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Abstract: We develop a Mellin space approach to boundary correlation functions in

anti-de Sitter (AdS) and de Sitter (dS) spaces. Using the Mellin-Barnes representation of

correlators in Fourier space, we show that the analytic continuation between AdSd+1 and

dSd+1 is encoded in a collection of simple relative phases. This allows us to determine the

late-time tree-level three-point correlators of spinning fields in dSd+1 from known results

for Witten diagrams in AdSd+1 by multiplication with a simple trigonometric factor. At

four point level, we show that Conformal symmetry fixes exchange four-point functions

both in AdSd+1 and dSd+1 in terms of the dual Conformal Partial Wave (which in Fourier

space is a product of boundary three-point correlators) up to a factor which is determined

by the boundary conditions. In this work we focus on late-time four-point correlators with

external scalars and an exchanged field of integer spin-`. The Mellin-Barnes representation

makes manifest the analytic structure of boundary correlation functions, providing an

analytic expression for the exchange four-point function which is valid for general d and

generic scaling dimensions, in particular massive, light and (partially-)massless fields. It

moreover naturally identifies boundary correlation functions for generic fields with multi-

variable Meijer-G functions. When d = 3 we reproduce existing explicit results available

in the literature for external conformally coupled and massless scalars. From these results,

assuming the weak breaking of the de Sitter isometries, we extract the corresponding

correction to the inflationary three-point function of general external scalars induced by
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a general spin-` field at leading order in slow roll. These results provide a step towards

a more systematic understanding of de Sitter observables at tree level and beyond using

Mellin space methods.
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1 Introduction

Holography has by now inspired a great number of tools to understand boundary observ-

ables for theories on asymptotic anti-de Sitter (AdS) space in terms of simple consistency

requirements on correlators in Conformal Field Theory (CFT) [1–4]. CFT correlators

have, step-by-step, acquired the flavour of actual “S-matrix”-like observables for scattering

processes in AdS. The Mellin space representation of conformal correlators [5–13] and Har-

monic Analysis for the Euclidean Conformal Group [12, 14–17] have proven instrumental

in making this connection manifest, which encode bulk physics in a way which shares key

similarities with the flat-space scattering amplitudes.

In contrast, our understanding of boundary correlators in de Sitter space is in a pri-

mordial stage. As opposed to scattering amplitudes, these are spatial correlations at late

times which encode the imprints of past scattering processes. Because of this, correlators

in the dual Euclidean CFT are not bound to satisfy the Osterwalder-Schrader axioms such

as reflection positivity. Currently we do not have a complete grasp on the rules that the

corresponding late-time correlators have to obey, in particular how they encode consistent

bulk time evolution.

In recent years there has been a drive to refine our understanding of late-time correla-

tors in de Sitter space, which has been largely motivated by inflationary cosmology [18–21].

Cosmological observations can be traced back to spatial correlations of primordial fluctu-

ations at the end of inflation, which lie on the boundary of an (approximate) de Sitter

space-time. Non-Gaussianities in primordial correlation functions encode the physics of in-

flation, including interactions and field content, and the ultimate goal of the “Cosmological

Collider Physics” programme [22–36] is to classify the possible shapes of non-Gaussianities

for comparison with observations. To this end it is important to develop new tools to

systematically carve out the shapes of non-Gaussianities generated by a given spectrum

and couplings.

In this work we propose a new framework for the computation of late-time correlators

in de Sitter space, which is tailored to bridge the gap with our (comparably better) under-

standing of boundary correlators in anti-de Sitter space. This is based on the Mellin-Barnes

representation of boundary correlators in Fourier space, in which the analytic continuation

from anti-de Sitter to de Sitter turns out to be encoded in a collection of simple relative

phases.1 This observation allows the systematic derivation of late-time correlators in dS

from the Fourier transform of boundary correlators in AdS, which are simpler to obtain

and, in many cases, already known. This in particular includes correlators involving scalars

and totally symmetric fields of arbitrary integer spin, for which there are few results avail-

able to date in de Sitter, where in AdS the complete kinematic map between bulk cubic

couplings for any triplet of spinning fields and boundary three-point conformal structures

has been worked out explicitly [40].

Within this framework, bulk tree-level exchange four-point functions both in AdS and

dS are naturally expressed directly in terms of the boundary Conformal Partial Wave

1The relation between correlators in AdS and dS through analytic continuation has been considered in

previous works [37–39]. In this work we propose a slightly different approach to the analytic continuation,

which we discuss in detail in section 2.
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Figure 1. Comparison between a scattering process in AdS and dS. In AdS the boundary con-

dition is imposed at the conformal boundary at z → 0, while in dS it is imposed at the infinite

past η → −∞.

(CPW) that is dual to the exchanged single-particle in the bulk.2 The CPW is the ba-

sic kinematic object which is fixed by conformal symmetry,3 and in Fourier space it is

factorised into the two three-point boundary correlators generated by the cubic couplings

that participate in the exchange. In the Mellin-Barnes representation of the exchange

four-point function, the CPW is dressed by a factor whose poles that generate the Ef-

fective Field Theory (EFT) expansion and a second factor consisting only of zeros that

implement the boundary conditions. The EFT expansion is also constrained by conformal

symmetry up to a finite number of bulk contact terms, which is related to the freedom

of adding higher-derivative improvement terms to the cubic vertices (i.e. higher-derivative

terms which vanish on-shell).4 We show that there is a natural basis of contact interactions

in which the factor in the Mellin-Barnes representation that encodes the EFT expansion

is given by a simple csc-function. In particular, for the exchange of a spin-` field of scaling

dimension ∆ = d
2 + iν between fields φ(νj) of scaling dimension ∆j = d

2 + iνj , we have the

Mellin-Barnes representation:

Mellin-Barnes representation of exchange four-point functions in (A)dSd+1

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = N4

∫ i∞

−i∞

4∏
j=1

dsj
2πi

∫ +i∞

−i∞

du dū

(2πi)2
4 csc(π(u+ ū))︸ ︷︷ ︸

EFT

δ(u, ū)︸ ︷︷ ︸
b.c.

F ′ν,`(si;u, ū|~ki;~k)︸ ︷︷ ︸
CPW

,

where the Mellin variables sj and the momenta ~kj , j = 1, . . . , 4, are associated to the four

external legs, while the Mellin variables u, ū and the momentum ~k are associated to the

exchanged field. The Mellin variables in the argument of the CPW indicate that we are

using its Mellin-Barnes representation. The prime indicates that the momentum-conserving

delta function has been stripped off and the constant N4 is fixed in section 2.

2See also [41] where the same form for de Sitter exchange four-point functions was obtained taking a

direct bulk approach which also employs the Mellin-Barnes representation.
3In particular, Conformal Partial Waves are single-valued Eigenfunctions of the Casimir invariants of

the Conformal Group SO(1, d+ 1).
4This is the usual contact term ambiguity of exchange Witten diagrams.
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The above form of the exchange four-point function, which holds both in AdSd+1 and

dSd+1, makes manifest how the exchange four-point function can be completely specified by

the CPW, which is recovered upon evaluating the discontinuity of the correlator in s = k2,

2iDisc[f(s)] = f(e+iπs)− f(e−iπs) , (1.1)

where

Discs

[
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′
]

= N4

∫ i∞

−i∞

4∏
j=1

dsj
2πi

∫ +i∞

−i∞

du dū

(2πi)2
4δ(u, ū)F ′ν,`(si;u, ū|~ki;~k).

The zeros of the Mellin integrand, which are encoded in the function δ(u, ū), are not fixed

by conformal symmetry and are determined by the boundary conditions. Accordingly,

this factor takes different forms in AdS and dS, where in AdS it implements the Dirich-

let/Neumann boundary conditions at the conformal boundary, while in dS it implements

the Bunch-Davies vacuum condition at early times.

Aside from providing a convenient framework which places anti-de Sitter and de Sitter

scattering processes on an equal footing, the Mellin-Barnes representation is advantageous

on various other levels. It makes manifest the analytic structure, which allows to efficiently

study analytic continuations of the correlator with respect to all of its parameters. This not

only includes the momenta, but also both the boundary dimension d, the scaling dimensions

∆ of the fields and their spin `. Interestingly, this also allows to establish simple recursion

relations among boundary correlators with fields of different scaling dimensions and spin,

as we shall demonstrate. On top of this, well-established Mellin-Barnes methods allow to

straightforwardly derive asymptotic expansions of boundary correlators in the momenta

for regimes of interest.

In this work we focus on late-time exchange four-point functions in dSd+1 with general

external scalars and a general exchanged spin-` field, though the above expression for the

exchange holds more generally. As an intermediate step, we also derive the Mellin-Barnes

representation for the late-time tree-level three-point function of two general scalars and

a general spin-` field. Our results are valid both for massive, light and massless external

scalars, and for massive and (partially-)massless exchanged field of arbitrary integer spin-`.

For (partially-)massless exchanged fields, extra care needs to be taken due to divergences

that emerge in the general expression for the exchange four-point function at those values

of the scaling dimension, which can be treated systematically in the Mellin framework —

as we shall demonstrate.

From the result for general external scalars, we can obtain closed form analytic ex-

pressions for the leading slow-roll correction to inflationary three-point functions induced

by the exchange of a spin-` field. This is extracted by taking one of the external scalars

in the de Sitter exchange four-point function to soft momentum and a small mass [42, 43],

which is straightforward to implement at the level if the Mellin-Barnes representation by

taking the appropriate residues. In the squeezed limit, where k3/k1 � 1 (if we took the

momentum k4 to be soft), we find:
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Squeezed limit of the correction to the inflationary 3pt function from a spin-` exchange

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′(infl.) ∼ −

εN3

32
√
π

(
k1

2

)− d
2

+i(ν1+ν2)(k3

2

)+iν3

×

[(
k3

k1

)iν Γ(−iν)
(
1− `

2 + iν
2 ±

iν3
2

)
`−1(

d
2 + iν − 1

)
`
Γ
(
d
2 + `+ iν

) sin
(π

4
(d+ 2`+ 2i(ν + ν1 + ν2))

)
× csc

(π
2

(`+ i(ν3 − ν))
)∏
±±̂

Γ

(
d+ 2`+ 2i(ν ± ν1±̂ν2)

4

)
+ ν → −ν

]

× (−2)``!

(d2 − 1)`
C

( d−2
2 )

` (cos θ), (1.2)

with slow-roll parameter ε. This exhibits the characteristic power-law behaviour in k3/k1

for a particle exchange [24, 25, 27, 29, 44, 45], which is oscillatory for massive exchanged

particles on the Principal Series, ν ∈ R. The phase of the oscillatory behaviour arises from

the quantum interference between two processes [27, 29] (the expansion of the universe

and particle creation), which turns out to be determined by the factor δ(u, ū) in the de

Sitter exchange four-point function. The fact that we are exchanging a spin-` particle is

encoded in the angular dependence of the Gegenbauer polynomial, which reduces to the

usual Legendre polynomial for the d = 3 case considered in [29]. The ease at which this

result could be obtained for general external scalars, which is new even for d = 3 (as far as

we are aware), is testament to the strength of the Mellin formalism.

Outline. This paper is organised as follows. We begin in section 2 with a discussion on

propagators of scalar and spinning fields in (A)dSd+1. We show that Wightman functions in

dS and Harmonic functions in EAdS are related by analytic continuation. In Fourier space,

this analytic continuation is encoded in a simple phase at the level of the Mellin-Barnes

representation. This observation allows us to establish a dictionary to obtain late-time

correlators in dSd+1 from Witten diagrams in AdSd+1. In section 3 we apply this dictionary

to obtain late-time tree-level three-point functions for two general scalars and a general

field of integer spin ` in dSd+1 from the Fourier transform of the known corresponding result

in AdSd+1. In section 4 we consider late-time exchange four-point functions in dSd+1. We

show how a Mellin-Barnes representation for the exchange can be obtained by dressing the

dual Conformal Partial Wave with appropriate factors which encode the EFT expansion

and the boundary conditions. We show how to extract both the OPE and EFT expansion

from the Mellin-Barnes representation, and moreover how it reproduces existing results in

the literature when d = 3 and the external scalars are conformally coupled or massless.

In section 5 we show how our results for exchange four-point functions in de Sitter can

be used to extract the correction at leading order in slow roll to inflationary three-point

functions induced by the exchange of a spin-` field.

Various technical details and brief reviews of relevant material are relegated to the ap-

pendices.

– 4 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
8

1.1 Notations and conventions

We primarily work in (d+ 1)-dimensional de Sitter space with “mostly plus” metric sig-

nature (− + + . . . +). Greek letters denote space-time indices, µ = 0, 1, . . . , d, lower-case

Latin letters denote spatial indices, i = 1, . . . , d, while Ambient space indices are denoted

by M,N = 0, 1, . . . , d + 1. Bulk scalar fields of scaling dimension ∆ = d
2 + iν are denoted

by φ(ν) and spin-` fields by ϕ
(ν)
` . Momentum vectors are represented either by ~k or ki,

with magnitude k = |~k|. The spatial auxiliary vectors ~ξ (or equivalently ξi) encode spatial

tensor indices. The momentum of the n-th external leg in a correlation function is denoted

by ~kn, while we use ~k for the exchanged momentum. It is sometimes convenient to express

three-point correlators in terms of the combinations p = k1+k2
k3

and q = k1−k2
k3

, while ex-

change four-point functions in terms of pmn = km+kn
k and qmn = km−kn

k . The symbols s, u

and ū are reserved for Mellin-variables.

2 Propagators

This section is dedicated to the propagators of scalar fields φ and fields ϕ` of integer spin-`

in dSd+1. After reviewing some basics of classical geometry in (anti-)de Sitter space in

section 2.1, we begin with the scalar propagators in section 2.2, demonstrating how the

Wightman two-point function in the Bunch-Davies vacuum can be obtained via analytic

continuation of Harmonic functions in Euclidean AdSd+1. This gives a so-called “split

representation” of the dS Wightman function, in which it is expressed as a product of

bulk-to-boundary propagators. In section 2.2.1 we present a Mellin-Barnes representation

in Fourier space, where the analytic continuation from EAdSd+1 is encoded in a simple

phase. We give the extension to spinning fields ϕ` in section 2.3. In section 2.5 we derive

the corresponding Keldysh propagators, giving the dictionary of phases required to go from

the Mellin-Barnes representation of Harmonic functions in EAdSd+1 to a given branch of

the in-in contour. In section 2.4 we use this framework to derive the late-time limit of

scalar and spinning two-point functions in dSd+1. For clear pedagogical reviews for some

of the topics touched upon in this section, e.g. [46–52].

2.1 Classical geometry of (anti)-de Sitter space

It is often convenient to realise (d+ 1)-dimensional de Sitter space dSd+1 as the follow-

ing embedding:

− (X0)2 + (X1)2 + · · ·+ (Xd+1)2 = L2 , (2.1)

into a (d+ 2)-dimensional ambient Minkowski space with metric

ds2 = ηMNdX
MdXN , ηMN = diag(− + . . . + +), (2.2)

and M,N = 0, . . . , d+ 1. The constant L is the de Sitter radius. It is manifest that the de

Sitter embedding can be obtained from that of the Euclidean sphere Sd+1

(X1)2 + · · ·+ (Xd+1)2 + (Xd+2)2 = L2 , (2.3)

– 5 –
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through the analytic continuation

Xd+2 → ±iX0, (2.4)

or from Euclidean AdS space EAdSd+1 via

XM → ±iXM . (2.5)

If one considers complexified de Sitter space

{Z = X + iY ∈ Cd+2 | Z2 = L2}, (2.6)

both dSd+1 and EAdSd+1 can be obtained as appropriate real submanifolds. To focus on

de Sitter space we set Z = X. Throughout we shall work in the expanding Poincaré patch,

ds2 =
L2

η2

(
−dη2 + dxidxi

)
, (2.7)

which solves the embedding constraints as:

XM =
L

η

(
L2 − η2 + xixi

2L
, xi,

L2 + η2 − xixi

2L

)
, (2.8)

where η ∈ (−∞, 0] is the conformal time and the xi parameterise the spatial slices of

dS space, including the conformal boundary at late-times η = 0. This patch only covers

X− > 0 and is therefore not geodesically complete. When considering instead Euclidean

anti-de Sitter space we set Z = iY , and in the Poincaré patch we have

YM =
L

z

(
L2 + z2 + xixi

2L
, xi,

L2 − z2 − xixi

2L

)
, (2.9)

where z ∈ [0,∞) is the AdS radial co-ordinate and here the xi parameterise the AdS

conformal boundary at z = 0. Note that the parameterisations (2.8) and (2.9) are related

under z = ±iη and changing the sign of the metric. The condition Y 0 > 0 selects one of

the two disconnected branches of the hyperboloid. From this point onward we set the de

Sitter radius to one, L = 1.

The conformal boundary is identified with light rays:

P 2 = 0, P ∼ λP, λ 6= 0, (2.10)

where the boundary points are parameterised by:

ZM → PM =
1

2

(
1 + x2, 2xi, 1− x2

)
. (2.11)

(Anti)-de Sitter invariant two point functions are functions of the geodesic distance D [53],

cos(D/L) = 2σ − 1 (2.12)

– 6 –
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Figure 2. Analytic continuation from Euclidean anti-de Sitter space to de Sitter space. Here z

is the radial coordinate in EAdS while η is conformal time in dS and we display the two possible

analytic continuations from complexified dS.

which is convenient to express through the chordal distance σ, where:

σAdS =
1 + Y1 · Y2

2
= −(z1 − z2)2 + |~x1 − ~x2|2

4z1z2
, (2.13a)

σdS =
1 +X1 ·X2

2
=

(η1 + η2)2 − |~x1 − ~x2|2

4η1η2
. (2.13b)

The dS chordal distance σdS can be obtained from the AdS chordal distance σAdS by taking

opposite analytic continuations for η1 and η2:

z1 = − η1 e
±iπ

2 , z2 = − η2 e
∓iπ

2 , (2.14)

which is equivalent to5

Y1 = ∓iX1, Y2 = ±iX2. (2.15)

These correspond to the possible Euclidean orderings of two operators in EAdSd+1 associ-

ated to the following ε-prescriptions:

(η1 − η2)2 ± i sgn(η1 − η2) ε ≈
(
η1 − η2 ±

iε

2

)2

. (2.16)

Further details about out-of-time ordered correlators are given in appendix A. In the fol-

lowing sections we shall employ (2.14) to consider Wightman two-point functions in dSd+1

as an analytic continuation from EAdSd+1.

2.2 Review: scalar fields

Let us consider a scalar field φ with mass m(
∇2

dS −m2
)
φ = 0, (2.17)

5In position space we shall refer to (2.15) as equivalent to (2.14).

– 7 –
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which at late times η → 0 behaves as

φ(η, ~x) ∼ O∆+(~x)η∆+ +O∆−(~x)η∆− , (2.18)

where the mass is related to the scaling dimensions via

∆± =
d

2
± iν, m2 =

(
d

2

)2

+ ν2. (2.19)

The Wightman function

G(X1, X2) = 〈0|φ(X1)φ(X2)|0〉, (2.20)

obeys the free field equation (
∇2

dS −m2
)
G(X1, X2) = 0, (2.21)

whose solution in the standard Bunch-Davies vacuum [54, 55] reads [53, 56, 57]:

G(X1, X2) =
Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
(4π)(d+1)/2Γ

(
d+1

2

) 2F1

(
d
2 + iν, d2 − iν

d+1
2

;σdS

)
. (2.22)

The Hypergeometric function has a singularity at σdS = 1 (i.e. at short distances) and a

branch cut for σdS ∈ [1,∞). The two possible iε prescriptions for going around the singu-

larity in the complex plane are given in (2.16) for the flat slicing of de Sitter, in particular:

σ±dS = 1 +
(η1 − η2 ± iε

2 )2 − |~x1 − ~x2|2

4η1η2
, (2.23)

where

G+−(X1, X2) = 〈0|φ̂(X2)φ̂(X1)|0〉 = G(σ+
dS), (2.24a)

G−+(X1, X2) = 〈0|φ̂(X1)φ̂(X2)|0〉 = G(σ−dS), (2.24b)

and the ∓± subscripts refer to the analytic continuations of the two points as in (2.15).

The Wightman two-point function serves as the basic object from which other de Sitter

two-point functions (retarded, advanced, Feynman,. . . ) can be obtained, as we shall discuss

in section 2.5 when we introduce the Schwinger-Keldysh formalism.

The corresponding object in (d+ 1)-dimensional Euclidean anti-de Sitter space is the

Harmonic function (
∇2

AdS −m2
)
Ων(Y1, Y2) = 0, (2.25)

where (see e.g. appendix 4.C of [58])

Ων(Y1, Y2) =
1

Γ(iν)Γ(−iν)

Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
(4π)

d+1
2 Γ
(
d+1

2

) 2F1

(
d
2 + iν, d2 − iν

d+1
2

;σAdS

)
. (2.26)

The short distance limit in this case corresponds to σAdS → 0, which is non-singular. It is

straightforward to see that through the analytic continuations (2.14) we can obtain the de

Sitter Wightman function (2.22) from the Harmonic function (2.26). In particular,

G+−(X1, X2) = Γ(iν)Γ(−iν) Ων(−iX1,+iX2) , (2.27a)

G−+(X1, X2) = Γ(iν)Γ(−iν) Ων(+iX1,−iX2) . (2.27b)

– 8 –
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The Harmonic function (2.26) admits the following useful representation (see e.g. [59, 60]):

Ων(Y1, Y2) =
ν2

π

∫
dP K d

2
+iν(Y1, P )K d

2
−iν(Y2, P ) , (2.28)

which is an integrated product of EAdSd+1 bulk-to-boundary propagators,

K∆(Y, P ) =
C∆,0

(−2Y · P )∆
, C∆,0 =

Γ(∆)

2πd/2Γ
(
∆ + 1− d

2

) . (2.29)

In the AdS/CFT literature, the representation (2.28) for the Harmonic function is often

referred to as the “split-representation”. From the analytic continuations (2.27), a split

representation for the de Sitter Wightman function (2.22) naturally follows:

Split representation for the scalar Wightman two-point function in dSd+1

G±∓(X1, X2) =

∫
dP K d

2
+iν(∓iX1, P )K d

2
−iν(±iX2, P ) . (2.30)

where, in going to dS, it is convenient to adopt the normalisation:

K∆ =
Γ
(
∆− d

2 + 1
)

√
π

K∆, (2.31)

which we shall use henceforth. The discussion of this section naturally extends to spinning

fields, which we consider in section 2.3.

The split representation has proven to be an instrumental tool in the evaluation of

Witten diagrams in EAdS [7–9, 40, 60–76] and is particularly suitable to obtain the Con-

formal Partial Wave decomposition of tree-level exchange Witten diagrams, which factorise

on Harmonic functions into an integrated product of three-point Witten diagrams. In this

work we show that the split representation is also useful in de Sitter space, where late-time

tree-level exchange diagrams in dSd+1 can be obtained from existing results for EAdSd+1

three-point Witten diagrams through the analytic continuations (2.30).

2.2.1 Mellin-Barnes representation in Fourier space

Cosmological correlators are generally studied in Fourier space. In Fourier space the split

representation (2.28) for the EAdS Harmonic function conveniently factorises as a conse-

quence of the Convolution theorem:

Γ(iν)Γ(−iν)Ω
ν,~k

(z1, z2) = K d
2

+iν(z1,~k)K d
2
−iν(z2,−~k) . (2.32)

The Fourier transform of the EAdS bulk-to-boundary propagator is given by a modified

Bessel function of the second kind [2], which admits a convenient representation as a

Mellin-Barnes integral:

K d
2

+iν(z,~k) =

∫ i∞

−i∞

du

2πi
K d

2
+iν(z,~k|u) (2.33a)

=
z
d
2
−iν

2
√
π

∫ i∞

−i∞

du

2πi
Γ

(
u+

iν

2

)
Γ

(
u− iν

2

)(
zk

2

)−2u+iν

. (2.33b)
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This implies the following Mellin-Barnes representation for the Harmonic function:

Ω
ν,~k

(z1, z2) =

∫
[du]2 Ω

ν,~k
(z1, z2|u1, u2), (2.34a)

Γ(iν)Γ(−iν)Ω
ν,~k

(z1, z2|u1, u2) =
(z1z2)

d
2

4π

2∏
j=1

Γ

(
uj +

iν

2

)
Γ

(
uj−

iν

2

)(
zjk

2

)−2uj

. (2.34b)

At the level of the Mellin-Barnes representation (2.34b), the analytic continuations (2.14)

to the flat slicing of de Sitter space are encoded into simple phases owing to the power-

law dependence on the AdS radial co-ordinate. In particular, for the Wightman two-point

function (2.30) in Fourier space we have:

G
+−,~k(η1, η2) = Γ(−iν)Γ(iν)

∫
[du]2e

δ≺(u1,u2) Ω
ν,~k

(−η1,−η2|u1, u2), (2.35a)

G−+,~k
(η1, η2) = Γ(−iν)Γ(iν)

∫
[du]2e

δ�(u1,u2) Ω
ν,~k

(−η1,−η2|u1, u2), (2.35b)

with phases:

δ≺(u1, u2) = −iπ(u1 − u2), (2.36a)

δ�(u1, u2) = +iπ(u1 − u2). (2.36b)

Late-time limit and bulk-to-boundary propagators. Within the Mellin-Barnes rep-

resentation (2.35) the late-time limits of the de Sitter Wightman function are encoded in

the residues of the leading Γ-function poles. For example, the limit η2 → 0 with η1 fixed is

given by the leading poles in the corresponding Mellin variable u2, which are at u2 = ± iν
2 .

This gives

lim
η2→0

G±∓,~k(η1, η2) = F
(ν)

±,~k
(η1, η2) + F

(−ν)

±,~k
(η1, η2), (2.37)

where we introduced the de Sitter bulk-to-boundary propagator

F
(ν)

±,~k
(η1, η2) = Nν(η2)

∫ +i∞

−i∞

ds

2πi
eδ
±
ν (s)K d

2
+iν(−η1, ~k|s)︸ ︷︷ ︸

e
∓ iπ2 ( d2 +iν)K d

2 +iν

(
−e±

iπ
2 η1,~k

) , (2.38)

and the overall constant

Nν(η2) = (−η2)
d
2

+iν Γ(−iν)

2
√
π
. (2.39)

Like for the Wightman function, the analytic continuation of the bulk-to-boundary prop-

agator from EAdS to dS is encoded in a simple phase:

δ±ν (s) = ∓iπ
(
s+

iν

2

)
. (2.40)

Above we relabelled u1 → s and we henceforth use the variable s to denote external legs

connected to the boundary (or sj when there is more than one).
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Figure 3. A pictorial representation of the dS in-in contours, of bulk-to-boundary propagators on

the left and of the split representation for bulk-to-bulk propagators on the right. The horizontal

direction parameterise the momentum space coordinates while Γ± represent the (anti-)time ordered

contours which we unfolded above the late time de Sitter horizon to distinguish the path ordering

along the contour from the actual time-ordering relations.

Relation to the mode functions. To gain some further intuition it is instructive to

review the standard derivation of two-point functions in Fourier space. One expands each

Fourier mode of the field in creation and annihilation operators:

φ~k(η) = fk(η)a†~k
+ f̄k(η)a−~k , (2.41)

where the Klein-Gordon equation

(∇2
dS −m2)φ~k(η)ei

~k·~x = 0 , (2.42)

implies that the mode functions satisfy the equation:

η
(
(d− 1)f ′(η)− ηf ′′(η)

)
+
(
∆(∆− d)− η2k2

)
f(η) = 0 . (2.43)

For the Bunch-Davies vacuum the solution is given by the following combination of Han-

kel functions

fk(η) = (−η)
d
2

√
π

2
eπν/2H

(2)
iν (−kη)︸ ︷︷ ︸

hiν(kη)

, (2.44)

f̄k(η) = (−η)
d
2

√
π

2
eπν/2H

(1)
iν (−kη)︸ ︷︷ ︸

h̄iν(kη)

, (2.45)

where the overall normalisation is fixed by requiring that a−~k and a†~k
satisfy canonical

commutation relations. From the Mellin-Barnes representation for the Hankel functions

various similarities between the mode functions and the bulk-to-boundary propagators
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become manifest:

hiν(kη) = +
i

2
√
π

∫ +i∞

−i∞

ds

2πi
Γ

(
s+

iν

2

)
Γ

(
s− iν

2

)(
−ηk

2
e+iπ

2

)−2s

, (2.46a)

h̄iν(kη) = − i

2
√
π

∫ +i∞

−i∞

ds

2πi
Γ

(
s+

iν

2

)
Γ

(
s− iν

2

)(
−ηk

2
e−i

π
2

)−2s

, (2.46b)

from which one can also read off the following relations:

hiν(kη) = h−iν(kη), (2.47a)

h̄iν(kη) = h̄−iν(kη), (2.47b)

[hiν(kη)]? = −hiν(e−iπkη) = h̄iν(kη) . (2.47c)

In terms of the mode functions the Wightman two-point functions are

G
+−,~k(η1, η2) = 〈0|φ−~k(η2)φ~k(η1)|0〉 = fk(η1)f̄k(η2), (2.48a)

G−+,~k
(η1, η2) = 〈0|φ~k(η1)φ−~k(η2)|0〉 = f̄k(η1)fk(η2), (2.48b)

from which one can identify:

fk(η1)f∗k (η2) = Γ(iν)Γ(−iν)Ω
ν,~k

(
−e+ iπ

2 η1,−e−
iπ
2 η2

)
, (2.49)

f∗k (η1)fk(η2) = Γ(iν)Γ(−iν)Ω
ν,~k

(
−e−

iπ
2 η1,−e+ iπ

2 η2

)
, (2.50)

by comparing with equation (2.35). These relations generalise to mode functions for fields

of non-zero spin, which we consider in the following section.

2.3 Fields of arbitrary integer spin

The discussion of the previous section carries over to fields of non-trivial spin. In the

following we consider a totally symmetric spin-` field ϕµ1...µ` of generic mass m, which at

zeroth order in interactions satisfies the Fierz-Pauli conditions:(
∇2 −m2

)
ϕµ1...µ` = 0, (2.51a)

∇µ1ϕµ1...µ` = 0, (2.51b)

gµ1µ2ϕµ1...µ` = 0. (2.51c)

The boundary behaviour of the spin-` field is

ϕi1...i`(η, ~x) ∼ O∆+,i1...i`(~x)η∆+−` +O∆−,i1...i`(~x)η∆−−`, (2.52)

where the mass is related to the scaling dimensions by:6

∆± =
d

2
± iν, m2 =

(
d

2

)2

+ ν2 − `. (2.53)

6In this work “mass” is defined by the Fierz-Pauli system (2.51). Another convention for mass is such

that m2 = 0 for gauge fields, which is used e.g. in [29], in which case:

m2
there = ν2 +

(
`+

d

2
− 2

)2

,

where

m2
there = m2

here − (`+ d− 2)(2− `) + `.
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When considering fields of arbitrary spin it is convenient to use an operator notation in

which fields are represented by generating functions:

ϕµ1...µ` → ϕ(x;w) =
1

`!
ϕµ1...µ`(x)wµ1 . . . wµ` , (2.54)

where wµ is a constant (d + 1)-dimensional auxiliary vector. In this formalism the Fierz-

Pauli conditions read (
∇2 −m2

)
ϕ(x;w) = 0, (2.55a)

(∇ · ∂̂w)ϕ(x;w) = 0, (2.55b)

where requiring that the auxiliary vector is null, w2 = 0, implements the trace con-

straint (2.51c). The Thomas-D operator [77] (see also [15]):

∂̂µw =

(
d− 1

2
+ w · ∂w

)
∂µw −

1

2
wµ (∂w · ∂w) , (2.56)

implements the trace-less contraction of indices. For boundary operators we instead use

ξi to denote the corresponding null auxiliary vectors, i.e.

O∆,i1...i`(~y)→ O∆(~y; ~ξ ) =
1

`!
O∆,i1...i`(~y)ξi1 . . . ξi` , ~ξ2 = 0, (2.57)

and the corresponding boundary Thomas-D operator reads

∂̂iξ =

(
d

2
− 1 + ~ξ · ~∂ξ

)
∂iξ −

1

2
ξi (~∂ξ · ~∂ξ) . (2.58)

Following section 2.2, to obtain the corresponding Wightman two-point function

G`(X1, X2;W1,W2) = 〈0|ϕ`(X1;W1)ϕ`(X2;W2)|0〉, (2.59)

we first consider the corresponding spin-` Harmonic function in EAdSd+1,(
∇2

AdS −m2
)
Ων,`(Y1, Y2;W1,W2) = 0, (2.60a)(

∇AdS · ∂̂W1

)
Ων,`(Y1, Y2;W1,W2) = 0. (2.60b)

This admits the split representation (see e.g. [60, 78]):

Ων,`(Y1, Y2;W1,W2) =
1

`!
(
d
2 − 1

)
`

ν2

π

∫
dP K d

2
+iν,`(Y1, P ;W1, ∂̂Ξ)K d

2
−iν,`(Y2, P ;W2,Ξ) ,

(2.61)

where the vectors WM and ΞM are the ambient space representatives of the bulk and

boundary auxiliary vectors wµ and ξi (see e.g. [79–83]):

WM = wµ
∂YM

∂xµ
, ΞM = ξi

∂PM

∂xi
, (2.62)
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with ∂̂Ξ the ambient space counterpart of the boundary Thomas-D operator (2.58), im-

plementing the symmetric and traceless contraction of the boundary indices. The spin-`

EAdSd+1 bulk-to-boundary propagators in (2.61) read [60]:

K∆,`(Y, P ;W,Ξ) =
C∆,`

(−2Y · P )∆
[W · I(Y, P ) · Ξ]`, (2.63)

where

IMN (Y, P ) = ηMN −
PMYN
P · Y

, (2.64a)

C∆,` =
∆ + `− 1

∆− 1

Γ(∆)

2πd/2Γ
(
∆− d

2 + 1
) . (2.64b)

While it shall not be used explicitly in this work, it may be useful to note that in Poincaré

co-ordinates (2.9) the bulk-to-boundary propagator (2.63) reads [84]:7

K∆,`

(
x; ~x′

)
= C∆,`

(
z

z2 + (~x− ~x′)2

)∆(
w · I

(
z, ~x− ~x′

)
· ~ξ
)`
, (2.65a)

w · I
(
z, ~x− ~x′

)
· ~ξ =

1

z

[
~w · ~ξ − 2~w · (~x− ~x′)~ξ · (~x− ~x′)

z2 + (~x− ~x′)2
+

2wz z ~ξ · (~x− ~x′)
z2 + (~x− ~x′)2

]
, (2.65b)

where w = (wz, ~w).

The ambient space auxiliary vectors (2.62) are unaffected by the analytic continuations

from EAdS to dS. The corresponding de Sitter Wightman functions are therefore

G±∓,`(X1, X2;W1,W2) = Γ(iν)Γ(−iν)Ων,`(∓iX1,±iX2;W1,W2), (2.66)

where, as before, the ∓± subscripts refer to the analytic continuations of the two points

as in (2.15) and the coefficient of the Harmonic function is the same as for the scalar

Wightmann function (2.27).8 Equation (2.66) combined with (2.61) provides a split repre-

sentation for spin-` Wightman functions in de Sitter space.

Fourier space. Notice that the tensorial structure of the bulk-to-boundary propaga-

tor (2.63) is invariant under the above analytic continuations. A useful consequence of this

7This can be derived from the ambient space expression (2.63) using that

−2Y · P =
z2 + (~x− ~x′)2

z
,

combined with

W · I(Y, P ) · Ξ = (P · Y )(Ξ · ∂P )(W · ∂Y ) log(Y · P ) = (P · Y )
(
~ξ · ∂~x′

)
(w · ∂x) log(Y · P ),

where in the second equality we used the relation (2.62). Evaluating the derivatives recovers (2.65b).
8This is fixed by the normalisation of the short-distance behaviour, where the short distance limit of the

spin-` Harmonic function (2.61) is given in [60].
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observation is that the phase factor in the Mellin-Barnes representation for the Fourier-

space Wightman function is independent from the spin `. In other words,

G
+−,`,~k(η1, η2;w1, w2) = Γ(−iν)Γ(iν)

∫
[du]2e

δ≺(u1,u2)Ω
ν,`,~k

(−η1,−η2;w1, w2|u1, u2),

G−+,`,~k
(η1, η2;w1, w2) = Γ(−iν)Γ(iν)

∫
[du]2e

δ�(u1,u2)Ω
ν,`,~k

(−η1,−η2;w1, w2|u1, u2),

(2.67)

where the phases are the same as those for the spin ` = 0 Wightman function which were

given in (2.36).

2.4 Late-time two-point functions

Before discussing interactions it is convenient to consider the late-time limit of the bulk

two point function with respect to both points, i.e. η1, η2 → 0.

Using the relation (2.66), one way to obtain the late-time limit of the bulk two point

function is to analytically continue the boundary limit z1, z2 → 0 of the Harmonic function

in EAdSd+1.9 The latter can be straightforwardly obtained in position space using the

identity [60]:

Ων,`(x1, x2) =
iν

2π
Πν,`(x1, x2) + (ν → −ν) , (2.68)

which expresses the Harmonic function as a sum of spin-` bulk-to-bulk propagators in

EAdSd+1. The boundary limit of the Harmonic function is then fixed by the boundary

limit of the bulk-to-bulk propagators, which is

lim
z1,z2→0

Πν,`(z1, ~x1, z2, ~x2) = C d
2

+iν,`

(z1z2)
d
2

+iν−`

(~x2
12)

d
2

+iν

(
~ξ1 · ~ξ2 +

2~ξ1 · ~x12
~ξ1 · ~x12

~x2
12

)`
, (2.69)

where the ~ξ1,2 are the boundary auxiliary vectors (2.57) and the coefficient C d
2

+iν,` is the

coefficient of the bulk-to-boundary propagator (2.64b). This has the structure required by

conformal symmetry [85].

In appendix C.1 we derive the Fourier transform of the above conformal structure,

which gives the following expression for the boundary limit of the Harmonic function in

Fourier space:

Ων,`(z1,~k, z2,−~k) ∼ 1

4
(zz̄)

d
2

+iν−` csch(πν)Γ(−iν)(
d
2 + iν − 1

)
`
Γ(1− `+ iν)

×
(
k

2

)2iν
(
−2 ~ξ1 · ~k ~ξ2 · ~k

k2

)`
2F1

(
−`, d2 + iν − 1

1− `+ iν
;

k2~ξ1 · ~ξ2

2~ξ1 · k ~ξ2 · k

)
+ (ν → −ν) , (2.70)

where we have dropped analytic terms in k. It is then straightforward to obtain the corre-

sponding late-time two-point function in dSd+1 through the analytic continuation (2.14):

9Another way was outlined in section 2.2.1 using directly the Mellin-Barnes representation for the Wight-

man function.
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Spin-` late-time two-point function in dSd+1

lim
η1,η2→0

〈
ϕ
`,~k

(η1; ~ξ1)ϕ
`,−~k(η2; ~ξ2)

〉′
=

1

4
(η1η2)

d
2

+iν−` csch(πν)Γ(−iν)(
d
2 + iν − 1

)
`
Γ(1− `+ iν)

×
(
k

2

)2iν
(
−2 ~ξ1 · ~k ~ξ2 · ~k

k2

)`
2F1

(
−`, d2 + iν − 1

1− `+ iν
;

k2~ξ1 · ~ξ2

2~ξ1 · ~k ~ξ2 · ~k

)
+ (ν → −ν) . (2.71)

Helicity decomposition. In the following we derive the helicity decomposition of the

two-point function (2.71), which is the projection onto spherical harmonics in the plane

orthogonal to the exchanged momentum ~k. In general d these are the Gegenbauer polyno-

mials

Ξm(a) =
m!

2m
(
d−3

2

)
m

C
( d−3

2 )
m (a), (2.72)

where a = ξ̂⊥1 · ξ̂⊥2 is the contraction of the transverse polarisations10

ξ⊥1 · ~k = 0, ξ⊥2 · ~k = 0. (2.73)

In particular, we can choose

~ξ1 = (ξ̂⊥,1, i) , (2.74a)

~ξ2 = (ξ̂⊥,2,−i) , (2.74b)

~k = (0, k) , (2.74c)

so that
~ξ1 · ~ξ2 = a+ 1, ~ξ1 · ~k = ik, ~ξ2 · ~k = −ik. (2.75)

The helicity decomposition of the two-point function

lim
η1,η2→0

〈
ϕ
`,~k

(η1; ξ1)ϕ
`,−~k(η2; ξ1)

〉′
= (η1η2)

d
2

+iν−`
∑̀
m=0

c(`)
m Ξm(a) + (ν → −ν), (2.76)

can then be obtained using the standard inversion formula to extract the coefficients c
(`)
m :

f(a) =
∑̀
m=0

cm Ξm(a), (2.77a)

10The transverse mode can be obtained through the application of a simple projector

Πij(k) = δij − k̂ik̂j ,

where k̂ = ~k/k, yielding

ξi⊥ = Πij(k)ξj ,

where ξ⊥ is the transverse component of the polarisation with respect to the momentum ~k and therefore

satisfies ξ⊥ · ~k = 0. The longitudinal component is instead proportional to k̂ and simply reads

ξ‖ = i k̂ ,

where we have normalised for convenience ~ξ · k̂ = i so that ξ2
⊥ = 1.
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cn =
1

Nn

∫ 1

−1
da (1− a2)

d−4
2 f(a)C

( d−3
2 )

n (a), (2.77b)

Nn =
2d+n−4Γ

(
d
2 −

3
2

)
Γ
(
d
2 + n− 1

2

)
πΓ(d+ n− 3)

. (2.77c)

This gives

c(`)
m =

(
`

m

)
Γ
(
d−2∆

2

)2
Γ
(
d
2 + `− 1

)
Γ(d+ `−∆− 1)

25−d−`−mπ3/2Γ(`+ ∆− 1)

×
Γ
(
d−1

2 +m
)
Γ(m+ ∆− 1)

Γ(d+ `+m− 2)Γ(d+m−∆− 1)
, (2.78)

where ∆ = d
2 +iν. The divergences of the coefficients c

(`)
m are associated with the emergence

of gauge symmetries in the bulk, where some of the helicity components decouple (see

also [29, 86–90]).

2.5 Dictionary from EAdSd+1 to dSd+1

In this section we summarise the Mellin-space dictionary which allows us to go from Witten

diagrams involving totally symmetric bosonic fields in EAdSd+1 to the corresponding late-

time correlators in dSd+1.

In time-dependent backgrounds like de Sitter, the standard approach to compute vac-

uum expectation values is the Schwinger-Keldysh (or in-in) formalism [91–93]. The first

applications of this formalism to the calculation of cosmological correlation functions in-

clude [37, 94]; for clear pedagogical reviews see [49, 51, 52]. In this formalism one carries

out a time-ordered integral from the initial time (η = −∞) to the time of interest η0, fol-

lowed by an anti-time ordered integral back to the initial time. To this end one introduces

propagators with points along different parts of the contour, which in the usual way are

given in terms of the Wightman functions (2.24):

G++(X1, X2) = θ(η1 − η2)G−+(X1, X2) + θ(η2 − η1)G+−(X1, X2), (2.79a)

G−−(X1, X2) = θ(η2 − η1)G−+(X1, X2) + θ(η1 − η2)G+−(X1, X2), (2.79b)

G+−(X1, X2) = 〈0|φ̂(X2)φ̂(X1)|0〉, (2.79c)

G−+(X1, X2) = 〈0|φ̂(X1)φ̂(X2)|0〉, (2.79d)

where the +(−) subscripts correspond to the (anti-)time ordered part of the integration

(“in-in”) contour respectively, with the T and T̄ denoting time and anti-time ordered

products. The expression (2.66) for the Wightman functions provides a split representation

for the above Keldysh propagators via (2.61).

As we saw in the preceding sections, at the level of the Mellin-Barnes representation the

analytic continuation (2.67) of EAdS Harmonic functions to de Sitter two-point functions

is encoded in a simple phase (2.36), which for the Keldysh propagators above depends on

the path ordering of η1 and η2 along the in-in contour. This can be summarised by

G••,`,~k(η1; η2) = Γ(iν)Γ(−iν)

∫
[du]2e

δ(u1,u2)Ω
ν,`,~k

(−η1;−η2|u1, u2), (2.80)
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where

for η1 ≺ η2 : δ(u1, u2) = δ≺(u1, u2) = −iπ(u1 − u2), (2.81a)

for η1 � η2 : δ(u1, u2) = δ�(u1, u2) = +iπ(u1 − u2). (2.81b)

The • serve as place holders for the labels which denote the branch of the in-in contour.

Note that the +− and −+ propagators are described by a definite phase (as in (2.67))

since η1 and η2 lie on different branches of the in-in contour and so have a definite path

ordering.11 For the ++ and −− propagators, where η1 and η2 lie on the same branch of

the in-in contour, there are two phases (corresponding to the two theta functions in (2.79))

which depend on whether η1 is ahead or behind η2.

For the spin-` bulk-to-boundary propagators we instead have:

F
(ν)

±,`,~k

(
η, η0;w, ~ξ

)
= Nν,`(η0)

∫ i∞

−i∞

ds

2πi
eδ
±
ν (s)K d

2
+iν,`(−η,~k;w, ~ξ|s), (2.82)

at some late time η0 ∼ 0, where the subscripts refer to the branch of the in-in contour, and

+ : δ+
ν (s) = −iπs+

πν

2
, (2.83a)

− : δ−ν (s) = +iπs− πν

2
. (2.83b)

For spin-` fields the overall constant (2.39) is

Nν,`(η0) = (−η0)
d
2

+iν−`Γ(−iν)

2
√
π
, (2.84)

while, as for the spin-0 case (2.31):

K∆,` =
Γ
(
∆− d

2 + 1
)

√
π

K∆,`, (2.85)

which is the same as the spin-0 case (2.31) as a consequence of equation (2.66).

With the above dictionary we can straightforwardly translate the results of [40] for the

tree-level three-point Witten diagrams of a generic triplet of totally symmetric spinning

fields in EAdSd+1 into late-time three-point functions for the same triplet of spinning

fields in dSd+1. We need only work out the Fourier transform of the spinning three-point

conformal structures appearing in each Witten diagram, which is straightforward using the

Mellin-Barnes representation.12 The contributions to the corresponding late-time three-

point function from the + and − branches of the in-in contour are then obtained simply by

11E.g. if η1 lies on the + branch and η2 on the − branch then η1 ≺ η2, since one first traverses + branch

of the in-in contour before the − branch.
12This is demonstrated in appendix C.2 for the spinning three-point conformal structures considered in

this work.
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multiplying with the appropriate phase (2.83) and re-normalising the three-point function

coefficient (e.g. equation (3.29) in [40]) with (2.84) and (2.85):

B(`j , nj ,∆j)→ N3 B(`j , nj ,∆j), (2.86a)

B(`j , nj ,∆j) = B(`j , nj ,∆j)
3∏
j=1

Γ
(
∆j − d

2 + 1
)

√
π

, (2.86b)

NN =
N∏
j=1

Nνj ,`j (η0). (2.86c)

This is considered in detail in section 3. The {∆j , `j} with j = 1, 2, 3 denote the scaling

dimensions and spins of the triplet fields participating in the three-point interaction. The

variables nj label the three-point conformal structure concerned (see [40]) and will not play

a role in this work since we focus on three-point Witten diagrams involving only a single

spin-` field, for which n1 = n2 = n3 = 0.

As we shall see in section 4, the split representation (2.61) of the spin-` Harmonic

function allows us, via the analytic continuation (2.80), to obtain expressions for the late-

time exchange four-point functions of spinning fields in dSd+1 simple from the above results

for tree-level three-point Witten diagrams.

3 Three-point correlators

In this section we consider late-time three-point functions in dSd+1 at tree-level. We show

that they can be obtained solely from the knowledge of the corresponding Witten diagrams

in EAdSd+1 using the dictionary detailed in section 2.5. In particular, from the Mellin-

Barnes representation of the Fourier-transformed Witten diagram, the result for the de

Sitter late-time correlator in Fourier space can be obtained by multiplying with the appro-

priate interference factor. We carry out this analysis both for correlators involving only

scalar fields (in section 3.1) and for correlators involving a single spin-` field and two scalar

fields (in section 3.2). We shall present the more general case of correlators with more

than one spinning fields in [95], which simply requires to Fourier transform the three-point

Witten diagrams given in [40]. In section 3.3 we consider some examples in which the

three-point functions simplify, which includes conformally coupled and massless scalars. In

section 3.4 we demonstrate the utility of the Mellin-Barnes representation in taking the

soft limit of both scalar and spinning external legs.

3.1 General external scalars

In this section we consider the cubic interaction φ1φ2φ3 of general scalars φk with scal-

ing dimension ∆k = d
2 + iνk, which is unique on-shell up to total derivatives. We shall

demonstrate how to obtain the late-time three-point correlator from the corresponding

three-point Witten diagram from Euclidean anti-de Sitter space, using the dictionary given

in section 2.5. Strictly speaking, in the following we assume that ∆k lie on the Principal
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Series, i.e. νk ∈ R, though results for other representations13 can be obtained with due care

about the analytic continuation of νk, as we shall discuss in detail in section 4.6 and touch

upon briefly in section 3.3.

In position space, the three-point Witten diagram in EAdSd+1 reads [96, 97]:

〈O∆1(~x1)O∆2(~x2)O∆3(~x3)〉 = B(0; 0; ∆1,∆2,∆3) I∆1,∆2,∆3(~x1, ~x2, ~x3), (3.1a)

I∆1,∆2,∆3(~x1, ~x2, ~x3) =
1

(x2
12)

∆1+∆2−∆3
2 (x2

23)
∆2+∆3−∆1

2 (x2
31)

∆3+∆1−∆2
2

. (3.1b)

where the function (3.1b) is fixed by conformal symmetry while its coefficient in (3.1a)

arises from the integration over the volume of EAdSd+1 and, in the view of the analytic

continuation to dSd+1, we used the normalisation (2.86b). In appendix C.2 it is explained

how to derive the Fourier transform of the above, which for general ∆i is given by the

following Mellin-Barnes integral:

〈O∆1(~k1)O∆2(~k2)O∆3(~k3)〉 = (2π)dδ(d)
(
~k1 + ~k2 + ~k3

)
〈O∆1(~k1)O∆2(~k2)O∆3(~k3)〉′, (3.2a)

〈O∆1(~k1)O∆2(~k2)O∆3(~k3)〉′ = B(0; 0; ∆1,∆2,∆3)I∆1,∆2,∆3(~k1,~k2,~k3) (3.2b)

=

∫
[ds]3 iπδ

(
d

4
− s1 − s2 − s3

)
ρν1,ν2,ν3(s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj+iνj

,

where we defined

ρν1,ν2,ν3(s1, s2, s3) =

3∏
j=1

1

2
√
π

Γ

(
sj +

iνj
2

)
Γ

(
sj −

iνj
2

)
, (3.3)

and employed the shorthand notation∫
[ds]n =

∫ i∞

−i∞

ds1

2πi
. . .

dsn
2πi

. (3.4)

The above two variables Mellin-Barnes integral is Appell’s function F4 [98, 99] which, up

to a constant coefficient, can be defined by the Mellin-Barnes integral above. Conformal

symmetry in fact requires momentum-space scalar correlators to be given by Appell’s F4

function up to a coefficient [100, 101], which was automatically implemented in the above

by starting from the conformal structure (3.1b) in position space. The above Mellin form

is advantageous over the Appel representation since at the level of the Mellin-Barnes rep-

resentation (3.2b), conformal symmetry fixes uniquely the locations of the poles in the

Mellin variables, including the ones associated to the Dirac delta distribution. Further-

more, this representation for the correlator also follows from the bulk calculation for the

Witten diagram in Fourier space (see [41]):

〈O∆1(~k1)O∆2(~k2)O∆3(~k3)〉 =

∫ ∞
0

dz

zd+1
K∆1(z;~k1)K∆2(z;~k2)K∆3(z;~k3), (3.5)

13Complementary series results are connected to the principal series and can be obtained with no major

problem. Some additional subtleties arise for discrete and exceptional series, as we shall discuss.
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by employing the Mellin-Barnes representation (2.33) of the bulk-to-boundary propaga-

tors, which combine into the function (3.4) with the Mellin variable sj associated to the

propagator of the scalar field φj . The Dirac delta function in (3.2b) is generated from the

integral over the radial co-ordinate z of EAdSd+1:14

iπδ

(
d

4
− s1 − s2 − s3

)
= lim

z0→0

[∫ ∞
z0

dz

zd+1
z

3d
2
−2(s1+s2+s3)

]
(3.6a)

= lim
z0→0

[
− 1
d
2 − 2(s1 + s2 + s3)

z
d
2
−2(s1+s2+s3)

0

]
, (3.6b)

where convergence of the z-integral restricts where the integration contours intersect the

real axis. In particular:

Re[s1 + s2 + s3] >
d

4
, (3.7)

which requires the integration contour in si passes on the right of the pole at d
4 − (s1 +

s2 + s3) ∼ 0, which encodes the leading contribution in the limit z0 → 0 while ∆k lie on

the Principal Series.

The presence of the Dirac delta function (3.6) implies a freedom to add terms propor-

tional to positive powers of d
4 − (s1 + s2 + s3) in the Mellin-Barnes representation (3.2b).

In the bulk, this corresponds to the freedom of adding terms to a given cubic vertex which

vanish on-shell — i.e. improvements. Such terms do not contribute to the three-point

Witten diagram at tree level.

de Sitter late-time correlator. Given the Mellin-Barnes representation (3.2b) of the

Witten diagram, using the dictionary detailed in section 2.5 we can immediately write

down the corresponding late-time correlator in dSd+1. The Schwinger-Keldysh formalism

prescribes that we sum over the time-ordered (+) and anti-time-ordered (−) branches of

the in-in contour:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′ = N3

[
A+|ν1,ν2,ν3

(~k1, ~k2, ~k3) +A−|ν1,ν2,ν3
(~k1,~k2,~k3)

]
︸ ︷︷ ︸

Aν1,ν2,ν3 (~k1,~k2,~k3)

, (3.8)

where

A±|ν1,ν2,ν3
(~k1,~k2,~k3) = ±i

∫
[ds]3 iπδ

(
d

4
− s1 − s2 − s3

)
ρν1,ν2,ν3(s1, s2, s3)

×
3∏
j=1

(
kj
2

)−2sj+iνj

e
δ±νj (sj) . (3.9)

14To be precise, because the Mellin integration contours run over the imaginary axis, the identity to use

would be: ∫ ∞
0

xs−1 = 2πδ(is) ,

where along the integration contour from −i∞ to +i∞ one indeed recovers is ∈ R. However, since up to

change of variables we have: ∫ +i∞

−i∞

ds

2πi
[2πδ(is)] f(s) = f(0) ,

for simplicity we shall often write δ(is) = i δ(s).
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This was obtained from the Mellin-Barnes representation (3.2b) of the corresponding

EAdSd+1 Witten diagram by dressing each propagator with the appropriate phase fac-

tor as prescribed in equation (2.83) at the level of the Mellin-integrand. The ± factor

multiplying the integral comes from inverting the range of integration [0,−∞] → [−∞, 0]

of η for the anti-time-ordered (−) branch of the in-in contour. The factors of i naturally

arise from the analytic continuation of the volume form.

Combining the contributions from the + and − contours, which differ only by a phase,

gives

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′ = N3

∫
[ds]3 iπδ

(
d

4
− s1 − s2 − s3

)
ρν1,ν2,ν3(s1, s2, s3) (3.10a)

× 2 sin

(
π

(
s1 + s2 + s3 +

(ν1 + ν2 + ν3)i

2

)) 3∏
j=1

(
kj
2

)−2sj+iνj

= N3 2 sin

(
π

(
d

4
+
i(ν1 + ν2 + ν3)

2

))
(3.10b)

×
∫

[ds]3 iπδ

(
d

4
− s1 − s2 − s3

)
ρν1,ν2,ν3(s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj+iνj

where in the second equality we used the Dirac delta distribution to translate the analytic

continuations (2.83) from EAdSd+1 into an overall phase for the ± contributions (3.9). At

the end, the sinusoidal function nicely encodes the interference pattern. We note that,

while conformal symmetry fixes the location of the poles in the Mellin integrand, the zeros,

encoded in the sine function in (3.10), are fixed by the early time boundary conditions

(Bunch-Davis in our case).

The expression (3.10) is also obtained by simply evaluating the late-time correlator

directly in de Sitter space using the Mellin-Barnes representation for the propagators [41].

Here, we directly evaluated the Fourier transform of the known result [96, 97] for tree-

level three-point Witten diagrams of scalar fields in Euclidean anti-de Sitter space (which

is most naturally given by a Mellin-Barnes integral) and applying the dictionary spelled

out in section 2.5 to each propagator at the level of the Mellin integrand to obtain the

corresponding late-time correlator in de Sitter space. This approach also straightforwardly

extends to correlators of spinning fields, where it is readily applicable for totally symmetric

fields in general d using the results derived in [40] for their tree-level three-point Witten

diagrams. We shall demonstrate this in the following section for correlators involving a

single totally symmetric spin-` fields in general d, and discuss the more general spinning

case in a forthcoming work [95].

3.2 Two general scalars and a spin-` field

In this section we consider late-time correlators involving two general scalar fields φ1,2 and

a field ϕµ1...µ` of integer spin-` and scaling dimension ∆3, whose tensor structure is fixed

uniquely by conformal symmetry [85, 102–105] up to a coefficient.15 In position space

15For three-point correlators involving a generic triplet of spinning fields, there are various tensor struc-

tures consistent with conformal symmetry [23, 103–105].
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it reads

〈〈O∆1(~x1)O∆2(~x2)O∆3(~x3; ~ξ )〉〉 = I∆1,∆2,∆3−`(~x1, ~x2, ~x3)

(
~ξ · ~x31

x2
31

−
~ξ · ~x32

x2
23

)`
︸ ︷︷ ︸

Y`3

, (3.11)

where, following [40], the notation 〈〈•〉〉 indicates that we have stripped off the Operator

Product Expansion (OPE) coefficient. This is the scalar conformal structure (3.1b) dressed

with the conformally covariant tensor structure Y3. The Witten diagram generated by the

vertex (which, up to total derivatives, is unique on-shell):

V0,0,` = φ1∇µ1 . . .∇µ`φ2 ϕµ1...µ` , (3.12)

is given by multiplying the three-point structure (3.11) by the coefficient (2.86b):

〈O∆1(~x1)O∆2(~x2)O∆3(~x3; ~ξ )〉

= B(0, 0, `; 0; ∆1,∆2,∆3 − `)〈〈O∆1(~x1)O∆2(~x2)O∆3(~x3; ~ξ )〉〉. (3.13)

As we detail in appendix C.2, through the replacement

~ξ · ~xij → i~ξ · ~∂kij ≡ i~ξ · (~∂ki − ~∂kj ) , (3.14)

the Fourier transform of the three-point conformal structure (3.11) can be expressed in

the form of a differential operator acting on the Fourier transform of the scalar conformal

structure (3.1b). The differential operator generates the tensorial structure, which is given

by a polynomial in ~ξ · ki, i = 1, 2, 3. The naive application of the differential operator

gives a cumbersome expression involving numerous terms, but the Mellin-Barnes repre-

sentation (3.2b) affords some useful simplifications which we detail in appendix C.2. The

final result for the Mellin-Barnes representation of the Witten diagram (3.11) in Fourier

space is:16

Mellin-Barnes repesentation of the 0-0-` Witten diagram in Fourier space

〈O∆1(~k1)O∆2(~k2)O∆3(~k3;~ξ )〉

=

∫
[ds]3

∫ ∞
0

dz

zd+1
z

3d
2
−2(s1+s2+s3)+`︸ ︷︷ ︸

iπδ( d+2`
4
−s1−s2−s3)

ρν1,ν2,ν3(s1,s2,s3)
3∏
j=1

(
kj
2

)−2sj+iνj

×
∑̀
α=0

(
`

α

)
(−~ξ ·~k3)α

α∑
β=0

(
α

β

)
Hν1,ν2,ν3|α,β(s1,s2,s3)Y(`)

ν1,ν2,ν3|α,β(~ξ ·~k1, ~ξ ·~k2)

︸ ︷︷ ︸
p

(`)
ν1,ν2,ν3

(~ξ·~k1,~ξ·~k2,~ξ·~k3|s1,s2,s3)

. (3.15)

16The tensorial structure, which is fixed by conformal symmetry, re-produces existing expressions for

spinning conformal structures in Fourier space e.g. [29, 101, 106–109].
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This expression has some useful similarities to the analogous expression for the scalar

three-point correlator (3.2b). In particular, the first line is of the same form as the scalar

correlator but with d → d + 2`. This shift originates from the factor of z−` in the spin-`

propagator (2.65), which when combined in the cubic vertex (3.12) is accompanied by a

factor of
(
z2
)`

coming from the index contraction. The second line is the tensor struc-

ture generated by the action of the differential operators (3.14), which is encoded in the

polynomial p
(`)
ν1,ν2,ν3(~ξ · ~ki|si) in ~ξ · ~ki. The dependence on ~ξ · ~k1 and ~ξ · ~k2 given by the

two-variable polynomial:

Y(`)
ν1,ν2,ν3|α,β(~ξ ·~k1, ~ξ ·~k2) = (−i)`

(
4−d−2`−2i(ν1−ν2+ν3)

4

)
β

(
d−4α+4β+2`−2i(ν1−ν2−ν3)

4

)
α−β(

d
2 +iν3−1

)
`−α
(
d
2 +iν3+`−α−1

)
α

×
`−α∑
n=0

(
d−4β+2`−4n+2iν1−2iν2+2iν3

4

)
n

(
d+4β−2`+4n−2iν1+2iν2+2iν3

4

)
`−α−n

×
(
`−α
n

)
(~ξ ·~k1)`−α−n (−~ξ ·~k2)n. (3.16)

The dependence of the polynomial p
(`)
ν1,ν2,ν3(~ξ · ~ki|si) on the Mellin-variables is given by

the function

Hν1,ν2,ν3|α,β(s1, s2, s3) =

(
s1 + iν1

2

)
α−β

(
s2 + iν2

2

)
β(

s3 + iν3
2 − α

)
α

. (3.17)

Recursion relations. Interestingly, the Pochhammer factors in Hν1,ν2,ν3|α,β(s1, s2, s3)

are precisely of the right form to telescopically combine with the function ρν1,ν2,ν3(s1, s2, s3):

A
(x)
ν1,ν2,ν3|α,β

(
~k1,~k2,~k3

)
=

∫
[ds]3 iπδ

(x
4
−s1−s2−s3

)
ρν1,ν2,ν3(s1,s2,s3) (3.18)

×Hν1,ν2,ν3|α,β(s1,s2,s3)

3∏
j=1

(
kj
2

)−2sj+iνj

=

∫
[ds′]3 iπδ

(x
4
−s′1−s′2−s′3

)
ρν′1,ν′2,ν′3(s′1,s

′
2,s
′
3)

3∏
j=1

(
kj
2

)−2s′j+iν
′
j

,

where

ν ′1 = ν1 − i(α− β), (3.19a)

ν ′2 = ν2 − iβ, (3.19b)

ν ′3 = ν3 + iα, (3.19c)

and we have performed the change of variables s′1 = s1 + α−β
2 , s′2 = s2 + β

2 and s′3 = s3− α
2 ,

noting that s′1 + s′2 + s′3 = s1 + s2 + s3. In this way the Fourier transform of the Witten
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diagram (3.13) can be expressed as a sum of scalar Witten diagrams (3.1) with integer-

shifted scaling dimensions, each of which is dressed with a given tensor structure:

〈Oν1(~k1)Oν2(~k2)Oν3,`(
~k3; ~ξ )〉 =

∑̀
α=0

(
`

α

)
(−~ξ · ~k3)α

α∑
β=0

(
α

β

)
Y(`)
ν1,ν2,ν3|α,β(~ξ · ~k1, ~ξ · ~k2)

× 〈Oν1−i(α−β)(~k1)Oν2−iβ(~k2)Oν3+iα(~k3)〉
∣∣
d→d+2`︸ ︷︷ ︸

A
(x)
ν1,ν2,ν3|α,β

(~k1,~k2,~k3)

. (3.20)

The telescopic property of the Mellin-Barnes integrals (3.18) makes manifest various

recursion relations that exist among them. For example, the shifts in the scaling dimen-

sions (3.19a) and (3.19b) associated to the scalar fields can be simply lifted from the

Mellin-Barnes integral via

A
(x)
ν1,ν2,ν3|α,β(~k1, ~k2, ~k3)

= (−1)αk
2(α−β+iν1)
1 k

2(β+iν2)
2 ∂α−β

k2
1
∂β
k2

2

[
k−2iν1

1 k−2iν2
2 A(x,α)

ν1,ν2,ν3
(~k1, ~k2, ~k3)

]
, (3.21)

where

A(x,α)
ν1,ν2,ν3

(~k1,~k2,~k3) ≡
∫

[ds]3 iπδ
(x

4
− s1 − s2 − s3

)
× ρν1,ν2,ν3(s1, s2, s3)(

s3 + iν3
2 − α

)
α

3∏
j=1

(
kj
2

)−2sj+iνj

, (3.22)

which shifts only the scaling dimension associated to the spinning field. This in turn can

be generated from the expression with fixed α = ` via

A(x,α)
ν1,ν2,ν3

(~k1, ~k2,~k3) = ∂`−αλ1

[
λ−α+

iν3
2
− iν1

2
− iν2

2
+x

4
−1A(x,`)

ν1,ν2,ν3
(λ1/2~k1, λ

1/2~k2, ~k3)
]
λ=1

. (3.23)

In other words, the full correlator (3.20) can be generated from the Mellin-Barnes inte-

gral (3.22) with α = ` through the recursion relations (3.21) and (3.23). This is useful for

scaling dimensions where the integral (3.22) simplifies with respect to (3.18).

Similarly we can write down recursion relations which raise and lower the scaling

dimensions of the scalar fields by integer units. In particular, the operations

A
(x)
ν1−i,ν2,ν3|α,β(~kj) = −1

2
k

1+2iν1+2(α−β)
1 ∂k1

[
k
−2iν1−2(α−β)
1 A

(x−2)
ν1,ν2,ν3|α,β(~kj)

]
, (3.24a)

A
(x)
ν1,ν2−i,ν3|α,β(~kj) = −1

2
k1+2iν2+2β

2 ∂k2

[
k−2iν2−2β

2 A
(x−2)
ν1,ν2,ν3|α,β(~kj)

]
, (3.24b)

increase the external scaling dimensions by an integer, while the lowering operators are

given by:

A
(x)
ν1+i,ν2,ν3|α,β(~kj) = − 2

k1
∂k1A

(x−2)
ν1,ν2,ν3|α,β(~kj) , (3.25a)

A
(x)
ν1,ν2+i,ν3|α,β(~kj) = − 2

k2
∂k2A

(x−2)
ν1,ν2,ν3|α,β(~kj) . (3.25b)
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The recursion relations discussed in this section are useful for scaling dimensions where

the initial or “seed” Mellin-Barnes integral simplifies. We shall consider some examples of

this type in section 3.3. These recursion relations also carry over at the four-point level,

which we shall discuss in further detail in section 4.4.

de Sitter late-time correlator. The expression (3.20) for the 0-0-` Witten diagram as

a sum of scalar Witten diagrams allows us to immediately write down the corresponding

late-time correlator in dSd+1 from the result (3.10) for general scalars. In particular, the

tensor structure on the first line of (3.20) is unchanged in going from EAdSd+1 to dSd+1,

which can also be seen at the level of the propagators due to the independence of the

phases (2.83) from the spin of the field. For the contributions from the + and − branches

of the branches of the in-in contour, this gives

A±|ν1,ν2,ν3

(
~k1, ~k2, ~k3; ~ξ

)
= ±ie∓iπ

(
d+2`

4
+

(ν1+ν2+ν3)i
2

) ∫
[ds]3iπδ

(
d+ 2`

4
− s1 − s2 − s3

)
× p(`)

ν1,ν2,ν3
(~ξ · ~k1, ~ξ · ~k2, ~ξ · ~k3|s1, s2, s3)ρν1,ν2,ν3(s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj+iνj

, (3.26)

where the phase factor now also depends on the spin ` due to the Dirac delta-function.

The full late-time correlator is therefore:

Mellin-Barnes representation of the 0-0-` late-time correlation function in dSd+1

〈φ(ν1)
~k1

φ
(ν2)
~k2

ϕ
(ν3)
~k3
〉′= 2N3 sin

(
π

(
d+2`

4
+
i(ν1+ν2+ν3)

2

))
×
∫

[ds]3iπδ

(
d+2`

4
−s1−s2−s3

)
(3.27)

×p(`)
ν1,ν2,ν3

(~ξ ·~k1, ~ξ ·~k2, ~ξ ·~k3|s1,s2,s3)ρν1,ν2,ν3(s1,s2,s3)

3∏
j=1

(
kj
2

)−2sj+iνj

,

Equivalently the result can be manifestly expressed as a sum of scalar correlators (3.2b) as

in (3.20):

〈φ(ν1)
~k1

φ
(ν2)
~k2

ϕ
(ν3)
~k3
〉′ = 2N3 sin

(
π

(
d+ 2`

4
+
i(ν1 + ν2 + ν3)

2

))∑̀
α=0

α∑
β=0

(
`

α

)(
α

β

)
(−~ξ · ~k3)α

× Y(`)
ν1,ν2,ν3|α,β(~ξ · ~k1, ~ξ · ~k2) 〈Oν1−i(α−β)(~k1)Oν2−iβ(~k2)Oν3+iα(~k3)〉

∣∣
d→d+2`︸ ︷︷ ︸

A
(d+2`)
ν1,ν2,ν3|α,β

(~k1,~k2,~k3)

, (3.28)

and the recursion relations discussed in the previous section continue to apply. In the

following we discuss the helicity decomposition.

Expansion into helicity components. Before concluding this section let us discuss

the helicity decomposition of the correlator (3.27), which can be obtained along the same
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lines as for the two-point functions in section 2.4. For the 0-0-` conformal structures (3.15)

we have a single polarization vector ~ξ, which we can parameterise as:

~ξ = (~ξ⊥, i) , ~k3 = (0, k3) , (ξ⊥)2 = 1, (3.29)

so that

~ξ = ~ξ⊥ + i k̂3 , ~ξ⊥ · ~k3 = 0 , ~ξ · ~k3 = ik3 . (3.30)

Employing momentum conservation one can then expand:

~ξ · ~k1 = +
1

2
~ξ⊥ · ~q12 + i k̂3 · ~k1 = +

1

2
[b− ik3(1 + p12q12)] , (3.31a)

~ξ · ~k2 = −1

2
~ξ⊥ · ~q12 + ik̂3 · ~k2 = −1

2
[b+ ik3(1− p12q12))] , (3.31b)

where

~q12 = ~k1 − ~k2, b = ξ⊥ · ~q12, (3.32)

and for convenience (following [29]) we introduced

p12 =
k1 + k2

k3
, q12 =

k1 − k2

k3
. (3.33)

The helicity decomposition of the correlator (3.27) can be obtained by expanding the

polynomials (3.16) in powers of b (which is straightforward using the above replacements):

Y(`)
ν1,ν2,ν3|α,β(~ξ · ~k1, ~ξ · ~k2) =

∑̀
r=0

y
(`)
ν1,ν2,ν3|α,β(p12, q12)br, (3.34)

and then decomposing each power in terms of Gegenbauer polynomials using the inversion

formula (2.77):

br =

r∑
m=0

Zr,mΞm(b), (3.35a)

Zr,m =
2d+m−4Γ

(
d
2 −

3
2

)
Γ
(
d
2 +m− 1

2

)
πΓ(d+m− 3)

∫ 1

−1
db (1− b2)

d−4
2 br C

( d−3
2

)
m (b) (3.35b)

=
2m−r−1r!(1 + (−1)r+m)Γ

(
d−1

2 +m
)

m! Γ
(

2+r−m
2

)
Γ
(
d+r+m−1

2

) . (3.35c)

This gives the helicity decomposition

p(`)
ν1,ν2,ν3

(~ξ · ~k1, ~ξ · ~k2, ~ξ · ~k3|s1, s2, s3) =
∑̀
m=0

p(`)
m (p12, q12, k3|s1, s2, s3)Ξm(b), (3.36)

where

p(`)
m (p12, q12|s1, s2, s3) =

∑̀
α=0

α∑
β=0

(
`

α

)(
α

β

)
(−ik3)αHν1,ν2,ν3|α,β(s1, s2, s3)

×
∑̀
r=0

y
(`)
ν1,ν2,ν3|α,β(p12, q12)Zr,m , (3.37)
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where b = σ cos(θ) = ξ⊥·~q12 with σ2 = −k2
3(1−p2

12)(1−q2
12). The highest helicity component

receives contributions only from the α = β = 0 term, and takes the simple form:

p
(`)
` (p12, q12|s1, s2, s3) =

(
− i

2

)`
. (3.38)

In the following we give a couple of lower spin examples. We moreover set ν1 = ν2 = µ

and ν3 = ν just to simplify the expressions.

` = 1:

p
(1)
0 (p12, q12|s1, s2, s3) = −k3 p12 q12

2
+

k3(s2 − s1)

iν + 2s3 − 2
. (3.39)

` = 2:

p
(2)
1 (p12, q12|s1, s2, s3) =

ik3p12q12

2
+
i k3(s1 − s2)

iν + 2s3 − 2
, (3.40a)

p
(2)
0 (p12, q12|s1, s2, s3) =

k2
3

8

(
− 4

2iν + 1
+ 3p2

12q
2
12 − p2

12 − q2
12 + 1

)
(3.40b)

+
k2

3(−2iµ+ 2iνp12q12(s1 − s2) + s1(p12q12 − 2)− s2(p12q12 + 2))

(2iν + 1)(iν + 2s3 − 2)

+
k2

3

(
2µ2 + 2iν

(
iµ− 2s1s2 + s2

1 + s1 + s2
2 + s2

))
(2iν + 1)(iν + 2s3 − 4)(iν + 2s3 − 2)

−
(
6s1s2 + s2

1 + s1 + s2
2 + s2

)
k2

3

(2iν + 1)(iν + 2s3 − 4)(iν + 2s3 − 2)

− iµ(4s1 + 4s2 + 1)k2
3

(2iν + 1)(iν + 2s3 − 4)(iν + 2s3 − 2)
.

3.3 Examples

In the preceding sections we considered three-point correlators of two scalars and a spin-`

field with generic scaling dimensions, which are given by the Mellin-Barnes integral (3.27).

For certain special scaling dimensions that are away from the Principal Series, the Mellin

representation simplifies. In the following we illustrate some examples of this type.

Two conformally coupled scalars. The Mellin representation simplifies when one or

more of the fields is conformally coupled, which corresponds to ν = i
2 . This is because when

ν = i
2 the two Γ-functions in the Mellin-Barnes representation of the propagator (2.33) are

replaced with a single Γ-function by virtue of the Legendre duplication formula, which

allows to lift the corresponding Mellin integral.

Let us suppose that the two scalars in the three-point function (3.27) are conformally

coupled, ν1,2 = i
2 . The seed Mellin-Barnes integral (3.22) in this case reads

A
(x,α)
i
2
, i
2
,ν3

(~k1,~k2,~k3) =
2√
π

∫
[ds]3 iπδ

(x
4
−s1−s2−s3

)
Γ

(
2s1−

1

2

)
Γ

(
2s2−

1

2

)
Γ

(
s3−

iν3

2

)
×Γ

(
s3−α+

iν3

2

)
k
−2s1− 1

2
1 k

−2s2− 1
2

2

(
k3

2

)−2s3+iν3

(3.41)
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=
2√
π

p12

k1k2

(
k3

2

)iν3−x2 +1∫ i∞

−i∞

ds

2πi
Γ(2s−1)Γ

(
x

4
−s− iν3

2

)
×Γ

(
x

4
−s−α+

iν3

2

)
(2p12)−2s, (3.42)

where in the second equality we eliminated one of the Mellin variables using the Dirac delta

function and then evaluated one of the two leftover Mellin integrals using Cauchy’s residue

theorem. The remaining Mellin-Barnes integral in fact represents a Gauss Hypergeometric

function with argument z = 1−p12

2 , so that

A
(x,α)
i
2
, i
2
,ν3

(~k1,~k2,~k3) =
22α−x+3

k1k2

(
k3

2

)iν3−x2 +1 Γ
(
x
2 − iν3 − 1

)
Γ
(
x
2 − 2α+ iν3 − 1

)
Γ
(
x−1

2 − α
)

2F1

(
x
2 − 1− iν3,

x
2 − 2α+ iν3 − 1

x−1
2 − α

;
1− p12

2

)
. (3.43)

From the above expression, all terms (3.28) in the correlator (3.27) are generated by acting

with the differential operator (3.21).

When the spin-` field is massless, ν3 = i
2(d− 4 + 2`), the term with α = β = 0 gives

the physical helicity-` component. When d = 3 this reads:

A
(3+2`)
i
2
, i
2
, i
2

(2`−1)|0,0(~k1,~k2,~k3) =
Γ(2`)

Γ(`+ 1)

N3

k1k2k2`
3

2F1

(
1, 2`; `+ 1;

1− p12

2

)
. (3.44)

Note that when ` = 0 we have a divergence. This divergence is however cancelled upon

including the sinusoidal factor in (3.27) which arises from combining the contributions from

the + and − branches of the in-in contour, giving [29]:

〈φ(i/2)
~k1

φ
(i/2)
~k2

ϕ
(i/2)
~k3
〉′ = πN3

k1k2k3
. (3.45)

Two massless scalars in d = 3. From the simplified result (3.43) for two conformally

coupled scalars, using the raising operators (3.24) we can obtain expressions for when the

two scalars have scaling dimension ν = i
2 + n for any n ∈ N. The simplest application is

when n = 1, which for d = 3 corresponds to a massless scalar. In this case we have

A
(x,α)
3i
2
, 3i

2
,ν3

(~k1,~k2, ~k3) =
4

k1k2
∂k1∂k2A

(x−4,α)
i
2
, i
2
,ν3

(~k1,~k2,~k3) . (3.46)

A nice application of this formula is for the graviton three-point function with two massless

scalars in d = 3, which corresponds to ν3 = 3i
3 and x = d+ 2` = 7. The physical helicity-2

component is given by (3.46) with α = 0. Inserting (3.43) for these values and evaluating

the derivatives straightforwardly gives

A
(7,0)
3i
2
, 3i

2
,ν3

(~k1,~k2,~k3) = − 16

(k1k2k3)3

[
−k1k2k3

k2
t

− k1k2 + k1k3 + k2k3

kt
+ kt

]
, (3.47)

where kt = k1 + k2 + k3, which matches the result in [101].
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Although the relation (3.46) gave the result with little effort from the conformally

coupled scalar case, it is instructive consider the simple graviton example in more detail

directly at the level of the Mellin-Barnes representation (3.22).

Since results for scaling dimensions away from the Principal Series are defined by

analytic continuation it is wise to set d = 3 + ε, for which we have

A
(7+ε,0)
3i
2
, 3i

2
, 3i

2

(~k1, ~k2, ~k3) =
32k

− ε
2
−4

3

k3
1k

3
2

∫ i∞

−i∞

ds

2πi
(1− s)(4s− ε− 6)Γ

(
2− 2s+

ε

2

)
×
(
k2

3p
2
12Γ(2s− 3) + k1k2Γ(2s− 2)

)
p1−2s

12 . (3.48)

To evaluate the Mellin integral it is simplest to close the integration contour to the right,

which encloses the sequence of poles

2s = 2 +
ε

2
+ n, n ∈ N0, (3.49)

which gives the helicity-2 component of the three-point function as the following series

A
(7+ε,0)
3i
2
, 3i

2
, 3i

2

(~k1, ~k2,~k3) =
1

k3
1k

3
2

∞∑
n=0

8(−1)n

n!
(1− n)k

− ε
2
−4

3 (2n+ ε)p
−n− ε

2
−1

12

×
[
k2

3p
2
12Γ
(
n+

ε

2
− 1
)

+ k1k2Γ
(
n+

ε

2

)]
. (3.50)

From the above it is interesting to notice how the n = 1 term does not contribute ∀ ε 6= 0,

while exactly at ε = 0 it gives a non-vanishing contribution 16 k3

k3
1k

3
2k

3
3
. This example therefore

exhibits how the limit ε → 0 does not in general commute with the integration over

the Mellin variables. The result (3.47) is only obtained by taking the limit ε → 0 after

the Mellin integration has been performed (i.e. after re-summing the series in n). This

illustrates the importance of keeping d arbitrary in the calculation in order to keep these

subtleties under control.

3.4 Soft limit and inflationary two-point function

The Mellin-Barnes representation of correlators in Fourier space is a convenient tool to

extract kinematic limits in the phase space of momenta. When considering cosmological

correlators we are often interested in soft momentum limits k → 0, which for a scalar of

small mass ν = i
(
d
2 − ε

)
gives the leading slow-roll correction where ε is related to the slow-

roll parameter [29, 43]. In the following, for the 0-0-` correlator (3.27) we detail how to

extract the soft limits of both scalar and spinning legs within the Mellin formalism. From

the expression for the soft limit of one scalar leg we also give the corresponding inflationary

two-point function of a scalar field and a spin-` field at leading order in slow roll.

Soft limit of scalar legs. Let us consider the soft limit k2 → 0 of the scalar field

φ(ν2). Assuming ν2 ∈ iR+, the dominant term as k2 → 0 is encoded in the residue of the

pole at s2 = − iν2
2 , which is the leading Gamma-function pole that generates non-analytic

terms in the momentum k2 in the Mellin-Barnes representation (2.82) of the corresponding

propagator. Momentum conservation implies that ~ξ · ~k1 ∼ −~ξ · ~k3 as k2 → 0, for which
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the polynomial p` encoding the tensor structure in (3.27) becomes proportional to a single

monomial (~ξ · ~k3)`:17

p(`)
ν1,ν2,ν3

(−~ξ ·~k3,0, ~ξ ·~k3|s1,s2,s3)
∣∣∣
s2=− iν2

2

(3.51)

= (−i~ξ ·~k3)`
∑̀
α=0

(
`

α

) (
s1+ iν1

2

)
α(

iν3
2 −α+s3

)
α

(
d−2`+2iν3−2iν1+2iν2

4

)
`−α

(
d+2`−4α+2iν3−2iν1+2iν2

4

)
α(

d
2 +iν3−1

)
`−α
(
d
2 +`−α+iν3−1

)
α

= (i ~ξ ·~k3)`

(
d−2`−2i(ν1−ν2−ν3)

4

)
`

(
2s1+2s3−2`+i(ν1+ν3)

2

)
`(

d
2 +iν3−1

)
`

(
s3+ iν3

2 −`
)
`

.

This implies that only the zero helicity component contributes in the soft limit k2 → 0,

since components with non-zero helicity are orthogonal to ~k3. Using this expression, upon

eliminating the Dirac delta function in (3.27) the soft limit is given by a single Mellin-

Barnes integral:

〈φ(ν1)
~k1

φ
(ν2)
~k2

ϕ
(ν3)
~k3
〉′
∣∣∣
k2→0, ~k1∼−~k3

=
N2

4π
sin
(π

4
(d+ 2`+ 2i(ν1 + ν2 + ν3))

)
×

(
d−2`−2i(ν1−ν2−ν3)

4

)
`

(
d−2`+2i(ν1+ν2+ν3)

4

)
`(

d
2 + iν3 − 1

)
`

(
k3

2

)− d
2
−`+i(ν1−ν2+ν3)

(i~ξ · ~k3)`

×
∫ i∞

−i∞

ds1

2πi
Γ

(
s1 −

iν1

2

)
Γ

(
s1 +

iν1

2

)
Γ

(
d+ 2`− 4s1 + 2i(ν2 − ν3)

4

)
× Γ

(
d− 2`− 4s1 + 2i(ν2 + ν3)

4

)
.

This Mellin integral can be easily lifted using Barnes’ first lemma, which gives

〈φ(ν1)
~k1

φ
(ν2)
~k2

ϕ
(ν3)
~k3
〉′
∣∣∣
k2→0, ~k1∼−~k3

=
N2

4π Γ
(
d
2 + iν2

) sin
(π

4
(d+ 2`+ 2i(ν1 + ν2 + ν3))

)
× Γ

(
d− 2`+ 2iν1 + 2i(ν2 + ν3)

4

)
Γ

(
d− 2`− 2iν1 + 2i(ν2 + ν3)

4

)
× Γ

(
d+ 2`+ 2iν1 + 2i(ν2 − ν3)

4

)
Γ

(
d+ 2`− 2iν1 + 2i(ν2 − ν3)

4

)

×

(
d−2`−2i(ν1−ν2−ν3)

4

)
`

(
d−2`+2i(ν1+ν2+ν3)

4

)
`(

d
2 + iν3 − 1

)
`

(
k3

2

)− d
2
−`+i(ν1−ν2+ν3)

(i~ξ · ~k3)` , (3.52)

where we also divided by the two-point function of the leg with respect to which we are

taking the soft limit.

17In deriving this expression note that the pole at s2 = − iν2
2

is only present in the β = 0 contribution to

the correlator (3.15).
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Inflationary two-point function. The inflationary two-point function can be obtained

from the above by giving the soft leg a small mass: ν2 = i(d2 − ε), and collecting the terms

linear in ε:

Inflationary two-point function

〈φ(ν1)
~k1

ϕ
(ν3)
~k3
〉′(Infl.) = ε

N2

4π
sin
(π

2
(`+ iν1 + iν3)

) ∏
±±̂

Γ

(
`± iν1±̂iν3

2

)

× 1(
d
2 + iν3 − 1

)
`

(
k3

2

)−`+iν1+iν3

(i ~ξ · ~k3)` , (3.53)

This matches and generalises equation (C.211) in [29] where it was given for ν3 = di
2

(massless scalar) in d = 3.

Soft limit of spinning leg. In the previous part we took the soft limit of a scalar leg.

It is also straightforward to take the soft limit of the spinning leg in (3.27), i.e. k3 → 0. In

this case it is useful to note that

p(`)
ν1,ν2,ν3

(~ξ · ~k1, ~ξ · ~k2, ~ξ · ~k3|s1, s2, s3)
∣∣∣
k3→0

= Y(`)
ν1,ν2,ν3|0,0(~ξ · ~k1,−~ξ · ~k1) (3.54a)

= (−i~ξ · ~k1)` (3.54b)

which is independent of the Mellin variables si, and we used that k1 ∼ k2 as k3 → 0. At

the level of the full correlator (3.27), like for the soft limit of the scalar leg considered

earlier, the leading term in the limit k3 → 0 is given by the residue of the leading pole

encoding the non-analytic dependence on k3 in the Mellin-Barnes representation (2.33) of

the corresponding propagator, which is at s3 = − iν3
2 . Together with the behaviour (3.54),

this gives:

〈φ(ν1)
~k1

φ
(ν2)
~k2

ϕ
(ν3)
~k3
〉′
∣∣∣
k3→0

=
N3

4π

sin
(
π
(
d
4 + i(ν1+ν2+ν3+`)

2

))
Γ
(
d
2 + iν3 + `

) ∏
±±̂

Γ

(
d+ 2`

4
+
i
(
ν3 ± ν1±̂ν2

)
2

)

× (−i~ξ · ~k1)`
(
k1

2

)i(ν1+ν2−ν3)− d
2
−`Γ(−iν3)

2
√
π

(
k3

2

)2iν3

. (3.55)

4 Four-point exchange diagrams

In this section we consider late-time exchange four-point functions in dSd+1 at tree-level.

Throughout we shall consider four-point functions with general external scalars, though

the approach is applicable to general external spinning fields which shall be detailed else-

where [95]. We start in section 4.1 with the derivation of the Mellin-Barnes representation

for the exchange of a general scalar field in Fourier-space, and then the exchange of a

general field with integer spin ` in section 4.2.

The remaining sections are dedicated to the discussion of various properties of the

Mellin-Barnes representation for exchange diagrams in Fourier-Space. In sections 4.3
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and 4.5 we detail how the representation encodes the Operator-Product- and Effective-

Field-Theory-expansions of the exchange four-point function. In section 4.4 we show how

the representation makes manifest recursion relations between correlation functions with

fields of different scaling dimensions and spins, which can be reformulated as the action

of weight-shifting operators. In section 4.6 we discuss the simplifications that occur for

certain scaling dimensions, and the extra care that needs to be taken when analytically

continuing the Mellin-Barnes representation away from the Principal Series. We conclude

in section 4.7 by comparing the Mellin-Barnes representations of exchange four-point func-

tions in anti-de Sitter and de Sitter space.

4.1 Exchange of a general scalar

In this section we derive first the Mellin-Barnes representation for the late-time limit of a

general tree-level four-point scalar exchange in de Sitter space. We shall detail how this

result can be obtained simply from the knowledge of the associated tree-level three-point

Witten diagrams in EAdSd+1 — i.e. those generated by the cubic vertices participating

in the exchange under consideration — and enforcing causality as we go from Euclidean

anti-de Sitter space to de Sitter. This approach lends itself to the extension to spinning

fields, which we consider in section 4.2.

The defining feature of the four-point exchange diagram is the bulk-to-bulk propagator

for the exchanged particle. As we saw in section 2.5, this is expressed in terms of EAdS

Harmonic functions (2.28) which are appropriately analytically continued on the various

branches of the in-in contour. The boundary dual of a bulk Harmonic function is a Con-

formal Partial Wave (CPW), which gives the contribution of the Harmonic function to the

boundary correlation function. These comprise a complete basis of single-valued orthogo-

nal Eigenfunctions of the Casimir invariants for the Conformal group [16, 17, 110, 111]. In

momentum space they are completely factorised [85]:

F ′ν,0(~ki;~k) = 〈O1(~k1)O2(~k2)O∆(~k)〉〈Õd−∆(−~k )O3(~k3)O4(~k4)〉, (4.1)

where Õd−∆ is the scaling dimension d −∆ of the shadow of the boundary operator O∆.

Momentum conservation implies ~k = ~k1 + ~k2 = −~k3 − ~k4. The scaling dimension ∆ of

the exchanged massive representations (in the s-channel in this case) is taken to lie on the

Principal Series: ∆ = d
2 + iν, ν ∈ R for dS exchange. Other representations including

complementary series, can be obtained with due care on the analytic continuation of the

Principal Series result, which we discuss in more detail in section 4.6. The three-point

function factors are given explicitly as a Mellin-Barnes integral (3.2b), which implies the

following Mellin-Barnes representation for a CPW in momentum space

F ′ν,0(~ki;~k) =

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
F ′ν,0(si;u, ū|z, z̄|~ki;~k) (4.2a)

F ′ν,0(si;u, ū|~ki;~k) = ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

× (iπ)δ

(
d

4
− s1 − s2 − u

)
(iπ)δ

(
d

4
− s3 − s4 − ū

)
. (4.2b)
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The Mellin-Barnes representation makes manifest the duality between CPWs and bulk

Harmonic function Ω
ν,~k

. In particular, we have

F ′ν,0(~ki;~k) =

∫ ∞
0

dz

zd+1

dz̄

z̄d+1
F ′ν,0(z, z̄|~ki;~k), (4.3)

with

F ′ν,0(z, z̄|~ki;~k) = K d
2

+iν1
(z;~k1)K d

2
+iν2

(z;~k2)Ω
ν,~k

(z; z̄)K d
2

+iν3
(z̄;~k3)K d

2
+iν4

(z̄;~k4)

=

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
F ′ν,0(si;u, ū|z, z̄|~ki;~k), (4.4a)

F ′ν,0(si;u, ū|z, z̄|~ki;~k) = ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

× z
3d
2
−2(s1+s2+u)z̄

3d
2
−2(s3+s4+ū), (4.4b)

recalling the Mellin-Barnes representation for the bulk propagators (given in section 2.2.1),

where the Mellin variables u and ū are associated to the internal legs of the Harmonic

function. The integrals over the radial co-ordinates z and z̄ generate the delta functions

in (4.2), just as for the three-point functions (3.6). The identification (4.3), which is

unique owing to the on-shell uniqueness of cubic interactions with two scalars,18 will be

instrumental for the extension of the results in this section to the exchange of spinning

particles — where the CPW (4.1) is also known [40].

To go from Euclidean AdS to Lorentzian de Sitter we send (z, z̄)→ (−η,−η̄) and dress

the Mellin representation of each propagator with the appropriate phase as prescribed by

the dictionary in section 2.5. Recall that for the external legs the phase depends on the

branch of the in-in contour while for the internal legs it depends on the path ordering of η

and η̄. In particular:

F (+−)(si;u, ū|η, η̄|~ki) = eδ
+
ν1

(s1)+δ+
ν2

(s2)+δ−ν3 (s3)+δ−ν4 (s4)+δ≺(u1,u2) (4.5a)

×F ′(si;u, ū| − η,−η̄|~ki) ,

F (−+)(si;u, ū|η, η̄|~ki) = eδ
−
ν1

(s1)+δ−ν2 (s2)+δ+
ν3

(s3)+δ+
ν4

(s4)+δ�(u1,u2) (4.5b)

×F ′(si;u, ū| − η,−η̄|~ki) ,

F (±±)
� (si;u, ū|η, η̄|~ki) = eδ

±
ν1

(s1)+δ±ν2 (s2)+δ±ν3 (s3)+δ±ν4 (s4)+δ�(u1,u2) (4.5c)

×F ′(si;u, ū| − η,−η̄|~ki) ,

F (±±)
≺ (si;u, ū|η, η̄|~ki) = eδ

±
ν1

(s1)+δ±ν2 (s2)+δ±ν3 (s3)+δ±ν4 (s4)+δ≺(u1,u2) (4.5d)

×F ′(si;u, ū| − η,−η̄|~ki) ,

where the subscripts ≺ and � denote the path orderings η ≺ η̄ and η � η̄, respectively

on the in-in contour and the phases δ±ν (s) and δ≺(u, ū) and δ�(u, ū) are defined in (2.81)

18This statement is strictly true only at the level of Conformal Partial Waves/bulk Harmonic functions.

The full exchange amplitude includes contact terms, which are sensitive to the choice of improvements of

each cubic coupling. We shall comment on this point shortly when discussing the full exchange amplitude

and the associated contact interactions.
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and (2.83) respectively. The superscripts denote the branch of the in-in contour, i.e. ++,

+−, −+ or −−. Note that these analytic continuations also hold for spinning fields,

owing to the independence of the phase factors from the spin as discussed in section 2.3.

With (4.5) we can construct the full late-time exchange amplitude:19

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = N4 lim

η0→0

∑
±±̂

(±i)
(
±̂i
)
A±±̂|ν1,ν2,ν3,ν4

(~ki;~k) + t− and u−channels,

(4.6)

where we sum over all pieces of the in-in contour, with:

A++|ν1,ν2,ν3,ν4
(~ki;~k) =

∫ η0

−∞
dηdη̄

[
θ(η−η̄)F (++)

� (η, η̄|~ki)+θ(η̄−η)F (++)
≺ (η, η̄|~ki)

]
, (4.7a)

A+−|ν1,ν2,ν3,ν4
(~ki;~k) =

∫ η0

−∞
dηdη̄F (+−)(η, η̄|~ki), (4.7b)

A−+|ν1,ν2,ν3,ν4
(~ki;~k) =

∫ η0

−∞
dηdη̄F (−+)(η, η̄|~ki), (4.7c)

A−−|ν1,ν2,ν3,ν4
(~ki;~k) =

∫ η0

−∞
dηdη̄

[
θ(η−η̄)F (−−)

≺ (η, η̄|ki)+θ(η̄−η)F (−−)
� (η, η̄|~ki)

]
. (4.7d)

cf. equation (2.79) for the de Sitter bulk-to-bulk propagator in terms of analytically con-

tinued EAdS Harmonic functions. When writing this expression for the exchange we want

to stress that we are reconstructing the dS exchange from first principles via our dictio-

nary. In particular, on the bulk side, this implicitly entails making a choice of improvement

terms in the bulk cubic couplings. This naturally corresponds to the physical freedom of

adding contact interactions to the exchange amplitude by modifying cubic couplings with

terms proportional to the equations of motion. In the following we shall stick to the above

minimal choice to define a basis of exchange amplitudes due to its strikingly simple relation

to conformal partial waves.

The integrals over conformal time in (4.7) are simple combinations of the following

basic integrals:

Q(x,x̄)
� (si;u, ū) =

∫ η0

−∞

∫ η0

−∞
dηdη̄(−η)

x
2
−2(s1+s2+u)−1(−η̄)

x̄
2
−2(s1+s2+u)−1 (4.8a)

=
4(−η0)

1
2

[x+x̄−4(s1+s2+s3+s4+u+ū)]

(x− 4(s1 + s2 + u))(x̄− 4(s3 + s4 + ū))
,

Q(x,x̄)
> (si;u, ū) =

∫ η0

−∞

∫ η0

−∞
dηdη̄(−η)

x
2
−2(s1+s2+u)−1(−η̄)

x̄
2
−2(s1+s2+u)−1θ(η − η̄) (4.8b)

=
4(−η0)

1
2

[x+x̄−4(s1+s2+s3+s4+u+ū)]

(x̄− 4(s3 + s4 + ū))(x+ x̄− 4(s1 + s2 + s3 + s4 + u+ ū))
,

19In the following we focus on the contribution from the s-channel exchange. Expressions for the t- and

u-channel contributions can be obtained in the same way (or just by permuting the external legs). From this

point onwards, for ease of presentation we shall leave the contributions from the t- and u-channel exchanges

implicit.
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Q(x,x̄)
< (si;u, ū) =

∫ η0

−∞

∫ η0

−∞
(−η)

x
2
−2(s1+s2+u)−1(−η̄)

x̄
2
−2(s1+s2+u)−1θ(η̄ − η) (4.8c)

=
4(−η0)

1
2

[x+x̄−4(s1+s2+s3+s4+u+ū)]

(x− 4(s1 + s2 + u))(x+ x̄− 4(s1 + s2 + s3 + s4 + u+ ū))
.

where the contour prescription we used to evaluate the η and η̄ integrals is20

<(s1 + s2 + u) >
x

4
, <(s3 + s4 + ū) >

x̄

4
, (4.9)

so that the integration contour passes to the right of poles. For scalar exchange diagrams

we have: x = x̄ = d, as can be read off from (4.4b). For spinning exchange diagrams, x and

x̄ will also depend on the spin, which can already be anticipated from the expression (3.27)

for a three-point function involving one spinning field. Since, as we shall see, many of the

results presented in this section can be recycled when we consider spinning exchanges, we

shall often keep x and x̄ as arbitrary real numbers in the following — the dependence on

which we display in the superscripts.

It is useful to organise the exchange four-point function in terms of contributions that

are given by the same basic integral in conformal time as in the kernels (4.8). These are:

A(x,x̄)
�|ν1,ν2,ν3,ν4

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
Q(x,x̄)
� (si;u, ū) (4.10a)

× cos

(
π

(
iν1 + iν2 − iν3 − iν4

2
+ s1 + s2 + u− s3 − s4 − ū

))
× ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

,

A(x,x̄)
>|ν1,ν2,ν3,ν4

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
Q(x,x̄)
> (si;u, ū) (4.10b)

× cos

(
π(
iν1 + iν2 + iν3 + iν4

2
+ s1 + s2 + s3 + s4 − u+ ū)

)
× ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

,

A(x,x̄)
<|ν1,ν2,ν3,ν4

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
Q(x,x̄)
< (si;u, ū) (4.10c)

× cos

(
π

(
iν1 + iν2 + iν3 + iν4

2
+ s1 + s2 + s3 + s4 + u− ū

))
× ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

,

20We assume that the integrand is well behaved at infinity. This puts constraints on the real part of the

exponents of η and η̄ in (4.8) which constrains the Mellin integration contour. After performing the η and

η̄ integrals we can move the contour around, but we will have to pick residues according to the initial choice

of the integration contour.
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where the subscript “�” denotes the sum of the +− and−+ contributions (4.7b) and (4.7c),

while the subscripts < and > denote the sum of ++ and −− contributions (4.7a) and (4.7d)

for η < η̄ and η > η̄ respectively. The appearance of the sinusoidal factors in the Mellin

integrands originate from the combination of contributions from different branches of the

in-in contour, which have relative phases given by (4.5). The Mellin-Barnes representation

for exchange diagrams makes it simple to take the late-time limit η0 → 0, whose leading

contribution is controlled by the Mellin-poles in the integrals (4.8) over conformal time.

For the total contribution (4.10a) from the +− and −+ contours, the leading term in the

late-time limit is given by the residues of both poles in (4.8a) and the resulting expression

is completely factorised:

lim
η0→0

A(x,x̄)
�|ν1,ν2,ν3,ν4

(~ki;~k) =
1

2

∫ +i∞

−i∞
[ds]4 cos

(π
2

(ν1 + ν2 − ν3 − ν4)
)

(4.11a)

× ρν1,ν2,ν(s1, s2, w)ρν3,ν4,−ν(s3, s4, w̄)

(
k

2

)−2(w+w̄) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣w=x
4−s1−s2

w̄= x̄
4−s3−s4

x=x̄=d
=

1

2
cos
(π

2
(ν1 + ν2 − ν3 − ν4)

)
(4.11b)

× 〈Oν1(~k1)Oν2(~k2)Oν(~k)〉′〈Õ−ν(−~k)Oν3(~k3)Oν4(~k4)〉′,

which, setting x = x̄ = d, is proportional to a single conformal partial wave (4.1), as shown

in the second equality where we used equation (3.2b).

For the remaining contributions (4.10b) and (4.10c), the leading contribution in the

late time limit is of the same order and is given by the residue of the pole at x+ x̄− 4(s1 +

s2 + s3 + s4 + u+ ū) ∼ 0 in (4.8b) and (4.8c), respectively. This gives,

lim
η0→0

A(x,x̄)
>|ν1,ν2,ν3,ν4

(~ki;~k) =
1

2

∫ +i∞

−i∞

du

2πi

∫ +i∞

−i∞
[ds]4

cos
(
π
2 (4(s1+s2+u)+iν1+iν2+iν3+iν4)

)
u+ε

×ρν1,ν2,ν(s1,s2,w−u)ρν3,ν4,−ν(s3,s4, w̄+u)

(
k

2

)−2(w+w̄) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣w=x
4−s1−s2

w̄= x̄
4−s3−s4

,

(4.12a)

lim
η0→0

A(x,x̄)
<|ν1,ν2,ν3,ν4

(~ki;~k) =
1

2

∫ +i∞

−i∞

du

2πi

∫ +i∞

−i∞
[ds]4

cos
(
π
2 (4(s3+s4+u)+iν1+iν2+iν3+iν4)

)
u+ε

×ρν1,ν2,ν(s1,s2,w+u)ρν3,ν4,−ν(s3,s4, w̄−u)

(
k

2

)−2(w+w̄) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣w=x
4−s1−s2

w̄= x̄
4−s3−s4

.

(4.12b)

where, due to the restrictions (4.9) on the Mellin-variables, the u-integrals run over the

imaginary axis to the right of the pole at u ∼ 0, as indicated by the ε-prescription. These

contributions, which originate from the ++ and −− branches of the in-in contour, are

not factorised due to the presence of bulk contact terms.21 Factorised terms within these

contributions are however generated by the residues of the poles at u = 0.

21I.e. contributions generated by the collision of the points on the same branch of the in-in contour

between which the particle is exchanged.
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The leftover u-integral in the ++ and −− contributions can in fact be lifted to give a

Mellin-Barnes representation for the exchange which employs the same number of Mellin-

variables as the factorised contribution (4.11).22 We give the details for the evaluation

of this integral in appendix C.3. The resulting expression for the exchange (4.6) after

combining all terms of the in-in contour acquires the following general form:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′=N4 lim

η0→0

(
A(d,d)
�|ν1,ν2,ν3,ν4

(~ki;~k)−A(d,d)
<|ν1,ν2,ν3,ν4

(~ki;~k)−A(d,d)
>|ν1,ν2,ν3,ν4

(~ki;~k)
)

=N4

∫
[ds]4 csc(π(u+ū))δ(d,d)(u, ū) (4.13)

×ρν1,ν2,ν(s1,s2,u)ρν3,ν4,−ν(s3,s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u= d
4−s1−s2

ū= d
4−s3−s4

.

The poles of the Mellin integrand are manifest and the zeros are given by the function23

δ(x,x̄)(u, ū) =
1

2
sin(π(u+ū)) (4.14)

×
[

sin
(
π

4
(x+2i(ν1+ν2)−4u)

)
sin
(
π

4
(x̄+2i(ν3+ν4)−4u)

)
+u→ ū

]
− 1

4
sin
(
π

4
(x+x̄+2i(ν1+ν2+ν3+ν4)−4(u+ū))

)
(cos(2πu)−cosh(πν)+u→ ū) ,

which encodes the interference between the different physical processes as dictated by the

early-time boundary conditions. The final line of the expression (4.13) for the exchange

should be recognised as the Mellin-Barnes representation (4.2) for the dual Conformal

Partial Wave, which implies the following more compact expression for the exchange:

Mellin-Barnes representation for a general tree-level four-point exchange diagram

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = N4

∫ +i∞

−i∞

du dū

(2πi)2

∫
[ds]4 4 csc(π(u+ ū))δ(d,d)(u, ū)

×F ′ν,0(si;u, ū|~ki;~k) , (4.15)

which is manifestly in terms of the dual Conformal Partial Wave (4.1). This expression

was also derived in [41] using a direct bulk approach which employs the Mellin-Barnes

representation of the propagators. As we shall see, this form of the exchange four-point

function is universal, extending to spin-` exchanges (section 4.2), exchanges in anti-de

Sitter space (section 4.7), and external spinning fields [95]. Each case is characterised by

the interference factor δ(x,x̄)(u, ū). The expression (4.15) neatly encodes various properties

of the exchange-four-point function, as we discuss in the comments below.

• The Mellin-Barnes integral (4.15) is a general expression for a late-time scalar ex-

change in dSd+1, where all scaling dimensions are generic and on the Principal Series.

22In general this is the minimal number of Mellin variables to represent a function of four variables.
23There are two further equivalent representations of this function depending on how we evaluate the

u-integral, which we give in appendix C.3. The representation (4.14) is the most symmetric under exchange

of u and ū.
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Figure 4. Pole structure of the Mellin-Barnes representation (4.15) for the scalar exchange four-

point function, focusing w.l.o.g. on that of the Mellin variable s1. The different coloured “•”
(red, yellow and blue) denote the different sets of Gamma function poles in s1, while the green

line represents the integration contour which w.l.o.g. we take to be indented along the imaginary

axis with Re(sj) = 0. Notice that the poles of the csc factor, which are in blue, run from −∞
to +∞ and are split by the integration contour according to (4.21) with q = 0. For Principal

Series representations, where ν1, ν ∈ R, the different sets of Gamma function poles do not collide

as the red and yellow poles can only move vertically along the imaginary axis as one varies the

scaling dimensions. Away from the Principal Series these poles can move horizontally, which for

certain scaling dimensions pinches the integration contour, generating singularities. Such cases can

be treated by regulating the contour pinching to obtain the analytic continuation of the exchange

four-point function for these values of the scaling dimensions, as we shall see in section 4.6.

Other representations e.g. the complementary and discrete series can be reached with

due care about the analytic continuation away from the Principal Series. For generic

scaling dimensions on the Principal Series, the exchange four-point function is a func-

tion of four variables kj/k and is accordingly described by a quadruple Mellin-Barnes

integral of the Mejer G type. For certain scaling dimensions there are simplifications.

For example, in analytically continuing some or all of the external legs to be confor-

mally coupled, some of the Mellin-Barnes integrals can be lifted and the exchange

is accordingly a function of fewer variables (see equation (4.62)). Further simplifi-

cations arise when the exchanged field lies on the Discrete Series, as we discuss in

section 4.6, which requires extra care in the analytic continuation.

• The cosecant factor csc(π(u + ū)) gives contact contributions to the exchange four-

point function. In particular, the residues of the poles at

u+ ū = −n, n = 0, 1, 2, . . . (4.16)
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generate only analytic contributions in the exchanged momentum k in (4.13):

u+ ū = −n →
(
k

2

)2n

. (4.17)

These are not factorised and thus give the EFT expansion of the four-point function.

The non-perturbative corrections to the EFT expansion are encoded in the remaining

poles, which are those of the Mellin representation (4.2) for the Conformal Partial

Wave. On these poles, by construction, the interference factor (4.14) factorises so that

these terms just generate factorised contributions to the exchange four-point func-

tion, associated to the genuine exchange of a single-particle state. This in particular

includes non-analytic terms in the exchanged momentum, which are characteristic

of particle production [25, 29]. We shall discuss these contributions in more detail

towards the end of section 4.2, where we consider the OPE expansion of exchange

four-point functions, and section 4.5 where we derive the EFT expansion from the

Mellin-Barnes representation of the four-point function.

• It is interesting to note that the EFT expansion is entirely specified by the CPW (4.2)

multiplied by the interference factor (4.14) in a minimal way through the overall

csc(π(u+ū)) function. This is not a priori required due to the contact term ambiguity.

It is however interesting to point out that the most general EFT expansion would only

differ by our minimal choice by a finite number of pure contact terms. Furthermore,

the discontinuity in s = k2 precisely compensates the csc(π(u + ū)) factor in (4.15),

setting to zero all EFT terms:

Discs

(
k2(u+ū)

)
= sin(π(u+ ū)) k2(u+ū) , (4.18)

with

2iDiscs[f(s)] = f
(
eiπs

)
− f

(
e−iπs

)
. (4.19)

One is then left with the factorised contribution to the exchange:

Discs

[
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′
]

= N4

∫ +i∞

−i∞

du dū

(2πi)2

∫
[ds]4 4 δ(d,d)(u, ū)F ′ν,0(si;u, ū|~ki;~k) . (4.20)

• It is important to stress that the integral (4.15) does not, a priori, specify an integra-

tion contour.24 In particular, the csc-function in the Mellin integrand has an infinite

series of poles spanning from −∞ to +∞ and it is necessary to provide the location

where the contour cuts across them. The various possible choices for the contour

correspond to the identities:

π csc(π(u+ ū)) = Γ(1− u− ū)Γ(u+ ū) (4.21a)

= (−1)qΓ(1− u− ū− q)Γ(u+ ū+ q) , ∀ q ∈ N , (4.21b)

24In contrast, Mellin-Barnes integrals which are given explicitly in terms of Γ-functions automatically

specify an integration contour by requiring that all Gamma function poles accumulating at +∞ are sepa-

rated by the poles accumulating at −∞ [112].

– 40 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
8

which arise from the periodicity of the csc-function, where for each q the contour is

chosen to separate the poles accumulating at +∞ from the poles accumulating at

−∞. The different ways of splitting the csc-function given above differ by contact

terms in the exchange four-point function and correspond to the freedom of including

improvement (on-shell trivial) terms in the bulk cubic vertices. This is discussed in

further detail at the end of appendix C.3. In this work we fix the latter contact

term ambiguity by making the minimal choice of improvement terms corresponding

to q = 0.

• Another reflection of the freedom to add improvement terms to the bulk cubic vertex

is the possibility of including terms which are proportional to the argument of the

Dirac delta function in the Mellin representation (3.2b) for the corresponding three-

point conformal structures, which are s1+s2+u−x
4 or s3+s4+ū−x

4 . At the three-point

function level, such terms would vanish identically. However, the same terms will give

a non-vanishing contributions to the exchange four-point function along the ++ and

−− branches of the in-in contour, where the internal leg is off-shell. For such terms,

it is possible to show that when taking the residue x+ x̄−4(s1 + s2 + s3 + s4 +u+ ū)

in (4.8b) and (4.8c), one recovers the following integration rule:(
s1 + s2 + u− x

4

)n(
s3 + s4 + ū− x

4

)m
→ un+m , (4.22)

so that the corresponding A> and A< take the same form as in (4.12a) and (4.12b)

but with the integrand multiplied by a power un+m, which cancels the single pole

at u = 0. This turns out to be the physical counterpart of the standard fact that

adding cubic couplings which vanish on-shell generates contact terms in the exchange

amplitude, which here can be neatly associated with polynomial contributions p(u)

in (4.12a) and (4.12b) in addition to the single pole at u = 0:

1

u+ ε
→ 1

u+ ε
+ p(u) . (4.23)

In the following we shall set p(u) = 0 without loss of generality. It is perhaps useful

to keep in mind the existence of such contact term ambiguities, especially when

considering exchange four-point functions involving fields of non-zero spin, where it

might be used to simplify the expression by removing potentially complicated contact

terms — allowing to focus on the singular part of the exchange.

• The representation (4.15) for the exchange makes manifest the relation between the

original bulk Harmonic function (4.4a) and the exchange amplitude. In particular,

via (4.3), we can write:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′=N4 lim

η0→0

∫ +i∞

−i∞

dudū

(2πi)2

∫
[ds]4 4csc(π(u+ū))δ(d,d)(u, ū)

×
∫ η0

−∞

∫ η0

−∞

dη

(−η)d+1

dη̄

(−η̄)d+1
Fν,0(si;u, ū|−η,−η̄|~ki;~k).

(4.24)
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In the above all θ-function insertions along the various in-in contours in the expres-

sion (4.7) have been replaced/mapped into an integral kernel in the Mellin variables

u and ū. These are encoded into the zeros of δ(x,x̄)(u, ū).

All of the above points carry over to exchange four-point functions involving spinning

fields, which we consider in the following section.

4.2 Exchange of a spin-` field between general scalars

The approach presented in the previous section naturally extends to exchange four-point

functions involving fields with spin. In the following we shall demonstrate this for the

exchange of a field with integer spin-` between two pairs of general scalar operators. The

result, given in (4.37), can be expressed in the same form as the expression (4.15) for the

scalar exchange diagram but with x = x̄ = d+ 2`.

When considering fields with spin, the only difference with respect to the scalar ex-

change is a technical one due to the tensorial structure of the each three-point function

factor in the Conformal Partial Wave. The extension of (4.1) to a spin-` exchange is:

F ′ν,`(~ki;~k) =
1

`!
(
d
2 − 1

)
`

〈Oν1(~k1)Oν2(~k2)Oν,`(~k; ∂̂ξ)〉〈Õ−ν,`(−~k; ξ)Oν3(~k3)Oν3(~k4)〉, (4.25)

where the explicit form of the three-point functions was derived in section 3.2, which gives

the following Mellin-Barnes representation for the CPW (4.25):

F ′ν,`(~ki;~k) =

∫ +i∞

−i∞
[ds]4

du dū

(2πi)2
F ′ν,`(si;u, ū|~ki;~k), (4.26a)

F ′ν,`(si;u, ū|~ki;~k) = (iπ)δ

(
d+ 2`

4
− s1 − s2 − u

)
(iπ)δ

(
d+ 2`

4
− s3 − s4 − ū

)
(4.26b)

× ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

× 1

`!
(
d
2 − 1

)
`

p(`)
ν1,ν2,ν(∂̂ξ · ~k1, ∂̂ξ · ~k2, ∂̂ξ · ~k|s1, s2, u)p

(`)
ν3,ν4,−ν(~ξ · ~k3, ~ξ · ~k4,−~ξ · ~k|s3, s4, ū)︸ ︷︷ ︸

Θ
(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si,u,ū)

,

and where we introduced the function Θ
(`)
ν1,ν2,ν3,ν4;ν(ki; k|si, u, ū) which encodes the trace-

less contraction of the three-point tensor structures given in (3.15).

To obtain the spin-` exchange four-point function, one can proceed much in the same

way as for the scalar exchange in the previous section. In this case the identification with

the dual bulk Harmonic function,

F ′ν,`(~ki;~k) =

∫ ∞
0

dz

zd+1

dz̄

z̄d+1
F ′ν,`(z, z̄|~ki;~k), (4.27)
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is given by

F ′ν,`(z, z̄|~ki;~k) =

∫ +i∞

−i∞
[ds]4

dudū

(2πi)2
F ′ν,`(si;u, ū|z, z̄|~ki;~k), (4.28a)

F ′ν,`(si;u, ū|z, z̄|~ki;~k) = z
3d
2

+`−2(s1+s2+u)−1z̄
3d
2

+`−2(s3+s4+ū)−1Θ(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si,u, ū)

×ρν1,ν2,ν(s1,s2,u)ρν3,ν4,−ν(s3,s4, ū)

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

,

(4.28b)

recalling the integrand (3.15) of the 0-0-` Witten diagrams in the bulk radial co-ordinate.

The analytic continuations from EAdS to the various branches of the in-in contour in

de Sitter were given in equation (4.5).25 It is convenient to express the contraction

Θ
(`)
ν1,ν2,ν3,ν4;ν(ki; k|si, u, ū) in the form

Θ(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si, u, ū) =

∑̀
αi=0

αi∑
βi=0

(
`

α1

)(
`

α2

)(
α1

β1

)(
α2

β2

)
Θ

(`)
α1,β1;α2,β2

(~ki;~k) (4.29)

×Hν1,ν2,ν|α1,β1
(s1, s2, u)Hν3,ν4,−ν|α2,β2

(s3, s4, ū),

where we used the definition (3.15) of the three-point structures and we introduced the con-

traction

Θ
(`)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

(~ki;~k) =
1

`!
(
d
2 − 1

)
`

(−∂̂ξ · ~k )α1 Y(`)
ν1,ν2,ν|α1,β1

(∂̂ξ · ~k1, ∂̂ξ · ~k2)

× (~ξ · ~k )α2 Y(`)
ν3,ν4,−ν|α2,β2

(~ξ · ~k3, ~ξ · ~k4)
∣∣∣
ξ=0

, (4.30)

which is independent of the Mellin variables. In this way the contributions to the spin-`

exchange four-point function

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′

= N4 lim
η0→0

[
A(d+2`,d+2`)
�|ν1,ν2,ν3,ν4

(~ki;~k)−A(d+2`,d+2`)
<|ν1,ν2,ν3,ν4

(~ki;~k)−A(d+2`,d+2`)
>|ν1,ν2,ν3,ν4

(~ki;~k)
]
, (4.31)

can be decomposed as

A(d+2`,d+2`)
•|ν1,ν2,ν3,ν4

(~ki;~k) =
∑̀

α1,α2=0

(
`

α1

)(
`

α2

) α1,α2∑
β1,β2=0

(
α1

β1

)(
α2

β2

)
× Θ

(`)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

(~ki;~k)A(d+2`,d+2`)
•|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k), (4.32)

25Recall that the phases in (4.5) do not depend on the spin, as discussed in section 2.3.

– 43 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
8

where

A(x,x̄)
�|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

dudū

(2πi)2
Q(x,x̄)
� (si;u, ū) (4.33a)

×cos

(
π

(
iν1+iν2−iν3−iν4

2
+s1+s2+u−s3−s4−ū

))
×Hν1,ν2,ν|α1,β1

(s1,s2,u)ρν1,ν2,ν(s1,s2,u)

(
k

2

)−2u 2∏
j=1

(
kj
2

)−2sj+iνj

×Hν3,ν4,−ν|α2,β2
(s3,s4, ū)ρν3,ν4,−ν(s3,s4, ū)

(
k

2

)−2ū 4∏
j=3

(
kj
2

)−2sj+iνj

,

A(x,x̄)
>|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

dudū

(2πi)2
Q(x,x̄)
> (si;u, ū) (4.33b)

×cos

(
π

(
iν1+iν2+iν3+iν4

2
+s1+s2+s3+s4−u+ū

))
×Hν1,ν2,ν|α1,β1

(s1,s2,u)ρν1,ν2,ν(s1,s2,u)

(
k

2

)−2u 2∏
j=1

(
kj
2

)−2sj+iνj

×Hν3,ν4,−ν|α2,β2
(s3,s4, ū)ρν3,ν4,−ν(s3,s4, ū)

(
k

2

)−2ū 4∏
j=3

(
kj
2

)−2sj+iνj

,

A(x,x̄)
<|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = 2

∫ +i∞

−i∞
[ds]4

dudū

(2πi)2
Q(x,x̄)
< (si;u, ū) (4.33c)

×cos

(
π

(
iν1+iν2+iν3+iν4

2
+s1+s2+s3+s4+u−ū

))
×Hν1,ν2,ν|α1,β1

(s1,s2,u)ρν1,ν2,ν(s1,s2,u)

(
k

2

)−2u 2∏
j=1

(
kj
2

)−2sj+iνj

×Hν3,ν4,−ν|α2,β2
(s3,s4, ū)ρν3,ν4,−ν(s3,s4, ū)

(
k

2

)−2ū 4∏
j=3

(
kj
2

)−2sj+iνj

.

This way of decomposing the exchange is advantageous as the functions

Hν1,ν2,ν3|α,β(s1, s2, s3) telescopically combine with the function ρν1,ν2,ν3(s1, s2, s3) to

shift the arguments of the Mellin integral by integers α, β (see section 3.2):

Hν1,ν2,ν3|α,β(s1, s2, s3)ρν1,ν2,ν3(s1, s2, s3) = ρν1−i(α−β),ν2−iβ,ν3+iα(s′1, s
′
2, s
′
3), (4.34)

where s′1 = s1 + α−β
2 , s′2 = s2 + β

2 and s′3 = s3 − α
2 . We thus see that the leading term

in the decomposition (4.32) (i.e. that with αi = βi = 0) is equal to the corresponding

contribution (4.10) to the scalar exchange but where now x = x̄ = d + 2`, while the

sub-leading terms differ only by integer shifts in the arguments.

From the decomposition (4.32), the steps to lift the u and ū integrals in the late-time

limit are therefore the same as for the scalar exchange four-point function — the details of

which we give in appendix C.3. The resulting expression for the spin-` exchange four-point
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function is

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = N4

∑̀
α1,α2=0

(
`

α1

)(
`

α2

) α1,α2∑
β1,β2=0

(
α1

β1

)(
α2

β2

)
×Θ

(`)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

(~ki;~k)A(d+2`,d+2`)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) , (4.35)

which is a finite sum of the Mellin-Barnes integrals:

A(x,x̄)
νj |α1,β1;α2,β2

(~ki;~k) (4.36)

≡ lim
η0→0

[
A(x,x̄)
�|νj |α1,β1;α2,β2

(~ki;~k)−A(x,x̄)
<|νj |α1,β1;α2,β2

(~ki;~k)−A(x,x̄)
>|νj |α1,β1;α2,β2

(~ki;~k)
]

=

∫
[ds]4 csc(π(u+ ū))δ(x,x̄)(u, ū)

×Hν1,ν2,ν|α1,β1
(s1, s2, u)ρν1,ν2,ν(s1, s2, u)

(
k

2

)−2u 2∏
j=1

(
kj
2

)−2sj+iνj

×Hν3,ν4,−ν|α2,β2
(s3, s4, ū)ρν3,ν4,−ν(s3, s4, ū)

(
k

2

)−2ū 4∏
j=3

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= x̄
4−s3−s4

.

Due to the telescopic nature (4.34) of Hν1,ν2,ν3|α1,β1
(s1, s2, s3), these take the same form as

the Mellin-Barnes representation (4.13) for the scalar exchange four-point function but with

integer-shifted arguments.26 Fascinatingly, since the dependence on the spin and bound-

ary dimension d always enters in the combination d + 2` through x and x̄, the knowledge

of the scalar exchange four-point function for general d is equivalent to knowing the ex-

change four-point function for general spin ` when combined with the Mellin-independent

Θ-polynomials (4.30) in the momenta.

By comparing with the expression (4.26) for the Mellin-Barnes representation of the

spin-` Conformal Partial Wave, it follows that the spin-` exchange four-point function can

moreover be equivalently expressed in the more compact form:27

Mellin-Barnes representation for a spin-` exchange diagram in dSd+1

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = N4

∫
[ds]4

∫ +i∞

−i∞

du dū

(2πi)2
4 csc(π(u+ ū))δ(d+2`,d+2`)(u, ū)

×F ′ν,`(si;u, ū|~ki;~k) , (4.37)

which displays explicitly the relation to the corresponding spin-` Conformal Partial Wave

mellin representation. This confirms that the expression (4.15) for the scalar exchange

extends straightforwardly to the exchange of spinning fields. This universal form also

carries over to external spinning fields, the details of which will be presented in [95].

26This key property of the Mellin-Barnes representation can be used to establish recursion relations

between exchange four-point functions with scaling dimensions differing by integers, which we consider in

section 4.4.
27The factor of 4 arises from the compensation of the factor (2πi)2 in the measure for the u and ū-integrals,

together with the factor of (iπ)2 included in the definition (4.2) of the CPW.
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Before exploring various properties of this expression in the subsequent sections, below

we discuss the helicity decomposition, which can be performed entirely at the level of the

Conformal Partial Wave.

Helicity decomposition. The helicity decomposition of the four-point exchange (4.37)

can be obtained directly at the level of the Θ-polynomials (4.30). Using momentum con-

servation these can be expanded in the form:

Θ
(`)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

(~ki;~k) =
∑̀
n=0

c
(n)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

(~ki;~k) (~q12 · ~q34)n , (4.38)

where28

~q12 =
1

2
(~k1 − ~k2), ~q34 =

1

2
(~k3 − ~k4). (4.39)

The helicity decomposition then simply amounts to a projection of each monomial (~q12·~q34)n

onto spherical harmonics Ξm for the rotation group of the plane orthogonal to the exchanged

momentum ~k, which in our case is SO(d−1). We first decompose ~q12 and ~q34 in components

transverse and longitudinal to ~k

~q12 = ~q⊥12 +
(
~q12 · k̂

)
k̂, ~q⊥12 · k̂ = 0, (4.40)

~q34 = ~q⊥34 +
(
~q34 · k̂

)
k̂, ~q⊥34 · k̂ = 0, (4.41)

so that

~q12 · ~q34 = σ q̂⊥12 · q̂⊥34 + ρ , (4.42)

where

σ = |~q⊥12||~q⊥34|, ρ = (~q12 · k̂)(~q34 · k̂). (4.43)

We then expand

(~q12 · ~q34)n = (σ q̂⊥12 · q̂⊥34 + ρ)n =

n∑
m=0

c(n)
m (σ, ρ) Ξm

(
q̂⊥12 · q̂⊥34

)
, (4.44)

where the coefficients are determined using the orthogonality properties of the Gegenbauer

polynomial:

c(n)
m (σ, ρ) =

2m−1

m!
ρn−1σ−mΓ

(
d− 3

2
+m+ 1

)
(4.45)

×


− nσ

Γ( 3−m
2 )Γ(m+d

2 )3F2

(
1, 1−n

2 , 2−n
2

3−m
2 , m+d

2

; σ
2

ρ2

)
, m odd,

2 ρ

Γ( 2−m
2 )Γ(m+d−1

2 )3F2

(
1, 1−n

2 ,−n
2

2−m
2 , m+d−1

2

; σ
2

ρ2

)
, m even.

28Note that |~q12| 6= q12, where instead q12 is defined in this work according to (3.33) as q12 = k1−k2
k

.
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Using the above it is straightforward to obtain the helicity decomposition of each ex-

change amplitude.

It may be also useful to note that the helicity decomposition above can also be ob-

tained from the helicity decomposition of the corresponding three-point conformal struc-

tures (3.36). We have

Y(`)
ν1,ν2,ν|α1,β1

(
~ξ · ~k1, ~ξ · ~k2

)
=
∑̀
m=0

p
(`)
ν1,ν2,ν|α1,β1|m(p12, q12) Ξm(ξ⊥ · ~q12), (4.46a)

Y(`)
ν3,ν4,−ν|α2,β2

(
~ξ · ~k3, ~ξ · ~k4

)
=
∑̀
m=0

p
(`)
ν3,ν4,−ν|α2,β2|m(p34, q34) Ξm(ξ⊥ · ~q34). (4.46b)

In terms of the above helicity components, the contribution of helicity-m to (4.30) is

given by:

Θ
(`,m)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

= (−ik)α1(ik)α2p
(`)
ν1,ν2,ν|α1,β1|m(p12, q12)

× p
(`)
ν3,ν4,−ν|α2,β2|m(p34, q34)Ξm

(
q̂⊥12 · q̂⊥34

)
, (4.47)

where

Θ
(`)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

=
∑̀
m=0

Θ
(`,m)
ν1,ν2,ν3,ν4;ν|α1,β1;α2,β2

, (4.48)

and we recall the definition (3.33) of p12, p34 and q12, q34:

p12 =
k1 + k2

k
, q12 =

k1 − k2

k
, (4.49a)

p34 =
k3 + k4

k
, q34 =

k3 − k4

k
. (4.49b)

The highest-helicity component receives contributions only from the leading theta poly-

nomial ((4.30) with αi = βi = 0) and is universal:

Θ
(`,`)
ν1,ν2,ν3,ν4;ν|0,0;0,0 =

(
−1

4

)`
Ξ` . (4.50)

Lower helicity components instead depend on the external operator dimension.

4.3 OPE limit

From the Mellin-Barnes representation (4.37) it is straightforward to obtain Operator Prod-

uct Expansion (OPE) limit of the exchange four-point function, which is the limit k → 0

whilst keeping all external momenta hard.29 In this limit, non-analytic terms in k are

characteristic signatures for the exchange of the single-particle state [29]. These can be

extracted from the Mellin-Barnes representation in a systematic fashion, as we detail in

the following.

29Note that the OPE limit is often referred to in the literature as the “collapsed limit”.
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Figure 5. OPE limit in momentum space vs OPE limit in position space.

As discussed at the end of section 4.1, only the Conformal Partial Wave (4.26) encodes

non-analytic contributions in the exchanged momentum, which in this limit reads:

lim
k→0
F ′ν,`(si;u, ū|~ki;~k) = Θ̄(`)(~ki;~k)

(
4

k2

) d
2

+`(k12

4

)i(ν1+ν2)(k34

4

)i(ν3+ν4)

× (iπ)δ

(
d+ 2`

4
− s1 − u

)
(iπ)δ

(
d+ 2`

4
− s3 − ū

)
(4.51)

× ρν1,ν2,ν(s1 − s2, s2, u)ρν3,ν4,−ν(s3 − s4, s4, ū)

(
2k

k12

)2s1( 2k

k34

)2s3

,

where we used that ~k1 ∼ −~k2 and ~k3 ∼ −~k4 as k → 0 due to momentum conservation,

and that only the leading term (with αi = βi = 0) in the contraction (4.29) survives in the

limit k → 0, where it reduces to

Θ̄(`)(~q12, ~q34) = lim
k→0

Θ
(`)
ν1,ν2,ν3,ν4;ν|0,0;0,0(~ki;~k) (4.52a)

=
`!(−1)`

2`
(
d−2

2

)
`

(
k12k34

4

)`
C

( d−2
2 )

` (cos θ), (4.52b)

where cos θ = k̂1 · k̂3. For convenience we also made the change of variables s1 → s1 − s2

and s3 → s3− s4, so that the expansion in k is obtained from the integrals in s1 and s3 by

closing the contours to the right. This encircles the following poles of the CPW:

s1 =
d

4
+
`

2
± iν

2
+ n, s3 =

d

4
+
`

2
±̂ iν

2
+m, n,m ∈ N0. (4.53)

Since the exponent of k depends on s1 and s3 through their sum, only the residues of the

poles (4.53) with the same sign for ν generate non-analytic terms:

s1 =
d

4
+
`

2
± iν

2
+ n, s3 =

d

4
+
`

2
± iν

2
+m, →

(
k2
)±iν+n+m

, (4.54)

where only the terms generated by the leading poles (those with n = m = 0) survive in

the limit k → 0. The remaining Mellin integrals in s2 and s4 can be lifted using Barnes’

first lemma, which gives
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OPE limit of a general spin-` exchange in dSd+1

lim
k→0
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = (−1)`

N4

(4π)3

(
16

k12k34

) d
2

4∏
j=1

(
kj
2

)iνj
× 2``!(

d−2
2

)
`

C
( d−2

2 )
` (cos θ)

[(
4k2

k12k34

)iν
Γ(−iν)2

Γ
(
d
2 + iν + `

)2 csch(πν)δ(d+2`,d+2`)

(
− iν

2
,− iν

2

)

×
∏
±±̂

Γ

(
d+ 2iν + 2`

4
± iν1

2
±̂ iν2

2

)
Γ

(
d+ 2iν + 2`

4
± iν3

2
±̂ iν4

2

)
+ ν → −ν

]
. (4.55)

As far as we are aware, this is the first expression available for general external scalars

both for d = 3 and general d > 3.

Note that the expression (4.55) contains oscillatory terms in log
(

k2

k12k34

)
,30 when the

exchanged particle is a massive particle on the Principal Series, ν ∈ R, which was previously

worked out explicitly for external conformally coupled and massless scalars when d = 3

in [29]. The phase of the oscillations in particular depends on the interference factor (4.14).

The angular dependence is encoded in the Gegenbauer polynomial, which signals that we

are exchanging a spin-` particle. When d = 3 the Gegenbauer polynomial reduces to a

Legendre polynomial, as consistent with the d = 3 analysis in [29].

As a consistency check, for d = 3 and for external conformally coupled and massless

scalars this expression coincides respectively with equations (5.120) and (5.123) in [29].

For example, for external massless scalars in d = 3 (where νj = 3i
2 ) we have31

lim
k→0
〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(3i/2)
~k3

φ
(3i/2)
~k4

〉′ = N4

2π

(k12k34)
3
2

k3
1k

3
2k

3
3k

3
4

(−1)``!

8`
(
d−2

2

)
`

C
( d−2

2 )
` (cos θ)

×
(

k2

4k12k34

)iν (5
2 + `+ iν

)2(
3
2 − `− iν

)2 [1 + i(−1)` sinh(πν)
]
Γ(−iν)2Γ

(
`+ iν +

1

2

)2

+ (ν → −ν) . (4.56)

The factor (−1)` is not observed in the analysis of [29] since equal external scalars are

assumed from the beginning, which precludes the exchange of odd spin `.

4.4 Recursion relations

A nice feature of the Mellin-Barnes representation is that it makes manifest certain re-

cursion relations between late-time correlators with different scaling dimensions — as we

briefly saw in section 3 at the level of three-point functions. Such recursion relations are

valid also at the level of four-point functions, and can be useful for the scaling dimensions

where the initial (or “seed”) correlator has a simpler form with respect to the Mellin-Barnes

representation for generic scaling dimensions.32 For this reason similar recursion relations

30This can be seen by noting that one can write:
(

k2

k12k34

)±iν
= exp

(
±iν log

(
k2

k12k34

))
.

31Note that there is a typo in (5.123) of [29], where the factor
(

3
2
− `− iν

)2
has a “+′′ in front of ` instead

of “−′′.
32We shall consider some examples of this type in section 4.6.
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are often used in the study of scattering processes on (anti-)de Sitter space, in particu-

lar for the technically more complicated case of correlators involving spinning fields, see

e.g. [34, 40, 64, 65, 73, 83, 108, 109, 113, 114].

As we saw in section 4.2, a spin-` exchange four-point function is defined by the col-

lection (4.36) of Mellin-Barnes integrals. The external scaling dimensions in these Mellin-

Barnes integrals can then be raised and lowered by acting with simple operators in the

external momenta. In particular, the raising operators

A(x,x̄)
ν1−i,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k)

=
1

2
k

1+2iν1+2(α1−β1)
1 ∂k1

[
k
−2iν1−2(α1−β1)
1 A(x−2,x̄)

ν1,ν2,ν3,ν4|α1,β1;α2,β2
(~ki;~k)

]
, (4.57a)

A(x,x̄)
ν1,ν2−i,ν3,ν4|α1,β1;α2,β2

(~ki;~k)

=
1

2
k1+2iν2+2β1

2 ∂k2

[
k−2iν2−2β1

2 A(x−2,x̄)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k)
]
, (4.57b)

A(x,x̄)
ν1,ν2,ν3−i,ν4|α1,β1;α2,β2

(~ki;~k)

=
1

2
k

1+2iν3+2(α2−β2)
3 ∂k3

[
k
−2iν3−2(α2−β2)
3 A(x,x̄−2)

ν1,ν2,ν3,ν4|α1,β1;α2,β2
(~ki;~k)

]
, (4.57c)

A(x,x̄)
ν1,ν2,ν3,ν4−i|α1,β1;α2,β2

(~ki;~k)

=
1

2
k1+2iν4+2β2

4 ∂k4

[
k−2iν4−2β2

4 A(x,x̄−2)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k)
]
, (4.57d)

increase the external scaling dimensions by an integer, while the lowering operators are

given by:

A(x,x̄)
ν1+i,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = − 2

k1
∂k1A

(x−2,x̄)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) , (4.58a)

A(x,x̄)
ν1,ν2+i,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = − 2

k2
∂k2A

(x−2,x̄)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) , (4.58b)

A(x,x̄)
ν1,ν2,ν3+i,ν4|α1,β1;α2,β2

(~ki;~k) = − 2

k3
∂k3A

(x,x̄−2)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) , (4.58c)

A(x,x̄)
ν1,ν2,ν3,ν4+i|α1,β1;α2,β2

(~ki;~k) = − 2

k4
∂k4A

(x,x̄−2)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) . (4.58d)

These relations are straightforward to establish due to the simple power-law dependence

of the momenta on the Mellin variables. Since the dependence of exchange four-point

functions on the internal spin ` and boundary dimension d enters through x and x̄ in

the combination d + 2`, the above operators can also be used relate exchange four-point

functions with different internal spins ` and/or d. We shall see some examples of this type

in sections 4.4 and 4.6.

In a similar way we can lift the Pochhammer factors carried by the functions

Hν1,ν2,ν3|α1,β1
by replacing them with the action of a differential operator in the exter-

nal momentum. For example, the shifts (Pochhammer factors) associated to the external

scaling dimensions can be lifted from (4.36) via

A(x,x̄)
ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = (−1)α1+α2k
2(α1−β1+iν1)
1 k

2(β1+iν2)
2 k

2(α2−β2+iν3)
3 k

2(β2+iν4)
4

× ∂α1−β1

k2
1

∂β1

k2
2
∂α2−β2

k2
3

∂β2

k2
4

[
k−2iν1

1 k−2iν2
2 k−2iν3

3 k−2iν4
4 A(x,x̄)

ν1,ν2,ν3,ν4|α1;α2
(~ki;~k)

]
, (4.59)
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where

A(x,x̄)
ν1,ν2,ν3,ν4|α1;α2

(~ki;~k) ≡
∫

[ds]4 csc(π(u+ ū))δ(x,x̄)(u, ū) (4.60)

× ρν1,ν2,ν(s1, s2, u)ρν3,ν4,−ν(s3, s4, ū)(
u+ iν

2 − α1

)
α1

(
ū− iν

2 − α2

)
α2

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= x̄
4−s3−s4

,

so that only the shifts associated to the internal scaling dimensions remain. This recursion

relation will turn out to be useful for the scaling dimensions where some of the Mellin-

Barnes integrals can be straightforwardly lifted from the seed integral (4.60), as we shall

see in section 4.6.

The seed integral (4.60) can furthermore be expressed recursively in terms of that with

α1 = α2 = ` via:

A(x,x̄)
ν1,ν2,ν3,ν4|α1;α2

(~ki;~k) = ∂`−α1
λ1

∂`−α2
λ2

[
λ
−α1+ iν

2
− iν1

2
− iν2

2
+x

4
−1

1 λ
−α2− iν2 −

iν3
2
− iν4

2
+ x̄

4
−1

2

×A(x,x̄)
ν1,ν2,ν3,ν4|`;`(λ

1/2
1
~k1, λ

1/2
1
~k2, λ

1/2
2
~k3, λ

1/2
2
~k4;~k )

]
λ1,λ2=1

. (4.61)

In this way the entire spin-` exchange four-point function can be generated from the sin-

gle seed integral (4.60) with α1 = α2 = `, combined with the Θ-polynomials (4.30) in

the momenta.

4.5 EFT expansion

As discussed at the end of section 4.1, the effective field theory expansion of the exchange

four-point function is encoded in the poles (4.16) of the csc-factor in the Mellin-Barnes

representation (4.37). We expand upon this in the following section, for simplicity focus-

ing mostly on correlators with external conformally coupled scalars and external massless

scalars, though all the steps carry over to the general case with a few minor technical com-

plications.

External conformally coupled scalars. A useful example to consider is when all ex-

ternal scalars are conformally coupled. In this case, two of the four Mellin-Barnes integrals

can be lifted by virtue of the Legendre duplication formula, which simplifies the extraction

of the expansion coefficients. Furthermore, when d is odd, the result for external mass-

less scalars (or scalars anywhere on the discrete series) can be obtained by acting on the

result for external conformally coupled scalars a finite number of times with the raising

operators (4.57), which we consider towards the end of this section.

Let us first review the case where the exchanged field is a scalar, which was pre-

sented in [41]. In this case, the Mellin-Barnes representation of the exchange four-point

function reads

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′= 1

π

1

k1k2k3k4

(
k

2

)2−d∫ +i∞

−i∞

dudū

(2πi)2
(2p12)1− d

4
+u(2p34)1− d

4
+ū

×csc(π(u+ū))δ(d,d)(u, ū)Γ

(
d−2

2
−2u

)
Γ

(
d−2

2
−2ū

)
×Γ

(
u+

iν

2

)
Γ

(
u− iν

2

)
Γ

(
ū+

iν

2

)
Γ

(
ū− iν

2

)
, (4.62)
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where the interference factor simplifies to:

δ(d,d)(u, ū) = cos2

(
π

(
d

4
− ū
))

sin(π(u+ ū))

− sin

(
π

(
d

2
− u− ū

))
sin

(
π

(
ū− iν

2

))
sin

(
π

(
ū+

iν

2

))
. (4.63)

Re-defining u→ u− ū so that the csc factor is just a function of u, the above Mellin-

Barnes integral can be expressed as a series expansion in 1
p12

and p34

p12
by evaluating the

residues of the csc poles (4.16) in u and the poles ū ∼ d−2
4 + m + n

2 , with m,n ∈ N0,

which gives33

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
EFT

= −N4
sin
(
πd
2

)
k1k2k3k4

(
k

2

)2−d ∞∑
n,m=0

c(d)
mn p

2−d−2m
12

(
p34

p12

)n
, (4.64)

where

c(x)
mn =

(−1)n

2x−1+2mn!

(x+ 2m+ n− 3)!(
x+2n+2iν−2

4

)
m+1

(
x+2n−2iν−2

4

)
m+1

, (4.65)

and recall the definition (4.49) of p12 and p34 in terms of ki and k. The non-perturbative

corrections to the EFT expansion are generated by the remaining poles (4.53) of the Con-

formal Partial Wave, which gives the factorised contributions:

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
non-pert.

(4.66)

=
πN4

k1k2k3k4

(
k

2

)2−d[
csch2(πν) cos2

(π
4

(d− 2iν)
)(

F
(d)
+ (p12)− F

(d)
− (p12)

)
F

(d)
− (p34)

+ csch2(πν) cos2
(π

4
(d+ 2iν)

)(
F

(d)
− (p12)− F

(d)
+ (p12)

)
F

(d)
+ (p34)

+ i cosh(πν) sin

(
πd

2

)(
F

(d)
− (p12)F

(d)
+ (p34)− F

(d)
+ (p12)F

(d)
− (p34)

)]
where34

F
(x)
± (z) = (2z)−

x
2
∓iν+1 Γ

(
x
2 ± iν − 1

)
Γ(1± iν)

2F1

(
x±2iν−2

4 , x±2iν
4

1± iν
;

1

z2

)
, (4.67)

which are three-point conformal structures contributed by a single series of poles (4.53)

in the Conformal Partial Wave. Note that for certain (imaginary) values of ν the above

expressions exhibit singularities that require regularisation, as we discuss in section 4.6.

In the same way one obtains the EFT expansion for a general spin-` exchange (4.37).

In fact, for the leading helicity component, the above result for the scalar exchange can

be recycled using that the leading term in the decomposition (4.35) (with αi = βi = 0) is

33Similarly one can obtain an expansion in 1
p34

and p12
p34

by instead re-defining ū→ ū− u.
34In the language of [29, 34], the functions (4.67) are homogeneous solutions to the conformal invariance

condition on exchange four-point functions.
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proportional to the scalar exchange four-point function but with d→ d+ 2`. In particular,

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
EFT, helicity-`

= −N4

(
−1

4

)`
Ξ`

sin
(
π(d+2`)

2

)
k1k2k3k4

(
k

2

)2−d−2`

×
∞∑

n,m=0

c(d+2`)
mn p

2−d−2(`+m)
12

(
p34

p12

)n
(4.68)

and

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
non-pert., helicity-`

= N4

(
−1

4

)`
Ξ`

π

k1k2k3k4

(
k

2

)2−d−2`

(4.69)

×
[
csch2(πν) cos2

(π
4

(d+ 2`− 2iν)
)(

F
(d+2`)
+ (p12)− F

(d+2`)
− (p12)

)
F

(d+2`)
− (p34)

+csch2(πν) cos2
(π

4
(d+ 2`+ 2iν)

)(
F

(d+2`)
− (p12)− F

(d+2`)
+ (p12)

)
F

(d+2`)
+ (p34)

+i cosh(πν) sin

(
π(d+ 2`)

2

)(
F

(d+2`)
− (p12)F

(d+2`)
+ (p34)− F

(d+2`)
+ (p12)F

(d+2`)
− (p34)

)]
.

Similar expressions for the sub-leading terms in (4.35) can be easily obtained using the

recursion relations in section 4.4. When the exchanged particle is massless, these sub-

leading terms are just local contact-terms since they contribute only to the lower helicity

components of the exchange four-point function — which, for the exchange of massless

particles, do not encode the propagating degrees of freedom.

External massless scalars. The EFT expansion for external scaling dimensions differ-

ing from that of the conformally coupled scalar by an integer can be obtained from the

expressions (4.68) and (4.69) by acting with the raising operators (4.57). When d is odd

this includes external massless scalars.35 We shall focus on d = 3, for which massless scalars

have ν = 3i
2 , so we only need to act once with each raising operator (4.57). In particular,

〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(3i/2)
~k3

φ
(3i/2)
~k4

〉′
∣∣∣
helicity-`

=
16

k1k2k3k4
∂k1∂k2∂k3∂k4

[
〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
helicity-`, x=d−4+2`

]
. (4.70)

Evaluating the action of the differential operators gives36

〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(3i/2)
~k3

φ
(3i/2)
~k4

〉′
∣∣∣
EFT, helicity-`

= −N4

(
−1

4

)`
Ξ`

(
k

2

)6−d−2` sin
(
π(d+2`)

2

)
(k1k2k3k4)3

×
∞∑
n,m

(n− 1)Γ(d+ 2`+ 2m+ n− 4)

p2
342d+2`+2m−5n!

(
d+2`+2n−2iν−6

4

)
m+1

(
d+2`+2n+2iν−6

4

)
m+1

×
(
(n− 4)p2

34 − nq2
34

)(
p2

12

d+ 2`+ 2m+ n− 2

d+ 2`+ 2m+ n− 6
− q2

12

)
p

4−d−2(`+m)
12

(
−p34

p12

)n
.

35This is because conformally coupled scalars have scaling dimension ν = i
2

while massless scalars have

ν = di
2

, so one can only be reached from the other in integer steps if d is odd.
36Note that in d = 3 the sum over m should start from m = 2. This is possible up to contact terms

making use of the ambiguity in the splitting of the poles in the csc factor, as discussed towards the end of

section 4.2.
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Setting d = 3, this gives the EFT expansion of the helicity-` component of the spin-`

exchange four-point function with massless external scalars.

Let us stress that in obtaining the above EFT expansion using the raising opera-

tors (4.57) we are not requiring that the corresponding cubic coupling for the massless

scalars is shift-symmetric. To impose shift-symmetry, these raising operators need to be

modified. This only affects the EFT expansion by a finite number of additional contact

terms since the field redefinition relating the couplings are local.37 The non-perturbative

corrections are only changed by an overall factor which is a polynomial in the scaling di-

mensions.38 For d = 3, the operator corresponding to the shift-symmetric coupling σ(∇φ)2

of two massless scalars φ to a massive scalar σ was given in [29] and reads

Oij =
k2

8
[(q2

ij − p2
ij)(1− p2

ij)∂
2
pij + 2(p2

ij + q2
ij − 2)(1− pij∂pij )] , (4.71)

so that the corresponding exchange four-point function is generated from the result (4.62)

for external conformaly coupled scalars via:

〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(3i/2)
~k3

φ
(3i/2)
~k4

〉′
∣∣∣
`=0,d=3

= O12O34

[
〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
`=0,d=3

]
. (4.72)

For shift-symmetric couplings of massless fields to spin-` fields, differential operators for

spin-1 and spin-2 were obtained in [34]. An equivalent systematic approach to obtain the

result for shift-symmetric couplings is to add a finite number of contact terms either via

a field redefinition or by fixing the contact term ambiguity through the requirement of

reproducing the correct Adler zero.

4.6 Simplifications and subtleties away from the principal series

A crucial aspect of the Mellin-Barnes representation is the contour prescription [112]. In

writing a Mellin-Barnes representation for a late-time correlator, one is implicitly assuming

values of the parameters for which the poles of Γ-functions of the type Γ(a+ s) do not

collide with those of the type Γ(b− s), where a and b depend on the scaling dimensions,

` and d. Otherwise, the integration contour gets “pinched”, leading to divergences for

the values of the parameters where such poles collide.39 This is depicted in figure 6. In

these cases, one introduces a regulator to separate the poles, which can then be set to zero

after evaluating the Mellin integral. This gives the analytic continuation of the late-time

correlator to such values of the parameters.

For particles on the Principal Series (figure 7), where the scaling dimensions are of the

form ∆ = d
2 + iν with ν ∈ R, there is no possible pinching of the integration contour (see

37The fact that our couplings are related to shift-symmetric couplings by a local field re-definition follows

from the fact that couplings of two scalar fields to a spin-` field are unique on-shell.
38These polynomials are straightforward to work out in each case using the formalism developed in [40, 81].
39The canonical example of such a singularity is:∫ +i∞

−i∞

ds

2πi

1

(s+ a)(s− b) = − 1

a+ b

which has a single pole at a+ b ∼ 0.
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Figure 6. Depiction of contour pinching. When the poles in the red sequence collide with poles

in the blue or yellow sequence, the integration contour (which is prescribed to separate such poles)

is no longer defined.

figure 4) in the Mellin-Barnes representation (4.37) for the exchange four-point function.

Away from the Principal Series however, where ν is now imaginary and the poles move

horizontally, extra care should be taken since contour pinching can occur — in which

case regularisation is required.40 To illustrate how the Mellin-Barnes technology works in

these cases we shall consider some examples of this type below. This includes physically

interesting cases like the graviton and (partially-)massless exchanges [86, 115–118], which

in d = 3 lie on the Discrete Series.

Correlators for representations away from the Principal Series furthermore exhibit

simplifications for certain special values of the scaling dimensions, so it is furthermore

interesting to understand how these arise from the Mellin-Barnes representation (4.37).

An example we have already touched upon in section 4.5 and 3.3 is when the external

scalars are conformally coupled or massless (which we shall also review below), for which

some of the Mellin-Barnes integrals can be lifted. Further simplifications can occur when

the internal field is also conformally coupled or lies on the discrete series,41 which appear

to arise naturally from the Mellin-Barnes representation. To see this, it is most convenient

to employ the expression (4.33)42 for the contributions (4.32) to the exchange four-point

40Note that in section 4.5 we took the external fields to be either conformally coupled scalars or massless

scalars, which are on the Complementary and Discrete Series respectively. The value of ν associated to the

exchanged field was taken to be generic, though divergences associated to the pinching of the integration

contour arise when ν is on the discrete series. For these values of ν the results presented should be re-visited

using the regularisation described above.
41In particular, for d = 3, tree-exchanges of conformally coupled and massless scalars are given by

(Di)-Logarithms in the momenta [29, 34], while exchanges of (partially)-massless fields (which are further

constrained by the corresponding gauge-symmetries) have been observed to be given by rational functions

of the momenta [33–35, 38, 101, 119].
42I.e. before we evaluated the u-integral.
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function and combine them with the recursion relation (4.59). This gives:

A(x,x̄)
•|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(~ki;~k) = (−1)α1+α2k
2(α1−β1+iν1)
1 k

2(β1+iν2)
2 k

2(α2−β2+iν3)
3 k

2(β2+iν4)
4

× ∂α1−β1

k2
1

∂β1

k2
2
∂α2−β2

k2
3

∂β2

k2
4

[
k−2iν1

1 k−2iν2
2 k−2iν3

3 k−2iν4
4 A(x,x̄)

•|ν1,ν2,ν3,ν4|α1;α2
(~ki;~k)

]
(4.73)

with

lim
η0→0

A(x,x̄)
>|ν1,ν2,ν3,ν4|α1;α2

(~ki;~k) =
1

2

∫ +i∞

−i∞

du

2πi

1

u+ ε
Ã(u,x,α1)
ν1,ν2,ν (~k1,~k2, ~k)A

(u,x̄,α2)
ν3,ν4,−ν(~k3,~k4,~k) ,

(4.74a)

lim
η0→0

A(x,x̄)
<|ν1,ν2,ν3,ν4|α1;α2

(~ki;~k) =
1

2

∫ +i∞

−i∞

du

2πi

1

u+ ε
A(u,x,α1)
ν1,ν2,ν (~k1,~k2,~k)Ã

(u,x̄,α2)
ν3,ν4,−ν(~k3,~k4,~k),

(4.74b)

where we defined the three-point structures:

A(u,x,α1)
ν1,ν2,ν (~k1, ~k2,~k) =

∫
[ds]2

∫ +i∞

−i∞
dw δ

(x
4
− s1 − s2 − w

)
(4.75a)

× ρν1,ν2,ν(s1, s2, w + u)(
w + u+ iν

2 − α1

)
α1

(
k

2

)−2(w+u)+iν 2∏
j=1

(
kj
2

)−2sj+iνj

,

Ã(u,x,α1)
ν1,ν2,ν (~k1,~k2,~k) =

∫
[ds]2

∫ +i∞

−i∞
dw δ

(x
4
− s1 − s2 − w

)
(4.75b)

× cos
(π

2
(4(s1 + s2 + u) + iν1 + iν2 + iν3 + iν4)

)
× ρν1,ν2,ν(s1, s2, w − u)(

w − u+ iν
2 − α1

)
α1

(
k

2

)−2(w−u)+iν 2∏
j=1

(
kj
2

)−2sj+iνj

.

In terms of these, the remaining contribution to exchange four-point function is given by:

lim
η0→0

A(x,x̄)
�|ν1,ν2,ν3,ν4|α1;α2

(~ki;~k) =
1

2
A

(0,x,α1)
ν1,ν2,ν|α1,β1

(~k1, ~k2, ~k )A
(0,x̄,α2)
ν3,ν3,−ν(~k3, ~k4, ~k). (4.76)

This representation is convenient because when the external scalars are conformally cou-

pled the three-point structures (4.75) reduce to Gauss Hypergeometric functions (see sec-

tion 3.3):

A(u,x,α1)
ν1,ν2,ν (~k1, ~k2, ~k) =

22α1−iν−2u−x
2

+2kiν−2u−x
2

+1

k1k2
(4.77a)

×
Γ
(
2u− 2α1 + x

2 + iν − 1
)
Γ
(
2u+ x

2 − iν − 1
)

Γ
(
x+4u−2α1−1

2

)
× 2F1

(
x+4u−4α1+2iν−2

2 , x+4u−2iν−2
2

x+4u−2α1−1
2

;
1− p12

2

)
,
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Ã(u,x,α1)
ν1,ν2,ν (~k1, ~k2, ~k) =

22α1−iν+2u−x
2

+2kiν+2u−x
2

+1

k1k2
(4.77b)

×
Γ
(
−2α1 − 2u+ x

2 + iν − 1
)
Γ
(
−2u+ x

2 − iν − 1
)

Γ
(
x−2α1−4u−1

2

)
× cos(2πu) 2F1

(
x−4α1−4u+2iν−2

2 , x−4u−2iν−2
2

x−2α1−4u−1
2

;
1 + p12

2

)
,

so that the contributions (4.74) take the following simple form:

lim
η0→0

A(x,x̄)
<|ν1,ν2,ν3,ν4|α1;α2

(~ki;~k)∼
∫ i∞

−i∞

du

2πi

cos(πu)

u+ε

Γ(a−2α1+u)Γ(b+u)Γ(a−2α2−u)Γ(b−u)

Γ(c−α1+u)Γ(c−α2−u)

× 2F1

(
a−2α1+u,b+u

c−α1+u
;

1−p12

2

)
2F1

(
a−2α2−u,b−u

c−α2−u
;

1+p34

2

)
, (4.78a)

lim
η0→0

A(x,x̄)
>|ν1,ν2,ν3,ν4|α1;α2

(~ki;~k)∼
∫ i∞

−i∞

du

2πi

cos(πu)

u+ε

Γ(a−2α1−u)Γ(b−u)Γ(a−2α2+u)Γ(b+u)

Γ(c−α1−u)Γ(c−α2+u)

× 2F1

(
a−2α1−u,b−u

c−α1−u
;

1+p12

2

)
2F1

(
a−2α2+u,b+u

c−α2+u
;

1−p34

2

)
, (4.78b)

where in the above

a =
x+ 2iν − 2

2
, b =

x− 2iν − 2

2
, c =

a+ b+ 1

2
=
x− 1

2
. (4.79)

The arguments of the Gamma functions on the first line coincide with those of the Hyper-

geometric functions on the second line. There are further simplifications for certain values

of ν. For example, when

ν = i

(
n+

1

2

)
, n ∈ Z, (4.80)

the Gauss Hypergeometric functions truncate to a rational function. These values of ν

include the conformally coupled scalar (n = 0) and (partially-)massless fields for d odd.

In the following, we shall study the exchange four-point function for such representations,

focusing on regularisation of divergences which arise from the pinching of the integration

contour. To this end we shall restrict to d = 3, which provides the simplest setting to

demonstrate the approach. We start with the exchange of conformally coupled and massless

scalars, before considering (partially)-massless fields of arbitrary integer spin. At the end

of this section we also consider the graviton exchange between massless scalars.

Exchange of a conformally coupled scalar. When the exchanged particle is a scalar

there are only terms with αi = βi = 0 in the contributions (4.32). For a conformally

coupled scalar we have ν = i
2 , in which case the u-integral (4.74) with d = 3 reduces to:

lim
η0→0

A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

2k1k2k3k4

1

k1+ε

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ
( ε̄

2
− 2u

)
Γ
( ε̄

2
+ 2u

)
× (1− p12)2u− ε̄

2 (1 + p34)−2u− ε̄
2 , (4.81a)

– 57 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
8

lim
η0→0

A(3+ε̄,3+ε̄)

<| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

2k1k2k3k4

1

k1+ε̄

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ
( ε̄

2
− 2u

)
Γ
( ε̄

2
+ 2u

)
× (p12 + 1)−2u− ε̄

2 (1− p34)2u− ε̄
2 . (4.81b)

We see that the poles of the two Γ-functions overlap at u ∼ 0, for which we set d = 3 + ε̄ to

regulate the pinching of the integration contour. Recall that the latter runs to the right of

the single pole 1
u+ε , so to evaluate the integrals (4.81) it is simplest to close the integration

contour to the right of the imaginary axis. Evaluating the residues and expanding then

gives:43

lim
η0→0

A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

k1k2k3k4

1

k

[
2

ε̄2
− 2(log(k)+log(p34+1)+γ)

ε̄
−π

2

12
+γ2 (4.82a)

+(log(k)+log(p34+1)+2γ) log(k(p34+1))+Li2

(
1−p12

p34+1

)
+O(ε̄)

]
,

lim
η0→0

A(3+ε̄,3+ε̄)

<| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

k1k2k3k4

1

k

[
2

ε̄2
− 2(log(k)+log(p12+1)+γ)

ε̄
−π

2

12
+γ2 (4.82b)

+(log(k)+log(p12+1)+2γ) log(k(p12+1))+Li2

(
1−p34

p12+1

)
+O(ε̄)

]
,

which exhibits poles at ε̄ = 0, as anticipated. All of these poles are however cancelled when

we include the contribution (4.76), which also has poles at ε̄ = 0 and this case reads:

lim
η0→0

A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

k1k2k3k4

1

k

[
4

ε̄2
− 2(2log(k)+log(p12+1)+log(p34+1)+2γ)

ε̄
+2γ2

+
π2

6
+

(2log(k)+log(p12+1)(p34+1)+4γ)(2 log(k)+log((p12+1)(p34+1)))

2
+O(ε̄)

]
.

This gives the following finite result for the exchange four-point function:

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ (4.83)

= N4 lim
η0→0

(
A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k)−A(3+ε̄,3+ε̄)

<| i
2
, i
2
, i
2
, i
2

(~ki;~k)−A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k)

)∣∣∣
ε̄=0

=
N4

kk1k2k3k4

[
π2

3
− Li2

(
1− p34

1 + p12

)
− Li2

(
1− p12

1 + p34

)
− 1

2
log2

(
1 + p34

1 + p12

)]
,

which matches equation (5.74) of [29].44

43Although here we expanded in ε, the Mellin integral can be evaluated for arbitrary ε very easily. In

this case one can recognise the Mellin representation of a standard Gauss Hypergeometric function giving

the corresponding general ε = d− 3 result valid in arbitrary dimension.
44To compare with (5.74) of [29] one needs to massage the above expression using some properties of the

Dilogarithm function, including the identity:

Li2(z) = −Li2

(
z

z − 1

)
− 1

2
log2(1− z).
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Exchange of massless scalar. The exchange of a massless scalar in d = 3 presents an

interesting example. This is the simplest case in which the divergences of the individual

contributions (4.74) and (4.76) do not cancel among each other, so it is necessary to add

a counter-term. For the massless scalar with d = 3 we have ν = 3i
2 and in this case the

u-integrals reduce to,

lim
η0→0

A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

4k1k2k3k4

1

k1+ε̄

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
(1− p12)2u− ε̄

2 (1 + p34)−2u− ε̄
2

× (−4u− 2p12 + ε̄)(4u+ 2p34 + ε̄)Γ
( ε̄

2
− 2u− 1

)
Γ
( ε̄

2
+ 2u− 1

)
= − 2

ε̄2
p12p34

kk1k2k3k4
(4.84a)

+
1

2ε̄

4p12p34 log(k(p34 + 1)) + 4(γ − 1)p12p34 − p12(p12 + 4) + p2
34

kk1k2k3k4

+O(1),

lim
η0→0

A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
1

4k1k2k3k4

1

k1+ε̄

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
(1− p12)2u− ε̄

2 (1 + p34)−2u− ε̄
2

× (−4u− 2p12 + ε̄)(4u+ 2p34 + ε̄)Γ
( ε̄

2
− 2u− 1

)
Γ
( ε̄

2
+ 2u− 1

)
= − 2

ε̄2
p12p34

kk1k2k3k4
(4.84b)

+
1

2ε̄

4p12p34 log(k(p12 + 1)) + 4(γ − 1)p12p34 − p34(p34 + 4) + p2
12

kk1k2k3k4

+O(1),

where, as before, we set d = 3 + ε̄ to regulate the pinching of poles and we closed the

integration contour to the right of the imaginary axis. As in the conformally coupled case

the integral is convergent at infinity and no further singularity is generated. The constant

and higher order terms in the ε̄-expansion are quite cumbersome so we do not display them

here. For the remaining contribution, we have

lim
η0→0

A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k) =
Γ
(
ε̄
2 − 1

)2
4k1k2k3k4

1

k1+ε̄
(2p12 + ε̄)(2p34 + ε̄)(p12 + 1)−

ε̄
2 (p34 + 1)−

ε̄
2

=
4p12p34

kk1k2k3k4ε̄2
(4.85)

+
2

ε̄

−p12p34 log(k2(p12 + 1)(p34 + 1))− 2(γ − 1)p12p34 + p12 + p34

kk1k2k3k4

+O(1).

Upon combining these contributions as in (4.83), one finds that the leftover poles are

proportional to those of the factorised contribution (4.85):

lim
η0→0

[
A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k)−A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k)−A(3+ε̄,3+ε̄)

<| i
2
, i
2
, i
2
, i
2

(~ki;~k)

]
(4.86)

=
8p12p34

kk1k2k3k4ε̄2
+

4

ε̄

−p12p34 log(k2(p12 + 1)(p34 + 1))− 2(γ − 1)p12p34 + p12 + p34

kk1k2k3k4

+O(1).
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A minimal conformally invariant counter-term with the right singularities is therefore

given by

λ lim
η0→0

A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k), (4.87)

where complete cancellation of the poles fixes λ = −2. This gives

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ (4.88)

=−N4 lim
η0→0

(
A(3+ε̄,3+ε̄)

�| i
2
, i
2
, i
2
, i
2

(~ki;~k)+A(3+ε̄,3+ε̄)

<| i
2
, i
2
, i
2
, i
2

(~ki;~k)+A(3+ε̄,3+ε̄)

>| i
2
, i
2
, i
2
, i
2

(~ki;~k)

)∣∣∣
ε̄=0

=
N4

kk1k2k3k4

[
p12p34

(
Li2

(
1−p34

1+p12

)
+Li2

(
1−p12

1+p34

))

+p12p34

(
1

2
log2

(
1+p12

1+p34

)
−π

2

3

)
+2p12 log

(
p12+1

p12+p34

)
+2p34 log

(
p34+1

p12+p34

)
−2

]
,

which matches equation (4.59) obtained in [34].

Massless spin-1 exchange. Similarly we can consider the exchange of spinning fields

on the discrete series. In this case it is necessary to combine the contributions (4.73) with

the Θ-polynomials (4.30). The simplest example is the mass-less spin-1 exchange, which

in d = 3 corresponds to ν = i
2 . The Θ-polynomials in this case have the following helicity

decomposition (see the end of section 4.2):

Θ
(1,1)
i
2
,.., i

2
; i
2
|0,0;0,0

=−1

4
Ξ1 , Θ

(1,0)
i
2
,.., i

2
; i
2
|0,0;0,0

=
1

4
k2p12p34q12q34 Ξ0 , (4.89a)

Θ
(1,0)
i
2
,.., i

2
; i
2
|1,0;0,0

= Θ
(1,0)
i
2
,.., i

2
; i
2
|0,0;1,0

=−Θ
(1,0)
i
2
,.., i

2
; i
2
|0,0;1,1

=−Θ
(1,0)
i
2
,.., i

2
; i
2
|1,1;0,0

=
1

4
k2p12q12 Ξ0 ,

(4.89b)

Θ
(1,0)
i
2
,.., i

2
; i
2
|1,0;1,0

= Θ
(1,0)
i
2
,.., i

2
; i
2
|1,1;1,1

=−Θ
(1,0)
i
2
,.., i

2
; i
2
|1,0;1,1

=−Θ
(1,0)
i
2
,.., i

2
; i
2
|1,1;1,0

=
k2

4
Ξ0 , (4.89c)

where we recall that only the leading terms (4.89a) contribute to the component with

helicity one.

In contrast to the scalar exchanges considered above, when the exchanged field has non-

zero spin the leading terms in the exchange four-point function are finite. In particular,

for the massless spin-1 exchange we have

lim
η0→0

A(5,5)

>| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

1

k1k2k3k4

1

k3

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(1− 2u)Γ(1 + 2u)

× (1− p12)2u−1(p34 + 1)−2u−1

= − 1

k1k2k3k4

1

k3

1

(p34 + 1)(p12 + p34)
, (4.90a)

lim
η0→0

A(5,5)

<| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

1

k1k2k3k4

1

k3

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(1− 2u)Γ(2u+ 1)

× (p12 + 1)−2u−1(1− p34)2u−1

= − 1

k1k2k3k4

1

k3

1

(p12 + 1)(p12 + p34)
, (4.90b)
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lim
η0→0

A(5,5)

�| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) = − 1

k1k2k3k4

1

k3

1

(p12 + 1)(p34 + 1)
, (4.90c)

where we note that the Γ-function poles in the u-integrals do not overlap.

For the sub-leading terms, the u-integrals (4.74) take a similar form to those we evalu-

ated for the scalar exchange diagrams and they all have divergences due to contour pinch-

ing. For example, to obtain the contributions (4.33c) with α1 = 0 and α2 = 1, the basic

integral (4.74) is:

lim
η0→0

A(5+ε̄,5+ε̄)

<| i
2
, i
2
, i
2
, i
2
|0;1

(~ki;~k) (4.91)

=
1

2

∫ +i∞

−i∞

du

2πi

1

u+ ε
A

(u,5+ε̄,α1)
i
2
, i
2
, i
2

(k1, k2, k)Ã
(u,5+ε̄,α2)
i
2
, i
2
,− i

2

(k3, k4, k)
∣∣∣
α1=0,α2=1

=
1

k1k2k3k4

1

k3+ε̄

∫ +i∞

−i∞

du

2πi

cos 2πu

u+ ε
Γ
( ε̄

2
− 2u

)
Γ
(

2u+
ε̄

2
+ 1
)

× (p12 + 1)−2u− ε̄
2
−1(1− p34)2u− ε̄

2

=
1

p12 + 1

1

k3k1k2k3k4

[
4

ε̄
− 4 log(k)− 2 log((p12 + 1)(p12 + p34))− 4γ +O(ε̄)

]
,

which has a simple pole at ε̄ = 0. One then evaluates the derivatives as prescribed in (4.73).

Upon combining all contributions to the exchange four-point function, these divergences

in the helicity-0 components do not cancel and it is necessary to add a counter-term.

The conformally invariant counter-term with the correct singularity structure is the spin-

1 analogue (4.32) of the counter-term (4.87) we used for the massless scalar,45 with the

same coefficient λ = −2. This contains the term (4.90c) and therefore also induces a finite

correction to the helicity-1 component. The result for the exchange four-point function is:

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = 1

2

N4

k3 k1k2k3k4

[
Ξ1

(1 + p12)(1 + p34)(p12 + p34)
+

k2q12q34

(p12 + p34)
Ξ0

]
.

(4.92)

Notice that the helicity-1 component is singular not only at p12 + p34 → 0, but also at 1 +

p12 → 0 and 1+p34 → 0 which correspond to setting either of the cubic interactions on-shell

(for energy conservation at the vertex) and thus carries information about the propagating

degrees of freedom. The helicity-0 component does not have these singularities and is only

singular for p12 + p34 → 0. The helicity-0 component is therefore a contact contribution

to the exchange four-point function, consistent with the fact that a massless spin-one

particle has only helicity |λ| = 1. It is therefore tempting to interpret the divergences we

encountered in the subleading terms, which contribute only helicity-0 components, as a

consequence of the decoupling of the lower-helicity modes in the massless limit.

The helicity-1 component matches with that in equation (4.55) of [34]. The helicity-

0 component differs by a local contact term which can be accounted for by a choice of

improvement (on-shell vanishing) terms in the cubic vertex.46

45In particular it is given by equation (4.32) with • = �, ` = 1 and νi = ν = i
2
.

46More generally, the contact terms in any helicity component can be changed ad libitum by adding

improvements to the cubic vertex.
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Massless spin-2 exchange. In this case, we have ν = 3i
2 for d = 3. Similar to the mass-

less spin-1 example above, the leading terms in the exchange four-point function are finite:

lim
η0→0

A(7,7)

>| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) (4.93a)

=
1

k1k2k3k4

1

k5

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(1− 2u)Γ(1 + 2u)

× (2− p12 − 2u)(2 + p34 + 2u)(1− p12)2u−2(p34 + 1)−2u−2

=
1

k1k2k3k4

1

k5

−(p34 + 2)p2
12 − 2p12p34(p34 + 2)− (p34 − 1)p34(p34 + 3) + p12 + 2

(p34 + 1)2(p12 + p34)3 ,

lim
η0→0

A(7,7)

<| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) (4.93b)

=
1

k1k2k3k4

1

k5

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(1− 2u)Γ(1 + 2u)

× (2− p34 − 2u)(2 + p12 + 2u)(p12 + 1)−2u−2(1− p34)2u−2

=
1

k1k2k3k4

1

k5

−(p12 + 2)p2
34 − 2p12p34(p12 + 2)− (p12 − 1)p12(p12 + 3) + p34 + 2

(p12 + 1)2(p12 + p34)3 ,

where the integration contour is not pinched by the Gamma function poles, and

lim
η0→0

A(7,7)

�| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

1

k1k2k3k4

1

k5

(p12 + 2)(p34 + 2)

(p12 + 1)2(p34 + 1)2
. (4.94)

The sub-leading terms, which contribute only to the helicity-1 and -0 components,

instead diverge. As before, a conformal invariant counter-term with the right singularity

structure is provided by (4.32) with • = � and coefficient λ = −2. Combined with the

helicity decomposition (4.48) of the Θα1,β1;α2,β2-polynomials (4.30) this gives

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′= 1

4

N4

k5 k1k2k3k4
(4.95)

×
[

p12p34+2(p12+p34)+1

(1+p12)2(1+p34)2(p12+p34)3
Ξ2+

2k2q12q34

(p12+p34)3
Ξ1+. . .

]
,

where the . . . are the helicity-0 components which are a bit cumbersome so we do not

display them here. As before, the counter-term induces a finite correction to the helicity-

2 component. The helicity-1 and -0 components are only singular for p12 + p34 → 0

and are therefore contact terms which are sensitive to the choice of improvements in the

cubic vertex. The highest helicity component on the other hand also has singularities at

1 + p12 → 0 and 1 + p34 → 0, as consistent with the propagation of a helicity-2 degree

of freedom. Accordingly, the helicity-2 component matches that of equation (4.61) in [34]

and differs by a local contact term in the lower helicity components.

Massless spin-` exchange. The four-point exchange of any given massless spin-` field

follows in the same way as for the low spin ` ≤ 2 examples detailed above. The leading

terms in the contributions (4.73) (with αi = βi = 0), which encode the highest helicity
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component, are always finite. The subleading terms instead exhibit divergences, which

can be interpreted as a consequence of the decoupling of the lower helicity modes in the

massless limit. Interestingly, for any spin `, these divergences can all be cancelled with the

conformally invariant counter-term (4.32) where • = � and coefficient λ = −2.47

The helicity-` component has the following general form

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4

k2`+1 k1k2k3k4

[
f`(p12, p34)

(1 + p12)`(1 + p34)`(p12 + p34)2`−1
Ξ` + . . .

]
,

(4.96)

where the . . . denote non-singular contact interactions and f`(p12, p34) is a polynomial in

p12 and p34 of degree `− 1. Below we list a few examples for higher-spins ` > 2:

f3(p12,p34) = 8(p12+p34)2+9(p12p34+1)(p12+p34)+3(p12p34+1)2 , (4.97a)

f4(p12,p34) = 9
(

16(p12+p34)3+29(p12p34+1)(p12+p34)2 (4.97b)

+20(p12p34+1)2(p12+p34)+5(p12p34+1)3
)
,

f5(p12,p34) = 9
(

128(p12+p34)4+325(p12p34+1)(p12+p34)3 (4.97c)

+345(p12p34+1)2(p12+p34)2+175(p12p34+1)3(p12+p34)+35(p12p34+1)4
)

. . . ,

and so on for higher and higher spins.

Partially-massless spin-2 Similarly we can consider the exchange of the partially mass-

less spin-2 field, which has ν = i
2 . In this case the Γ-function poles in the u-integrals (4.74)

do not overlap and there are no divergences. We obtain

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4

k5 k1k2k3k4

[
(p12 + p34)2 + 2(p12 + p34) + p12p34 + 1

4((p12 + 1)2(p34 + 1)2(p12 + p34)3)
Ξ2

+
k2q12q34

(
(p12 + p34)2 − (p12 + p34)− p12p34 − 1

)
2(p12 + 1)(p34 + 1)(p12 + p34)3

Ξ1 + . . .

]
,

(4.98)

where the . . . is the helicity-0 contribution, which is singular only for p12 + p34 → 0 and so

does not encode propagating degrees of freedom. Note that partially massless spin-2 fields

also propagate a helicity-1 degree of freedom, which is manifest in the above expression

from the singularities as 1 + p12 → 0 and 1 + p34 → 0 for the helicity-1 component, in

addition to those in the helicity-2 component.

The expression (4.98) agrees with equation (4.56) in [34] up to local contact terms (i.e.

those singular only for p12 + p34 → 0) in the helicity-1 and -0 components, corresponding

to the freedom of adding improvements (on-shell vanishing terms) to the cubic vertices.

47It is tempting to explain this as a consequence of higher-spin symmetry, which would relate all coun-

terterms together into a single higher-spin symmetric counterterm.
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Maximal-depth partially-massless fields. More generally one can consider partially-

massless fields of spin ` > 2. The simplest are those of maximal depth which lie on the

boundary with the complementary series, where the scaling dimension is spin-independent

and given by ν = i
2 .

For the contributions (4.74), the u-integrals for the leading terms are given for ` > 0 by:

lim
η0→0

A(3+2`,3+2`)

>| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

1

k2`+1k1k2k3k4

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(`− 2u)Γ(`+ 2u)

× (1− p12)−`+2u(1 + p34)−`−2u

=
cos(π`)Γ(2`)

`k2`+1k1k2k3k4

1

(1 + p34)2` 2F1

(
`, 2`

`+ 1
;

1− p12

1 + p34

)
, (4.99a)

lim
η0→0

A(3+2`,3+2`)

<| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

1

k2`+1k1k2k3k4

∫ +i∞

−i∞

du

2πi

cos(2πu)

u+ ε
Γ(`− 2u)Γ(`+ 2u)

× (1 + p12)−`−2u(1− p34)−`+2u

=
cos(π`)Γ(2`)

`k2`+1k1k2k3k4

1

(1 + p12)2` 2F1

(
`, 2`

`+ 1
;

1− p34

1 + p12

)
, (4.99b)

which, like for the ` = 2 case given above, do not exhibit any divergence for ` > 0. The

above expressions however do not hold for ` = 0, where the integration contour becomes

pinched, which manifests itself in the pole at ` = 0. The analytic continuation to ` = 0,

which corresponds to the exchange of a conformally coupled scalar, was treated earlier in

equation (4.81). The remaining contribution (4.76) reads

lim
η0→0

A(3+2`,3+2`)

�| i
2
, i
2
, i
2
, i
2
|0,0,0,0(~ki;~k) =

Γ(`)2

k2`+1k1k2k3k4

1

(1 + p12)`(1 + p34)`
, (4.100)

so that the leading-helicity contribution to the exchange of a maximal depth partially

massless spin-` field is:

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′=

(
−1

4

)`
Ξ`

N4

k2`+1k1k2k3k4

[
Γ(`)2

(1+p12)`(1+p34)`

+
cos(π`)Γ(2`)

`

(
1

(1+p34)2` 2F1

(
`,2`

`+1
;
1−p12

1+p34

)
+

1

(1+p12)2` 2F1

(
`,2`

`+1
;
1−p34

1+p12

))]
+. . . .

Setting ` = 1, 2 this recovers the leading-helicity contributions in the massless spin-1 ex-

change (4.92) and the partially massless spin-2 exchange (4.98) respectively. In writing

this expression we are assuming that there are no divergences in the lower-helicity compo-

nents — as was the case for the partially massless spin-2 exchange (4.98) — which can be

extracted in a similar way.

Graviton exchange between massless scalars. Using the raising operators (4.57),

from the above results for external conformally coupled scalars one can obtain expressions

for external fields with integer shifted scaling dimensions. In the following we shall con-

sider the example of the graviton exchange between massless scalars. The leading helicity
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component, which encodes the propagating degrees of freedom, can be simply obtained

from the contributions (4.84) and (4.85) to the massless scalar exchange by acting once

with each raising operator (4.57). In particular,

lim
η0→0

A(7+ε̄,7+ε̄)

•| 3i
2
, 3i

2
, 3i

2
, 3i

2
|0,0,0,0(~ki;~k) = lim

η0→0

[
16

k1k2k3k4
∂k1∂k2∂k3∂k4A

(3+ε̄,3+ε̄)

•| i
2
, i
2
, i
2
, i
2

(~ki;~k)

]
. (4.101)

Interestingly, upon acting with the above operators, each of the contributions above are

non-singular in the limit ε̄→ 0. In particular,

lim
η0→0

A(7,7)

•| 3i
2
, 3i

2
, 3i

2
, 3i

2
|0,0,0,0(~ki;~k) =

1

(k1k2k3k4)3 k5

[
f• Ξ2

(1 + p12)2(1 + p34)2(p12 + p34)3
+ . . .

]
,

(4.102)

where the . . . represent lower helicity components which are proportional to contact terms,

and the functions f• are given by:

f� = (p12 + p34)3
(
3p3

12 + 6p2
12 + p12

(
q2

12 + 8
)

+ 2
(
q2

12 + 2
))

×
(
3p3

34 + 6p2
34 + p34

(
q2

34 + 8
)

+ 2
(
q2

34 + 2
))
, (4.103)

and

f≷ = f<+f> = 9p3
34p

6
12+18p2

34p
6
12+3p34q

2
34p

6
12+6q2

34p
6
12+24p34p

6
12+12p6

12+27p4
34p

5
12

+72p3
34p

5
12+108p2

34p
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In this case it is therefore not necessary to add a counter-term, and the corresponding

leading helicity component to the graviton exchange is given by

〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(3i/2)
~k3

φ
(3i/2)
~k4

〉′ = N4

(k1k2k3k4)3 k5

[
(f� − f≷) Ξ2

(1 + p12)2(1 + p34)2(p12 + p34)3
+ . . .

]
,

(4.105)

which we confirmed matches with equation (2.26) of [119].
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Figure 7. Depiction of the Unitary representations in dSd+1 for symmetric tensors (p = 1) and

scalar (p = 0) representations. Representations differing by ν → −ν are shadow of each other and

are partially-equivalent. In red we display the principal series, in green the complementary series

and the dark-blue dots are the boundary of the complementary series known as the exceptional

series. All boundary operators dual to curvature tensors of bulk (partially-)massless gauge fields sit

at this blue point [120]. The yellow dots denote the (partially-)massless points ν = − i
2 [d−2+2(`−

ζ) − 2] for totally symmetric representations where ζ = 0, 1, . . . , ` − 1, with ζ = 0 corresponding

to the massless representation. The maximal depth partially-massless point coincides with the

exceptional series point. In dS4 the exceptional series is supplemented by the discrete series, which

gives a unitary representation for each dual operator to (partially-)massless gauge fields. In grey

we instead highlight the usual unitary representations in AdSd+1, on the boundary of which (the

grey dot) lie the massless representations. In light-blue we highlight instead the shadow-dual of

the yellow dots. It is worth stressing that for generic d the discrete series does not involve totally

symmetric fields (and is thus absent from our diagram), and remarkably in d = 3 it coincides with

the yellow dots furnishing a unitary representation for each gauge field otherwise absent in generic

dimensions. It is remarkable that the existence of short unitary representations with the quantum

numbers dual to Fronsdal fields is an accident of dS3 as opposed to what happens in AdSd+1, where

massless representations, instead of maximal-depth partially-massless fields, can be always found

at the boundary of the unitary region (the grey dot at the end of the grey line).
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4.7 Exchanges in dS vs. exchanges in AdS

It is instructive to compare momentum space exchange diagrams in de Sitter and anti-de

Sitter at the level of the Mellin-Barnes representation considered in this work, to better

appreciate differences and similarities between these two cases. In the following without

loss of generality we shall consider the tree-level exchange of scalar fields. AdS spinning ex-

changes can be obtained following the same steps we have taken in the dS case. The Witten

diagram for the exchange of a general scalar field in AdSd+1 in terms of the corresponding

Conformal Partial Wave reads (see e.g. [7, 59, 85]):48

AAdS(~ki;~k) =

∫ ∞
−∞

dµ
1

µ2 − ν2 + iε

µ2

π
FAdS(~ki;~k) , (4.106)

where the exchanged scalar has scaling dimension ∆ = d
2 + i(ν − iε), ε > 0, and where we

introduced an epsilon prescription to avoid crossing the contour of the spectral integral (i.e

the real line) as we analytically continue ν from the imaginary axis to the real line. The

Conformal Partial Wave for the AdS exchange is:

FAdS(~ki;~k) = [Oν1(~k1)Oν2(~k2)Oµ(~k)] [O−µ(−~k)Oν3(~k3)Oν4(~k4)], (4.107)

where the three-point factors are given by scalar three-point Witten diagrams (see equa-

tion (2.86a)):

[Oν1(~k1)Oν2(~k2)Oν3(~k)] = Bν1,ν2,ν3〈〈Oν1(~k1)Oν2(~k2)Oν3(~k)〉〉. (4.108a)

=

 3∏
j=1

√
π

Γ(1 + iνj)

∫ [ds]3 iπδ

(
d

4
− s1 − s2 − s3

)
(4.108b)

× ρν1,ν2,ν3(s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj+iνj

,

which gives the following Mellin-Barnes representation for the exchange Witten diagram:

AAdS(~ki;~k) = NAdS
4

∫ i∞

−i∞
[ds]4

dudū

(2πi)2 iπδ

(
d

4
− s1 − s2 − u

)
iπδ

(
d

4
− s3 − s4 − ū

)

×
∫ ∞
−∞

dµ

µ2 − ν2 + iε

(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj

(4.109)

× ρν1,ν2,µ(s1, s2, u)ρν3,ν4,−µ(s3, s4, ū)

Γ(iµ)Γ(−iµ)
,

where we have factored out the normalisation:

NAdS
4 =

 4∏
j=1

√
π

Γ(1 + iνj)

 . (4.110)

48Here we used µ as the spectral parameter in the spectral integral to distinguish it from the spectral

dimension of the exchanged particle, which in this work is given by ν. Note that in the AdS literature the

spectral parameter is instead usually taken to be ν.
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In the above form the spectral integral in µ is factorised and can be easily evaluated using

the following identity:

∫ ∞
−∞

dµ
Γ
(
a1 + iµ

2

)
Γ
(
a1 − iµ

2

)
Γ
(
a2 + iµ

2

)
Γ
(
a2 − iµ

2

)
Γ
(
a3 + iµ

2

)
Γ
(
a3 − iµ

2

)
Γ(−iµ)Γ(iµ)Γ

(
a4 + iµ

2 + 1
)

Γ
(
a4 − iµ

2 + 1
)

=
8πΓ(a1 + a2)Γ(a1 + a3)Γ(a2 + a3)Γ(−a1 − a2 − a3 + a4 + 1)

Γ(1− a1 + a4)Γ(1− a2 + a4)Γ(1− a3 + a4)
, (4.111)

the proof of which can be found in [121]. In particular, we have that49,50

∫ +∞

−∞
dµ

1

µ2 − ν2 + iε

Γ(u+ iµ
2 )Γ(u− iµ

2 )Γ(ū+ iµ
2 )Γ(ū− iµ

2 )

Γ(iµ)Γ(−iµ)

=
2π2 csc(π(u+ ū))Γ

(
u+ iν

2

)
Γ
(
ū+ iν

2

)
Γ
(
1− u+ iν

2

)
Γ
(
1− ū+ iν

2

) . (4.112)

Using the Mellin-Barnes representation (4.2) for Conformal Partial Waves, the resulting

expression for the AdS exchange is then

Four-point exchange Witten diagram for generic scalar fields in AdSd+1

AAdS(~ki;~k) = 4NAdS
4

∫ +i∞

−i∞

du dū

(2πi)2

∫
[ds]4 csc (π(u+ ū)) δAdS(u, ū)F ′(si;u, ū|~ki, ~k) ,

(4.113)

where the function δAdS(u, ū) in the Mellin-integrand in this case reads simply:

δAdS(u, ū) =
1

2
sin

(
π

(
u− iν

2

))
sin

(
π

(
ū− iν

2

))
. (4.114)

We thus see that the representation (4.113) for the exchange diagram is universal in both de

Sitter and anti-de Sitter, which differ only in the interference factors δ(u, ū) which encode

the zeros of the Mellin integrand. In AdS, the factor (4.114) precisely cancel the poles

Γ

(
u− iν

2

)
Γ

(
ū− iν

2

)
, (4.115)

in the CPW (4.2) associated to contributions from the shadow conformal multiplet (labelled

by scaling dimension d−∆), which go as:(
k2
)−iν

[# +O(k)]. (4.116)

49To apply the identity (4.111) to the spectral integral in (4.109) one notes that

1

µ2 − ν2 + iε
=

Γ(iµ− iν + ε)Γ(−iµ− iν + ε)

Γ(iµ− iν + ε+ 1)Γ(−iµ− iν + ε+ 1)

50We have explicitly checked this to be equivalent to using the more standard representation of the

momentum-space AdS bulk-to-bulk propagator:

Π~k(z, z̄) = zd/2z̄d/2Kiν(kz)Iiν(kz̄)θ(z − z̄) + zd/2z̄d/2Iiν(kz)Kiν(kz̄)θ(z̄ − z) .
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The role of the spectral integral in the expression (4.106) for the EAdS exchange is to

precisely project away the shadow contributions, which is translated into the zeros of the

function (4.114) in the Mellin-Barnes representation for the exchange. In the dS case

both the shadow and non-shadow multiplets contribute, as can be seen from the OPE

limit (4.55).

As for the de Sitter case, the poles (4.16) of the csc-function in the Mellin-Barnes

representation (4.113) encode the EFT expansion for the exchange Witten diagram. Con-

sidering for example external conformally coupled scalars, for which the Mellin-Barnes

integral (4.113) takes the same form as (4.62) but with interference factor (4.114), pro-

ceeding as in section 4.5 one obtains the EFT expansion:

AAdS(~ki;~k)
∣∣∣
EFT

=
NAdS

4

2k1k2k3k4

(
k

2

)2−d ∞∑
n,m=0

c(d)
mn (p12)2−d−2m

(
p34

p12

)n
, (4.117)

where the coefficients c
(d)
mn are the same as in the de Sitter case and are given by equa-

tion (4.65), while for the non-perturbative corrections we have

AAdS(~ki;~k)
∣∣∣
non-pert.

= i csch(πν)
πNAdS

4

2k1k2k3k4

(
k

2

)2−d

×
[
F+(p12)F+(p34)− F+(p12)F−(p34)− F−(p12)F+(p34)

]
, (4.118)

where one notes the absence of terms F−(p12)F−(p34), which would give non-analytic con-

tributions corresponding to the shadow conformal multiplet. The zeros of the interference

factor (4.114) ensure that such terms do not arise when evaluating the residues of the

poles (4.53), in contrast to the de Sitter case.

We note that, just as for the de Sitter exchange, the EFT contribution is entirely

specified by the factorised contribution (4.118). The latter can be recovered from the

discontinuity of the exchange four-point function in s = k2.

In would be interesting to explore Witten diagrams in AdS further using this formalism.

To date there are only a handful of works on momentum space approaches to Witten

diagrams see e.g. [38, 39, 122–127].

5 Inflationary correlators

The Mellin framework can also be used to study inflationary three-point functions. These

can be obtained from de Sitter four-point functions under the assumption of slightly bro-

ken conformal symmetry by taking the soft momentum limit of a scalar external leg with

a small mass ν = i
(
d
2 − ε

)
, where ε is related to the slow-roll parameter [29, 42, 43]. A

simpler example of this idea was followed in section 3.4, where we obtained the corre-

sponding inflationary two-point function from the late-time de Sitter tree-level three-point

functions (3.27). In contrast, inflationary correlators obtained from de Sitter exchange

diagrams contain signals for particle exchanges, which manifest themselves in non-analytic

contributions in the squeezed limit k3 ∼ k → 0. This limit has some similarities to the

OPE limit considered towards the end of section 4.2, but a key difference is that there one

takes k � k3 while for the squeezed limit we have k3 ∼ k (see e.g. figure 8).
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Figure 8. The soft limit is closer in spirit to the collapsed triangle limit in which p34 → 1. In the

Mellin-Barnes representation this is manifestly non-singular.

Before proceeding let us note that in this setting the inflaton φ, which we are approx-

imating by a massless scalar, is usually assumed to couple in a shift-symmetric fashion —

i.e. in a way which is invariant under φ→ φ+ c where c is a constant. The shift-symmetry

implies that there are no O(1) terms in ε in the soft limit of the exchange four-point func-

tion. i.e. there is an Adler zero. It should be kept in mind that, while we do not explicitly

consider shift symmetric couplings in this work, since any non-trivial coupling of two scalar

fields and a spin-` field is unique on-shell, the exchange four-point function differs from that

generated by a shift symmetric coupling only by a finite number of contact terms and an

overall polynomial in the scaling dimensions which multiplies the factorised contributions.

This in particular means that, even for couplings which are not shift symmetric, there are

no O(1) terms in ε when focusing on the non-analytic terms in the exchanged momentum

in the soft limit.

Soft limit. First we take the soft momentum limit of a scalar external leg, say φ
(ν4)
~k4

, in the

spin-` exchange four-point function (4.37). Like in section 3.4, this is given by the residue

of the leading pole s4 = − iν4
2 in the corresponding bulk-to-boundary propagator (2.82).

At the level of the Conformal Partial Wave, which carries the pole in question, this reads:

lim
k4→0

F ′ν,`(si;u, ū|~ki;~k) =

(
k4

2

)2iν4

(iπ)δ

(
d+2`

4
−s1−s2−u

)
(iπ)δ

(
d+2`

4
−s3+

iν4

2
−ū
)

×ρν3,ν(s3, ū)ρν1,ν2,ν(s1,s2,u)

(
k3

2

)−2(u+ū) 3∏
j=1

(
kj
2

)−2sj+iνj

×Θ(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si,u, ū)

∣∣∣
s4=− iν4

2
,k4=0,~k∼−~k3

, (5.1)

where we used that ~k ∼ −~k3 as ~k4 → 0 and defined

ρν3,ν(s3, ū) ≡
Res

s4=− iν4
2

[
ρν3,ν4,ν(s3, s4, ū)

]
Res

s4=− iν4
2

[
1

2
√
π

Γ(s4 − iν4
2 )Γ(s4 + iν4

2 )
] (5.2a)

=
1

4π
Γ

(
s3 +

iν3

2

)
Γ

(
s3 −

iν3

2

)
Γ

(
ū+

iν

2

)
Γ

(
ū− iν

2

)
. (5.2b)
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This is equivalent to taking the soft limit of one of the three-point functions in the factorised

expression (4.25) for the Conformal Partial Wave. The soft limit of three-point functions

was considered in section 3.4, where it was in particular shown that

p
(`)
ν3,ν4,−ν(~ξ · ~k3, 0, ~ξ · ~k3|s3, s4, ū)

∣∣∣
s4=− iν4

2

=

(
d−2`−2i(ν3−ν4+ν)

4

)
`

(
2s3+2ū−2`+i(ν3−ν)

2

)
`(

d
2 − iν − 1

)
`

(
ū− iν

2 − `
)
`︸ ︷︷ ︸

H̃ν3,−ν;ν4|`(s3,ū)

(−i ~ξ · ~k3)`, (5.3)

where for convenience we introduced the function γ`(s3, ū), so that in the limit k4 → 0 the

contraction (4.29) reads

Θ(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si, u, ū)

∣∣∣
s4=− iν4

2
, k4=0, ~k∼−~k3

=
∑̀
α=0

α∑
β=0

(
`

α

)(
α

β

)
Hν1,ν2,ν|α,β(s1, s2, u)H̃ν3,−ν;ν4|`(s3, ū) Θ̃

(`)
ν1,ν2,ν|α,β(~k1,~k2,~k3), (5.4)

where we defined

Θ̃
(`)
ν1,ν2,ν|α,β(~k1,~k2,~k3) =

1

`!
(
d
2 − 1

)
`

(−i~k3 · ∂̂ξ)`
[
(−~ξ · ~k3)αY(`)

ν1,ν2,ν|α,β(~ξ · ~k1, ~ξ · ~k2)
]
. (5.5)

This gives the soft limit k4 → 0 of the Conformal Partial Wave (4.26) which, via (4.37),

gives the soft limit of the spin-` exchange four-point function:

lim
k4→0
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ =

(
k4

2

)2iν4

N4
Γ(−iν4)

2
√
π

∑̀
α=0

α∑
β=0

(
`

α

)(
α

β

)
Θ̃

(`)
ν1,ν2,ν|α,β(~k1, ~k2, ~k3)

× Ã(d+2`)
ν1,ν2,ν3;ν4;ν,`|α,β(~k1, ~k2, ~k3) , (5.6)

where

Ã(x)
ν1,ν2,ν3;ν4;ν,`|α,β(~k1, ~k2, ~k3) =

∫
[ds]3 csc(π(u+ ū))δ(x,d+2`)(u, ū)

× Hν1,ν2,ν|α,β(s1, s2, u)ρν1,ν2,ν(s1, s2, u)H̃ν3,−ν;ν4|`(s3, ū)ρν3,ν(s3, ū)

×
(
k3

2

)−2(u+ū) 3∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= d+2`
4 −s3+

iν4
2

. (5.7)

Setting ν4 = i
(
d
2 − ε

)
and collecting the terms linear in ε gives the leading slow roll cor-

rection to the inflationary three-point function with three general external scalars due to

a general spin-` field, which we shall consider in more detail in the following sections.

Note that, strictly speaking, one should also include contributions from exchange di-

agrams in the other channels (i.e. the t- and u-channels). These can be computed in the

same way as we did for the s-channel exchange (or simply by permuting the external legs),
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and they contribute only analytic terms in k ∼ k3.51 Non-analytic terms in k ∼ k3, on

the other hand, signal the presence of new particles in the inflationary three-point func-

tions [22, 24, 25, 27, 29, 30, 44, 45, 128, 129]. In the following sections we focus on the

non-analytic terms generated by the exchange of a general spin-` particle, starting in sec-

tion 5.1 with the leading terms in the squeezed limit k3 ∼ k → 0. In section 5.2 we consider

the full non-analytic contribution.

5.1 Squeezed limit

If we take the squeezed limit k3 ∼ k → 0, at the level of the CPW (5.1) this corresponds

to taking the soft limit of the spin-` leg in the other three-point function factor, which we

also carried out in section 3.4. In particular, using (3.54) and (3.51), in the squeezed limit

we have

Θ(`)
ν1,ν2,ν3,ν4;ν(~ki;~k|si, u, ū) ∼ H̃ν3,−ν;ν4|`(s3, ū)

1

`!
(
d
2 − 1

)
`

(−i~k3 · ∂̂ξ)`(−i ~ξ · ~k1)`

= H̃ν3,−ν;ν4|`(s3, ū)
(−1)``!

2`
(
d
2 − 1

)
`

C
( d2−1)
` (cos θ) k`1k

`
3, (5.8)

where we used that ~k2 ∼ −~k1 as ~k → 0 and defined cos θ = k̂1 · k̂3.

In the squeezed limit the integrals in s2 and s3 can be lifted in the usual way with the

residue theorem. The easiest is the integral in s2 which, after using that k2 ∼ k1 as k → 0

and re-defining s1 → s1 − s2, can be lifted using Barnes’ first lemma, which gives

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′

∼ N4
Γ(−iν4)

2
√
π

(
k4

2

)2iν4 (−1)``!

2`
(
d
2 − 1

)
`

C
( d2−1)
` (cos θ)k`1k

`
3 Iν1,ν2,ν3;ν4;ν,`(~k1,~k3), (5.9)

where

Iνi;ν4;ν,`(~k1,~k3) =
1

4π

(
k3

2

)−(d+i(ν4−ν3)+2`)(k1

2

)i(ν1+ν2)

(5.10)

×

(
d−2`+2i(−ν3+ν4−ν)

4

)
`

(
d−2`+2i(ν3+ν4−ν)

4

)
`(

d
2−iν−1

)
`

×
∫ i∞

−i∞

ds1

2πi

ds3

2πi
csc

(
π

(
d

2
+
iν4

2
+`−s1−s3

))
δ(d+2`,d+2`)

(
d+2`

4
−s1,

d+2`

4
−s3+

iν4

2

)
× 1

Γ(2s1)

∏
±±̂

Γ

(
s1±

iν1

2
±̂ iν2

2

)
ρν3,ν−i`,ν

(
s3,

d+2`

4
−s3+

iν4

2
,
d+2`

4
−s1

)(
k1

k3

)−2s1

.

51Recall that k is the exchanged momentum in the s-channel.
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The integral in s3 can be evaluated by closing the contour on the positive real axis, which

encloses the following sequences of poles:52

s3 ∼
d− 2`± 2iν + 2iν4

4
+ n, n ∈ Z≥0, (5.11a)

s3 ∼
d+ 2`+ iν4 + 2n− 2s1

2
+m, m ∈ Z≥0, (5.11b)

where the second sequence originates from the csc-factor. Closing the contour on the left,

the re-summation of the residues from the first two sequences (5.11a) is given by a Gauss

Hypergeometric function 2F1 at argument z = 1, which is a simple ratio of Γ-functions

by virtue of Gauss’ theorem.53 Instead the re-summation of the residues from the csc-

poles (5.11b) gives a generalised Hypergeometric function 3F2 at argument z = 1 with

parameters depending on the remaining Mellin variable s1.

The remaining integral in s1 can be evaluated as a series expansion in k3/k1. In the

squeezed limit we are required to close the integration contour to the right of the imaginary

axis, where the non-analytic terms in k are encoded in the residues of the sequence of poles:

s1 =
d+ 2`± 2iν

4
− n′, n′ ∈ Z≥0, (5.12)

where the leading term is given by the residue of the poles with n′ = 0.54 Nicely, the 3F2

Hypergeometric function generated by the s3 integral has simple residues on the above

poles, which are given by a basic ratio of Γ-functions.

Setting ν4 = i
(
d
2 − ε

)
, one can first verify that the terms of order in ε vanish identi-

cally. One can then collect the terms linear in ε, which give the following leading slow-roll

correction in the squeezed limit:55

52It is also important to keep in mind that the behaviour of the integrand for s3 = Reiθ with R→∞ is

(see section B):

e(
d
2
−2−=(ν4)) log(R) .

This means that there are no potential divergences when ν4 = i
(
d
2
− ε
)

for ε→ 0.
53Gauss’ theorem is the identity:

2F1(a, b; c; z = 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

54It is interesting to note that while in the OPE limit, where k → 0 and k � k3, we observed that the

cosecant function generates only analytic terms in k, for the squeezed limit we instead have k ∼ k3 → 0 so

that non-analytic terms may also be generated from the residues in (5.11b) — as we have just confirmed.
55It may be useful to note that, in order to arrive to the simplified expression (5.13), in the last step we

used the identity

csc
(π

2
(`+ i(ν − ν3))

)
sin
(π

2
(−`+ i(ν − ν3))

)
= (−1)` ,

which is valid only for ` ∈ N.
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Squeezed limit of the correction to the inflationary 3pt function from a spin-` exchange

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′(infl.)∼−

εN3

32
√
π

(−2)``!(
d
2−1

)
`

(
k1

2

)i(ν1+ν2)(k3

2

)− d
2

+iν3

×C( d−2
2 )

` (cosθ)

[(
k3

k1

) d
2
−iν Γ(iν)

(
− `

2−
iν
2 ±

iν3
2 +1

)
`−1(

d
2−iν−1

)
`
Γ
(
d
2 +`−iν

)
× sin

(π
4

(d+2`−2i(ν−ν1−ν2))
)

csch
(π

2
(i`+ν+ν3)

)∏
±±̂

Γ

(
d+2`−2i(ν±ν1±̂ν2)

4

)

+ν→−ν

]
, (5.13)

where we divided by the two-point function of the leg with respect to which we are taking

the soft limit. To the best of our knowledge the above result for general external scalars is

new, even when d = 3, and its generality demonstrates the effectiveness of the Mellin space

tools developed in this work. In the next section we shall moreover consider the subleading

corrections to the squeezed limit.

The expression (5.13) is consistent with the signatures described in [27, 29] when d = 3

for new particles in inflationary three-point functions, whose form is constrained by the

slightly broken conformal symmetry [29]. In particular, for exchanged massive particles on

the Principal Series, ν ∈ R, we have oscillatory terms in log
(
k3
k1

)
, while the fact that the

exchanged particle has spin ` is indicated by the Gegenbauer polynomial (which reduces

to a Legendre polynomial when d = 3).

Considering external massless scalars (i.e. νj = di
2 ) and setting d = 3, one recovers

equation (6.144) of [29]:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′(infl.)∼−ε

(−8)−` `!

4k3
1k

3
3 Γ
(
`+ 1

2

) P`(cosθ)

(
k3

4k1

) 3
2
−iν Γ

(
`+iν+ 1

2

)
Γ
(
`−iν+ 1

2

)(
`− 3

2

)2
+ν2

× π

cosh(πν)

(
5
2 +`−iν

)
(1−i(−1)` sinh(πν))Γ(iν)(

3
2−`+iν

)
Γ
(
iν+ 1

2

) +ν→−ν . (5.14)

Note that the (−1)` was not predicted in [29] since their analysis assumed equal external

scalars from the beginning which precludes the exchange of odd spins.

We emphasise that the above result was obtained by considering the canonical `-

derivative coupling of a spin ` field with two scalars. Higher derivative couplings change

the above result (and the subleading corrections) just by an overall polynomial factor in

the scaling dimensions.

5.2 Beyond the squeezed limit

In this section we shall consider the subleading corrections to the squeezed limit. For

simplicity we focus on the case where two of the external scalars, φ(ν1) and φ(ν2), are

conformally coupled while the remaining external scalar φ(ν3) is kept general. By acting

with the raising operators (4.57) we then obtain the result for ν1,2 = 3i
2 , which for d = 3
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correspond to massless scalars. We compute all subleading corrections to the squeezed

limit, focusing on the non-analytic terms in k = k3 which, quite remarkably, re-sum to a

Gauss Hypergeometric function which moreover provides the analytic continuation away

from the regime k ∼ k3 � k1,2.

To this end we consider the basic seed integral:

Ã(x)
ν1,ν2,ν3;ν4;ν,`|α(~k1,~k2,~k3) =

(
d−2`+2i(−ν3+ν4−ν)

4

)
`

(
d−2`+2i(ν3+ν4−ν)

4

)
`(

d
2 − iν − 1

)
`

×
∫

[ds]3 csc(π(u+ ū))δ(x,d+2`)(u, ū)

× ρν1,ν2,ν(s1, s2, u)ρν3,ν(s3, ū)(
u+ iν

2 − α
)
α

(
ū− iν

2 − `
)
`

(
k3

2

)−2(u+ū) 3∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= d+2`
4 −s3+

iν4
2

, (5.15)

from which all contributions (5.7) to (5.6) are given through the recursion relations (4.59):

Ã(x)
ν1,ν2,ν3;ν4;ν,`|α,β(~k1,~k2,~k3)

= (−1)αk
2(α−β+iν1)
1 k

2(β+iν2)
2 ∂α−β

k2
1
∂β
k2

2

[
k−2iν1

1 k−2iν2
2 Ã(x)

ν1,ν2,ν3;ν4;ν,`|α(~k1, ~k2, ~k3)
]
. (5.16)

When φ(ν1) and φ(ν2) are conformally coupled, ν1,2 = i
2 , both the integrals in s2 and

s3 can be lifted. As before, the s2 integral is the easiest after re-defining s1 → s1− s2, and

is a simple application of the residue theorem:

Ã(x)
νi;ν4;ν,`|α(~k1,~k2,~k3) =

1√
πk1k2

(
k3

2

)iν3−iν4−x2−
x̄
2

+1

(
x̄−4`−2i(ν−ν3−ν4)

4

)
`

(
x̄−4`−2i(ν+ν3−ν4)

4

)
`(

x̄
2−`−iν−1

)
`

×
∫ +i∞

−i∞

ds1

2πi

ds3

2πi
csc

(
π

(
x+x̄

4
−s1−s3+

iν4

2

))
δ(x,x̄)

(
x

4
−s1,

x̄

4
−s3+

iν4

2

)
×Γ(2s1−1)Γ

(
x−2iν

4
−s1

)
Γ

(
x−4α+2iν

4
−s1

)
(2p12)1−2s1 (5.17)

×Γ

(
s3+

iν3

2

)
Γ

(
s3−

iν3

2

)
Γ

(
x̄+2i(ν4+ν)

4
−s3

)
Γ

(
x̄+2i(ν4−ν)

4
−`−s3

)∣∣∣∣∣
x̄=d+2`

.

The integral over s3 can be evaluated by closing the integration contour on the positive

real axis, which encloses the following sequences of poles:

s3 ∼
x̄− 4`− 2i(ν − ν4)

4
+ n, n ∈ N , (5.18a)

s3 ∼
2i(ν + ν4) + x̄

4
+ n, n ∈ N , (5.18b)

s3 ∼
2iν4 − 4s1 + x+ x̄

4
+ n, n ∈ N , (5.18c)

where the final sequence comes from the csc-function. The re-summation of the residues

for the first two sequences of poles above is given by Gauss 2F1 hypergeometric functions
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at argument z = 1. The resummation of the residues of the last series of poles gives instead

a generalised Hypergeometric function 3F2 at argument z = 1.

The remaining integral in s1 can be evaluated as a series in p−1
12 = k3

k1+k2
. In the

following we shall focus on the non-analytic terms, which are encoded in the residues of

the poles

s1 ∼
x

4
± iν

2
+ n n ∈ N . (5.19)

It is further possible to resum the corresponding series using the fact that the residues of

the 3F2 hypergeometric function collapse to a 2F1 at argument z = 1, so that all terms can

be simplified using Gauss’ theorem to a ratio of Γ-functions.

Setting ν4 = i
(
d
2 − ε

)
and expanding in ε, it is lengthy but straightforward to check

that the order zero result in ε cancels identically. For the terms linear in ε, the residues of

each sequence of the poles (5.19) re-sum to a Gauss Hypergeometric function:56

Ã(x)
i
2
, i
2
,ν3;i( d2−ε);ν,`|α(~k1,~k2,~k3)

= ε(−1)`+α
π3/2

4k1k2

(
k3

2

)−`+iν3−x2 +1

(2p12)iν−
x
2

+1
2F1

(
x−2iν−2

4 , x−2iν
4

α−iν+1
;

1

p2
12

)

×

(
−`−iν+iν3+2

2

)
`−1

(
−`+iν+iν3+2

2

)
`−1(

d
2−iν−1

)
`

(
x
2−iν−1

)
α−x

2
+2

csc(iπν)csc
(π

2
(`−i(ν+ν3))

)
cos
(π

4
(x−2iν)

)
+(ν→−ν)+local . (5.20)

Through the recursion relation (5.16), this gives all the contributions (5.7) to the leading

slow-roll correction from a general spin-` field to the inflationary three-point function with

two conformally coupled scalars and a general scalar φ(ν3):

Leading slow roll correction induced by a general spin-` field to the inflationary 3pt function

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(ν3)
~k3
〉′(infl.) =N3

∑̀
α=0

α∑
β=0

(
`

α

)(
α

β

)
Θ̃

(`)
ν1,ν2,ν|α,β(~k1,~k2,~k3)(−1)αk

2(α−β+iν1)
1 k

2(β+iν2)
2

×∂α−β
k2

1
∂β
k2

2

[
k−2iν1

1 k−2iν2
2 Ã(d+2`)

i/2,i/2,ν3;i( d2−ε);ν,`|α(~k1,~k2,~k3)

]
. (5.21)

Furthermore, by acting with the raising operators (4.57),

Ã(x)
ν1+i,ν2+i,ν3;ν,`|α =

4

k1k2
∂k1∂k2 Ã

(x−4)
ν1,ν2,ν3;ν,`|α , (5.22)

one obtains the corresponding result for when the two scalars have ν1,2 = 3i
2 , which in

d = 3 is the massless scalar.

56In obtaining (5.20), only for the last step we used the identity

sinh
(π

2
(i`+ ν − ν3)

)
csch

(π
2

(−i`+ ν − ν3)
)

= (−1)` ,

which requires the assumption ` ∈ N.
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When the correction is induced by a scalar field, we see that the contribution (5.6)

with α, β = 0 gives the full inflationary correlator (5.21) at leading order in slow roll, so

in that case there is no need to apply the recursion relation (5.16) and the result takes a

simpler form:

Leading slow roll correction induced by a general scalar field to the inflationary 3pt function

〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(ν3)
~k3
〉′infl. = N3Ã(d)

i
2
, i
2
,ν3;ν,0|0(~k1,~k2,~k3)

= iεN3

√
π

2k1k2

(
k3

2

)− d
2

+iν3+1

(2p12)−
d
2

+iν+1

×
Γ(iν)Γ

(
d
2 − iν − 1

)
cos
(
π
4 (d− 2iν)

)
csch

(
π
2 (ν + ν3)

)
(ν − ν3)(ν + ν3)

× 2F1

(
d−2iν−2

4 , d−2iν
4

1− iν
;

1

p2
12

)
+ (ν → −ν) + local . (5.23)

By acting with the raising operators (4.57) as in (5.22), from the above expression we can

obtain the corresponding result for when the two scalars have ν1,2 = 3i
2 :

Inflationary 3pt function of a general scalar and two scalars with ν1,2 = 3i
2

〈φ(3i/2)
~k1

φ
(3i/2)
~k2

φ
(ν3)
~k3
〉′infl. = N3

4

k1k2
∂k1∂k2Ã

(d−4)
i
2
, i
2
,ν3;ν,0|0(~k1, ~k2,~k3)

= iεN3

√
π

2

(
k3

2

)− d
2

+iν3+3 Γ(iν)Γ
(
d
2 − iν − 3

)
cos
(
π
4 (d− 4− 2iν)

)
csch

(
π
2 (ν + ν3)

)
(ν − ν3)(ν + ν3)

×
[
k1k2(d− 2iν − 6)(d− 2iν − 4) + 2k3p

2
12(d− 2iν − 6) + 4k2

3p
2
12

k3
1k

3
2k

2
3

× (2p12)iν−
d
2

+1
2F1

(
d−6−2iν+2

4 , d−4−2iν
4

1− iν
;

1

p2
12

)

+
(d− 2iν − 6)(d− 2iν − 4)(k1k2(d− 2iν − 3) + k2

3p
2
12)

k3
1k

3
2k

2
3(1− iν)

× (2p12)iν−
d
2
−1

2F1

(
d−2−2iν

4 , d−2iν
4

2− iν
;

1

p2
12

)

+
(d− 2iν − 6)(d− 2iν − 4)(d− 2iν − 2)(d− 2iν)

k2
1k

2
2k

2
3(1− iν)(2− iν)

× (2p12)iν−
d
2
−3

2F1

(
d+2−2iν

4 , d+4−2iν
4

3− iν
;

1

p2
12

)]
+ (ν → −ν) + local.

When d = 3, the two scalars with ν1,2 = 3i
2 are massless.

6 Conclusions and outlook

In this work we have presented a new systematic approach to de Sitter and Inflationary

correlators based on the Mellin-Barnes representation in momentum space. The machinery
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of Mellin space gives a firm grasp on the analytic structure of momentum space correlators,

through which we have identified key general features of tree-level exchange four-point

functions, that are common to both de Sitter and anti-de Sitter space, which appear to be

universal consequences of conformal symmetry and the boundary conditions.

This framework has allowed us to obtain, in a straightforward manner, analytic ex-

pressions for late-time exchange four-point functions with generic external scalars and a

generic exchanged spin-` field, moreover for general boundary dimension d. As an interme-

diate step we also obtained analytic expressions for late-time three-point functions of two

general scalars and a general spin-` field. From these results, assuming the weak breaking

of the de Sitter isometries, we extracted the corresponding correction to the inflationary

three-point function of general external scalars induced by a general spin-` field at leading

order in slow roll. In the squeezed limit this exhibits the power-law/oscillatory behaviour

expected from the presence of new particles [24, 25, 27, 29, 44, 45], with the angular de-

pendence associated to the exchange of a spin-` field encoded in a Gegenbauer polynomial

for general d.

We conclude by highlighting a few interesting future directions which naturally follow:

• The universal form (4.37) of the exchange four-point function admits a natural ex-

tension to the case of spinning external fields, directly in terms of the corresponding

Conformal Partial Waves for spinning external legs [40]. These details will be pre-

sented in [95].

• The central role of the Mellin formalism in uncovering analytic properties of late-

time correlators at tree-level motivates the exploration of quantum corrections within

this framework. It would be desirable to obtain a better understanding of quantum

corrections at both the perturbative and non-perturbative level, which a bootstrap

approach to de Sitter correlators may facilitate.

• Having considered four-point correlators both in AdS and dS, it would be interesting

to explore the more challenging case of flat space holography in this framework. In

this context various new ideas have been set forth recently [130–134] and it would be

interesting to further understand the possible relation between the results obtained

in this paper and the corresponding flat space analysis which lies in between. The

differences between dS and AdS cases with a time-like and a space-like boundary

respectively, compared to the light-like nature of null-infinity in flat space, make

clear that key differences are expected and that these dualities cannot be smoothly

connected to each other. On the other hand our analysis clarifies quantitatively how

some specific signatures of conformal symmetry are in fact universal. It would be

interesting to clarify if these universal features do play a role for flat-space holography.

• Another advantage of the Mellin formalism presented in this work is that higher-point

correlators may be easily constructed by multiplying together three-point structures

in a way that generalises the construction of exchange four-point functions. What

remains is to determine the corresponding interference factor δ, which may be fixed

by demanding the correct singularity structure.
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• Utility of the Mellin-Barnes representation extends beyond the context of boundary

correlation functions in (anti-)de Sitter space, and may more generally be used to

study conformal structures in momentum space. It would be especially interesting to

explore possible applications of this framework to the Conformal Bootstrap,57 partic-

ularly its incarnation due to Polyakov [85], who in the 70s proposed expanding CFT

four-point functions in a crossing-symmetric basis of building blocks in momentum

space and using consistency with the Operator Product Expansion as a constraint on

the CFT data. At the time this approach was little explored due to the technical com-

plications in implementing conformal symmetry in momentum space, but recently it

has experienced a revival due to the observation that these building blocks are es-

sentially boundary exchange diagrams (i.e. exchange Witten diagrams) in anti-de

Sitter space [136]. The success of this revival came from combining this observation

with the Mellin representation of Witten diagrams in position space [12], which has

led to important advances in analytic approaches to the Conformal Bootstrap (see

e.g. [60, 121, 137–141]). Given the pivotal role of the Mellin space machinery in this

progress, it would be very interesting to understand whether the tools presented in

this work could help overcome the difficulties of implementing the Polyakov Bootstrap

in momentum space, potentially offering new perspectives on the analytic bootstrap.

We leave these questions for the near future.
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A Wick rotation

In this appendix we briefly review the Wick rotation from Euclidean to Lorentzian signa-

ture. For definiteness, we will focus on the leading short distance singularity of the 2pt

function, which reproduces the flat space singularity and in Euclidean signature reads:

〈φ(τ1, ~x1)φ(τ2, ~x2)〉 =
cd

[(τ1 − τ2)2 + |~x1 − ~x2|2]
d−1

2

+ . . . , (A.1)

57For a recent comprehensive review see [135].
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where the . . . give less singular contributions. The Wick rotation to Lorentzian signature

is defined by specifying the corresponding domain of analyticity. In the case of Wightman

functions, positivity of the energy implies the following iε prescription:58〈
φ(t1 −

iε

2
, ~x1)φ(t2 +

iε

2
, ~x2)

〉
=

cd

[−(t1 − t2 − iε)2 + |~x1 − ~x2|2]
d−1

2

+ . . . , (A.2a)〈
φ(t2 −

iε

2
, ~x2)φ(t1 +

iε

2
, ~x1)

〉
=

cd

[−(t1 − t2 + iε)2 + |~x1 − ~x2|2]
d−1

2

+ . . . , (A.2b)

One can therefore see that the Wightman correlator has an ε-prescription which depends

on time-ordering:

〈φ(t1, ~x1)φ(t2, ~x2)〉 =
cd

[−(t1 − t2)2 + |~x1 − ~x2|2 + i sig(t1 − t2)ε]
d−1

2

+ . . . . (A.3)

The above analytic continuations for time-like separation x2
12 < 0 can be summarised as

φ(t1)φ(t2) : x2
12 → |x12|2 e+iπ sig(t1−t2), (A.4a)

φ(t2)φ(t1) : x2
12 → |x12|2 e−iπ sig(t1−t2), (A.4b)

one for each operator ordering.

From the above it is manifest that the non-singularity of the Harmonic function in

EAdS is equivalent to the Hadamard condition for the corresponding analytic continuation.

Indeed, following the above prescription, the dS short distance singularity reads:

Ων(X1, X2) ∼ −1

2

1

Γ(iν)Γ(−iν)

Γ(d−1
2 )

(2π)(d+1)/2

(
1−X1 ·X2

2

) 1−d
2

+ . . . (A.5)

= −1

2

1

Γ(iν)Γ(−iν)

Γ(d−1
2 )

(2π)(d+1)/2

(
−(η1 − η2)2 + |~x1 − ~x2|2 ± i sgn(η1 − η2) ε

2

) 1−d
2

+ . . . ,

thus recovering the dS Wightman functions directly from the EAdS Harmonic function up

to an overall coefficient.

B Convergence of Mellin-Barnes integrals

In this appendix we review the convergence of the Mellin-Barnes integrals of the type:

I =

∫ i∞

−i∞

ds

2πi
g(s)z−s, (B.1)

58More generally a Wightman correlator defines an analytic functions:

〈φ(t1, ~x1) · · ·φ(tn, ~xn)〉 = lim
εi→0
〈φ(t1 − iε1, ~x1) · · ·φ(t2 − iεn, ~x2)〉 ,

in the domain ε1 > ε2 > . . . > εn which corresponds to the Euclidean ordering of the operators. This

analyticity region in terms of the complex coordinates zj = xj − iηj can be extended to the “tube”

ηj − ηj+1 ∈ V+ where V+ is the forward cone. Analyticity can be proven starting from the Laplace

transform of the correlator and using positivity of the energy to show that the integral representation for

the position space correlator is exponentially suppressed in the tube above (see e.g. Theorem 2-8 and 3-5

of [142]).
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where the function g(s) is assumed to have the form

g(s) =
Γ(a1 +A1s) . . .Γ(an +Ans)Γ(b1 −B1s) . . .Γ(bm −Bms)
Γ(c1 + C1s) . . .Γ(cp + Cps)Γ(d1 −D1s) . . .Γ(dq −Dqs)

zs, (B.2)

where Aj , Bj , Cj , Dj > 0.59 The integration contour runs parallel to the imaginary

axis with suitable indentations to separate the poles from Gamma functions of the type

Γ(aj +Ajs) from those of the type Γ(bj −Bjs). In this work all Mellin-Barnes integrals

considered are of this type, usually with Aj = Bj = Cj = Dj = 1. In the following we

mostly follow the treatment of section 2.4 in [112].

In order to study the convergence of integrals of the above type, one has to determine

the behaviour of the integrand as |s| → ∞. There are two useful parametrisations for this

limit. One is

s = σ + it , t→ ±∞ , (B.3)

and the other

s = Reiθ R→∞ . (B.4)

The first parameterisation (B.3) can probe the convergence of the integral with contour

as prescribed along the imaginary axis, while the second parameterisation (B.4) can also

probe the convergence for completions of the contour by an arc of infinite radius.

Using Stirling’s approximation

log Γ(z) ∼
(
z − 1

2

)
log z − z +

1

2
log(2π) , | arg z| < π, (B.5)

and the standard identity:

Γ(1− z) =
π

sin(πz)

1

Γ(z)
, (B.6)

for each Gamma function factor in the integrand (B.2), for (B.4) one has

log |Γ(α+ βReiθ)| ∼ βR cos(θ) log(βR) (B.7a)

−Rβ
[
θ sin(θ) + cos(θ)

]
+ logR

(
Re(α)− 1

2

)
+O(1) ,

log |Γ(α− βReiθ)| ∼ −βR cos(θ) log(βR) (B.7b)

+ βR
[
θ sin(θ) + cos(θ)− π|sin(θ)|

]
+ logR

(
Re(α)− 1

2

)
+O(1) ,

where we have assumed β > 0 and |θ| < π, while for (B.3) we have

log |Γ(α+ β σ + i βt)| ∼ log(β|t|)
[
Re(α) + β σ − 1

2

]
− πβ|t|

2
+O(1) , (B.8a)

log |Γ(α− βσ − i βt)| ∼ log(β|t|)
[
Re(α)− β σ − 1

2

]
− πβ|t|

2
+O(1) . (B.8b)

59In the case of multiple Mellin-Barnes integrals, the parameters aj , bj , cj , dj may depend on the other

Mellin variables.
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Combined with

log |zα+βReiθ | ∼ Re
[
βR(cos θ + i sin θ)(log(|z|) + i arg(z))

]
+O(1) , (B.9)

using the above formulas we can estimate

log |g(s)z−s| = Re[log g(s)z−s] (B.10)

by combining the behaviour of each Gamma function in the integrand (B.2).

For the parametrisation (B.3), or equivalently (B.4) for θ = ±πi
2 , exponential decay of

the integrand ensures that it converges. Unless stated explicitly otherwise, this is the case

for all Mellin-Barnes integrals evaluated in the main text.

When the integrand decays exponentially for the parametrisation (B.4), the integration

contour can be closed and Cauchy’s residue theorem can then be applied to evaluate the

integral. For all Mellin-Barnes integrals considered in this work, it is possible to close the

Mellin integration contour.

C Various integrals

In this appendix we give further details on some of the more involved integrals appearing

in the main text.

C.1 Fourier transform of spinning two-point conformal structures

Here we detail how to derive the expression in (2.70) for the Fourier transform of the

spinning two-point conformal structure (2.69). This entails evaluating the integral

I(~k1, ~k2; ~ξ1, ~ξ2 ) =

∫
dd~x1d

d~x2
e−i

~k1·~x1−i~k2·~x2

(~x2
12)∆

(
~ξ1 · ~ξ2 +

2~ξ1 · ~x12
~ξ2 · ~x12

~x2
12

)`
, (C.1)

where ~y12 = ~y1 − ~y2. Translation invariance allows to perform one of the two integrals for

free, replacing it with a momentum-conserving delta-function:

I(~k1, ~k2; ~ξ1, ~ξ2) = (2π)dδ(d)(~k1 + ~k2) I ′(~k1; ~ξ1, ~ξ2) , (C.2a)

I ′(~k; ~ξ1, ~ξ2) =

∫
dd~x12

e−i
~k·~x12

(~x2
12)∆

(
~ξ1 · ~ξ2 +

2~ξ1 · ~x12
~ξ2 · ~x12

~x2
12

)`
. (C.2b)

Using that

(2~ξ1 · ~x ~ξ2 · ~x )ne−i
~k·~x = (−2~ξ1 · ~∂k ~ξ2 · ~∂k)ne−i

~k·~x, (C.3)

this can be evaluated by expressing it in terms of the basic integral

∫
dd~x

e−i
~k·~x

(~x2)∆+n
= πd/2

(
k2

4

)∆+n− d
2 Γ
(
d
2 −∆− n

)
Γ(∆ + n)

. (C.4)
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To wit,

I ′(~k;~ξ1, ~ξ2) =
∑̀
n=0

(
`

n

)
(~ξ1 ·~ξ2)`−n(−2~ξ1 ·~∂k ~ξ2 ·~∂k)n

∫
dd~x

e−i
~k·~x

(~x2)∆+n
(C.5)

=π
d
2

∑̀
n=0

(
`

n

)
(∆−1)nΓ

(
d
2 +`−n−∆

)
Γ(`+∆)

(
k

2

)2∆−d
(~ξ1 ·~ξ2)n

(
−2~ξ1 ·~k~ξ2 ·~k

k2

)`−n
.

Carrying out the sum over n gives the Gauss Hypergeometric function in (2.70).

C.2 Fourier transform of three-point conformal structures

Here we give further details on the Fourier transform of three-point conformal structures,

expressing the result as a Mellin-Barnes integral. Conformal structures in Fourier space

have been widely studied in the literature, see e.g. [23, 29, 34, 85, 100, 101, 106, 108, 109,

143–149]. In the following we will emphasise some simple properties of the Mellin-Barnes

representation, which appear to have been little explored (to the best of our knowledge).

Basic integral one considers is of the form:

Iα1,α2,α3(~k1, ~k2, ~k3) =

∫
ddx1d

dx2d
dx3

e−i
~k1·~x1−i~k2·~x2−i~k3·~x3

(x2
12)α3(x2

23)α1(x2
31)α2

, (C.6)

which for

α1 =
∆2 + ∆3 −∆1

2
, α2 =

∆1 + ∆3 −∆2

2
, α3 =

∆1 + ∆2 −∆3

2
, (C.7)

is precisely the Fourier transform of the three-point conformal structure (3.1b) for scalar

fields. Spinning three-point conformal structures such as (3.11) can be decomposed in

terms of a finite sum of the integrals of the type (C.6), as we shall see below.

Any one of the three integrals in (C.6) can be replaced by a momentum conserving

delta function. For instance, introducing ~v1 = ~x13 and ~v2 = ~x23 where ~x12 = ~v12, we have60

Iα1,α2,α3(~k1,~k2, ~k3) = (2π)dδ(d)
(
~k1 + ~k2 + ~k3

)
I ′α1,α2,α3

(~k1,~k2,~k3), (C.8a)

I ′α1,α2,α3
(~k1,~k2,~k3) =

∫
ddv1d

dv2
e−i

~k1·~v1−i~k2·~v2(
v2

1

)α2
(
v2

2

)α1
(
v2

12

)α3
(C.8b)

The remaining integrals can be reduced to Gaussian integrals by employing Schwinger

parameterisation. In particular,

I ′α1,α2,α3
(~k1,~k2,~k3) =

1

Γ(α1)Γ(α2)Γ(α3)

∫ ∞
0

dt1dt2dt3
t1t2t3

tα1
1 tα2

2 tα3
3

×
∫
ddv1d

dv2e
−t2v2

1−t1v2
2−t3v2

12−i~k1·~v1−i~k2·~v2 , (C.9)

60With this change of variables the delta function arises from

(2π)dδ(d)
(
~k1 + ~k2 + ~k3

)
=

∫
ddx3 e

−i~x3·(~k1+~k2+~k3).
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which upon evaluating the Gaussian integrals becomes

I ′α1,α2,α3
(~k1,~k2,~k3) =

πd

Γ(α1)Γ(α2)Γ(α3)

∫ ∞
0

dt1dt2dt3
t1t2t3

tα1
1 tα2

2 tα3
3 T d/2−α1−α2−α3

× e−
t1k

2
1+t2k

2
2+t3k

2
3

4 (C.10)

where T = t1t2+t2t3+t3t1. To obtain the Mellin-Barnes representation of the integral (C.6)

we use the following representation of the exponential function

e−x =

∫ +i∞

−i∞

ds

2πi
Γ(s)x−s , (C.11)

which gives

I ′α1,α2,α3
(~k1, ~k2, ~k3) =

πd

Γ(α1)Γ(α2)Γ(α3)

∫ ∞
0

dt1dt2dt3
t1t2t3

tα1
1 tα2

2 tα3
3

×
∫

[ds]3Γ(s1)Γ(s2)Γ(s3)

(
t1k

2
1

4

)−s1( t2k2
2

4

)−s2( t3k2
3

4

)−s3
× 1

Γ
(
α1 + α2 + α3 − d

2

) ∫ ∞
0

dλ

λ
λα1+α2+α3− d2 e−λT , (C.12)

where we also used Schwinger parameterisation to exponentiate the dependence on T . The

integral in the ti can be performed after re-scaling ti → ti/
√
λ and making the change

of variables

t1 =

√
m2m3

m1
, t2 =

√
m1m3

m2
, t3 =

√
m1m2

m3
, (C.13)

where the resulting integrals in mi are of the form:

Γ(z) =

∫ ∞
0

dmi

mi
mz
i e
−mi . (C.14)

The resulting integral in λ is∫ ∞
0

dλ

λ
λ
α1+α2+α3+s1+s2+s3−d

2 = 2πi δ

(
α1 + α2 + α3 + s1 + s2 + s3 − d

2

)
(C.15)

which is the origin of the Dirac delta function in (3.2b). This gives the following Mellin-

Barnes representation for the integral (C.6):

I ′α1,α2,α3
(~k1,~k2,~k3) =

πd

Γ(α1)Γ(α2)Γ(α3)Γ
(
α1 +α2 +α3− d

2

) ∫ [ds]3 iπδ

(
d

4
−s1−s2−s3

)
×
∏
±

Γ

(
s1±

d−2α2−2α3

4

)
Γ

(
s2±

d−2α3−2α1

4

)
Γ

(
s3±

d−2α1−2α2

4

)

×
(
k1

2

)−2s1+α2+α3− d2
(
k2

2

)−2s2+α1+α3− d2
(
k3

2

)−2s3+α1+α2− d2
. (C.16)

For the parameters (C.7) this gives the Mellin-Barnes representation (3.2b) for scalar three-

point conformal correlators in momentum space. The expression (C.16) can also be used
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to derive the Mellin-Barnes representation (3.15) for the Fourier transform of the spinning

conformal structure (3.11). To this end we find it useful to expand the tensor structure

as follows

〈〈O∆1(~x1)O∆2(~x2)O∆3(~x3; ~ξ )〉〉 (C.17)

= I∆1,∆2,∆3−`(~x1,~x2,~x3)

[
~ξ ·~x3

(
1

x2
31

− 1

x2
23

)
+

(
~ξ ·~x2

x2
23

−
~ξ ·~x1

x2
31

)]`

=
∑̀
α=0

α∑
β=0

(−1)β
(
`

α

)(
α

β

)
(~ξ ·~x3)αI∆1+α−β,∆2+β,∆3−`+α(~x1,~x2,~x3)

(
~ξ ·~x2

x2
23

−
~ξ ·~x1

x2
31

)`−α
,

We can then Fourier transform of each term in the sum, where the tensor structure trans-

lates into a differential operator via

~ξ · xj → i~ξ · ∂kj , (C.18)

which acts on the result (C.16) for the Fourier transform of the three-point structures (C.6).

The above expansion and the Mellin-Barnes representation simplify the action of the dif-

ferential operator. Avoiding trivial details one finds (where the symbol F denotes the

Fourier transform):

(−1)βB(0, 0, `; 0; ∆1,∆2,∆3 − `)

× F

(~ξ · ~x3

)α
I∆1+α−β,∆2+β,∆3−`+α(~x1, ~x2, ~x3)

(
~ξ · ~x2

~x2
23

−
~ξ · ~x1

~x2
31

)`−α
=

∫
[ds]3 iπδ

(
d+ 2`

4
− s1 − s2 − s3

)
(−~ξ · k3)αHα,β(s1, s2, s3)

× Y(`)
α,β(~ξ · ~k1, ~ξ · ~k2) ρν1,ν2,ν3(s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj+iνj

, (C.19)

which yields the Mellin-Barnes representation (3.15) for the Fourier transform of the spin-

ning conformal structure (3.13).

C.3 The u-integral

To obtain the expression (4.13) for the exchange diagram we evaluated u-integrals ap-

pearing in the contributions (4.12a) and (4.12b). We give the details on how to do

this in the following, encompassing also the contributions (4.33) to the spin-` exchange

four-point functions.

It is useful to combine the contributions of the type (4.12a) and (4.12b) as it sim-

plifies the evaluation of the u-integral, as we shall see below. One way to do this is to

re-define u → −u in either contribution, so that they share the same ρ factor. This ma-

nipulation changes the ε-prescription of the contribution concerned. Maintaining the same

ε-prescription for both contributions requires to subtract the residue of the pole at u = −ε
in the contribution concerned, which generates a factorised contribution which can then
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be combined with (4.33a). There are two ways to carry out this manipulation, denoted

by ] and [, which correspond to the choice of re-defining u → −u in (4.12a) and (4.12b)

respectively. We have61

lim
η0→0

]A(x,x̄)
�|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(ki;k) (C.20a)

=

∫
[ds]4 sin

(
π

(
s3+s4+

i(ν1+ν2)

2

))
sin

(
π

(
s3+s4+

i(ν3+ν4)

2

))
×Hν1,ν2,ν|α1,β1

(s1,s2,u)Hν3,ν4,−ν|α2,β2
(s3,s4, ū)ρν1,ν2,ν(s1,s2,u)ρν3,ν4,−ν(s3,s4, ū)

×
(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= x̄
4−s3−s4

lim
η0→0

]A(x,x̄)
≷|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(ki;k) (C.20b)

=

∫ +i∞

−i∞

du

2πi

1

u+ε

∫
[ds]4 sin(π(s1+s2−s3−s4+2u))

×sin

(
π

(
s1+s2+s3+s4+

i(ν1+ν2+ν3+ν4)

2

))
×Hν1,ν2,ν|α1,β1

(s1,s2,w−u)Hν3,ν4,−ν|α2,β2
(s3,s4, w̄+u)

×ρν1,ν2,ν(s1,s2,w−u)ρν3,ν4,−ν(s3,s4, w̄+u)

(
k

2

)−2(w+w̄) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣w=x
4−s1−s2

w̄= x̄
4−s3−s4

,

where in (C.20a) we combined the residue of the pole at u = −ε in (4.12a) with the

contribution (4.11), with the remaining contribution to the exchange given by (C.20b). If

we instead send u→ −u in (4.12b) we have

lim
η0→0

[A(x,x̄)
�|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(ki;k) (C.21a)

=

∫
[ds]4 sin

(
π

(
s1+s2+

i(ν1+ν2)

2

))
sin

(
π

(
s1+s2+

i(ν3+ν4)

2

))
×Hν1,ν2,ν|α1,β1

(s1,s2,u)Hν3,ν4,−ν|α2,β2
(s3,s4, ū)ρν1,ν2,ν(s1,s2,u)ρν3,ν4,−ν(s3,s4, ū)

×
(
k

2

)−2(u+ū) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣u=x
4−s1−s2

ū= x̄
4−s3−s4

,

lim
η0→0

[A(x,x̄)
≷|ν1,ν2,ν3,ν4|α1,β1;α2,β2

(ki;k) (C.21b)

=

∫ +i∞

−i∞

du

2πi

1

u+ε

∫
[ds]4 sin(π(s3+s4−s1−s2+2u))

×sin

(
π

(
s1+s2+s3+s4+

i(ν1+ν2+ν3+ν4)

2

))
×Hν1,ν2,ν|α1,β1

(s1,s2,w+u)Hν3,ν4,−ν|α2,β2
(s3,s4, w̄−u)

×ρν1,ν2,ν(s1,s2,w+u)ρν3,ν4,−ν(s3,s4, w̄−u)

(
k

2

)−2(w+w̄) 4∏
j=1

(
kj
2

)−2sj+iνj ∣∣∣w=x
4−s1−s2

w̄= x̄
4−s3−s4

.

61For the scalar exchange four-point function, αi = βi = 0.
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Both (C.20) and (C.21) give equivalent expressions for the exchange. The ε-prescription is

such that closing the u-contour on the positive real axis is more natural — as it avoids the

residue at u ∼ 0.

The u-integrals appearing in (C.20b) and (C.21b) are of examples of the general type

R
(α,β)
A,B;t =

∫ i∞

−i∞

du

2πi

sin(π(t+ 2u))

u+ ε
Γ

(
A− u− iν

2

)
Γ

(
B + u+

iν

2

)
× Γ

(
A− α− u+

iν

2

)
Γ

(
B − β + u− iν

2

)
, (C.22)

where α = α1 or α2 and β = α2 or α1. To evaluate this integral we close the contour on

the positive real axis, which encloses the following two series of poles

u = A− iν

2
+ p, (C.23a)

u = A+
iν

2
− α+ p, (C.23b)

where p ∈ Z≥0. If we instead closed on the negative real axis we would in addition capture

the pole at u = −ε. Each series in (C.23) contributes a 3F2 Hypergeometric function,62

giving:

R
(α,β)
A,B;t =

Γ(α− iν)Γ(A+B − β − α)Γ(A+B − α+ iν)

A+ iν
2 − α

sin(2πA+ iπν − 2πα+ πt)

×3 F2

(
A+B − β − α,A− α+ iν

2 , A+B − α+ iν

A− α+ iν
2 + 1,−α+ iν + 1

; 1

)
(C.24)

+
Γ(A+B)Γ(iν − α)Γ(A+B − β − iν)

A− iν
2

sin(2πA− iπν + πt)

×3 F2

(
A+B,A− iν

2 , A+B − β − iν
A− iν

2 + 1, α− iν + 1
; 1

)
.

A priori with this expression we do not get much further than the original Mellin-Barnes

integral in the variable u, since Hypergeometric functions themselves are generically defined

by a Mellin-Barnes integral. Fortunately, there exist three-term relations for the function

3F2 (see e.g. sections 3.5–3.8 of [150]) which in particular allow us to relate the above

combination of two 3F2 s to a single 3F2 which can be re-summed as a simple ratio of

Gamma functions. The relevant identity is:

sin(πβ45)

Γ(α012)Γ(α013)Γ(α023)
Fp(0; 4, 5) +

sin(πβ50)

Γ(α124)Γ(α134)Γ(α234)
Fp(4; 0, 5)

+
sin(πβ04)

Γ(α125)Γ(α135)Γ(α235)
Fp(5) = 0, (C.25)

where, adopting the notation of section 3.5 in [150],

Fp(u; v, w) =
1

Γ(αxyz)Γ(βvu)Γ(βwu)
3F2

(
αvwx, αvwy, αvwz

βvu, βwu
; 1

)
, (C.26)

62I.e. the re-summation of the residues from each series is a 3F2 of argument z = 1.
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and u, v, w, x, y and z are unequal integers in the range 0, . . . , 5 and with

αlmn =
1

2
+ rl + rm + rn , βmn = 1 + rm − rn ,

5∑
i=0

ri = 0 , (C.27)

and the ri are six free parameters. Each of these identities is a linear combination of the

fundamental three term relation which can be obtained from the following Mellin-Barnes

integral: ∫ +i∞

−i∞

ds

2πi
sin(π(s− a1))

Γ(s)Γ(a1 − s)Γ(a2 − s)Γ(a3 − s)
Γ(b1 − s)Γ(b2 − s)

, (C.28)

where closing the contour on the left gives a single 3F2 while closing on the right gives a

sum of two 3F2. When the parameters ri are tuned so that:

Fp(0; 4, 5) = 3F2

(
A+B,A− iν

2 , A+B − β − iν
A− iν

2 + 1, 1 + α− iν
; 1

)
, (C.29)

we have

Fp(4; 0, 5) = 3F2

(
A+B,A− α+ iν

2 , A+B − α+ iν

A− α+ iν
2 + 1, 1− α+ iν

; 1

)
, (C.30)

and

Fp(5; 0, 4) =
1

Γ
(
1−A+ iν

2

)
Γ
(
1−A+ α− iν

2

)
Γ(2− 2A− 2B + β + α)

. (C.31)

The above three term relation becomes useful to evaluate (C.24) when t = B −A. In this

case the three term relation allows to sum the two Hypergeometric functions in (C.24) into

a simple ratio of Gamma-functions obtaining:

R
(α,β)
A,B ≡ R

(α,β)
A,B;B−A = (−1)α

π2 csc(π(A+B))Γ
(
A− iν

2

)
Γ
(
A− α+ iν

2

)
Γ
(
1−B − iν

2

)
Γ
(
1−B + β + iν

2

) . (C.32)

This result allows us to lift the u-integral in any exchange diagram appearing in this work,

where

A =
d+ 2`

4
− s1 − s2 , B =

d+ 2`

4
− s3 − s4 , (C.33)

with t = B −A = s3 + s4 − s1 − s2.

Since the expression for the exchange diagram is still given as a Mellin-Barnes integral

upon lifting the u-integral, extra care has to be taken with the contour prescription for

the poles encoded in the cosecant function. The standard prescription for the integration

contour of a Mellin-Barnes integral is that it should separate the Gamma function poles

which extend along the positive real axis from those which extend along the negative

real axis (see e.g. [112]). Naively, there thus appears to be an ambiguity in the contour

prescription when there is a cosecant function in the Mellin-integrand, since there are

infinitely many ways one can split it into a product of Gamma-functions:

π csc(π(A+B)) = Γ(1−A−B)Γ(A+B) (C.34a)

= (−1)qΓ(1−A−B − q)Γ(A+B + q) , ∀q ∈ N , (C.34b)
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where each possible splitting (labelled by q) requires a different contour. This freedom

has an interesting interpretation within exchange diagrams, where it corresponds to the

possibility of adding contact interactions/improvement contributions.63

For scalar exchange diagrams, for which α = 0 and β = 0, the correct splitting is

π csc(π(A+B)) = Γ(1−A−B)Γ(A+B) , (C.35)

which can be understood from the expression (C.24), where the first 3F2 is proportional

to Γ(A + B − β − α) and the second 3F2 to Γ(A + B), so to have a consistent contour

prescription for both terms we require the splitting (C.35).

For the exchange of spinning particles we need to consider α, β 6= 0 and in this case

the contour prescription for the two terms in (C.24) has to be chosen compatibly with both

terms in the sum (C.24). With this proviso, and up to simple contact terms, we can still

use (C.32) with the minimal prescription (C.35) for the integration contour regardless of α

and β, fixing a choice of contact terms/improvements in the exchange amplitude. In this

work we use the different prescriptions for the splitting of the cosecant function as an organ-

ising principle for the improvement terms that can be included in an exchange amplitude.

Before concluding this appendix we take the opportunity to give two equivalent rep-

resentations for the interference factor (4.14). The following representations arise directly

from the u integrals (C.20b) and (C.21b) for ]A and [A respectively:

δ
(x,x̄)
] (u, ū) = sin(π(u+ū))sin

(π
4

(x+2i(ν1+ν2)−4ū)
)

sin
(π

4
(x̄+2i(ν3+ν4)−4ū)

)
+sin

(
π

(
ū+

iν

2

))
sin

(
π

(
ū− iν

2

))
sin
(π

4
(x+x̄+2iν1+2iν2+2iν3+2iν4−4u−4ū)

)
,

(C.36a)

and

δ
(x,x̄)
[ (u, ū) = sin(π(u+ū))sin

(π
4

(x+2i(ν1+ν2)−4u)
)

sin
(π

4
(x̄+2i(ν3+ν4)−4u)

)
+sin

(
π

(
u+

iν

2

))
sin

(
π

(
u− iν

2

))
sin
(π

4
(x+x̄+2iν1+2iν2+2iν3+2iν4−4u−4ū)

)
.

(C.36b)

The first line of both expressions in (C.36) comes from the factorised contributions (C.20a)

and (C.21a), while the second line from the corresponding u-integral (C.32). The interfer-

ence factor we gave in (4.14) is then obtained by making the above manifestly symmetric

under the exchange of u and ū.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

63I.e. interactions which are trivial on-shell.
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