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1 Introduction

The Witten-Sakai-Sugimoto model [1, 2], which is based on the gauge/gravity duality [3]

and in particular on Witten’s non-supersymmetric model for low-energy Quantum Chro-

modynamics (QCD) [4], has been successfully applied to study spectra and properties of

mesons, baryons, and glueballs [1, 2, 5–7]. It has turned out that the model is not only

suited for the physics of single particles in the vacuum, but can also be employed to de-

scribe thermodynamic systems and study phase transitions. In its original form, the model

is dual to QCD at a large number of colors Nc (at least in a certain limit, which however is

inaccessible with current methods). This is borne out in its phase structure [8], which can

be mapped to large-Nc QCD predictions [9, 10]. In contradiction to real-world, Nc = 3,

QCD, the original version of the Witten-Sakai-Sugimoto model predicts chiral symmetry to

remain spontaneously broken for arbitrarily large baryon densities at small temperatures.

Approaching the realistic regime of small Nc in a rigorous way is very difficult, although

Nf/Nc corrections, where Nf is the number of flavors, have been discussed [11, 12]. A

promising alternative is the so-called decompactified limit. In this limit, chiral restora-

tion does take place at high densities, leading to a more realistic phase structure [13, 14].

The price to pay for this improvement is that gluons, while generating the curved geo-

metric background, are decoupled from the dynamics of chiral symmetry breaking. This
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is not unlike the field-theoretical Nambu-Jona-Lasinio (NJL) model [15, 16], where glu-

ons are completely absent and similar phase structures have been found [17]. Examples

for applications of the Witten-Sakai-Sugimoto model in that limit to phases of QCD are

the discovery of “inverse magnetic catalysis” in dense matter [18], and the possibility of

a quark-hadron continuity at large chemical potential [19]. These studies have all been

performed in the chiral limit, i.e., at vanishing current quark mass (a constituent quark

mass is induced through spontaneous chiral symmetry breaking). In this paper, our goal is

to go beyond the chiral limit and study the effect of an explicit chiral symmetry breaking

on the phase diagram of the model in the decompactified limit.

The Witten-Sakai-Sugimoto model is based on a setup of Nc D4-branes and Nf pairs

of D8- and D8-branes. These “flavor branes” represent left- and right-handed fermions

and, for Nc � Nf , can be treated as “probe branes”, i.e., they do not backreact on the

background geometry determined by the D4-branes. Including a current quark mass in

this setup is not straightforward because there are no transverse directions that provide a

massgap for excitations of strings that have endpoints at one color and one flavor brane.

Two approaches have been proposed to circumvent this problem, both relying on the physics

of open strings connecting the D8- and D8-branes. In the first approach a bi-fundamental

scalar field is introduced, which becomes tachyonic in the infrared and which is used to

account for the chiral condensate and the current quark mass [20–22]. We follow the second

approach, which is based on an open Wilson line between the left- and right-handed flavor

branes [23–28]. The expectation value of this operator is comparable — but due to its

nonlocal nature not identical — to the usual chiral condensate. While this expectation

value was calculated and discussed in previous works, it has, to the best of our knowledge,

not yet been implemented into a fully consistent calculation of the phase structure, which

includes its backreaction on the embedding of the flavor branes. Here we provide such

a calculation for nonzero temperatures and chemical potentials. We emphasize that this

treatment of the current quark mass is not a rigorous top-down approach. In analogy to

ordinary chiral perturbation theory we simply add a term to the action that has the form

quark mass times chiral condensate. We shall discuss the novelties in the phase structure

of the system together with the conceptual problems that arise in this approach, keeping

in mind that results for very large current quark masses have to be treated with care since

higher order mass terms are neglected from the beginning.

Our work is related to various previous studies. Most notably in the holographic

context, the phase structure of strongly interacting matter has been studied in the D3-D7

setup [29], where a current quark mass is straightforwardly included and the interpretation

of the chiral condensate is unambiguous [30–32]. Despite the differences in how to introduce

the quark mass we shall see that both from the holographic point of view as well as in the

resulting phase diagrams we find intriguing parallels with the D3-D7 system, which are

less striking in the massless limit. Another holographic approach used to address similar

questions is a bottom-up approach that works in the Veneziano limit, where the ratio

Nf/Nc is held fixed while sending the number of colors to infinity [33, 34]. For example,

we shall compute the speed of sound for nonzero temperatures and chemical potentials,

which also has been done in that approach [35]. Last but not least, we shall compare our
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results to recent calculations of QCD on the lattice, where a combined expansion for large

coupling and large quark masses is used to circumvent the sign problem and thus is able

to provide results for large baryon chemical potentials [10, 36].

Our paper is organized as follows. In section 2 we introduce the model and discuss

the mass correction to the action. The solutions to the equations of motion and to the

stationarity equations of the free energy density are derived in section 3 for three different

embeddings of the flavor branes. The numerical evaluation with all physical results is

presented and discussed in section 4. Or main result is given in section 4.3 in the form of

phase diagrams for different values of the current quark mass. In section 5 we summarize

and give an outlook.

2 Setup

2.1 Brief introduction to the model and Dirac-Born-Infeld action

We start with a very brief description of the model, to establish the notation and the action

to which we add the quark mass correction. More detailed accounts of the Witten-Sakai-

Sugimoto model can be found in the original works [1, 2] and in the review [37]. The

model is based on a type-IIA string theory background generated by a large number Nc

of D4-branes extended over the directions (x0, ~x, x4), where (x0, ~x) are the 4d space-time

directions. As proposed by Witten [4], the x4 direction is compactified on a Kaluza-Klein

(KK) circle of radius M−1
KK with boundary conditions for the fermions that lead to the

breaking of supersymmetry. As we are interested in thermal properties of the system, also

the imaginary time direction τ = ix0 is compactified, with radius (2πT )−1, where T is the

temperature. Thus, while the x4 radius is a fixed dimensionful parameter of the model, the

τ radius becomes smaller with increasing temperature. The AdS/CFT duality connects the

low-energy description of this system with a non-supersymmetric and non-conformal Yang-

Mills field theory. The parameters of the string theory are related to the field-theoretical

ones via
R3

`3s
= πgsNc , λ =

2MKKR
3

`2s
, (2.1)

where R is the curvature radius of the bulk geometry, `s is the string length, gs is the string

coupling, and λ is the ’t Hooft coupling. A supergravity description is accurate for small

curvature, i.e., for large values of λ.

At low temperatures, the topology of the manifold spanned by x4 and the radial

(”holographic”) coordinate u is that of a cigar, while the manifold spanned by τ and

u is cylinder-shaped. Above the critical temperature Tc = MKK/(2π) the energetically

favored background geometry changes and τ and x4 exchange their roles: a black hole

appears. This Hawking-Page-type transition on the gravity side is usually identified with

the deconfinement transition of the gauge theory that lives at the holographic boundary

u = ∞ (see however [38]), and we shall refer to the background where the τ -u-manifold

is cigar-shaped as the “deconfined geometry”. (Strictly speaking, for temperatures larger

than the Kaluza-Klein scale, unwanted modes become dynamical and the effective four-

dimensional description breaks down.) In the deconfined geometry, the topology of the
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Figure 1. Schematic view of the different embeddings of the flavor branes in the background

geometry, here represented by the subspace spanned by x4 and u. The asymptotic distance of the

flavor branes is given by the dimensionless parameter ` (such that the x4 radius is 1 and ` = π

corresponds to an antipodal embedding). In the mesonic and LTQ phases the flavor branes connect

above the horizon uT at a point that we denote by uc and which has to be determined dynamically.

The mesonic phase has a smooth embedding and vanishing baryon number. In the LTQ phase,

which has nonzero baryon number, there is a cusp at which strings are attached, here represented

by a straight line. In the HTQ phase, which also has nonzero baryon number, the flavor branes

extend all the way to the horizon. The dashed lines indicate the massless limit mq = 0 in which

there is no stable string configuration and in which the stable phase with nonzero baryon number

has straight, disconnected flavor branes.

manifold spanned by x4 and u is a cylinder, as illustrated in figure 1. This figure also

includes the flavor branes (to be discussed momentarily) and their three different stable

embeddings in the presence of a quark mass (to be discussed in section 3). We will always

work in the deconfined background, whose metric is

ds2 = u3/2
[
fT (u)dτ2 + d~x2 + dx2

4

]
+

1

u3/2

[
du2

fT (u)
+ u2dΩ2

4

]
, (2.2)

where dΩ2
4 is the metric of a unit 4-sphere, and the blackening function fT is

fT (u) = 1−
u3
T

u3
, (2.3)

where uT is the position of the horizon in the black hole geometry, related to the dimen-

sionless temperature t via

t =
3

4π

√
uT . (2.4)

Here and throughout the paper we work with the same dimensionless quantities used before

in a series of works [14, 19, 39]. The relation to their dimensionful counterparts involves

powers of MKK and the curvature radius R as well as some numerical constants, see for

instance table I in ref. [14]. Here we restrict ourselves to giving the definitions only of the
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temperature quark chemical quark number constituent f2πm
2
π

potential density quark mass

MKKt λ0MKKµ
NfNcM

3
KKλ

2
0

6π2
n λ0MKKMq

NcM
4
KKe

λ0
` π tan π

16

3π2
α

Table 1. How to obtain the physical, dimensionful quantities from their dimensionless counterparts

t, µ, n, Mq, α that are used in the calculation. In all plots in section 4 we use an additional rescaling

with the asymptotic separation of the flavor branes, t̃ = t`, µ̃ = µ`2, ñ = n`5, Ω̃ = Ω`7, M̃q = Mq`
2,

α̃ = α`4, λ̃ = λ/`.

most important quantities, which are needed to translate our results into physical units.

This is done in table 1, where we have introduced the useful abbreviation

λ0 ≡
λ

4π
. (2.5)

As usual for holographic models, fundamental matter is introduced by adding probe

D-branes. Sakai and Sugimoto included Nf D8-D8 pairs located at the antipodes of the

x4 circle. The U(Nf )L ×U(Nf )R gauge symmetry on the flavor branes gives rise to chiral

symmetry in the field theory. A quark chemical potential is included as the boundary value

of the temporal component of the abelian gauge field,

â0(u =∞) = µ , (2.6)

such that the baryon chemical potential is Ncµ (we include a hat in the notation of the

abelian gauge field for notational consistency with previous works). Below the critical

temperature for deconfinement, the topology of the background forces the D8-D8 pair to

join in the bulk, forming a ∪-shaped configuration. This provides a geometric realization

of the spontaneous breaking of chiral symmetry to the diagonal U(Nf ). We shall refer

to this phase as “mesonic” since the baryon density is zero. Baryons can be added in

the form of instantons in the ∪-shaped configuration, but here we shall not include this

possibility. Above the critical temperature, the probe branes are straight and end at the

horizon. Since they are disconnected, gauge transformations on D8- and D8-branes are

independent and chiral symmetry remains intact. This phase does have a nonzero baryon

density, generated by deconfined quarks. Chiral restoration and deconfinement occur at the

same µ-independent critical temperature in the case of an antipodal separation of the flavor

branes. However, this separation L can be considered as a second geometric parameter of

the model, with L = π/MKK corresponding to antipodal separation. We shall work with

the dimensionless version ` = LMKK, i.e.,

x4(u =∞) =
`

2
, (2.7)

where x4(u) describes the shape of (half of) the embedding of the probe branes. Therefore,

the parameters of our model are λ, MKK and `. Our main results are of qualitative nature,

and thus we do not have to choose specific values for these parameters. Only towards

the end of section 4.3 we shall briefly discuss some quantitative results using a specific

parameter set.

– 5 –



J
H
E
P
0
2
(
2
0
2
0
)
0
9
6

Non-antipodal asymptotic separations, ` < π, generalize the model [40] and lead to

interesting new results. In particular, for sufficiently small `, namely ` < 0.30768π, the

physics of chiral symmetry breaking and confinement get disentangled because the ∪-

shaped embedding now becomes a solution also in the deconfined geometry, and a free

energy comparison between the different embeddings (straight and connected) shows that

the chiral phase transition depends on the chemical potential, as expected in real-world

Nc = 3 QCD. We work in the limit ` � π, where the analysis of chiral symmetry break-

ing is effectively decoupled from confinement effects, and the model can be viewed as a

holographic version of an NJL-like model [17, 41, 42]. In particular, we shall work with

the deconfined geometry (2.2) for all temperatures, having in mind that by decreasing L

at given MKK or increasing the x4 radius M−1
KK at given L (”decompactification”) we can

tune the confinement scale to arbitrarily small values compared to the scale for chiral sym-

metry breaking. Of course, by taking this limit we lose some of the top-down control of

the original model since now Kaluza-Klein modes become potentially relevant. The gain,

however, is a much richer phase structure which has proven to yield interesting physics that

are, at the very least, comparable to well-established field-theoretical models [17]. It has

also been shown that the parameters of the model in the decompactified limit can be fitted

to reproduce properties of nuclear matter at saturation density [19], making it a viable

candidate for the study of dense matter in neutron stars.

In the chiral limit, the different probe brane embeddings and their free energies are

obtained from the (Euclidean) Dirac-Born-Infeld (DBI) action

SDBI = NNf
V

T

∫ ∞
uc

duu5/2
√

1 + u3fTx′24 − â′20 , (2.8)

which is derived from the induced metric on the D8-branes and the dilaton field. Here,

primes denote derivatives with respect to u, and we have abbreviated

N ≡ 2TD8VS4

gs
R5 (MKKR)7 =

Nc

6π2

R2(MKKR)7

(2πα′)3
=
NcM

4
KKλ

3
0

6π2
, (2.9)

where α′ = `2s, TD8 = (2π)−8`−9
s is the D8-brane tension and VS4 = 8π2/3 is the volume of

the unit four-sphere, while the factor 2 in the first expression accounts for the two halves

of the brane worldvolume. If the flavor branes reach the horizon, the lower boundary of

the integral in eq. (2.8) has to be replaced by uT . We have used translation symmetry in

the flat spacetime directions to extract the overall factors of the 3-volume V and inverse

temperature. Due to the flavor symmetry, the number of flavors simply appears as a

prefactor in front of the action. The grand-canonical potential is given by

T

V
S|on−shell = NNfΩ , (2.10)

which defines the dimensionless free energy density Ω as a function of the dimensionless

thermodynamic variables µ and t. The resulting phase diagram in the µ-t-plane shows a

first-order chiral phase transition [13], separating the chirally broken, ∪-shaped mesonic

phase from the chirally restored phase with straight and disconnected branes. We shall

discuss how this result is altered by a nonzero current quark mass, which we introduce now.
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2.2 Quark mass correction

We first recall that, while fundamental quarks are represented by strings stretched between

the D4- and the D8-branes, mesons can be described by strings with both endpoints on the

D8-branes, and they manifest themselves as scalar and vector fluctuations in the worldvol-

ume theory. When the D8-D8 pairs join in the interior, one finds massless scalar modes

in the spectrum. These modes are the Goldstone modes generated by the spontaneous

breaking of chiral symmetry. Their fluctuations can be studied in terms of the chiral field

U(x) = exp [iπ(x)/fπ] ∈ U(Nf ), where x stands for the spacetime coordinates and fπ is

the pion decay constant. For instance, for Nf = 2, π(x) accounts for the three massless

pion modes (and the η, which however acquires a mass through the axial anomaly). In the

holographic theory the chiral field corresponds to the holonomy

U(x) = P exp

[
i

∫ ∞
−∞

dz az(x, z)

]
, (2.11)

where u = (u3
c + uc z

2)1/3, such that the coordinate z parameterizes the entire connected

flavor branes, where az is the (dimensionless) radial component of the non-abelian gauge

field, and where P denotes path ordering.

In QCD, the pions are of course not massless because chiral symmetry is explicitly

broken. In the Witten-Sakai-Sugimoto model, explicit chiral symmetry breaking is not as

straightforward as in other holographic approaches such as the D3-D7 setup. In the latter,

one only needs to impose a fixed asymptotic separation between flavor and color branes

along one of the transversal directions. The radial dependence of this D3-D7 distance

is captured by one of the scalar fields of the worldvolume theory. As usual, once the

equations of motion are solved, the corresponding wavefunction allows one to identify

a non-normalizable and a normalizable mode, whose coefficients are proportional to the

current quark mass mq and to the expectation value of the quark bilinear, i.e., the chiral

condensate 〈q̄q〉, respectively. In the Witten-Sakai-Sugimoto model, however, there is no

transverse direction to separate the color from the flavor branes. Moreover, left- and right-

handed fermions are separated by the extra dimension x4, such that there is no obvious

local expression for the chiral condensate. Following ref. [23], we consider instead the

non-local, but gauge-invariant, operator given by the open Wilson line

Oij(x) = qi(x, x4 = −`/2)P exp

[
i

∫ `/2

−`/2
dx4 a4(x, x4)

]
qj(x, x4 = `/2) , (2.12)

where i, j = 1, . . . , Nf are flavor indices, and consider the following correction to the action,

Sm = −mq

2

∫
dτd3xTr[O +O†] , (2.13)

where the trace is taken over flavor space, and we have assumed all quark flavors to have

the same mass mq. This term has the same form as the lowest-order mass term in chiral

perturbation theory

S0
m =

∫
dτd3x

〈q̄q〉0
2

Tr[M(U + U †)] , (2.14)

– 7 –
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where M is the mass matrix, M = diag(mu,md) for Nf = 2, and U is the chiral field,

represented by eq. (2.11) in the holographic theory. The prefactor 〈q̄q〉0 is the chiral

condensate in the vacuum at vanishing quark mass. With mq = (mu +md)/2 it is related

to the pion decay constant fπ and the pion mass mπ in the vacuum via the Gell-Mann-

Oakes-Renner relation [43]

−mq〈q̄q〉0 =
f2
πm

2
π

2
. (2.15)

The mass term (2.14) is also used in the approach mentioned in the introduction based on

the tachyonic field and moreover was employed (independent of the approach for the chiral

condensate) in the study of glueball decay rates in the Witten-Sakai-Sugimoto model [44].

The connection between (2.13) and (2.14) is made as follows. At strong coupling, the

holographic dual of eq. (2.13) can be written in terms of the semi-classical expression for

the expectation value 〈O〉. As usual, the open Wilson line corresponds to the Euclidean

worldsheet of a fundamental string which ends at the boundary line, and its one-point

function is proportional to the exponential of the area of the associated minimal surface,

〈O〉 ∝ e−Sws . Including boundary terms, we write the worldsheet action as Sws = SNG+S∂ ,

where SNG is the Nambu-Goto action, and the boundary contribution S∂ = i
∫∞
−∞ dz az

gives rise to the chiral field (2.11) and thus encodes the meson fluctuations. A nontrivial az
also arises in the presence of baryons, which are instantons on the flavor branes. Therefore,

this setup can also be used to compute quark mass corrections to the baryon spectrum [27,

45, 46]. We identify the chiral condensate with the Nambu-Goto part, 〈O〉 = −〈q̄q〉U , where

〈q̄q〉 = −ce−SNG with a proportionality constant c (of mass dimension 3). The minus sign

is added for convenience such that c is positive. The chiral condensate in general contains

medium and mass corrections and is related to the vacuum chiral condensate at mq = 0 by

〈q̄q〉
〈q̄q〉0

=
e−SNG

e−S
0
NG

, (2.16)

where S0
NG is the Nambu-Goto action evaluated in the vacuum and at zero quark mass,

which has a simple analytical form, see eq. (3.17). We shall use eq. (2.16) later to com-

pute the normalized chiral condensate. Using eqs. (2.9), (2.15), and assuming the chiral

condensate to be uniform, we can write eq. (2.13) as

Sm = −N
2

α

λ3
0

e−SNG

∫
dτd3x Tr[U + U †] = −NfN

V

T

α

λ3
0

e−SNG , (2.17)

where, in the second step, we have neglected the mesonic fluctuations, i.e., U = 1, and

performed the (then trivial) trace over flavor space and the spacetime integral. We have

introduced the dimensionless prefactor α, which is only nonzero in the presence of a current

quark mass mq,

α =
cmq

Nc

6π2

M4
KK

=
3π2f2

πm
2
π

NcM4
KKe

−S0
NG

. (2.18)

In other words, if we write the chiral field U in eq. (2.17) in terms of the pion field π(x),

then the prefactor of the quadratic term in π(x) gives the square of the pion mass. The

resulting expression for m2
π is nothing but eq. (2.18). Despite the explicit appearance of Nc,

– 8 –
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the “mass parameter” α does not scale with Nc because 〈O〉 and thus c are proportional

to Nc [25]. Notice also that we do not use any explicit form of c. As a consequence, our

mass parameter cannot be mapped directly onto the current quark mass mq, but only to

the combination f2
πm

2
π ∝ Nc. We will study how the mass perturbation (2.17) affects the

embedding of the flavor branes for different values of the mass parameter (2.18), while

neglecting its effect on the background geometry, which is suppressed by a power of gs [23].

It remains to compute the Nambu-Goto action. We have

SNG = 2λ0

∫ ∞
uc

du

∫ x4(u)

0
dx4
√
g , (2.19)

where the factor 2 accounts for the two halves of the connected flavor branes, and the

prefactor λ0 arises from combining the prefactor (2πα′)−1 that appears in the Nambu-Goto

action with the factors from our use of dimensionless coordinates. With the metric (2.2)

and introducing an ultraviolet cutoff Λ, eq. (2.19) becomes

SNG = 2λ0

∫ Λ

uc

du
x4(u)√
fT (u)

= 2λ0

[
`

2
Λ− φT (uc)x4(uc)−

∫ Λ

uc

duφT (u)x′4(u)

]
, (2.20)

where we have integrated by parts, used the boundary condition (2.7), and introduced

φT (u) ≡
∫

du√
fT (u)

=
u√
fT (u)

{
1−

3u3
T

4u3f
1/6
T (u)

2F1

[
1

6
,

2

3
,

5

3
,−

u3
T

u3fT (u)

]}
, (2.21)

where 2F1 denotes the hypergeometric function. For the boundary term we have used

φT (u) ' u for u� uT . At zero temperature, φT (u) = u for all u. Later we will also need

φT (uT ) =
3
√
π

2

Γ[5/3]

Γ[1/6]
uT . (2.22)

In eq. (2.20) we have allowed for a nonzero x4(uc), which allows for the flavor branes to be

connected with a straight segment constant in u. We shall see that this becomes relevant

for the case where the flavor branes approach the horizon, see section 3.3. The action (2.20)

diverges for Λ→∞. We can simply renormalize it by subtracting the vacuum contribution,

i.e., by dropping the contribution proportional to Λ, which does not depend on temperature

or chemical potential. In ref. [28] a temperature-dependent renormalization was employed,

which amounts to subtracting the Nambu-Goto action for disconnected, straight branes,

where x′4 = 0 and uc has to be replaced by uT ,

S
||
NG = 2λ0

[
`

2
Λ− φT (uT )x4(uT )

]
. (2.23)

Since a theory should be renormalized in the vacuum, before switching on any medium ef-

fects, this seems incorrect from a theoretical point of view, as argued for instance in ref. [47]

in a similar context, see also footnote 6 in ref. [48]. The reason why one might be tempted

to subtract S
||
NG is that in this case the renormalized worldsheet action is proportional to

the area between the horizon and the holographic boundary that is complementary to the
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area enclosed by the flavor branes. It is then conceivable to interpret this area as an order

parameter for chiral symmetry breaking. However, even in this approach the order param-

eter is not proportional to the chiral condensate because the worldsheet action appears in

the exponent. (For that reason it was even suggested to interpret 〈O〉 − 1 as an order pa-

rameter [28], and also the possibility of using lnO was mentioned in a footnote in ref. [23].)

Here we follow the theoretically more straightforward way to subtract the vacuum contri-

bution in eq. (2.19), keeping in mind that the interpretation of the chiral condensate has

to be taken with care. This might not be too surprising since it is constructed from an

open Wilson line operator, which is not identical to a local quark-antiquark operator to

begin with. We shall come back to this point when we present the numerical results, see

section 4.1 and in particular figure 3.

To summarize, and to write the mass term in a convenient form for the following

calculation, we have arrived at

Sm = −NfN
V

T

A

2λ0
, (2.24)

where we have abbreviated1

A ≡ 2α

λ2
0

e−SNG , (2.25)

with (after renormalization)

e−SNG = exp

{
2λ0

[
φT (uc)x4(uc) +

∫ ∞
uc

duφT (u)x′4(u)

]}
, (2.26)

where the u-integral is finite and we have thus reinstated Λ → ∞. While A is constant

in the holographic coordinate u, it is a functional of x′4(u) and thus implicitly depends on

temperature and chemical potential (it also depends explicitly on temperature). We shall

see that via the equations of motion x′4(u) also depends on A itself, such that eq. (2.25)

is an implicit equation for A, which we have to solve numerically. The mass term (2.24)

introduces — in addition to the obvious dependence on the mass parameter α — also a

nontrivial dependence on the ’t Hooft coupling. In the absence of a quark mass, λ can

be formally eliminated by an appropriate rescaling of the variables. This is no longer true

in the massive case, and we thus have to discuss the phase structure of the model in the

two-dimensional parameter space spanned by λ and α.

3 Different probe brane configurations

In this section we discuss three different probe brane configurations, which appear as

classical solutions of the action

S = SDBI + Sm + Ssources . (3.1)

Here, in addition to the DBI action and the mass correction discussed above, we have

added a source contribution, first considered in ref. [8]. The sources are given by static

1Our choice of defining A without the factor 1/(2λ0), which we write explicitly in the action, is convenient,

but of course not crucial. It makes the equations of motion slightly more compact.
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fundamental strings stretching from the tip of the flavor branes all the way down to the

horizon (and distributed uniformly along the 3d flat directions), see figure 1 (middle).

The endpoints of these strings at u = uc act as charged sources for the gauge potential

â0(u), therefore their number density can be identified with the quark number density.2 In

our conventions, the number of strings Ns is related to the dimensionless baryon number

density n by

n =
6π2

λ2
0M

3
KKNf

Ns

V
, (3.2)

and we have

Ssources = N V

T
n [(uc − uT )− â0(uc)] . (3.3)

Here, the first term is the Nambu-Goto contribution (uc − uT simply being the string

length), while the second term is the boundary contribution.3 From eq. (3.3) we can read

off the energy of a single string, which corresponds to the constituent quark mass. We may

thus define the dimensionless version of the constituent quark mass, in accordance with

previous works [23, 26], as

Mq = uc − uT . (3.4)

Collecting the constants in eq. (3.3) then gives the dimensionful version, see table 1.

The equations of motion for the abelian gauge field and the embedding function,

δS

δâ0
=

δS

δx4
= 0 , (3.5)

become in integrated form

u5/2â′0(u)√
1 + u3fT (u)x′24 (u)− â′20 (u)

= n , (3.6a)

u5/2u3fT (u)x′4(u)√
1 + u3fT (u)x′24 (u)− â′20 (u)

= AφT (u) + k , (3.6b)

with A from eq. (2.25) and k being an integration constant. In the presence of string

sources, n appears directly due to (3.3); when they are absent, n arises as an integration

constant. We can solve eqs. (3.6) algebraically for x′4 and â′0,

â′0(u) =
n

u5/2
ζ(u) , (3.7a)

x′4(u) =
AφT (u) + k

u11/2fT (u)
ζ(u) , (3.7b)

where we have abbreviated

ζ(u) ≡
[
1− (AφT (u) + k)2

u8fT (u)
+
n2

u5

]−1/2

=
√

1 + u3fT (u)x′24 (u)− â′20 (u) . (3.8)

2This is analogous to the point-like baryon source, where an extra contribution to the action is obtained

from the Chern-Simons term [8].
3In ref. [8] the boundary term proportional to â0(uc) is not written explicitly. We have checked that

the Legendre transform performed in this reference leads to the same results. It is somewhat more direct

to include this term from the beginning.
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This yields the asymptotic expansions at the holographic boundary

â′0(u) =
n

u5/2
− n3

2u15/2
+

A2n

2u17/2
+ · · · , (3.9a)

x′4(u) =
A

u9/2
+

k

u11/2
+

3Au3
T

4u15/2
+ · · · . (3.9b)

Via the AdS/CFT dictionary we see that n is indeed the number density associated with

the chemical potential µ. Note that the quark mass changes the asymptotic behavior of

the embedding function x4(u) since in the presence of a quark mass A > 0. The boundary

conditions at u =∞ are given by eqs. (2.6) and (2.7). For the following it is useful to write

them in the form

µ =

∫ ∞
uc

du â′0(u) + â0(uc) , (3.10a)

`

2
=

∫ ∞
uc

dux′4(u) + x4(uc) . (3.10b)

Finally, the dimensionless free energy density, defined in eq. (2.10), is obtained by inserting

the solutions (3.7) back into the Euclidean action. This yields

Ω =

∫ ∞
uc

duu5/2ζ(u)− A

2λ0
+ n [uc − uT − â0(uc)] . (3.11)

The free energy depends on the thermodynamic variables µ and t, on the externally given

parameters `, λ0, α (the dependence on MKK is absorbed in the definition of the dimension-

less quantities), and on the variables k, n, uc, â0(uc), x4(uc), which have to be determined

dynamically, depending on the particular boundary conditions we choose at u = uc.

We shall now discuss separately the three phases schematically shown in figure 1.

3.1 ∪-shaped embedding: mesonic phase

First, we consider a ∪-shaped embedding, where the branes connect smoothly at u = uc,

i.e., we have x4(uc) = 0 and x′4(uc) =∞. Then, assuming a finite â′0(uc), eq. (3.6a) implies

n = 0, which, in turn, with eq. (3.7a), gives a constant abelian gauge field, â0(u) = µ. For

this solution, the string sources play no role, and so far there is no qualitative difference

to the massless case. We can rewrite the free energy (3.11) as

Ω∪ =

∫ ∞
uc

du
u5/2

ζ(u)
− A

2λ0
+A

∫ ∞
uc

duφT (u)x′4(u) +
`

2
k , (3.12)

where we have used eqs. (3.7b), (3.10b), and n = 0. This free energy does not depend

on µ, which is obvious on physical grounds since the baryon density is zero. The only

way to introduce baryon number in this phase is through actual baryons, which we ignore

throughout this paper. The form (3.12) is particularly useful for finding the stationary

points of Ω with respect to the remaining variables k and uc. We find that the stationarity

condition with respect to k is equivalent to the boundary condition (3.10b), while the

stationarity condition with respect to uc reads

0 =
∂Ω∪
∂uc

= −u5/2
c

√
1− (AφT (uc) + k)2

u8
cfT (uc)

. (3.13)
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Since the square root appears also in the denominator of x′4, see eq. (3.7b), stationarity

with respect to uc turns out to be equivalent to the smoothness condition for the embedding

at u = uc, i.e., x′4(uc) =∞. We use this condition to express k in terms of uc,

k = u4
c

√
fT (uc)−AφT (uc) . (3.14)

This reduces the evaluation of the mesonic phase to numerically solving

`

2
=

∫ ∞
uc

dux′4(u) , A =
2α

λ2
0

exp

(
2λ0

∫ ∞
uc

duφT (u)x′4(u)

)
, (3.15)

for A and uc and inserting the solution into the free energy (3.12).

Here and throughout the paper we do not expand our equations for small α. Such an

expansion would be consistent with our starting point, since our quark mass correction to

the action is linear in mq. However, we have checked that not much is gained from this

expansion, the resulting equations are even somewhat more tedious and do not facilitate the

numerical evaluation. Therefore, we formally keep all orders in the mass, but need to keep

in mind that results for very large quark masses can only be obtained as an extrapolation

of our approximation.

An analytical result can be obtained from eqs. (3.15) in the massless limit at zero

temperature. With A = 0, fT (u) = 1, and φT (u) = u we have with the new integration

variable u′ = u/uc (and dropping the prime again)

u
1/2
c `

2
=

∫ ∞
1

du

u3/2
√
u8 − 1

= 2
√
π

Γ[9/16]

Γ[1/16]
, (3.16a)

∫ ∞
uc

duφT (u)x′4(u) = u1/2
c

∫ ∞
1

du

u1/2
√
u8 − 1

=
π

2`
tan

π

16
, (3.16b)

where, in the second equation, we have used the result for uc from the first equation.

Consequently, in the vacuum and at zero quark mass we have

e−S
0
NG = exp

(
λ0

`
π tan

π

16

)
. (3.17)

This result is identical to that of the confined geometry with non-antipodal flavor branes,

see eq. (4.20) of ref. [25], where this result is expressed in terms of the five-dimensional

’t Hooft coupling λ5 = 2πλ/MKK, and where subleading corrections from the Fradkin-

Tseytlin contribution were computed additionally (including the factor Nc mentioned below

eq. (2.18)).

3.2 �-shaped embedding: low-temperature quark phase

Next we consider a �-shaped embedding in which the flavor branes connect in a cusp that

is caused by the string sources. This phase has nonzero baryon number, but since there are

no baryons in the system, baryon number must be created from quarks. Moreover, we shall
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see that this phase does not exist at large temperatures. Hence we refer to it as the low-

temperature quark (LTQ) phase, see figure 1 (middle). We use the general form of x′4 and

â′0 from eqs. (3.7), as well as eqs. (3.10) and x4(uc) = 0 to write the free energy (3.11) as

Ω� =

∫ ∞
uc

du
u5/2

ζ(u)
− A

2λ0
+A

∫ ∞
uc

duφT (u)x′4(u) + n(uc − uT − µ) +
`

2
k . (3.18)

Again, we need to consider the stationarity equations of the free energy, this time with

respect to k, uc, and n. Stationarity with respect to all three variables ensures thermo-

dynamic consistency: the derivative of Ω� = Ω�[k(µ, t), uc(µ, t), n(µ, t), µ, t] with respect

to µ at fixed t is identical to the explicit derivative if all derivatives with respect to k,

uc, n are zero. And, as eq. (3.18) shows, the explicit derivative is −n. Therefore, the

identification of n as the baryon density from the AdS/CFT dictionary is in accordance

with its thermodynamic definition, as it should be. We find that stationarity with respect

to k is equivalent to eq. (3.10b), as in the mesonic phase, and thus does not yield any new

information. The stationarity equations with respect to n and uc read

0 =
∂Ω�

∂n
= uc − uT − â0(uc) , (3.19a)

0 =
∂Ω�

∂uc
= n− u5/2

c

√
1− (AφT (uc) + k)2

u8
cfT (uc)

+
n2

u5
c

. (3.19b)

The first equation obviously implies

â0(uc) = uc − uT , (3.20)

which means that Ssource does not yield a contribution to the free energy (although it affects

the solution indirectly through the equations of motion). From the second relation (3.19b)

we derive a condition for k which takes exactly the same form as in the mesonic case,

see eq. (3.14). In particular, the baryon density n does not enter this relation. The only

condition for n from eq. (3.19b) is n > 0, meaning that we always deal with a net baryon,

not anti-baryon, density. Inserting the result for k into eq. (3.7b) yields

x′4(uc) =
uc

n
√
fT (uc)

, (3.21)

which confirms that there is a cusp at the tip of the connected flavor branes, x′4(uc) <∞,

created by the string sources.

Having eliminated k, we are left with solving

`

2
=

∫ ∞
uc

dux′4 , A =
2α

λ2
0

exp

(
2λ0

∫ ∞
uc

duφTx
′
4

)
,

∫ ∞
uc

du â′0 = µ− (uc − uT )

(3.22)

for A, uc, and n for given µ and t and inserting the results back into the free energy (3.18).

In the limit n → 0, the first two relations are identical to those of the mesonic phase

and, as eq. (3.21) shows, the brane embedding becomes smooth. This limit is assumed

at a certain value of µ which is given by the third relation: since at zero density we have
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â′0(u) = 0, the LTQ phase approaches the mesonic phase at the point µ = uc−uT , where uc
of course depends implicitly on µ. In other words, at this particular µ it becomes possible

to populate the system with quarks. This confirms the interpretation of uc − uT as the

constituent quark mass, as defined in eq. (3.4). The continuous geometrical connection

between the mesonic and LTQ phases suggests that a continuous phase transition between

them is possible. We shall see later that such a transition is realized for sufficiently large

quark masses.

The string solution discussed here was already considered in the massless case [8]. It

was argued that this phase is unstable due to a negative number susceptibility. Our results

agree with those of this reference, but we have found that even in the massless limit there

is a regime in which the LTQ phase has positive number susceptibility: if the number

density in figure 11 of ref. [8] is continued to lower values of µ one finds a stable branch.

Nevertheless, in the absence of a current quark mass, the LTQ phase is metastable at best,

i.e., even when it has positive number susceptibility it is energetically disfavored. This is

different in the presence of a quark mass, and we shall see that the LTQ phase plays a key

role in the phase structure of the model. In fact, we will see that this phase behaves very

similarly to a certain solution in the D3-D7 approach [29, 30, 49], where the flavor branes

connect to the horizon in a “long spike” that “resembles a bundle of strings” [29]. The

analogy exists not only in the bulk geometry, but will also become manifest by comparing

our phase diagrams with the corresponding ones in the D3-D7 model, see section 4.3. This

observation suggests that the string solution considered here might be an approximation

to a more complicated, but smooth, embedding of the D8-D8 pair, where the cusp and the

string sources are replaced by a spike-like shape of the flavor branes, see also refs. [50, 51].

We leave it to future studies to identify such a solution in the Witten-Sakai-Sugimoto model.

3.3 t-shaped embedding: high-temperature quark phase

Finally, we consider a configuration that can be understood as a deformation of the straight-

brane configuration in the chiral limit, see figure 1 (right). This phase also has nonzero

baryon number, which is created by quarks. We shall see that this solution exists only

for sufficiently large temperatures, and thus we refer to it as the high-temperature quark

(HTQ) phase.4 For mq = 0 the brane embedding at non-zero quark density is straight, i.e.,

in this case x′4(u) = 0 due to k = A = 0, see eq. (3.7b). Now, for mq > 0 and thus A > 0,

x′4(u) = 0 is not a solution anymore. We still find a solution, however, where the branes

extend all the way down to the horizon. Therefore, for the HTQ phase, we set uc = uT and

consider x4(uT ) as a variable that has to be determined dynamically (for straight branes,

x4(uT ) = `/2). Then, the (renormalized) Nambu-Goto action reads

SNG = −2λ0

[
φT (uT )x4(uT ) +

∫ ∞
uT

duφT (u)x′4(u)

]
, (3.23)

where now, as opposed to the previous cases, the lower boundary term is nonzero, with

φT (uT ) being proportional to uT , see eq. (2.22). As for the straight-brane solution we

4We thank Josef Leutgeb for pointing out the existence of this phase.
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require â0(uT ) = 0. Rewriting the free energy (3.11) with the help of eqs. (3.10) and

replacing the lower boundary of the radial integration by uT yields

Ωt =

∫ ∞
uT

du
u5/2

ζ(u)
− A

2λ0
+A

∫ ∞
uT

duφT (u)x′4(u)− nµ+ k

[
`

2
− x4(uT )

]
. (3.24)

Now the stationarity conditions with respect to n and k are equivalent to the boundary

conditions (3.10a) and (3.10b), respectively. Hence the only relevant stationarity equa-

tion is

0 =
∂Ωt

∂x4(uT )
= −k −AφT (uT ) , (3.25)

where the second term originates from the explicit dependence of A on x4(uT ). We con-

clude that

k = −AφT (uT ) . (3.26)

Near the horizon we find

x′4(u) ' 2A

3
√

3u4
T

√
1 + n2

u5T
− 4A2

9u6T

1√
u− uT

+O(
√
u− uT ) , (3.27)

i.e., the curved flavor branes are horizontal at the horizon, as indicated in figure 1. This is

in contrast to the massless case, where the straight branes approach the horizon vertically.

We are left with solving

A =
2α

λ2
0

exp

[
2λ0

(
`

2
φT (uT ) +

∫ ∞
uT

du [φT (u)− φT (uT )]x′4(u)

)]
,

∫ ∞
uc

du â′0(u) = µ

(3.28)

for A and n, while x4(uT ) can be computed from (3.10b) afterwards if needed. Of course,

only solutions with x4(uT ) > 0 make sense, otherwise the branes would cross each other.

We find that indeed for small temperatures one runs into solutions with x4(uT ) < 0, which

have to be discarded. As a result, there is a (µ-dependent) temperature below which

the HTQ phase does not exist. This is the temperature at which the t-shaped HTQ

configuration approaches the �-shaped LTQ solution. At this point x4(uT ) = 0, and it is

easy to see that all the conditions we have derived are nothing but the uc → uT limit of

those described in the previous subsection. We have thus shown that, on the one hand,

the LTQ solution connects continuously to the mesonic solution for n → 0 and, on the

other hand, the HTQ solution connects continuously to the LTQ solution for x4(uT )→ 0.

In other words, with the �-shaped string solution we can interpolate continuously between

the ∪- and t-shaped solutions. This geometric continuity suggests that continuous phase

transitions mesonic-LTQ and LTQ-HTQ are conceivable. Whether these transitions are

smooth in terms of higher derivatives of the free energy has to be checked numerically, and

we will discuss this point in the next section.

One might ask in which sense the HTQ solution breaks chiral symmetry explicitly.

After all, we have introduced a current quark mass, and thus neither the action nor any

of the stable states should be chirally symmetric. Geometrically, chiral symmetry in the

Witten-Sakai-Sugimoto model is intact (broken) if the flavor branes are disconnected (con-

nected). Now, just as the straight-brane solution in the chiral limit, one might think that
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the HTQ configuration consists of disconnected branes. However, it might be more accu-

rate to think of the branes in the HTQ phase to be connected by a straight segment at fixed

u = uT from x4 = −x4(uT ) to x4 = +x4(uT ) along which â0(uT ) = 0. This segment gives

no contribution to the on-shell action, as can be seen for instance by changing variables

to u(x4), and thus the above results are independent of this consideration. The fact that

x′4(uT ) = ∞ further suggests that the branes ”want” to connect, at least the connecting

piece can be inserted smoothly. Connectedness (although not smoothness) is therefore

reflected in our choice of the subscript t for the HTQ phase. Another argument for the

branes to be connected is the fact that for disconnected branes the expectation value of the

open Wilson line operator has been argued to vanish, 〈O〉 = 0 [25, 26]. Interpreted as an

exactly vanishing chiral condensate, this would suggest chiral symmetry to be exactly re-

stored, which, in the presence of a current quark mass, is only expected for asymptotically

large temperatures or chemical potentials.

4 Results

The remainder of the paper is devoted to the numerical evaluation of the phases just

discussed and to the resulting phase diagrams obtained for different values of the quark

mass parameter α and the ’t Hooft coupling λ. We have reduced the numerical evaluation

to solving systems of algebraic equations, which contain numerical integrals. One can

easily show that the asymptotic separation of the flavor branes ` can be eliminated from

the equations in each phase by rescaling all quantities with appropriate powers of `. As a

consequence, we will plot only rescaled quantities, which we denote by a tilde. To facilitate

translation to the original, un-rescaled quantities, we have collected the definitions of all

relevant rescaled quantities in the caption of table 1. This table therefore shows how to

translate the dimensionless, rescaled variables of all following results into concrete physical

values for given model parameters λ, `, MKK.

We start by discussing the thermodynamics and phase transitions by fixing either µ or t

in sections 4.1 and 4.2. Then, we present the phase diagrams in the t-µ-plane in section 4.3.

Most results are shown for the value of the rescaled ’t Hooft coupling λ̃ ≡ λ/` = 15,

focusing on changes that occur upon variation of the rescaled mass parameter α̃ ≡ α`4.

The particular value for λ̃ is chosen somewhat arbitrarily, but it is almost identical to the

value chosen in ref. [19], obtained from fitting the model parameters to properties of nuclear

matter at saturation. (This fit will receive corrections, however, if quark mass effects are

included.) At the end we shall also discuss how variations in λ̃ affect the phase structure.

4.1 Thermodynamics and phase transitions

Figures 2–4 collect thermodynamic properties as a function of either µ or t. They serve to

illustrate the structure of the solutions and indicate the phase transitions between them.

In figure 2 we see that in the massless case the mesonic solution is two-valued for all

temperatures below t̃ ' 0.17, above which no solution exists. In this case, the straight-

brane solution exists for all temperatures and a first-order transition between the two phases

occurs. Here, we have shown this solution for µ̃ = 0. At larger chemical potentials the
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Figure 2. Free energy as a function of temperature at two different quark chemical potentials.

Solid lines in both panels correspond to a nonzero quark mass, α̃ = 0.01, while the dashed curves

in the left panel are obtained in the chiral limit α̃ = 0. Black, blue, and red curves correspond to

mesonic, LTQ, and HTQ phases, respectively. This color coding is also used in figures 3 and 4. The

curve for the mesonic phase in the massive case (right panel) ends at the point where the tip of the

connected flavor branes touches the horizon, uc = uT . Here and throughout figures 3–6, λ̃ = 15.

straight-brane solution, while still existing for all temperatures, moves to lower values of

Ω̃, such that the phase transition moves to lower temperatures until the chirally symmetric

phase is preferred for all t̃ if µ̃ is sufficiently large. This results in the phase diagram of the

model in the decompactified limit at zero current quark masses, which is well known [13].

For nonzero quark mass, the mesonic solution becomes single-valued for small tem-

peratures since the unstable branch does not reach back all the way to zero temperature,

i.e., the point where the tip of the connected flavor branes touches the horizon is now at

nonzero temperature. At vanishing chemical potential (left panel), not much is changed

compared to the massless scenario: the HTQ phase connects to the unstable branch of the

mesonic phase and again there is a first-order transition between the two phases. We have

checked that the discontinuity of this transition becomes smaller as we increase the quark

mass parameter, but a continuous transition is never obtained. In fact, if α̃ is chosen too

large, the mesonic solution ceases to exist even for small temperatures. This would imply

that there is no stable phase in a certain region of the phase diagram, which is unphysical.

As discussed above, we cannot trust our approximation to arbitrarily large masses, and

thus this behavior is not surprising. We shall therefore only consider mass parameters

α̃ — more precisely, only parameter pairs (λ̃, α̃) — for which we can determine a stable

equilibrium state for all t̃ and µ̃.

A more interesting situation, qualitatively different from the massless case, occurs for

nonzero chemical potentials, as shown in the right panel of figure 2. Here, the mesonic

and HTQ solutions do not connect continuously anymore. For sufficiently large µ̃ we find

that at the endpoint of the HTQ solution this solution has smaller free energy than the

mesonic solution. Without a third solution, this would imply an unphysical jump in the

free energy. This third solution is the string solution: it connects with the mesonic one

where µ = uc− uT and n = 0, and with the HTQ solution where uc = uT at some nonzero

n. As a consequence, the right panel of the figure shows a first order phase transition

from the mesonic to the LTQ phase followed by a transition to the HTQ phase. From that
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Figure 3. Chiral condensate normalized to its vacuum value at zero current quark mass (left

panels) and constituent quark mass (right panels) for zero temperature (upper panels) and a nonzero

temperature t̃ = 0.1 (lower panels). In all panels, the mass parameter is α̃ = 0.001, 0.02, 0.04, 0.2

from top to bottom. The vertical dashed segments indicate first-order phase transitions, i.e., some

segments of the solid lines are unstable or metastable. The thin horizontal dashed lines in the left

panels indicate the asymptotic value (4.1) that all curves approach for µ̃→∞.

figure it is difficult to say how smooth the LTQ-HTQ transition is. Our results strongly

suggest that the density, i.e., the first derivative of the free energy, is continuous (see also

figure 4). Therefore, it is not a first-order transition. We shall later come back to the

question whether it is a higher-order transition or a smooth crossover.

In figure 3 we plot the chiral condensate (2.16) (using eq. (3.17)) and the constituent

quark mass (3.4) as a function of µ̃ for two different temperatures and four different values

of the mass parameter. The values of the mass parameter are the same as used later for

the phase diagrams in section 4.3. We see that at zero temperature there is a transition

from the mesonic to the LTQ phase. This transition is of first order for small quark masses

and becomes continuous for larger quark masses. The HTQ phase does not exist at zero

temperature. At nonzero temperatures, here t̃ = 0.1, the HTQ phase starts playing a role,

and we find a mesonic-HTQ first order transition for small quark masses and the sequence

mesonic-LTQ-HTQ, as already seen in figure 2 as a function of t̃. The curves shown here do

not exhaust all possible scenarios. In particular, for larger temperatures there is a first-order

LTQ-HTQ transition. This will become clear in figure 4 and in the phase diagrams of the

next subsection. In figure 3 we also see that both chiral condensate and constituent quark

mass (and in fact all thermodynamic quantities) approach the same value at large chemical

potential, independent of the value of the quark mass. This is expected of course since
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for sufficiently large chemical potentials (and also for large temperatures) the quark mass

should be negligible. Geometrically speaking, this means that the flavor branes in the HTQ

phase become more and more straight and approach the chirally symmetric embedding. In

the special case t̃ = 0 it is the LTQ phase that approaches the straight-brane embedding: as

µ̃ becomes larger the connected branes approach the horizon while assuming a rectangular

shape. These asymptotic limits are a good check for our numerical calculation. All these

observations could also have been made by plotting different thermodynamic quantities,

for instance the density.

Let us now comment on the quantities themselves that are plotted in figure 3. Chiral

condensate and constituent quark mass behave qualitatively similar, but are not connected

by a simple relation. In the simplest version of the NJL model, they are proportional to each

other, connected by a (dimensionful) coupling constant. In QCD, the constituent quark

mass does not only originate from the chiral condensate since gluons play an important

role as well. It is thus not unphysical to observe different behaviors of the two quantities.

However, we have already argued that our “chiral condensate” is really constructed from

a non-local operator and its interpretation is thus not obvious. Indeed, we observe for

instance that asymptotically, where one might expect chiral symmetry to be effectively

restored, we obtain a nonzero value. This value is indicated by a horizontal dashed line

and is given by

〈q̄q〉
〈q̄q〉0

→ exp

[
λ0

`

(
`2t2

8π5/2

3

Γ[5/3]

Γ[1/6]
− π tan

π

16

)]
, (4.1)

where the arrow stands for the limit µ → ∞ or t → ∞, and where we have used

eqs. (2.4), (2.22), and (3.28). At fixed λ0 and `, this expression grows exponentially with

t. This t-dependence is left since we have not renormalized the Nambu-Goto part of the

worldsheet action by the result of the straight-brane solution but with a vacuum term that

does not depend on temperature, see discussion around eq. (2.23). Interestingly, however,

if ` is sent to zero at fixed λ0 and t, the asymptotic chiral condensate, compared to the

vacuum value, approaches zero, as one would expect. (Eq. (4.1) is only valid for the LTQ

and HTQ phases, i.e., the mesonic piece of the curves in figure 3 does not at the same

time go to zero.) The difficulties in the interpretation of the chiral condensate and the

constituent quark mass in the Witten-Sakai-Sugimoto model are well known [23–26, 52],

and figure 3 underlines them. Nevertheless, one of our main points will be that the phase

structure obtained in the present approach is very similar to the D3-D7 approach, where

there is a straightforward concept of a chiral condensate and where the chiral condensate

is zero in the chirally symmetric phase. This will be particularly obvious from the phase

diagrams in the next subsection.

In figure 4 we choose a fixed value of the mass parameter and plot the quark number

density as a function of the chemical potential for various different temperatures in the

left panel, and show the behavior of the (logarithm of the) pressure P = −Ω for one

selected temperature in the right panel. The density curves can be understood as follows:

at zero temperature (rightmost curve) the LTQ phase exists for arbitrarily large chemical

potentials. As we increase the temperature, a point where the LTQ phase connects with
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Figure 4. Left panel: baryon density ñ as a function of the chemical potential µ̃ for fixed tem-

peratures t̃ = 0, 0.12, 0.15, 0.168, 0.185 from right to left. The dashed curve shows where LTQ and

HTQ curves connect — they do so for nonzero but not too large temperatures. The (barely visible)

dashed vertical segments for the t̃ = 0, 0.12 curves indicate a discontinuity due to a first-order phase

transition. Right panel: pressure normalized by that of the HTQ phase as a function of µ̃ for one

of the temperatures of the left panel, t̃ = 0.168, that shows a first-order phase transition between

LTQ and HTQ phases. For all curves the mass parameter is α̃ = 0.04.

the HTQ phase (red and blue curves in the figure), appears at large µ̃ and moves all the

way down to µ̃ = 0. In doing so, it bends and drags the LTQ curve backwards. Once the

origin is reached, the LTQ curve detaches from the HTQ phase and connects at two points

to the mesonic solution (n = 0), rather than interpolating between the mesonic and HTQ

phases. For even larger temperatures (not shown here) this branch disappears and the LTQ

solution ceases to exist. In the right panel we demonstrate that for certain temperatures

there is a first-order LTQ-HTQ transition. For a better distinguishability of the curves, we

have normalized all free energies by the free energy of the HTQ phase. We clearly see that

there is a continuous transition from the mesonic phase to the LTQ phase, followed by a

first-order transition to the HTQ phase.

4.2 Speed of sound

We have shown that there can be a continuous transition between the LTQ and HTQ

phases. This continuity can be understood from the geometry in the bulk, but also man-

ifests itself in the thermodynamic quantities considered so far. In particular, the quark

number density is (within the very small numerical uncertainties) continuous across the

transition, i.e., for all we know so far, the transition could be a smooth crossover. To

analyze the smoothness of the transition, let us therefore compute second derivatives of

the free energy. The speed of sound combines all possible second derivatives with respect

to temperature and chemical potential and thus is a suitable quantity for our purpose.

Comparable results of the speed of sound at nonzero temperature and chemical potential

have been obtained in holography [35] as well as in NJL models [53, 54]. The speed of

sound cs is defined as

c2
s =

∂P

∂ε
=
n2 ∂s

∂t + s2 ∂n
∂µ − ns

(
∂n
∂t + ∂s

∂µ

)
w
(
∂n
∂µ

∂s
∂t −

∂n
∂t

∂s
∂µ

) , (4.2)
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where s is the entropy density and w = µn+ st the enthalpy density, all partial derivatives

with respect to t are taken at fixed µ and vice versa, and the derivative of the pressure

P = −Ω with respect to the energy density ε = Ω + µn + st is taken at fixed entropy per

particle s/n. In the definition (4.2) we have already replaced all thermodynamic quantities

by their dimensionless counterparts. It is easy to check that this does not change the result

for cs since all dimensionful constants and numerical prefactors cancel. We have computed

the speed of sound using both expressions given in eq. (4.2) and found that the numerically

cleanest result is obtained by using the right-hand side with all second derivatives evaluated

as far as possible in a semi-analytical way. These semi-analytical expressions (analytical

up to a numerical integration) are derived in appendix A.

The numerical results are shown in figure 5. In contrast to the plots in the previous

subsection, here we only show the results for the stable phases, i.e., metastable and unstable

branches are omitted. Each curve thus contains contributions from two or three of the

mesonic, LTQ, and HTQ phases, separated by phase transitions. We see that for large

temperatures or chemical potentials the speed of sound approaches the massless result, as

expected. This is a further check of our results since the speed of sound of the chirally

symmetric phase in the massless limit can be computed from a completely different, much

simpler expression [19],

straight branes: c2
s =

2

5

uT

√
n2 + u5

T (n2 + 5u5
T ) + µn(n2 + 6u5

T )

(n2 + 6u5
T )(µn+ 2uT

√
n2 + u5

T )
, (4.3)

where n and µ are related by

µ =
n2/5Γ[3/10]Γ[6/5]√

π
− uT 2F1

[
1

5
,

1

2
,

6

5
,−

u5
T

n2

]
. (4.4)

In particular, all curves approach c2
s = 2/5 for large µ̃ at fixed t̃ and c2

s = 1/6 for large t̃

and fixed µ̃. Due to the inherent scale MKK and the lack of asymptotic freedom in this

version of the model, these asymptotic values are different from the scale-invariant value

c2
s = 1/3 that is assumed asymptotically in QCD.

Let us comment on the various phase transitions visible in figure 5. The t̃ = 0 curve

in the left panel includes a mesonic-HTQ first-order transition which manifests itself in a

discontinuity of the speed of sound. The t̃ = 0.15 curve shows a similar feature, but in

this case it is a mesonic-LTQ transition with a smaller discontinuity. Since the numerics

become challenging in the LTQ phase at very small n, it is difficult to compute the values

of the speed of sound along the almost vertical segment of the t̃ = 0.15 curve, i.e., the

size of the jump is difficult to predict. More importantly, the same curve also shows a

small, barely visible, discontinuity as we move from the LTQ to the HTQ geometry. In the

vicinity of this transition, the numerics of the HTQ phase is completely under control. The

reason is that, as mentioned above, the HTQ solution formally continues beyond the point

x4(uT ) = 0 to unphysical, negative values of x4(uT ). Therefore, the point x4(uT ) = 0 is

mathematically not very special. The numerics of the LTQ phase is somewhat more difficult

as one approaches the point uc → uT , but the results for the speed of sound suggest no
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Figure 5. Speed of sound (squared) in units of the speed of light as a function of µ̃ at three different

temperatures (left panel) and as a function of t̃ at three different chemical potentials (right panel)

for a mass parameter α̃ = 0.04. The dashed lines are the corresponding results in the chiral limit

α̃ = 0. Here only the stable branches of the solutions are shown and discontinuities correspond to

phase transitions.

particular problems either. Therefore, we can be confident that this small discontinuity

is not an artifact of the numerics. As a result, the LTQ-HTQ transition shown here is

not a smooth crossover but a second-order phase transition, although with a very small

discontinuity in the second derivatives of the thermodynamic potential. The same feature

is visible in the µ̃ = 0.8 curve in the right panel. The µ̃ = 0.3 curve in this panel shows

the same mesonic-LTQ transition as in the left panel, but now followed by a first-order

LTQ-HTQ transition, as discussed in the context of figure 4.

4.3 Phase diagrams

The main result of this paper is shown in figure 6. This figure shows four different phase

diagrams, which summarize the various phase transitions discussed in the previous sub-

sections. Before we proceed to the discussion of the results, let us briefly explain how we

have calculated the phase transition lines. It would obviously be very tedious to deter-

mine the phase transitions point by point by calculating the free energies for all possible

phases as functions of µ̃ or t̃. Moreover, it would then be easy to miss certain features of

the phase structure, unless the free energies are computed on a very fine grid in µ̃ and t̃,

which would be very laborious. It is thus much more advantageous to compute the phase

transition lines in a more direct way. For instance, for a first-order phase transition curve

we have solved a system of equations simultaneously that combines the equations of the

two respective phases that coexist at this phase transition line plus the condition that they

have the same free energy. All curves in figure 6 have been obtained in this direct way,

i.e., by suitably combining the stationarity equations and various conditions for the free

energies. The figure contains four phase diagrams for four different values of the (rescaled)

mass parameter α̃, with the quark mass increasing from top to bottom rows. As in the

previous section, λ̃ = 15. The four phase diagrams in the left panels are duplicated in the

right panels, but with additional auxiliary curves that are helpful for the understanding

(and for reproducing) the phase structure since they indicate the regions of unstable and
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metastable solutions. In particular, these curves define the regions where each of the three

phases exist and keep track of the rich behavior of the LTQ solution:

• The mesonic phase exists everywhere below the upper horizontal dashed line. Be-

tween the two horizontal dashed lines it is two-valued, while below the lower dashed

line it has a single solution, see also figure 2. All its equilibrium properties are

independent of the chemical potential since the quark density is zero.

• The LTQ phase exists in the shaded area. It connects to the HTQ phase on the (red)

curve labeled by r, on which uc = uT and which asymptotes to the horizontal axis for

µ̃ → ∞. It connects to the mesonic phase on the (blue) curve labeled by b0, where

n = 0. In all four diagrams, b0 is a continuous line with endpoints at both axes. At

the (blue) curves labeled by b1 and b2, the solution “turns around”, i.e., along these

curves ∂n
∂µ =∞, see also figure 4.

• The HTQ phase exists everywhere above the (red) curve labeled by r. On this curve,

x4(uT ) = 0 and it connects to the LTQ phase. This solution is always single-valued

(provided only the physical solutions with x4(uT ) ≥ 0 are considered).

The four values of the mass parameter are chosen to represent prototypical examples

of the four different topologies of the phase diagram we have found. For small current

quark masses the phase diagram is qualitatively the same as in the chiral limit: there is a

discontinuous transition between the mesonic phase, which has zero quark number, n = 0,

to the phases with nonzero quark number n > 0. In contrast to the chiral limit, the n > 0

region now contains the LTQ phase, whose area grows as we increase the current quark

mass. We have depicted the transition between LTQ and HTQ phases by a dotted line. This

indicates that the transition is continuous, i.e., density and entropy do not jump when we

cross from one phase to the other. However, we have seen in the calculation of the speed of

sound that second derivatives have a (very small) discontinuity. This discontinuity might

be a consequence of constructing the LTQ phase with the help of string sources, which

possibly is an approximation to a phase with a more complicated flavor brane embedding,

as already discussed at the end of section 3.2. We cannot exclude that a more complete

treatment removes this second-order discontinuity and results in a smooth crossover.

As we move to larger values of the current quark mass, a first-order phase transition

line develops at intermediate temperatures. The endpoint of this line is somewhat difficult

to calculate because the free energies of the phases are extremely close to each other in the

vicinity of this point. Therefore, it is also difficult to calculate the critical value of the mass

parameter where this first-order line starts to appear. Our numerics suggest α̃ ' 0.007.

Increasing the mass parameter further, the original first-order chiral transition line breaks

up, and a continuous transition between the mesonic and the LTQ phases appears. The

exact location of the resulting endpoint of the first-order mesonic-LTQ transition is again

prone to some numerical uncertainties. Eventually, at even larger mass, the mesonic-LTQ

transition becomes continuous throughout.

The “evolution” of the phase diagram discussed so far is obtained at fixed (rescaled)

’t Hooft coupling λ̃, and one may ask how the phase structure changes if also λ̃ is varied.

(Keeping in mind that our classical gravity approximation is only valid at strong ’t Hooft
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Figure 6. Left panels: phase diagrams in the plane of dimensionless temperature t̃ and quark

chemical potential µ̃ for increasing quark mass parameter α̃ from top to bottom and fixed coupling

λ̃ = 15. Solid lines are discontinuous phase transitions, while transitions across dashed and dotted

lines are continuous. The thin solid line in the upper left panel is the chiral phase transition in the

massless limit. Right panels: same as left, but including curves that indicate regions of metastable

and unstable solutions. For detailed explanations see text. The shaded region shows where the

LTQ configuration exists.
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Figure 7. Different topologies of the phase diagrams in the plane of rescaled ’t Hooft coupling

λ̃ and quark mass parameter, classified according to the mesonic-LTQ transition, which can be

discontinuous everywhere (”1st”), discontinuous at small temperatures and continuous at large

temperatures (”1st & 2nd”) or continuous everywhere (”2nd”). The shaded area is excluded since

our approximation breaks down. The 4 (red) dots mark the parameter pairs chosen for the phase

diagrams in figure 6. The translation from the mass parameter α̃ to the more physical quantity

f2πm
2
π is obtained with the help of table 1.

coupling λ and results for small values of the coupling are an extrapolation.) The result

is shown in figure 7, which indicates the different topologies of the phase diagram in the

λ̃-α̃-plane. Recall that since we were able to absorb the other model parameters ` and

MKK in our rescaled variables, λ̃ and α̃ are the only independent parameters, and thus

figure 7 presents a complete systematic study of the phase structure. This figure contains

an unphysical region for large values of the mass parameter, shown as a shaded area. As

we enter this area, a region in the t̃-µ̃ plane appears where there is no stable phase in

our approximation. The reason is that the ∪-shaped solution ceases to exist for small

temperatures (for all temperatures as we move deeper into the shaded area), as already

pointed out in section 4.1. This shortcoming of our approach is no surprise since we have

only added a term linear in the current quark mass to the action.

For the horizontal axis in this figure we have translated the mass parameter α̃ into the

more physical quantity f2
πm

2
π/L

−4 via table 1 with Nc = 3. For a rough estimate, let us use

L ' 10−3 MeV−1, which was obtained from a fit to nuclear matter properties at saturation

density [19]. Then, with the actual QCD vacuum values fπ ' 93 MeV and mπ ' 140 MeV

we have f2
πm

2
π/L

−4 ' 1.7 × 10−4. At λ̃ = 15 this corresponds to α̃ ' 8 × 10−4, slightly

smaller than even the smallest mass parameter used in figure 6. Thus all interesting

features of our phase diagram occur in the heavy QCD regime. We may also use this

fit to get a rough idea of the scales in the phase diagrams. With the help of table 1 we

find that for the chiral limit the µ = 0 phase transition is at about Tc ' 150 MeV, while

the t = 0 (discontinuous) phase transition occurs at a quark chemical potential of about

µc ' 520 MeV. The heaviest quark mass parameter considered in figure 6 corresponds to

f2
πm

2
π being about 250 times its QCD value. In this case the corresponding critical values

are Tc ' 240 MeV and (now for a continuous transition) µc ' 1200 MeV.
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It is tempting to compare our results to lattice QCD, where at large quark masses

and large coupling the phase structure can be computed even for nonzero chemical poten-

tials [10, 36]. If we take our heaviest case and ignore the fact that our continuous phase

transitions have higher-order discontinuities, the phase diagram has a intriguing similarity

to the heavy QCD diagram, see for instance figure 1 of ref. [10]. The similarity becomes

even more striking when we go to our intermediate regime where there is a low-temperature

discontinuous transition with a critical endpoint. However, this comparison has to be taken

with some care for at least two reasons. Firstly, our calculation does not include baryons.

Therefore, our low-temperature mesonic-LTQ transition that ends in a critical point is dif-

ferent from the liquid-gas transition in figure 1 of ref. [10]. Secondly, heavy QCD becomes

pure Yang-Mills in the limit of infinitely heavy quarks. In this limit, the first-order tran-

sition at large temperature is a strict deconfinement transition. In our approach, however,

we have decoupled the gluon dynamics such that our high-temperature transition does not

seem to know anything about confinement. Nevertheless, the resemblance of the phase

diagrams with heavy QCD is striking and suggests further studies for a better understand-

ing of the parallels and differences to QCD, most notably by including baryons into our

holographic calculation.

A more concrete comparison can be made to the phase diagrams obtained in holo-

graphic studies with a D3-D7 setup. We have already pointed out the very close analogy

of our three flavor brane configurations to the corresponding D3-D7 geometries. This anal-

ogy is also borne out in the phase diagrams, as one can see for instance by comparing our

results to figure 5 in ref. [30] (where a nonzero magnetic field was introduced in order to

break conformal symmetry). This particular figure is obtained with zero current quark

mass, but in that model the quark mass does not seem to change the topology of the

phase diagram except for turning the chiral phase transition into a smooth crossover. The

first-order transition, including its critical endpoint, as well as the overall structure is qual-

itatively the same as in our heaviest case, see lowest panels in figure 6, if the meson-melted

D3-D7 phase is identified with our LTQ phase. This very close resemblance is somewhat

surprising since, as already discussed, in the present model the identification of an order

parameter for chiral symmetry breaking is much less straightforward than in the D3-D7

approach. Turning this argument around, we can take the result as a reassurance for our

approach, despite the open conceptual questions regarding the implementation of the chiral

condensate in the Witten-Sakai-Sugimoto model.

5 Summary and outlook

We have included a nonzero current quark mass in the study of the phase diagram in

holographic QCD. Working in the deconfined geometry and the decompactified limit of

the Witten-Sakai-Sugimoto model, we have added a mass correction to the action analo-

gous to chiral perturbation theory. To this end, we have made use of earlier works that

identified the chiral condensate with the expectation value of a non-local, gauge-invariant

open Wilson line operator. The holographic dual of this expectation value corresponds

to a worldsheet instanton, and we have included this contribution for the first time in a
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fully consistent way, calculating its effect on the embedding of the flavor branes in the

background geometry. We have identified three different embeddings. Most notably, we

have pointed out that the current quark mass stabilizes a brane configuration with string

sources, which previously had only been discussed in the chiral limit, where it is never

stable. Evaluating the classical equations of motion and the stationarity conditions of the

on-shell action, we have systematically studied the equilibrium phase structure in the plane

of temperature and baryon chemical potential. The effect of heavy quarks is to break up

the chiral phase transition line and introduce a critical endpoint at high temperatures. At

intermediate values of the quark mass there is an additional endpoint at lower tempera-

tures. This phase structure is qualitatively similar to heavy QCD on the lattice. We have

also pointed out that the phase structure as well as the geometric structure of the different

embeddings is strikingly similar to a different holographic approach based on the D3-D7

setup. This similarity is much less obvious in the chiral limit.

The main significance of our work is to make the study of equilibrium phases in the

Witten-Sakai-Sugimoto model more realistic. Therefore, our results can be used as the

basis for further studies of strongly-coupled hot and dense matter. The most obvious

extension is to include baryonic matter, possibly as a first step from simple approximations

based on pointlike baryons [8], or from more sophisticated approximations using nonzero-

width, interacting instantons [19]. This extension would be very interesting for the phase

structure itself but also for more specific questions such as the quark-hadron continuity at

low temperatures [19] and for a realistic equation of state for dense matter, to be applied

to the physics of neutron stars.

Our work also suggests several other directions for future research. For instance, we

have only considered the case of a degenerate quark mass for all flavors, such that the

number of flavors played no important role. The generalization to different quark masses is

straightforward and could have non-trivial effects on the phase structure of the system. We

have also pointed out and reinforced several conceptual problems related to the introduction

of a current quark mass in the Witten-Sakai-Sugimoto model. This concerns for instance

the identification of chiral condensate, constituent quark mass, and order parameter for

chiral symmetry breaking. Our results for the phase diagram, which seem very sensible in

comparison to other model approaches and even compared to actual QCD, suggest that one

might simply go ahead with the present approach. Nevertheless, some conceptual progress

would be desirable as well. It might be useful to repeat our study employing another

approach that is suggested in the literature for the introduction of a mass term, based on

a tachyonic scalar field. An improvement to our study on the conceptual level would also

be to find a smooth flavor brane configuration that replaces our construction with string

sources and a cusp in the embedding of the branes.
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A Calculating the speed of sound

Here we explain some useful details regarding the calculation of the speed of sound, defined

in (4.2). As an input for this calculation we need the first derivatives of the thermodynamic

potential, n and s. The number density n appears directly in our calculation and needs

no further comment, while for the entropy density s we derive a semi-analytical expres-

sion in this appendix. Moreover, we need the second derivatives of the thermodynamic

potential ∂n
∂µ , ∂s

∂t , and the mixed derivative ∂s
∂µ = ∂n

∂t . We shall derive a semi-analytical

expression for the number susceptibility ∂n
∂µ . This is also useful for the phase diagrams in

figure 6 since some of the curves in the right panels require a simultaneous solution of the

stationarity equations and the equation ∂µ
∂n = 0. We refrain from deriving semi-analytical

expressions for ∂s
∂t and ∂n

∂t because the expressions would be very lengthy. Since n and s

are known, these derivatives can be computed purely numerically from finite differences

without significant problems.

The (dimensionless) entropy density is

s = −∂Ω

∂t
= −2

uT
t

∂Ω

∂uT
, (A.1)

where we have used eq. (2.4). With the DBI Lagrangian

L0 = u5/2
√

1 + u3fTx′24 − â′20 (A.2)

we compute for the LTQ configuration

∂Ω

∂uT
=

∂

∂uT

[∫ ∞
uc

duL0 −
A

2λ0
+ n(uc − uT )− nâ0(uc)

]
=

∫ ∞
uc

du

[
∂L0

∂x′4

∂x′4
∂uT

+
∂L0

∂â′0

∂â′0
∂uT

+
∂L0

∂uT
−A

(
φT

∂x′4
∂uT

+ x′4
∂φT
∂uT

)]
− n− n∂â0(uc)

∂uT

=

(
k
∂x4

∂uT
− n ∂â0

∂uT

)u=∞

u=uc

+

∫ ∞
uc

du

(
∂L0

∂uT
−Ax′4

∂φT
∂uT

)
− n− n∂â0(uc)

∂uT
, (A.3)

where, in the last step, we have integrated by parts and taken into account the equations of

motion. Note that the implicit dependence on uT through uc does not contribute since the

derivative of Ω with respect to uc vanishes at the stationary point. Computing derivatives

in this way, i.e., via L0, which is a functional of x4(u) and â0(u), is equivalent to using

the explicit form of the free energies in section 3. Since x4(uc), x4(∞) and â0(∞) are held

fixed and thus their derivatives with respect to uT vanish, and using

∂φT
∂uT

=
1

uT

[
φT (u)− u√

fT (u)

]
, (A.4)
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we find

s� =
2

t

{
nuT +

∫ ∞
uc

dux′4

[
3u3

T

2u3

AφT + k

fT
+A

(
φT −

u√
fT

)]}
. (A.5)

For small temperatures, since uT ∝ t2, the entropy grows linearly with t. One easily finds

that for the mesonic phase the entropy density s∪ has the same form with n = 0. In this

phase the speed of sound is simply given by

c2
s,∪ =

s∪
t

(
∂s∪
∂t

)−1

. (A.6)

For the HTQ phase the analogous calculation gives

st =
2

t

{
AφT (uT )x4(uT ) + u

7/2
T

√
1 +

n2

u5
T

− 4A2

9u6
T

+

∫ ∞
uT

dux′4

[
3u3

T

2u3

AφT + k

fT
+A

(
φT −

u√
fT

)]}
. (A.7)

Next we compute the number susceptibility. For the LTQ phase let us define

fA(n, uc, A) ≡ A− 2α

λ2
0

exp

(
2λ0

∫ ∞
uc

duφTx
′
4

)
, fk(n, uc, A) ≡ `

2
−
∫ ∞
uc

dux′4 . (A.8)

We compute ∂µ
∂n at fixed t along the surface given by the constraints fA = fk = 0. These

constraints are the first two relations in eq. (3.22). To this end, we first write on account

of the implicit function theorem(
∂A

∂n
,
∂uc
∂n

)
= −

(
∂fA
∂n

,
∂fk
∂n

)( ∂fA
∂A

∂fk
∂A

∂fA
∂uc

∂fk
∂uc

)−1

. (A.9)

The chemical potential µ is a function of n, uc, and A via the third relation in eq. (3.22).

Hence we can write
dµ

dn
=
∂µ

∂n
+
∂µ

∂A

∂A

∂n
+
∂µ

∂uc

∂uc
∂n

. (A.10)

(Temporarily, we have employed the notation of a total derivative on the left-hand side, to

avoid confusion with the explicit derivative on the right-hand side.) All partial derivatives

can be taken semi-analytically by taking the derivatives of the integrands in the various

integrals. The result is a complicated combination of numerical integrals which however is

easily handled numerically. The number susceptibility ∂n
∂µ is then simply obtained by the

inverse of eq. (A.10).

It remains to compute the number susceptibility in the HTQ phase. This is somewhat

simpler because here uc = uT and thus there is one fewer dynamical variable. We define

fA(n,A) ≡ A− 2α

λ2
0

exp

[
2λ0

(
`

2
φT (uT ) +

∫ ∞
uT

du [φT (u)− φT (uT )]x′4(u)

)]
, (A.11)

such that from the constraint fA = 0, see eq. (3.28), we have

∂A

∂n
= −∂fA

∂n

(
∂fA
∂A

)−1

, (A.12)
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which is used to compute
dµ

dn
=
∂µ

∂n
+
∂µ

∂A

∂A

∂n
, (A.13)

where the explicit derivative of µ with respect to n is obtained from the second relation in

eq. (3.28). This concludes the collection of all derivatives for all three phases needed for

the calculation of the speed of sound according to the strategy laid out at the beginning of

this appendix.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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