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1 Introduction

The double copy is a relation between gauge theory and gravity, which originated in the

structure of scattering amplitudes in these theories. It was first noticed in the context of

string theory [1], and was later explored for the calculation of scattering amplitudes in

gravity theories [2, 3], where it became a formidable tool. See ref. [4] for a recent review.

The intuitive idea of the double copy is that calculations for spin-2 particles are some-

how ‘factorisable’ into calculations for spin-1 particles. If we think in terms of the represen-

tations of the Lorentz group for massless particles, however, we notice imediately that the

tensor product of spin-1 states leads to more than spin-2 states. Take the basis of positive

and negative helicities {ǫ+µ , ǫ−µ } for spin-1 states in four dimensions. Then the ‘product-

gravity’ states are {ǫ+µ ǫ+ν , ǫ−µ ǫ−ν , ǫ+µ ǫ−ν , ǫ−µ ǫ+ν }, the first two of which are graviton states of

positive and negative helicities. The two extra states correspond to a scalar (dilaton) and a

pseudo-scalar (axion): the symmetric and antisymmetric combinations, respectively. This

four-dimensional argument has a natural extension to any number of spacetime dimensions

(with the axion substituted by the more general B-field), as we shall discuss. From these

– 1 –



J
H
E
P
0
2
(
2
0
2
0
)
0
4
6

considerations, we see that the double copy of gauge theory will generically involve these

additional fields, not just the graviton. The non-vacuum gravity solution under study

in this paper, the Janis-Newman-Winicour solution, will provide a simple example of the

inclusion of an additional field — the dilaton.

Interactions in the ‘product-gravity’ theory arise via the double copy from interactions

in Yang-Mills theory, after stripping off the colour dependence of the latter in an appropri-

ate manner. The rules of the double copy for scattering amplitudes provide a prescription

for this. One question that has motivated much recent work is how to extend these ideas

beyond scattering amplitudes, in particular to solutions of the classical equations of motion.

The translation into this new setting is not trivial, and there are three obvious reasons for

this. The first reason is that the solutions are typically expressed in coordinate space,

rather than in momentum space, which is used for scattering amplitudes. The second

reason is that scattering amplitudes exhibit gauge invariance, whereas explicit formulas

for solutions depend on gauge choices. The third reason is that scattering amplitudes are

studied in perturbation theory, and the rules of the double copy apply separately at each

perturbative order. It is not clear a priori whether an exact solution in gravity can be

expressed in a simple manner as a double copy of a gauge-theory solution.

Despite these difficulties, there is definite progress in relating exact solutions in gravity

and gauge theory via the double copy. This is possible for a class of vacuum solutions in

gravity, that of stationary Kerr-Schild spacetimes [5], where much work has been done in

this context; see e.g. [6–21]. The basic example is the relation of the Schwarzschild and

Coulomb solutions. More generally (in four dimensions), it applies to vacuum type-D space-

times [15], relating, for instance, the C-metric to an analogous Lienard-Wiechert potential.

These cases involve vacuum spacetimes, and yet we argued above that, more generally, the

double copy should involve the dilaton and the B-field. An extension of the Kerr-Schild

class of solutions that is well suited to deal with these fields was proposed in [22], based on

the formalism of double field theory [23–28]. Several examples were considered with non-

trivial configurations for the dilaton and the B-field. We will review and further extend this

construction below. An extension to ‘heterotic gravity’ was also given a double-copy inter-

pretation [29]. These developments clearly demonstrate that the ‘double’ in double copy

and double field theory is indeed related; see [30, 31] for earlier insights. Moreover, the dou-

ble field theory approach explicitly relates the left-/right-moving factorisation associated

to string theory, which is at the origin of the double copy, to the Kerr-Schild ansatz.

The progress in understanding solutions with dilaton and B-field raises a natural ques-

tion. It has been argued that the double copy of a point charge (Coulomb) is not simply

Schwarzschild, which is the example from the original Kerr-Schild double copy; it is an

asymptotically-flat, static, spherically-symmetric solution containing a dilaton field [32, 33].

Ref. [33] further argued that the double copy may be naturally defined to admit the dilaton

or not, i.e., that it is not unique. The general double copy of a point charge was identified

as the Janis-Newman-Winicour (JNW) solution [34]. The latter possesses two parameters,

one associated to the graviton field and the other associated to the dilaton; the particu-

lar case of vanishing dilaton is the Schwarzschild solution. Here, we will present further

arguments for why the double copy of a point charge is the full Janis-Newman-Winicour
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solution. Not only will we generalise the perturbative analysis of ref. [33], but we will

actually present an exact map between the JNW solution and the Coulomb solution, along

the lines of the Kerr-Schild double copy. This will involve extending the Kerr-Schild ansatz

in double field theory, beyond the class of solutions considered in [22].

One apparent puzzle is that the ‘single-copy’ gauge-theory solutions that are associated

to the examples above are all Abelian. They trivialise the colour dependence. The solution

to this puzzle is that many non-trivial gravity solutions (such as Schwarzschild or Kerr) are

effectively linear, as is manifestly the case if they are of Kerr-Schild type. In fact, if we can

write down an exact solution to the Einstein equations with a finite number of independent

parameters, that solution should be ‘linear’ in each parameter, in some sense. In this paper,

we will see that this applies also to a solution, JNW, that deviates considerably from the

Kerr-Schild property.

It is striking that a double-copy map between certain exact solutions, as explored

here, is possible at all. Generically, the expected setting for the classical double copy is

perturbative. This is how most discussions of the double copy for classical solutions have

proceeded: the first approaches [35–37], constructions based on the local symmetries [33,

38–42], use of the worldline formalism [32, 43–52], and perturbation theory on curved

backgrounds [53, 54]. A double copy for classical observables (rather than solutions to the

equations of motion) that follows more directly from that of scattering amplitudes has been

explored with a view to gravitational phenomenology [55–71], a subject of obvious interest

following the discovery of gravitational waves.

This paper is structured as follows. Section 2 contains a brief review and an overview

of the paper. In section 3, we use a perturbative construction to interpret the JNW solution

as a double copy. In section 4, we use an exact construction to interpret the JNW solution

as a double copy, based on the formalism of double field theory. We conclude with a

discussion of future directions in section 5.

2 Double-copy construction

In the first part of this section, we present an overview of the double-copy construction,

leaving greater detail for later sections. In the second part of this section, we review the

JNW spacetime, whose double-copy relation to a point charge is the focus of our paper.

2.1 Basics

The starting point for the double copy is the tensor product structure between asymptotic

states of perturbative scattering in Yang-Mills theory (stripped of colour) and gravity. The

simplest example relates a product of polarisation vectors ǫµ and ǫ̃ν to a polarisation tensor

εµν ,

εµν = ǫµ ǫ̃ν . (2.1)

Since the polarisation vectors span a (D − 2)-dimensional space, they induce a (D − 2)2-

dimensional basis for the (generically non-factorisable) polarisation tensors in gravity. This

gravity theory contains not only the graviton, but also an antisymmetric two-form field (B-

field) and a scalar field (dilaton). The decomposition into these component fields can be
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written as

εµν = ε(h)µν + ε(B)
µν + ε(φ)µν , (2.2)

with

ε(h)µν = ε(µν) −
∆µν

d− 2
ελλ , ε(B)

µν = ε[µν] , ε(φ)µν =
∆µν

d− 2
ελλ . (2.3)

The projector ∆µν is associated to the completeness relation,

D−2
∑

r=1

ǫ(r)µ ǫ(r)∗ν = ηµν −
kµqν + kνqµ

k · q ≡ ∆µν . (2.4)

The low-energy interactions between the asymptotic states are basically fixed by gauge

invariance, in both Yang-Mills theory and gravity. In the gravity case, the relevant theory

(containing the dilaton and the B-field) is sometimes called NS-NS gravity, due to its

appearance in the zero-mass level of the closed string, or alternatively N = 0 supergravity.

We shall discuss it further below. Remarkably, a factorisation reminiscent of (2.1) exists

for the full (interacting) theories, which follows from the relation between open and closed

strings. In the context of scattering amplitudes A, the double copy can be expressed in

different formalisms, but we may schematically represent it as

ANS-NS-grav(ǫ
i
µǫ̃

i
ν) = AYM(ǫ iµ) ⊗dc AYM(ǫ̃ iµ) . (2.5)

That is, the scattering amplitudes in gravity are given as a double copy of those in gauge

theory. The ‘double-copy product’ ⊗dc involves inverse propagators and, of course, the

stripping off of the colour dependence in the gauge theory amplitudes.

The remarks above have a coordinate-space analogue, where the double copy of Yang-

Mills fields Aa
µ and Ãa

µ leads to a gravity field Hµν , dubbed the ‘fat graviton’, with (D−2)2

degrees of freedom [33]. In this construction, to be reviewed in detail in section 3.1, the

linearised ‘fat graviton’ has a decomposition in terms of graviton, B-field and dilaton,

analogous to (2.2). In particular,

Hµν = hµν +Bµν + P q
µν(φ− h) , (2.6)

where P q
µν is a coordinate-space version of ∆µν/(D − 2). To go beyond the free theory,

one needs only the double copy. In particular, a Lagrangian for Hµν can be constructed

order by order in perturbation theory so as to obey the double copy for the scattering

amplitudes (2.5). The three-point interaction is explicitly discussed in section 3.2, for

instance. Starting from a solution to the linearised theory, we can correct the solution

order by order using those interactions. In sufficiently symmetric cases, one may be able

to resum the perturbative solution, thereby obtaining an exact solution.

With this reasoning, the classical double copy is determined once we have the linearised

classical double copy (at least for solutions that are continuously connected to the trivial

solution). Consider the Coulomb solution in Yang-Mills theory,

Aa
µ = −ca

r
uµ , (2.7)
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where uµ = (−1, 0, 0, 0) and ∂µc
a = 0. The latter condition linearises the Yang-Mills

equations, and therefore the solution is both linearised and exact. We may therefore

substitute ca by a Maxwell electric charge. The question is now what is its double copy. A

natural guess is1

Hµν =
κM

8π r
uµuν , (2.8)

which solves the linearised equations of motion. Notice that the B-field vanishes as Hµν

is symmetric. Given that this is a static, spherically symmetric and asymptotically flat

solution to the Einstein equations with a minimally-coupled scalar field (the dilaton), the

exact solution is unique and known explicitly. It is the JNW solution, to be reviewed in the

next subsection. This solution possesses two parameters, M and Y , which are associated

respectively to the graviton field and the dilaton. The case above corresponds to the

solution with M = Y . The double-copy interpretation of this solution was also discussed

in [32], based on a worldline formalism for constructing solutions. For reference, the ‘fat

graviton’ field (at linearised level) for the JNW solution can be written as

Hµν =
κ

2

1

4πr

(

M uµuν + (M − Y )
1

2
(ηµν − qµlν − qν lµ)

)

, (2.9)

where qµ = (1, 0, 0, 1) and lµ = (0, x, y, r + z)/(r + z) [33].

There is another natural guess for the double copy of the point charge, though — the

Schwarzschild solution. Suppose that we write the Coulomb solution in a different gauge,

A′a
µ = −ca

r
kµ , (2.10)

where kµ = (1,x/r). Then a natural guess for the corresponding metric is

gµν = ηµν +
κ2M

8π r
kµkν . (2.11)

This turns out to be the Schwarzschild solution in Kerr-Schild coordinates. So now we have

a vacuum solution, i.e., no dilaton. Indeed, the Schwarzschild solution is a particular case of

the JNW solution, the one where Y = 0. The metric exhibits in Kerr-Schild coordinates the

property that it is both linearised and exact. This property was instrumental in interpreting

the exact solution as the double copy of a point charge in [5], and this conclusion extends

to many other cases, including the Kerr and Taub-NUT metrics — in fact, it extends to

all vacuum type D spacetimes [15]. This double-copy interpretation is further supported

by more recent arguments involving solution-generating techniques, computations with

scattering amplitudes, duality considerations, and asymptotic symmetries [20, 64, 66, 69,

72]. Notice that, in terms of the ‘fat graviton’ (2.9), the Schwarzschild case (Y = 0) does

not look particularly simple.

1We will define later our normalisation conventions.
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Each of the examples looks more natural for certain coordinates or field choices. They

are also consistent with the linearised double-copy ideas developed in [38–41].2 We argue,

following [33], that the general JNW solution should be interpreted as the double copy

of a point charge. In fact, we will find in this paper an exact double-copy map from the

JNW solution to the Coulomb solution, along the lines of the Kerr-Schild double copy

(even though the solution is not of Kerr-Schild type). Of the two parameters of the JNW

solution, M and Y , only a combination survives in the ‘single copy’, associated to the

charge parameter of the Coulomb solution. Logically, the reverse path — from Coulomb to

JNW — must allow for the introduction of an additional parameter, which distinguishes

M and Y , as argued above.

From our initial considerations with polarisation vectors and tensors, the analogue

statement is that, with a pair of polarisation tensors ǫµ and ǫ̃µ, it is natural to consider

different tensorial structures for the ‘product’, namely ǫ(µǫ̃ν), ǫ[µǫ̃ν], and also ∆µν ǫ · ǫ̃. With

a single polarisation vector in hand, say ǫµ, the most general double copy is the combination

C(h)

(

ǫµǫν −
∆µν

d− 2
ǫ · ǫ

)

+ C(φ) ∆µν

d− 2
ǫ · ǫ , (2.12)

where C(h) and C(φ) are the two parameters. This is the analogue of the JNW solution.

With two distinct polarisation tensors, ǫµ and ǫ̃µ, it is also natural to tune the B-field

component.

2.2 The JNW solution

We are interested in a static, spherically symmetric solution first obtained by Janis, New-

man and Winicour (JNW) [34]. This solution to the Einstein equations with a minimally-

coupled scalar reads

ds2 = −
(

1− ρ0
ρ

)γ

dt2 +

(

1− ρ0
ρ

)−γ

dρ2 +

(

1− ρ0
ρ

)1−γ

ρ2dΩ2, (2.13)

φ =
κ

2

Y

4πρ0
log

(

1− ρ0
ρ

)

. (2.14)

The two parameters ρ0 and γ can be given in terms of the mass M and the scalar coupling

Y as

ρ0 = 2G
√

M2 + Y 2 =
(κ

2

)2
√
M2 + Y 2

4π
, γ =

M√
M2 + Y 2

. (2.15)

The special case for which Y = 0 and M > 0 (and therefore γ = 1) is the Schwarzschild

solution. If M > 0 but the dilaton field is non-vanishing, i.e., |Y | > 0, then the solution is

still asymptotically flat, but there is a naked singularity at zero radius, which corresponds

2This is based on a convolution with a certain scalar field, related to the bi-adjoint scalar. With spherical

symmetry, the procedure roughly amounts to 1/r = (1/r) ∗ inv(1/r) ∗ (1/r), where, on the right-hand side,

the first and third factors come from the pair of Coulomb solutions, and in the middle factor “inv” denotes

an inverse with respect to the convolution ∗. This justifies the fact that the exact classical double copy

works locally in coordinate space for a special class of solutions (and gauges), whereas in general one expects

the double copy to work locally only in momentum space.
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to ρ = ρ0 since the 2-sphere factor vanishes in the line element. This naked singularity is

not surprising because the uniqueness theorems prevent a scalar-hair deformation of the

Schwarzschild solution.

The JNW solution is a natural point charge solution in the double-copy gravity theory,

i.e., NS-NS gravity, so it is not surprising that it is related to the Coulomb solution. In the

exact double-copy construction of section 4, we will find that, for any solution to NS-NS

gravity that respects a certain Kerr-Schild-inspired ansatz, there are two corresponding

solutions to the Maxwell equations,

Rµν = 0 ⇒ ∂µFµν = 0 , ∂µF̄µν = 0 . (2.16)

Here, Rµν is a double field theory analogue of Rµν for vacuum gravity. The Maxwell

solutions with field strength Fµν and F̄µν are the pair whose double copy is the NS-NS

gravity solution, and they are associated respectively to left and right movers from a string

theory interpretation. For the JNW solution, Fµν = F̄µν , and they correspond to Coulomb.

In the vacuum case, where JNW reduces to Schwarzschild, this coincides with the original

Kerr-Schild double copy.

3 Perturbative double copy

In this section, we follow a perturbative construction of the classical double copy presented

in [33]. In that work, this construction was illustrated by a particular case of the JNW

family, with M = Y , for which the calculations are easier. The aim of this section is to

apply the construction to a generic JNW solution, with M 6= Y . Below, we review the

formalism and its application to the linearised JNW solution, before studying the next

order in perturbation theory.

3.1 Linear level: review

The basic object in the construction of ref. [33] is the gravity field that naturally arises as

the double copy of Yang-Mills theory, denoted by Hµν , which was dubbed the ‘fat graviton’.

This field is a massless tensor with (D− 2)2 degrees of freedom. It provides an alternative

formulation, at least in perturbation theory, to Einstein gravity coupled to a dilaton field

φ and a two-form field Bµν . The latter is known as B-field or Kalb-Ramond field in the

context of string theory, where this gravity theory arises in the low energy limit of the

closed bosonic string. The action is

S =

∫

dDx
√−g

[

2

κ2
R− 1

2(D − 2)
(∂φ)2 − 1

6
e−2κφ/(D−2)(dB)2

]

, (3.1)

where (dB)µνλ is the field strength for Bµν . We use a particular normalisation of the fields

that simplifies some of the constant coefficients that appear in the perturbation theory.

The field associated to the metric may be expressed as the ‘gothic graviton’ hµν via3

√−g gµν = ηµν − κ hµν , (3.2)

3At linearised level, this coincides with the ‘trace-reversed graviton’, hµν = hµν − 1

2
ηµνh , where hµν is

the usual metric perturbation and h is its trace.
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for which the de Donder gauge is simply given by ∂µh
µν = 0 . Following [33], we refer to

hµν , φ and Bµν as the ‘skinny fields’, in contrast to the representation of the full content of

these fields in terms of the ‘fat graviton’ Hµν . Together, the ‘skinny fields’ have (D − 2)2

perturbative degrees of freedom, the same as the ‘fat graviton’.

Let us recall how this dictionary works at linearised level. Consider the de Donder

gauge for the graviton field, and a Lorentz-type gauge for the B-field, ∂µBµν = 0. Then

the linearised equations of motion for the ‘skinny fields’ are simply

∂2hµν = 0 , ∂2φ = 0 , ∂2Bµν = 0 . (3.3)

The ‘fat graviton’ is defined, at linearised level, as

Hµν = hµν +Bµν + P q
µν(φ− h) , (3.4)

where h = ηµνhµν and P q
µν is a coordinate-space realisation of a momentum-space projector,

which we will define momentarily. The ‘fat graviton’ is defined in this way so that it satisfies

both the Lorentz-type condition ∂µHµν = 0 and the equation of motion

∂2Hµν = 0 . (3.5)

Therefore, this field has a simple propagator. In order to incorporate the rules of the

perturbative (BCJ) double copy as they appear in scattering amplitudes [2], the next step

is to write the interaction vertices appropriately, in terms of those of a BCJ-Lagrangian

for Yang-Mills theory [73, 74]. We will see the simplest example in the next subsection, for

the three-point vertex.

The relation (3.4) can be easily inverted, so that

φ = Hµ
µ ≡ H, (3.6)

Bµν =
1

2
(Hµν −Hνµ) , (3.7)

hµν − P q
µνh =

1

2
(Hµν +Hνµ)− P q

µνH . (3.8)

It turns out that hµν and hµν − P q
µνh differ only by a diffeomorphism that does not affect

φ and Bµν to this order in perturbation theory; see [33] for more details.

The crucial object in the construction above is P q
µν , which is defined as a non-local

operator,

P q
µν =

1

D − 2

(

ηµν −
qµ∂ν + qν∂µ

q · ∂

)

. (3.9)

Here, qµ is a null reference vector which we take to be constant to avoid ambiguities. The

role of P q
µν in (3.4) is best understood by taking the ‘fat graviton’ to be a linearised plane

wave with polarisation tensor εµν , obeying the transversality condition kµεµν = kµενµ = 0 ,

and the gauge fixing condition qµεµν = qµενµ = 0 . Then, the definition (3.4) is simply a

coordinate-space version of the decomposition of this polarisation tensor into the ‘skinny

field’ polarisations, discussed previously in (2.2). The properties of the projector, ∆λ
λ =

– 8 –
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D− 2 and ∆λ
µ∆

ν
λ = ∆ν

µ , are inherited by (D− 2)P q
µν . We use the symbol q in P q

µν to keep

in mind the gauge dependence.

The application of this story to the four-dimensional JNW solution is straightforward.

First, we extract from the solution (2.13)–(2.14) the ‘skinny fields’. Moving to de Donder

gauge via the coordinate transformation ρ = r + ρ0/2 , we have

h(0)µν =
κ

2

M

4π r
uµuν , φ(0) = −κ

2

Y

4π r
, B(0)

µν = 0 , (3.10)

where uµ = (1, 0, 0, 0) . We have now introduced a superscript (0) to indicate that these

are the leading order contributions (in κ), i.e., the linearised fields, as opposed to the next-

to-leading order correction considered in the next subsection. The linearised fat graviton

then reads

H(0)
µν = h(0)µν − P q

µνh
(0) + P q

µνφ
(0)

=
κ

2

1

4π r

(

M uµuν + (M − Y )Pµν
q

(

1

r

))

=
κ

2

1

4πr

(

M uµuν + (M − Y )
1

2
(ηµν − qµlν − qν lµ)

)

.

(3.11)

The last step is the result of a computation in which the null reference vector was chosen

to be qµ = (1, 0, 0, 1), yielding lµ = (0, x, y, r + z)/(r + z), with q · l = 1.

3.2 Beyond linear level

Now we will discuss the first correction to the linearised theory. We start by presenting the

formalism, and then consider the JNW case. For simplicity, we set the B-field to vanish,

so that the fat graviton is symmetric.

3.2.1 Next-to-linear order formalism

In order to get the next-to-linear order term for the fat graviton, we apply the double

copy procedure: the three-point interaction is the double copy of the kinematic part of

the Yang-Mills three-point interaction. That is the whole point of working with the fat

graviton [33]. In momentum space,

H(1)µµ′

(−p1) =
1

4 p21

∫

d̄Dp2d̄
D p3δ̄

D(p1 + p2 + p3)

×
[

(p1 − p2)
γηµβ + (p2 − p3)

µηβγ + (p3 − p1)
βηµγ

]

(3.12)

×
[

(p1 − p2)
γ′

ηµ
′β′

+ (p2 − p3)
µ′

ηβ
′γ′

+ (p3 − p1)
β′

ηµ
′γ′

]

H
(0)
ββ′(p2)H

(0)
γγ′(p3) .

Notice how the unprimed and primed indices only contract with each other. The shorthand

notation for differentials and deltas is

δ̄D(x) ≡ (2π)Dδ(D)(x) ,

∫

d̄DpF (p) ≡
∫

dDp

(2π)D
F (p) . (3.13)
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Note that, due to the integration, we have a symmetry 2 ↔ 3. Introducing the notation

H
(0)
µν (pi) = H

(0)
i µν and using dots to denote the contractions,4

H(1)µµ′

(−p1)=
1

4p21

∫

d̄Dp2d̄
D p3δ̄

D(p1+p2+p3) (3.14)

×
[

H
(0)µµ′

2 (p1−p2) ·H(0)
3 ·(p1−p2)−H

(0)µ
2 ·(p1−p3)(p1−p2) ·H(0)µ′

3

+(p2−p3)
µ(p1−p2) ·H(0)T

3 ·H(0)µ′

2 +(p2−p3)
µ′

(p1−p2) ·H(0)
3 ·H(0)Tµ

2

+
1

2
(p2−p3)

µ(p2−p3)
µ′

H
(0)
2 ·H(0)T

3 +(2↔ 3)

]

.

Let us now set the B-field to zero, i.e., takeH
(0)
µν to be symmetric. Using the linear condition

of transversality, pi ·H(0)
i = 0 , and momentum conservation, we obtain

H(1)µµ′

(−p1)=
1

4p21

∫

d̄Dp2d̄
D p3δ̄

D(p1+p2+p3) (3.15)

×
[

4H
(0)µµ′

2 p2 ·H(0)
3 ·p2−4p

(µ
2 H

(0)µ′)
2 ·H(0)

3 ·p2+4p
(µ
3 H

(0)µ′)
2 ·H(0)

3 ·p2

−4H
(0)(µ
2 ·p3H(0)µ′)

3 ·p2+
1

2
(p2−p3)

µ(p2−p3)
µ′

H
(0)
2 ·H(0)

3 +(2↔ 3)

]

.

Alternatively, it can be written directly in terms of the linearised skinny fields,

H(1)µµ′

(−p1)=
1

4p21

∫

d̄Dp2d̄
D p3δ̄

D(p1+p2+p3) (3.16)

×
[

4h
(0)µµ′

2 p2 ·h(0)3 ·p2−4p
(µ
2 h

(0)µ′)
2 ·h(0)3 ·p2+4p

(µ
3 h

(0)µ′)
2 ·h(0)3 ·p2

−4h
(0)(µ
2 ·p3 h(0)µ

′)
3 ·p2+

1

2
(p2−p3)

µ(p2−p3)
µ′

h2 ·h3+Xµµ′

+(2↔ 3)

]

,

where Xµµ′

accounts for all the terms involving the projectors. So we have the general

expression for the fat graviton at this order, either in terms of the linearised fat graviton,

or in terms of the linearised skinny fields.

Suppose now that want to compare this directly with the JNW solution at next-to-

leading order. This is, of course, against the spirit of the double copy. In accordance with

this spirit, we would solve a complete problem in terms of the fat graviton description

only, for which we have the simple propagator and the interaction rules determined by the

Yang-Mills rules. However, it may be useful for certain purposes to provide the dictionary

between the fat graviton and the skinny fields also at next-to-leading order. This is cum-

bersome, because we have to keep track of gauge choices and field redefinitions, which do

not follow trivially from the linear case. As in [33], we can build a transformation tensor

Tµν that represents all the gauge transformations and field redefinitions needed to retrieve

4The dots indicate the contractions in the sense: p ·Hµ = pν H
νµ, Hµ · p = Hµνpν , p ·Hi ·H

µ
j =

pσ Hσ
j νH

νµ
j and Hi ·Hj = Hµν

i Hj νµ.
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the skinny fields in their standard form — in particular, so that the gothic graviton is in

de Donder gauge. The dictionary at this order is

H(1)µν = h(1)µν − Pµν
q′ (h(1) − φ(1)) + T (1)µν , (3.17)

where the transformation function can be written, for instance, in terms of the linearised

skinny fields,5

T (1)µµ′

(−p1)=
1

4p21

∫

d̄Dp2d̄
Dp3δ̄

D(p1+p2+p3) (3.18)

×
[

h
(0)
2 ·h(0)3

(

1

2
pµ1 p

µ′

1 −ηµµ
′

p2 ·p3
)

+4p
(µ
1 h

(0)µ′)
2 ·h(0)3 ·p2

+4h
(0)(µ
2 ·h(0)µ

′)
3 p2 ·p3+2ηµµ

′

p3 ·h(0)2 ·h(0)3 ·p2

+
1

2

(

ηµµ
′

p2 ·p3−2pµ2p
µ′

3

)(

−h
(0)
2 h

(0)
3 +φ

(0)
2 φ

(0)
3

)

+Xµµ′

+Pµν
q′

(

(D−6)p2 ·p3h(0)2 ·h(0)3 −2(D−2)p3 ·h(0)2 ·h(0)3 ·p2

−4(φ
(0)
2 −h

(0)
2 )p2 ·h(0)3 ·p2−

D−2

2
p2 ·p3

(

−h
(0)
2 h

(0)
3 +φ

(0)
2 φ

(0)
3

)

+(2↔3)

)]

.

We allow the reference null vector q′ here to be different from the linear-level discussion

since this clarifies the extraction of the skinny fields from the fat graviton. This proceeds

as follows. From (3.17), it can be checked that

h(1)µν − Pµν
q′ (h(1)) = H(1)µν − T (1)µν − Pµν

q′ (H(1) − T (1)) . (3.19)

Substituting (3.15) and (3.18), and comparing the terms without dependence on the aux-

iliary vector q′, we get the general result for the graviton in the desired gauge

h(1)µν = − 1

4 p21

∫

d̄Dp2d̄
D p3δ̄

D(p1 + p2 + p3)

×
[

4p2 · p3h(0)(µ2 · h(0)ν)3 + 2h
(0)
2 · h(0)3 p

(µ
2 p

ν)
3 − 4h

(0)µν
3 p3 · h(0)2 · p3

+ 4p2 · h(0)(µ3 p3 · h(0)ν)2 − 8p2 · h(0)3 · h(0)(µ2 p
ν)
3

− ηµνh
(0)
2 · h(0)3 p2 · p3 + 2ηµνp2 · h(0)3 · h(0)2 · p3

− 1

2

(

ηµνp2 · p3 − 2p
(µ
2 p

ν)
3

)(

−h
(0)
2 h

(0)
3 + φ

(0)
2 φ

(0)
3

)

+ (2 ↔ 3)

]

.

(3.20)

The dilaton is obtained in a similar way,

φ(1) = H(1) − T (1)

=
1

4 p21

∫

d̄Dp2d̄
D p3δ̄

D(p1 + p2 + p3)

[

4φ
(0)
2 p2 · h(0)3 · p2 + (2 ↔ 3)

]

.
(3.21)

5This expression is not exactly the one presented in [33] because that was simplified to be valid only in

the special JNW case where M = Y .
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3.2.2 JNW case

For illustration, let us apply the general construction to the four-dimensional JNW case.

In de Donder gauge, and to the relevant order, the JNW solution is given by

hµν =
κ

2

M

4πr
uµuν+

(κ

2

)3 1

8(4π)2 r2
(

(7M2−Y 2)uµuν+(M2+Y 2) r̂µr̂ν
)

+O(κ5)

φ=−κ

2

Y

4πr
+O(κ5) ,

(3.22)

where r̂µ = (0,x/r) and uµ = (1, 0, 0, 0). We can reproduce these expressions with the

formalism explained above. The starting point is the linear graviton and dilaton, which

are taken to be

h(0)µν =
κ

2
M

uµuµ

4πr
−→ κ

2
M

uµuµδ̄1(p0)

p2
,

φ(0) = −κ

2
Y

1

4πr
−→ −κ

2
Y
δ̄1(p0)

p2
,

(3.23)

in coordinate space and momentum space, respectively. The expression (3.20) for the

graviton is simplified by the fact that pi · u = 0, and we have

h(1)µν =
−1

4 p21

(κ

2

)3
∫

d̄4p2d̄
4p3δ̄

(4)(p1 + p2 + p3)
δ̄(p02)

p22

δ̄(p03)

p23

{

− 8M2 p2 · p3uµuν

+ 4M2p
(µ
2 p

ν)
3 − 2M2p2 · p3 ηµν −

(

ηµνp2 · p3 − 2p
(µ
2 p

ν)
3

)

(Y 2 −M2)

}

.

(3.24)

In order to invert back to position space, we use the identities

∫

d̄4p2d̄
4p3δ̄

(4)(p1 + p2 + p3)
δ̄1(p02)δ̄

1(p03)

p22p
2
3

pµ2p
ν
3

p21
=

−1

4(4π)2

[

xµxν

r4
−

ηµν(3)

r2

]

,

⇒
∫

d̄4p2d̄
4p3δ̄

(4)(p1 + p2 + p3)
δ̄1(p02)δ̄

1(p03)

p22p
2
3

p2 · p3
p21

=
1

2(4π)2

ηµν(3)

r2
,

(3.25)

where we have defined ηµν(3) = ηµν + uµuν .6 We obtain

h(1)µν =
−1

16(4π)2

(κ

2

)3
{

(

−8M2uµuν−(M2+Y 2)ηµν
) 2

r2
+2(M2+Y 2)

(

ηµν(3)

r2
− xµxν

r4

)}

=
1

8(4π)2

(κ

2

)3
{

(7M2−Y 2)
uµuν

r2
+(M2+Y 2)

xµxν

r4

}

. (3.26)

This result matches (3.22). As for the dilaton, the correction (3.21) vanishes by virtue of

pi · u = 0 ⇒ pi · h(0)j = 0, which also matches (3.22).

6These identities can be derived in a similar way to (56) in [33].
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4 Exact double copy

So far we have considered the perturbative double copy for the JNW solution. We now

discuss how to define an exact double-copy map based on double field theory (DFT). To this

end, we introduce an ansatz for generalised metric in DFT, by relaxing the null condition in

the Kerr-Schild (KS) formalism, and derive a pair of Maxwell solutions as the two factors

in the double copy. We apply this general formalism to the JNW case and show that both

Maxwell solutions are the Coulomb potential, which is therefore the ‘single copy’ of JNW.

4.1 Rewriting the JNW solution

We have introduced the JNW metric in a previous section. That metric solves the Einstein-

dilaton equations of motion in the Einstein frame. However, for the remaining sections it

will be more convenient to work in the string frame. This is achieved by performing the

following field redefinition

gEµν → gSµν = eσ(φ−φ0)gEµν ,

φ0 = lim
r→∞

φ ,
(4.1)

where the constant σ depends on the choice of normalisation for the dilaton. In this section,

since we are not working in perturbation theory, we will suppress the coupling constant κ,

and use instead a common string-frame normalisation convention for the fields. The action

in the string frame then reads

S =

∫

d4x
√−gse−2φ

(

R− 1

12
HµνρH

µνρ + 4 ∂µφ∂µφ

)

, (4.2)

which corresponds to the low energy effective action of string theory. In the string frame,

the JNW metric is given by

ds2 = e2φ
[

−
(

1− r0
r

)
a
r0 dt2 +

(

1− r0
r

)
−a
r0

(

dr2 + r(r − r0) dΩ
2
2

)

]

,

e2φ =
(

1− r0
r

)
b
r0 , r0 =

√

a2 + b2 ,

(4.3)

and φ0 = 0. Apart from different normalisation conventions, a is M , and b is Y , when

comparing to (2.15).

While JNW does not admit KS coordinates, we can express it in a similar manner,

inspired by the generalised KS form of double field theory [22]. We start by defining the

area-radius coordinate

R2 = e2φ
(

1− r0
r

)
−a
r0 r(r − r0) , (4.4)

such that the metric reads

ds2 = −ft(r) dt
2 + fR(r) dR

2 +R2 dΩ2
2 ,

ft(r) =
(

1− r0
r

)
a+b
r0 , fR(r) =

4r(r − r0)

(2 r − a+ b− r0)2
.

(4.5)
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Changing to ingoing Eddington-Finkelstein coordinates,

dv = dt+

√

fR(r)

ft(r)
dR ,

ds2 = −dv2 + 2
√

ft(r) fR(r) dv dR+R2 dΩ2
2 ,

= −dv2 + 2dvdR+R2 dΩ2
2 + (1− ft(r))dv

(

dv +
2
√

ft(r) fR(r)

1− ft(r)
dR

)

, (4.6)

where the first three terms are the flat background metric. Let us define two auxiliary

variables and another change of coordinates:

v = T +R ,

V ≡ 1− ft(r) = 1−
(

1− r0
r

)
a+b
r0 , (4.7)

Ω ≡ 1− 2

V
(1−

√

ft(r)fR(r))

= 1− 2

V

[

1−
(

1− r0
r

)

r0+a+b

r0

(

1− r0 + a− b

2r

)−1
]

. (4.8)

The line element is transformed into

ds2 = −dT 2 + dR2 +R2 dΩ2
2 + V l l̄ ,

l = dT + dR , l̄ = dT +ΩdR ,
(4.9)

which is reminiscent of KS. Note, however, that only in the Schwarzschild case (i.e., b = 0,

Ω = 1) do l and l̄ coincide, and we recover the standard KS form of Schwarschild. Moreover,

the metric does not even admit the DFT generalisation of the KS metric [22], because l̄

is not null unless a = 0 or b = 0. A relaxation of the DFT KS form is threfore required.

Some of the properties of the vectors still hold:

lµlµ = 0 , l̄µ∂µlν = 0 , l̄µ∂ν lµ = 0 , (4.10)

lµ l̄µ 6= 0 , lµ∂µlν = 0 , lµ∂ν lµ = 0 , (4.11)

where we have used the flat metric to contract indices. Finally, we can express it in

Cartesian coordinates,

ds2 = −dT 2 + dXi dXi + V l l̄ ,

l = dT +
Xi

R
dXi , l̄ = dT +Ω

Xi

R
dXi .

(4.12)

Setting

ϕ = −V
(

1− r0
r

)−
r0+a+b

2r0

(

1− r0 + a− b

2 r

)

, (4.13)

the metric can be written in the form

ds2 = −dT 2 + dXi dXi −
ϕ

1 + ϕ
2 (l · l̄)

l l̄ , (4.14)
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which obeys the KS-like ansatz (4.29) to be used in section 4.2. In this coordinate system

the following relations also hold

det g = −
(

V (1− Ω)

2
− 1

)2

, (4.15)

ϕ = − V√− det g
, (4.16)

Ω = 1− 2 (V −1 + ϕ−1) . (4.17)

4.2 Double field theory and the relaxed Kerr-Schild ansatz

Double field theory (DFT) is a closed string effective field theory with manifest T-duality,

where the latter is expressed by O(D,D) covariance in a ‘doubled spacetime’ where points

are labelled as (xµ, x̃µ). It provides a unified geometric framework for the entire massless

NS-NS sector, encoded in an O(D,D) covariant manner in the DFT fields, which are the

generalised metric HMN and the DFT dilaton d. Here, M,N, · · · = 1, · · · , 2D are O(D,D)

vector indices. The generalised metric is a symmetric rank-2 O(D,D) tensor satisfying the

O(D,D) constraint,

HMPJ PQHQN = JMN , (4.18)

where JMN is the O(D,D) metric

JMN =

(

0 δµν
δµ

ν 0

)

, JMN =

(

0 δµ
ν

δµν 0

)

, (4.19)

which defines the inner product and raises and lowers the O(D,D) vector indices. One can

solve the O(D,D) constraint such that the generalised metric H and the DFT dilaton d

encode the usual string-frame massless NS-NS fields as follows:

HMN =

(

gµν −gµρBρν

Bµρg
ρν gµν −Bµρg

ρσBσν

)

, e−2d =
√−ge−2φ . (4.20)

In general, O(D,D) vectors unify a D-dimensional vector and form field pair into a single

object. For example, an arbitrary O(D,D) vector VM is parametrised in terms of a D-

dimensional vector vµ and a form field kµ as

VM =

(

vµ

kµ

)

, and V M = JMNVN =

(

kµ
vµ

)

. (4.21)

An important feature of DFT related to the double copy is the doubled local Lorentz

group, O(1, D−1)L×O(1, D−1)R, which is the maximally compact subgroup of O(D,D)

including the Lorentz group. The doubled local Lorentz group originates in the left-right

mode decomposition of the closed string, and shares the same origin as the KLT rela-

tions [1] in string scattering amplitudes, which underlie the double copy. This structure is

transparent if we introduce a chiral and anti-chiral basis in the doubled vector space. One
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may recast the O(D,D) constraint as HM
PHP

N = δM
N , and it defines a pair of projection

operators,

PM
N =

1

2

(

δM
N +HM

N
)

, P̄M
N =

1

2

(

δM
N −HM

N
)

. (4.22)

These project the doubled vector space into chiral and anti-chiral sectors which correspond

to the left- and right-moving sectors, respectively.

Motivated by the KS-like form of the JNW metric (4.12), we introduce an ansatz for

H and d in terms of two O(D,D) vectors, KM and K̄M , where K is null but K̄ does not

have to be null in general,

KMKM = 0 , K̄MK̄M 6= 0 . (4.23)

Let us consider a flat background, g0µν = ηµν , Bµν = 0 and φ = constant, and denote the

corresponding background DFT fields as H0 and d0, where

H0MN =

(

ηµν 0

0 ηµν

)

, d0 = constant . (4.24)

We associate to H0 a pair of background projection operators P0 and P̄0 via (4.22). As we

have described above, the chiralities are closely related to the underlying structure of the

double copy, hence we require definite chiralities on KM and K̄M for the manifest left and

right mode decomposition,

P0M
NKN = KM , P̄0M

NK̄N = K̄M . (4.25)

This implies that K and K̄ are orthogonal, KMK̄M = 0. One may solve the above chirality

conditions explicitly using (4.24), which yields

KM =
1√
2

(

lµ

ηµν l
ν

)

, K̄M =
1√
2

(

l̄µ

−ηµν l̄
ν

)

. (4.26)

Now we are ready to write down a KS-like ansatz for the generalised metric:

HMN = H0MN + κϕ
(

KMK̄N +KNK̄M

)

− κ2

2
ϕ2K̄2KMKN ,

d = d0 + κf ,

(4.27)

where κ is an expansion parameter. We refer to this form as the ‘relaxed KS ansatz’ because

the null condition for the DFT KS ansatz of [22] is partially relaxed; the latter is recovered

when K̄ is a null vector. Though the null condition is relaxed, the new ansatz satisfies

the O(D,D) constraint (4.18) automatically without further truncation. Substituting the

parametrisation of K and K̄ in (4.26) into (4.23), we obtain conditions on l and l̄:

lµl
µ = 0 , l̄µ l̄

µ 6= 0 , lµ l̄
µ 6= 0 , (4.28)

which are consistent with the JNW geometry as expressed in (4.12). Interestingly, the

feature of the partially relaxed null condition is analogous to previous studies such as the
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‘extended’ KS ansatz [75] and the heterotic KS ansatz [29]. From the parametrisation of

H, we can easily read off the corresponding ansatz for the metric and Kalb-Ramond field:

gµν = ηµν −
κϕ

1 + κϕ
2 (l · l̄) l(µ l̄ν) ,

gµν = ηµν + κϕl(µ l̄ν) +
κ2ϕ2 l̄2

4
lµlν ,

Bµν =
κϕ

1 + κϕ
2 (l · l̄) l[µ l̄ν] .

(4.29)

It can easily be seen that the JNW solution fits this ansatz. The JNW metric was written

precisely in this form in (4.14); we kept κ 6= 1 here for clarity. As for the Kalb-Ramond

field, given the JNW expressions for ϕ, l and l̄, it is of the form B = B(r) dR ∧ dT . Since

r is a function of R only, Bµν is pure gauge and it can be set to zero.

4.3 DFT equations of motion and the single copy

The field equations of DFT are given by the generalised curvatures, analogously to general

relativity.7 The generalised curvature scalar R and tensor RMN defined in (A.10) are the

equations of motion of the DFT dilaton and the generalised metric, respectively,

R = 0 , Rµν = 0 , (4.30)

where Rµν is a pullback of RMN into the D-dimensional spacetime. Note that Rµν is not

symmetric nor antisymmetric: the symmetric and antisymmetric parts are the equations

of motion for the metric and the Kalb-Ramond field, respectively. These reproduce the

supergravity equations of motion for the massless NS-NS fields in the string frame,

Rµν + 2∇µ∇νφ− 1

4
HµρσH

ρσ
ν = 0 ,

R+ 4�φ− 4∇µφ∇µφ− 1

12
HµνρH

µνσ = 0 , (4.31)

∇ρHρµν − 2Hρµν∇ρφ = 0 ,

which follow from the action (4.2).

Let us now discuss the field equations subject to the relaxed KS ansatz (4.27). Recall

that, in the KS ansatz, an additional constraint is required in order to linearise the equations

of motion, which in the case of general relativity is the geodesic condition on the null vector

field. Such a constraint is obtained by contracting the null vectors with the free indices of

the (generalised) curvature tensor. In the case of our relaxed KS ansatz, however, it is very

cumbersome to work with this constraint. Therefore, we will assume a stronger constraint,

which is satisfied in a class of solutions that includes JNW. We impose

K̄M∂MKN = 0 , (4.32)

which reduces to the second equation of (4.10). Note that, while the analogous condition

also appeared in the KS ansatz of DFT [22], in our ansatz we allow for KM∂MK̄N 6= 0.

7See appendix A for a concise review of the equations of motion in DFT.
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Given the null condition on l and the constraint (4.32), the generalised curvature tensor

reduces to

Rµν =
1

4
e2κf∂ρ

[

e−2κf
(

∂ρ
(

κϕlµ l̄ν
)

− ∂µ
(

κϕlρ l̄ν
)

− ∂ν
(

κϕlµ l̄ρ
)

− κ2ϕ2lµl
σ l̄[ν∂|σ| l̄ρ]

) ]

+ κ∂µ∂νf +
κ2

2

(

ϕlρ l̄ν∂µ∂ρf + ϕlµ l̄
ρ∂ν∂ρf

)

− κ2

8
ϕ2 l̄2∂µlρ∂ν l

ρ (4.33)

+
κ2

4
∂ρ

(

ϕ2 l̄2l[µ∂|ν|lρ]
)

− κ2

8
ϕlµ l̄

σ∂ν∂ρ(ϕl
ρ l̄σ) +

κ3

4
ϕlρ l̄σ∂ν

(

ϕlµ l̄σ∂ρf
)

= 0 .

We now discuss how to extract the single copy from Rµν . By carrying out the same

procedure described in the conventional KS formalism, it can be shown that one obtains

the Maxwell equations from the gravity equations of motion. Suppose that the relaxed KS

geometry admits at least one Killing vector ξ. We also assume that the Killing vector is

constant in our choice of coordinates, and satisfies ξν∂νFµ1···µn = 0, where Fµ1···µn is an

arbitrary tensor field. We will be interested in the timelike Killing vector ξ = ∂T for JNW.

The single copy can be realised by contracting the Killing vector ξ with one of the free

indices of the field equations of the generalised metric, Rµν . We further require that l, l̄ and

ξ are normalised as ξ · l = ξ · l̄ = 1, which is directly the case for JNW in (4.12). Such a nor-

malisation is always possible, since the KS form is preserved under the rescaling of l and l̄.

Recall that Rµν is not symmetric nor antisymmetric, thus there are two distinct equations:

ξνRµν =
1

4
e2f∂ρ

[

2∂[ρ(ϕ̃lµ]) + 4ϕ̃l[µ∂ρ]f − 1

2
e2f ϕ̃2lσlµ∂σ l̄ρ

)

]

+
1

2
e2f ϕ̃lρ∂ρ∂µf ,

ξµRµν =
1

4
e2f

[

∂ρ
(

2∂[ρ(ϕ̃l̄ν]) + 4ϕ̃l̄[ν∂ρ]f − e2f ϕ̃2lσ l̄[ν∂|σ| l̄ρ]
)

+ 2ϕ̃l̄σ∂σ∂νf

+
1

2
ϕ̃l̄σ

(

∂ρ(e
2f ϕ̃l̄σ)∂ν l

ρ − ∂ρ(∂ν(e
2f ϕ̃l̄σ)l

ρ) + 2lρ∂ν(e
2f ϕ̃l̄σ∂ρf)

)

]

,

(4.34)

where we defined ϕ̃ = e−2fϕ and we set κ = 1 for simplicity.

It is not immediately obvious how to extract the single copy from (4.34) due to the

higher order terms in κ, as opposed to the simpler case of the DFT KS ansatz. However,

the terms linear in κ in overlap with the analogous computation in the DFT KS case. Thus

one may guess that the higher order terms would be extra contributions over the KS single

copy relation, where the two gauge fields are proportional to lµ and l̄µ. Let us collect the

higher order terms, and express them with the help of a pair of auxiliary vector fields Cµ

and C̄µ, obeying

∂ρ∂[ρCµ] = −∂ρ

(

1

4
e2f ϕ̃2lµl

σ∂σ l̄ρ − 2ϕ̃l[µ∂ρ]f

)

+ ϕ̃lρ∂ρ∂µf ,

∂ρ∂[ρC̄µ] = −∂ρ

(

1

2
e2f ϕ̃2lσ l̄[ν∂|σ| l̄ρ] − 2ϕ̃l̄[ν∂ρ]f

)

+ ϕ̃l̄σ∂σ∂νf

+
1

4
ϕ̃l̄σ

(

∂ρ(e
2f ϕ̃l̄σ)∂ν l

ρ − ∂ρ
(

∂ν(e
2f ϕ̃l̄σ)l

ρ
)

+ 2lρ∂ν(e
2f ϕ̃l̄σ∂ρf)

)

.

(4.35)

Notice that these definitions are possible because the currents on the right-hand side are

conserved, by virtue of the equations of motion, i.e., ∂µ∂ρ∂[ρCµ] = ∂µ∂ρ∂[ρC̄µ] = 0. Even
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though the equations look rather complicated to solve, the Killing direction components

can be easily integrated as

∂ρ

(

∂ρCξ +
1

2
e2f ϕ̃2lσ∂σ l̄ρ − 2ϕ̃∂ρf

)

= 0 ,

∂ρ

(

∂ρC̄ξ +
1

2
e2f ϕ̃2lσ∂σ l̄ρ − 2ϕ̃∂ρf

)

= 0 ,

(4.36)

where Cξ = ξµCµ and C̄ξ = ξµC̄µ, and we have used the normalisation, lξ = l̄ξ = 1.

This indicates that Cξ and C̄ξ should be identified; indeed, that will be required by the

uniqueness of the ‘zeroth’ copy to be discussed shortly. As for the other components of C

and C̄, we have to treat them case by case. We will discuss the JNW example in the next

subsection.

Making the use of the auxiliary fields, (4.34) reduces to the following compact form,

4e−2fξνRµν = ∂ρ
[

∂ρ(ϕ̃lµ + Cµ)− ∂µ(ϕ̃lρ + Cρ)
]

= 0 ,

4e−2fξµRµν = ∂ρ
[

∂ρ(ϕ̃l̄ν + C̄ν)− ∂ν(ϕ̃l̄ρ + C̄ρ)
]

= 0 .
(4.37)

This can be interpreted as a pair of Maxwell equations

∂µFµν = 0 , ∂µF̄µν = 0 , (4.38)

by identifying the gauge fields as the single copy

Aµ = ϕ̃lµ + Cµ , Āµ = ϕ̃l̄µ + C̄µ . (4.39)

Here, Fµν and F̄µν are the field strengths of the Aµ and Āµ respectively. This ensures

that solutions of (4.31) with the form of (4.29), subject to the constraint (4.32), can be

represented by a pair of Maxwell gauge fields. We emphasise again that Aµ and Āµ are

associated with left and right movers in a string theory interpretation, which is consistent

with the double copy.

Finally, we can consider also the ‘zeroth copy’. This is the scalar analogue of the gravity

and gauge-theory solutions. Since the gauge-theory solutions are Abelian, we expect that

the scalar will also be an ‘Abelianised’ version of the bi-adjoint scalar field Φaa′ . It is

obtained in our formalism by contracting the Killing vector into both free indices of Rµν ,

leading to a scalar equation of motion. One may use the result of (4.37) to get a pair of

d’Alembertian equations,

�(ϕ̃+ Cξ) = 0 , �(ϕ̃+ C̄ξ) = 0 . (4.40)

As we mentioned, Cξ and C̄ξ should be identified. The single copy can therefore be recog-

nised as

Φ = ϕ̃+ Cξ = ϕ̃+ C̄ξ . (4.41)
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4.4 JNW and Coloumb

So far we have considered a general construction of the single copy for the relaxed KS

ansatz (4.29). We now apply the previous formalism to the JNW case, and show that the

corresponding single copy is the Coulomb potential (i.e., both Aµ and Āµ are Coulomb). As

noted before, we need to determine the auxiliary vector fields Cµ and C̄µ to spell out the sin-

gle copy. Since the JNW geometry is static, with timelike Killing vector ξ = ∂T , CT and C̄T

can be solved straightforwardly from (4.36). If we substitute all the necessary data, we get

∂rCT (r) = ∂rC̄T (r) = −e−2f

(

ϕ2

V 2
∂rV + ∂rϕ+ 2e−2f∂rf

)

(4.42)

in the asymptotically decaying case. The field strengths associated to (4.39) satisfy

FiT = F̄iT = (a+ b)r−2

(

1− r0
r

)

−r0+a−b

r0

li =
a+ b

R2
li =

(a+ b)

R3
Xi . (4.43)

These are nothing but the electric field for the Coulomb potential, and it turns out that all

other components of the field strengths vanish. In particular, we can easily show that the

spatial components of the static, spherically symmetric gauge fields Aµ and Āµ are pure

gauge. This is better seen in spherical coordinates, where the only non-vanishing spatial

component of l, l̄, C or C̄ is the radial one, and it only depends on the radial coordinate,

which is also the case for ϕ̃. Therefore, the relevant spatial vector fields are all curl free,

∂[i(ϕ̃lj]) = ∂[i(ϕ̃l̄j]) = ∂[iCj] = ∂[iC̄j] = 0 . (4.44)

Hence, Ai and Āi are pure gauge, and only AT and ĀT contribute to the field strength.

This shows that the single copy for the JNW solution is given by a point electric charge

as expected. The corresponding electric charge parameter is associated to the linear sum

of the mass and dilaton coupling in the string frame, a+ b. As argued earlier in the paper,

the two parameters in gravity reduce to one via the single copy.

One interesting point is that the single copy exists and is the same whether the gravity

solution is a naked singularity (b 6= 0) or the Schwarzschild solution (b = 0). This highlights

the fact the single copy does not reflect the causal structure of the gravity solution. Some

reflection indicates, however, that this is to be expected. The single copy does not apply

to the full metric, but only to the deviation from the Minkowski metric. It is from the

interplay between the Minkowski metric and the deviation that the causal structure arises.

Finally, using (4.41), it is straightforward to consider the zeroth copy. As expected,

the associated linearised bi-adjoint field for the JNW solution is a Coulombic potential,

Φ = ϕ̃+ CT =
a+ b

R
, (4.45)

which is the static, spherically symmetric solution that decays asymptotically.

Therefore, both the single and zeroth copies for the JNW solution coincide with those

of the Schwarzschild solution, up to irrelevant constant factors.
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5 Conclusion

In this paper, we claim that the most general double copy of the Coulomb solution is

the JNW solution, which includes a mass parameter and a dilaton parameter. The JNW

solution reduces to the Schwarzschild solution if the dilaton vanishes, which is consistent

with previous work in the vacuum case. We support our claim both in perturbation theory,

extending the ‘fat graviton’ analysis of [33], and in an exact map, extending the double field

theory Kerr-Schild ansatz of [22]. One remarkable feature of the latter approach is that it

exhibits the double copy origin of Kerr-Schild-type maps of solutions between gravity and

gauge theory, by associating the pair of Kerr-Schild-type vectors to left and right movers

in closed string theory. Moreover, it shows that, when the dilaton is turned on, the exact

double copy is best expressed in the string frame, rather than the Einstein frame.

There are several directions of interest for future work. One unsatisfying aspect of

our work is that the perturbative approach and the exact approach discussed here were

not explicitly connected. Due to gauge choices and field redefinitions, this appears to be

cumbersome. And yet it would be very interesting to see how the perturbative double copy

could be resummed into the exact double copy. This would provide important clues as to

what is the exact double copy analogue of the colour-kinematics duality, which underlies

the double copy in scattering amplitudes.

On the exact double copy front, an extension of the analysis in this paper would allow

us to study the double copy interpretation of the most general static, spherically symmetric

and asymptotically flat solution to NS-NS gravity, which is known [76]. It is more general

than the JNW solution, in that it admits a B-field whose field strength is spherically

symmetric. The ‘single copy’ is not, however, the Coulomb solution, since two distinct

gauge-theory solutions are required in order to introduce the antisymmetric B-field via the

double copy. The extension of our work to heterotic double field theory, building on [29],

would be interesting too.

It should also be possible to extend the vacuum Weyl double copy [15], and a higher-

dimensional version based on [77], to include the dilaton and B-field, using ideas from

double field theory. In fact, this could potentially elucidate some aspects of the generalised

curvatures of double field theory, alluded to in the appendix.

It is clear that there is much more to explore in how double field theory expresses the

double copy.
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A Equations of motion in double field theory

We review here the derivation of the double field theory (DFT) equations of motion. The

covariant derivative and its curvature tensors are defined with respect to the so-called gen-

eralised Lie derivative or generalised diffeomorphism. It plays the role of gauge symmetry

in DFT, and acts on the DFT field content as

(L̂XH)MN = XP∂PHMN + (∂MXP − ∂PXM )HPN + (∂NXP − ∂PXN )HMP ,

L̂Xd = XM∂Md− 1

2
∂MXM ,

(A.1)

where, with respect to the generalised Lie derivative, the generalised metric H is a rank-2

tensor and the DFT dilaton d is a scalar density. The gauge parameter XM combines the

diffeomorphism parameter ξµ and the one-form gauge parameter Λµ for the Kalb-Ramond

field in an O(D,D) covariant manner

XM = {ξµ ,Λµ} . (A.2)

For closure of the algebra of generalised diffeomorphisms (i.e., the Jacobi identity for L̂),
we have to impose the section condition

∂M∂MF1 = 0 , ∂MF1∂
MF2 = 0 , (A.3)

where F1 and F2 are arbitrary functions on doubled space. The section condition is equiv-

alent to ignoring the winding coordinate x̃ dependence,

∂M =

(

∂̃µ

∂µ

)

=

(

0

∂µ

)

. (A.4)

As for the covariant differential operator of the generalised Lie derivative (A.1), we

define the covariant derivative acting on an O(D,D) tensor as

DMTN1N2···Nn = ∂MTN1N2···Nn +
n
∑

i=1

ΓMNi

PTN1···P ···Nn , (A.5)

where ΓMNP is the DFT connection [78, 79]. One may try to obtain the DFT connection

using the compatibility and torsion-free conditions, analogously to Riemannian geometry.

However, it turns out that these conditions are not sufficient for determining all the com-

ponents. Fortunately, one can project out the undetermined part using the projection

operators (4.22), and the determined part is

ΓPMN = 2(P∂PPP̄ )[MN ] + 2(P̄[M
QP̄N ]

R − P[M
QPN ]

R)∂QPRP

− 4

D − 1

(

P̄P [M P̄N ]
Q + PP [MPN ]

Q)
(

∂Qd+ (P∂RPP̄ )[RQ]

)

.
(A.6)

Let us turn to the curvature tensorsR andRMN in terms of the DFT connection (A.6).

First, we introduce 4-index object SMNPQ defined as

SMNPQ =
1

2

(

RMNPQ +RPQMN − ΓR
MNΓRPQ

)

, (A.7)
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where RMNPQ is defined from the standard commutator of the covariant derivatives

RMNPQ = ∂MΓNPQ − ∂NΓMPQ + ΓMP
RΓNRQ − ΓNP

RΓMRQ . (A.8)

One can show that SMNPQ satisfies symmetry properties analogous to the Riemann tensor,

namely SMNPQ = S[MN ][PQ] = S[PQ][MN ] and the first Bianchi identity,

SM [NPQ] = 0 . (A.9)

However, it is not a tensor with respect to the generalised Lie derivative and cannot be

a physically meaningful object. Instead, we can obtain meaningful tensors by contracting

SMNPQ with the projection operators. The generalised curvature tensor and scalar are

defined as

RMN = 2P(M
P P̄N)

QPRSSRPSQ , R = 2PMNPPQSMPNQ , (A.10)

and one can show that these are covariant under O(D,D), as well as under generalised

diffeomorphisms. Substituting the parametrisations (4.20), the equations of motion reduce

to the conventional supergravity equations of motion (4.31). The generalised curvatures

satisfy an identity analogous to that of the Einstein tensor, ∇µG
µν = 0, namely [80, 81]

DM

(

4PMP P̄NQRPQ − P̄MNR
)

= 0 , DM

(

4P̄MPPNQRPQ + PMNR
)

= 0 . (A.11)
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