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1 Introduction

Results from collider experiments, including the discovery of the Standard Model (SM)-like

Higgs boson, strongly indicate that the SM can explain phenomenologies around and below

the electroweak scale. However, the scale of the electroweak symmetry breaking (EWSB)

is sensitive to high-energy physics, such as the grand unified theory (GUT) and the Planck

scale physics, through radiative corrections. The SM requires an unnatural fine-tuning to

the Higgs potential to realize the correct EWSB. This is known as the hierarchy problem

and has motivated various possibilities of physics beyond the SM.

The Randall-Sundrum (RS) Model [1] is an attractive scenario which provides an

elegant solution to the hierarchy problem, introducing a warped extra dimension. The

geometry of the RS model consists of AdS5 bulk spacetime with two branes (called IR and

UV branes) placed on two boundaries of the 5-dimensional AdS bulk. The SM Higgs field

is assumed to be localized on the IR brane, while the massless graviton is localized toward

the UV brane. An energy scale on the IR brane is exponentially redshifted from that on

the UV brane and hence the hierarchy between the electroweak scale and the Planck scale

is dynamically generated. According to the AdS/CFT correspondence [2–6], the RS model

is dual to a nearly-conformal strongly-coupled 4D field theory. In the dual picture, the

Higgs field is given as a bound state of this 4D theory.

The original RS model has a massless modulus field called radion, which parameterizes

the distance between the IR and UV branes, and its vacuum expectation value is fixed by
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hand to realize an adequate redshift factor. In the dual 4D picture, dilation invariance of

the corresponding CFT is spontaneously broken and a massless Nambu-Goldstone boson

called dilaton exists. To solve the (large) hierarchy problem completely, we thus need

a mechanism that stabilizes the radion vacuum expectation value (VEV) without fine-

tuning. Many schemes for radion stabilization have been proposed so far [7–15], including

the famous Goldberger-Wise mechanism [7] which introduces a bulk scalar field with brane-

localized potentials.

If the RS model is realized in nature, it must predict a consistent cosmological history

of our Universe. At low temperature, the Universe is described by the compact RS model.

On the other hand, at high temperature, the system is known to be described by the de-

compactified AdS-Schwarzschild (AdS-S) solution with the IR brane replaced by an event

horizon [16] because the canonical ensemble of the AdS space is described by the AdS-S

solution as argued by Hawking and Page [17]. Therefore, as the temperature of the Universe

cools down, a phase transition between the AdS-S spacetime and the RS spacetime takes

place [18, 19]. Its 4D dual description is given by a confinement-deconfinement phase

transition in the strongly-coupled 4D theory. It has been known that this phase transition

is of the first order and proceeds via nucleation of true vacuum bubbles.

The phase transition between the AdS-S spacetime and the RS spacetime generally

takes place via a supercooling phase.1 This is easily understood in terms of the 4D dual

picture: scale invariance of the CFT suppresses the phase transition [27]. In particular,

when we assume the Goldberger-Wise mechanism for radion stabilization, the supercooling

phase lasts very long and the phase transition is never completed (and leads to eternal

inflation) in most of the region where the 5D Planck mass is much larger than the AdS

curvature and a classical treatment of the gravity is meaningful [16]. Furthermore, even in

the remaining parameter space, the brane-localized potentials of the bulk scalar field give a

non-negligible back-reaction to the gravitational action and the analysis without including

the back-reaction is not trustable. Possible solutions to this problem have been discussed

by several authors. Refs. [28, 29] explored soft wall models. Ref. [30] considered a different

geometry from the RS spacetime. Ref. [31] partially took into account the back-reaction

in the Goldberger-Wise mechanism. Ref. [32] introduced a brane-localized curvature and

made the phase transition faster. Furthermore, refs. [33, 34] took into account QCD effects

on the radion potential and discussed that the phase transition is completed around the

QCD dynamical scale. Ref. [35] constructed a dual 4D model having two renormalization

fixed points which can make the phase transition faster.

In this paper, we propose a new mechanism of radion stabilization in which there is no

issue in completion of the phase transition from the beginning, contrary to the Goldberger-

Wise mechanism. We introduce a hidden SU(NH) gauge field into the bulk of the extra

dimension and assume that its asymptotically-free gauge coupling becomes strong and the

theory confines at a TeV scale.2 The confinement generates a vacuum energy that results in

1Supercooling also takes place in other models such as singlet extensions of the SM and Coleman-

Weinberg models (see refs. [20–26]).
2The authors of ref. [36] have introduced a brane-localized Yang-Mills gauge field as well as a bulk Yang-

Mills field for radion stabilization in the supersymmetric RS model while only a bulk Yang-Mills gauge field
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a pressure due to the Casimir force.3 The radion can be stabilized by the balance between

the pressure due to the Casimir energy and the tension of the IR brane. The scale of the

radion VEV is determined by the confinement scale of the hidden gauge field, which can be

naturally of order the TeV scale, much smaller than the Planck scale, due to dimensional

transmutation. Therefore, the electroweak naturalness is addressed without fine-tuning.

As we will see, the phase transition can be completed even when the 5D Planck scale is

much larger than the AdS curvature scale. This justifies a classical treatment of the gravity

in our analysis. In addition, since the SU(NH) gauge interaction is asymptotically free and

the confinement scale is many orders of magnitude lower than the Planck scale, the Casimir

energy is irrelevant at the Planck scale and any back-reaction from the gauge field to the

gravitational action is trivially negligible.

Although the phase transition can be completed in our mechanism of radion stabiliza-

tion, there is still a supercooling phase. This fact leads to interesting cosmological phe-

nomena such as an entropy dilution and a production of gravitational waves (GWs). The

strong supercooled phase transition potentially triggers the first-order electroweak phase

transition which can be a promising candidate for the electroweak baryogenesis [40, 41].

Moreover, a long supercooling epoch, which is characteristic to this kind of models, results

in an almost maximal GW amplitude [18, 19], which can be detected by future experiments

such as eLISA [42], DECIGO [43] and BBO [44].

The rest of the paper is organized as follows. In section 2, after a brief review of

the RS model, our new mechanism of radion stabilization is presented. In section 3, we

consider thermal effects on the system and analyze the phase transition between the AdS-S

spacetime and the RS spacetime. In section 4, we briefly discuss cosmological consequences

of the phase transition through a supercooling phase, especially focusing on generation of

GWs. We also mention phenomenology of glueballs in our model. Section 5 is devoted to

conclusions.

2 Radion stabilization mechanism

In this section, we first review basic properties of the RS model [1]. In particular, the

effective action of the radion is summarized. Then, we explain our radion stabilization

mechanism with a bulk Yang-Mills gauge field. The radion mass is also calculated.

2.1 The RS model

The geometry of the RS spacetime is described by R4 × S1/Z2 with the following metric:

ds2 = GABdx
AdxB = e−2kT (x) |y |gµνdx

µdxν − T 2(x)dy2, (2.1)

where A = (µ, y) and the greek indices µ, ν run from 0 to 3, gµν and k are the 4D induced

metric and the AdS curvature of O(MPl), and y ∈ (−1/2, 1/2) represents the coordinate

for the 5th dimension. We impose a Z2 symmetry y ↔ −y. Two 3-branes, called UV and

is introduced in our non-supersymmetric model.
3There have been several studies of the Casimir energy in the extra dimension [37–39] and challenges to

stabilize the radion via the Casimir energy [8–13].
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IR branes, are placed at the orbifold fixed points at y = 0 and y = yIR = 1/2, respectively.

T (x) determines the size of the extra dimension and is a modulus field associated with

a fluctuation along the extra dimension. A pure gravitational action of the RS model is

given by

S =

∫
d4xdy

[√
G

(
1

2
M3

5R− Λbulk

)
− ΛIR

√
−gIR δ(y − yIR)− ΛUV

√
−gUV δ(y)

]
, (2.2)

where we take the domain of the integral for the 5th dimension to be (−1/2, 1/2). Here, M5

and R are the 5D Planck mass and the Ricci scalar, and
√
G,
√
−gIR and

√
−gUV represent

the volume elements of the bulk metric and the induced metrics at the IR and UV branes,

respectively. In addition, Λbulk is a bulk cosmological constant, and ΛIR and ΛUV are IR

and UV brane tensions. The geometry of (2.1) is realized when we tune the cosmological

constant and the brane tensions as Λbulk|RS/k = ΛIR|RS = −ΛUV|RS = −6M3
5k. From

eqs. (2.1) and (2.2), one can find that every mass parameter on the IR brane is suppressed

by the warp factor e−kT0/2 where T0 is the modulus VEV, when measured with the 4D

Einstein metric. On the other hand, since the 4D graviton wave-function is localized toward

the UV brane, the 4D Planck scale MPl is not strongly redshifted,

M2
Pl = M3

5k
−1(1− e−kT0). (2.3)

Therefore, the hierarchy problem is addressed if the SM Higgs field is localized on the IR

brane and kT0 ≈ 70 is realized. In general, we can consider a (small) deviation from the

relation, Λbulk|RS/k = ΛIR|RS = −ΛUV|RS = −6M3
5k, by shifting the brane tensions as

ΛIR = −6M3
5k + δΛIR, ΛUV = 6M3

5k + δΛUV. (2.4)

We include these shifts in the following discussions.

For a later use, let us consider the action of the modulus field T (x). The 4D ef-

fective action is derived from the Kaluza-Klein (KK) reduction of the pure gravitational

action (2.2) and given by [45]

Seff =
M3

5

2k

∫
d4x
√
−g
(

1− e−kT (x)
)
R(4)

+
3

4
M3

5k

∫
d4x
√
−g ∂µT (x)∂µT (x)e−kT (x)

+ SIR + SUV,

(2.5)

where R(4) is the 4D Ricci scalar calculated by the induced metric gµν and SIR and SUV

are defined as

SIR = −
∫
d4x
√
−g e−2kT (x)δΛIR, (2.6)

SUV = −
∫
d4x
√
−g δΛUV. (2.7)
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We now define the radion field µ ≡ ke−kT (x)/2 by field redefinition from the modulus field

T (x). The effective action of the radion field is then written as

Sradion =

∫
d4x

[
3N2

4π2
(∂µ(x))2 − V (µ)

]
, (2.8)

V (µ) = δΛUV + µ4δΛIR/k
4, (2.9)

where we assume a flat spacetime in 4D for simplicity.4 Here, we have defined N ≡
2π(M5/k)3/2 and the radion kinetic term is not canonically normalized. We can recover

the RS geometry by tuning the two shifts of the brane tensions to zero, δΛUV = δΛIR = 0.

The one corresponds to the usual tuning of a vanishingly small cosmological constant at

present. The other tuning is specific to the RS model and can be avoided if we can stabilize

the radion µ at an appropriate value by generating its potential from some mechanism on

top of the one in (2.9). As far as |δΛUV| and |δΛIR| are small compared to 6M3
5k, their

effects on the RS geometry are negligible.

Here we comment on the 4D dual picture of the RS model. Our AdS5 bulk spacetime

corresponds to a strongly interacting 4D CFT whose number of colors is N defined above [5,

6]. The presence of the IR brane corresponds to spontaneous breaking of the conformal

symmetry at the scale µ0 ≡ ke−kT0/2. Since we are interested in the regime of a large M5/k

where quantum gravity effects are neglected, the number of colors N should be large. From

the naive dimensional analysis [48], terms with higher powers of the Ricci scalar coming

from quantum gravity effects can be neglected for [33]

N & 4 · 53/4/
√

3π ' 4.4. (2.10)

We consider the case in which this condition is satisfied.

2.2 A new scheme for radion stabilization

We shall now provide our radion stabilization mechanism. Let us introduce a SU(NH) pure

Yang-Mills field that resides in the bulk of the extra dimension.5 We can introduce matter

fields charged under the SU(NH) gauge group but they are irrelevant to our discussion.

The action for the gauge field is given by6

SYang−Mills =

∫
d5x
√
G

(
− 1

4g2
5

FABF
AB

)
, (2.11)

4The first line in eq. (2.5) contains a mixing term between the 4D scale factor and the radion field [46].

In fact, when we consider a non-trivial 4D background geometry such as an expanding Universe, it is needed

to diagonalize the kinetic term [47]. In this case, we have an additional factor in eq. (2.9), but this factor

gives a negligible contribution to the potential.
5Our discussion is similar to the case of the ordinary QCD that has been investigated in ref. [33].

However, the point is that we utilize the radion potential generated by new strong dynamics to stabilize

the radion while we cannot expect such a large contribution to the radion potential in the ordinary QCD.
6One may introduce localized kinetic terms on the IR and UV branes. Since they are not important for

our discussion, we do not introduce them for simplicity.
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where FAB and g5 are the 5D gauge field strength and the gauge coupling constant. After

the KK decomposition and integrating over the extra dimension, we obtain the following

4D effective action for the zero-mode gauge field:

S
(0)
Yang−Mills =

∫
d4x

(
−

log k
µ

4kg2
5

F (0)
µν F

(0)µν

)
, (2.12)

where F
(0)
µν represents the field strength of the zero-mode.

Including the effect of the renormalization group running from the UV scale k to an

energy scale Q, one can express the 4D gauge coupling of the zero-mode gauge field g4(Q,µ)

as [49, 50]

1

g2
4(Q,µ)

=
log k

µ

kg2
5

− bYM

8π2
log

(
k

Q

)
for Q . µ . (2.13)

The β-function coefficient is given by bYM = 11NH/3. In the dual 4D picture, we can

understand the first term in the right hand side as the running factor due to the CFT

degrees of freedom, which are confined at the scale of µ and are absent below that energy

scale. It is then convenient to rewrite its prefactor as

1

kg2
5

= −bCFT

8π2
, (2.14)

and we expect bCFT = −αN with α being a positive constant. The confinement scale

of this gauge theory ΛH(µ) is determined by the condition g2
4(Q ≡ ΛH , µ) = ∞. From

eqs. (2.13) and (2.14), we obtain

ΛH(µ) =

((µ
k

)−bCFT

kbYM

)1/bYM

≡ ΛH,0

(
µ

µmin

)n
, (2.15)

for ΛH(µ) . µ, where µmin and ΛH,0 are the radion VEV at the minimum of the potential

specified later and the confinement scale at present, respectively. The (positive) exponent

n is defined by

n ≡ −bCFT

bYM
= α

3

11

N

NH
. (2.16)

For convenience, we introduce an O(1) unknown factor nc to parametrize our ignorance of

the threshold between the confinement and deconfinement phases:

ΛH(µc) ≡ γcµc, (2.17)

where µc is defined in such a way that eq. (2.15) is valid for µc ≤ µ. Note that the

description of the 4D effective theory breaks down when the confinement scale is larger

than the lightest KK mass of the gauge field, mKK = πµ. We thus expect ΛH(µc) ' πµc,

that is, γc ' π.

Next, let us consider the case for µc > µ, where the description of the 4D effective

theory breaks down. In this case we can understand the behavior of the dynamical scale by
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the AdS/CFT correspondence. The CFT is not confined and contributes to the running to

the gauge coupling until the SU(NH) gauge interaction becomes strong. Thus we expect

that the confinement scale is independent of the radion VEV µ and obtain

ΛH(µ) = ΛH(µc) (≡ γcµc) for µ < µc . (2.18)

Since this should be equal to eq. (2.15) at µ = µc, we can determine µc as

µc = µmin

(
ΛH,0
γcµmin

)1/(1−n)

. (2.19)

Equipped with the radion dependence of the confinement scale, we can discuss the

radion potential generated by the confinement of our gauge theory. First, we note that the

trace of the energy momentum tensor for the SU(NH) gauge field is nonzero due to the

conformal anomaly and is given by

Tµµ = − bYM

32π2
F (0)
µν F

(0)µν . (2.20)

The expectation value of the right hand side is the gluon condensate, which we expect

〈F (0)
µν F

(0)µν〉 ∼ (4π)2Λ4
H(µ), (2.21)

from the dimensional analysis. Then, the vacuum energy is given by

VH =
1

4
〈Tµµ 〉 ' −

bYM

8
(ΛH(µ))4 . (2.22)

According to the lattice calculation, the coefficient 1/8 is replaced by 1/17 for the case of

the SM QCD [33], which supports our O(1) estimation. Combining with the potential (2.9),

we can summarize the total radion potential as follows:

Vr,eff(µ) =


V0 +

λ

4
µ4 − bYM

8
Λ4
H,0

(
µ

µmin

)4n

for µ > µc ,

V0 +
λ

4
µ4 − bYM

8
γ4
cµ

4
c for µ < µc ,

(2.23)

where λ ≡ 4δΛIR/k
4 comes from the IR brane tension and we assume a positive λ. Here

V0 ≡ δΛUV is determined by the condition that the potential energy at the present vacuum

V (µmin) is vanishingly small as the observation of the dark energy indicates. The third

terms come from eq. (2.22) with ΛH(µ) given by eq. (2.15) or eq. (2.18). We note that n

must be smaller than unity to stabilize the radion at a finite field value, since otherwise the

potential has no minimum other than µ = 0. With n < 1, the radion VEV at the potential

minimum is determined as

µmin =

(
nbYM

2λ

) 1
4

ΛH,0 . (2.24)
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Figure 1. The radion potential given by eq. (2.23) (red solid curve) for the case of µmin =

2.5 TeV, λ = 1, γc = π, α = 1, N = 5 and NH = 3 (mradion ' 2.2 TeV). We also plot the

radion potential calculated by the Goldberger-Wise mechanism (blue dotted curve), where we take

parameters such that the radion VEV at the potential minimum is the same as ours. In both cases,

the kinetic term is given by (2.8). The left, middle and right panels focus on the regions around

µ = µmin, µ = µc and µ = 0, respectively.

We note that µmin must be larger than µc, which implies(
nbYM

2λ

) 1
4

γc > 1 . (2.25)

The potential energy at the minimum should be vanishingly small (except for a small

cosmological constant), so that V0 is determined by

Vr,eff(µmin) = V0 −
λ

4

(
1− n
n

)
µ4

min = 0. (2.26)

From eq. (2.15) and (µc/µmin)n < 1, we can see that ΛH(µc) is smaller than ΛH,0. Equa-

tion (2.25) as well as n < 1 constrain the number of colors NH of the new Yang-Mills gauge

theory for each N .

To calculate the radion mass, we note that the kinetic term of the radion µ in (2.8) is

not of the canonical form. Canonically normalizing the kinetic term, the physical mass of

the radion at the potential minimum µ = µmin is given by

m2
radion =

(
2π2

3N2

)
4 (1− n)λµ2

min . (2.27)

Figure 1 shows the radion potential in our model of radion stabilization (solid curve).

The kinetic term is given by (2.8). We take µmin = 2.5 TeV, λ = 1, γc = π, α = 1, N = 5

and NH = 3. The radion mass is then estimated as mradion ' 2.2 TeV. Since the Casimir

energy is constant for µ < µc, the potential due to the brane tension, λµ4/4, determines the

shape of the potential around µ = 0. This implies that the origin of the potential is a local

minimum as we can see from the middle panel of figure 1. The Casimir energy becomes

larger in magnitude for µ > µc and dominates the potential. However, it is proportional to

µ4n and the potential due to the brane tension is proportional to µ4, so that the potential

at a larger radion VEV is dominated by the potential due to the brane tension. As a

result, there is a minimum at µ = µmin given by eq. (2.24). Note that µmin is roughly

given by ΛH,0 because it is the typical energy scale in our stabilization mechanism. As a

– 8 –
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comparison, in figure 1, we also show the radion potential for the case of the Goldberger-

Wise mechanism, which is given by figure 2 of ref. [33]. As can be seen from the left

panel of figure 1, the radion potential in our mechanism has a deeper minimum than the

one in the Goldberger-Wise mechanism. There is also a local minimum at µ = 0 in the

case of the Goldberger-Wise mechanism [7]. The first derivative of the radion potential in

our mechanism is not continuous at µ = µc, reflecting our ignorance of the precise radion

potential around this point. We will approximate the radion potential near µ = µc by an

analytic function to evaluate a tunneling action of the transition from µ = 0 to µ = µmin

numerically.

3 Phase transition from AdS-S to RS

In this section, we take account of thermal effects on the RS spacetime and discuss the

phase transition between the AdS-S spacetime and the RS spacetime. We determine the

parameter region of our model where the phase transition is completed.

3.1 Critical temperature and order parameter

At high temperature, as argued in ref. [16], thermal corrections to the radion potential

make the RS spacetime deform into the AdS-S spacetime with the IR brane replaced by

the event horizon emitting the Hawking radiation. As the temperature of the Universe

cools down, the phase transition from the AdS-S spacetime to the RS spacetime can take

place when the RS spacetime is energetically favored.

In order to clarify which spacetime is energetically favored, we first calculate the free

energy of each spacetime. The AdS-S spacetime is described by the following metric:

ds2 = k2ρ2

(
1−

ρ4
H

ρ4

)
dt2 − k2ρ2

3∑
i=1

dx2
i −

dρ2

k2ρ2
(

1− ρ4H
ρ4

) , (3.1)

where ρ represents the coordinate for the 5th dimension. This metric covers ρUV > ρ > ρH
where ρUV represents the position of the UV brane and ρH denotes the position of the

event horizon. The limit of ρH = 0 gives the bulk AdS metric:

ds2 = k2ρ2

(
dt2 −

3∑
i=1

dx2
i

)
− 1

k2ρ2
dρ2, (3.2)

which corresponds to the RS metric (2.1) with the identification of ρ = k−1 exp(−kT0y/2),

taking gµν = diag(1,−1,−1,−1). The free energy of the AdS-S spacetime subtracted by

that of the bulk AdS spacetime, ∆FAdS−S, is evaluated in ref. [16] as

∆FAdS−S(TH) =
3

8
π2N2T 4

H −
1

2
π2N2T 3

HT, (3.3)

where TH (≡ k2ρH/π) is the Hawking temperature parameterized by the position of the

event horizon. The minimum of this free energy is given by TH = T . Away from the

minimum, a conical singularity appears at the event horizon in the Euclidean coordinate.
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In the calculation of the free energy (3.3), we only estimate the thermal contribution from

the gravity part. However, there is an additional contribution to the free energy from

the bulk SU(NH) gauge field in our model. We simply expect that this contribution is

proportional to N2
HT

4, but a coefficient is not determined since we need to evaluate it on

the non-trivial AdS-S background. For simplicity, we focus on the case where NH < N so

that a thermal contribution from the gauge field is negligible.7 We also note that N must be

larger than about 4.4 from eq. (2.10), so that we expect that the free energy ∆FAdS−S(TH)

is large enough to dominate the thermal contributions from the SM particles.

The free energy of the RS spacetime (subtracted by that of the bulk AdS spacetime)

is given by the radion potential at the minimum,

∆FRS = Vr,eff(µmin)− Vr,eff(0), (3.4)

where Vr,eff is defined in eq. (2.23). We have ignored the common constant in

eqs. (3.3), (3.4). Since we use the 4D effective field theory to calculate the free energy,

eq. (3.4) is reliable only for µ & T . In this case, thermal contributions to ∆FRS can be

neglected.

Let us now estimate the critical temperature of the phase transition between the AdS-S

spacetime and the RS spacetime. The critical temperature Tc is defined as the temperature

when the free energies of the two phases are degenerated, ∆FAdS−S(T )−∆FRS = 0. From

this condition, it is explicitly estimated as

Tc =

(
8
Vr,eff(µmin)

π2N2

)1/4

. (3.5)

We can easily see from the above expression that there is no phase transition in the absence

of a radion stabilization mechanism, Vr,eff = 0. This fact can be easily understood from the

dual perspective: if the scale invariance was not explicitly broken in the confinement phase,

there would be no dimensionful parameter except the temperature in the theory [51, 52]

and hence the system would be in the false vacuum forever no matter how small the

temperature is. When we introduce a radion potential to stabilize it, there is an explicit

breaking for the scale invariance and the phase transition can take place. As we will discuss

below, in the case of the Goldberger-Wise mechanism, the radion potential is nearly scale

invariant, and hence, the phase transition is generally very slow. On the other hand, in

our stabilization mechanism, the strong dynamics of SU(NH) breaks scale invariant more

strongly and the phase transition can be completed faster.

We next discuss the order of the phase transition and how the phase transition between

the RS spacetime and the AdS-S spacetime proceeds. We have discussed the existence of

two (local) minima of the free energies, at TH = T and µ = µmin, corresponding to the

AdS-S spacetime and the RS spacetime. Since the two minima are locally stable against

fluctuations with respect to TH and µ, the phase transition occurs via the decay of the

false vacuum. Hence the order of the phase transition is expected to be of the first order.

7In the case of the Goldberger-Wise mechanism, a thermal contribution from the bulk Goldberger-Wise

field to the free energy is negligible as long as the back-reaction to the original RS spacetime is small [16].
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Figure 2. The schematic description of the IR brane bubble nucleation. We here suppress two

spatial dimensions and ρUV, ρIR and TH denote the positions of the UV and IR branes and the

event horizon of the AdS-S black hole.

The rate of the phase transition per unit volume per unit time is expressed as

Γ = Ae−S , (3.6)

where A is obtained by integrating out quantum (or thermal) fluctuations and S is esti-

mated by solving the bounce equation in the semi-classical approximation.

In order to calculate Γ, we should find a 5D gravitational instanton solution describing

tunneling between the AdS-S spacetime and the RS spacetime. The two solutions which we

are interested in have different topologies: the AdS-S spacetime is simply connected while

the RS spacetime is not. As discussed in ref. [16], the AdS-S spacetime can be smoothly

deformed into the RS spacetime by sending the event horizon to infinity (TH → 0) and back

the IR brane from µ = 0 through the AdS spacetime with the UV brane. We assume that

the 5D gravitational instanton solution is obtained by this deformation. This is equivalent

to the assumption that the relevant order parameter for the phase transition in the RS

spacetime is the radion field µ parametrizing the position of the IR brane while the one

in the AdS-S spacetime is the Hawking temperature TH parametrizing the position of

the black hole horizon. To maintain a valid effective field theory description of the RS

spacetime, the radion mass must be lighter than the mass of the first graviton KK-mode,

mradion < mKK ∼ πµmin [52]. With this assumption, the phase transition proceeds via the

“IR brane bubble nucleation” as schematically depicted in figure 2. At high temperature,

the system is in the AdS-S spacetime where the event horizon is placed at TH = T . As

the temperature decreases, the event horizon moves toward TH = 0. Then, spherical brane

patches on the horizon appear and they are eventually combined to form the IR brane.

When we consider the Hawking temperature as a spacetime dependent parameter,

we can interpret ∆FAdS−S of eq. (3.3) and ∆FRS of eq. (3.4) as the 4D field theoretical

– 11 –
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Figure 3. The 4D potential of the AdS-S spacetime (left side of the axis) and the RS spacetime

(right side of the axis) at the critical temperature Tc. The canonically normalized Hawking tem-

perature T̃H(x) and the radion µ̃(x) are the order parameters in the AdS-S spacetime and the RS

spacetime, respectively. The two origins µ̃ = 0 and T̃H = 0 must coincide with each other because

they both correspond to the bulk AdS spacetime with the UV brane.

potential for the TH(x) and µ(x) fields, respectively. However, we do not know the kinetic

term for the Hawking temperature TH(x). Since it is purely gravitational, we assume

that the kinetic term is proportional to N2 and take the form of 3N2

4π2 c1 (∂TH(x))2 where

c1 is some O(1) coefficient [16, 33, 34]. Figure 3 describes the potential of the Hawking

temperature and radion fields after canonical normalization, T̃H(x) and µ̃(x). Based on this

potential, we can numerically calculate the tunneling rate from the AdS-S spacetime to the

RS spacetime Γ from the bounce action by using the standard under/over-shooting method.

Now we can briefly discuss that the potential in the regime of µ < T is not important

to calculate the tunneling rate Γ [16]. We first note that Tc ∼ µmin/
√
N from eq. (3.5) with

Vr,eff(µmin) ∼ µ4
min. This implies that µmin � Tc for a large N and hence the potential

(or free energy) around the minimum is justified. We also note that after the canonical

normalization µ̃ is proportional to N for a fixed n while T̃H is proportional to N1/2 at the

critical temperature. Therefore, for a large N the potential for µ̃ is very shallow while the

potential for T̃H is not that shallow (see figure 3). Then the tunneling point is large, and

hence, the gradient energy of the bubble is dominated for a large µ̃ where the 4D effective

field approach is justified. Throughout the analysis of the phase transition, we consider

this regime and calculate Γ using the 4D effective theory.

3.2 Transition rate

We now calculate the bounce action to determine the parameter region where the phase

transition between the AdS-S spacetime and the RS spacetime is completed. Generally,

two types of bubble can be formed during the phase transition. It was shown in ref. [53]

that the bounce action at finite temperature is estimated as

S = min

{
S4(T ),

S3(T )

T

}
, (3.7)

where S4(T ) and S3(T ) are the O(4) and O(3)-symmetric bounce actions, respectively. At

low temperature, T � Tc, S4(T ) is less sensitive to T and reaches a constant value due to

the presence of the potential barrier at zero temperature, while S3(T )/T has an explicit T−1

enhancement. We then find S4(T )� S3(T )/T for T � Tc and numerically confirmed this
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behavior. We hence only consider the O(4) symmetric bubble in the following discussion.

It is calculated from

S4 =

∫
dr2π2r3

[
1

2

(
dφ

dr

)2

+ V (φ)− V (φf )

]
, (3.8)

where φ represents a canonically-normalized order parameter like µ̃ and T̃H , V (φ) is its

potential (in the canonically-normalized basis), and φf is the order parameter at the false

vacuum. The bounce solution φ(r) is determined by minimizing S4 and should satisfy

d2φ

dr2
+

3

r

dφ

dr
= V ′(φ). (3.9)

The boundary conditions are dφ(0)/dr = 0 and φ(r) → 0 for r → ∞. This can be

numerically computed by using the shooting method.

Although we numerically compute the bounce action, let us first estimate it semi-

analytically by using a thick-wall approximation to understand its parameter dependence.

For T � Tc, the bounce action is dominated by the gradient energy and thick-wall approx-

imation gives a reliable estimate for S4 [52]:

S4 '
π2

2

|φt − φf |4

V (φf )− V (φt)
. (3.10)

Here, φf and φt are field values at the false vacuum and tunneling point, respectively. φt is

determined by the requirement that the bounce action is minimized, i.e., by ∂S4/∂φt = 0.

In our situation, φf and V (φf ) correspond to the Hawking temperature and the free energy

described by the AdS-S black hole (3.3), respectively. After canonically normalizing the

kinetic terms of the Hawking temperature and radion fields, we can write the bounce

action (3.10) as

S4 '
9N4

8π2

(µt +
√
c1T )4

V (µmin)
(
T
Tc

)4
− V (µt)

, (3.11)

where µt is the tunneling point. This estimation shows that a shallower potential leads to

a larger bounce action. The radion potential is very shallow in the basis where the radion

kinetic term is canonically normalized, and thus, the tunneling rate is strongly suppressed

for a large N . We note that N must be larger than about 4.4 from eq. (2.10) so that

the 5D Planck mass is larger than the AdS curvature in order to neglect the gravity loop

corrections. This is one of the reasons that it is difficult to construct a radion stabilization

mechanism in which the phase transition is completed fast enough.

Let us give a criteria for the transition rate, which must be fulfilled in order to avoid

eternal inflation. The phase transition can be completed only when the bubble nucleations

are not diluted by the cosmic expansion. This condition is given by Γ > H4, where H is

the Hubble parameter. At low-temperature, T � Tc, the energy density of the Universe is

dominated by the vacuum energy of the radion potential. Then the condition Γ > H4 can
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be written as follows,

S4 ≤ 4 log

(
mradionMPl√

FRS

)
' 140, (3.12)

where we use A ∼ m4
radion = O(1) TeV4 and H ∼

√
∆FRS/MPl during the vacuum domi-

nation. We define the nucleation temperature Tn as the temperature at which the phase

transition is completed, namely S4(Tn) = 140.

We here comment on the features of the phase transition in the case of the Goldberger-

Wise mechanism, where a radion potential comes from the energy of a bulk scalar field

with mass mGW. A parameter ε (≡
√

4 +m2
GW/k

2 − 2) is typically ε ∼ 1/20 to solve the

hierarchy problem as noted in ref. [7]. In the limit of ε→ 0, the radion is always stuck in

the false vacuum, that is, S4 →∞, because the radion potential is scale invariant for ε = 0

(or mGW = 0). In fact, as explicitly written in ref. [16], the O(4) symmetric bounce action

is proportional to ε−3/2. This factor leads to a strong suppression for the transition rate

in the Goldberger-Wise mechanism.

One may note that the bounce action also depends on the vacuum expectation value

of the Goldberger-Wise field on the IR brane [16]. It is still possible to satisfy the con-

dition (3.12) with N & 4.4 and ε ∼ 1/20 by making the vacuum expectation value large.

However, the large vacuum expectation value of the Goldberger-Wise field leads to a non-

negligible back-reaction to the original RS spacetime, which is technically difficult to be

taken into account. As shown in ref. [33], without taking into account the effects of the

QCD confinement, it is concluded that the parameter region which avoids eternal inflation

has a non-negligible back-reaction to a pure gravity part and the analysis of the phase

transition is unreliable in the Goldberger-Wise mechanism.

Now we shall turn to the analysis of the phase transition in our stabilization mechanism.

In our setup, we consider the phase transition between the AdS-S spacetime where the bulk

SU(NH) gauge field is deconfined and the RS spacetime where the SU(NH) gauge field is

confined. One can evaluate the bounce action with the thick-wall approximation given in

eq. (3.11), where the tunneling point µt is determined by minimizing the bounce action in

terms of µt:

∂S4

∂µt
= 0. (3.13)

In the limit of low T , the tunneling point µt is given by

µt = µmin

(
1

1− n

) 1
4n
(

2λ

γ4
cnbYM

) 1
4(1−n)

. (3.14)

Substituting this into eq. (3.11), we can estimate the bounce action.

We also numerically solve eq. (3.9) by using the shooting method and compute the

bounce action. The potential is given by the free energy; eq. (3.3) for TH and eq. (3.4)

for µ. We note that the derivative of the potential for µ is not continuous at µ = µc
(see eq. (2.23)). To solve eq. (3.9) numerically, we continuously connect the gradient of the

potential for µ > µc and µ < µc by using a hyperbolic tangent function, which looks similar
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to the Heaviside step function. From the numerical computation, we find that eq. (3.11)

underestimates S4 by a factor of 0.4-0.5. We also find that the nucleation temperature

Tn is much higher than the QCD scale (∼ 100 MeV), which fact is important for the

gravitational wave production discussed in section 4.2.

Figure 4 shows the exclusion plot in the NH -N plane, where we take µmin =

2.5 TeV, γc = π, α = 1, and λ = 1. The upper right corner is excluded by the crite-

rion (3.12) from our numerical calculation of the bounce action. We find that the phase

transition can be completed for N . 16, which is large enough to be consistent with the

condition eq. (2.10). We note that a finite-temperature effect of SU(NH), which is ex-

plained below eq. (3.3), should be taken into account for NH > N (upper-left blue-shaded

region). The nucleation temperature is presented by the contours in the allowed region in

the left figure. One can see that it is typically of order 10-100 GeV but can be as low as

O(1) GeV.8 The radion mass of eq. (2.27) is presented by the dashed contours in the right

figure.

Here we comment on the bottom-right corner in figure 4, denoted as n > 0.8. It has

been discussed in ref. [33] that the effect of the QCD modifies the radion potential for

µ ∼ ΛQCD (∼ 100 MeV). This does not affect our calculation when µc & ΛQCD. However,

µc may be as small as the QCD scale ΛQCD for 0.8 . n < 1 because the power of the

parenthesis in eq. (2.19) becomes very large for n being close to unity. Thus we should

take into account the effect of the QCD for n & 0.8. For simplicity, we focus on n . 0.8 so

that we can neglect its effect.

Figure 4 indicates that the phase transition is completed even for a relatively large N ,

where the gravity loop corrections are negligible. This is in contrast to the result in the

Goldberger-Wise mechanism, where the phase transition is not completed for a large N .

This fascinating result can be understood as follows. Our stabilization mechanism strongly

breaks the scale invariance around µ = µmin due to the confinement of the SU(NH) gauge

interaction, while the Goldberger-Wise mechanism has a nearly scale invariant potential

which is controlled by the small ε parameter. As a result, the radion potential in our

mechanism has a deeper minimum and the transition rate is larger than the one in the

Goldberger-Wise mechanism with the same N . In addition, it should be noted that a back-

reaction from the bulk hidden gauge field is trivially negligible because the confinement

scale is at the TeV scale which is very small compared to the 5D Planck mass. We also

note that every dimensionless parameter in the model is of the order of unity and there is

no fine tuning.

4 Cosmological consequences

In this section, we discuss implications of the confinement-deconfinement phase transi-

tion on cosmology. We estimate e-folding of inflation before the phase transition is com-

pleted and entropy injection that takes place after the transition. In addition, we con-

sider gravitational waves generated by the phase transition. We also discuss production of

SU(NH) glueballs.

8It is difficult to determine the precise nucleation temperature for the case of ΛH(µc) < Tn because

SU(NH) gauge theory is still in the deconfined phase for small µ. We numerically confirm that ΛH(µc) > Tn

is satisfied in the whole allowed region in figure 4 and hence our calculation is justified.
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Figure 4. Exclusion plot in the NH -N plane. We take µmin = 2.5 TeV, γc = π, α = 1, and λ = 1.

In the upper-right blue-shaded region, S4 > 140 from our numerical calculations and the phase

transition is not completed. In the bottom-right red-shaded region, n > 0.8 and µc is of order or

smaller than the QCD scale, where the QCD effect has to be taken into account. In the upper-left

blue-shaded region, NH > N and the finite temperature effect of SU(NH) has to be taken into

account. In the left orange-shaded region, N < 4.4 and the quantum gravity effects have to be

taken into account. The white region is allowed by those constraints. The contours in the allowed

region in the left panel represent the nucleation temperature, while the dashed contours in the right

panel represent the radion mass.

4.1 Entropy injection

As explicitly stated in section 3, our analysis of the phase transition by using the 4D

effective theory description is only valid for µmin � Tc. Here we note that the energy

density of the radiation and the vacuum energy of the radion at the critical temperature

is roughly estimated as ρrad ∼ T 4
c and ρvac ∼ ∆FRS ∼ µ4

min, respectively. This implies that

the vacuum energy dominates the energy density of the Universe and mini-inflation takes

place before the phase transition is completed.

To be more precise, mini-inflation begins when the radiation energy becomes compa-

rable to the vacuum energy:

∆FAdS−S −∆FRS =
π2

90
g∗(Tinf)T

4
inf , (4.1)

where g∗(T ) is the effective number of relativistic degrees of freedom and Tinf denotes

the temperature at the beginning of mini-inflation. When N is large, ∆FAdS−S is much

larger than the radiation energy. We thus find that Tinf ' Tc. The e-folding number of

mini-inflation is then given by

Ne ' log

(
Tc
Tn

)
. (4.2)
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From figure 4, we can see that the nucleation temperature Tn is larger than of order 1 GeV

unless N and NH are fine-tuned near the boundary of the blue-shaded region. Thus we

find Ne . log(1 TeV/1 GeV) ' 7.

After the supercooled phase transition, the free energy difference between the false

vacuum and the true vacuum is injected into the RS phase. We simply assume that the

most of the free energy in the false vacuum ∆FRS is converted into the radiation in the

true vacuum. The reheating temperature, TRH, is then estimated as

TRH '
(

45

4

) 1
4
√
N

g
1
4
∗ (TRH)

Tc, (4.3)

where we have used the definition of the critical temperature Tc given by eq. (3.5). Thus

one can calculate the entropy injection after the strong first order phase transition from

sn
sRH

' g∗s(Tn)

g∗s(TRH)

(
Tn
TRH

)3

, (4.4)

where sRH and sn are entropy densities before and after the reheating and g∗s is the effective

number of relativistic degrees of freedom for entropy.

We briefly comment on cosmological consequences of the entropy injection. A late-time

entropy production dilutes the relic abundance of the dark matter as well as the baryon

asymmetry if they are produced before the phase transition (see, e.g., refs. [19, 34, 54]).

In particular, the dilution factor is of order 10−9 for the case of Tn/Tc = 10−3. One

may therefore need a very large amount of dark matter and baryon asymmetry before the

phase transition or need to produce them after the phase transition. We note that the

latter possibility is not unlikely even if the nucleation temperature is as low as 1 GeV.

For example, the QCD axion can be produced by the misalignment mechanism at the

QCD phase transition, which takes place at T ∼ 0.1 GeV and is not affected by the

entropy dilution.9 Non-thermal production of weakly-interacting massive particles is also

a viable scenario at a low-reheating temperature (see, e.g., [55, 56]). The Affleck-Dine

mechanism may be able to be realized to generate baryon asymmetry at a very low reheating

temperature, by introducing a complex scalar field with a nonzero baryon charge [57–59].

The cold electroweak baryogenesis scenario is also promising candidate for the generation

of baryon asymmetry at a very low reheating temperature. (See e.g., refs. [60–62])

4.2 Generation of gravitational waves

In this subsection, we consider GW signals produced during or after the phase transition.

The amplitude and frequency of GW signals generated by a first-order phase transition

mainly depend on two parameters called duration and latent heat density. The duration

of the phase transition denoted by β is defined as the time variation of the nucleation rate

9This is the case when the Peccei-Quinn symmetry is spontaneously broken before the primordial in-

flation. For the case in which the Peccei-Quinn symmetry is spontaneously broken after the primordial

inflation, see ref. [34].
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of bubbles [63]:

β

H(TRH)
≡ 1

H(TRH)Γ

dΓ

dt
(4.5)

' H(Tn)

H(TRH)
Tn

dS4

dT

∣∣∣∣
T=Tn

. (4.6)

This is typically O(1-100) for the case we are interested in. The latent heat density nor-

malized by the energy density of the radiation ρrad is approximately given by [63]

α ' |∆FRS|
ρrad(Tn)

, (4.7)

where we used |∆FAdS−S| � |∆FRS| at the nucleation temperature. Since the vacuum

energy usually dominates before the phase transition is completed, we find α � 1 in

our model.

The GW amplitude ΩGWh
2 is decomposed into three different contributions,

ΩGWh
2 = Ωcolh

2 + Ωswh
2 + Ωturbh

2, (4.8)

where Ωcolh
2, Ωswh

2 and Ωturbh
2 denote the contributions from bubble collisions [64–69],

sound wave [70–73], and turbulence [74–79] of the thermal plasma, respectively. In the

absence of the thermal plasma, most of the released energy is converted into the kinetic

energy of the accelerating bubble wall, and hence, the bubble wall velocity before collisions

is very close to the speed of light. This bubble is called runaway bubble [63]. When the

runaway bubble is realized, bubble collisions give a dominant contribution to the total GW

signals. On the other hand, when the thermal plasma is presented, the accelerating bubble

wall receives a friction from the thermal bath [80]. If the bubble wall velocity vw reaches a

terminal velocity due to the friction, most of the kinetic energy of the accelerating bubble

wall is injected into the thermal bath. In this case, sound wave and turbulence of the

plasma become the main source of GW signals.

In the case of the electroweak phase transition, a friction emitting the electroweak

gauge bosons called transition radiation gives a significant contribution to the force acting

on the bubble wall [81]. In our case, there are SU(NH) gauge fields that are in the thermal

plasma outside the bubble and are strongly interacting (and are confined) inside the bubble.

Although the SU(NH) gauge fields are strongly interacting inside the bubble and the bubble

dynamics in the present setup differs from the case of the electroweak phase transition, we

still expect that the transition radiation occurs and gives an important contribution to the

friction force.

Suppose first that we can neglect the friction effect. Then walls accelerate due to the

pressure of the vacuum energy until they collide. The Lorentz gamma factor at the time

of collision, γ∗, is roughly given by [82]

γ∗ ∼
R∗
R0

, (4.9)
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where R∗ and R0 are the bubble radius at the time of collision and the formation of

bubble, respectively. Since the typical distance among bubbles is of order β−1, we can

estimate R∗ ∼ β−1. The initial bubble radius is determined by the instanton solution and

is determined by the curvature of the radion potential, namely m−1
radion. Here we note that

the transition takes place via the O(4) bounce action rather than the O(3) bounce action

in our model.

However, the wall velocity cannot be arbitrary large because of the friction effect. The

pressure acting on the bubble wall is eventually balanced between the vacuum energy and

the friction due to the transition radiation. The Lorentz gamma factor of the bubble wall

at the terminal velocity, γeq, is roughly estimated as [34]

γeq ∼
|∆FRS|

g2∆mV T 3
n

∼
(
Tc
Tn

)3

, (4.10)

where g is the gauge coupling constant of SU(NH) and ∆mV is the mass difference of the

gauge boson inside and outside the bubble. We assume g ∼ 1 and ∆mV ∼ ΛH,0 (∼ Tc)

though the precise values are not relevant for the resulting gravitational waves. When γ∗
exceeds γeq, bubble walls reach the terminal velocity before they collide. In this case, sound

waves and turbulence of the plasma are the main source of GWs. This condition turns out

to be

Tn & 10−2 GeV ×
(

β

H(TRH)

)1/3( Tc
1 TeV

)4/3

. (4.11)

Noting that β/H(TRH) = O(1-100), we find that this is usually satisfied in our case (see

figure 4). Thus we calculate GW signals sourced by sound waves and turbulence of the

plasma below.

The contribution to the GW amplitude from sound waves, Ωswh
2, is given by [72].10

Ωsw(f)h2 ' 2.65× 10−6 ×
(
H(TRH)

β

)(
κswα

1 + α

)2(100

g∗

) 1
3

vw

(
f

fsw

)3

 7

4 + 3
(

f
fsw

)2


7
2

,

(4.12)

where κsw and vw are the efficiency factor and the bubble wall velocity, respectively. In our

case, we simply set these values as κsw ' 1 and vw ' 1 because of the strong supercooled

phase transition, α � 1. The peak frequency fsw is roughly given by 2β/
√

3vw with a

redshift factor:

fsw ' 1.9× 10−4 Hz× 1

vw

(
β

H(TRH)

)(
TRH

1 TeV

)( g∗
100

) 1
6
. (4.13)

10It was pointed out in ref. [83] that this formula overestimates GW signals. One may regard eq. (4.12)

as an upper bound for GW signals.
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Figure 5. The GW amplitude generated from the phase transition. Our benchmark points are

µmin = 2.5 TeV, λ = 1, γc = π, N = 14, NH = 8 (Ne = 4.1) and N = 8, NH = 3 (Ne = 3.8),

respectively. Detectable regions by eLISA [63, 85], DECIGO and BBO [86] are also shown.

On the other hand, the contribution to the GW amplitude from turbulence, Ωturbh
2, is

given by [76, 84]

Ωturb(f)h2 ' 3.35×10−4×
(
H(TRH)

β

)(
κturbα

1 + α

) 3
2
(

100

g∗

) 1
3

vw

(
f

fturb

)3

(
1 +

(
f

fturb

) 11
3

)(
1 + 8πf

h∗

) ,
(4.14)

where h∗ is given by

h∗ ' 1.65× 10−4 Hz×
(
TRH

1 TeV

)(
g∗

100

) 1
6

. (4.15)

The peak frequency fturb is roughly given by 3.5β/2vw with a redshift factor:

fturb ' 2.7× 10−4 Hz× 1

vw

(
β

H (TRH)

)(
TRH

1TeV

)(
g∗

100

) 1
6

. (4.16)

The fraction of latent heat that is transformed into turbulence, κturb, is assumed to be

κturb = 0.05κsw for a conservative estimation [63].

We plot the GW signals in figure 5. Our benchmark points are µmin = 2.5 TeV,

λ = 1, γc = π, N = 14, NH = 8 (Tn ' 7.8 GeV, β/H(TRH) ' 5.7, Ne ' 4.1) and

N = 8, NH = 3 (Tn ' 10 GeV, β/H(TRH) ' 124, Ne ' 3.8), respectively. We can see

from the figure that the GW signals reach a detectable region by LISA, DECIGO and

BBO. We therefore find that our model can be probed by the detection of GW signals.

However, in order to give a reliable estimate for the GW signals, we need to clarify the
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bubble dynamics, including a thermal friction coming from the SU(NH) gauge interaction.

It should be also noted that the validity of the formula (4.12) is unclear for the strong

supercooled phase transition, α � 1 (see ref. [87] for a recent study). However, these

issues are beyond the scope of the present paper and should be discussed elsewhere.

4.3 Glueball production

In the RS spacetime, the SU(NH) gauge field is confined and then the corresponding

glueballs may be formed. The lightest state of the glueballs is a CP-even scalar state 0++

and its mass is estimated by the lattice calculation as m0++ ≈ 7ΛH,0 (see e.g. [88] for the

summary of the spectrum). This glueball is produced after the phase transition only when

TRH & m0++ is satisfied. We have found that this condition is never satisfied for N & 4.4.

Thus, the glueball 0++ does not lead to any cosmological concern. Note that the radion

mass is lighter than the glueball mass for the interesting parameter space, and hence, the

radion does not decay into the glueballs. The second, third, and fourth lightest states

are 2++ with mass m2++ ≈ 10ΛH,0, 0−+ with mass m0−+ ≈ 11ΛH,0, and 1+− with mass

m1+− ≈ 12ΛH,0, respectively. Among them, the 0−+ state is stable if CP is not broken in

this sector. We can let this state decay by introducing a nonzero theta term in the SU(NH)

gauge theory, which is rather natural unless the exact CP invariance is assumed. The same

is true for the other CP-odd states and then they do not cause a cosmological problem

even if they are produced by some mechanism.

5 Conclusion

In this paper, we have proposed a new radion stabilization mechanism in the RS model

and investigated dynamics of the phase transition between the AdS-S spacetime and the

RS spacetime. We introduced a bulk SU(NH) gauge field which confines at a TeV scale.

This condensation generates a Casimir energy which contributes to the radion potential

negatively. We assume that the IR brane tension is deviated from the value used in the

original RS spacetime. Then, the radion potential can be stabilized by the balance between

the Casimir energy and the brane tension. It turns out that the radion potential has a

local minimum at the origin and the global minimum at a TeV scale, similar to the radion

potential generated by the Goldberger-Wise mechanism. The TeV scale arises due to the

strong dynamical effect of the SU(NH) gauge theory, so that it is natural due to the

dimensional transmutation.

When the radion stabilization mechanism is presented, the RS spacetime is energet-

ically favored below the critical temperature which is typically at a TeV scale. We saw

that the phase transition from the AdS-S spacetime is the first order phase transition and

proceeds via the IR-brane bubble nucleation. By the detailed analysis, it was found that

the phase transition takes place via a supercooling phase and can be completed even for

N & 4.4, in which gravity loop corrections are suppressed. Since the confinement scale is at

a TeV scale, a back-reaction due to the introduction of the hidden SU(NH) gauge field to

the original RS spacetime is trivially negligible. We compared our result to that obtained
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by the Goldberger-Wise mechanism and showed that in our model the phase transition is

completed faster than the case of the Goldberger-Wise without any problems.

We determined the nucleation temperature, which is typically of order 10-100 GeV. If

it is low enough, a mini-inflation occurs before the phase transition is completed. Since

the entropy is generated from the vacuum energy, dark matter abundance and baryon

asymmetry are diluted after the phase transition. We also estimated the GW spectrum

generated by the phase transition and found that it can be detected by future experiments

such as eLISA, DECIGO and BBO. The detection of such GW signals will be one of the

important probes of our model.
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