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1 Introduction

BPS one-particle states in N = 2 theories. The spectrum of 1
2 -BPS one-particle

states on the Coulomb branch belongs to the short list of exactly computable observables

of an N = 2 supersymmetric field theory. As such it has been a basic object of study at

least since the work of Seiberg and Witten [1, 2], where the spectrum for the pure SU(2)

theory was computed. Analogous problems in N = (2, 2) supersymmetric theories in two

dimensions had been considered earlier, e.g. in [3] which proposes to use the BPS spectrum

as the basis for a classification of all such theories admitting a massive deformation —

loosely speaking, to show that the theory can be reconstructed from its BPS spectrum. It

remains to be seen whether such a program has a chance to work in four dimensions, but

at least the BPS spectrum contains a lot of information about the theory.

By now there is a large body of work on BPS spectra in various four-dimensional

N = 2 field theories, from many points of view. We cannot give a complete review here,

but just mention some of the lines of development and a few works in each line:

• quiver quantum mechanics and related ideas, e.g. [4–9],

• wall-crossing methods and consistency constraints, e.g. [10–19] (see [20] for a review

of this approach as of 2011, containing many more references),

• geometric realizations such as string networks, or more generally split attractor flows

on the Coulomb branch, e.g. [21–27].
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These lines of development have considerable overlap, and each has informed the others,

leading to a rich, tightly constrained and consistent picture. Nevertheless, the list of

theories where the spectrum has been completely and explicitly described is still short, and

surprises continue to be discovered.

String networks in F-theory. In this paper we explore what can be learned by applying

the F-theory perspective to a rank-1 Minahan-Nemeschansky theory of type E6, E7 or

E8 [28, 29]. This theory is the N = 2 SCFT realized on the world-volume of a single

D3-brane probing an exceptional 7-brane in F-theory [30–34] and it has a 1-dimensional

Coulomb branch, corresponding to moving the D3-brane in the plane transverse to the 7-

brane. The 1
2 -BPS particles of the 4D theory can be realized as (p, q)-strings which stretch

between the D3-brane and the exceptional 7-brane [22, 26].

These (p, q)-strings are challenging to study directly, because the physics of strings

ending on the exceptional 7-brane is complicated. To get around this problem, we imagine

mass-deforming the exceptional 7-brane into component D7-branes (in F-theory terms,

deforming an IV ∗, III∗ or II∗ singularity into a collection of I1 singularities). If we are

far out on the Coulomb branch (i.e., if the distance to the D3-brane is much greater than

the separation of the D7-branes), this deformation does not affect the spectrum of BPS

states: the spectrum is still that of the conformal theory.1 However, after the deformation,

the way the BPS states are realized is different; we still have a single string stretching out

to the D3-brane, but at the 7-brane end, the string now splits into a network of string

junctions, with prongs ultimately ending on the component D7-branes.

Our ansatz. To study these string junctions, we follow a strategy pioneered in [24,

25]. After lifting to F -theory, BPS string junctions can be identified with holomorphic

curves in a torus fibration X over the Coulomb branch. Any holomorphic curve must have

nonnegative genus, and any two holomorphic curves must have nonnegative intersection

number. On the other hand, one can read off the flavor and electromagnetic charges of

the BPS states from the relative homology classes of the corresponding holomorphic curves

(see [35] for a detailed account of this point.) Combining these facts gives constraints on

the possible charges of BPS states. Next we make a simple ansatz: we assume that every

charge which is allowed by these constraints is actually realized as the charge of a BPS

state.

This kind of ansatz has been used before, e.g. in [23, 25] for SU(2) theories with funda-

mental flavors, and [36] for certain Argyres-Douglas theories. In all these cases this ansatz

turned out to give the correct BPS spectrum. Moreover the spectrum turned out to be fairly

simple: for example, in the SU(2) Nf = 4 theory, the only representations of the Spin(8) fla-

vor symmetry which occur are the 1,8s,8c,8v. In contrast, in the Minahan-Nemeschansky

theories which we consider, our ansatz leads to a much more complicated result: for states

with electromagnetic charge n(p, q), larger and larger flavor representations occur in the

spectrum as we increase n. To take a concrete example, in the E6 MN theory, we find

1We emphasize that “the spectrum of the conformal theory” is well defined: for conformal theories with

a 1-dimensional Coulomb branch, there are no wall-crossing phenomena to worry about.
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that for states with electromagnetic charge (6, 0) the possible E6 representations are 5824,

2430, 2925, 650, 78, 1; for other examples see tables 1, 2, 3, 4, 5, 6, 7 below.

The prediction that arbitrarily large representations should appear in the BPS spec-

trum runs counter to one’s experience with simpler theories, and might lead one to be

skeptical of our ansatz. However, we find reason for optimism: the BPS spectrum for some

electromagnetic charges in the E6 and E7 MN theories have recently been calculated by

a different method [16, 37, 38], and the list of representations we obtain using our ansatz

precisely matches what was computed there! This agreement leads us to conjecture that

our ansatz is actually correct.

Supposing that it is indeed correct, this string-network method gives a quite efficient

way of computing the charges which can occur in the BPS spectrum. In particular, the

string-network method is much faster than the spectral-network methods applied to MN

theories in [37, 38], which (so far) are practical for a charge n(p, q) only when all of n, p,

q are small.

BPS multiplicities. The string-network method (at least in our hands) does not directly

give a recipe for the BPS multiplicities : it tells us only which representations occur, not

how many times they occur. One might hope that the indices can be somehow extracted

from a closer look at the string networks or their associated holomorphic curves. We make

some preliminary exploration along these lines.

In [37, 38] it was observed that the indices computed there have an unexpected divisi-

bility property: for BPS particles of electromagnetic charge n(p, q), where gcd(p, q) = 1, the

BPS index is always a positive integer multiple of (−1)n+1n. The string-network picture

of the BPS particles offers a possible explanation of this phenomenon, as follows. A state

of charge n(p, q) comes from an M2-brane wrapping a holomorphic curve whose boundary

is homologous to an n(p, q)-cycle on the torus fiber at the D3-brane. If the boundary is a

union of disjoint, simple, essential closed curves, then to realize the class of an n(p, q)-cycle

requires exactly n boundary components (as pointed out in this context in [25]). Plausibly

(see § 4.1), the quantization of M2-branes wrapping holomorphic curves with n boundary

components produces a reduced Hilbert space of the form Vn⊗W where Vn is a “universal”

multiplet of spin n
2 .2 This has been observed before for n = 1, 2 which give rise, respec-

tively, to BPS hypermultiplets and vector multiplets [21, 39, 40]. If it is true for arbitrary

n, then this would explain the divisibility phenomenon in rank 1 Minahan-Nemeschansky

theories.

Now what about the actual indices? We can report one encouraging experimental

result, obtained by comparing the results of [37, 38] to the string-network picture: it

appears that the BPS index is precisely (−1)n+1n — the contribution from a single spin-n2
multiplet — if and only if the corresponding holomorphic curve has genus 0. However,

2A stronger hypothesis would be that W is a sum of copies of the spin-0 representation, so that the

full reduced Hilbert space would be a sum of spin-n
2

representations. This hypothesis was proposed in [37]

where it was called “spin purity.” While spin purity could be true, all the evidence so far is also consistent

with the weaker factorization hypothesis above.
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when the genus is greater than 0, the story becomes more complicated, and despite some

intriguing regularities,3 we do not have a general rule for determining the index.

Future directions. Here are a few questions which this work suggests:

• Why is our ansatz correct? The construction of string junctions is in principle highly

constrained: each string has to follow a gradient trajectory on the u-plane for an

appropriate central charge function. Nevertheless it seems that anything that is

allowed by our simple topological constraints actually does occur. It would be very

nice to give a direct construction of the required junctions.

• Can we carry out the quantization of the M2-branes directly, to establish that indeed

the spectrum of M2-branes wrapping holomorphic curves with n boundary compo-

nents always involves a universal spin-n2 multiplet?

• Can we give rules for determining the precise BPS indices arising from M2-branes

with genus g 6= 0?

• Can we use F-theory technology to study BPS states in the higher-rank MN theories,

obtained by considering r > 1 D3-branes probing a single exceptional 7-brane? (One

remark we can make immediately is that in this case the relation between the number

of boundary components and the charge will be a bit different: see section 4 below.)

2 Review of existing literature

There is a tremendously rich literature discussing BPS states in N = 2 theories and how

they arise in various string realizations. We will briefly review the key parts which are

needed in our analysis of BPS states in this section; for more details we refer the reader to

the original literature.

2.1 String junctions and BPS states

String junctions [22, 26] give a useful way of realizing the spectrum of BPS states of 4-

dimensional N = 2 theories which can be realized on the world-volume of a Type IIB

D3-brane probing orientifold singularities [41–43].

In what follows it will be convenient to reinterpret the string junctions in terms of

holomorphic curves. Here we just briefly recall how that picture works; see e.g. [35] for a

more detailed account of the relevant geometry. The Coulomb branch of the N = 2 theory

is a 1-dimensional complex space, parametrized by the position of the D3-brane in the

transverse space to the orientifold singularity. The F-theory torus fibers over the Coulomb

branch, giving an elliptically fibered complex surface X, which is in fact hyperkähler (one

may think of it as like a local patch of a K3 surface). BPS states in the theory at u

correspond to open membranes D ⊂ X whose boundary lies in the fiber Xu over u; the

BPS condition requires that D is actually holomorphic in one of the complex structures

on X.

3For instance, for g = 1 we find only indices 2 and 3 occur.
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The electromagnetic and flavor charges of the BPS state are determined by the relative

homology class [D] ∈ H2(X;Xu). In particular, the boundary ∂D is a 1-cycle on Xu; we

write its homology class [∂D] ∈ H1(Xu) as n(p, q), where we take p and q relatively

prime but not necessarily positive; following the string junction literature we sometimes

refer to this as the asymptotic charge of the corresponding string network; it is also the

electromagnetic charge of the corresponding BPS state.

To understand why BPS states are related to holomorphic curves, we recall how the IIB

picture can be lifted to M-theory. We start with the F-theory picture, then compactify on

a circle and T-dualize. Then the elliptic fiber of X becomes part of the eleven-dimensional

M-theory background. In this lift the D3-brane probe lifts to a M5-brane on the torus fiber,

and n(p, q)-strings stretched between the D3 probe and the D7 lift to M2-branes ending

on the M5 and wrapping the n(p, q)-cycle of the torus fibers. Thus string junctions in type

IIB lift to membranes wrapping complex curves in the total space of X.

At any rate, in this language, the question of whether BPS states exist with given

charges gets translated to the question whether a given class in H2(X;Xu) contains a

holomorphic representative. This is in general a difficult problem, but we can at least give

some necessary conditions. First, the self-intersection of a holomorphic curve J with genus

g and b boundary components in X is (using the fact that X has trivial canonical bundle):

#(J · J ) = −χ(J ) = 2g − 2 + b, (2.1)

where χ(J ) is the Euler characteristic of J . Writing J for the homology class [J ], the

holomorphy of J now descends to some constraints on J , as follows. Following [25], b

can be identified with n, the greatest common divisor of the electromagnetic charges of J .

Since g ≥ 0, (2.1) then implies

(J, J) ≥ −2 + n, (2.2)

where now ( , ) denotes the intersection pairing.4 While (2.2) is clearly necessary, not

every class J obeying (2.2) admits a holomorphic representative. Another necessary con-

dition is that if J and J ′ are distinct and have holomorphic representatives then they have

nonnegative mutual intersection,5

(J, J ′) ≥ 0. (2.3)

Below we will work out concretely the set of charges J compatible with the condi-

tions6 (2.2) and (2.3). Comparing our results with the BPS spectra computed in [37, 38],

4We are taking the intersection here between relative homology cycles; fortunately this number is indeed

well defined in our context for cycles whose boundaries are homologous.
5There is a tricky point here: this constraint applies to curves which are holomorphic in the same complex

structure on X, but BPS states with different central charges are generally holomorphic in different complex

structures on X. Indeed the complex structure is determined by the phase of the central charge. In our case,

when the D3-branes are very far from the D7-branes, the central charge is dominated by the contribution

from the asymptotic charges; thus two BPS states which have the same asymptotic charge are holomorphic

in complex structures which can be made arbitrarily close, which is enough to ensure that the intersection

constraint holds.
6You might worry that there is an ambiguity here. Once we have at least one J which we know to be

BPS, we can apply (2.3) to any new candidate BPS junction, J ′, to determine whether it is also BPS.

But we need to start somewhere. We will assume that, whenever we find a charge J which saturates (2.2)
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we will find that (2.2) and (2.3) appear to be not only necessary but also sufficient for the

existence of a BPS state! Encouraged by this striking agreement, we will then go on to

use (2.2) and (2.3) to study the BPS spectrum for the E8 MN theory. To our knowledge,

this is the first time that an analysis of the BPS spectrum of this theory has been per-

formed, though it is not the first time that it is noticed that (2.2) and (2.3) compute the

complete BPS spectrum of an N = 2 theory. In [23, 25] it was in fact already pointed

out that that these two constraints are sufficient to give the well-known, albeit far simpler,

BPS spectrum of the N = 2 SU(2) theory with 0 ≤ Nf ≤ 4 flavors, and in [36] the same

was done for some Argyres-Douglas theories.

2.2 Intersection pairing and flavor symmetry

The E6,7,8 singularity probed by the D3-brane can be resolved by mass deforming the

theory, replacing it by a collection of, respectively, 8, 9 or 10 mutually non-local (p, q) D7-

branes. The resulting presentation is not unique; here we use the canonical presentation

constructed in [24, 33]. This presentation involves multiple branes with charge (1, 0),

called A-branes, a single brane with charge (1,−1), called B-brane, and two branes of

charge (1, 1), called C-branes. In this picture all the branes have branch cuts emanating

downwards vertically and, from left to right, A-branes appear first, then the B-brane and

finally the C-branes; see figures 1 and 2. What distinguishes the different singularities is

nA, the number of A-branes; nA = 5 for E6, nA = 6 for E7 and nA = 7 for E8. For more

details see [24, 33].

Recall that, while strings of any charges can end on a D3-brane, only (p̃, q̃)-strings

can end on a (p̃, q̃)-7-brane. Therefore once a presentation of the singularity is given, a

string junction can be labeled by a set of integers, the invariant charges of the junction,

Qµ = (QiA, QB, Q
k
C), i = 1, . . . , nA, k = 1, 2 denoting respectively the signed number of

prongs ending on the nA A-branes, the B-brane and the two C-branes. The asymptotic

charge n(p, q) of the junction is then simply given by np =
∑nA

i=1Q
i
A + QB + Q1

C + Q2
C ,

nq = Q1
C + Q2

C − QB. Of course, the asymptotic charge of the junction does not fully

determine the Qs; to determine them fully we also have to specify the flavor charge.

The invariant charges Qµ of a string network are linearly related to the homology

class J of the corresponding membrane. Thus henceforth we will use J to indicate in-

terchangeably the homology class of the membrane and the corresponding string network.

Furthermore, the intersection number (J, J ′) can be written as a bilinear in the correspond-

ing invariant charges:

(J, J ′) = −
nA∑
i=1

QiAQ
′i
A −QBQ′B −

2∑
j=1

QjCQ
′j
C −

1

2

nA∑
i=1

QiA

(
Q′B −

2∑
j=1

Q′jC

)

−1

2

(
QB −

2∑
j=1

QjC

)
nA∑
i=1

Q′iA +QB

2∑
j=1

Q′jC +

2∑
j=1

QjCQ
′
B, (2.4)

for n = 1, then J has a holomorphic representative. This is sufficient to bootstrap the rest of the BPS

spectrum.
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D3 brane

(2, 2)

(4, 0)

(3, 0)

A-type B-type C-type

E6 singularity

Figure 1. An example of a string network realization of a BPS state. In particular in the figure is

shown the highest weight vector of the 78 with EM charge (3,0).

D3 brane

-(2, 2)

(−5, 1)

(−4, 1)

(1, 1)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

A-type B-type C-type

E8 singularity

Figure 2. A slightly more involved example of a string network realization of a BPS state, this

time in the E8 theory. In particular in the figure is shown the highest weight vector of the 248

with EM charge (1,1).

where nA = 5, 6, 7 for E6, E7 and E8 respectively. This expression is readily obtained

from the property that the self-intersection of a single open string stretching from a single

D7 to the D3 is −1, and that (J, J ′) is invariant under continuous deformations of the

junctions [24].

In [24] it was observed that there is a natural correspondence between neutral string

junction charges which saturate the bounds (2.2) and the roots of the flavor Lie algebra

associated to the given orientifold singularity. See [44] for a generalization and purely field-
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theoretic discussion of this correspondence. In a similar fashion we can associate neutral

string junction charges Jωj to fundamental weights of the Lie algebra, ~ωj . The Jωj satisfy

(Jαi , Jωj ) = −δji . (2.5)

Two special junction charges can be defined, Jωp and Jωq , which have asymptotic charge

(1, 0) and (0, 1) respectively, and are orthogonal to the fundamental weights, in the

sense that:

(Jωj , Jωp) = (Jωj , Jωq) = 0. (2.6)

Eq. (2.6) and the asymptotic charges of Jωp and Jωq fix these junction charges uniquely.

Since the (Jωi , Jωp , Jωq) span the charge lattice it is possible to write any junction charge as

J =

r∑
i=1

µiJωi + npJωp + nqJωq , (2.7)

where r is the rank of the flavor Lie algebra. Since the Jωi are neutral it follows that the

asymptotic charges of (2.7) are n(p, q). Furthermore (µ1, . . . , µr) are precisely the Dynkin

labels of the flavor representation of the string junction [24]. From (2.5) and (2.6), the

Dynkin labels of a given charge J can be readily extracted:

µi = −(J, Jαi). (2.8)

Finally, (2.8) translates into a relation between the Dynkin label µis and the invariant

charges Qµ(J). These relations, together with the expression of the EM charges as functions

of the Q’s, can be inverted. Each junction charge is thus uniquely determined by its Dynkin

labels and its asymptotic charges. Since this map is important in our computation, we find

it useful to reproduce explicitly, and it is reported in the appropriate section below.

The quadratic form (2.4) simplifies considerably if written in terms of the flavor and

asymptotic charges of the junctions rather than their invariant charges. In fact, calling
~λ(J) =

∑
i µi~ω

i the weight vector associated to the junction we have [24]:

− (J, J) = ~λ(J) · ~λ(J)− n2f(p, q), (2.9)

where f(p, q) is a positive definite quadratic form in the asymptotic charges, which varies

depending on the flavor symmetry group.

3 BPS spectrum in rank 1 MN theories

We can now compute explicitly the allowed flavor representations for BPS states in rank

1 MN theories.7 Below we only present the results for a few (p, q), see table 2, 4 and 7,

7To be precise, for each representation we only consider the junction charge corresponding to the highest

weight. The existence of the remaining junctions filling out the entire representation follows by repeatedly

adding the neutral string junctions corresponding to negative roots [24]. In the same paper the authors

also counted the number of junctions with self-intersection −1 and asymptotic charge (1, 0) in the E6, E7

and E8 theories finding 27, 56 and 248 respectively. Thus each fills out the fundamental representation of

the flavor group which is obviously consistent with the first row of table 1, 3 and 5.
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α1 α2 α3 α4 α5

α6

Figure 3. Our convention for the labeling of the simple roots of E6.

and for (1, 0), see table 1, 3 and 5. We present the computation for some small values of

n. It is important to remark that this choice is not due to computational inability; we can

quickly and easily compute the allowed flavor representations for very large (p, q) and n.

Rather, we choose small n in order to compare with the existing results in the literature.

In labeling the representations we followed the convention in [45].

Our results for the E6 theory match perfectly with [37], and for the E7 theory they

similarly match with [38]. While this is the first time that a calculation of the charges

occurring in the BPS spectrum of the E8 theory is carried out, there is an interesting

overlap with a recent previous result: our representations in table 5 corresponding to

genus 0 curves perfectly match the E-string spectrum of massless particles arising from

rational curves of genus 0 recently derived in [46].

Our calculation, despite its remarkable efficiency, is blind to some of the information

which can be computed by other methods. In particular, we have no way of computing

the index by which a given flavor representation and asymptotic charge appears. This

has been done for some small charges in [37, 38] for the E6 theory, and in [38] for the E7

theory. Comparing with our results we find “experimental” hints of a relation between the

reduced index, Ωred(J), and the genus of the corresponding holomorphic curve. We hope

this relation can be refined in the future; to highlight this correspondence, which we will

be discussed in more detail in the next section, we will report in the tables below, when

available, the information of Ωred(J).

3.1 E6 theory

Our convention for the labeling of the E6 simple roots is shown in figure 3, which in turn

fixes our convention for the Dynkin labels of the representations. We can then explicitly

write the invariant charges of a string junction in terms of its flavor representation Dynkin

labels (µ1, . . . , µ6) and asymptotic charges n(p, q) [24]:

E6 :



QA1 = 1
3(4µ1 + 5µ2 + 6µ3 + 4µ4 + 2µ5 + 3µ6 − np− 3nq)

QA2 = 1
3(µ1 + 5µ2 + 6µ3 + 4µ4 + 2µ5 + 3µ6 − np− 3nq)

QA3 = 1
3(µ1 + 2µ2 + 6µ3 + 4µ4 + 2µ5 + 3µ6 − np− 3nq)

QA4 = 1
3(µ1 + 2µ2 + 3µ3 + 4µ4 + 2µ5 + 3µ6 − np− 3nq)

QA5 = 1
3(µ1 + 2µ2 + 3µ3 + 4µ4 + 2µ5 − np− 3nq)

QB = 1
3(−4µ1 − 8µ2 − 12µ3 − 10µ4 − 5µ5 − 6µ6 + 4np− 9nq)

QC1 = 1
3(−2µ1 − 4µ2 − 6µ3 − 5µ4 − µ5 − 3µ6 + 2np− 3nq)

QC2 = 1
3(−2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − 3µ6 + 2np− 3nq)

(3.1)
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Allowed E6 representations for BPS states with n(1, 0) asymptotic charge

n (E6 representation, g, Ωred)

1 (27,0,1)

2 (27,0,1)

3 (78,0,1)+(1,1,2)

4 (351,0,1)+(27,1,2)

5 (1728,0,1)+(351,1,2)+(27,2,6)

6 (5824,0,1)+(2430,0,1)+(2925,1,2)+(650,2,6)+(78,3,13)+(1,4,16)

7 (19305,0,1)+(17550,1,3)+(7371,2,6)+(1728,3,13)+(351′,3,12)+(351,4,29)+(27,5,44)

8
(54054,0,1)+(46332,1,3)+(34398,1,2)+(51975,2,7)+(17550,3,13)+(7722,3,12)

+(7371,4,29)+(1728,5,78)+(351
′
,5,28)+(351,6,100)+(27,7,163)

9
(146432,0,1)+(43758,1,2)+(252252,2,9)+(105600,3,14)+(78975,3,13)

+(70070,4,29)+(3003,4,21)+(34749,5,78)+(5824,6,84)+(5824,6,146)

+(2430,6,97)+(2925,7,228)+(650,8,444)+(78,9,532)+(1,10,376)

10

(359424′,0,1)+(459459,2,7)+(412776,2,6)+(494208,3,15)+(393822,3,15)

+(386100,4,30)+(61425,4,22)+(314496,5,79)+(112320,6,146)+(46332,6,97)

+(34398,6,56)+(51975,7,212)+(19305,7,287)+(17550,8,569)

+(7722,8,281)+(7371,9,962)+(1728,10,1387)+(351′,10,962)+(351,11,1905)

+(27,12,2015)

Table 1. The allowed representations for BPS states with asymptotic charges n(1, 0), with 1 ≤
n ≤ 10, are listed. We also list the genus of the corresponding holomorphic curves, and the reduced

index Ωred computed in [37, 38]. We follow [45] for the R, R and R′ conventions.

Recall that the QAi s, QB and QC1,2 denote respectively the number of prongs ending on the

five A-branes, the B-brane and the two C-branes. Plugging (3.1) into (2.4) we find the

following expression for the quadratic form in terms of the Dynkin labels and asymptotic

charges:

(J, J)E6 = −~λ(J) · ~λ(J) + n2fE6(p, q) = −~λ(J) · ~λ(J) + n2
(

1

3
p2 − pq + q2

)
(3.2)

Now we can set up the computation. First notice that the relations between the

(µi, p, q) and the invariant charges of the junctions in (3.1) involve rational coefficients.

Invariant charges can only be realized by an actual junction if they are integers. There

do exist choices of Dynkin label and asymptotic charges for which (3.1) gives invariant

charges which are only rational, not integral; we call these improper charges (following

the terminology of [24] where the corresponding would-be junctions were called improper

junctions), and we throw them away. We only check (2.2) and (2.3) on proper charges.

This is the right place to make a quick aside and provide an explanation for a “super-

selection” rule that was noticed in [37]. The compact simply connected form of E6 has a

Z3 center, which acts on a representation with Dynkin label (µ1, . . . , µ6) as ωµ1−µ2+µ4−µ5 ,
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E6 representations for BPS states with n(3, 2) asymptotic charge

n (E6 representation, g, Ωred)

1 (78,0,1)+(1,1,3)

2 (650,0,1)+(78,1,2)+(1,2,4)

3 (5824,0,1)+(5824,0,1)+(2925,1,2)+(650,2,8)+(78,3,11)+(1,4,12)

4 (78975,0)+(78975,0)+(70070,1)+(3003,1)+(3003,1)+(34749,2)+(2430,3)

+(5824,3)+(5824,3)+(2925,4)+(650,5)+(78,6)+(1,7)

Table 2. The allowed representations for BPS states with asymptotic charges n(3, 2), with 1 ≤
n ≤ 4, are listed. We also list the genus of the corresponding holomorphic curves, and the reduced

index Ωred computed in [37] for 1 ≤ n ≤ 3. We follow [45] for the R and R convention.

with ω = e2πi/3. The authors of [37] pointed out that on all representations allowed for BPS

states with asymptotic charge n(p, q), the center acts8 as ωnp. In our framework there is a

straightforward explanation for this superselection rule: it arises from the requirement that

the junction charge is proper. From (3.1), the Q’s are all of the form Qi = 1
3gi(µi, n, p, q).

It follows that the junction is proper iff:

gi(µi, n, p, q) ∈ 3Z, i.e. ωgi(µi,n,p,q) = 1. (3.3)

We can redefine gi up to multiple of 3 and bring all the gi to a common form g(µi, n, p, q) =

µ1 − µ2 + µ4 − µ5 − np ∈ 3Z, which implies

ωµ1−µ2+µ4−µ5ω−np = 1, (3.4)

from which the superselection rule mentioned above follows.

Let’s now go back to our computation. We first fix the asymptotic charge of the

string junction, say n(p, q). This fixes the r.h.s. of the inequality in (2.2). We then start

constructing string junctions with that given asymptotic charge with larger and larger

representations. This is done by explicitly plugging different Dynkin labels in (3.1) along

with the chosen n(p, q) and computing the corresponding invariant charges. We then

discard the improper junctions. The allowed flavor representations for asymptotic charge

n(p, q) are those which give rise to proper junctions that pass both (2.2) and (2.3).

A few remarks are in order. First notice that from (2.2) we can straightforwardly

compute the genus of the putative holomorphic curve associated to a given junction charge

(more below). If (2.2) is saturated, then obviously g = 0. In the following we will label

a BPS state not only by its asymptotic and flavor charge, but also by its genus. We will

describe below a correlation between the genus and the reduced index of the given flavor

representation [37].

Second, (2.3) has to be checked only against charges which do have holomorphic rep-

resentatives. In practice we start from n = 1 and then work our way up to larger n. As

8The EM duality frame chosen for the presentation of the E6 singularity in terms of non-mutually local

D7-branes in [24] slightly differs from the choice of duality frame made in [37]. That explains why in [37]

the action of the center is written as ωn(p+q) instead of ωnp.
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Allowed E7 representations for BPS states with n(1, 0) asymptotic charge

n (E7 representation, g, Ωred)

1 (56,0,1)

2 (133,0,1)+(1,1,2)

3 (912,0,1)+(56,1,2)

4 (8645,0,1)+(1539,1,2)+(133,2,6)+(1,3,7)

5 (86184,0,1)+(27664,1,2)+(6480,2,6)+(912,3,13)+(56,4.23)

6
(573440,0,1)+(253935,0,1)+(365750,1,2)+(152152,2,6)+(40755,3,13)

+(7371,3,12)+(8645,4,29)+(1463,4,16)+(1539,5,51)+(133,6,93)+(1,7,79)

7
(3635840,0,1)+(3792096,1,3)+(2282280,2,6)+(861840,3,13)+(320112,3,12)

+(362880,4,29)+(86184,5,78)+(51072,5,44)+(27664,6,107)+(6480,7,256)

+(912,8,320)+(56,9,448)

Table 3. The allowed representations for BPS states with asymptotic charges n(1, 0), with 1 ≤
n ≤ 7 are listed. We also list the genus of the corresponding holomorphic curves, and the reduced

index Ωred computed in [38].

α1 α2 α3 α4 α5 α6

α7

Figure 4. Our convention for the labeling of the simple roots of E7.

n increases we check (2.3) against all the BPS states whose existence has been already

established.

The first case we encounter is that of a single string stretching from one of the D7-

branes to the D3; these states have asymptotic charges equal to the charges of a single A, B

or C brane. When we go to larger n, at least in the case of (p, q) = (1, 0), when (2.3) fails,

it fails only against this single-string configuration. This is analogous to what happens for

the SU(2) N = 2 theory [40].

Our results are reported in tables 1 and 2. The consequences of the superselection (3.4)

are obvious in both tables. For the states in the (1, 0) sector (3.4) reads ωµ1−µ2+µ4−µ5 = ωn

and has a consequence there is a periodicity 3 in the type of representations that appear

as n increases. Conversely for the charges in the (3, 1) sector, (3.4) is independent of n

and in fact all representations that appears at level n, also appear at n + 1. Moreover

we notice that, for the n(1, 0) sector, each representation that appears at (n, g) recurs at

(n+ 3, g+ n), see table 3. Similarly in the (3, 1) sector, only representations with a trivial

action of the center are allowed and the recursion gets modified to (n, g)→ (n+ 1, g + n).
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Allowed E7 representations for BPS states with n(1, 1) asymptotic charge

n (E7 representation, g)

1 (133,0)+(1,1)

2 (1539,0)+(133,1)+(1,2)

3 (40755,0)+(8645,1)+(1463,1)+(1539,2)+(133,3)+(1,4)

4
(980343,0)+(253935,0)+(365750,1)+(150822,1)+(152152,2)+(40755,3)

+(7371,3)+(8645,4)+(1463,4)+(1539,5)+(133,6)+(1,7)

5

(23969792,0)+(11316305,1)+(7482618,1)+(7142499,2)+(915705,2)+(3424256,3)

+(617253,3)+(573440,4)+(980343,4)+(253935,4)+(365750,5)+(150822,5)

+(152152,6)+(40755,7)+(7371,7)+(8645,8)+(1463,8)+(1539,9)+(133,10)+(1,11)

Table 4. The allowed representations for BPS states with asymptotic charges n(1, 1), with 1 ≤
n ≤ 5 are listed. We also keep track of the genus of the corresponding holomorphic curves. As

discussed in the text, only real representations appear.

3.2 E7 theory

Our convention for the labeling of the E7 simple roots is shown in figure 4. Again this

fixes our convention for the Dynkin labels of the representations, allowing us to write the

invariant charges of a string junction in terms of its flavor representation Dynkin labels

(µ1, . . . , µ7) and asymptotic charges n(p, q) [24]:

E7 :



QA1 = 1
2(−2µ1 − 4µ2 − 4µ3 − 3µ4 − 2µ5 − µ6 − µ7 − np+ 3nq)

QA2 = 1
2(−2µ1 − 4µ2 − 4µ3 − 3µ4 − 2µ5 − µ6 − 3µ7 − np+ 3nq)

QA3 = 1
2(−2µ1 − 4µ2 − 6µ3 − 3µ4 − 2µ5 − µ6 − 3µ7 − np+ 3nq)

QA4 = 1
2(−2µ1 − 4µ2 − 6µ3 − 5µ4 − 2µ5 − µ6 − 3µ7 − np+ 3nq)

QA5 = 1
2(−2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − µ6 − 3µ7 − np+ 3nq)

QA6 = 1
2(−2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − 3µ6 − 3µ7 − np+ 3nq)

QB = 3µ1 + 6µ2 + 8µ3 + 6µ4 + 4µ5 + 2µ6 + 4µ7 + 2p− 5nq

QC1 = 2µ1 + 3µ2 + 4µ3 + 3µ4 + 2µ5 + µ6 + 2µ7 + np− 2nq

QC2 = µ1 + 3µ2 + 4µ3 + 3µ4 + 2µ5 + µ6 + 2µ7 + np− 2nq

(3.5)

Plugging (3.5) into (2.4) we find the following expression for the quadratic form in terms

of the Dynkin labels and asymptotic charges:

(J, J)E7 = −~λ(J) · ~λ(J) + n2fE7(p, q) = −~λ(J) · ~λ(J ′) + n2
(

1

2
p2 − 2pq +

5

2
q2
)

(3.6)

The analysis of the allowed BPS spectrum of the E7 MN theory is in large part analo-

gous to the E6. One difference is the “superselection” rule on representations which arises

from requiring a proper junction for each asymptotic (p, q) charge. The simply connected

form of E7 has a Z2 center which acts on representations with Dynkin label (µ1, . . . , µ7) as
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α1 α2 α3 α4 α5 α6 α7

α8

Figure 5. Our convention for the labeling of the simple roots of E8.

Allowed E8 representations for BPS states with n(1, 0) asymptotic charge

n (E8 representation, g)

1 (248,0)+(1,1)

2 (3875,0)+(248,1)+(1,2)

3 (147250,0)+(30380,1)+(3875,2)+(248,3)+(1,4)

4
(6696000,0)+(2450240,1)+(779247,2)+(147250,3)+(27000,3)+(30380,4)

+(3875,5)+(248,4)+(1,7)

5

(301694976,0)+(146325270,1)+(76271625,2)+(26411008,3)+(4881384,3)

+(6696000,4)+(4096000,4)+(2450240,5)+(779247,6)+(147250,7)+(27000,7)

+(30380,8)+(3875,9)+(248,10)+(1,11)

6

(8634368000′,0)+(4076399250,0)+(6899079264,1)+(4825673125,2)

+(2275896000,3)+(820260000,3)+(1094951000,4)+(203205000,4)+

+(344452500,5)+(301694976,5)+(146325270,6)+(70680000,6)+(76271625,7)

+(1763125,7)+(26411008,8)+(4881384,8)+(6696000,9)+(4096000,9)

+(2450240,10)+(779247,11)+(147250,12)+(27000,12)+(30380,13)+(3875,14)

+(248,15)+(1,16)

Table 5. The allowed representation for BPS states with asymptotic charges n(1, 0), with 1 ≤ n ≤ 6

are listed. We also keep track of the genus of the corresponding holomorphic curves.

(−1)µ4+µ6+µ7 . Analysis similar to the one in the E6 case, shows that (3.5) gives a proper

junction iff:

(−1)µ4+µ6+µ7 = (−1)n(p+q). (3.7)

BPS states with asymptotic charge n(p, q) can only appear in representation satisfy (3.7).

The center of E7 acts as−1 on pseudoreal representations and as +1 on real representations.

A consequence of (3.7) is thus that in the sector n(1, 0), pseudoreal representations appear

for n odd and real representations for n even. Moreover we notice that each representation

that appears at (n, g) recurs at (n+2, g+n), see table 3. Similarly, in the (1, 1) sector, only

real representation are allowed and the recursion gets modified to (n, g)→ (n+ 1, g + n).

3.3 E8 theory

Our convention for the labeling of the E8 simple roots is shown in figure 5. As before, this

fixes our convention for the Dynkin label of the representations which allows us to write

the invariant charges of a string junction in terms of its flavor representation Dynkin labels
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(µ1, . . . , µ8) and asymptotic charges n(p, q) [24]:

E8 :



QA1 = −2µ1 − 4µ2 − 5µ3 − 4µ4 − 3µ5 − 2µ6 − µ7 − 2µ8 − np+ 3nq

QA2 = −2µ1 − 4µ2 − 5µ3 − 4µ4 − 3µ5 − 2µ6 − µ7 − 3µ8 − np+ 3nq

QA3 = −2µ1 − 4µ2 − 6µ3 − 4µ4 − 3µ5 − 2µ6 − µ7 − 3µ8 − np+ 3nq

QA4 = −2µ1 − 4µ2 − 6µ3 − 5µ4 − 3µ5 − 2µ6 − µ7 − 3µ8 − np+ 3nq

QA5 = −2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − 2µ6 − µ7 − 3µ8 − np+ 3nq

QA6 = −2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − 3µ6 − µ7 − 3µ8 − np+ 3nq

QA7 = −2µ1 − 4µ2 − 6µ3 − 5µ4 − 4µ5 − 3µ6 − 2µ7 − 3µ8 − np+ 3nq

QB = 7µ1 + 14µ2 + 20µ3 + 16µ4 + 12µ5 + 8µ6 + 4µ7 + 10µ8 + 4np− 11nq

QC1 = 4µ1 + 7µ2 + 10µ3 + 8µ4 + 6µ5 + 4µ6 + 2µ7 + 5µ8 + 2np− 5nq

QC2 = 3µ1 + 7µ2 + 10µ3 + 8µ4 + 6µ5 + 4µ6 + 2µ7 + 5µ8 + 2np− 5nq

(3.8)

Plugging (3.8) into (2.4) we find the following expression for the quadratic form in terms

of the the Dynkin labels and asymptotic charges:

(J, J)E8 = −~λ(J) · ~λ(J) + n2fE8(p, q) = −~λ(J) · ~λ(J ′) + n2
(
p2 − 5pq + 7q2

)
(3.9)

Notice that in the E8 case the improper charges cannot arise. In fact the map (3.8) only

involves integer coefficients with the consequence that, for any (p, q), each representation

that occurs at n recurs at n + 1. The result for the n(1, 0) charge sector, up to n = 6,

is tabulated in the table 5 above. For n = 1, only the trivial and adjoint representations

occur (at genus g = 1, 0, respectively). In this case, each representation occuring at (n, g),

recurs at (n+1, g+n). In particular, the highest genus associated to a given value of n (the

one at which the trivial representation occurs) is g(n) = 1 + 1
2n(n + 1). In addition, new

representations occur, for each n, at g ≤ 2n − 5. The occurrence of new representations

and recurrence of old ones as a function of n and g is particularly evident in table 6 below.

In table 7 we instead list the representations appearing in the n(1, 1) sector up to n = 3.

3.4 Symmetries of the BPS spectrum

It was pointed out in [47] that the BPS spectra of the MN theories are invariant under a

certain cyclic group action on the charges. It is worth recalling the argument here.

The set of low-energy EM charges (p, q) (here (p, q) are not necessarily mutually prime)

carries an action of the low-energy EM duality group SL(2,Z) ∼= Sp(2,Z). The bilinear

form naturally defined on the string junctions can be written as a sum of two parts (2.9),

the SL(2,Z) group only acts on the quadratic form f(p, q). It is then natural to ask whether

there exists a non-trivial subgroup of the low-energy EM duality group which leaves f(p, q)

invariant. From the way in which we have studied the BPS states in this paper, it is

obvious that if such a subgroup exists, the allowed flavor representations of the BPS states

associated to any (p, q) charges related by these transformations will be identical. The

authors of [47] carried out this analysis for the E6, E7 and E8 theories, finding that f(p, q)

is left invariant respectively by a Z6, Z4 and Z6 subgroup of SL(2,Z). We can also write

down the explicit expression for them (we are using the same notation as [47]):
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g\n 1 2 3 4 5 6

0 248 3875 147250 6696000 301694976

8634368000′

+
4076399250

1 1 248 30380 2450240 146325270 6899079264

2 1 3875 779247 76271625 4825673125

3 248

147250 26411008 2275896000
+ + +

27000 4881384 820260000

4 1 30380

6696000

1094951000+
4096000

5 3875 2450240

344452500
+

301694976

6 248 779247

146325270
+

70680000

7 1

147250 76271625
+ +

27000 1763125

8 30380

26411008
+

4881384

9 3875

6696000
+

4096000

10 248 2450240

11 1 779247

12

147250
+

27000

13 30380

14 3875

15 248

16 1

Table 6. We report a different way of looking of the allowed representation for BPS states of the

E8 theory with asymptotic charges n(1, 0). The representation is indicated in red when it occurs

for the first time.

E6:

M0
±(6) =

(
±1 0

0 ±1

)
, M1

±(6) =

(
±1 ∓3

±1 ∓2

)
, M2

±(6) =

(
∓2 ±3

∓1 ±1

)
. (3.10)

E7:

M0
±(7) =

(
±1 0

0 ±1

)
, M1

±(7) =

(
±2 ∓5

±1 ∓2

)
. (3.11)

E8:

M0
±(8) =

(
±1 0

0 ±1

)
, M1

±(8) =

(
±2 ∓7

±1 ∓3

)
, M2

±(8) =

(
±3 ∓7

±1 ∓2

)
. (3.12)
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Allowed E8 representations for BPS states with n(1, 1) asymptotic charge

n (E8 representation, g)

1 (3875,0)+(248,1)+(1,2)

2
(2450240,0)+(779247,1)+(147250,2)+(27000,2)+(30380,3)+(3875,4)

+(248,5)+(1,6)

3

(281545875,0)+(2275896000,0)+(820260000,0)+(203205000,1)

+(1094951000,1)+(344452500,2)+(301694976,2)+(146325270,3)+(70680000,3)

+(76271625,4)+(1763125,4)+(26411008,5)+(4881384,5)+(6696000,6)

+(4096000,6)+(2450240,7)+(779247,8)+(147250,9)+(27000,9)+(30380,10)

+(3875,11)+(248,12)+(1,13)

Table 7. The allowed representation for BPS states with asymptotic charges n(1, 1), with 1 ≥ n ≥
3, are listed. We also list the genus of the corresponding holomorphic curve.

As it was already pointed out in [47], M(6)0−, M(6)1− and M(6)2− have to be accompanied by

a non-trivial action of the outer automorphism of E6, and thus the allowed representations

for BPS states with charges M(6)0,1,2− (p, q) will be conjugated compared to the allowed

representations for states with charge (p, q).

These expected symmetries of the spectrum can be checked explicitly in our compu-

tations and we find that the in the E6 case the allowed representations for n(1, 0), n(1, 1)

and n(−2,−1), at fixed n, are identical. For E7 the relevant charges are n(1, 0) and n(2, 1),

and for E8 they are n(1, 0), n(2, 1) and n(3, 1).

4 Geometry and properties of the BPS states

As discussed throughout the manuscript, our computation is very efficient in computing al-

lowed flavor representations, but it is insensitive to their indices. We also already mentioned

that each BPS state is not only characterized by its EM charge and flavor representation,

but also by two integers, (n, g): g is the genus and n the number of boundaries of the

holomorphic curve associated to it. Here we collect some “experimental” results which

suggest a geometrical interpretation of some of the BPS indices. By “experimental” we

mean that we did not have an a priori reason to expect that the quantities described below

should be related; we were guided instead by our computation and the comparison with

existing results.

4.1 Divisibility and the number of boundaries

Let us recall a bit of background on BPS 1-particle states of N = 2 theories. For a fixed

electromagnetic charge and momentum, the BPS 1-particle Hilbert space is a representation

of SU(2)spin × SU(2)R, of the form H = ((1/2, 0)⊕ (0, 1/2)) ⊗ Hred, where the “reduced

Hilbert space”Hred is also a representation of SU(2)spin×SU(2)R. The no-exotic conjecture,

proposed in [48], states that the action of SU(2)R on Hred is trivial. This conjecture has
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been proven in some particular cases [49, 50], and a general proof will appear in [51].

There still remains the question of describing Hred, either computing its dimension or

more ambitiously to determine its SU(2)spin representation content. This is what we usually

mean by the question of “determining the BPS multiplicities.”

Fortunately there are BPS indices available which are well suited to this problem. The

simplest such index is the second helicity supertrace, which is simply the graded dimension

(superdimension) of Hred. There is also the protected spin character introduced in [48],

which keeps track of the SU(2)spin content of Hred, which is strictly more informative than

the graded dimension.

As of now there are no computations of the protected spin character available in

Minahan-Nemeschansky theories. However, there are some computations of the second

helicity supertrace, which paint a suggestive picture. In particular, it was observed in [37]

that in the rank 1 Minahan-Nemeschansky E6 and E7 theories, BPS states with charge

n(p, q) occur with second helicity supertrace divisible by (−1)n+1n. The same property

continues to hold in the E7 theory [38]. This extra divisibility was not predicted in advance,

and seems to be pointing to some additional structure in these theories.

Since (−1)n+1n is exactly the contribution to the second helicity supertrace from a

spin-n2 multiplet of SU(2)spin, it seems natural to conjecture that Hred = Vn ⊗W where

Vn is the spin-n2 multiplet, and W is some representation of SU(2)spin; then the second

helicity supertrace would just be sdimHred = (−1)n+1n sdimW , which is indeed divisible

by (−1)n+1n, as long as sdimW > 0. (An even stronger conjecture would be that SU(2)spin
acts trivially on W ; this was called the “spin purity” hypothesis in [37].)

The F-theory perspective suggests a nice geometric interpretation of this factorization

of Hred. As already discussed in § 2.1, n, the greatest common divisor of the asymptotic

charges, corresponds to the number of boundaries of the holomorphic curves associated to

a given BPS state with charge n(p, q). This is true, regardless of the flavor representation

under which the state transforms. It is then appealing to conjecture that the quantization

of M2-branes with n boundaries generally gives rise to a Hilbert space including a spin-n2
multiplet as a universal factor. The fact that the number of boundaries of the holomorphic

curve wrapped by an M2-brane is related to the spin of the resulting BPS states was

already noticed for the BPS hypermultiplet and vector multiplet, respectively realized as

holomorphic curves with one boundary (disk) and two boundaries (cylinder) [39, 40].

If this is the correct interpretation of the divisibility property of BPS indices in rank

1 MN theories, then we should expect that this property will be modified in more gen-

eral theories. For example, we could consider the rank r MN theories. In this case the

picture of BPS states is similar to rank 1, except that the M2-branes can have boundary

components on any of r distinct torus fibers. For a state with electromagnetic charge

(n1(p1, q1), n2(p2, q2), . . . , nr(pr, qr)) the number of boundaries is
∑r

i=1 ni. Thus the natu-

ral analogue of the divisibility conjecture in this case would be that there is still a universal

factor Vn in the BPS Hilbert space, but now n is not just the GCD of the charges: rather

n =
∑r

i=1 ni.

– 18 –
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4.2 Reduced indices and genuses

As discussed above, the evidence in [37, 38] supports the hypothesis that the second helicity

supertraces counting BPS states of the E6 and E7 theories with charge n(p, q) are always

integer multiples of (−1)n+1n. It is then natural to consider a reduced index Ωred defined

by dividing the second helicity supertrace by (−1)n+1n.

While the number of boundaries of the holomorphic curve representing a given BPS

state only depends on the EM charges, the genus depends on the flavor charge as well.

This is easy to see from (2.1) and (2.9):

g~λ(J),n,p,q =
n2f(p, q)− n+ 1− ~λ(J) · ~λ(J)

2
, (4.1)

where f(p, q) is a positive definite quadratic form. (4.1) implies that the genus is a mono-

tonically decreasing function of the norm of the weight vector of the BPS state. For a

given EM charge n(p, q), BPS states in the singlet representation, if allowed, will be always

represented by holomorphic curves with the maximal genus.

We notice that in all cases in which a BPS state is represented by a holomorphic curve

with genus 0 and information on the corresponding reduced index is available, the reduced

index is exactly 1. This leads us to conjecture that holomorphic curves with genus 0 and

n boundaries in a given relative homology class are not only isolated but unique, and they

only give rise to a single BPS multiplet, of spin n
2 .

We also notice that the reduced index of BPS states increases with the genus. In

particular, BPS states associated to holomorphic curves with genus 1 always appear either

with reduced index 2 or 3. From genus 2 onwards, the range of reduced indices which

can appear increases rapidly. The central value of the range is a monotonically increasing

function of the genus. It would be interesting to better understand where in the geometry

the information about the indices is encoded. Our preliminary analysis strongly suggests

that the genus of the holomorphic curve is part of the story, but to have a more complete

picture more information is needed.
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