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1 Introduction and summary

1.1 The problem

The three-sphere partition function [1–4] is a powerful quantity to characterize three-

dimensional N ≥ 2 supersymmetric quantum field theories. This partition function is

defined as the supersymmetric partition function on the ellipsoid [4]

S3
b :=

{

b2|z|2 + 1

b2
|w|2 = 1 : z, w ∈ C

}

, (1.1)

where the “squashing parameter” b parametrizes a family of transversely holomorphic

foliations on the three-sphere [5]. This geometry becomes the round 3-sphere when b = 1:

S3
b=1 = (round 3-sphere) . (1.2)

The supersymmetric partition function on the geometry (1.1) depends on a set of real

mass parameters ~m and the R-symmetry mixing parameters ~ν of the theory (see eq. (2.2)).

We will denote this partition function as Zb(~m,~ν), and the associated free energy by

Fb(~m,~ν) = −Re [logZb(~m,~ν)] . (1.3)
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The problem discussed in this paper is to compute a perturbative expansion of this

partition function around the special point b = 1, where the three-sphere (1.1) has the

round metric:1

Fb(~m,~ν) = Fb=1(~m,~ν) +
1

2
(1− b)2F (2)(~m,~ν) +

1

3!
(1− b)3F (3)(~m,~ν) + . . . . (1.4)

Since integral expressions for the three-sphere partition function is already known in the

literature [1–4], in principle this is a matter of expanding a known expression. The integral

expression, however, is given as a complicated oscillatory integral, and this makes the ex-

pansion highly non-trivial and inefficient either analytically or numerically, especially if one

wishes to go to higher orders in b−1. The goal of this paper is to propose a different method

for expanding around the value b = 1, which in particular does not involve any integral.

1.2 Motivations

There are two motivations for this problem.

First, the quantities appearing in the expansion (1.4) contains useful quantities char-

acterizing the system, and our method gives an efficient and practical method to compute

these quantities.

At leading order the resulting free energy F = Fb=1 on the round three-sphere, when

we choose ~m = 0 and ~ν to be the IR superconformal R-charge, is known to decrease along

the renormalization group (RG) flow [6, 7] (see also [8]). At the next non-trivial order,

the coefficient F (2) is identified [9, 10] with the “central charge” CT ,
2 defined from the

two-point function of the stress-energy tensor Tµν [12]:

〈Tµν(x)Tρσ(0)〉 = CT
Iµν,ρσ(x)

|x|6 , (1.5)

where

Iµν,ρσ(x) :=
1

2
(Iµν(x)Iρσ(x) + Iµρ(x)Iνσ(x))−

δµνδρσ
3

,

Iµν(x) := δµν − 2
xµxν
x2

.
(1.6)

The quantity CT is a useful input for the conformal bootstrap program, see e.g. [13].

More generally, we can compute higher order terms in the expansion around b = 1, and

extract more detailed information of the system, which is related to higher-point correlation

functions of the stress-energy tensor (see e.g. [14] for related discussion in the context of

conformal bootstrap, albeit in non-supersymmetric settings).

When the system has global symmetries, the three-sphere partition function depends

on the corresponding real mass parameters ~m. We can then consider the expansion of

Fb=1 with respect to the parameters ~m around ~m = 0. This gives CJU(1)A
JU(1)B

, which are

defined by the two-point function of conserved currents [12],

〈Jµ
I (x)J

ν
J (0)〉 = CIJ

Iµν(x)

|x|4 , (1.7)

1There is no term linear in b− 1, as expected from the symmetry b → b−1 of the geometry (1.1).
2There are counterexamples to the conjecture that CT decreases along the RG flow [11].
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where Jµ
I is the conserved current for the I-th Cartan generator of the flavor symmetry.

The second motivation comes from the 3d-3d correspondence [15–18], which claims that

the S3
b -partition functions of a class of 3d N = 2 theories are identified with the partition

functions of the complexified Chern-Simons theory on 3-manifolds (such as knot comple-

ments). The perturbative expansion at the value b = 1 gives infinitely many topological

invariants of the 3-manifold. Note that our expansion is different from the expansion around

b = 0, which has been studied in the context of the generalized volume conjectures [19–21].

1.3 Main result

The goal of the present paper is to propose a new, efficient method to systematically

compute the higher-order expansion of the three-sphere partition function in 1 − b, and

hence in particular to compute F,CT and CIJ . Our expression appears in eq. (3.20). The

resulting expression is written as a finite sum, as opposed to an integral (as one might

expect from supersymmetric localization).

For the quantity F , our expression nicely matches the result in [22]. We reproduce

their result in a different approach. Moreover our result extends the result to all-order

expansion in 1− b, and hence to infinitely many quantities.

While we defer the detailed discussion to the following sections, the basis idea is to

relate the expansion around b = 1 to a different expansion around b = 0. Contrary to the

case of the former expansion, the integrand diverges in the latter expansion, and hence we

can systematically compute the higher-order expansion by the saddle point method.

It is instructive to compare our discussion with the case of four-dimensional N = 1

supersymmetry. In this case, CT -maximization (or τRR-maximization [23] for the U(1)

R-symmetry current, as related by N = 1 supersymmetry) can also be implemented by

a-maximization [24], which is a rather simple algebraic (in this case cubic) function of the

trial R-charge. Our result is a similar in spirit, but now in three dimensions.

Organization of the paper. The rest of this paper is organized as follows. We first

quickly review the supersymmetric partition functions in section 2. The next section,

section 3, contains our main result concerning the expansion around b = 1. We motivate

this result from the factorization property of the supersymmetric partition function. This

property relates the expansion around b = 1 to a different expansion around b = 0, which

can then be computed by saddle-point methods. In section 4 we apply our method to

several examples. In appendix A we summarize some properties of the quantum dilogarithm

function needed for the main text.

2 Localization on S3
b
and S2 ×q S

1: review

In this section, we review supersymmetric-localization of the squashed 3-sphere partition

function and the superconformal index.
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2.1 Localization on S3
b

In this section, we give a brief review of supersymmetric localization [1–4] of 3d N = 2

gauge theories on the squashed 3-sphere S3
b . We choose notations that will be convenient

for the discussion of perturbative expansions in later sections.

We consider a 3d N = 2 gauge theory T with a compact connected gauge group G.

For simplicity, we further assume that G is a product of a torus and a simply-connected Lie

group. The theory can be coupled to background vector multiplets for the flavor symmetry

group GF of rank rF . Let Cartan generators of GF be {FI}rFI=1. The vacuum expectation

values (VEVs) of the scalar fields in these multiplets are the real masses mI , I = 1, . . . , rF .

For later use, it is convenient to rescale the real mass parameters as follows

UI := bmI . (2.1)

For the geometry S3
b to preserve some supercharges, we need to turn on the background

gauge field coupled to a U(1)R symmetry. The choice of R-symmetry is not unique and

can be mixed with flavor symmetries

R~ν = R~ν=~0 +

rF
∑

I=1

νIFI , (2.2)

and the partition function depends on the mixing parameters ~ν. Here R~ν is the Cartan

charge of the mixed R-symmetry U(1)~νR. The mixing shifts the values of ~m inside the

partition function:

Zb(~m,~ν) = Zb

(

~m+ iπ

(

b+
1

b

)

~ν, ~ν = ~0

)

. (2.3)

The mixing exists (i.e. νI 6= 0) only for FI which corresponds to U(1) Cartan generators

of the non-simple part of the gauge group. Note that GF includes symmetries that act

on the matter as well as the topological Abelian symmetries. The topological symmetry

is usually denoted as U(1)J , and its conserved charges are the monopole fluxes for the

Abelian gauge symmetries. This implies that real masses for the topological symmetries

are the Fayet-Iliopoulos (FI) parameters.

The partition function is given by an integral of the form

Zb(~m,~ν) =
1

|Weyl(G)|

∫

ΓR

drGZ

(2π~)
rG
2

Υ~

(

~U +

(

iπ +
~

2

)

~ν, ~Z

) ∣

∣

∣

∣

~U=b~m

(2.4)

over the Coulomb-branch parameters Zi, i = 1, . . . , rG, where rG := rank(G). In this

formula and further in this section we use the notation

~ := 2πib2 . (2.5)

The integrand Υ~ at ~ν = 0 in eq. (2.4) contains the following factors:
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• An N = 2 chiral multiplet, that transforms with weights (β, γ) ∈ (ρG, ρF ) under the

maximal tori of the gauge and the flavor groups, contributes3

∏

(β,γ)∈(ρG,ρF )

ψ~(β · Z + γ · U) . (2.6)

The special function ψ~(X) is the quantum dilogarithm (Q.D.L). Its definition and

properties are reviewed in appendix A.

• An Abelian Chern-Simons term with a matrix of integer levels kij contributes a

factor exp
(

1
2~

∑

i,j kijZiZj

)

. In particular, a U(1) Chern-Simons term at level kii

gives exp

(

1

2~
kiiZ

2
i

)

, while a mixed U(1) × U(1) Chern-Simons term at level kij

gives exp

(

1

~
kijZiZj

)

.

• FI parameter ζ, which is the real mass parameter for the topological U(1)J symmetry,

contributes a factor exp
(

−1
~
ZU

)

|U=bζ .

• A level-k Chern-Simons term for a simple factor of the gauge group G contributes

kij = k〈α∨
i , α

∨
j 〉 to the matrix of Chern-Simons levels for the maximal torus. Here α∨

i

are the coroots of the simple factor and 〈, 〉 is the canonically-normalized Killing form.

• An N = 2 vector multiplet contributes

∏

λ∈Λ+
adj

4 sinh

(

1

2
λ · Z

)

sinh

(

πi

~
λ · Z

)

,

where the product goes over the set Λ+
adj of positive roots of the gauge group.

There are also contributions from the Chern-Simons terms that involve background

gauge fields coupled to flavor symmetries, which we did not write out. In general, there are

also Chern-Simons terms for the Levi-Civita and the R-symmetry connections. A careful

treatment of these terms can be found e.g. in [22, 25]. We will not keep track of them but

instead will define the partition function Zb only up to an overall factor

exp

(

iπQ

(

b2 +
1

b2

)

+ iπQ

)

. (2.7)

The integration cycle ΓR in eq. (2.4) is RrG ⊂ CrG . More precisely, it is infinitesimally

deformed in a suitable manner to make the integral convergent.

3We use the so-called “k = −1/2 regularization” of the chiral multiplet path-integral. See e.g. [22] for a

discussion.
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2.2 Localization on S2 ×q S1

The superconformal index [26] is defined as

Iq(mI , uI ;~ν) := TrH(S2;mI)(−1)R
~ν

q
R~ν

2
+j3

rF
∏

I=1

uFI

I . (2.8)

Here R~ν is the Cartan generator of the R-symmetry U(1)~νR in eq. (2.2). H(S2;mI) is

the Hilbert space of the radially-quantized 3d theory with background magnetic fluxes

{mI} coupled to the Cartan generators of GF turned on the S2. From supersymmetric

localization, the index is given as a sum/integral [27, 28]

Iq( ~m, ~u;~ν) =
1

|Weyl(G)|
∑

~n

∮ rG
∏

i=1

dwi

(2πiwi)
Ωq

(

ni, wi,mI , uI(−q1/2)νI
)

. (2.9)

The integrand Ωq(~n, ~w, ~m, ~u) at ~ν = 0 contains the following factors:

• An N = 2 chiral multiplet that transforms with weights (β, γ) ∈ (ρG, ρF ) under the

maximal tori of the gauge and the flavor groups contributes
∏

(β,γ)∈(ρG,ρF )

I∆(β · ~n+ γ · ~m, eβ·logw+γ·log u; q) , (2.10)

where the “tetrahedron index” I∆ is defined as [29]

I∆(m, u; q) :=

∞
∏

r=0

1− qr−
m

2
+1u−1

1− qr−
m

2 u
. (2.11)

• An Abelian Chern-Simons term with a matrix of integer levels kij contributes a factor
∏

u
kijmj

i .

• The U(1)J topological symmetry associated to an Abelian gauge symmetry con-

tributes u−nw−m. Here, (m, u) is a pair (magnetic flux, fugacity) for the U(1)J
flavor symmetry, while (n, w) is for the Abelian gauge symmetry.

• A level-k Chern-Simons term for a simple factor of G contributes kij = k〈α∨
i , α

∨
j 〉 to

the matrix of Chern-Simons levels for the maximal torus. Here α∨
i are the coroots of

the simple factor and 〈, 〉 is the canonically-normalized Killing form.

• An N = 2 vector multiplet contributes
∏

λ∈Λ+
adj

(qλ·(
n

2
+logw) − q−λ·(n

2
+logw))(qλ·(

n

2
−logw) − q−λ·(n

2
−logw)) ,

where the product goes over the set Λ+
adj of positive roots of the gauge group.

We need to sum over all the magnetic fluxes ~n satisfying the following Dirac quantization

conditions
{

~n : β · ~n+ γ · ~m ∈ Z , λ · ~n ∈ Z , ∀(β, γ) ∈ (ρG, ρF ) and λ ∈ Λ+
adj

}

/Weyl(G) . (2.12)
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3 Expansion at b → 1 from expansion at b → 0

In this section, as the main result of this paper, we propose the b → 1 expansion (3.20)

of the squashed 3-sphere partition (2.4). Using the proposed expansion, we can express

correlation functions of the stress-energy tensor (including the stress-energy tensor central

charge) of a 3d N = 2 theory as a finite sum over Bethe-vacua. Our proposal is motivated

by the factorization property of supersymmetric partition functions [30, 31]. Interestingly,

we find that the convergent expansion at b → 1 can be reconstructed from the asymptotic

expansion at b → 0.

3.1 Expansion at b → 0 (asymptotic expansion)

In this section, we provide general strategy for computing the perturbative expansion S
(α,~ℓ)
n

(n ≥ 0) of the localization integral (2.4) in the b → 0 limit around saddle point ~Z(α,~ℓ) in

eq. (3.11). Here the index α labels Bethe-vacua (3.8) of the 3d theory while integer-

valued vector ~ℓ labels the unphysical shift ambiguity (3.6). For a 3d theory associated to

a hyperbolic 3-manifold [16, 32, 33], the perturbative invariant S
(α,~ℓ)
n computes the n-loop

invariant of the three-dimensional SL(N,C) Chern-Simons theory around an irreducible

flat connection Aα (satisfying dAα + Aα ∧ Aα = 0) on the 3-manifold. We refer to [19–

21, 32, 34–38] for systematic study on the perturbative invariants in the context of the

volume conjecture [39, 40].

Quantum effective twisted superpotential. We define the quantum effective twisted

superpotential [31, 41–43] in perturbative expansion in ~,

W~ℓ
~(
~Z, ~U, ~ν)

~→0 with fixed ~U=b~m−−−−−−−−−−−−−−−→
∞
∑

n=0

~nW~ℓ
n(~Z, ~U, ~ν) . (3.1)

It can be obtained from the limit of the integrand Υ~ in eq. (2.4) at ~ → 0,

Υ~

(

~U +

(

iπ +
~

2

)

~ν, ~Z

)

~→0 with fixed ~U=b~m−−−−−−−−−−−−−−−→ exp
(

~−1W~ℓ
~(
~Z, ~U, ~ν)

)

. (3.2)

The contribution of Chern-Simons terms to Wn is clear. Most of them contribute only to

W0, with the exception of the ones that involve the R-symmetry. Those can also contribute

to W1. For example, a level k term for a U(1) symmetry with parameter Z gives

WCS
~ =

1

2
kZ2 . (3.3)

The contribution of a charged N = 2 chiral multiplet to W~ can be read off from the

expansion of the quantum dilogarithm function ψ~(Z), which is reviewed in appendix A.

A chiral multiplet of charge one under a U(1) symmetry with parameter Z gives

Wchiral
~ =

∞
∑

n=0

~n
Bn

n!
Li2−n(e

−Z) , n = 0, 1, . . . , (3.4)

– 7 –
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where Bn = (1, 1/2, 1/6, . . . ) are the Bernoulli numbers. Finally, the W-bosons contribute

WW
~ = 2πiρ · Z + ~

∑

λ∈Λ+
adj

log
(

eλ·Z/2 − e−λ·Z/2
)

, (3.5)

where ρ = 1
2

∑

λ∈Λ+
adj

λ is the Weyl vector.

The quantum effective twisted superpotential W~ℓ
~(
~U, ~Z) is defined up to an unphysical

shift,

W~ℓ
~ = W~ℓ=~0

~ + 2πi(Ziℓ
i
z + UIℓ

I
u + 2πiℓ0) + iπ~ℓ1 , ℓiz, ℓ

I
u, ℓ0, ℓ1 ∈ Z . (3.6)

In particular, W~ is not single-valued and has branch points at 2πiZ both in Zi and UI , and

in going around these, W~ gets shifted by terms of the form (3.6). Also in the equation (3.2),

the result actually depends on the direction (phase factor of ~) in which one takes the limit,

but only by terms of the form (3.6).

There can also be contributions from Chern-Simons terms in background supergravity

fields. These are physically meaningful, but we will not keep track of them. Instead, we

will allow an ambiguity

W~ ∼ W~ + π2Q+ iπ~Q+ ~2Q . (3.7)

Bethe-vacua SBE(~U, ~ν). Bethe-vacua are defined by

SBE(~U, ~ν) :=
{

~z0 : exp(∂~ZW0(~Z, ~U, ~ν))
∣

∣

~Z=log ~z0
= ~1 , triv. isotr.

}

/

Weyl(G)

=
{

~z(α)
}|SBE(~U,~ν)|

α=1
.

(3.8)

Here “triv. isotr.” stands to indicate that Bethe solutions that are invariant under a non-

trivial subgroup of the Weyl group should be discarded, since they do not correspond

to physical vacua. (See e.g. [22] for a discussion and references.) We further assume

that the background parameters ~U can be chosen in such a way that all Bethe vacua are

massive. Note that the above equations are independent of the unphysical shift ambiguities

in eq. (3.6). The number of Bethe-vacua at generic ~U is equal to the Witten index [44, 45]

(Witten index) = |SBE| . (3.9)

Perturbative expansion {S(α,~ℓ)
n (~U, ~ν)}. We consider a formal perturbative expansion

of the localization integral

1

|Weyl(G)|

∫

drGδZ

(2π~)rG/2
Υ~

(

~U +

(

iπ +
~

2

)

~ν, ~Z = ~Z(α,~ℓ) + δ ~Z

)

~→0 with fixed ~U=b~m−−−−−−−−−−−−−−−−−→ Z(α,~ℓ)
pert (

~U, ~ν; ~) = exp

(

∞
∑

n=0

~n−1S(α,~ℓ)
n (~U, ~ν)

) (3.10)

in the limit ~ → 0 around a saddle point ~Z = Z(α,~ℓ)(~U, ~ν) which satisfies

∂~ZW
~ℓ
0(~Z, ~U, ~ν)

∣

∣

~Z=~Z(α,~ℓ)(~U, ~ν) = 0 . (3.11)

– 8 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
2

For a given Bethe vacuum ~zα ∈ SBE(~U, ~ν), there is an associated logarithmic saddle point

Z(α,~ℓ) satisfying e
~Z(α,~ℓ)

= ~zα upon a proper choice of shift ambiguities ~ℓ. The first two per-

turbative coefficients S
(α,~ℓ)
0 and S

(α,~ℓ)
1 depend on the choices ~ℓ while higher loop coefficients

do not. The dependence is of the following form:

∞
∑

n=0

S(α,~ℓ)
n (~U, ~ν)~n =

∞
∑

n=0

S(α,~ℓ=~0)
n (~U, ~ν)~n + 2πi(UIℓ

I
u + 2πiℓ0) + iπ~ℓ1 , ℓIu, ℓ0, ℓ1 ∈ Z .

(3.12)

The actual localization integral (2.4) along the physical cycle ΓR can be asymptotically

expanded in terms of the formal perturbative expansion

Zb(~m,~ν)
b2→0 with fixed ~U=b~m−−−−−−−−−−−−−−−−−−−−−→

∑

α

nαZ(α,~ℓ)
pert (

~U, ~ν; ~)
∣

∣

~=2πib2
, (3.13)

where the integer coefficients nα and the shift ambiguity ~ℓ depends on the direction (phase

factor of b2) of the limit. For our purpose (obtaining the b → 1 expansion), the actual

values of them are not relevant and we only need to know the formal perturbative expansion

modulo the ambiguities in eq. (3.12).

Now let us give a more explicit formula for the formal perturbative expansion. For the

perturbative expansions, we first expand the integrand around a saddle point ~Z(α,~ℓ),

exp

(

∞
∑

n=0

~n−1Wn(~Z
(α,~ℓ) + ~

1
2 δ~ζ)

)

= exp

(

∞
∑

n=0

Wn(~Z
(α,~ℓ))~n−1 − 1

2
δζiΠ

ij(~Z(α,~ℓ))δζj

+
∞
∑

n=1

∑

1≤m≤n+2;
m−n∈2Z

~n/2Ci1...im
n,m (~Z(α,~ℓ))δζi1 . . . δζim

)

= exp

(

∞
∑

n=0

Wn(~Z
(α,~ℓ))~n−1 − 1

2
δζiΠ

ij(~Z(α,~ℓ))δζj

)

×
(

1 +
∞
∑

n=1

∑

1≤m≤3n
m−n∈2Z

~
n
2 Di1...im

n,m (~Z(α,~ℓ))δζi1 . . . δζim

)

.

(3.14)

In the expansion, the quadratic terms O(δZ2) of the classical part W0 play the role of the

inverse propagator

Πij(~Z(α,~ℓ)) := − ∂2W~ℓ
0

∂Zi∂Zj

∣

∣

∣

∣

~Z=~Z(α,~ℓ)

(inverse propagator) , (3.15)

while other terms play the role of the interaction vertices

Ci1...im
n,m (~Z(α,~ℓ)) :=

1

m!

∂mW~ℓ
n−m

2
+1

∂Zi1 . . . ∂Zim

∣

∣

∣

∣

~Z=~Z(α,~ℓ)

(vertices) . (3.16)
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The coefficients Di1,...,in
n,m in eq. (3.14) can be written as a finite sum of finite products of

the C’s. Then the formal expansion Z(α,~ℓ)
pert (~) around the saddle point ~Z(α,~ℓ) is given by4

Z(α,~ℓ)
pert = exp

(

∞
∑

n=0

~n−1S(α,~ℓ)
n

)

= exp

(

∞
∑

n=0

~n−1W~ℓ
n(~Z

(α,~ℓ))

)

∫ rG
∏

i=1

d(δζi)√
2π

exp

(

− 1

2
δζiΠ

ij(~Z(α,~ℓ))δζj

)

×
(

1 +
∞
∑

n=1

3n
∑

m=1

~nDi1...i2m
2n,2m (~Z(α,~ℓ))δζi1 . . . δζi2m

)

,

= exp

(

− 1

2
log detΠ(~Z(α,~ℓ)) +

∞
∑

n=0

~n−1W~ℓ
n(~Z

(α,~ℓ))

)

×
(

1 +
∞
∑

n=1

3n
∑

m=1

~nDi1...i2m
2n,2m (~Z(α,~ℓ))Gi1,...,i2m(

~Z(α,~ℓ))

)

.

(3.17)

To arrive at the last line, we performed the formal Gaussian integrals

Gi1,...,i2m := (detΠ)
1
2

∫ rG
∏

i=1

dδζi√
2π

exp

(

− 1

2
δζiΠ

ijδζj

)

δζi1 . . . δζi2m

=
∂2m

(

exp
(

1
2µ

i(Π−1)ijµ
j
))

∂µi1 . . . ∂µi2m

∣

∣

∣

∣

µi=0

.

(3.18)

The classical and the one-loop contributions are

S
(α,~ℓ)
0 (~U, ~ν) = W~ℓ

0(~Z
(α,~ℓ)) , S

(α,~ℓ)
1 (~U, ~ν) = W~ℓ

1(~Z
(α,~ℓ))− 1

2
log det

(

Π(~Z(α,~ℓ))
)

. (3.19)

The terms of higher order in ~ are defined using ∂≥2W0, ∂
≥1W1 and ∂≥0W≥2 only, and

therefore are not affected by the unphysical shifts (3.6).

3.2 Expansion at b → 1 (convergent expansion)

Unlike the b → 0 limit, we can not use the saddle-point approximation around b = 1 since

the integrand is smooth around the point. The analytic evaluation of the integral around

b = 1 therefore seems to be intractable as we need to evaluate a generic finite-dimensional

integral involving special functions. Most of the interesting physical quantities which can be

extracted from the partition function come from expansion around b = 1, where the space-

time geometry becomes conformally flat. So far, people have heavily relied on numerical

approach in computing the physical quantities.

However, as already noticed in some literature, the localization integrals are not generic

finite-dimensional integral but have several non-trivial hidden structures. One non-trivial

property relevant to us is the factorization property [30, 31]. As we will see below, the

4The overall factor 1/—Weyl(G)— does not appear here since there are —Weyl(G)— many saddle

points (related by the Weyl group action) of localization integral for each Bethe-vacua, all of which give

the same contributions to the asymptotic expansion.
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property is so restrictive that we can determine the localization integral around b = 1 from

the asymptotic expansion in the b → 0 limit without performing actual integration.

As a main result of this paper, we propose that

Zb(~m,~ν0) ≃
∑

α∈SBE

exp

[ ∞
∑

n=0

ǫns(α)n (~m,~ν0)

]

(for |ǫ = 1− b| < 1)

:=
∑

α∈SBE

exp

[ ∞
∑

n=0

(

~n−1
1 S(α,~ℓ)

n (~U = b~m, ~ν0) + ~n−1
2 S(α,~ℓ)

n (~U = b−1 ~m,~ν0)

)]

,

where

~1 := 2πi(b2 − 1) = 2πi(−2ǫ+ ǫ2) , (3.20)

~2 := 2πi(b−2 − 1) = 2πi
2ǫ− ǫ2

(1− ǫ)2
= 2πi(2ǫ+ 3ǫ2 + 4ǫ3 + . . .) .

Here ≃ means equality up to an unphysical phase factor

Z1 ≃ Z2 if Z1 = eiπδZ2 with δ ∈ Q . (3.21)

The above formula holds only when the R-symmetry mixing parameters {νI}rFI=1 in eq. (2.2)

are cleverly chosen ~ν = ~ν0 such that

R~ν0 + 2j3 ∈ 2Z , for all 1/4-BPS local operators . (3.22)

This guarantees the following condition5

only qinteger appears in Iq(mI = 0, uI ;~ν0) . (3.23)

Unlike S
(α,~ℓ)
n , the perturbative coefficients s

(α)
n are independent on the choices of ~ℓ if the

above conditions (3.23) are met. Let us give explicit expressions for the first few coefficients

s
(α)
n in terms of S

(α,~ℓ)
n ,

s
(α)
0 (~m,~ν0) =

i

2π

(

S
(α,~ℓ)
0 − UI∂IS

(α,~ℓ)
0

)

+ 2S
(α,~ℓ)
1

∣

∣

∣

∣

UI=mI

,

s
(α)
1 (~m,~ν0) = 0 ,

s
(α)
2 (~m,~ν0) = s

(α)
3 (~m,~ν0)

= −32π2S
(α)
3 + UI∂IS

(α,~ℓ)
1 + 8πi

(

S
(α)
2 + UI∂IS

(α)
2

)

+ UIUJ∂I∂JS
(α,~ℓ)
1

− i

12π
UIUJUK∂I∂J∂KS

(α,~ℓ)
0

∣

∣

∣

∣

UI=mI

.

(3.24)

The main result above is valid even for complex ~m. This means that if one wants to

compute the Zb(~m,~ν) with general choice of R-charge mixing ~ν which does not satisfy the

above condition (3.23), we can use eq. (2.3)

Zb (~m,~ν) = Zb

(

~m+ iπ

(

b+
1

b

)

(~ν − ~ν0) , ~ν0

)

, (3.25)

with ~ν0 satisfying the condition in eq. (3.23).

5Upon a generic choice of ~ν, the superconformal index contains a term qα with generic real number α.
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Derivation from factorization. Our proposal can be derived from the conjectured

factorization property of the S3
b partition function [30, 31]. This states the following fac-

torization:

Zb(~m,~ν) =
∑

α∈SBE

B(α)
(

b2, ~u;~ν
)

B(α)
(

b−2, ~̃u;~ν
)

where

uI := eUI := ebmI , ũI := eŨI := eb
−1mI .

(3.26)

The building block B(α), which is often called the holomorphic block in the literature, can

be considered as the partition function of the 3d N = 2 theory on R2
~×S1, with an omega-

deformation parameter ~ := 2πib2 and with an asymptotic boundary condition determined

by the Bethe vacuum labelled by α:

B(α)(b2, ~u;~ν) = TrH(R2;α)(−1)R
~ν

q
R~ν

2
+j3

∏

I

uFI

I |uI=ebmI , q := e2πib
2
. (3.27)

The perturbative expansion of the block Bα(b2, ~u;~ν) in the limit b2 → 0 with fixed ~u is

expected to be identical to the asymptotic expansion Z(α,~ℓ)
pert (

~U, ~ν; ~) in eq. (3.17) of the Zb

in the limit b2 → 0 with fixed UI = bmI around the Bethe vacuum:

Z(α,~ℓ)
pert (

~U, ~ν; ~) ∼ B(α)(b2, ~u = e
~U ;~ν)

b2→0 with fixed UI=bmI−−−−−−−−−−−−−−−−−−−−→ exp

(

∞
∑

n=1

~n−1S(α,~ℓ)
n (~U, ~ν)

)∣

∣

∣

∣

∣

~=2πib2

.
(3.28)

Here ∼ means equality as an asymptotic expansion in the above limit modulo unphysical

factor of the form in eq. (3.12). This is because of that the anti-holomorphic part in (3.26)

become trivial in the asymptotic limit:

B(α)

(

b−2, ~̃u = e
~̃U ;~ν

)

b2=−iδ→0 with fixed UI = b2ŨI ∈ R−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1 + o(e−♯ 2π
δ ) . (3.29)

More precisely, the above triviality is expected when the limit b2 → 0 is taken along the di-

rection b2 ∈ −iR+ with purely imaginary ŨI and the R-charge mixing ~ν is chosen such that

B(α)

(

b2 =
1

2πi
log q, ~u;~ν

)

= 1 + (. . .)q♯>0 + (higher-order in q) . (3.30)

The form of the expansion above is expected when the R-charge mixing satisfies the uni-

tarity constraints from superconformal algebra, such as R~ν(O) ≥ 1
2 for all chiral primary

operator O. When the condition (3.23) is satisfied, ~ν = ~ν0, the block depends on only

q = e2πib
2
(instead of b2) and thus

For ~ν0 in eq. (3.23) , B(α)(b2, ~u;~ν0) = B(α)(b2 − 1, ~u;~ν0) ,

B(α)(b−2, ~̃u;~ν0) = B(α)(b−2 − 1, ~̃u;~ν0) .
(3.31)

Combining eq. (3.26), (3.28), (3.31) and the fact that both of ~1 = 2πi(b2 − 1) and ~2 =

2πi(b−2−1) approach to 0 at b → 1, we derive the expansion in eq. (3.20). Since the b → 1

limit of Zb should be smooth, the final result is valid for any direction in the limit b → 1.
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Comparison with Closset-Kim-Willett [22]. According to [22], the squashed 3-

sphere partition function Zb at b = 1 can be written as follows

Zb=1(~m,~ν) = ZνR=0
Mg=0,p=1

(~m,~ν) =
∑

α∈SBE

(

Hα
νR=0(~m,~ν)

)−1Fα
νR=0(~m,~ν) . (3.32)

Here Hα
νR

and Fα
νR

are so-called ‘handle-gluing’ and ‘fibering’ operators respectively. These

operators serve as basic building blocks of more general supersymmetric partition functions

ZνR
Mg,p

on Mg,p:

Mg,p := (S1-bundle of degree p over a Riemann surface Σg) ,

ZνR
Mg,p

=
∑

α∈SBE

(Hα
νR
)g−1(Fα

νR
)p . (3.33)

For the case when the cycle [S1] along the fiber is nontrivial in H1(Mg,p,Z2) (i.e. p is

even), there are two types of supersymmetric backgrounds depending on the choice of spin-

structure along the S1 [25]. Depending on the discrete choice, νR can be either 0 (periodic

boundary condition for fermions) or 1/2 (anti-periodic boundary condition). When νR =

1/2, we need to turn on the discrete Z2 holonomy along the [S1] coupled to a U(1)~νR
symmetry to preserve some supercharges. When the fiber [S1] is trivial in H1(Mg,p,Z2)

(i.e. p is odd), only the choice νR = 0 is allowed. For Mg,p=0 = Σg × S1 case, for example,

the two different choices correspond to the following two types of twisted indices

ZνR=0
Mg,p=0

(~m,~ν) = TrHtop(Σg ;~ν)(−1)2j3
rF
∏

I=1

emIFI ,

ZνR=1/2
Mg,p=0

(~m,~ν) = TrHtop(Σg ;~ν)(−1)R
~ν

rF
∏

I=1

emIFI .

(3.34)

Here Htop(Σg, ~ν) is the Hilbert space of the topologically-twisted 3d N = 2 theory on a

Riemann surface Σg of genus g. To preserve some supercharges, we turn on the background

magnetic flux coupled to the U(1)~νR R-symmetry in eq. (2.3).

1

2π

∫

Σg

dAU(1)~ν
R
= (g − 1) . (3.35)

Due to the background magnetic flux, the twisted index is well-defined only when the

mixing parameters ~ν are chosen to satisfy following Dirac quantization condition

R~ν(O)× (g − 1) ∈ Z (3.36)

for all local operators O in the 3d theory.

From the comparison between eq. (3.19) and the explicit expression for Hα and Fα

given in [25], it is straightforward to check that

Fα
νR=1/2 = exp



i
S
(α,~ℓ)
0 − UI∂IS

(α,~ℓ)
0

2π





∣

∣

∣

∣

UI=mI

, Hα
νR=1/2 = exp

(

−2S
(α,~ℓ)
1

)

∣

∣

∣

∣

UI=mI

.

(3.37)
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One simpler way to understand the second equality is using a factorization of refined twisted

index on S2 as explained in [25]. The refined index is defined as

Itop
q (~m,~ν) := TrHtop(Σg ,~ν)(−1)R

~ν

q
1
2
R~ν+j3

rF
∏

I=1

emIFI , (3.38)

and is known to have the following factorization property [46, 47]

Itop
q (~m,~ν) =

∑

α∈SBE

Bα(b2, ~u, ~ν)Bα(−b2, ~u, ~ν)
∣

∣

uI=emI , 2πib2=log q
. (3.39)

Taking the b2 → 0 (q → 1) limit, we have

Itop
q (~m,~ν)|

q=e2πib2 , b2→0
=

∑

α∈SBE

e2S
α
1 (~m,~ν)(1 + o(b4)) . (3.40)

Here we use the asymptotic limit of the holomorphic blocks given in eq. (3.28). In the

q → 1 limit, the refined index becomes ZνR= 1
2

Mp=0,g=0
. Comparing the above expression with

the general formula in eq. (3.33) with p = g = 0 and νR = 1/2, we have the second equality

in eq. (3.37).

When the condition in (3.22) is met, there is no difference between two discrete choices,

νR = 0 or 1/2, as is obvious in (3.34). So, in the case, we have

Zb=1 =
∑

α∈SBE

(Hα
νR=0)

−1Fα
νR=0

=
∑

α∈SBE

(Hα
νR=1/2)

−1Fα
νR=1/2

=
∑

α∈SBE

exp



i
S
(α,~ℓ)
0 − UI∂IS

(α,~ℓ)
0

2π
+ 2S

(α,~ℓ)
1



 .

(3.41)

It matches the zero-th order approximation, s0 in eq. (3.24), of the general perturbative

expansion (3.20) in ǫ = 1− b.

3.3 Current and stress tensor correlation functions

We define the free energy and its real part,

Fb(~m,~ν) = − logZb(~m,~ν) = − logZb

(

~m+ iπ

(

b+
1

b

)

(~ν − ~ν0), ~ν0

)

= − log
∑

α

exp

( ∞
∑

n=0

sn

(

~m+ iπ

(

b+
1

b

)

(~ν − ~ν0), ~ν0

)

(1− b)n
)

,

Fb(~m,~ν) := Re[Fb(~m,~ν)] .

(3.42)

Here ~ν0 is a choice of R-charge mixing satisfying (3.22). The infra-red (IR) superconformal

R-charge R~νIR can be determined by the F-maximization principle [2] which states that6

Fb=1(~m = ~0, ~ν) is maximized at ~ν = ~νIR . (3.43)

6This only works when all the Cartan subalgebra of the IR flavor symmetry comes from the UV flavor

symmetry GF .
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Then, basic CFT data at the IR fixed point can be obtained as follows [9, 10]

F =Fb=1

(

~m=~0,~νIR
)

,

=−Re

[

log
∑

α

exp(s
(α)
0

(

~m,~ν0
)

)

]∣

∣

∣

∣

∣

~m=2πi(~νIR−~ν0)

,

CIJ =8∂mI
∂mJ

Fb=1

∣

∣

∣

~m=~0,~ν=~νIR
(3.44)

=−8Re

[
∑

α∈SBE
exp

(

s
(α)
0 (~m,~ν0)

)(

∂mI
∂mJ

s
(α)
0 (~m,~ν0)

)

∑

α∈SBE
exp

(

s
(α)
0 (~m,~ν0)

)

]

~m=2πi(~νIR−~ν0)

,

CT =
8

π2
∂b∂bFb

∣

∣

~m=~0,~ν=~νIR,b=1

=− 8

π2
Re

[
∑

α∈SBE
exp

(

s
(α)
0 (~m,~ν0)

)(

2s
(α)
2 (~m,~ν0)+mI∂mI

s
(α)
0 (~m,~ν0)

)

∑

α∈SBE
exp

(

s
(α)
0 (~m,~ν0)

)

]

~m=2πi(~νIR−~ν0)

.

The central charges CIJ and CT are defined in eq. (1.5) and (1.7). We fix the normalization

of Tµν and Jµ such that

(CT of a free theory of single chiral Φ) = 1 , (3.45)

(CJJ for the U(1) symmetry of a free chiral theory under which Φ has charge +1) = 1 .

4 Examples

In this section we present some concrete computations of the b → 1 expansion (3.20). In

addition to analytical computation as presented above, we independently confirm the com-

putations by numerically evaluating the coefficients directly from the localization integral.

Using the expansion, we present analytic expression of the stress-energy tensor central

charge, CT , for candidates for minimal (with lowest CT ) 3d N = 2 SCFTs. It include the

candidates for minimal 3d N = 2 theory [48], minimal 3d N = 4 theory [49] and minimal

3d N = 2 theory [33, 50–52] with SU(3) flavor symmetry.

4.1 Free chiral multiplet and critical Wess-Zumino model

The S3
b -partition function and the superconformal index for the theory of an N = 2 free

chiral multiplet are

Zb(m, ν) := ψ~

(

U +

(

iπ +
~

2

)

ν

) ∣

∣

∣

∣

U=bm

,

Iq(m, u; q) = I∆
(

m, u(−q1/2)ν ; q
)

.

(4.1)

The theory has a U(1)Φ flavor symmetry under which Φ has charge +1. The parameters

m and ν are the real mass parameter for the flavor symmetry and the R-symmetry mixing
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φ ψ

U(1)ν=0
R 0 −1

U(1)Φ 1 1

Table 1. U(1)R × U(1)Φ symmetry of the free chiral theory. φ and ψ are the complex scalar and

the fermion field inside the N = 2 chiral multiplet respectively.

parameter Rν = Rν=0 + νU(1)Φ, respectively, and (m, u) is a pair (background magnetic

flux, fugacity) for the flavor symmetry. The condition (3.23) is satisfied when

ν0 ∈ 2Z . (4.2)

In this example, we do not need to solve the saddle point equations to obtain an asymptotic

expansion in b → 0 limit since there is no integration.7 The asymptotic expansion is given

in (A.7),

∞
∑

n=0

~n−1S
~ℓ
n(U, ν) =

∞
∑

n=0

Bn

n!
~n−1Li2−n(e

−U+(iπ+ ~

2
)ν) +

1

~
(4π2ℓ0 + 2πiℓuU + iπ~ℓ1) ,

⇒ S
~ℓ
0(U, ν) = Li2(e

−U−iπν) + 4π2ℓ0 + 2πiℓuU ,

S
~ℓ
1(U, ν) = −1

2
log(1− e−U−iπν) +

1

2
ν log(1− e−U−iπν) + πiℓ1 ,

S2(U, ν) =
2− 6ν + 3ν2

24(eU+iπν − 1)
, S3(U, ν) =

eU+iπνν(2− 3ν + ν2)

48(1− eU+iπν)2
.

(4.3)

Then using eq. (3.24), we have

exp
(

s0(m, ν)
)

= exp

[

i

2π

(

(2πi(1− ν)−m) log(1− e−m−iπν) + Li2(e
−m−iπν)

)

]

,

s2(m, ν) = s3(m, ν) (4.4)

=
em+iπν

[

im3 − 6π(ν − 1)m2 + 4π2(2πν3 + 3iν2 − 6πν2 − 6iν + 4πν + 2i)
]

12π (−1 + em+iπν)2

+
mem+iπν(−6iπν2 + 12iπν + 3ν − 4iπ − 3) + (−6iπν2 − 3mν + 12iπν + 3m− 4iπ)

6 (−1 + em+iπν)2
.

Note that the exp(s0) is independent on the choice of ℓu ∈ Z. We finally have (ν0 ∈ 2Z)

logZb(m, ν) = logZb

(

m+ iπ(b+ b−1)(ν − ν0), ν0
)

= s0
(

m+ 2πi(ν − ν0), ν0
)

+
[

s2
(

m+ 2πi(ν − ν0), ν0)
)

(4.5)

+ iπ(ν − ν0)s
(1,0)
0

(

m+ 2πi(ν − ν0), ν0
)](

(1− b)2 + (1− b)3
)

+ o
(

(b− 1)4
)

.

7According to a 3d N = 2 mirror duality [53], as we will see below, the theory is dual to a theory with

a U(1) vector multiplet coupled to a single chiral multiplet. In the dual description, there is a single Bethe

vacuum and the asymptotic expansion here can be thought as the expansion around the unique vacuum in

the dual description.
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Here

s
(1,0)
0 (m, ν) := ∂ms0(m, ν) =

im− 2πν + 2π

2π − 2πem+iπν
. (4.6)

As a consistency check, the expression is actually independent on the choice of ν0 ∈ 2Z.

For a free chiral theory, the superconformal IR R-symmetry corresponds to U(1)νR with

ν = 1
2 and the stress-energy tensor central charge is

(CT of a free Φ) = − 8

π2
Re∂2

b

[

logZb

(

m = 0, ν =
1

2

)]

b=1

= − 8

π2
Re∂2

b

[

logZb

(

m =
iπ

2
(b+ b−1), ν0 = 0

)]

b=1

= −16

π2
Re

[

s2(iπ, ν0 = 0) +
iπ

2
s
(1,0)
0 (iπ, ν0 = 0)

]

= 1 .

(4.7)

In the second line, we use eq. (3.25). The CJJ for the flavor U(1)Φ symmetry is

CJJ = −8Re∂2
m

[

logZb

(

m, ν =
1

2

)]

m=0,b=1

= −8Re∂2
m

[

logZb

(

m+
iπ

2
(b+ b−1), ν0 = 0

)]

m=0,b=1

= −8Re∂2
ms0(m+ πi, ν0 = 0)|m=0 = −8Re

em(im− i+ 2π) + i

2π (em − 1)2
∣

∣

m=iπ

= 1 .

(4.8)

From the above computations for the free chiral theory, we confirmed the normalization in

eq. (3.45).

On the other hand, the IR R-symmetry of the critical Wess-Zumino model (cWZ, a

chiral multiplet Φ with superpotential Wsup = Φ3) corresponds to U(1)νR with ν = 2/3 and

(CT of cWZ) = − 8

π2
Re∂2

b

[

logZb

(

m = 0, ν =
2

3

)]

= − 8

π2
Re∂2

b

[

logZb

(

m =
2πi

3
(b+ b−1), ν0 = 0

)]

= −16

π2
Re

[

s2

(

4iπ

3
, ν0 = 0

)

+
2iπ

3
s
(1,0)
0

(

4iπ

3
, ν0 = 0

)]

=
16

243

(

16− 9
√
3

π

)

≃ 0.726785 .

(4.9)

The result nicely matches the analytic result in [54] obtained from direct integration using

eq. (A.6). We reproduce the result from a drastically simpler computation.

4.2 U(1)k coupled to a chiral multiplet of charge +1

The squashed 3-sphere partition function and the superconformal index of theory are

Zb

(

m, ν
)

=

∫

dZ√
2π~

e
(k+1

2 )Z2
−2Z(U+(iπ+ ~

2 )ν)

2~ ψ~(Z)

∣

∣

∣

∣

U=bm

,

Iq(m, u; ν) =
∑

n∈Z

∮

|v|=1

dv

2πiv
v−m((−q

1
2 )νu)−nv(k+

1
2
)nI∆(n, v; q) .

(4.10)
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The theory has a topological U(1)J flavor symmetry associated to the Abelian gauge sym-

metry. As in the previous example, m and ν are the real mass parameter and the R-

symmetry mixing parameter for the flavor symmetry respectively, and (m, u) are (back-

ground magnetic flux, fugacity) for the flavor symmetry. The proper Chern-Simons level

quantization of the theory is [55, 56]

k ∈ Z+
1

2
. (4.11)

The condition (3.23) is satisfied when

ν0 +

(

k +
1

2

)

∈ 2Z . (4.12)

The Bethe-vacua of the theory are determined by the following algebraic equations

SBE(U, ν) =

{

z : zk+
1
2

(

1− 1

z

)

= eU (−1)ν
}

. (4.13)

Note that, for generic U

|SBE| = |k|+ 1

2
, (4.14)

which matches the Witten index computation in [57]. The b → 0 perturbative expan-

sion coefficients {S(α,~ℓ)
n (U, ν)}∞n=0 can be computed using the method summarized in the

section 3.1. Up to 3-loop, the perturbative invariants are as follows

S
(α,~ℓ)
0 (U,ν)=Li2(e

−Z)+4π2ℓ0+2πiℓzZ−(U+iπν)Z+
k+1/2

2
Z2

∣

∣

∣

∣

Z=Z(α,~ℓ)(U,ν)

,

e2S
(α,~ℓ)
1 (U,ν)=

2z1−ν

A

∣

∣

∣

∣

z=exp(Z(α,~ℓ)(U,ν))

,

Sα
2 (U,ν=0)=

A2(2k−5)+A(−14k+6z+17)+10(2k−2z−1)

12A3

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U,ν)
)

, (4.15)

Sα
2 (U,ν=−1)=

A2(2k−3z+4)+A(−14k−6z+17)+10(2k−2z−1)

12A3

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U,ν)
)

,

Sα
3 (U,ν=0)=

(4k2−1)(1−z)z
(

A3+A2(6k−z−15)+10A(2z−4k+5)+30(2k−2z−1)
)

12A6

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U,ν)
)

,

Sα
3 (U,ν=−1)=

(2k−1)(1−z)z
(

A2k(6k+1)+Ak(20−40k)+15(1−2k)2
)

6A6

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U,ν)
)

.

Here we define

A := 2k(z − 1) + z + 1 . (4.16)

The Z(α,~ℓ) and ℓαz ∈ Z is chosen such that

∂ZW~ℓ
0

∣

∣

Z=Z(α,~ℓ) =

(

k +
1

2

)

Z + log(1− e−Z)− U − iπν + 2πiℓαz
∣

∣

Z=Z(α,~ℓ) = 0 . (4.17)

For given zα ∈ SBE(U, ν) in eq. (4.13), the choice of (Zα = log zα, ℓαz ) is not unique but

has following shift ambiguity

Zα → Zα + 2πit , ℓαz → ℓαz −
(

k +
1

2

)

t , t ∈ Z . (4.18)
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Then, the b → 1 expansion coefficients sαn(m, ν) in eq. (3.24) up to n = 3 are

exp(sα0 (m,ν))=

2exp

(

iLi2(e−Z)
2π

+
i(k+ 1

2
)Z2

4π
− ν

2
Z+(1−ℓαz )Z

)

A

∣

∣

∣

∣

Z=Z(α,~ℓ)(U=m,ν)

,

sα2 (m,ν=0)=
1

3πA6

(

A5 (4iπ2k−3πm−10iπ2)

+A4 (−28iπ2k+6πm2z+6πmz+12iπ2z+34iπ2)

+A3(−16iπ2k2mz2+16iπ2k2mz+32π3k2z2−32π3k2z+32iπ2kmz2−32iπ2kmz

−16π3kz2+16π3kz+40iπ2k+2im3z2−2im3z−12πm2z2−24πm2z

−4iπ2mz2+4iπ2mz−40iπ2z−20iπ2)

+A2(192π3k3z2−192π3k3z+224iπ2k2mz2−224iπ2k2mz−512π3k2z2+512π3k2z

−256iπ2kmz2+256iπ2kmz+304π3kz2−304π3kz+48πm2z2

+72iπ2mz2−72iπ2mz−48π3z2+48π3z
)

+A
(

−1280π3k3z2+1280π3k3z−480iπ2k2mz2+480iπ2k2mz+2240π3k2z2

−2240π3k2z+480iπ2kmz2−480iπ2kmz−1280π3kz2

+1280π3kz−120iπ2mz2+120iπ2mz+240π3z2−240π3z
)

(4.19)

+1920π3k3z2−1920π3k3z−2880π3k2z2+2880π3k2z+1440π3kz2

−1440π3kz−240π3z2+240π3z

)
∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U=m,ν)
)

,

sα2 (m,ν=−1)=
1

3πA6

(

A5 (4iπ2k+3πmz−6πm−6iπ2z+8iπ2)

+A4 (−28iπ2k+6πm2z+6πmz−12iπ2z+34iπ2)

+A3(−16iπ2k2mz2+16iπ2k2mz−16iπ2kmz2+16iπ2kmz+40iπ2k+2im3z2−2im3z

−36πm2z−4iπ2mz2+4iπ2mz−40iπ2z−20iπ2)

+A2(192π3k3z2−192π3k3z+224iπ2k2mz2−224iπ2k2mz−64π3k2z2+64π3k2z

−64iπ2kmz2+64iπ2kmz−16π3kz2+16π3kz+48πm2z2−24iπ2mz2+24iπ2mz
)

+A
(

−1280π3k3z2+1280π3k3z−480iπ2k2mz2+480iπ2k2mz+1280π3k2z2−1280π3k2z

+480iπ2kmz2−480iπ2kmz−320π3kz2+320π3kz−120iπ2mz2+120iπ2mz
)

+1920π3k3z2−1920π3k3z−2880π3k2z2+2880π3k2z+1440π3kz2

−1440π3kz−240π3z2+240π3z

)
∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)(U=m,ν)
)

.

Here A is defined in eq. (4.16) and we use the followings

∂UZ
(α,~ℓ)(U, ν) =

2(z − 1)

A

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)
)

,

∂U∂UZ
(α,~ℓ)(U, ν) =

8(z − 1)z

A3

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)
)

,

∂U∂U∂UZ
(α,~ℓ)(U, ν) = −16(z − 1)z(Az +A− 6z)

A5

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)
)

.

(4.20)

Under the shift (4.18), the expression exp (sα0 (m, ν)) transforms as

exp (sα0 (m, ν)) → eiπt(ν−(k+ 1
2
)t) exp (sα0 (m, ν)) . (4.21)

– 19 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
2

Thanks to the condition in eq. (4.12), the phase factor is just 1 and the exp
(

sα0 (m, ν)
)

is

invariant under the shift. So, we finally have

logZb (m,ν)

= logZb

(

m+ iπ(b+b−1)(ν−ν0),ν0
)

= log
∑

α

exp

[

sα0
(

m+2πi(ν−ν0),ν0
)

+
(

(1−b)2+(1−b)3
)

×
(

sα2
(

m+2πi(ν−ν0),ν0
)

+πi(ν−ν0)s
α,(1,0)
0

(

m+2πi(ν−ν0),ν0
)

)

+o
(

(1−b)4
)

]

, (4.22)

where ν0 is chosen as in eq. (4.13). Here we define

s
α,(1,0)
0 (m, ν) := ∂msα(m, ν)

=
iAm(z − 1)− 2πA(ν(z − 1) + 1) + 4πz

πA2

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)
)

,

s
α,(2,0)
0 (m, ν) := ∂m∂msα(m, ν) (4.23)

=
iA3(z − 1) + 4πA2z + 4iAm(z − 1)z − 8πAz(−ν + νz + z + 2) + 32πz2

πA4

∣

∣

∣

∣

z=exp
(

Z(α,~ℓ)
)

.

k = −1/2 case: dual to free chiral multiplet. In the case, the squashed three-sphere

partition function is

Zb

(

m, ν = 0
)

=

∫

dZ√
2π~

e−
ZU
~ ψ~(Z)

∣

∣

∣

∣

U=bm

. (4.24)

Recall that ~ := 2πib2. The logarithmic Bethe-vacua equation is

log(1− e−Z)−m+ 2πiℓz = 0 ,

⇒ Z = − log(1− em) , ℓz = 0 .
(4.25)

From the computations in eq. (4.19) (we choose ν0 = 0),

exp (s0(m, ν0 = 0)) = − exp

[

i

2π
Li2(e

−Z) + Z

]

= − exp

[

i

2π
Li2(1− em)− log(1− em)

]

= exp

[

i

2π

(

Li2(e
−m) + (2πi−m) log(1− e−m)− 1

2
m2 + 2πim− π2

6

)]

,

s2(m, ν0 = 0) =
i
(

m3(z − 1)z − 6iπm2(z − 1)z − 2πm(z − 1)(4πz + 3i) + 4π2(1− 2z)
)

12π

=
emm

(

im2 + 6πm+ 2π(3− 4iπ)
)

+ 2iπe2m(2π + 3im)− 4iπ2

12π (em − 1)2
. (4.26)

Here we use following identity

Li2(1− u) = Li2

(

1

u

)

+
π2

3
+

1

2
log2(−u)− log u log(1− u) . (4.27)
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Comparing with s0 and s1 for a free chiral theory in eq. (4.4),

s
U(1)

−

1
2
+Φ

0 (m, ν0 = 0) = sΦ0 (m, ν0 = 0) +
m2

4πi
−m− iπ

12
,

s
U(1)

−

1
2
+Φ

2 (m, ν0 = 0) = sΦ2 (m, ν0 = 0)− m

2
+

iπ

3
.

(4.28)

This is compatible with following identity (Z1 ≃ Z2 means Z1 = eiπδZ2 with δ ∈ Q)

∫

dZ√
2π~

e−
ZU
~ ψ~(Z) ≃ e

U2
−(2πi+~)U

2~
+

iπ(b2+b−2)
12 ψ~(U) ,

⇒ Z
U(1)

−

1
2
+Φ

b (m, ν0 = 0) ≃ e
m2

−2πi(b+b−1)m
4πi

+
iπ(b2+b−2)

12 ZΦ
b (m, ν0 = 0) .

(4.29)

k = −3/2 case: SUSY enhancement. The partition function is

Zb

(

m, ν
)

=

∫

dZ√
2π~

e−
Z2+2Z(U+ν(iπ+ ~

2))
2~ ψ~(Z)

∣

∣

∣

∣

U=bm

. (4.30)

The saddle point equation and Bethe-vacua equation are

(saddle point equation) : −Z(α,ℓz) + log(1− e−Z(α,ℓz)
)− U + 2πiℓαz − iπν = 0 ,

(Bethe-vacua equation) :
1− 1

z

z
= (−1)νeU .

(4.31)

There are two Bethe-vacua {zα}α=1,2 and there are corresponding two saddle points

{Z(α,ℓz)(U, ν)} with a proper choice of ℓz ∈ Z. The round 3-sphere free energy Fb=1(m, ν) :=

−Re logZb=1(m, ν) with general choice of the R-charge mixing ν can be computed using

eq. (3.44) and (4.19):

Fb=1(m, ν) = −Re log
∑

α=1,2

exp

(

sα0
(

m+ 2πi(ν + 1), ν0 = −1
)

)

(4.32)

= −Re
∑

α=1,2

2 exp

(

iLi2(e−Z)
2π − iZ2

4π + 1
2Z + (1− ℓαz )Z

)

−3(eZ − 1) + eZ + 1

∣

∣

∣

∣

Z=Z(α,ℓz)(U=m+2πi(ν+1),ν0=−1)

.

The free energy has Z2 symmetry

Fb=1(m = 0, ν) = Fb=1(m = 0,−ν) , (4.33)

and has maximum at

νIR = 0 . (4.34)

At the IR fixed point νIR = 0, there are two Bethe-vacua

z(α=1) =
1

2
(−1 +

√
5) , z(α=2) =

1

2
(−1−

√
5) . (4.35)
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Here we choose ν0 = −1 and U = 2πi(νIR − ν0) = 2πi. Basic CFT data at the IR fixed

point can be computed using eq. (3.44), (4.19) and (4.23) with k = −3/2, ν0 = −1 and

νIR = 0

F = Fb=1(m = 0, ν = 0) = −Re log

(

1 + exp(3πi5 )√
5

)

= 0.642965 ,

CJJ = 8 ∂2
mFb=1(m = 0, ν = 0) =

2

25

(

8− 5
√

2
√
5 + 5

π

)

= 0.248137 ,

CT =
8

π2
∂2
bFb=1(m = 0, ν = 0) =

8

25

(

8− 5
√

2
√
5 + 5

π

)

= 0.992549 .

(4.36)

Note the equality 4CJJ = CT which is a strong evidence for the IR N = 4 supersymmetry

of the theory. Refer to [49] for more evidences for the IR enhancement.

4.3 U(1)k coupled to two chiral multiplets of charge +1

The squashed 3-sphere partition function and the superconformal index are

Zb

(

m, ν
)

=

∫

dZ√
2π~

e
(k+1)Z2

−2Z(U+(iπ+ ~
2 )ν)

2~ ψ~(Z)ψ~(Z)

∣

∣

∣

∣

U=bm

,

Iq(m, u; ν) =
∑

n∈Z

∮

|v|=1

dv

2πiv
v−m((−q

1
2 )νu)−nv(k+1)nI∆(n, v; q)I∆(n, v; q) .

(4.37)

The theory has U(1)J × SU(2)Φ flavor symmetry. U(1)J is the topological symmetry while

SU(2)Φ is the symmetry rotating the two chiral multiplets. The R-symmetry can be mixed

only with the U(1)J . m and ν are the real mass and the R-symmetry mixing parameter

for the U(1)J respectively, while (m, u) are (background magnetic flux, fugacity) for the

U(1)J . In the index formula, we turned off the (background magnetic flux, fugacity) for

the SU(2)Φ symmetry. The proper CS level quantization is

k ∈ Z . (4.38)

The condition (3.23) is satisfied when

ν0 + (k + 1) ∈ 2Z . (4.39)

The twisted superpotential at leading order is

W~ℓ
0(Z,U, ν) =

(k + 1)

2
Z2 + 2Li2(e

−Z) + 2πiℓzZ − ZU − iπνZ . (4.40)

The saddle points and Bethe-vacua of the theory are determined by following equations

Saddle point equation : (k + 1)Z + 2 log(1− e−Z)− U − iπν + 2πiℓz = 0 ,

Bethe-vacua equation : zk+1

(

1− 1

z

)2

= eU (−1)ν .
(4.41)
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For each Bethe-vacuum z(α), there is an associated saddle point Z(α,ℓz) upon a proper

choice of ℓz. Up to 3-loop, the perturbative invariants are

S0(U,ν)=W~ℓ
0(Z,U,ν) ,

e2S1 =
z1−ν

B(1−z)
,

S2(U,ν=0)=
4B3−12B2(z+1)+6B(z2+5z)−20z2

24B3(z−1)
,

S2(U,ν=−1)=
4B3−3B2

(

z2−2z+9
)

−6B(z2−7z)−20z2

24B3(z−1)
,

S3(U,ν=0)=
−2B5z(z+3)+B4z

(

3z2+34z+27
)

−B3z
(

z3+49z2+127z+27
)

24B6(z−1)2

+
2B2z2

(

11z2+98z+67
)

−20B
(

5z4+11z3
)

+120z4

24B6(z−1)2
,

S3(U,ν=−1)=
−8B5z+16B4z(z+3)−2B3

(

5z3+65z2+32z
)

24B6(z−1)2

+
2B2z2

(

z2+62z+113
)

−40B
(

z4+7z3
)

+120z4

24B6(z−1)2
.

(4.42)

Here we define

B := (k + 1)z + 1− k . (4.43)

The b → 1 expansion coefficients sαn(m, ν) in eq. (3.24) are

exp
(

s0(m, ν)
)

=

exp

(

Z(im−2i log(1−e−Z)+π(−3ν−2ℓz+8))+4iLi2(e−Z)
4π

)

B(1− z)
,

∂ms0(m, ν) =
iBm(z − 1) + 2πB(ν + ν(−z)− 2) + 4πz

2πB2
, (4.44)

∂2
ms0(m, ν) =

iB3(z − 1) + 4πB2z + 2iBm(z − 1)z − 4πBz(ν(z − 1) + z + 3) + 16πz2

2πB4
,

and

s2(m,ν=0)=
1

6πB6(z−1)2

(

8π2iB6 (z−1)−960π3z4

+B5 (−8iπ2mz2−6πmz2+8iπ2mz+12πmz−6πm+16π3z2−24iπ2z2+48π3z+24iπ2)

+B4(6πm2z3−12πm2z2+6πm2z+24iπ2mz3+6πmz3+48iπ2mz2−12πmz2−72iπ2mz

+6πmz−24π3z3+12iπ2z3−272π3z2+48iπ2z2−216π3z−60iπ2z
)

+B3(im3z4−3im3z3+3im3z2− im3z−6πm2z4−6πm2z3+30πm2z2−18πm2z

−12iπ2mz4−180iπ2mz3+84iπ2mz2+108iπ2mz+8π3z4+392π3z3

−40iπ2z3+1016π3z2+40iπ2z2+216π3z
)

+B2(24πm2z4−48πm2z3+24πm2z2+128iπ2mz4+192iπ2mz3−320iπ2mz2

−176π3z4−1568π3z3−1072π3z2
)

+B
(

−240iπ2mz4+240iπ2mz3+800π3z4+1760π3z3
)

)

,
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s2(m,ν=−1)=
1

6πB6(z−1)2

(

8π2iB6 (z−1)−960π3z4 (4.45)

+B5(3πmz3−8iπ2mz2−15πmz2+8iπ2mz+21πmz−9πm−6iπ2z3

+18iπ2z2+64π3z−66iπ2z+54iπ2)

+B4(6πm2z3−12πm2z2+6πm2z+6πmz3+96iπ2mz2−12πmz2−96iπ2mz+6πmz

−12iπ2z3−128π3z2+96iπ2z2−384π3z−84iπ2z
)

+B3(im3z4−3im3z3+3im3z2− im3z−24πm2z3+48πm2z2−24πm2z−120iπ2mz3

−72iπ2mz2+192iπ2mz+80π3z3−40iπ2z3+1040π3z2+40iπ2z2+512π3z
)

+B2(24πm2z4−48πm2z3+24πm2z2+32iπ2mz4+384iπ2mz3

−416iπ2mz2−16π3z4−992π3z3−1808π3z2
)

+B
(

−240iπ2mz4+240iπ2mz3+320π3z4+2240π3z3
)

)

.

k = 0 case: SU(3) symmetry enhancement. In the case, the U(1)J × SU(2)Φ
symmetry is enhanced to SU(3) at IR [33, 50–52]. Under the symmetry enhancement,

the Cartan u(1)J for the topological U(1)J symmetry is embedded into su(3) as follows

u(1)J =
1

3
diag{1, 1,−2} ∈ su(3) . (4.46)

Using eq. (3.44), (4.44) and (4.45), we can compute Fb=1(m, ν) and check that

Fb=1(m = 0, ν) = Fb=1(m = 0, 2− ν) is maximized at ν = νIR = 1. (4.47)

At the IR fixed point νIR = 1, there are two Bethe-vacua

z(α=1) = eiπ/3 , z(α=2) = e−iπ/3 . (4.48)

Here, we choose ν0 = 1 and U = 2πi(νIR − ν0) = 0. Using eq. (3.44), (4.44) and (4.45), we

can compute the basic CFT data of the SCFT at the fixed point

F = Fb=1(m = 0, ν = 1) = − log
1√
3

(

e
V
2π − e−

V
2π

)

≃ 0.968723 ,

CJJ = 8∂2
mFb=1(m = 0, ν = 1) =

4 coth
(

V
2π

)

√
3π

− 16

9
≃ 0.576242 ,

CT =
8

π2
∂2
bFb=1(m = 0, ν = 1) =

16

27

(

11
√
3 coth

(

V
2π

)

π
− 6

)

≃ 2.02706 .

(4.49)

Here

V := 2 Im[Li2(e
iπ/3)] = 2.02988 . (4.50)

The F matches the computation in [58]. Note that the CT is less than that of the free

theory of 3 chiral multiplets, which also has SU(3) symmetry.
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A Quantum dilogarithm

The quantum dilogarithm function (Q.D.L) ψ~(Z) is defined by [59] (~ = 2πib2)

ψ~(Z) :=























∞
∏

r=1

1− qre−Z

1− q̃−r+1e−Z̃
if |q| < 1 ,

∞
∏

r=1

1− q̃re−Z̃

1− q−r+1e−Z
if |q| > 1 ,

(A.1)

with

q := e2πib
2
, q̃ := e2πib

−2
, Z̃ :=

1

b2
Z . (A.2)

The function satisfies the following difference equations

ψ~(Z + 2πib2) = (1− e−Z)ψ~(Z) , ψ~(Z + 2πi) =
(

1− e−
Z

b2

)

ψ~(Z) . (A.3)

At the special value b = 1, the Q.D.L simplifies as

logψ~=2πi(Z) =
−(2π + iZ) log(1− e−Z) + iLi2(e

−Z)

2π
. (A.4)

Poles and zeros of Q.D.L are

simple poles : 2πiZ≤0 + 2πib2Z≤0 ,

simple zeros : 2πiZ≥1 + 2πib2Z≥1 .
(A.5)

We have an integral representation:

logψ~(Z) =

∫

R+i0+

e
itZ
πb

+t(b+b−1)

sinh(bt) sinh(b−1t)

dt

4t
, for 0 < Im[Z] < 2π(1 + b2) . (A.6)

The asymptotic expansion when ~ = 2πib2 → 0 is given by

logψ~(Z)
b2→0−−−−−→

∞
∑

n=0

Bn~
n−1

n!
Li2−n(e

−Z , ℓ0, ℓz) . (A.7)

Here Bn is the n-th Bernoulli number with B1 = 1/2.
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