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1 Introduction

Landau-Ginzburg theories with N = (0, 2) supersymmetry describe certain phases of (0, 2)

supersymmetric gauge theories. Their usefulness towards understanding the N = (0, 2)

Calabi-Yau sigma model is well known [1, 2]. Landau-Ginzburg orbifolds and their elliptic

genera have been studied in [3]. Recently, a connection between geometry and topology

of four manifolds and N = (0, 2) supersymmetric theories have been established [4]. This

led the authors to study the dynamics N = (0, 2) gauge theories [5, 6] and determine

their low energy fixed point theory [7]. In this paper, we study the LG models in their

own right focusing on identifying their low energy physics exactly. The philosophy of the

paper is similar to that of [7] where the low energy physics of a class of (0,2) supersym-

metric gauge theories was identified using arguments involving ’t Hooft anomaly matching,

c-extremization and modular invariance of the partition function on the torus.

By definition, a Landau-Ginzburg models has discreet vacua. This gives rise to a

normalizable vacuum state in the quantum theory. A unitary conformal field theory with

normalizable vacuum enjoys a “state-operator correspondence”. Using this correspondence

it is straightforward to argue that a global symmetry of the microscopic theory is enhanced

to either a holomorphic or an anti-holomorphic chiral symmetry. This includes the super-

symmetry i.e. the two supersymmetries of the microscopic (0, 2) theory are promoted to the

chiral supercurrents. Along with the chiral stress-tensor and R-current, the supercurrents

form the N = 2 super-Virasoro algebra. Requiring the vanishing of the commutator be-

tween R-symmetry and other abelian symmetries, the central charge of the super-Virasoro

algebra can be determined. This prescription is known as c-extremization [8]. This is one

of the important tools we use. It rests on the assumption that there are no new abelian
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symmetries in the infrared. When this assumption is not valid, a modification of this

procedure [9] is applied as we demonstrate in some of our examples.

On these general grounds, we expect the (0, 2) Landau-Ginzburg theory to flow to a

heterotic SCFT with the left-moving spectrum governed by Virasoro symmetry and right-

moving spectrum governed by N = 2 super-Virasoro symmetry. The partition function of

the theory on the torus i.e.

Z = Tr qL0 q̄L̄0 (1.1)

is invariant under the modular transformations1 τ → (aτ + b)/(cτ + d) for a, b, c, d ∈ Z
and q = e2πiτ . This condition puts a strong constraint on the spectrum apart from the

symmetries. In the class of examples we study, the above considerations turn out to be

strong enough to determine the low energy theory completely.

2 Search for solvable LG models

Before we start the search for solvable Landau-Ginzburg model, a quick introduction to

their Lagrangian is in order. A (0, 2) Landau-Ginzburg model is constructed using p chiral

superfields Φi and q Fermi superfields Ψa. The chiral multiplet consists of a complex scalar

φ and a complex right-moving fermion λ and the Fermi multiplet consists of a single complex

left-moving fermion ψ. The supersymmetry allows for two types of interaction terms, the

J-type and the E-type. The J-type interaction is analogous to the superpotential term.

Most compactly, it is presented as the integral over half the superspace∫
dθ+

∑
a

ΨaJa(Φi) + c.c. (2.1)

where Ja are holomorphic functions of Φi. For brevity, we will drop c.c. from now on. The

E-type interaction is induced somewhat unconventionally as supersymmetry variation of

the Fermi field i.e. by requiring D̄+Ψa = Ea(Φi) instead of D̄+Ψa = 0. The N = (0, 2)

supersymmetry requires
∑

aEaJa = 0. In terms of component fields, these interactions get

spelled out as follows

L = . . .−
∑
a

(
|Ja|2 + |Ea|2

)
−
∑
a

∑
i

(
ψaλ̄i

∂Ja
∂φi

+ ψ̄aλi
∂Ea
∂φi

+ c.c.

)
. (2.2)

The Ea and the Ja-type interactions are interchanged by conjugating the Fermi multiplet

Ψa. This means the action of supersymmetry on Ψ̄ is given by D̄+Ψ̄a = Ja. In this

paper, we will set all the E-terms to zero. The cohomology of the free supercharge D̄
(0)
+ is

generated by Φi and Ψ̄a. Quantum mechanically, after integrating out the auxiliary fields

at tree level, the supercharge gets the correction

D̄
(1)
+ = Ja

δ

δΨ̄a
. (2.3)

1By modular invariance we mean invariance up to an overall simple factor due to ’t Hooft and gravi-

tational anomalies. Also, we will consider the partition function with anti-periodic boundary conditions

for the fermions along both cycles of the torus. In this sector the partition function is expected to have

invariance under the subgroup Γ0(2) i.e. the subgroup of SL(2,Z) that is generated by S and T 2 elements.
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This gives a straightforward way of computing the tree level cohomology i.e. cohomology

with respect to D̄
(0)
+ + D̄

(1)
+ . Interestingly, the tree level cohomology it is known to be

quantum mechanically exact [10]. As a vector space it gives a BPS sector of the Hilbert

space H of the low energy theory on the circle:

HBPS = H|L̄0−J̄0/2=0 (2.4)

where, as usual, L̄0 is the anti-holomorphic conformal dimension and J̄0 is the infra-red R-

charge. The restriction of the Hilbert space to L̄0− J̄0/2 = 0 is the same as the projection

onto the chiral states in the NS sector i.e. the states that are in the cohomology of the

supercharge Ḡ+
− 1

2

that is part of the anti-holomorphic N = 2 superconformal algebra in the

NS sector. The translations in the anti-holomorphic direction are cohomologically exact so

HBPS can be thought of as the Hilbert space of a holomorphic conformal field theory. This

holomorphic theory is essentially the topologically half-twisted theory [11].

In a favorable situations one can consider a particular sector HTop ⊂ HBPS, the

topological heterotic ring of the (0,2) 2d theory [12]. It is a finite dimensional subspace

generated by the elements saturating the following bound:

L0 ≥ q/2 (2.5)

where q is charge of a certain left-moving U(1)L symmetry. This special left-moving U(1)L

symmetry is uniquely fixed by condition that it has the same charges for the chiral fields

Φi as the right-moving R-symmetry J̄0. This also means q = J̄0 − 1 for Fermi fields. The

hierarchy of vector spaces is as follows.

HTop = HBPS|L0=q/2 = H|L̄0−J̄0/2=0, L0=q/2 (2.6)

Morally, the topological heterotic ring HTop can be understood as the zero-mode sub-sector

of the holomorphic CFT HBPS where one first performs a further “topological half-twist”

by U(1)L. Strictly speaking this is not a topological twist as U(1)L is not an R-symmetry.

As was shown in [13] the topological heterotic ring of (0, 2) Landau-Ginzburg models

can be obtained in terms of Koszul homology of the complex

C = 0
d−→ ∧qE d−→ . . .

d−→ ∧1E d−→ ∧0E d−→ 0 (2.7)

where

E = SpanC{Ψ̄a}qa=1 ⊗ C[Φi] ∼= C[Φi]
q (2.8)

and the differential is given by the interior derivative

d = ıJ , J =

q∑
a=1

Ψa Ja ∈ E∗. (2.9)

This follows from (2.3). The Koszul homology,

Hn(C, d) = Ker d|∧nE / d(∧n−1E), (2.10)
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gives the topological heterotic ring in terms of microscopic fields. That is,

H∗(C, d) ∼= HTop (2.11)

Its calculation in straightforward and is much easier than calculation of the full infinite

dimensional Q̄-cohomology HBPS. Yet it contains non-trivial information about the low

energy superconformal field theory and can be used to check the proposed IR solutions of

Landau-Ginzburg models.

The superconformal index I of an N = (0, 2) LG theory in the NSNS sector is com-

puted even more easily. It is the super-trace over the Q̄-cohomology HBPS. Let the charge

of chiral fields and Fermi fields be qΦi

(`) and qΨi

(`) respectively under the abelian symmetry

U(1)(`). Let u(`) be the chemical potential for this symmetry. The superconformal index

takes a compact form,

I =

∏q
a=1 θ

(
q

1+rΨa
2 e

∑
` u(`) q

Ψa
(`) ; q

)
∏p
i=1 θ

(
q

rΦi
2 e

∑
` u(`) q

Φi
(`) ; q

) (2.12)

where rΦi and rΨa are the R-charge of chiral fields and Fermi fields respectively. The

superconformal index can be projected to the trace over the topological heterotic ring by

setting L0 = q/2 where q is equal to rΦ for chiral fields and rΨ − 1 for the Fermi fields.

As a result, the trace over topological heterotic ring or equivalently the equivariant Euler

characteristic of Koszul homology is

I twist−→
q→0

χ =

∏q
a=1

(
1− e−

∑
` u(`) q

Ψa
(`)

)
∏p
i=1

(
1− e

∑
` u(`) q

Φi
(`)

) . (2.13)

Finally it is useful to note that an N = (2, 2) superfield Φ̂ decomposes into a (0, 2)

chiral superfield Φ and a Fermi superfield Ψ. The superpotential W (Φ̂i) results in the

J-term interaction Ji = ∂W (Φ)/∂Φi. So whenever the J-term is a gradient, the (0, 2)

Lagrangian is actually (2, 2) supersymmetric. In this case the topological heterotic ring

coincides with the usual chiral ring:

HTop = C[Φi]/{∂W (Φi)/∂Φi}i . (2.14)

We are now ready to begin the search for solvable Landau-Ginzburg theories. Each

Fermi multiplet yields a relation Ja = 0 on the moduli space of chiral superfield. In order

for the N = (0, 2) Lagrangian to have discreet vacua, the number of Fermi multiplets

q should be greater than or equal to the number of chiral multiplets p. We start our

search for solvable LG model with q ≥ p at p = 1, q = 1. In this case, the only J-term

interaction is J = Φn for some n. This is a total derivative. The Lagrangian is that

of a (2, 2) Landau-Ginzburg model with W = Φ̂n+1. This model has the central charge

cL = cR = 3(n − 1)/(n + 1) and flows to (n − 1)-th N = 2 supersymmetric minimal

model [14]. The first non-trivial example is a theory with p = 1, q = 2.
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2.1 p = 1, q = 2

The only J-term interaction that is consistent with R charge assignment is∫
dθ+ Ψ1Φn + Ψ2Φm m,n ∈ Z+. (2.15)

The right-moving central charge of this model can be determined by c-extremization.

Assigning R-charge r to chiral superfield Φ,

cR = 3 Trγ3R2 = 3
(

(r − 1)2 − (1− nr)2 − (1−mr)2
)
. (2.16)

Extremizing this function, we get

r =
m+ n− 1

m2 + n2 − 1
⇒ cR =

6(m− 1)(n− 1)

m2 + n2 − 1
. (2.17)

Interestingly cR ≤ 3 with inequality saturating at m,n→∞. This implies that the central

charge has to be equal to that of a N = 2 minimal model i.e. 3k/(k + 2) for some k ∈ Z+.

But surprisingly that is not the case. This presents an interesting puzzle. The solution is in

realizing that the c-extremization procedure is not valid if there is an enhanced symmetry

in the infrared. This is indeed the case here. Let us elaborate.

First setm = n, then only the linear combination Ψ1+Ψ2 couples to the chiral multiplet

and the other combination is free. In this case we get an N = (2, 2) minimal model, as

before tensored with a complex left-moving fermion. For m = n + 1, the c-extremization

yields cR = 3(n−1)/(n+1). This is of the form 3k/(k+2) for k = n−1. We conclude that

the right-moving part of the low energy CFT is the N = 2 minimal model with k = n− 1.

Precisely in this case, the R-charge of the Fermi multiplet Ψ2 is 0 hence, L̄0 = 0. Using

the fact that the spin L0 − L̄0 is 1
2 we get L0 = 1

2 . This is the unitarity bound where the

complex left-moving fermions on Ψ2 become free. At these values of m and n there is an

extra U(1) symmetry that rotates only Ψ2.

For m ≥ n+1, the naive application of c-extremization yields unitarity bound violating

left-moving fermion Ψ2. This phenomenon is reminiscent of the one that occurs in four

dimensional supersymmetry QCD [15]. In the context of 2d theories, it was studied in [9].

Following them, we take this to signal the decoupling of Ψ2 from the interacting theory. It

is accounted for by taking the correct contribution of Ψ2 to the right-moving central charge

cnew
R = cold

R + (1−mr)2 − 0. (2.18)

Extremizing with respect to r, we get cR = 3(n − 1)/(n + 1), same as before. This is

of the form 3k/(k + 2) for k = n − 1. The fermion Ψ2 is free and so we can ignore the

corresponding J-term interaction. This means the low energy theory consists of (n− 1)-th

N = (2, 2) minimal model tensored with a free complex left-moving fermion.

We can verify this conclusion by computing the topological heterotic ring of the theory

using (2.8).

H2(C, d) = 0, (2.19)

H1(C, d) ∼= SpanC{Ψ̄1Φi − Ψ̄2Φn+i−m}n−1
i=0 , (2.20)

H0(C, d) ∼= SpanC{Φi}n−1
i=0 . (2.21)
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As a vector space the cohomology above agrees with that of the proposed low energy theory.

The (n−1)-th N = 2 minimal model has H0 of dimension n which is tensored with the free

left-moving fermion Ψ̄2 to generate H1. This analysis can be straightforwardly generalized

to p = 1 and q > 2.

2.2 p = 2, q = 3

With two chiral superfields and three Fermi superfields2 we can write an interesting model

that is solvable. ∫
dθ+ (Ψ1Φm

1 + Ψ2Φn
2 + Ψ3Φ1Φ2) m,n ∈ Z+ (2.22)

We compute the right-moving central charge using c-extremization and the left-moving

central charge can be determined from the gravitational anomaly (2.64), cR − cL = −1.

Taking the r-charge of Φ1 and Φ2 to be rΦ1 and rΦ2 , the trial central charge is

cR = 3
(

(rΦ1−1)2+(rΦ2−1)2−(1−mrΦ1)2−(1−nrΦ2)2−(1−rΦ1−rΦ2)2
)
. (2.23)

Extremizing with respect to rΦ1 and rΦ2

rΦ1 =
n

mn+ 1
, rΦ2 =

m

mn+ 1
⇒ cR = 3

mn− 1

mn+ 1
, cL = 2

2mn− 1

mn+ 1
. (2.24)

For no value of m,n does the r-charge of Fermi fields becomes negative. This justifies the

c-extremization prescription. Interestingly, in this case we also find cR < 3. This means

that the right-moving part of the low energy CFT is a chiral of the (mn − 1)-th N = 2

minimal model. To identify the left-moving part we note that for general values of m,n

the theory has U(1)×U(1) symmetry. Let us denote U(1)(i) the symmetry with respect to

which Φj has charge δij . The U(1)(1) ×U(1)(2) charges of Ψ1,2,3 are then (−m, 0), (0,−n)

and (−1,−1) respectively. The symmetrized anomaly matrix for these symmetries is

Q =

(
m2 1

1 n2

)
(2.25)

The left-moving CFT contains (U(1) × U(1))Q chiral symmetry. These symmetries

contribute 2 to the left-moving central charge. The remaining piece should have

c = 2(mn− 2)/(mn+ 1). We propose that this left-over central charge is contributed by

the SU(2)/U(1) coset. The low energy theory takes the form(
SU(2)mn−1

U(1)2(mn−1)
× (U(1)×U(1))Q

)
⊗
(

SU(2)mn−1 × SO(2)1

U(1)2(mn+1)

)
. (2.26)

Here we have use the coset representation of the N = 2 minimal model.

The existence of modular invariant partition function is guaranteed by the following

equivalence of quadratic forms over rational numbers (cf. [16, 17])

Q⊕ 2(mn+ 1)
Q∼ IdZ2 ⊕ 2(mn− 1). (2.27)

2The analogous case with p = 2, q = 2, which could be expected to be simpler actually turns out to be

more subtle. We consider it in the next section.
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Namely, that there exists GL(3,Q) transformation (u, v, w)→ (x, y, z) such that

m2u2 + n2v2 + 2uv + 2(mn+ 1)w2 ≡ x2 + y2 + 2(mn− 1)z2. (2.28)

The equivalence (2.27) then can be shown by the following transformation:

x = mu+ v/m,

y = v(mn− 1)/m+ 2w,

z = v/m− w.
(2.29)

Let us show how one can explicitly construct a modular invariant partition function

for (2.26) using the explicit transformation (2.29). Namely, we want to find coefficients C

appearing in the decomposition of the partition function into WZW characters:3

Z =
∑

α,β,λ,ν

Cν,β̄,λ̄ χ
SU(2)mn−1/U(1)2(mn−1)

α;ν̄ χ
U(1)2

Q

λ · χ̄SU(2)mn−1×SO(2)1/U(1)2(mn+1)

ᾱ;β (2.30)

where a bar over an index means that the corresponding quantity transforms in the con-

jugate representation of the modular group. Denote by Rĝk a linear finite dimensional

representation of the modular group for which the basis is formed by the characters χĝk
µ (q)

of the affine algebra ĝ at level k. In order for expression (2.30) to be modular invariant the

coefficients C should form an invariant tensor of the type

C ∈ RU(1)2(mn−1)
⊗ R̄U(1)2(mn+1)

⊗ R̄U(1)2
Q
. (2.31)

Note that such an invariant tensor is not unique. In particular, there could be multiple

rational transformations that give different invariant tensors. This is important, for exam-

ple, in the analysis of theories in sections 2.3.1, 2.3.2 and 2.3.3. In all the cases, we find a

tensor and check that it is consistent with the elliptic genus and the topological heterotic

ring. A solution to C can be constructed explicitly in two steps as follows.

First let us remind that the space Rĝk , spanned by the characters of gk, can be in-

terpreted as the space of holomorphic sections of a certain line bundle on (T 2
τ )rank g where

T 2
τ is a 2-torus with modulus τ . The transition functions of the bundle are determined by

the choice of the level k, or, equivalently, by the corresponding anomaly quadratic form.

When the section is explicitly represented as a function of chemical potentials zi ∈ T 2
τ ,

i = 1 . . . rank g, periodic with respect to zi → zi + 2πi, the quadratic form determines its

transformation properties under the shifts zi → zi + 2πiτ .

From this point of view it follows that there should be the following decomposition of

U(1)2(mn−1) ×U(1)1 ×U(1)1 characters into U(1)2
m2Q ×U(1)2m2(mn+1) characters:4

χ
U(1)2(mn−1)
ν (mz)χU(1)1(mx)χU(1)1(my)

=
∑
λ′,β′

Aν,λ̄′,β̄′ χ
U(1)2

m2Q

λ′ (u, v)χ
U(1)2m2(mn+1)

β′ (w) (2.32)

3Note that the explicit expression for characters depends on the choice of periodic/anti-periodic boundary

conditions on the torus.
4Note that u, v, w, as well as x, y, z denote chemical potentials, not fugacities.
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where we used the fact that when both sides of (2.29) are multiplied by m all coefficients

become integers. Such decomposition provides us with an invariant tensor

A ∈ RU(1)2(mn−1)
⊗ R̄U(1)2

m2Q
⊗ R̄U(1)2m2(mn+1)

. (2.33)

The same argument tells us that there also should be decomposition

χ̄
U(1)2

Q

λ̄
(mu,mv) χ̄

U(1)2(mn+1)

β̄
(mw)

=
∑
λ′,β′

Bλ̄,β̄,λ′,β′ χ̄
U(1)2

m2Q

λ̄′
(u, v) χ̄

U(1)2m2(mn+1)

β̄′
(w) (2.34)

which gives us an invariant tensor

B ∈ R̄U(1)2
Q
⊗ R̄U(1)2(mn+1)

⊗RU(1)2
m2Q
⊗RU(1)2m2(mn+1)

. (2.35)

Then the invariant tensor (2.31) can be obtained by pairing of A and B. Namely,

Cν,β̄,λ̄ =
∑
λ′,β′

Aν,λ̄′,β̄′Bλ̄,β̄,λ′,β′ . (2.36)

Although this procedure to obtain coefficients C seems to break m ↔ n symmetry, the

final result (up to unimportant overall integer factor) still respects it. The sum (2.30) can

be explicitly written as follows:

Z =

mn−1∑
α=0

∑
ν∈Z2(mn−1)

∑
a∈Zmn+1

χ
SU(2)mn−1/U(1)2(mn−1)

α;ν̄ χ
U(1)2

Q

(ma,n(a+ν))

· χ̄SU(2)mn−1×SO(2)1/U(1)2(mn+1)

ᾱ;2a+ν (2.37)

where (ma, n(a + ν)) ∈ CokerQ ≡ Z2/QZ2 if we treat Q as an operator Q : Z2 → Z2.

Note that the symmetry under exchange m ↔ n can be seen via the following change

of summation indices: a = a′ + ν ′, ν = −ν ′ and taking into account the fact that the

SU(2)/U(1) characters are invariant under ν̄ ↔ −ν̄.

Of course, the formula (2.37) for the partition function directly lifts to the following

decomposition of the Hilbert space of the IR CFT on a circle:

H =

mn−1⊕
α=0

⊕
ν∈Z2(mn−1)

⊕
a∈Zmn+1

HSU(2)mn−1/U(1)2(mn−1)

α;ν̄ ⊗H
U(1)2

Q

(ma,n(a+ν))

⊗ H̄SU(2)mn−1×SO(2)1/U(1)2(mn+1)

ᾱ;2a+ν (2.38)

where HV∗ and H̄V∗ denote the modules of holomorphic and anti-holomorphic vertex oper-

ator algebra (VOA) V respectively.

For example consider the simplest case, m = 2, n = 1 in the NS sector. In the

right-moving sector we then have cR = 1 i.e. N = 2 minimal model with 3 primaries:

α = 0, 2a+ ν = 0 mod 6, L̄0 = 0, J̄0 = 0,

α = 1, 2a+ ν = ±1 mod 6, L̄0 = 1/6, J̄0 = ±1/3,
(2.39)
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where L̄0 and J̄0 denote conformal dimensions and R-charges respectively. The SU(2)/U(1)

characters in the left-moving sector are 1 when (α, ν) = (0, 0) or (α, ν) = (1, 1) and zero

otherwise. It follows that the sum (2.37) has 3 non-zero terms corresponding to 3 primaries

in (2.39):

α = 0, ν = 0 mod 2, a = 0 mod 3,

α = 1, ν = 1 mod 2, a = 0 mod 3,

α = 1, ν = 1 mod 2, a = −1 mod 3.

(2.40)

The superconformal index picks only BPS primaries with L̄0 + J̄0/2 = 0. This agrees with

the UV index calculation:5

θ(q1/2e−x−y)θ(q2/3e−2x)θ(q2/3e−y)

θ(q1/6ex)θ(q1/3ey)
= χ

U(1)2
Q

(0,0) (x, y)− χ
U(1)2

Q

(−2,0)(x, y). (2.41)

2.2.1 Comparison with Koszul homology

As an independent check of the validity of the IR solution let us show that it is consistent

with the UV calculation of the topological heterotic ring (see section 2). For the model

with superpotential (2.22) the corresponding Koszul complex is the following:

C = 0
d−→ ∧3E d−→ ∧2E d−→ ∧1E d−→ ∧0E d−→ 0 (2.42)

where

E = SpanC{Ψ̄i}3i=1 ⊗ C[Φ1,Φ2] ∼= C[Φ1,Φ2]3, (2.43)

and the differential is given by the interior derivative:

d = ıJ , J = Ψ1Φm
1 + Ψ2Φn

2 + Ψ3Φ1Φ2 ∈ E∗. (2.44)

It is easy to see that:

H3(C,d) = 0,

H2(C,d) = 0,

H1(C,d)∼= SpanC{Ψ̄3Φm−1
1 Φb

2−Ψ̄1Φb+1
2 }n−1

b=0 ⊕SpanC{Ψ̄3Φn−1
2 Φa

1−Ψ̄2Φa+1
1 }m−2

a=0 ,

H0(C,d)∼= SpanC{Φa
1}m−1
a=0 ⊕SpanC{Φb

2}n−1
b=1 ,

(2.45)

where the generating elements in the right hand side can be understood as representatives

of H∗ from C. Obviously, d commutes with the generators of U(1)×U(1) flavor symmetry,

so that H∗ is equipped with the corresponding Z2 grading. The generators in (2.45) have

well defined U(1)×U(1) charges. Their spectrum is depicted in figure 1.

In the IR the BPS spectrum of the proposed solution reads

HBPS≡H|L̄0+J̄0/2=0 =
mn−1⊕
α=0

⊕
ν ∈Z2(mn−1)

a∈Zmn+1

2a+ν=−α mod 2(mn+1)

HSU(2)mn−1/U(1)2(mn−1)

α;ν̄ ⊗H
U(1)2

Q

(ma,n(a+ν))

(2.46)

5Note that the last theta-functions in the numerator and denominator cancel each other.
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Figure 1. The plane of U(1)(1) × U(1)(2) charges in the case m = 5, n = 4. The colored dots are

in one-to-one correspondence with the generators of H∗. The red (green) dots correspond to the

generators of H0 (H1).

and has structure of a holomorphic Z2 graded6 CFT. The topological heterotic ring forms

its finite dimensional subspace

HTop = HBPS|L0=q/2 = H|L̄0+J̄0/2=0, L0=q/2 (2.47)

with

q =
nq1 +mq2

mn+ 1
(2.48)

where q` is U(1)(`) charge. This combination follows from the fact that q defined above is

equal to the R-charge for the chiral superfields (2.24).

Using expressions (2.45) and (2.46) one can explicitly check that indeed

H∗(C, d) ∼= HTop (2.49)

as Z2×Z2 graded vector spaces.7 Let us write how the isomorphism map in (2.49) acts on

the generators in (2.45). First,

Φq1
1 7−→ hq1,0, q1 = 0 . . .m− 1. (2.50)

The two subscripts of h denote the charge with respect to U(1)(1) and U(1)(2) respectively

and

hq1,0 ∈ H
SU(2)mn−1/U(1)2(mn−1)

α;ν̄ ⊗H
U(1)2

Q

(ma,n(a+ν))

∣∣∣∣
α=nq1,a=0,ν=−nq1

, (2.51)

is the primary from the first factor (coset module) tensored with the unique element from

the second factor (lattice VOA module) that has U(1)2 charges (q1, 0) and minimal value

of L0. Such element exists because

(q1, 0) = (0,−n2q1) mod QZ2. (2.52)

6Z2 grading on HBPS = H|L̄0+J̄0/2=0 descends from Z2 (Fermion number) grading 2(L0 − L̄0) mod 2

on the total Hilbert space H.
7The isomorphism should also be valid on the level of rings. The ring structure on HTop descends from

the OPE structure on HBPS. We will not perform this analysis here and leave it as an exercise.
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The condition L0 − q/2 = 0 is satisfied because

α(α+ 2)

4(mn+ 1)
− ν2

4(mn− 1)
+

1

2
( q1 q2 )Q−1

(
q1

q2

)
− nq1 +mq2

2(mn+ 1)

∣∣∣∣∣ α = nq1,

ν = −nq1,
q2 = 0

= 0. (2.53)

Second,

Ψ̄3Φn−1
2 Φq1−1

1 − Ψ̄2Φq1
1 7−→ hq1,n, q1 = 1 . . .m (2.54)

where

hq1,n ∈ H
SU(2)mn−1/U(1)2(mn−1)

α;ν̄ ⊗H
U(1)2

Q

(ma,n(a+ν))

∣∣∣∣
α=nq1−1,a=0,ν=−nq1+1

(2.55)

is the primary from the first factor (coset module) tensored with the unique element from

the second factor (lattice VOA module) that has U(1)2 charges (q1, n) and minimal value

of L0. Again, such element exists because

(q1, n) = (0, n(−nq1 + 1)) mod QZ2, (2.56)

and the condition L0 − q/2 = 0 is satisfied since

α(α+ 2)

4(mn+ 1)
− ν2

4(mn− 1)
+

1

2
( q1 q2 )Q−1

(
q1

q2

)
− nq1 +mq2

2(mn+ 1)

∣∣∣∣∣ α = nq1 − 1,

ν = −nq1 + 1,

q2 = n

= 0. (2.57)

The analysis for other elements in (2.45) is the same because of the symmetry under

simultaneous exchange

m↔ n, q1 ↔ q2, Φ1 ↔ Φ2, Ψ1 ↔ Ψ2. (2.58)

Finally let us note that the U(1)2 equivariant Euler characteristic of H∗(C, d) ∼= HTop

can be computed from the superconformal index in the NS sector by rescaling flavor fu-

gacities and then taking q → 0 limit (2.13):

θ(q
1− m+n

2(mn+1) e−x−y)θ(q
1− mn

2(mn+1) e−mx)θ(q
1− mn

2(mn+1) e−ny)

θ(q
n

2(mn+1) ex)θ(q
m

2(mn+1) ey)

∣∣∣∣∣ ex → q
− n

2(mn+1) ex

ey → q
− m

2(mn+1) ey

q→0−→ (1− ex+y)(1− emx)(1− eny)
(1− ex)(1− ey)

. (2.59)

2.3 p = 2, q = 2

With two chiral fields and two Fermi fields we can write down the following Lagrangian∫
dθ+ Ψ1(Φm

1 + Φn
2 ) + Ψ2Φ1Φ2, m, n ∈ Z+ (2.60)

This model is simplest to analyze when either m or n is 1, say m = 1. The equation of

motion for Ψ1 implies Φ1 = −Φn
2 . Integrating out Ψ1 and Φ1, we get the interaction∫

dθ+ Ψ2Φn+1
2 . (2.61)
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This is the Lagrangian for n-th N = (2, 2) minimal model. Computation of the central

charges and cohomology supports this conclusion. The trial right-moving central charge as

a function of the R-charge of the Fermi field Ψ1 is

cR = 3

((
1− 1−rΨ1

n

)2

+
(

1−(1−rΨ1)
)2
−r2

Ψ1
−
(

1− 1−rΨ1

n
−1−rΨ1

)2
)
. (2.62)

Extremizing with respect to rΨ1 ,

rΨ1 =
2

n+ 2
⇒ cR =

3n

n+ 2
(2.63)

This is exactly the central charge of the n-th minimal model. The gravitational anomaly

is the difference between right-moving and left-moving central charge. It is given by

cR − cL = Trγ3. (2.64)

In this model, the number of chiral and Fermi multiplet is the same and hence cL = cR. This

is consistent with the N = (2, 2) minimal model. We compute the topological heterotic

ring of the Landau-Ginzburg model using (2.8).

H2(C, d) = 0, (2.65)

H1(C, d) = 0, (2.66)

H0(C, d) ∼= SpanC{Φi
1}ni=0. (2.67)

The only nontrivial cohomology is H0 and it has dimension n + 1 as expected of the

N = (2, 2) minimal model.

For general values of m and n, the c-extremization and vanishing of the gravitational

anomaly gives

cL = cR =
3mn

mn+ 2
. (2.68)

It is tempting to identify the infrared CFT again with the N = (2, 2) minimal model but

computation of the cohomology rules out this possibility. For general values of m,n

H2(C, d) = 0, (2.69)

H1(C, d) = 0, (2.70)

H0(C, d) ∼= SpanC{Φi
1}ni=0 ⊕ SpanC{Φ

j
2}
m−1
j=1 . (2.71)

The dimension of H0 is m + n and not mn + 1 as expected from the mn-th N = (2, 2)

minimal model. The right-moving supersymmetry guarantees that the right-moving part

of the CFT is the chiral half of the mn-th N = 2 minimal model but the left-moving part

is not as straightforward to determine. We can still make progress by noting the existence

of a left-moving U(1) current. Under this symmetry the charges of the superfields Φ1,2

and Ψ1,2 are −m, −n and mn, (m+n) respectively. Here we have chosen to normalize the

charge so that they are integers. The ’t Hooft anomaly for this symmetry is

Trγ3 FF = −(mn)2 − (m+ n)2 +m2 + n2 = −mn(mn+ 2). (2.72)
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This abelian symmetry contributes 1 to the left-moving central charge. The left-over central

charge c = 2(mn−1)/(mn+2) < 2. As in the previous case we propose that it is contributed

by chiral SU(2)/U(1) WZW coset. The spectrum of the theory is then of the type(
SU(2)mn
U(1)2mn

×U(1)mn(mn+2)

)
⊗
(

SU(2)mn × SO(2)1

U(1)2(mn+2)

)
. (2.73)

Where we have used again the coset representation of the N = 2 minimal model on

the right-moving side. The characters on the left-moving and right-moving side can be

combined in a modular invariant way. This is anticipated by noticing that the level of

SU(2) piece is the same on both sides. As for the U(1) factors, the existence of a modular

invariant pairing follows from the rational equivalence of quadratic forms,(
mn(mn+ 2) 0

0 2(mn+ 2)

)
Q∼

(
2mn 0

0 1

)
. (2.74)

This follows from the same reasoning as in the previous subsection. The torus partition

function is expressed in terms of affine characters as,

Z =
∑

λ,α,µ,ν

Cα,µ̄,ν̄ χ
SU(2)mn/U(1)2mn

λ;ᾱ χ
U(1)mn(mn+2)
µ · χ̄SU(2)mn×SO(2)1/U(1)2(mn+2)

λ̄;ν
. (2.75)

As the individual components of the low energy theory (2.73) depend only on the product

mn, the separate dependence on m and n has to come from the coefficients Cα,µ̄,ν̄ . As in

the previous subsection, the choice of coefficients C depends on the rational transformation

that leads to the equivalence (2.74). Suppose the rational transformation,(
x

y

)
=

(
a b

c d

)(
u

v

)
,

(
a b

c d

)
∈ GL(2,Q) (2.76)

does the job i.e.,

2mnx2 + y2 = mn(mn+ 2)u2 + 2(mn+ 2) v2. (2.77)

Although we could not find an analytic formula for the rational transform as a function

of the pair (m,n), we checked in a number examples that for given numbers m and n one

can present an explicit rational transform which produces pairing coefficients Cα,µ̄,ν̄ for

which the low energy calculation of the topological heterotic ring agrees with (2.71). We

present a few cases below.

2.3.1 Example: (m,n) = (1, 6)

The modular invariant pairing corresponding to the rational transform(
x

y

)
=

(
1 −1

6 2

)(
u

v

)
, (2.78)

reads

H =

6⊕
λ=0

⊕
α∈Z12

⊕
s∈Z8

HSU(2)6/U(1)12

λ;ᾱ ⊗HU(1)48

6s+α ⊗ H̄
SU(2)6×SO(2)1/U(1)16

λ̄;2s−α . (2.79)

– 13 –



J
H
E
P
0
2
(
2
0
2
0
)
0
6
1

The BPS spectrum is given by

HBPS ≡ H|L̄0+J̄0/2=0 =
6⊕

λ=0

⊕
`∈Z6

HSU(2)6/U(1)12

λ;2`+λ ⊗HU(1)48

8`+λ . (2.80)

The charge q in (2.5) which is used to define the topological heterotic ring is related to

q, the charge of the U(1) flavor symmetry as q = q/(mn + 2) = q/8. It follows that the

topological heterotic ring HTop is a 7-dimensional subspace of HBPS:

HTop ≡ HBPS|L0=q/2 = SpanC{hλ,λ,λ}6λ=0 (2.81)

where hλ,α,µ denotes the primary of HSU(2)6/U(1)12

λ;α ⊗HU(1)48
µ . It is easy to see that this is

in agreement with the Koszul homology (2.71).

In fact, when either of m or n is 1, say m = 1, then the rational transformation(
x

y

)
=

(
1 −1

n 2

)(
u

v

)
, (2.82)

always gives the right low energy spectrum.

2.3.2 Example: (m,n) = (2, 3)

One can choose the following rational transform:(
x

y

)
=

1

7

(
11 5

30 −22

)(
u

v

)
. (2.83)

It produces the following modular invariant pairing

H =
6⊕

λ=0

⊕
α∈Z12

⊕
s∈Z8

HSU(2)6/U(1)12

λ;ᾱ ⊗HU(1)48

6s+5α ⊗ H̄
SU(2)6×SO(2)1/U(1)16

λ̄;2s−5α
. (2.84)

The BPS spectrum is given by

HBPS ≡ H|L̄0+J̄0/2=0 =
6⊕

λ=0

⊕
`∈Z6

HSU(2)6/U(1)12

λ;2`+λ ⊗HU(1)48

−8`+17λ. (2.85)

The topological heterotic ring HTop is its 5-dimensional subspace

HTop ≡ HBPS|L0=q/2 = SpanC{h0,0,0, h2,−2,2, h3,3,3, h4,−4,4, h6,6,6} (2.86)

Which is again in perfect agreement with the Koszul homology (2.71).

2.3.3 Another example

Finally, let us note that the rational transform(
x

y

)
=

(
2 0

0 4

)(
u

v

)
, (2.87)
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also implies (2.77) with mn = 6. It provides the following modular invariant pairing:

H =
6⊕

λ=0

⊕
α∈Z12

⊕
s∈Z2

⊕
r∈Z4

HSU(2)6/U(1)12

λ;ᾱ ⊗HU(1)48

24s+2α ⊗ H̄
SU(2)6×SO(2)1/U(1)16

λ̄;4r
. (2.88)

However the resulting topological heterotic ring Htop is 1-dimensional and therefore does

not correspond to a LG model (2.60) for any m and n. The sums over α and s in can be

performed and give SU(2)6 modules in the left-moving sector:

H =

6⊕
λ=0

⊕
r∈Z4

HSU(2)6

λ ⊗ H̄SU(2)6×SO(2)1/U(1)16

λ̄;4r
. (2.89)

This is a “(0, 2) minimal model” of the type considered in [18]. In general, when mn =

2(Q2 − 1), Q ∈ Z, there is a rational transform(
x

y

)
=

(
Q 0

0 2Q

)(
u

v

)
(2.90)

which produces modular invariant pairing that does not correspond to a LG model (2.60),

but corresponds to a model in [18].

3 Solvable models with non-abelian symmetry

The Landau-Ginzburg models studied so far did not have any non-abelian symmetries. In

this section, we consider a model that has a U(N) symmetry. At low energy this symmetry

enhances to an infinite dimensional affine symmetry. Using the arguments of ’t Hooft

anomaly matching and Sugawara central charge saturation we are able to determine its

low energy theory. The philosophy is similar to that of [7].

Consider a family of (0, 2) LG theories labeled by N ∈ Z+ that have U(N) = (SU(N)×
U(1))/ZN flavor symmetry and the following matter content:

• Chiral multiplet in anti-fundamental (�̄) representation: Φi

• Fermi multiplet in symmetric (Sym2�) representation: Ψij

and the J-type superpotential ∫
dθ+ ΨijΦiΦj + c. c. (3.1)

Note that when N = 2 the supersymmetry is enhanced to (2,2) and the theory at hand flows

to the first non-trivial N = 2 minimal model in both left- and right-moving sectors [14].

The theory has the following ’t Hooft and gravitational anomalies:

Tr γ3J2
SU(N) = T (Sym2�)− T (�̄) =

N + 1

2
(3.2)

Tr γ3J2
U(1) = 4

N(N + 1)

2
−N = 2N2 +N (3.3)

cL − cR = Tr γ3 =
N(N + 1)

2
−N =

N(N − 1)

2
(3.4)
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Since ’t Hooft anomalies are protected under RG flow it follows that the left-moving sector

of the CFT in the infrared contains the following WZW chiral algebra:

CFTL ⊃ SU(N)N+1 ×U(1)N(2N+1) (3.5)

The theory has a normalizable vacuum state (classically all bosonic fields vanish) and so one

can apply c-extremization procedure [8] to the following probe right-moving central charge:

cR = 3 Tr γ3R2 = 3N (RΦ − 1)2 − 3
N(N + 1)

2
R2

Ψ (3.6)

where RΦ and RΨ are R-charges of the chiral and Fermi multiplets respectively which are

subject to the following constraint given by the J-type superpotential:

2RΨ +RΦ = 1 (3.7)

The result gives us the following IR values:

RΦ =
N

2N + 1
RΨ =

1

2N + 1
, (3.8)

cR =
3N(N + 1)

4N + 2
cL =

N(N2 +N + 1)

2N + 1
(3.9)

Interestingly, the left-moving central charge coincides with the Sugawara central charge of

WZW model in (3.5). In general from (3.5) one only expects inequality cL ≥ cSugawara.

Since it is saturated, it follows that in the left moving sector of the IR CFT should coincide

with chiral WZW in (3.5):

CFTL = SU(N)N+1 ×U(1)N(2N+1) (3.10)

We conjecture that the right-moving sector is described in terms of a KS coset model

with N = 2 supersymmetry [19, 20]:

CFTR =

[
SO(2N + 2)

U(N + 1)

]
2N+1

∼=
SO(2N + 2)1 × SO(N(N + 1))1

SU(N + 1)N ×U(1)(N+1)(2N+1)
(3.11)

Where the second equality expresses the supersymmetric WZW coset as an ordinary

bosonic coset. Note that N(N +1) is the difference between dimensions of SO(2N +2) and

U(N + 1). The claim is based on the fact that the central charge is indeed as in (3.9) and,

most importantly, on the fact that there is a natural pairing between primaries of (3.10)

and (3.11) that gives a modular invariant partition function. The argument is parallel

to the one made in [7] where we refer the reader for details. Below we present the main

ideas. The pairing is a version of level-rank duality and is given explicitly by the following

conformal embedding:

U(1)1 ×U(N(N + 1))1

∼=
(
SU(N)N+1 ×U(1)N(2N+1)

)
×
(
SU(N + 1)N ×U(1)(N+1)(2N+1)

)
(3.12)

Since the chiral algebra in the left hand side has only one irreducible module, characters of

the two factors in the right hand side transform in conjugate representations of the modular

group. The numerator in the right hand side of (3.11) has a natural module invariant under

the action of modular group which can be realized by free chiral fermions.
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