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1 Introduction

The study of spacetime symmetries has proved to be fundamental for analyzing and un-
derstanding various physical models. For instance, think of Newtonian gravity, Maxwell’s
electromagnetism, special and general relativity, string and supergravity theory. Most of
these theories are based on relativistic symmetries. On the other hand, during the years
models with non-relativistic symmetries have also been developed and analyzed, and and
are still the subject of in-depth studies.

In this context, Carroll symmetries [1, 2], arising when the velocity of light is sent to
zero (i.e., in the ultra-relativistic limit, ¢ — 0), have attracted some interest over recent
years. In fact, models with Carroll symmetries occurred in the literature in the study of



tachyon condensation [3], warped conformal field theories [4], and tensionless strings [5—
9]. Moreover, a study exploring the Carroll limit corresponding to M2- as well as M3-
branes propagating over D = 11 supergravity backgrounds in M-theory has been recently
presented in [10].

Concerning gravity theories, models of Carrollian (i.e., ultra-relativistic) gravity have
been developed and analyzed in [11-13]. In particular, non- and ultra-relativistic Chern-
Simons (CS) type actions in 2 + 1 dimensions were constructed in [12], where the authors
included a spin-3 field coupled to gravity. The geometry of flat and Anti-de Sitter (AdS)
Carroll spaces were investigated, both in the bosonic as well as in the supersymmetric case,
in [14], were the authors focused on the symmetries of a particle moving in such spaces.
Afterwards, in [15], the AdS Carroll CS gravity theory was discussed for the first time.!

Non-relativistic symmetry groups play a remarkable role also in holography [18-34].
More specifically, in the work [24], connections among Carrollian physics, holography of
flat space, and the Bondi-Metzner-Sachs (BMS) algebra were discovered and followed up
in [25] (see also refs. [26, 27] and [28]). Besides, conformal extensions of the Carroll group
were explored and related to the BMS group in [29, 30|, while in [31-34] it was shewed
the way in which Carrollian structures and geometry emerge in the flat holography and
fluid /gravity correspondence framework.

Recently, in [35] the construction of the three-dimensional N’ = 1 CS supergravity
theory invariant under the so-called AdS Carroll superalgebra (ultra-relativistic contraction
of the N' = 1 AdS superalgebra, see [14]), together with the study of its flat limit, has been
presented for the first time. In the study done in [35], the method introduced in [36] was
adopted. In [36] a generalization of the standard Inénii-Wigner (IW) contraction [37, 38]
was presented, consisting in rescaling not only the generators of a Lie (super)algebra but
also the arbitrary constants appearing in the components of the invariant tensor; the latter
is the key ingredient for formulating an action a la CS, that is invariant under the IW
contracted (super)algebra by construction. This procedure was further improved in [35] by
considering dimensionful generators from the very beginning, on the same lines of [39]. As
shown in the same paper, this allows to obtain, for instance, the Poincaré limit from the
0sp(2]2) ® sp(2) CS supergravity action directly considering the flat limit ¢ — oo, being ¢
the length parameter related to the cosmological constant.

Moving to higher N, we have that the N/ = 2 supersymmetric extensions of the
Poincaré and AdS algebras are not unique, and can be subdivided into two inequivalent
classes: the (2,0) and the (1, 1) cases. Here we mention that, in the extension to the (p, q)
case, when either p or ¢ is greater than one some subtleties arise. Indeed, even though
the (p,q) Poincaré superalgebra can be derived as an IW contraction of the (p,q) AdS
superalgebra, the Poincaré limit applied at the level of the (CS) action requires to enlarge
the AdS superalgebra, considering, in particular, a direct sum of an so(p)@so(q) algebra and
the (p,q) AdS superalgebra osp(2|p) ® 0sp(2, q) [40-42]; this is related to the fact that, as
it was proven in [40], the semi-direct extension of the so(p) ® so(q) automorphism algebra

'Here let us also mention that the geometric realization of the (A)dS Carroll algebra corresponds to a
null surface of (A)dS space (see refs. [16, 17]).



by the (p,q) Poincaré superalgebra allows to produce a non-degenerate invariant tensor
which is used to construct a well-defined three-dimensional CS (p, ¢) Poincaré supergravity
theory (in particular, when either p or ¢ is greater than one, it is not possible to obtain a
non-degenerate invariant tensor without considering this extension).

It is well assumed that a (super)gravity theory in three spacetime dimensions can be
described by a CS action as a gauge theory, providing a useful toy model to approach higher-
dimensional models [43-51]. In the last decades, diverse three-dimensional supergravity
theories have been studied, and, in this context, there has also been a growing interest
to extend AdS and Poincaré supergravity theories to other symmetries (see [39, 52] and
references therein).

In the present work, we apply the method of [36] with the improvements of [35] to
develop in a systematic way the ultra-relativistic N-extended AdS CS supergravity theories
in three (that is 2 + 1) spacetime dimensions invariant under N-extended AdS Carroll
superalgebras. In particular, we will distinguish between the two N-extended cases N =
(N,0) and N = (p,q), generalizing the results presented at the algebraic level in [14]
and also developing the associated CS supergravity theories in three dimensions. More
specifically, we start by considering the (2,0) and (1,1) cases, and then generalize our
analysis to N' = (N,0), with N even, and to N' = (p,q), that is N' = p + ¢, with
p,q > 0.2 The N-extended AdS Carroll superalgebras are obtained through the Carrollian
(i.e., ultra-relativistic) contraction applied to an so(2) extension of 0sp(2[2) ® sp(2), to
0sp(2[1) ® 0sp(2,1), to an so(N') extension of osp(2|N) @ sp(2) (with N even), and to the
direct sum of an so(p) ®so(q) algebra and osp(2|p) @ 0sp(2, q), respectively. Let us mention
that the NV = (N, 0) case (and thus also the N’ = (2,0) one) will be more subtle, since
it will require the definitions of new supersymmetry generators in order to properly study
the Carroll limit, on the same lines of what was done in [14] (see also [53], which deals with
non-relativistic superalgebras, and references therein). The ultra-relativistic N -extended
AdS Carroll supergravity actions are constructed a la CS, by exploiting the non-vanishing
components of the corresponding invariant tensor. The aforementioned actions are all
based on a non-degenerate, invariant bilinear form (i.e., an invariant metric). The results
we have obtained in the present work were also open problems suggested in ref. [14], and
represent N -extended generalizations of [35].

Subsequently, we study the flat limit (/ — oo, being ¢ the length parameter) of
the aforesaid N-extended CS AdS Carroll supergravities, in which we recover the ultra-
relativistic N-extended (flat) CS supergravity theories invariant under N-extended super-
Carroll algebras. The flat limit is applied at the level of the superalgebras, CS actions,
supersymmetry transformation laws, and field equations.

The remain of the paper is organized as follows: in section 2, we first introduce a new
N = (2,0) AdS Carroll superalgebra, which is obtained as the ultra-relativistic contraction
of an s0(2) extension of osp(2|2) ® sp(2). Here, the s0(2) extension is necessary in order
to end up with an invariant non-degenerate inner product in the ultra-relativistic limit,

*We concentrate on the N’ = (N,0) case with A even in order to reproduce a well-defined ultra-
relativistic limit at the supersymmetric level (see also [53] and references therein, which deals with similar
situations but in the non-relativistic limit ¢ — o0).



providing a well-defined CS action. In fact, this allows us to subsequently develop the three-
dimensional CS supergravity action invariant under the (2,0) AdS Carroll superalgebra,
which we call (2,0) CS AdS Carroll supergravity in 2 4+ 1 dimensions. In section 3, we
repeat the same analysis for the (1,1) case, ending up with the CS supergravity action
invariant under the (1,1) AdS Carroll superalgebra. Subsequently, we generalize our study
to the cases of N' = (N,0), with N even, and N' = (p, q), with p,q > 0, respectively in
sections 4 and 5. In section 6, we discuss the flat limit £ — oo of the N-extended CS AdS
Carroll supergravities introduced in the previous part of the work. Section 7 contains some
final comments and remarks.

2 (2,0) AdS Carroll supergravity in 2 + 1 dimensions

In this section, we first introduce a new A = (2,0) AdS Carroll superalgebra, which
is obtained as the ultra-relativistic contraction of an s0(2) extension of 0sp(2|2) ® sp(2).
The s0(2) extension of 0sp(2]2) ® sp(2) is needed in order to end up with an invariant non-
degenerate inner product in the ultra-relativistic limit, namely with a well-defined invariant
tensor (this is reminescent of what was done in [40] in the case of relativistic theories), in
such a way to be able to construct a well-defined CS action. Indeed, this allows us to
subsequently develop the three-dimensional CS supergravity action invariant under this
N = (2,0) AdS Carroll superalgebra, which we call (2,0) CS AdS Carroll supergravity.

Let us mention, here, that a N' = (2,0) AdS Carroll superalgebra has been first
introduced in [14]. Nevertheless, due to the degeneracy of the invariant tensor for that
superalgebra, one could not construct a well-defined CS action in that case. On the other
hand, as we will see in the following, our N' = (2,0) AdS Carroll superalgebra will be
different from the one presented in [14], allowing, in particular, the formulation of a three-
dimensional CS action in the supergravity context.

2.1 N = (2,0) AdS Carroll superalgebra

An N = (2,0) supersymmetric extension of the AdS Carroll algebra was obtained in [14]
as the ultra-relativistic contraction of 0sp(2|2) ® sp(2), the latter being generated by the
set {Jap, Pa,Z%,Q"}, with A,B,... = 0,1,2, @ = 1,2, and i = 1,2, where Jyp are
the Lorentz generators, P4 represent the spacetime translations, Z% = ¢ Z are internal
symmetry generators, and Qza are the supersymmetry generators (2-components Majorana
spinor charges). The (anti)commutation relations of 0sp(2|2) ® sp(2) read as follows:

[jAB7 Jop| = nBchD - T}ACJBD - UBDjAc + 77AD<]~BCH

|:jABa ]SC = UBCJBA - UACpB ’
1

[PA,PB: = pas.,
] =), [ut] -4 ().
2.6 = —a,
{ o @;} =% [_215 (042C) 5 Jap + (T4C) PA] + %a’fcaﬂz, (2.1)

4 -



where £ is a length parameter, C is the charge conjugation matrix, and I'4y and '4p
represent the Dirac matrices in three dimensions. The generators Jag, Pa, ZU, and Qla
have a dual description in terms of 1-form fields, @4 (spin connection), V4 (vielbein),
(1-form field dual to the generator Z%), and @Ef‘ (gravitinos), respectively.

Here, we consider the ultra-relativistic contraction of an s0(2) extension of 0sp(2|2) ®
sp(2), involving an extra generator S = ¢4 S, This will allow the formulation of a well-
defined ultra-relativistic CS action, based on a non-degenerate invariant tensor, which
would not be possible by considering the N' = (2,0) superalgebra of [14]. In particular, we
extend (2.1) by adding the extra S generator and we perform, on the same lines of [40],
the redefinition

T=27-1S, (2.2)
to eliminate Z in favour of T (this redefinition is particularly convenient for discussing the
flat limit, see also [40]). Consequently, we rewrite the (anti)commutation relations (2.1) as
follows (we consider dimensionful generators from the very beginning, on the same lines

of [39]):3
{jAB; j(JD: = npcJap — nacJsp — nepJac + napJsc
[jAB, 150: =nscPa —nacPs
[Pa Ps] = s
[jABa QQ = —% <FABQi> ; [PA,QZ] S <FAC~2i>a ;

o
AL A
|:T7Qo¢ = —¢€ )

Ny ~<- i 1 - - i 1~ -
{ mQ]ﬁ}:cSJ [%(FABC)aﬁJAB+(I‘AC)a5PA] + €79C,4 <€T+S>. (2.3)

Note that, in the flat limit ¢ — oo, S becomes the central element of the ' = (2,0)
Poincaré superalgebra extended with the extra so(2) generator T' (see [40]).

The non-vanishing components of an invariant tensor for the superalgebra (2.3), which
will be useful in the sequel, are given by

(JapJep) = ao (apnBC — NACTBD)
(JapPc) = areapc,

Qg
(PaPp) = 72 1AB

(TT) = — 200,
<T§> = 2041 5
~ ~ 2041
(@@ =2(on = ) Casd. (24)




where e4pc is the Levi-Civita symbol in three dimensions and g and «; are arbitrary
constants.

To take the Carrollian (i.e., ultra-relativistic) contraction of the superalgebra (2.3), we
decompose the indices A, B, ... as

A— (0,a), a=1,2. (2.5)
This first step induces the following decomposition of the generators:
Jag = {Jabs Jao = Ko}, Pa— {Py, Py = H} . (2.6)

We also have
FAB — {Fab,rao}, FA — {Fa,ro} . (27)

Furthermore, we define new supersymmetry charges by
- 1 /- -
Qs = 7 (Qé £ (L0) s Q%) ; (2.8)

on the same lines of what was done in [54] (see also references therein) in the study of
supersymmetric non-relativistic models. Then, we rescale the generators with a parameter
o as follows:

H—oH, K,—0K,, S—0S, Qf = oQt. (2.9)

Taking the limit ¢ — 00,* and removing the tilde symbol also on the generators that we have
not rescaled, we end up with a new ' = (2,0) AdS Carroll superalgebra (differing from the
one of [14], due to the presence of the generator S), whose non-trivial (anti)commutation
relations read as follows:

[Km ch} = 5ach - 5(1ch7

aps P = 84cPa = Sac P
[Ka, Pyl = — anH ,

[Pa, P] = ;2Jaba

(P, H) = }K
@3] = 5 (),
[P QE] = - 5 (@),
[ ] = (Lo) af Q,B )
[7,Qa] = — (T0)as Q5 »

4Let us highlight that o — oo corresponds to the limit % — 00 (where ¢ denotes the velocity of light),
that is ¢ — 0 (ultra-relativistic limit).



{ef.Q5} = (°C) (1 +9)
1
+ - _ a0
{ anﬁ} - Z (F O)aﬁKa
{Q;,Qg} = (I°C) 5 (H = 5). (2.10)
We will now construct a CS supergravity action in three dimensions invariant under the
N = (2,0) AdS Carroll superalgebra (2.10): the (2,0) AdS Carroll CS supergravity action.

2.2 (2,0) AdS Carroll supergravity action

The general form of a three-dimensional CS action is given by

ok 2 N\ k 1
ICS_M/M <AdA+3A > == /M <AdA+3A[A,A]>, (2.11)

where k = 1/(4G) is the CS level of the theory,® A is the gauge connection 1-form, and (.. .)
denotes the invariant tensor. The integral in (2.11) is over a three-dimensional manifold
M.% The CS action (2.11) can also be rewritten as

[ (ar-ga), (2.12)

in terms of the curvature 2-form F = dA + A? = dA+ § [4, A].
In the case of the N’ = (2,0) AdS Carroll superalgebra (2.10), the connection 1-form
reads” 1
A= 5w“”Jab + kK, 4+ VOP, + hH +tT +sS+¢tQt +¢v~Q—, (2.13)

where w®, k® V¢ h, t, s, ¥, and ¢y~ are the 1-form fields dual to the generators Jup, Kq,
P, H,T,S,Q", and Q, respectively.
The corresponding curvature 2-form F is

1
F = 5Rmeab + KKy + RP,+HH+TT +S8S+ Vo QT +Vy—Q—, (2.14)
with

1 1
ab __ ab aysb _ pab aysb
R? = dw —i—g—QVV—R + RV,
1-
- Lyan 4 ZWF“%— = R+

1 1-
K® = dk® + wyk" + —Vh + ZWF‘I%— ,

4 Y4
R =dV® +wh VP,
M= dh Vo, — 0Tt — L5 T = 5 — LTt — LT
T =dt,

SFor gravitational theories, the CS level is related to the gravitational constant G.
5In the sequel, we will omit the wedge product “A” between differential forms.
"Here and in the following, for simplicity, we will omit the spinor index «.



S=ds— %Jﬁr%ﬁ + %1[_)_1“0@!)_ ,

1 1
Vot = dyt + 2w Tt + VT~ —tTogp™,

4 20
1 1
Vi~ =dy~ + Zwabrabzp* + ﬁvarazp+ +tTotp™ . (2.15)

Now, in order to formulate a CS action of the form (2.11) invariant under the N' = (2,0)
super-AdS Carroll group, we make use of the connection 1-form given in (2.13) and of the
corresponding non-vanishing components of the invariant tensor.

Concerning, in particular, the invariant tensor, we now apply the method of [36],
meaning that we rescale not only the generators but also the coefficients appearing in the
invariant tensor before applying the, in the present case, ultra-relativistic contraction, in
order to end up with a non-trivial invariant tensor for the contracted (super)algebra on
which the CS theory will be based. Specifically, we consider the non-vanishing components
of the invariant tensor for the s0(2) extension of 0sp(2]2)®sp(2) (see (2.3)) given in (2.4), we
decompose the indices as in (2.5) and consider the new supersymmetry charges (2.8), and
then we rescale not only the generators in compliance with (2.9) but also the coefficients
appearing in (2.4) as follows:

Qg = g, Q] —0aj. (2.16)

Taking the limit ¢ — oo, we end up with the following non-vanishing components of an
invariant tensor for the N'= (2,0) AdS Carroll superalgebra:

(Jabded) = o (0addbe — OacObd) ,
(JapH) = a1€qp

(KoPy) = — ci€qp,

ap

(Pabb) = 45 0ab s
(TT) = —2ap,
(TS) = 20y,
(QEQE) =(QaQ5) =201 Cag. (2.17)

This bilinear form is non-degenerate if o # 0.

After that, using the connection 1-form in (2.13) and the non-vanishing components of
the invariant tensor given in (2.17) in the general expression (2.11) for a three-dimensional
CS action, we can finally write the (2,0) AdS Carroll CS supergravity action in three
spacetime dimensions invariant under (2.10), which reads as follows:

1

20 k a0 [ 4p . 2,4 ab aysb aysb
Isg _477//\/1{2 <w W R, + €—2V R, —4tdt> +aq <eabR h — 2€, RV + ﬁeabv V°h

+4tds + 2TV T + 2¢v¢) — d(ogeabwabh — apepk®VP — 2a1ts> } , (2.18)



written in terms of the curvatures appearing in (2.15). We can see that in (2.18) we have
two different sectors, one proportional to g and the other proportional to a;;. Observe that
the term proportional to g corresponds to the exotic Lagrangian involving the Lorentz
contribution, a torsional piece, and a contribution from the 1-form field ¢, while it does not
contain any contribution from the 1-form fields ¢ and ¢~. Let us mention that the CS
action (2.18) can also be rewritten up to boundary terms as

20 k Qg b a
1% _477/./\/({2< "R, +€VR 4tdt>

+ay (eabR“bh — 2eapROVE + eabV“Vbh + dtds 4+ 20TVt + 20"V~ ) }

(2.19)

EQ

The CS action (2.18), characterized by two coupling constants g and «aq, is invariant
by construction under the N' = (2,0) AdS Carroll superalgebra (2.10). In particular, the
local gauge transformations dyA = dX + [A4, A\] with gauge parameter

1
A= 5A“*’Jab + KKy + NP+ 7H+ T +cS+e7QF +e67Q~ (2.20)
are given by

2
w™ = dx® + ZVIz

62
Ok = dk® — X% k" + w Kb — 7 A“h+ 7z Ly, _ Zs =10y~ — gé_FaO@Zﬁ',
SV =d\* — A4 VP 4wl
Sh =dr — Nky + Vokq+ T 4+ T0%~
ot =dy,
bs =ds + & Tt — &z T%,
1 1
F=det — ATt WP et — L \T T Loyt — T
0 de 4)‘ ab +4w abg 25)\ T+ 2£V & +loy t 05
1 1
S~ =de” — ZAabrabw + 4wabFab€ — ﬁvraw Evara;ﬁ — Loy~ + tTe™
(2.21)
Restricting ourselves to supersymmetry, we have
dw® =0,
1 1
0kt = ——&tT0y~ — Zz 10yt

¢ /
Ve =0,

Sh=etT0%t + 1%,



5t=0,
6s =& IVt —a 1%,

1 1
T =det + Zw“bl“mba+ + ﬂV‘T@E* —tTe™,

1 1
Sy~ =de” + Zw“bf‘abs_ + ﬁV‘TaEJF +tToe . (2.22)

The equations of motion obtained from the variation of the action (2.18) with respect

to the fields w®, k% V¢ h, t, s, ¥, and ¢~ are, respectively,

dw®: ayR™ 4 a1e™®H =0,

0k : a1R*=0,
Qg
2
Sh: aR® =0,

Ve R 4 2a1€e5K° = 0,

ot: —agT +a18§=0,
6s: aT =0,

St a VT =0,
ST alV =0, (2.23)

up to boundary terms, and we can see that when a1 # 0 they reduce to the vanishing of
the (2,0) super-AdS Carroll curvature 2-forms, namely

R® =0, K*=0, R*=0, H=0, T=0, S=0, V¢oT=0, V¢ =0.
(2.24)
Here, we can also observe that a; # 0 is a sufficient condition to recover (2.24), meaning
that one could consistently set ag = 0, which corresponds to the vanishing of the exotic
term in the CS action (2.18).

3 (1,1) AdS Carroll supergravity in 2 + 1 dimensions

In this section, we repeat the analysis done in section 2 in the (1,1) case. To this aim, we
first review the derivation of the N'= (1,1) AdS Carroll superalgebra introduced in [14],
which is obtained as the ultra-relativistic contraction of 0sp(2|1) ® osp(2,1). Then, we
write the non-vanishing components of the invariant tensor of the N/ = (1,1) AdS Carroll
superalgebra (obtained as the Carrollian contraction of the non-vanishing components of
the invariant tensor for osp(2|1)®osp(2,1)). This allows us to construct a three-dimensional
CS supergravity action invariant under the N' = (1,1) AdS Carroll superalgebra, which we
call the (1,1) AdS Carroll CS supergravity action.

~10 -



3.1 Review of the N' = (1,1) AdS Carroll superalgebra

Let us briefly review the derivation of the N/ = (1,1) AdS Carroll superalgebra of [14] as
the Carrollian contraction of osp(2|1) ® osp(2,1).

The superalgebra osp(2|1)®osp(2, 1) is generated by the set {Jap, Pa, Q1 , Q- } obeying
the following (anti)commutation relations:

[jABa Jep| = nBchD - nchBD - nBDjAc + TIADjBC )

[jABa 150 = 7719015,4 - ﬁACPB ,

[Pa. B = s
an@E] = -5 (tan@®) o [PaG2] =7y (Ta0),
(0,05} = — 5, (077C) )y Jap + (PAC) , Pa
(02,05} = 55 (077C) .y Tas + (T40),, Pa (31)

Note that by taking the flat limit ¢ — oo of (3.1) one recovers the N’ = (1,1) Poincaré
superalgebra.
The non-vanishing components of an invariant tensor for the superalgebra (3.1) are

(JapJep) = ao (MapnBC — NACTBD)

(JapPc) = areapc,

~ ~ ao
(PaPp) = 72 1AB

(QIQ%) = 2<Oél - 020>Caﬂ7

(Q20Q5) = 2(@1 + ?)Cag, (3.2)

being o and «; arbitrary independent constants.

Now, to take the Carrollian contraction of the superalgebra (3.1), we decompose the
indices A,B,... = 0,1,2 as in (2.5), which induces the decomposition (2.6), together
with (2.7). Then, we rescale the generators with a parameter o as

H—oH, K,— 0K, Qf—\oQ. (3.3)

Subsequently, taking the limit ¢ — oo (and removing the tilde symbol also on the generators
that we have not rescaled), we end up with the N' = (1,1) AdS Carroll superalgebra
introduced in ref. [14], whose (anti)commutation relations read

[Ka; ch] = 5ach - 5(1ch7

[Jab7 Pc] = 5bcPa - 5aCPb7

- 11 -



[Ka)Pb] = - 6abHa

(Pur P =
(Pu H] = o
U Q] = — 5 (@), [P @E] = 7o (1Y),
{at.Qr} = - (00),, Ku + (%), 1.
{Q;,Qg} = % (T°C) 5 Ko + (1°C) , H . (3.4)

In the sequel we will construct a CS action in three-dimension invariant under the N =

(1,1) AdS Carroll superalgebra (3.4).

3.2 (1,1) AdS Carroll supergravity action

We will now construct a three-dimensional CS supergravity action invariant under the
N = (1,1) AdS Carroll superalgebra (3.4), which we call the (1,1) AdS Carroll CS super-
gravity action.

To this aim, we introduce the connection 1-form A associated with (3.4), that is

1
A= 5w“bJab + kKo + VP, +hH + 9 QT +9~Q (3.5)
being w®, k%, Ve, h, T, and ¢~ the 1-form fields respectively dual to the generators J,p,
K., P,, H, Q", and Q™ obeying the (anti)commutation relations given in (3.4), and the
related curvature 2-form F', which reads

1
F = R™Jap + K" Ko + R*Py + HH + VY7 QT + Vi~ Q7, (3.6)
with
Rab_d ab 1Vavb_Rab 1Vavb
ST V= AT gV
1 1 - 1 -
a __ jr.a apb | ~yra = g +71al 4+ - 5 —1a0,,—
K* = dk* + wk +£2V h+2€1/1 %) %zp %0 (3.7)
1 4 w0 1 _
— R - T + = FaO
R +2€w (0 %w v,
R =dV®+wh VP,
1- 1-
H =dh+ Vi, — §¢+r0¢+ — ﬁw—r%— (3.8)

O I NS o R
=9 2¢F¢ 2¢F¢7

1 1
Vot =dyt + Zwabrabw + — VT,

20
1 1
VY~ =dp + Zwabrabw = 5V Tat™ (3.9)

- 12 —



Now, we move to the explicit construction of a CS action invariant under the A" = (1,1)
super-AdS Carroll group, on the same lines of what we have previously done in section 2
for ' = (2,0). Thus, we consider the non-vanishing components of the (relativistic)
invariant tensor given in (3.2), we decompose the indices as in (2.5), and we rescale not
only the generators in compliance with (3.3) but also the coefficients appearing in (3.2)
as in (2.16). Then, taking the ultra-relativistic limit o — oo, we get the following non-
vanishing components of an invariant tensor for the N'= (1,1) AdS Carroll superalgebra:

<Jachd> = Qp (6ad6bc - 5ac(sbd) )
(JabH> = (1€4h

(KoPy) = — ai€qp,

«
<Pan> = Tgéab 5

(QEQF) = (QQ5) = 201Cags . (3.10)

This invariant tensor is non-degenerate if oy # 0.

Substituting the connection 1-form in (3.5) and the non-vanishing components of the
invariant tensor (3.10) in the general expression (2.11) for a three-dimensional CS action,
we end up with the (1,1) AdS Carroll CS supergravity action in 2+ 1 spacetime dimensions,
that is

k o 2 1
165" = - /M {20 <w“bRba - £2V“Ra> + o <eabR“bh — 28V + SeaVV'h
+ 2TVt 4+ 2¢v¢) — d<0;eaboﬂbh — aleabkavb> } , (3.11)

which can also be rewritten omitting boundary terms as follows:

(1.1 _ k Qo a pb 2 a

leabvav”h + 20TVt + 21/1V¢> } . (312)

+ aq <6abRabh — 2eabﬁ“V" + 7

The action (3.11) has been written in terms of the curvatures appearing in (3.7), it involves
two different sectors, respectively proportional to «g (which corresponds to the exotic
Lagrangian) and to aj, and it is invariant by construction under the N = (1,1) AdS
Carroll superalgebra (3.4). The local gauge transformations 6y A = d\ + [A, A\] with gauge

parameter
1
A\ = 5AabJab + KK, + NP, +TH+e QM+ Q™ (3.13)
are
5 ab __ d)\ab 2 V[a)\b]
w = -+ 672 y
0k = dr® — A% kb + wh K — L + Lye, - lﬁra(’w + lg—raow—
b b 2 22 I ¢ ’
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SV =dX\* — A4 VP 4wl
Sh=dr — XNk + Vekq+ T +2T% ",

1 1 1 1
ot = det — SXPT T 4+ —w®Tgpe™ — AT 0T + =V ™,

4 4 20 20
oY~ =de” — Lyap YT+ Lorr e 4 Lyer P — L yop,- (3.14)
= ae 1 ab 4(«0 ab€ Y, a Y, a :

and, restricting ourselves to supersymmetry, we are left with the following transforma-
tion rules:

dw™® =0,
a 1/# a0, /,+ 1—7 a0,/ —
0k = ——c T YT + - Iy,
l l
ovV*=0,
6h =&t 0yt 427 10%,

1 1
5¢+ = det + Zwabrab€+ + 7V“Fa€+ ,

20
- - 1 ab — 1 a -
M~ =de” + v Cupe 2—€V Cue. (3.15)

The equations of motion obtained from the variation of the action (3.11) with respect
to the 1-form fields w®, k%, V@, h, ¢, and ¢~ are

ow®: ayR™ 4 a1e®H =0,

0k®: ayR*=0,
(&7s)
2
Sh: a1R® =0,

Ve R 4 2a1€e,K° = 0,

SOt Vet =0,
o~ V¢~ =0, (3.16)

respectively; for a; # 0, they reduce to the vanishing of the (1,0) super-AdS Carroll

curvature 2-forms, namely
R® =0, K*=0, R*=0, H=0, V¢yt=0, V¢ =0. (3.17)
Analogously to what happened in the (2,0) case discussed in section 2, we can see that

aq # 0 is a sufficient condition to recover (3.17), which means that one could consistently
set a9 = 0, making the exotic term in the CS action (3.11) disappear.
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4 (N,0) AdS Carroll supergravity theories in 2 + 1 dimensions

Now, we generalize our analysis to the (N,0) case, with A/ even. First, we present the
derivation of the N' = (N,0) AdS Carroll superalgebra as the Carrollian contraction of an
s0(N) extension of 0sp(2|NV) ®sp(2). This also provides us with a non-degenerate invariant
tensor in the ultra-relativistic limit. Then, we can subsequently formulate a well-defined
three-dimensional CS supergravity action invariant under the aforesaid N = (N,0) AdS
Carroll superalgebra.

4.1 N = (N,0) AdS Carroll superalgebra

Let us first take the direct sum of osp(2|N) ® sp(2) and an so(N) algebra (we consider
N even), that is reminiscent of what was done in ref. [40]. In this case, the non-trivial
(anti)commutation relations are

[jABa Jop| = nBchD - nchBD - 77BDjAC + HADjBC )

L . _ _ 1 -
[JABJDC =ncPa —nacPs, [PAaPB} = EJABa

[Zij7 Zkz' _ ik il _ ik Zil _ sil Zik 5112;‘1@’

[Srij’gkl- _ % (ykgﬂ _ sikgil _ gilgik | 5il§jk> ’
7 n': _ 1 i 5 Al L i
[Jan Q| = =5 (TasQ) . [Pa@h] = —5; (1aQ')
(29,04 = 6L, - 5.
{QL.Q} = {_215 (D42C) 5 Jap + (TAC) 4 PA} - %Cagzij, (4.1)
with A,B,... = 0,1,2, 4,5,... = 1,...,N (where we have considered N' = 2z, = =

1,..., %/), and where Z = — 7% §i = —§%_ Then, we do the following redefinition (on
the same lines of [40]):
T =74 484 (4.2)

which is a generalization of the one performed in section 2. Thus, we can now rewrite the
(anti)commutation relations (4.1) as

[jAB7 Jop| = nBchD - nchBD — WBDjAc + nADjBC )
[jABa Pc| =npcPa —nacPp,
o~ 1
Pa, Py =
[Tz‘j’jﬂkl- _ §ikpil _ sikqpil _ gilik 6ilrj-vjk7

JaB,

[Tij, S,kl_ _ 6jkgil N 5ik5vjl i 5jlgik + 5il§jk7
[S"j grl_ _ L <5jk51il _ gikGil _ gilGik 6il51jk)
i ] E ’
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l\D\H

[Jap. Q4] = (FABQ) ,
PaGi] = — 5, (140)
7,0k = 6]’“@1 5 Qi
{E,Q{g} = [—% (T45C), 5 Jas + (T4C) 4 PA] + Cap QTU‘ +Siﬂ'> . (4.3)

Observe that, taking the limit £ — oo of (4.3), we get the N' = (N, 0) Poincaré superalgebra
involving a semi-direct so(N') extension (with A even).

The non-vanishing components of an invariant tensor for (4.3), which will be useful in
the sequel, are given by

(JapJcp) = ao (NapnBc — 1AcTBD) |
(JapPc) = areanc
(PaPg) = 52 B,
<Tiji—:kl> — 200 (5zl5kj _ 5¢k51j> :
<Tij5vkl> — — 2 <5il(5kj - 5ik51j) 7

(51 gkly — 2‘;1 (5zl5k] 5ik(slj>’

(QLQ%) = 2<a1 - ‘;‘J)oaﬂ(sij : (4.4)

being o and a7 arbitrary independent constants.

In order to take the ultra-relativistic contraction of (4.3), we decompose the indices
A,B,... =0,1,2 as in (2.5), which induces the decomposition (2.6), together with the
gamma matrices decomposition (2.7).

Moreover, we define, on the same lines of what was done in [53] (see also references
therein) in the case of non-relativistic theories, new supersymmetry charges by

GE = (@2 £ (), 057 (45)

1
V2
where in (4.5) we consider A, p,... =1,...,z (these new indices must not be confused with
the spinor ones «, 3, ... = 1,2), generalizing to the N' = (N, 0) case, with A even, what we

have previously done in section 2 (see, in particular, (2.8)). We remind that x = 1,. .., %/

This also reflects on the generators T% and S%, which are now respectively described by

P = P = fea e = A e
) b b ) 4‘6
Sv)\u Sr/)\/,n — 5«)\4-33 p+x ( )

)

A\ — QT+ (7IAL — QA
I O
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which satisfy the symmetry properties

T)\u — _T,u/\ 7 T/)\y, — _T/u)\ 7 [j)\,u — _[j’l‘)‘ ,
(4.7)
Sv)\,u — —SHA, Sf/)\,u — _Sf/,u/\’ ‘7)\“ — _V/uA )

In particular, using (4.5), (4.6), and (4.7), together with the decomposition (2.6)
and (2.7), and defining

gl = 1 (i) X = 1 (P )
[ Au] % A OIN 1[Ap] % oA OIN (4'8)
uo= = (Gim i ul= = (GIm _ G
1% _2(5 +S ) 1% _2(5 S )
the (anti)commutation relations in (4.3) become
- - 1 - . 1 - -
XA Atey s | L (pab 0 Ll ]
{27 Q5" =6 “[ % (F C)aﬁJabJr(F C)aBH} + Cap <€X Wy u>
= (rc),, @U(Au) N f/w)) 7
Q11,05 =% [ (190) 1y R+ (17C), P+ Cop (040 7700
_ (FOC)QB <z(}[/\u] + f/[Md) 7 (4.9)
where
~ 1/~ ~ - 1/~ -
) — = (77w BA el — = (77w _ preA
0 S (OY T o= S (0 -0
~ 1/~ ~ - 1/~ -
(A — = (A BA RV7 I & V2 VIR ya %
1% 2(\/ T ) v 2(v v ) (4.10)

The generators X ™! in (4.9) amount to k(kT_l) generators, and the same holds for X/
gyl yuel - and VML while the generators U are @ generators, and the
same holds for the generators V).

Furthermore, from the commutation relations involving the generators 7% and S%, we
get the following non-vanishing ones (recall that we have UM = —UFA and VM = —f/W‘):

[Tm, Tve) = g Ae _ gNre _ guepAv 4 shepur
{jﬂu’ []'VP: — §HPLTN _ e

[jﬂu’ T'Vp: — SHVTIAP _ SNV _ SRPTIAV 4 sAPTIHY ’
[T//\u’ pr: — s — GV

[Uw, Uup: — _§me _ g

[T, 570 ] = g — v Gue — oG 4 g,

[Tm’ vee| = geivA _ ghopn
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[T/Au7 Swp: — § G _ §AVGlp _ sip GV | §Ap Gl

P Trvp| _ spvrAp _ sAvirap

{T ,V | = v SNV

5] —

{UAM)SW/P— S S v

[f]m’f/up: R S -2

[Sw’f/up: _ % <5up‘7u)\ B 5>\p‘~/w) 7

(59 5] = — 7 (55e — g o g oG

[g»\u’ f/up: _ % <5MV‘~//\p _ 5Au‘7#p) ,

] ). s

and
[TAuggu} :% :5/w (QIA _1_62;)\) _ sV (QI“ +qu)} ’
0087 - 2L 02 - %) o~ (a2 - 057
1

(02,057 = % 2oy [ (@ +05 *) 2o (02 -0Y)] . (a2)
Now, let us rescale the generators with a parameter o as
H—oH, K, = oK,, Sy g G
S 5 g S VA gV A )EA & VoQEN (4.13)

where we have also removed the tilde symbol on the generators. Taking the limit ¢ —
oo (and removing the tilde symbol also on the generators that we have not rescaled),
we end up with the N' = (N,0) AdS Carroll superalgebra (with N even), whose non-
trivial (anti)commutation relations read as follows (recall the definitions (4.8), (4.10), since
we have expressed the anticommutation relations in terms of the combinations given in
that expressions, together with the fact that U** = —UHM* and V' = —V#* and the
(anti)commutation relations (4.9), (4.11), and (4.12)):

[Kav ch] = 5(1ch - 5(1ch ;
[Jaba Pc] = 5bcPa - 5ach7
[Ka,Pb] = - 6abH7
1

1
[Paapb]:ﬁ‘]abu [PavH]:ﬁKa7
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{TML’ Tlfp_ — SHVTAP _ §AVTRP _ SHPTAV | SAPTHY ,
{Tku’ Ulfp: — SHPVA _ gAPTVH 7

[T”\“, T”’p: = JHVTIAP — GAVTIRe _ GRPTIAV L GAPTIRY
[T/>\u7 UVp: — SHYTAP _ AV THe 7

[U/\“, UVp: — _ s v _ supiAv ,

[TA“, SVP: — SRV QAP _ gAY ghp _ §HP QA + 5P gHv ’
[Tku7 VVP: — SHPYTVA _ AP VR ’

|:T//\/,L7 S/l/p- _ 5;LVSI)\p . 5/\1/S/yp _ (S‘M’DS/AV + (5)\;)5/“1/ ’

_T/)\N, Vup— — 5MVV>\P o 5)\1/V,up’
(U, 570) = — v g gy,
_U)\M’Slup_ — 5>\9VVN + (5>\va“’
_UAH, Vyp_ — 6)\V5,u,p _ 5;Lpsl)\l/ ’
R : 1 1
Jab7 1:1‘:)\ = - 5 (FabQi A) 9 |:Pa7 Qf:yt >\:| = _276 (F(IQ¥ A) }

Q] = 5 [ (@) +02%) — v (@i + @]

[T Qe ] = & 4 o (@) - @a?) - (@i - @am)]

[0,QE] = 7 5 (Mol [ (@57 + @5 *) =0 (@2 - 057)]

QN Q4" = (1), (M VO ) 4 Copy P,

- 1
Q%" = - Z(SAM (1°°C) 5 Ko + CapY™ — (1°C)  , VI,

(@1 Q5") = (1°C) oy (M5 + VW) 4 Copy P (414)

Notice that if we restrict ourselves to the special case N' = (2,0), that is z = 1, after some
algebraic calculations, exploiting the definitions (4.6), (4.8), (4.10), and the symmetry
properties (4.7), we exactly reproduce the N' = (2,0) AdS Carroll superalgebra obtained
in section 2, given by (2.10).%

In the sequel, we will construct a CS action in 2+ 1 dimensions invariant under (4.14).

8In particular, when restricting ourselves to N = (2,0), namely © = 1, we have A\, u,... = 1 and
T M I g A il g g — Gl g g gl _ g e — il — 12 _ _ 2 _ _p
VM =yl = _§12 = (126 = _G§ and (4.5) restricts itself to (2.8) (when performing the Carroll limit, we
also remove the tilde symbol on the generators); then, one can show that the superalgebra (4.14) reduces
to the one given by (2.10).
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4.2 (N,0) AdS Carroll supergravity

We can now move to the formulation of a three-dimensional CS supergravity action invari-
ant under the superalgebra (4.14). We call this action (N,0) AdS Carroll CS supergravity
action (where, in our analysis, N is even).

To this aim, let us start by introducing the connection 1-form A associated with the
superalgebra (4.14), that is

A= %w“bJab + kK, + VP, + hH

1 1 1 1
+ itA“TM + it’A“Tﬁu +uMUy, + 53A“SM + is’A“S’M + oMV,
QT+ QY (4.15)

where w?®, k%, Vo, h, M M g MM g M gt and 9y are the 1-form fields dual to
the generators Jup, Ko, Po, H, Ty, T /\u’ Unps Sxps S)\“, Vi Qt*, and Q™ respectively.
The corresponding curvature 2-form F is

1
= §R“bJab +K*K, + R*P, + HH

1 1 1 1
+ G T T+ GTTS, + UM Uny + 58 Sy + 5SS, + VYV,

+VOTQTA + Vi QY (4.16)
with
Rab _ dwab + ivavb _ Rab + ivavb
2 E
1 1-
ICa — dka+wabkb EQvah_i_ ¢+>\Fa0¢ A ﬁa—F ﬁvah_i_ Zw-‘r}\Fan—)\

R =dV® + w4 VP,
1

H =dh+ V7, w“r%“ ilzﬂr%zﬂ
Loiapo,+a _ Looapo, —a
=§H— T — D
9 21/) (0 2¢ (A

T = gt 4 A 4 /P v

T = gt M g i gy X I

UM = duM + a7 A

SM = dsM 24, sV 4 2ul[/\ vl _ ¢+ >\¢+u 1[,— Aw—# — [/\¢— I
S = M 4 oA §H 4 2up‘ wipl _ 1/)+ >\¢+u 1/, >\¢ Pt [Aq/, #]
YA = duM o A 0P s S+ iw AP0yt r

_ 11;— )\I‘Ow— mo @Jr [/\p0¢— ]
2 )
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1 1 1
Vet =dyptA 4wabrab¢“ +3 LVerg 4 SO+ S+ SNl

(
_ lt/m% + Iyt + WP
2
_ N _ . 1 1y, ., 1
VYT =dym W Ty + Ev Lot 4 Stad + Sty — S0
1o _
+ it’w% — Ty, — My (4.17)

where we have used

u)\u _ t/\+z O— Atz _u/u)\ ’
M = AT = g AT A (4.18)
and where we have
uP — 1 ( Aw u“’\)
2
ul = ( u‘”‘) (4.19)
In order to develop a CS action invariant under (4.14), we have to consider the non-

vanishing components of the invariant tensor in (4.4), decompose the indices as in (2.5),
exploit (4.5), (4.6), (4.7), and rescale not only the generators in compliance with (4.13)
but also the coefficients appearing in (4.4) as in (2.16). Consequently, in the ultra-
relativistic limit ¢ — oo we get the following non-vanishing components of an invariant
tensor for (4.14):

(JabJed) = @0 (8aadbe — dacObd)
(JaH) = c1€ap,
(KoPp) = — c1€ap,
(PaPp) = %5111)7
(TT7P) = (TPHT'P) = 200 (567 — 625 )
(UMTYP) = — 2006M 67",
(TV57) = (T8 = 20y (56 — Mom) |
(UMVP) = 2006M 67",
(Qi7Q5") = (Q27Q5") = 201Capd™. (4.20)

The invariant tensor for (4.14) above is non-degenerate if o # 0.
Then, substituting the connection 1-form in (4.15) and the non-zero components of
the invariant tensor (4.20) into (2.11), we end up with the three-dimensional (N, 0) AdS
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Carroll CS supergravity action, which reads

4,
180 = 4];/ {O;°< o Rb +£ VAR, + 26> dt”A+3t £, 8+ 267 P

4
+ gt’)‘ut'“,,t’”A + 4u’\udu"‘)\ — 4t,\uu'A,,u”" — 4tl)\uu’\yu”’“>

+ay [eabR h — 2,82V + eabvavb 2, (ds"\ + t1,8" )

£2

— 2t/)\u (ds’”A + t'“ys”’A) — 4u’\udv’“,\ — 2u’/\uu“,,s”>\ — 2u)‘uu’“y3”’>\
— 4u/’\#v“l,t”)\ — 4u)‘#v'“l,t”’>\ + 20TVt 4 207 AV )‘]

— d<O;16abw“bh — aregpk®Vl + alt’\us“,\ + alt”\us’“,\ + 2a1u/\#v’“,\> } , (4.21)

where we have also exploited (4.18). The action (4.21) has been written in terms of the
curvatures appearing in (4.17) and it involves two coupling constants, that are o and ;.
Up to boundary terms, (4.21) can be rewritten as

k 4
190 = = {O;O < o Rb 4 E 2 vap, + ot Lt + 3###‘”# N+ 2t Lt
™ J M

4
+ gt'/\utl“yt”’A + 4u)‘udu’“>\ — 4t>\uu’>‘yu"“ — 4t’/\“u)‘,,u’”“>

eabvavb 2%, (ds”y + t1,8"))

+ap [eabR“bh — 2RV + 5

— Qt//\u (ds”ﬁ + t"‘,,s'”A) — 4u>‘#dv"‘)\ — 2u"\uu“,,s”,\ — 2u/\uu'“,,s'”,\
— 4ty — du Y\ 20 TAVTA 4 27 AV A} } . (4.22)

The contribution proportional to ag corresponds to the exotic Lagrangian, and, in the
present case, it involves, besides the Lorentz and torsional terms, also pieces including the
1-form fields t*, t* and u™. On the other hand, the contribution proportional to a;
also includes terms involving the 1-form fields s™, s, and v™, plus the spinor 1-form
fields ¢t and ¢~ .

The CS action (4.21) is invariant by construction under (4.14), and the local gauge
transformations 9y A = d\ + [A4, A\] with gauge parameter

1
59/)\’%,)\# + ‘P/\u“/\u

1 1
+ iﬂwsw + iﬂwsm + My, + QT +e7Qy (4.23)

1 1
A= 5X”’Jab + K Ko+ NPy 4+ TH + 59’\‘%,\“ -

are given by

2
5wab — d)\ab + ﬁv[a)\b] 7

6]{?(1 :d/ﬂ', )\abk +CL) bK’ — E )\ah+£2va

1l Apady,— A _ 1 Apa0 A
14
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SV =d\* — A4 VP + Wil
h = dr — Aky + Vohia + AT A 427 107,

S = dpM — QQ[/\VtVlu] _ 2(,0’[)‘Vul’|“] 7

St = oM — QQ/P\Vt’VW] _ 280[)\VU/V|M] ,

Sut = dpM — Mt 0 — o R

§sM = duM — 20% svIHl ol il oA pvind o9y crIHD 4 Pyt
4 Pyl 4 et Pyl z= Pyt

5 — 9 — QQ'P\VS/VIM] 42t/ yvinl Qw[kvalul + 2yl Ikl 4 EﬂL[/\dﬁr v
4 Dyl — gt Pyl z= Pyt

SO = AN — AtV N g — g P A A I N gvi A e
4 g — EEATOyH e AP0y g POyl = POyl

1 1 1 1
5w+>\ — d€+)\ _ Z)\abrab¢+)\ + Zwabrab€+>\ _ 7)\0,1—\&1!}—)\ + 7Vara€—)\

20 20
- %sz + %t’\“eif - %g)‘“@b; + %t)‘”sl - %g/’\“w;’ + %t’)‘“sz + %g')‘“d);
. %twg; B T RLC0) W SV, VL
SN = de= — %Aabrabwi)\ i %wabrab&“i)\ _ %)\araw+,\ 4 %Vara€+)\
- %ij + %Wej — %Q)‘Mlb; + %t’\’”e; + %Q’A%j — %t”‘“zs: — %QIAM@/);
+ %t//\%; + SD(/\M)F(ﬂ/,; _ u(Au)Fogl: + ¢[AM]FO¢;— _ u[/\ulpoglﬂ: 7 (4.24)
where we have also used the properties and definitions
M = —lt
W) = % (go’\“ i go“’\) 7
o] % (o~ ) . (4.25)

Restricting ourselves to supersymmetry, we get the following supersymmetry transforma-

tion laws:

dw® =0,

Sk% = _}€—+>Ta0¢—>\ o

; & )\Faﬂw-i-)\ ,

|
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Ve =0,
h =g T0Y A 42 A0y,
St =0, St =0, SuM =0,
S =gt Pyl z=Py=ml 4 gt Dyp=#l = Dyt il
5 — =+ [A¢+u] +& [/\Qp—lt] _ &t [/\¢— Ho_ oz [/\w+ # ’

S M = —g T ATyt 4 g= AT 0y H 5—+[/\F0¢—u] +& [/\I‘OQ)[)-HL] ’

1 1 1 1 1
51[)_‘_)\ = d5+)\ + Zw“bfab5+>‘ + ?EVaFae_A + 5'6)\“8: + 515)\'“5; + §t,)\#8:
1 _ _
— §t/)\“€u + uo‘“)FOE:[ + u[’\“]ngu ,
S U St A GRS So s G S5 VNSRS S VSN VA
oY~ =de —|—4w | NS +2€V | S +2t ) +2t Ep 2t L
Lo — A -
+ §t’ “au — ”)Foé‘u — ul M]FQEZ. (4.26)

Finally, one can prove that from the variation of the action (4.21) with respect to
the 1-form fields w?, k%, V& h, tM, /M @M M M Mot A and =2, we get,

respectively, the equations of motion
w® AR + a1e®H =0,
0k: a1R*=0,

sV %Ra + 2016k =0,
Sh: aR™ =0,

St agTM 4+ o SM =0,

S g T™M 4+ anS™M =0,

suM s —agUM 4 VM =0,

M g T™ =0,

™M T =0,

S UM =0,

sptr e a vyt =0,
S~ VY =0, (4.27)

written up to boundary contributions. We observe that, for a; # 0, the equations (4.27)
reduce precisely to the vanishing of the (N, 0) super-AdS Carroll curvature 2-forms given
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in (4.16), that is to say

R¥® =0, K° =0, R*=0, H=0,
TM™ =0, T =0, UM =0,
SM =0, S =0, VM =0,
VYA =0, Vi~ =0. (4.28)

Also in this case, we notice that oy # 0 is a sufficient condition to recover (4.28), which
means that we can consistently impose ap = 0 in the CS action (4.21), making the exotic
term disappear.

Let us also mention that, restricting ourselves to the special case N' = (2,0), that is
x = 1, after some algebraic calculations, we exactly reproduce the results of section 2, that
is to say, in fact, the (2,0) AdS Carroll supergravity theory.

5 (p,q) AdS Carroll supergravity theories in 2 + 1 dimensions

We finally extend our analysis to the (p,q) case, where both p and ¢ are integers > 0.
We first derive the N' = (p,q) AdS Carroll superalgebra as the Carrollian contraction
of the direct sum of an so(p) @ so(q) algebra and osp(2|p) ® 0sp(2,¢). This allows us
to end up with a non-degenerate invariant tensor in the ultra-relativistic limit, and to
consequently construct the three-dimensional CS supergravity theory invariant under the
aforesaid N = (p, ¢) AdS Carroll superalgebra.

5.1 N = (p,q) AdS Carroll superalgebra

Let us begin by considering the direct sum of the osp(2|p) ® osp(2,q) superalgebra and
an so(p) @ so(q) algebra. The non-zero (anti)commutation relations are the following ones
(see [40]):

[jA37 Jop| = UBojAD - nchBD —nppJac + UADch )
1

Nz

[Zij, Zkl' _ ik il _ ik zil _ sil Zik 51'123'1@7

[ZIJ ZKL| _ §IKZIL _ §IK ZJL _ sILZIK | §IL7JK

[jAB7 150: = UBCPA - T]ACPB ) [PA, PB} jAB )

[Srij’gkl: _ % (y‘kgil _ gikgil _ gilGik 6@’[51]‘]4;) 7
[SIJngL- _ % (5JKS«IL _ §IKGIL _ §ILGIK | 51L§JK> 7
[jAB,QZ: = - % (PABQi)a ; [jAB,Qé} = —% (FABQI>a ,

P =~ (@), [Pcl] = L (ra)
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|79,Qk] = QL - o™Qh, | 21,QK] = oK Qh ~ 6"5 QY
(.G} = o7 [— (F4BC)  Jap + (T4C),, 15,4} Loz,

- . 1 .
{QL.a7} =" [% (L480) ; Jas + (TAC) pA] —;Cas 2", (5.1)

with A, B,... = 0,1,2, 4,5,... = 1,....p, I,J,... = 1,...,q, and where Z% = —ZJi,
§ii — G, and 21 — — 271, §1 — _§I1,
We now perform, on the same lines of [40], the redefinition

il = 20 0§ T = 717 _ (Gl (5.2)

which is analogous to the ones we have done in sections 2 and 4. Consequently, we can
rewrite the (anti)commutation relations (5.1) as

[jAB7 jCD: = npcdap — nacdsp — nepJac + napJsc
[jABH 150: = UB(JPA - 77ACI5B )

[Pa Ps] = s

[Tijjk;l' _ ikl _ sikepil _ gilgik 4 5z'lj—vjk7
[TIJ,TKL: _ §IKPIL _ GIKPIL _ ILPIK | SILPIK
[Tijvgkl: — kG ik Gil _ silgik 4 5ilGik

[TIJ SKL_ _ 5JK§IL _ 6IK§JL _ 5JL§IK +6ILS~JK

59, Sklf - -3 (845 S S g S
[SIJ’ SKL: _ % §IKGIL _ §IKGIL _ ILGIK | 5IL SJK)
s, QL] = — 5 (PasQ)

. @L] = — 5 (PasQ’)

PaGi] = -5 (14Q)

Pal] =, (rad")

[19.G8] = s~ 504,

[TIJ QK_ — §IKQL _ §IKGI

i i = ~ 1 S i
{ a,Q]} =9 [—% (r47C) 5 Jan + (rAc)aBPA] + Cag <€T9 +SJ> :

{Q&Qé} =" [216 (FABC) JaB + (FAC)aﬁ 15,4} — Cap (ETU + S'U) . (5.3)
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Notice that taking the flat limit £ — oo of (5.3), one recovers the N’ = (p,q) Poincaré
superalgebra of [40].

The non-vanishing components of an invariant tensor for the superalgebra (5.3), that
will be useful in the following study, are given by

(JapJep) = ao (MapnBC — NACTBD)
UABPC) = (\1€ABC
(PaPp) = %UAB 7
(TUTHY = 20 (5il6kj _ 6““5”) ’
(TTTELY = 20, (§7L5KT — §TH§LTY
(TGHY = 20, (5z’l5kj _ 5i;€51j> ’

<T]J§KL> =20 (51L6KJ _ 5IK5LJ) ,

<gij§kl> _ % ((5i15kj _ 5ik5lj) ’
(§17GKLy — % (5IL5KJ _ 5IK5LJ) 7
@ on- )
~7 «
(Qa@p) = 2(a1 + ;) Capd'” (54)

where oy and a7 are arbitrary constants.

In order to take the ultra-relativistic contraction of the superalgebra (5.3), we decom-
pose, as usual, the indices A, B,... = 0,1,2 as in (2.5), which induces the decomposi-
tion (2.6), together with (2.7). After that, we rescale the generators with a parameter
o as

H—oH, K, — oK,, S 5 g8
St — g81 QL — VaQl,, QL — VaQl. (5.5)

Then, taking the limit 0 — oo (and removing the tilde symbol also on the generators that
we have not rescaled), we end up with the N' = (p,q) AdS Carroll superalgebra whose
non-trivial (anti)commutation relations read

[Kaa ch] = 5(1ch - 5ac-Kvba [Jaba Pc] = 5bcPa - 5ach,
1 1
[Ka’Pb] = _5abH; [Paan] :ﬁ‘]ab) [PaaH] :ﬁKaa

[Tij7Tkl} _ kil _ gikepil _ silpik  silik

[TIJ TKL] — 5JKTIL . 5[KTJL . 5JLTIK +5ILTJK
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53kSzl 5sz]l 5jlsik 4+ 5il5«jk ’

[T” SH

[TIJ,SKL] — JKSIL 5IKSJL 6JLSIK +5ILSJK,
an Qi) = 5 ( w@)y s Q] =5 (Tu"),
1
[Pa Qu] = ( @) [Pa: Qo] = 5 (@),
|:T’L] Qk:| — (5ij1 5@]9@ [TIJ,QQ(} — 5JKQI (SIKQ ’
{Qi.Qh} =0 [g (r°°C) .5 Ka + (T°C) 4 H] + CapSY
{QL. Q%) = 6 [ (T°C) 45 Ko + (1°C) 4 H} — CupS'. (5.6)

Notice that if we restrict ourselves to the special case N' = (1,1), that is p = ¢ = 1,
we exactly reproduce the N' = (1,1) AdS Carroll superalgebra obtained in section 3,
namely (3.4).

In the following, we will construct a three-dimensional CS action invariant under (5.6).

5.2 (p,q) AdS Carroll supergravity

We will now construct a three-dimensional CS supergravity action invariant under the
superalgebra (5.6) just introduced. We call this action (p,q) AdS Carroll CS supergrav-
ity action.
To this aim, let us first introduce the connection 1-form A associated with (5.6), namely
1 ab a a 1 i 1 1J
Aziw Jap + KKy +V Pa—i-hH—i-it]Tij—i-it Trs

1 .. 1 )
+ 58”5@' + QSUSIJ + Q"+ v1Q", (5.7)

being w®, k¢, Ve, h, t9, t17 s4 s 4 and 1y the 1-form fields respectively dual to the
generators Jup, Ko, Po, H, Ty, Try, Sij, Sy, @', and Q! (obeying the (anti)commutation
relations given in (5.6)), and the related curvature 2-form F, that is

1 1 .. 1
F = R Jap + K"Ky + R*Po+ HH + STy + ST Ty
L i Iy ; s
+ 53 Sij + 55 Srr+ViiQ' + Vi Q, (5.8)
with
ab aysb ab axrb
R™ = dw™ + £2V V=R + g2V VP,
K® = dk® + wk® + 7 Vah + WFCLOW Edjlf‘a%ﬁl
_ Qa 1 717a0, /% 7 I1a0, 1
=R"+ 261/} ' %zp %"

R = dV® 4wV,
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W =dh+ Vo, — %WF%" _ %&IFOQZ)I —H_ %d—)z‘rowi - %d—)[rowl’
T = dt9 + 445
TIJ — dtIJ—i-tIKtKJ,
S = ds' 4 247,k — iy,
SIJ —_ dSIJ—|—2tIK$KJ+'(EI¢J,

. 1 . 1 . -
VYl = dg' + 2w ot + VT + 1745,

4 20
1 1
Vil =dyp! 4 W T — Vet + 174, (5.9)

We can now move to the explicit construction of a CS action invariant under (5.6). To
this aim, consider the non-vanishing components of the invariant tensor given in (5.4), de-
compose the indices as in (2.5), and rescale not only the generators in compliance with (3.3)
but also the coefficients appearing in (5.4) as in (2.16). Consequently, the Carroll limit
o — oo leads to the following non-vanishing components of an invariant tensor for the
superalgebra (5.6):

(JabJed) = @0 (8aadbe — dacObd)
(JaH) = c1€ap,
(KoPp) = — c1€ap,
(PouPy) = %5@’
(TUTHY = 20, (5z’l(§kj _ 5iké~lj> :
(TITRE) = 20, (67E6K7 — 6TR§LTY |
<Tz‘jSkl> = 2 (5il5kj _ 5z‘k5lj> ’
(TTSKLY = 20, (672657 — 5T 5LTY
(Q4Q%) = 201Cas6"

(QLQE) = 201Cupd™ . (5.10)

The invariant tensor whose components are given in (5.10) is non-degenerate when «y # 0.

Then, substituting the connection 1-form in (5.7) and the non-zero components of the
invariant tensor (5.10) into the general expression (2.11), we end up with the (p,q) AdS
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Carroll CS supergravity action in three dimensions, that is

k Qo 4 4
LA / 20 (e, RY VOR, + 2t dtT; + —ti 7 tb; + 2! jar? [ + ! 7 it
cs w12 W +£2 + +3 Kt + 267 1+3JK I

+ a1 l:eabRabh — 2€abﬁavb + eabV“Vbh ij (dsji + tjkski)

62
+ 2ty (ds” 1+ 17 ks 1) + 20°VY 4 297 VW]

which is written in terms of the curvatures appearing in (5.9) and it involves two coupling
constants, that are ap and «;. Up to boundary terms, the action (5.11) can be reworked
as follows:

k 4 4
129 — / {ao ( o R +£ VIR, + 2t1dt; + Stz 9,45, 4ot at?  + 3t1JtJKtK )

An 2
+an [eabR“bh — 2RV + 5 L VoV — ot 2t'; (s + 1%,
+ 2ty (ds”p + 7 s™ ) + 20V + wfvwf} } . (5.12)

As usual, the contribution proportional to ag corresponds to the exotic Lagrangian, and we
can see that it involves, besides the Lorentz and torsional terms, also pieces including the
1-form fields t” and t!/. However, it does not contain terms involving 1* and 1!. On the
other hand, the contribution proportional to a; also includes pieces involving the 1-form
fields s¥, s!/, ¢t and ¢!.

The action (5.11) is invariant by construction under (5.6), and the local gauge trans-
formations 0y A = dX + [A, \] with gauge parameter

1 1 .. 1
A= iAabJab—Flﬁa a—|—)\apa+TH+§<,0wtij—|—*

1 . 1 .
5 o tr+ 5@“” 5ij+§§IJ51J+€ZQi+€IQ[ (5.13)

are given by

S5 ab __ d)\ab 2 V[a)\b]

w = + ﬁ N

1

Ok® = dr® — Nk" + W’ — Leh+ 7 Lyar - FET 4 SE Ty
OVE=d\* — A4V 4 w20

6h = dr — Akq + Vg + 8T + 101

St = dipid — 20l kil
st — dgp” . z(p[thK\J] :

657 = d¢¥ — 2011, §MIl 1 ogli) Kl 4 9zliyyal |

— 30 —



5517 = de1V 4 20l K1) 1 ogll ( KITN _ olly ]

; 1 o1 1 o o g
Syt = det — zAabFabW + Zwabrabaz — ﬂvraw + ﬂvaraa — pep; +te

1 1 1 1
ol =de™ — ivbrabw + Zw®T el + =X T ! — — VT el — !y +te; .

4 20 20
Thus, the restriction to supersymmetry transformations gives us

dw® =0,

a 1—2’ a0,/ 1—[ a0,/ 1
0kt = —=¢&'Tl 1/1"‘*5:[‘%&7
l J4

SV =0,

Sh = EZFO,(/}l + E_IFO’(/}I,

5t =0,

stll =0,

654 = 2zliyi]

§s'7 = —2ellyp7l

ot =det + %wabfabai + %V“Faei + tijaj ,
Syl =de™ + %w“bfabsl — %V“Faaf +tle;.

(5.14)

(5.15)

Finally, the equations of motion obtained from the variation of (5.11) with respect
to the 1-form fields w?, k% V@, h, t9, ¢! s I/ ) and ¢! are, respectively (up to

boundary contributions),

5™ agR® 4+ aye®H =0,
0k a1R*=0,

6V R+ 2016k =0,

Sh: aR™®=0,

5t —apT¥ + 1S =0,
ot —ag T — S =0,
6s 1 a TV =0,

ost’ . T =0,

St V' =0,

ol vyl =0,
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and, for oy # 0, they reduce precisely to the vanishing of the (p,q) super-AdS Carroll
curvature 2-forms given in (5.8), that is to say

R® =0, K*=o0, R*=0, H=0,
TV =0, T =0, S =0, stV =o,
Vi =0, vyl =0. (5.17)

We observe that, as usual, oy # 0 is a sufficient condition to recover (5.17), meaning that
o can be consistently set to zero, making the exotic term in the CS action (5.11) disappear.

Let us finally mention that, if we restrict ourselves to the case p = ¢ = 1, we exactly
reproduce the results of section 3, that is to say, as properly expected, the (1,1) AdS
Carroll supergravity theory.

6 Study of the flat limit £ — oo

In the sequel, we study the flat limit ¢/ — oo, which can be directly applied to
the N-extended AdS Carroll superalgebras (2.10), (3.4), (4.14), and (5.6), to the cor-
responding curvature 2-forms, respectively given by (2.15), (3.7), (4.17), and (5.9),
to the related CS actions (2.18), (3.11), (4.21), and (5.11), to the transformation
laws (2.21), (3.14), (4.24), (5.14) (and, in particular to the supersymmetry transforma-
tion laws (2.22), (3.15), (4.26), (5.15)), and to the field equations of the respective theories,
namely (2.23), (3.16), (4.27), and (5.16).

6.1 (2,0) Carroll supergravity from the £ — oo limit

In the limit ¢ — oo, the (anti)commutation relations of the N'= (2,0) AdS Carroll super-
algebra (2.10) reduce to the following non-vanishing ones:

[Km ch} = 5ach - 5acha

[Jabs Pe] = bcPa — SacPy
[Ka, P] = — 5abHa
[Jab, Q3] = (FabQi)a
[7,Qa] = (To) ap QB ’
[7,Qa] = = (To)as Qs »
{ez.@f} = (°0),, (1 +9),
(e} = (r C)aﬁ (H~5) . (6.1)

These are the (anti)commutation relations of a new N = (2,0), D = 3 super-Carroll al-
gebra, involving an extra generator S, which could also have been derived by considering
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the ultra-relativistic contraction of the N' = (2,0), D = 3 Poincaré superalgebra sup-
plemented with an so0(2) extension consisting in the extra generator S introduced at the
relativistic level.

As ¢ — oo, the 2-form curvatures (2.15) become

Rab:dwab:Rab7
K® = dk® + wy k" = &,
R =dV® + w4V,

a Loyro, 4 Loco - Lovo,+ 1o o -
H=dh+Vka = S0TTT = ST = § = SP T0gT — g T,
T =dt,

Lovro,+ ., Loro, -
S=ds — 0 TOW" + ST,
1
Vit = dypt + Zwabrabd}* — tToyp™,
1
Vi~ = dp™ + ~wPTyp™ + tTotp ™ . (6.2)

4

On the other hand, by applying the ¢ — oo limit to the three-dimensional CS action (2.18),
we end up with

k
18N es00 = 1 /M {O;O (wy R, — 4tdt) + an (e Rh — 260 RV + dtds

+ 29TVt + 2{7%*) — d<o;eabw“bh — ek VP — 2a1t3> } . (6.3)

which is written in terms of the super-Carroll curvatures appearing in (6.2). The latter must
not be confused with the super-AdS Carroll ones given in (2.15), since (6.2) correspond to
the flat limit of (2.15). Here we signal that we have done a little abuse of notation. The
action (6.3) can also be derived by using the following non-vanishing components of the
invariant tensor:

<Jachd> = Qp (5ad6bc - 6a05bd) )
(JabH> = (1€gp

(KoPy) = — ai€qp,

(TT) = —2ag,
<TS> = 20&1 s
(QEQF) = (QQ5) = 201Cag, (6.4)

which are obtained by taking the limit £ — oo of (2.17), and the connection 1-form for the
N = (2,0) (flat) Carroll superalgebra (6.1) in the general expression (2.11). Notice that
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the exotic term, which is the one proportional to ag in (6.3), now reduces purely to the
so-called Lorentz Lagrangian.

The CS action (6.3) is invariant by construction under the super-Carroll group associ-
ated with (6.1). In particular, concerning the flat limit of the gauge transformations (2.21),
we get the local gauge transformations

dw™ = dA"
Ok = dr® — A%kY + wk?,
SV =dX\* — A VP + wiAb
Sh=dr — Nky + Vg + T 4+ T0%,
ot =dp,
s = ds + &0t — a7 T0y,
Syt =det — lvbrabw + %w“brabﬁ + @Lotpt — thget,

4

1 1
op~ =de” — varaby)— + Zw“bl‘abe_ — Do~ +tTe™ . (6.5)

The restriction to supersymmetry transformations reads

dw® =0,
0k* =0,
V=0,

6h=T%" +2T%",
it =0,
bs =0t —a 1%,
ST =deT + %w“bfabﬁ“ —tToe™,
oY~ =de” + %wabI‘abe_ 4+ tDoe™ . (6.6)

Finally, the equations of motion for the action (6.3) (flat limit of the equations of
motion given in (2.23)) are

Sw®: apR™® + a1e™®H =0,
ok*: aR*=0,

SV ek’ =0,
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Sh: aqR™® =0,
ot: —oT +a1S8 =0,
0s: o T =0,
St Vet =0,
™ VT =0, (6.7)

and we can see that, when oy # 0, they exactly reduce to the vanishing of the curvature
2-forms given in (6.2). We can also observe that, in analogy with the AdS case of section 2,
also in the flat limit o1 # 0 results to be a sufficient condition to recover the vanishing of the
curvature 2-forms (6.2) obtained in the flat limit, which means that one could consistently
set ap = 0 and thus neglect the exotic term (i.e., the Lorentz Lagrangian) in the CS
action (6.3).%

6.2 (1,1) Carroll supergravity from the £ — oo limit

The limit ¢ — oo performed on the (anti)commutation relations of the A’ = (1,0) AdS
Carroll superalgebra (3.4) leads to the following non-vanishing ones:

[(Kas Joe] = dapKe — dac Ky,
[Jabs Pe] = 66 Pa — 6acPy
(Ko, Py = — b H |
[y Q2] = — 5 (Tw@),
{Qg,Qg} = (r°C) , H. (6.8)

These are the (anti)commutation relations of the N’ = (1,1), D = 3 super-Carroll algebra
(see [14], where (6.8) corresponds to the superalgebra obtained in the R — oo limit of the
N = (1,1) AdS-Carroll superalgebra of section C.4 of the same paper). It could be also
obtained by considering the ultra-relativistic contraction of the N'= (1,1), D = 3 Poincaré
superalgebra.

Taking ¢ — oo, the 2-form curvatures (3.7) reduce to

Rab — dwab _ Rab’

K® = dk® + w" k" = &%,

9Let us also observe that if we now restrict ourselves to the purely bosonic part of the action (6.3),
we get a three-dimensional CS Carroll gravity action that is different from the one obtained in [35] (see
also [13]) by considering the purely bosonic contributions, due to the presence of the bosonic 1-form fields
t and s dual to the generators T" and S, respectively. Nevertheless, if we consider the purely bosonic level
and set ¢ = s = 0 through an IW contraction, we have that the aforementioned actions coincide.
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Ra:dvajLwabe’
a ].7+0+ 17707 ].7+0+ 1*707
H = dh+Vky = S0 T0T = Sg T = § =S¢ 00T — S Ty,
1
Vot — gt o T

Vg = + o Ty (69)

and the £ — oo limit of the CS action (3.11) leads us to the following three-dimensional one:

L _ _
16 00 = 1 y {O;” (wsR) + a1 (eanR™R = 26 8V? + 257V + 207 VYT

— d<0;eabw“bh — aleabk‘“Vb> } , (6.10)

written in terms of the curvatures appearing in (6.9) (again, we are doing a little abuse of
notation). The action (6.10) can also be derived by using the connection 1-form for the
N = (1,1) (flat) Carroll superalgebra (6.8) together with the non-vanishing components of
the invariant tensor

(JabJed) = a0 (8adObe — Oacdbd)
<JabH> = (1€gp
(KoPy) = — avi€qp

(QaQF) = (QaQp) = 201Cap (6.11)

in the general expression for a three-dimensional CS action (2.11). Analogously to what
happened in the (2,0) flat theory, also in the current case the exotic term, proportional to
ag, now reduces purely to the Lorentz Lagrangian.

By construction, the CS action (6.10) is invariant under the (1, 1) super-Carroll group,
that is associated with the superalgebra given in (6.8). In particular, taking the flat limit
of the gauge transformations (3.14), we get the following local gauge transformations:

S — d)\ab7
Ok = dr® — A%kY + wk?,
SV = dA\* — A4 VP + wiAb
Sh=dr — XNky + V%q +&T%T +2 1%,
51/)+ —det — %)\abrawar + %wablﬂabg 7

1 1
oY~ =de — Z)\“bfabw’ + Zwabraba* : (6.12)
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and restricting ourselves to supersymmetry transformations, we are left with

dw® =0,
0k* =0,
SV =0,

Sh=&T%" +T%",

1
Syt =det + Zwabrabﬁ ,

1
0~ =de” + ZwabFaba_ . (6.13)

Concluding, the equations of motion for the action (6.10) (flat limit of the equations

of motion given in (3.16)) read as follows:

dw®
5k
SV
Sh -
syt
Sy

OéoRab -+ Olleab/H =0 s

aR* =0,

a1’ =0,

a1R® =0,

a VYt =0,

VY~ =0. (6.14)

When «a; # 0, the egs. (6.14) exactly reduce to the vanishing of the curvature 2-forms

in (6.9) (an # 0 is a sufficient condition to recover the vanishing of the curvature 2-

forms (6.9), meaning that one could consistently set ay = 0, omitting the exotic term, that
is the Lorentz Lagrangian, in the CS action (6.10)).
Notice that the restriction to the purely bosonic part of the action (6.10) yields exactly

the three-dimensional CS gravity action invariant under the D = 3 Carroll algebra [1, 2].

The aforesaid CS action involving purely bosonic terms is equivalent, as argued in [13], to

the action found in [13] if we take the D = 3 case in the same paper.

6.3 (N,0) Carroll supergravity theories from the £ — oo limit

Taking the flat limit £ — oo of the (anti)commutation relations (4.14), we get the following

non-trivial ones:

[Km ch] = 50,ch - 5(1ch 5

[Jaln Pc] = 5bcPa - 6{1ch7

[Kaapb] = - 5abH7
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The (anti)commutation relations (6.15) are those of the N'= (N,0), D = 3 super-Carroll
algebra (with A/ even), and one could also obtain it by taking the ultra-relativistic limit of
the so(N) extension of the N' = (N, 0), D = 3 Poincaré superalgebra.

Moreover, as ¢ — oo, the 2-form curvatures (4.17) become

Rab — dwab —

ab
R™,

K = dk® + wh k> = 82,

R =dV® +wV?,
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VYA = dpm A 4w o g Sty —
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Applying the £ — oo limit to the CS action (4.21), we obtain

k e 4 4
IR = e {20 (w“bRba + 22 dtH ) + gt)‘ut“,,t” A2t A+ gt')‘ut’“yt“’ A
M

+ 4u)‘udu/“>\ — 4t>\uu’>‘yu”“ — 4t’/\uu)‘l,u”’“>

+aq [eabR“bh — 2, ROVE — 2t’\“ (dst\ +tH,s"))

Y2 ds'™ o v _4)\dlp,_ AV Ao u v
2tu(s,\+t,,5)\) u”pdv” = 2u uly s\ — 2u” ut s )

— 4u/)‘uv“yt”>\ - 4u’\uv/“yt”’)\ + 20TAVYTA 4 207 AV )‘]

[0
— d(;eabwabh — aleabkavb + Ozlt)\usu)\ + Ozlt//\us,u)\ + 2a1u)‘uv’“)\) } R

(6.17)
which is written in terms of the super-Carroll curvatures appearing in (6.16) (we emphasize
that the latter must not be confused with the super-AdS Carroll ones given in (4.17)).
Note that the exotic term in (6.17), that is the one proportional to «y, is now given by the

Lorentz Lagrangian plus additional terms involving the 1-form fields t*, #'*, and u*. Let
us further mention that the action (6.17) can also be derived by using the non-vanishing
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components of the invariant tensor obtained by taking the limit ¢ — oo of (4.20) together
with the connection 1-form for the N = (N,0) (flat) Carroll superalgebra (6.15) in the
general expression (2.11). In particular, taking the £ — oo limit of (4.20) we are left with

the non-vanishing components
(JabTed) = 0 (8aadbe — dacObd)
(JapH) = cvi€qp
(KoPp) = — ci€ap,
(TMTYPY = (T'MTP) = 204 (Wa”“ - WW) :
(UMTP) = — 2006M 57",
(TS0 = (T5"7) = 20y (§67 — 625 )
(UAVP) = 20,6M 57",
(QINQF") = (Q21Q5") = 201 Copd™. (6.18)

The action (6.17) is invariant by construction under the super-Carroll group associ-
ated with (6.15); in particular, concerning the ¢ — oo limit of the local gauge transforma-

tions (4.24), we obtain
Sw™ = dX®,
k" = dr® — ANk" + Wy,
SVe =dX* — A% VP + Wi\,
h = dr — XNk + VOhiq + 0T 427 0%,
St = doM — QQ[AytVIu] _ QQP’[AVUVW] ’
St = oM — QQ/P\Vt’V\ﬂ] _ QQO[)‘,/u/”l“] ’
JuM = M — A I N g g g o
S = doM — 200 sVl o} vl 9/ eIl ooy /1A (VI g Pyt a
+ e Pyp=Hl gt Dyp=ul 4z~ Pyl
55 = q — 2P Il oy el 9 i) gy X Ikl 4 gt gyt i
4 Pyt Py=n — z= Pyl
FoM = A — AV N g g g N VA VI N g N vk

+ SIAVSDVM _ gt )\FO,(/}Jru + & )\Fﬂwf,u _ gk[)\l—\owfu] +& [)\I\Ow+,u} ’

40 —



1 1 1 1 1
St =det? — ZAabFabiﬁJrA + WPt — —oMyt 4+ et — 5@’\“%7

4 2 2
+ lt)\HE* _1 Pyt 4 lt/Au + 4 1 gy~ — lt//\u - _ o, Yt
ol " Eu T @ "W Tl e, T Ty T ol e, T 0¥p

+ u()‘“)Foaj _ (p[/\#]row/: + u[/\u}rogﬁ 7

1 1 1 1 1
5¢—A — dE_)\ . ZAabFabw—)\ + Zwabr‘abg_)\ _ 59)\;1,‘%;&- + —t>‘”6+ _ 59)\”’(/]_

2 2 I
+ ltku -4 1 /Au¢+ _ ltw + _ 1 /Auw— + lt'/\u = 4 o v
p" Tr TRl e TRt e TR Tt e e 0
—uP e, + Mgyt — uMTef (6.19)
Then, restricting ourselves to the supersymmetry transformations in the limit ¢ — oo,
we find
dw® =0,
0k =0,
Ve =0,

5h — 6—+)\1‘\0¢+)\ + 5— )\F0¢—>\’

St =0,
St =0,
SuM =0,

St = gt Pyt il 4 a= Py ml 4 gt Dyp=nl 4 z= Doyt ul
580‘“ —zr [Aw-i—u} 4+ P\¢‘ pl_ gt [A¢—H] — [AQ]Z)'HL] ’
SoM = —g ATyt iz A0y 1 g Oy = a0yt ul
1 1 1 1
51/}+)\ _ dE+)\ + 1(A)ab]_ﬂabz,:.Jr)\ + §tA,LL€: + it)\,ug‘; + Qt/)\ugj

Loz~ Owp o+ o Dulp, —
_it Fe,, +uToe, +uToe, ,

1 1 1 1
51#_)‘ =de M+ Zwabfabe_)‘ + §t>‘“6: + it’\“&‘; — 515')‘“5:[
1 I — A — A +
+ 515 e, — ul ”)Foé‘u —ul “}Fosu . (6.20)

Finally, we find that the equations of motion for the action (6.17) (flat limit of the
equations of motion given in (4.27)) read

dw®: apR™ + a1e™®H =0,

ok® : Ctha = 0,
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Ve aregpkl =0,
Sh: aR® =0,

St T + o SM =0,

M agT™M + ™ =0,

SuM s —agUM + VM =0,

M T =0,

M T =0,

S UM =0,
5¢+A : 041V¢+>‘:0,
S VoA =0. (6.21)

We can see that when a1 # 0, the eqgs. (6.21) reduce to the vanishing of the curvature
2-forms given in (6.16) (o # 0 is a sufficient condition to recover the vanishing of the
curvature 2-forms in (6.16); the coefficient oy can be consistently set to zero, making the
exotic term disappear from the action (6.17).

Let us observe that, restricting ourselves to the purely bosonic theory, we end up with
the N' = (N, 0) Carroll gravity theories (with A even) in three dimensions, invariant under
the N' = (N, 0) Carroll algebra. At the purely bosonic level, the fields tM, /A, yM, sM,
s and v, and the corresponding terms in the action, can also be consistently discarded
by performing an IW contraction.

On the other hand, considering the special case N' = (2,0), that is x = 1, after
some algebraic calculations, we can prove that the (2,0) theory in the flat limit previously
discussed in this section is exactly reproduced.

6.4 (p,q) Carroll supergravity theories from the £ — oo limit

Applying the flat limit £ — oo to the (anti)commutation relations given in (5.6), we get

the following non-vanishing ones:

[Kas Joc) = 6apKe — dacKy,
[Jab, Pe] = 6pePa — Sachs
(Ko, Py) = — dapH
{Tij’Tkl] _ kil _ gikpil _ gilik | gilik

[TIJ TKL] — 5JKTIL _ 5IKTJL _ 5JLTIK +51LTJK
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[T” Sht
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1 .
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2
1
[T QL] = — 2 (T,
|:T’L] Qk _ 5]kQ7, 5’ik}Q‘g’
[TIJ,QK] JKQ] 5IKQi,

{Qi.QL} =39 (1°C) ,, H + CapSY,
{QLQf} =67 (1°C) 5 H — CupS™. (6.22)

These are the (anti)commutation relations of the N' = (p,q), D = 3 super-Carroll algebra,
and we could also have obtained the latter by applying the Carroll contraction to the
semi-direct extension of the so(p) @ so(q) automorphism algebra by the N' = (p,q), D =3
Poincaré superalgebra (see ref. [40]).

Then, as ¢ — oo, the 2-form curvatures (5.9) become

R dwab Rab

K® = dk® + w4k’ = 8,

R = dV® +w VP,

H = dh + V°k, wzrowz . %&IFOI/)I - %&irowi . %@IF%/JI’

T = dtT + 44"
TIJ — dt[J—l-tIKtKJ,

SU = ds + 2ty s" — iy |

SIJ — dSIJ + 2LJKSKJ +1,Z_111/)J,
VY = dyi g T + 0

1
vyl = dy! + zwabrabw +tMyy, (6.23)

and by applying the ¢ — oo limit to the CS action (5.11), we get

k « o 4 . . 4
189, = ye / {20 (w“bRba + 2t ydt) s + ot gt Kt 4 2t! yat’  + gtl gt! et ,)
M

+ o [GabRabh — 26abﬁavb - 2tij (dsji + tjkski)
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+2t7 g (ds” 1 + 17 ks 1) + 20°VY + 20TV ]

— d(ogeabw“bh — 1€k VP 4+ ont’jsl; — altIJ3J1> } ; (6.24)

which is written in terms of the super-Carroll curvatures appearing in (6.23) (let us stress
that the latter must not be confused with the super-AdS Carroll ones given in (5.9)).
We can see that the exotic term appearing in (6.24), namely the one proportional to «y,
now is given by the Lorentz Lagrangian plus additional terms involving the 1-form fields
Y and ¢!/,

Notice that the action (6.24) can also be derived by using the non-vanishing compo-
nents of the invariant tensor obtained by taking the limit £ — oo of (5.10) together with the
connection 1-form for the N' = (p,q) (flat) Carroll superalgebra (6.22) in the general ex-
pression (2.11). Specifically, the limit ¢ — oo of (5.10) gives us the following non-vanishing
components:

(Jabded) = 0 (6addbe — Gacdbd)
(JanH) = cr€qap
(KoPp) = — 1€,
<Tikal> — 200 <5z’l§kj _ 5#@51]‘) ’
(TITRE) = 20, (675657 — §TR§ETY |
<TijSkl> = 2 (5il5kj _ 5z‘k5lj> ’
(T Sy = 90, (510657 — 1K 51T) |
(QQQ@ = 201Cop0"
(QLQE) = 201Cops" . (6.25)

The CS action (6.24) is invariant by construction under the super-Carroll group as-
sociated with (6.22), and, in particular, concerning the ¢ — oo limit of the local gauge
transformations (5.14), we get

S — d)\ab’
Ok® = dr® — X%k + Wk,
SV =dX\* — A4 VP + Wil
Sh = dr — X'k + Vg + &T01 4+ Ty

S# — dgpij _ 2(p[iktk|j] ,
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Thus, restricting ourselves to the supersymmetry transformations in the limit ¢ — oo, we
are left with

dw® =0,
0k =0,
oVt =0,

Sh = —iFOd}i _|_§IFO¢I’

5t =0,

st =0,

55 = 2liyil
651 = —2ellyl,

. 1 A g
5¢Z e d€+ + Ewabl—‘abgl + tljsj 5

1
Syl =de™ + ZwabFabel +tl7e;. (6.27)

Concluding, the equations of motion for the action (6.24) (flat limit of the equations
of motion given in (5.16)) read as follows:

dw®: agR® + ae®H =0,
ok : ayR*=0,
SV 2a1e,K0 =0,
Sh: aqR® =0,
6t —aT? +onSY =0,
ot —aoT — a8 =0,

§s: o TY9 =0,
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os'’ . T =0,
St a Vi =0,
sl vyl =0. (6.28)

When «; # 0, the egs. (6.28) exactly reduce to the vanishing of the curvature 2-forms
given in (6.23) (a1 # 0 is a sufficient condition to recover the vanishing of the curvature
2-forms (6.23), and the coefficient g can also be consistently set to zero, making the exotic
term disappear from the action (6.24)).

Restricting ourselves to the purely bosonic theory, we end up with the N' = (p,q)
Carroll gravity theories in three dimensions, invariant under the N' = (p, q) Carroll algebra.
At the purely bosonic level, the fields ¥, ¢!/, 5% and s!/, and the corresponding terms in
the action, can also be consistently discarded by performing an IW contraction.

On the other hand, let us finally mention that, if we now consider the particular case
p = q¢ = 1, we exactly reproduce the results previously obtained in this section for the (1, 1)
theory in the flat limit.

All the studies of the flat limit presented in this section represent a new develop-
ment and generalization of the previous works concerning Carroll superalgebras in three
dimensions, in particular in the context of three-dimensional CS supergravity theories.

7 Conclusions

Motivated by the recent development of applications of Carroll symmetries (in particular,
by their prominent role in the context of holography), and by the fact that, nevertheless,
the study of their supersymmetric extensions in the context of supergravity models still
remains poorly explored, in this paper we have presented, in a systematic fashion, the
ultra-relativistic N-extended AdS CS supergravity theories in three (2 + 1) spacetime
dimensions, which are invariant under N-extended AdS Carroll superalgebras, extending
the results recently presented in [35] (where the construction of the three-dimensional
N = 1 CS supergravity theory invariant under the so-called AdS Carroll superalgebra,
ultra-relativistic contraction of the N’ =1 AdS superalgebra [14], together with the study
of its flat limit, has been presented for the first time). In particular, we have applied
the method introduced in [36] with the improvements of [35] to construct the aforesaid
ultra-relativistic V-extended AdS CS supergravity theories.

We have first considered the (2,0) and (1, 1) cases, and subsequently generalized our
analysis to N' = (N, 0), with A/ even integer, and to ' = (p, q), that is N' = p + ¢, with
p,q > 0. The N-extended AdS Carroll superalgebras have been obtained through the
Carrollian (i.e., ultra-relativistic) contraction applied to an so(2) extension of 0sp(2[2) ®
sp(2), to osp(2[1) @ 0sp(2, 1), to an so(N') extension of osp(2|N) @ sp(2), and to the direct
sum of an so(p) & so(q) algebra and 0sp(2|p) @ 0sp(2, ¢), respectively.

An N = (2,0) AdS Carroll superalgebra in three dimensions was previously intro-
duced in [14]. Nevertheless, the latter does not allow for a non-degenerate invariant tensor,
meaning that one cannot construct a well-defined CS action based on this superalgebra.
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To overcome this point, we have considered an so(2) extension of 0sp(2]|2) ® sp(2) and
performed the ultra-relativistic contraction on it, ending up with a new N = (2,0) AdS
Carroll superalgebra endowed with a non-degenerate invariant tensor. This has allowed us
to develop the three-dimensional CS supergravity action invariant under this N = (2,0)
AdS Carroll superalgebra. We have called this action the (2,0) AdS Carroll CS super-
gravity action. We have done an analogous analysis in the (1,1) case, and subsequently
generalized our study to N = (N,0) (with A/ even) and to N = (p,q) (with p,q > 0). In
particular, after having introduced the ultra-relativistic superalgebras, we have constructed
the respective CS supergravity theories in three-dimensions by exploiting the non-vanishing
components of the corresponding invariant tensor. The aforementioned actions are all based
on a non-degenerate, invariant bilinear form (i.e., an invariant metric), and each of them
is characterized by two coupling constants and involve an exotic contribution. The results
presented in this paper were also open problems suggested in ref. [14], and they represent
the N-extended generalization of [35]. Interestingly, one can observe that the CS formu-
lation in the N-extended cases N' = (N, 0) and N = (p, q) requires the presence of so(N)
and so(p) @ sp(q) generators, respectively, also at the ultra-relativistic level, that is in the
Carroll limit; thus, what happens at the relativistic level for three-dimensional NV -extended
CS Poincaré and AdS supergravity theories (see [40]), that is the need to introduce the
aforementioned extra generators (together with their dual 1-form fields) in the theory in
order to obtain a non-degenerate invariant tensor, has repercussions also on (and still holds
at) the ultra-relativistic level.

We have also analyzed the flat limit £ — oo of the aforementioned models, in which we
have recovered the ultra-relativistic AN-extended (flat) CS supergravity theories invariant
under N-extended super-Carroll algebras. The flat limit has been applied at the level of
the superalgebras, CS actions, supersymmetry transformation laws, and field equations.
Also all the studies of the flat limit presented in section 6 represent a new development
and generalization of the previous works presented in the literature concerning Carroll
(super)algebras in three dimensions, in particular in the context of three-dimensional CS
(super)gravity theories.

The recently discovered relations among the Carrollian world and flat holography sug-
gest that this work might represents a starting point to go further in the analysis of super-
symmetry invariance of flat supergravity in the presence of a non-trivial boundary, along
the lines of [55]. Besides, now, having well-defined three-dimensional CS (super)gravity the-
ories respectively invariant under the AV-extended AdS-Carroll and Carroll (super)algebras,
it would be intriguing to go beyond and study the asymptotic symmetry of these models,
following, for instance, the prescription given in ref. [56]. It would also be interesting to
further extend our analysis to more general amount of supersymmetry, involving also odd
N cases, and to higher-dimensional models (recently, a study exploring the Carroll limit
corresponding to M2- as well as M3-branes propagating over D = 11 supergravity back-
grounds in M-theory has been presented [10]), where Carrollian (super)gravity theories
still remain poorly explored. Finally, all these ultra-relativistic theories constructed a la
CS could have some applications in the context of Carrollian fluids (and their relations
with flat holography, see refs. [31-34]).
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