab = Rab ,

Ka = dka + ωabk
b = Ka ,

Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− = H− 1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− ,

T = dt ,

S = ds− 1

2
ψ̄+Γ0ψ+ +

1

2
ψ̄−Γ0ψ− ,

∇ψ+ = dψ+ +
1

4
ωabΓabψ

+ − tΓ0ψ
+ ,

∇ψ− = dψ− +
1

4
ωabΓabψ

− + tΓ0ψ
− . (6.2)

On the other hand, by applying the `→∞ limit to the three-dimensional CS action (2.18),

we end up with

I
(2,0)
CS |`→∞ =

k

4π

∫
M

{
α0

2

(
ωabR

b
a − 4tdt

)
+ α1

(
εabR

abh− 2εabK
aV b + 4tds

+ 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−
)
− d
(
α1

2
εabω

abh− α1εabk
aV b − 2α1ts

)}
, (6.3)

which is written in terms of the super-Carroll curvatures appearing in (6.2). The latter must

not be confused with the super-AdS Carroll ones given in (2.15), since (6.2) correspond to

the flat limit of (2.15). Here we signal that we have done a little abuse of notation. The

action (6.3) can also be derived by using the following non-vanishing components of the

invariant tensor:

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈TT 〉 = − 2α0 ,

〈TS〉 = 2α1 ,

〈Q+
αQ

+
β 〉 = 〈Q−αQ−β 〉 = 2α1Cαβ , (6.4)

which are obtained by taking the limit `→∞ of (2.17), and the connection 1-form for the

N = (2, 0) (flat) Carroll superalgebra (6.1) in the general expression (2.11). Notice that
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the exotic term, which is the one proportional to α0 in (6.3), now reduces purely to the

so-called Lorentz Lagrangian.

The CS action (6.3) is invariant by construction under the super-Carroll group associ-

ated with (6.1). In particular, concerning the flat limit of the gauge transformations (2.21),

we get the local gauge transformations

δωab = dλab ,

δka = dκa − λabkb + ωabκ
b ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δt = dϕ ,

δs = dς + ε̄+Γ0ψ+ − ε̄−Γ0ψ− ,

δψ+ = dε+ − 1

4
λabΓabψ

+ +
1

4
ωabΓabε

+ + ϕΓ0ψ
+ − tΓ0ε

+ ,

δψ− = dε− − 1

4
λabΓabψ

− +
1

4
ωabΓabε

− − ϕΓ0ψ
− + tΓ0ε

− . (6.5)

The restriction to supersymmetry transformations reads

δωab = 0 ,

δka = 0 ,

δV a = 0 ,

δh = ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δt = 0 ,

δs = ε̄+Γ0ψ+ − ε̄−Γ0ψ− ,

δψ+ = dε+ +
1

4
ωabΓabε

+ − tΓ0ε
+ ,

δψ− = dε− +
1

4
ωabΓabε

− + tΓ0ε
− . (6.6)

Finally, the equations of motion for the action (6.3) (flat limit of the equations of

motion given in (2.23)) are

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a : α1εabKb = 0 ,
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δh : α1Rab = 0 ,

δt : −α0T + α1S = 0 ,

δs : α1T = 0 ,

δψ+ : α1∇ψ+ = 0 ,

δψ− : α1∇ψ− = 0 , (6.7)

and we can see that, when α1 6= 0, they exactly reduce to the vanishing of the curvature

2-forms given in (6.2). We can also observe that, in analogy with the AdS case of section 2,

also in the flat limit α1 6= 0 results to be a sufficient condition to recover the vanishing of the

curvature 2-forms (6.2) obtained in the flat limit, which means that one could consistently

set α0 = 0 and thus neglect the exotic term (i.e., the Lorentz Lagrangian) in the CS

action (6.3).9

6.2 (1, 1) Carroll supergravity from the ` → ∞ limit

The limit ` → ∞ performed on the (anti)commutation relations of the N = (1, 0) AdS

Carroll superalgebra (3.4) leads to the following non-vanishing ones:

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,[
Jab, Q

±
α

]
= − 1

2

(
ΓabQ

±)
α
,{

Q±α , Q
±
β

}
=
(
Γ0C

)
αβ
H . (6.8)

These are the (anti)commutation relations of the N = (1, 1), D = 3 super-Carroll algebra

(see [14], where (6.8) corresponds to the superalgebra obtained in the R→∞ limit of the

N = (1, 1) AdS-Carroll superalgebra of section C.4 of the same paper). It could be also

obtained by considering the ultra-relativistic contraction of the N = (1, 1), D = 3 Poincaré

superalgebra.

Taking `→∞, the 2-form curvatures (3.7) reduce to

Rab = dωab = Rab ,

Ka = dka + ωabk
b = Ka ,

9Let us also observe that if we now restrict ourselves to the purely bosonic part of the action (6.3),

we get a three-dimensional CS Carroll gravity action that is different from the one obtained in [35] (see

also [13]) by considering the purely bosonic contributions, due to the presence of the bosonic 1-form fields

t and s dual to the generators T and S, respectively. Nevertheless, if we consider the purely bosonic level

and set t = s = 0 through an IW contraction, we have that the aforementioned actions coincide.
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Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− = H− 1

2
ψ̄+Γ0ψ+ − 1

2
ψ̄−Γ0ψ− ,

∇ψ+ = dψ+ +
1

4
ωabΓabψ

+ ,

∇ψ− = dψ− +
1

4
ωabΓabψ

− , (6.9)

and the `→∞ limit of the CS action (3.11) leads us to the following three-dimensional one:

I
(1,1)
CS |`→∞ =

k

4π

∫
M

{
α0

2

(
ωabR

b
a

)
+ α1

(
εabR

abh− 2εabK
aV b + 2ψ̄+∇ψ+ + 2ψ̄−∇ψ−

)
− d
(
α1

2
εabω

abh− α1εabk
aV b

)}
, (6.10)

written in terms of the curvatures appearing in (6.9) (again, we are doing a little abuse of

notation). The action (6.10) can also be derived by using the connection 1-form for the

N = (1, 1) (flat) Carroll superalgebra (6.8) together with the non-vanishing components of

the invariant tensor

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈Q+
αQ

+
β 〉 = 〈Q−αQ−β 〉 = 2α1Cαβ (6.11)

in the general expression for a three-dimensional CS action (2.11). Analogously to what

happened in the (2, 0) flat theory, also in the current case the exotic term, proportional to

α0, now reduces purely to the Lorentz Lagrangian.

By construction, the CS action (6.10) is invariant under the (1, 1) super-Carroll group,

that is associated with the superalgebra given in (6.8). In particular, taking the flat limit

of the gauge transformations (3.14), we get the following local gauge transformations:

δωab = dλab ,

δka = dκa − λabkb + ωabκ
b ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δψ+ = dε+ − 1

4
λabΓabψ

+ +
1

4
ωabΓabε

+ ,

δψ− = dε− − 1

4
λabΓabψ

− +
1

4
ωabΓabε

− , (6.12)
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and restricting ourselves to supersymmetry transformations, we are left with

δωab = 0 ,

δka = 0 ,

δV a = 0 ,

δh = ε̄+Γ0ψ+ + ε̄−Γ0ψ− ,

δψ+ = dε+ +
1

4
ωabΓabε

+ ,

δψ− = dε− +
1

4
ωabΓabε

− . (6.13)

Concluding, the equations of motion for the action (6.10) (flat limit of the equations

of motion given in (3.16)) read as follows:

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a : α1εabKb = 0 ,

δh : α1Rab = 0 ,

δψ+ : α1∇ψ+ = 0 ,

δψ− : α1∇ψ− = 0 . (6.14)

When α1 6= 0, the eqs. (6.14) exactly reduce to the vanishing of the curvature 2-forms

in (6.9) (α1 6= 0 is a sufficient condition to recover the vanishing of the curvature 2-

forms (6.9), meaning that one could consistently set α0 = 0, omitting the exotic term, that

is the Lorentz Lagrangian, in the CS action (6.10)).

Notice that the restriction to the purely bosonic part of the action (6.10) yields exactly

the three-dimensional CS gravity action invariant under the D = 3 Carroll algebra [1, 2].

The aforesaid CS action involving purely bosonic terms is equivalent, as argued in [13], to

the action found in [13] if we take the D = 3 case in the same paper.

6.3 (N , 0) Carroll supergravity theories from the ` → ∞ limit

Taking the flat limit `→∞ of the (anti)commutation relations (4.14), we get the following

non-trivial ones:

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,
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[
T λµ, T νρ

]
= δµνT λρ − δλνTµρ − δµρT λν + δλρTµν ,[

T λµ, Uνρ
]

= δµρUνλ − δλρUνµ ,[
T ′λµ, T ′νρ

]
= δµνT ′λρ − δλνT ′µρ − δµρT ′λν + δλρT ′µν ,[

T ′λµ, Uνρ
]

= δµνUλρ − δλνUµρ ,[
Uλµ, Uνρ

]
= − δλνTµρ − δµρT ′λν ,[

T λµ, Sνρ
]

= δµνSλρ − δλνSµρ − δµρSλν + δλρSµν ,[
T λµ, V νρ

]
= δµρV νλ − δλρV νµ ,[

T ′λµ, S′νρ
]

= δµνS′λρ − δλνS′µρ − δµρS′λν + δλρS′µν ,[
T ′λµ, V νρ

]
= δµνV λρ − δλνV µρ ,[

Uλµ, Sνρ
]

= − δµρV λν + δµνV λρ ,[
Uλµ, S′νρ

]
= − δλρV νµ + δλνV ρµ ,[

Uλµ, V νρ
]

= − δλνSµρ − δµρS′λν ,[
Jab, Q

±λ
α

]
= − 1

2

(
ΓabQ

±λ
)
α
,[

T λµ, Q± να

]
=

1

2

[
δµν

(
Q+λ
α +Q−λα

)
− δλν

(
Q+µ
α +Q−µα

)]
,[

T ′λµ, Q± να

]
= ± 1

2

[
δµν

(
Q+λ
α −Q−λα

)
− δλν

(
Q+µ
α −Q−µα

)]
,[

Uλµ, Q± να

]
= ∓ 1

2
(Γ0)αβ

[
δλν
(
Q+µ
β +Q− µ

β

)
± δµν

(
Q+λ
β −Q−λβ

)]
,

{Q+λ
α , Q+µ

α } =
(
Γ0C

)
αβ

(
δλµH − V (λµ)

)
+ CαβY

[λµ] ,

{Q+λ
α , Q−µβ } = CαβY

′[λµ] −
(
Γ0C

)
αβ
V [λµ] ,

{Q−λα , Q−µβ } =
(
Γ0C

)
αβ

(
δλµH + V (λµ)

)
+ CαβY

[λµ] . (6.15)

The (anti)commutation relations (6.15) are those of the N = (N , 0), D = 3 super-Carroll

algebra (with N even), and one could also obtain it by taking the ultra-relativistic limit of

the so(N ) extension of the N = (N , 0), D = 3 Poincaré superalgebra.

Moreover, as `→∞, the 2-form curvatures (4.17) become

Rab = dωab = Rab ,

Ka = dka + ωabk
b = Ka ,

Ra = dV a + ωabV
b ,
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H = dh+ V aka −
1

2
ψ̄+λΓ0ψ+λ − 1

2
ψ̄−λΓ0ψ−λ

= H− 1

2
ψ̄+λΓ0ψ+λ − 1

2
ψ̄−λΓ0ψ−λ ,

T λµ = dtλµ + tλνt
νµ + u′[λνu

ν|µ] ,

T ′λµ = dt′λµ + t′λνt
′νµ + u[λνu

′ν|µ] ,

Uλµ = duλµ + uλνt
νµ + t′λνu

νµ ,

Sλµ = dsλµ + 2tλνs
νµ + 2u′[λνv

ν|µ] − 1

2
ψ̄+λψ+µ − 1

2
ψ̄−λψ−µ − ψ̄+ [λψ−µ] ,

S ′λµ = ds′λµ + 2t′λνs
′νµ + 2u[λνv

′ν|µ] − 1

2
ψ̄+λψ+µ − 1

2
ψ̄−λψ−µ + ψ̄+ [λψ−µ] ,

Vλµ = dvλµ + vλνt
νµ + t′λνv

νµ + uλνs
νµ + s′λνu

νµ +
1

2
ψ̄+λΓ0ψ+µ

− 1

2
ψ̄−λΓ0ψ−µ + ψ̄+ [λΓ0ψ−µ] ,

∇ψ+λ = dψ+λ +
1

4
ωabΓabψ

+λ +
1

2
tλµψ+

µ +
1

2
tλµψ−µ +

1

2
t′λµψ+

µ

− 1

2
t′λµψ−µ + u(λµ)Γ0ψ

+
µ + u[λµ]Γ0ψ

−
µ ,

∇ψ−λ = dψ−λ +
1

4
ωabΓabψ

−λ +
1

2
tλµψ+

µ +
1

2
tλµψ−µ −

1

2
t′λµψ+

µ

+
1

2
t′λµψ−µ − u(λµ)Γ0ψ

−
µ − u[λµ]Γ0ψ

+
µ . (6.16)

Applying the `→∞ limit to the CS action (4.21), we obtain

I
(N ,0)
CS |`→∞ =

k

4π

∫
M

{
α0

2

(
ωabR

b
a + 2tλµdt

µ
λ +

4

3
tλµt

µ
νt
ν
λ + 2t′λµdt

′µ
λ +

4

3
t′λµt

′µ
νt
′ν
λ

+ 4uλµdu
′µ
λ − 4tλµu

′λ
νu

νµ − 4t′λµu
λ
νu
′νµ
)

+ α1

[
εabR

abh− 2εabK
aV b − 2tλµ (dsµλ + tµνs

ν
λ)

− 2t′λµ
(
ds′µλ + t′µνs

′ν
λ

)
− 4uλµdv

′µ
λ − 2u′λµu

µ
νs
ν
λ − 2uλµu

′µ
νs
′ν
λ

− 4u′λµv
µ
νt
ν
λ − 4uλµv

′µ
νt
′ν
λ + 2ψ̄+λ∇ψ+λ + 2ψ̄−λ∇ψ−λ

]
− d
(
α1

2
εabω

abh− α1εabk
aV b + α1t

λ
µs
µ
λ + α1t

′λ
µs
′µ
λ + 2α1u

λ
µv
′µ
λ

)}
,

(6.17)

which is written in terms of the super-Carroll curvatures appearing in (6.16) (we emphasize

that the latter must not be confused with the super-AdS Carroll ones given in (4.17)).

Note that the exotic term in (6.17), that is the one proportional to α0, is now given by the

Lorentz Lagrangian plus additional terms involving the 1-form fields tλµ, t′λµ, and uλµ. Let

us further mention that the action (6.17) can also be derived by using the non-vanishing
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components of the invariant tensor obtained by taking the limit `→∞ of (4.20) together

with the connection 1-form for the N = (N , 0) (flat) Carroll superalgebra (6.15) in the

general expression (2.11). In particular, taking the `→∞ limit of (4.20) we are left with

the non-vanishing components

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈T λµT νρ〉 = 〈T ′λµT ′νρ〉 = 2α0

(
δλρδνµ − δλνδρµ

)
,

〈UλµUνρ〉 = − 2α0δ
λνδρµ ,

〈T λµSνρ〉 = 〈T ′λµS′νρ〉 = −2α1

(
δλρδνµ − δλνδρµ

)
,

〈UλµV νρ〉 = 2α1δ
λνδρµ ,

〈Q+λ
α Q+µ

β 〉 = 〈Q−λα Q−µβ 〉 = 2α1Cαβδ
λµ . (6.18)

The action (6.17) is invariant by construction under the super-Carroll group associ-

ated with (6.15); in particular, concerning the `→∞ limit of the local gauge transforma-

tions (4.24), we obtain

δωab = dλab ,

δka = dκa − λabkb + ωabκ
b ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄+λΓ0ψ+λ + ε̄−λΓ0ψ−λ ,

δtλµ = d%λµ − 2%[λνt
ν|µ] − 2ϕ′[λνu

ν|µ] ,

δt′λµ = d%′λµ − 2%′[λνt
′ν|µ] − 2ϕ[λ

νu
′ν|µ] ,

δuλµ = dϕλµ − ϕλνtνµ + uλν%
νµ − %′λνuνµ + t′λνϕ

νµ ,

δsλµ = dϑλµ − 2%[λνs
ν|µ] + 2t[λνϑ

ν|µ] − 2ϕ′[λνv
ν|µ] + 2u′[λνς

ν|µ] + ε̄+ [λψ+µ]

+ ε̄− [λψ−µ] + ε̄+ [λψ−µ] + ε̄− [λψ+µ] ,

δs′λµ = dϑ′λµ − 2%′[λνs
′ν|µ] + 2t′[λνϑ

′ν|µ] − 2ϕ[λ
νv
′ν|µ] + 2u[λνς

′ν|µ] + ε̄+ [λψ+µ]

+ ε̄− [λψ−µ]ε̄+ [λψ−µ] − ε̄− [λψ+µ] ,

δvλµ = dςλµ − ςλνtνµ + vλν%
νµ − %′λνvνµ + t′λνς

νµ − ϕλνsνµ + uλνϑ
νµ − ϑ′λνuνµ

+ s′λνϕ
νµ − ε̄+λΓ0ψ+µ + ε̄−λΓ0ψ−µ − ε̄+ [λΓ0ψ−µ] + ε̄− [λΓ0ψ+µ] ,
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δψ+λ = dε+λ − 1

4
λabΓabψ

+λ +
1

4
ωabΓabε

+λ − 1

2
%λµψ+

µ +
1

2
tλµε+µ −

1

2
%λµψ−µ

+
1

2
tλµε−µ −

1

2
%′λµψ+

µ +
1

2
t′λµε+µ +

1

2
%′λµψ−µ −

1

2
t′λµε−µ − ϕ(λµ)Γ0ψ

+
µ

+ u(λµ)Γ0ε
+
µ − ϕ[λµ]Γ0ψ

−
µ + u[λµ]Γ0ε

−
µ ,

δψ−λ = dε−λ − 1

4
λabΓabψ

−λ +
1

4
ωabΓabε

−λ − 1

2
%λµψ+

µ +
1

2
tλµε+µ −

1

2
%λµψ−µ

+
1

2
tλµε−µ +

1

2
%′λµψ+

µ −
1

2
t′λµε+µ −

1

2
%′λµψ−µ +

1

2
t′λµε−µ + ϕ(λµ)Γ0ψ

−
µ

− u(λµ)Γ0ε
−
µ + ϕ[λµ]Γ0ψ

+
µ − u[λµ]Γ0ε

+
µ . (6.19)

Then, restricting ourselves to the supersymmetry transformations in the limit ` → ∞,

we find

δωab = 0 ,

δka = 0 ,

δV a = 0 ,

δh = ε̄+λΓ0ψ+λ + ε̄−λΓ0ψ−λ ,

δtλµ = 0 ,

δt′λµ = 0 ,

δuλµ = 0 ,

δsλµ = ε̄+ [λψ+µ] + ε̄− [λψ−µ] + ε̄+ [λψ−µ] + ε̄− [λψ+µ] ,

δs′λµ = ε̄+ [λψ+µ] + ε̄− [λψ−µ] − ε̄+ [λψ−µ] − ε̄− [λψ+µ] ,

δvλµ = −ε̄+λΓ0ψ+µ + ε̄−λΓ0ψ−µ − ε̄+ [λΓ0ψ−µ] + ε̄− [λΓ0ψ+µ] ,

δψ+λ = dε+λ +
1

4
ωabΓabε

+λ +
1

2
tλµε+µ +

1

2
tλµε−µ +

1

2
t′λµε+µ

− 1

2
t′λµε−µ + u(λµ)Γ0ε

+
µ + u[λµ]Γ0ε

−
µ ,

δψ−λ = dε−λ +
1

4
ωabΓabε

−λ +
1

2
tλµε+µ +

1

2
tλµε−µ −

1

2
t′λµε+µ

+
1

2
t′λµε−µ − u(λµ)Γ0ε

−
µ − u[λµ]Γ0ε

+
µ . (6.20)

Finally, we find that the equations of motion for the action (6.17) (flat limit of the

equations of motion given in (4.27)) read

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,
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δV a : α1εabKb = 0 ,

δh : α1Rab = 0 ,

δtλµ : α0T λµ + α1Sλµ = 0 ,

δt′λµ : α0T ′λµ + α1S ′λµ = 0 ,

δuλµ : −α0Uλµ + α1Vλµ = 0 ,

δsλµ : α1T λµ = 0 ,

δs′λµ : α1T ′λµ = 0 ,

δvλµ : α1Uλµ = 0 ,

δψ+λ : α1∇ψ+λ = 0 ,

δψ−λ : α1∇ψ−λ = 0 . (6.21)

We can see that when α1 6= 0, the eqs. (6.21) reduce to the vanishing of the curvature

2-forms given in (6.16) (α1 6= 0 is a sufficient condition to recover the vanishing of the

curvature 2-forms in (6.16); the coefficient α0 can be consistently set to zero, making the

exotic term disappear from the action (6.17).

Let us observe that, restricting ourselves to the purely bosonic theory, we end up with

the N = (N , 0) Carroll gravity theories (with N even) in three dimensions, invariant under

the N = (N , 0) Carroll algebra. At the purely bosonic level, the fields tλµ, t′λµ, uλµ, sλµ,

s′λµ, and vλµ, and the corresponding terms in the action, can also be consistently discarded

by performing an IW contraction.

On the other hand, considering the special case N = (2, 0), that is x = 1, after

some algebraic calculations, we can prove that the (2, 0) theory in the flat limit previously

discussed in this section is exactly reproduced.

6.4 (p, q) Carroll supergravity theories from the ` → ∞ limit

Applying the flat limit ` → ∞ to the (anti)commutation relations given in (5.6), we get

the following non-vanishing ones:

[Ka, Jbc] = δabKc − δacKb ,

[Jab, Pc] = δbcPa − δacPb ,

[Ka, Pb] = − δabH ,[
T ij , T kl

]
= δjkT il − δikT jl − δjlT ik + δilT jk ,[

T IJ , TKL
]

= δJKT IL − δIKT JL − δJLT IK + δILT JK ,
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[
T ij , Skl

]
= δjkSil − δikSjl − δjlSik + δilSjk ,[

T IJ , SKL
]

= δJKSIL − δIKSJL − δJLSIK + δILSJK ,[
Jab, Q

i
α

]
= − 1

2

(
ΓabQ

i
)
α
,[

Jab, Q
I
α

]
= − 1

2

(
ΓabQ

I
)
α
,[

T ij , Qkα

]
= δjkQiα − δikQjα ,[

T IJ , QKα
]

= δJKQIα − δIKQJα ,{
Qiα, Q

j
β

}
= δij

(
Γ0C

)
αβ
H + CαβS

ij ,{
QIα, Q

J
β

}
= δij

(
Γ0C

)
αβ
H − CαβSIJ . (6.22)

These are the (anti)commutation relations of the N = (p, q), D = 3 super-Carroll algebra,

and we could also have obtained the latter by applying the Carroll contraction to the

semi-direct extension of the so(p)⊕ so(q) automorphism algebra by the N = (p, q), D = 3

Poincaré superalgebra (see ref. [40]).

Then, as `→∞, the 2-form curvatures (5.9) become

Rab = dωab = Rab ,

Ka = dka + ωabk
b = Ka ,

Ra = dV a + ωabV
b ,

H = dh+ V aka −
1

2
ψ̄iΓ0ψi − 1

2
ψ̄IΓ0ψI = H− 1

2
ψ̄iΓ0ψi − 1

2
ψ̄IΓ0ψI ,

T ij = dtij + tikt
kj ,

T IJ = dtIJ + tIKt
KJ ,

Sij = dsij + 2tiks
kj − ψ̄iψj ,

SIJ = dsIJ + 2tIKs
KJ + ψ̄IψJ ,

∇ψi = dψi +
1

4
ωabΓabψ

i + tijψj ,

∇ψI = dψI +
1

4
ωabΓabψ

I + tIJψJ , (6.23)

and by applying the `→∞ limit to the CS action (5.11), we get

I
(p,q)
CS |`→∞ =

k

4π

∫
M

{
α0

2

(
ωabR

b
a + 2tijdt

j
i +

4

3
tijt

j
kt
k
i + 2tIJdt

J
I +

4

3
tIJ t

J
Kt

K
I

)
+ α1

[
εabR

abh− 2εabK
aV b − 2tij

(
dsj i + tjks

k
i

)
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+ 2tIJ
(
dsJ I + tJKs

K
I

)
+ 2ψ̄i∇ψi + 2ψ̄I∇ψI

]
− d
(
α1

2
εabω

abh− α1εabk
aV b + α1t

i
js
j
i − α1t

I
Js
J
I

)}
, (6.24)

which is written in terms of the super-Carroll curvatures appearing in (6.23) (let us stress

that the latter must not be confused with the super-AdS Carroll ones given in (5.9)).

We can see that the exotic term appearing in (6.24), namely the one proportional to α0,

now is given by the Lorentz Lagrangian plus additional terms involving the 1-form fields

tij and tIJ .

Notice that the action (6.24) can also be derived by using the non-vanishing compo-

nents of the invariant tensor obtained by taking the limit `→∞ of (5.10) together with the

connection 1-form for the N = (p, q) (flat) Carroll superalgebra (6.22) in the general ex-

pression (2.11). Specifically, the limit `→∞ of (5.10) gives us the following non-vanishing

components:

〈JabJcd〉 = α0 (δadδbc − δacδbd) ,

〈JabH〉 = α1εab ,

〈KaPb〉 = − α1εab ,

〈T ijT kl〉 = 2α0

(
δilδkj − δikδlj

)
,

〈T IJTKL〉 = 2α0

(
δILδKJ − δIKδLJ

)
,

〈T ijSkl〉 = − 2α1

(
δilδkj − δikδlj

)
,

〈T IJSKL〉 = 2α1

(
δILδKJ − δIKδLJ

)
,

〈QiαQ
j
β〉 = 2α1Cαβδ

ij ,

〈QIαQJβ〉 = 2α1Cαβδ
IJ . (6.25)

The CS action (6.24) is invariant by construction under the super-Carroll group as-

sociated with (6.22), and, in particular, concerning the ` → ∞ limit of the local gauge

transformations (5.14), we get

δωab = dλab ,

δka = dκa − λabkb + ωabκ
b ,

δV a = dλa − λabV b + ωabλ
b ,

δh = dτ − λaka + V aκa + ε̄iΓ0ψi + ε̄IΓ0ψI ,

δtij = dϕij − 2ϕ[i
kt
k|j] ,
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δtIJ = dϕIJ − 2ϕ[I
Kt

K|J ] ,

δsij = dς ij − 2ϕ[i
ks
k|j] + 2t[ikς

k|j] + 2ε̄[iψj] ,

δsIJ = dςIJ + 2ϕ[I
Ks

K|J ] + 2t[IKς
K|J ] − 2ε̄[IψJ ] ,

δψi = dε+ − 1

4
λabΓabψ

i +
1

4
ωabΓabε

i − ϕijψj + tijεj ,

δψI = dε− − 1

4
λabΓabψ

I +
1

4
ωabΓabε

I − ϕIJψJ + tIJεJ . (6.26)

Thus, restricting ourselves to the supersymmetry transformations in the limit ` → ∞, we

are left with

δωab = 0 ,

δka = 0 ,

δV a = 0 ,

δh = ε̄iΓ0ψi + ε̄IΓ0ψI ,

δtij = 0 ,

δtIJ = 0 ,

δsij = 2ε̄[iψj] ,

δsIJ = −2ε̄[IψJ ] ,

δψi = dε+ +
1

4
ωabΓabε

i + tijεj ,

δψI = dε− +
1

4
ωabΓabε

I + tIJεJ . (6.27)

Concluding, the equations of motion for the action (6.24) (flat limit of the equations

of motion given in (5.16)) read as follows:

δωab : α0Rab + α1ε
abH = 0 ,

δka : α1R
a = 0 ,

δV a : 2α1εabKb = 0 ,

δh : α1Rab = 0 ,

δtij : −α0T ij + α1Sij = 0 ,

δtIJ : −α0T IJ − α1SIJ = 0 ,

δsij : α1T ij = 0 ,
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δsIJ : α1T IJ = 0 ,

δψi : α1∇ψi = 0 ,

δψI : α1∇ψI = 0 . (6.28)

When α1 6= 0, the eqs. (6.28) exactly reduce to the vanishing of the curvature 2-forms

given in (6.23) (α1 6= 0 is a sufficient condition to recover the vanishing of the curvature

2-forms (6.23), and the coefficient α0 can also be consistently set to zero, making the exotic

term disappear from the action (6.24)).

Restricting ourselves to the purely bosonic theory, we end up with the N = (p, q)

Carroll gravity theories in three dimensions, invariant under the N = (p, q) Carroll algebra.

At the purely bosonic level, the fields tij , tIJ , sij , and sIJ , and the corresponding terms in

the action, can also be consistently discarded by performing an IW contraction.

On the other hand, let us finally mention that, if we now consider the particular case

p = q = 1, we exactly reproduce the results previously obtained in this section for the (1, 1)

theory in the flat limit.

All the studies of the flat limit presented in this section represent a new develop-

ment and generalization of the previous works concerning Carroll superalgebras in three

dimensions, in particular in the context of three-dimensional CS supergravity theories.

7 Conclusions

Motivated by the recent development of applications of Carroll symmetries (in particular,

by their prominent role in the context of holography), and by the fact that, nevertheless,

the study of their supersymmetric extensions in the context of supergravity models still

remains poorly explored, in this paper we have presented, in a systematic fashion, the

ultra-relativistic N -extended AdS CS supergravity theories in three (2 + 1) spacetime

dimensions, which are invariant under N -extended AdS Carroll superalgebras, extending

the results recently presented in [35] (where the construction of the three-dimensional

N = 1 CS supergravity theory invariant under the so-called AdS Carroll superalgebra,

ultra-relativistic contraction of the N = 1 AdS superalgebra [14], together with the study

of its flat limit, has been presented for the first time). In particular, we have applied

the method introduced in [36] with the improvements of [35] to construct the aforesaid

ultra-relativistic N -extended AdS CS supergravity theories.

We have first considered the (2, 0) and (1, 1) cases, and subsequently generalized our

analysis to N = (N , 0), with N even integer, and to N = (p, q), that is N = p + q, with

p, q > 0. The N -extended AdS Carroll superalgebras have been obtained through the

Carrollian (i.e., ultra-relativistic) contraction applied to an so(2) extension of osp(2|2) ⊗
sp(2), to osp(2|1)⊗ osp(2, 1), to an so(N ) extension of osp(2|N )⊗ sp(2), and to the direct

sum of an so(p)⊕ so(q) algebra and osp(2|p)⊗ osp(2, q), respectively.

An N = (2, 0) AdS Carroll superalgebra in three dimensions was previously intro-

duced in [14]. Nevertheless, the latter does not allow for a non-degenerate invariant tensor,

meaning that one cannot construct a well-defined CS action based on this superalgebra.
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To overcome this point, we have considered an so(2) extension of osp(2|2) ⊗ sp(2) and

performed the ultra-relativistic contraction on it, ending up with a new N = (2, 0) AdS

Carroll superalgebra endowed with a non-degenerate invariant tensor. This has allowed us

to develop the three-dimensional CS supergravity action invariant under this N = (2, 0)

AdS Carroll superalgebra. We have called this action the (2, 0) AdS Carroll CS super-

gravity action. We have done an analogous analysis in the (1, 1) case, and subsequently

generalized our study to N = (N , 0) (with N even) and to N = (p, q) (with p, q > 0). In

particular, after having introduced the ultra-relativistic superalgebras, we have constructed

the respective CS supergravity theories in three-dimensions by exploiting the non-vanishing

components of the corresponding invariant tensor. The aforementioned actions are all based

on a non-degenerate, invariant bilinear form (i.e., an invariant metric), and each of them

is characterized by two coupling constants and involve an exotic contribution. The results

presented in this paper were also open problems suggested in ref. [14], and they represent

the N -extended generalization of [35]. Interestingly, one can observe that the CS formu-

lation in the N -extended cases N = (N , 0) and N = (p, q) requires the presence of so(N )

and so(p)⊕ sp(q) generators, respectively, also at the ultra-relativistic level, that is in the

Carroll limit; thus, what happens at the relativistic level for three-dimensional N -extended

CS Poincaré and AdS supergravity theories (see [40]), that is the need to introduce the

aforementioned extra generators (together with their dual 1-form fields) in the theory in

order to obtain a non-degenerate invariant tensor, has repercussions also on (and still holds

at) the ultra-relativistic level.

We have also analyzed the flat limit `→∞ of the aforementioned models, in which we

have recovered the ultra-relativistic N -extended (flat) CS supergravity theories invariant

under N -extended super-Carroll algebras. The flat limit has been applied at the level of

the superalgebras, CS actions, supersymmetry transformation laws, and field equations.

Also all the studies of the flat limit presented in section 6 represent a new development

and generalization of the previous works presented in the literature concerning Carroll

(super)algebras in three dimensions, in particular in the context of three-dimensional CS

(super)gravity theories.

The recently discovered relations among the Carrollian world and flat holography sug-

gest that this work might represents a starting point to go further in the analysis of super-

symmetry invariance of flat supergravity in the presence of a non-trivial boundary, along

the lines of [55]. Besides, now, having well-defined three-dimensional CS (super)gravity the-

ories respectively invariant under the N -extended AdS-Carroll and Carroll (super)algebras,

it would be intriguing to go beyond and study the asymptotic symmetry of these models,

following, for instance, the prescription given in ref. [56]. It would also be interesting to

further extend our analysis to more general amount of supersymmetry, involving also odd

N cases, and to higher-dimensional models (recently, a study exploring the Carroll limit

corresponding to M2- as well as M3-branes propagating over D = 11 supergravity back-

grounds in M-theory has been presented [10]), where Carrollian (super)gravity theories

still remain poorly explored. Finally, all these ultra-relativistic theories constructed à la

CS could have some applications in the context of Carrollian fluids (and their relations

with flat holography, see refs. [31–34]).
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[47] M. Roček and P. van Nieuwenhuizen, N ≥ 2 supersymmetric Chern-Simons terms as d = 3

extended conformal supergravity, Class. Quant. Grav. 3 (1986) 43 [INSPIRE].

[48] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311

(1988) 46 [INSPIRE].

[49] A. Achucarro and P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern-Simons

theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].

[50] H. Nishino and S.J. Gates Jr., Chern-Simons theories with supersymmetries in three

dimensions, Mod. Phys. A 8 (1993) 3371.
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