
J
H
E
P
0
2
(
2
0
2
0
)
0
3
7

Published for SISSA by Springer

Received: November 14, 2019

Revised: January 16, 2020

Accepted: January 21, 2020

Published: February 5, 2020

Prompt hadroproduction of ηc(1S, 2S) in the

kT -factorization approach

Izabela Babiarz,a Roman Pasechnik,b,c Wolfgang Schäfera and Antoni Szczureka,d
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1 Introduction

The quarkonia production reactions in hadronic collisions at the Large Hadron Collider

(LHC) continue to attract a lot of interest [1]. In this paper, we concentrate on the direct

hadroproduction of the ground state of the charmonium family, ηc(1S), and its first excited

state ηc(2S). Both are pseudoscalar particles of even charge parity JPC = 0−+. Like other

C-even quarkonia, the dominant production mechanism is through the gg → Q gluon fusion

2 → 1 process. In the standard collinear-factorization approach one must go to next-to-

leading order (NLO) approximation to calculate the transverse momentum distribution

of a given quarkonium state and include 2 → 2 processes like gg → Qg. In the kT -

factorization approach [2–7], the transverse momentum of the quarkonium originates from

the transverse momenta of incident virtual gluons entering the hard g∗g∗ → Q process. The

kT -factorization approach is especially appropriate in the high-energy kinematics, where

partons carry small momentum fractions x of the incoming protons, often discussed in

the framework of the BFKL formalism [8–11]. In our calculations we will adopt the color-

singlet model, which treats the quarkonium as a two-body bound state of a heavy quark and

antiquark. Such a formalism was used previously for the production of χcJ (J = 0, 1, 2)

quarkonia (see e.g. ref. [12]), and a relatively good agreement with data was obtained

from an unintegrated gluon distribution (UGD), which effectively includes the higher-order

contributions.

Recently, the LHCb collaboration has measured the transverse momentum distribu-

tions of ηc in the pp̄ decay channel [13] (see also the recent PhD thesis [14]). The exper-

imental method allows to measure ηc charmonia only for pT > 6.5 GeV. In the present

study, we will discuss production of ηc(1S) and ηc(2S) also at lower transverse momenta.

This is a region where the effects of nonlinear evolution for the UGDs may potentially show

up. This was discussed briefly in ref. [12] in the context of low transverse momentum χc
production.
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A crucial ingredient of our kT -factorization approach is the off-shell matrix element

for the g∗g∗ → ηc transition. Recently in ref. [15] we discussed in detail the γ∗γ∗ →
ηc(1S, 2S) form factors. These form factors were calculated there from the cc̄ light-front

(LF) wave functions obtained from different cc̄ interaction potentials obtained in ref. [16].

In the present paper, we will apply the formalism developed in ref. [15] using the potential

approach and the Melosh spin transform to derive the proper LF wave functions of the

ηc(1S, 2S) states.1 Here, we employ the same LF formalism for computation of the g∗g∗ →
ηc vertex, for both gluons being off-shell. We wish to demonstrate the role of the form

factor and to estimate the uncertainties for the ηc production yields related to it. This

was not discussed so far in the context of quarkonia production in proton-proton collisions.

We wish to focus also on a possibility of testing the unintegrated gluon distributions by

comparing our predictions to the experimental data.

Previously, the prompt ηc(1S) production was discussed in various factorization ap-

proaches: collinear factorization [18–22], the TMD-factorization with transverse momen-

tum dependent distributions of on-shell gluons, and on-shell matrix elements [23, 24], and

the kT -factorization in ref. [25]. So far, the ηc(2S) production process was discussed only

in the collinear factorization approach in ref. [26].

The paper is organised as follows. In section 2, we discuss the formalism behind the

quarkonia hadroproduction processes in the kT -factorization approach. In section 3 we

present the most relevant numerical results for the differential ηc(1S, 2S) production cross

sections versus the available experimental data and discuss the related theoretical uncer-

tainties. The basic concluding remarks and the main results are summarised in section 4.

2 Formalism

2.1 Off-shell matrix element and cross section

In figure 1 we show a generic Feynman diagram for ηc(1S) quarkonium production in

proton-proton collision via gluon-gluon fusion. This diagram illustrates the situation ade-

quate for the kT -factorization calculations used in the present paper. The inclusive cross

section for ηc-production via the 2→ 1 gluon-gluon fusion mode is obtained from

dσ =

∫
dx1
x1

∫
d2q1
πq21
F(x1, q

2
1, µ

2
F )

∫
dx2
x2

∫
d2q2
πq22
F(x2, q

2
2, µ

2
F )

1

2x1x2s
|M|2 dΦ(2→ 1).

(2.1)

The unintegrated gluon distributions are normalized such, that the collinear glue is ob-

tained from

xg(x, µ2F ) =

∫ µ2F dk2

k2
F(x,k2, µ2F ) , (2.2)

where from now on we will no longer show the dependence on the factorization scale

µ2F explicitly.

1For a recent analysis of the role of the Melosh spin transform in vector S-wave meson photoproduction

with and without D-wave admixture, see ref. [17].
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ηc(1S, 2S)

p

p
Figure 1. Generic diagram for the inclusive process of ηc(1S) or ηc(2S) production in proton-proton

scattering via two gluons fusion.

Let us denote the four-momentum of the ηc by p and parametrize it in light-cone

coordinated as

p = (p+, p−,p) =

(
mT√

2
ey,

mT√
2
e−y,p

)
, (2.3)

where we introduced the transverse mass

mT =
√
p2 +M2

ηc , (2.4)

where Mηc is the mass of the ηc-meson, and y is its rapidity in the pp cms-frame. The

phase-space element is

dΦ(2→ 1) = (2π)4δ(4)(q1 + q2 − p)
d4p

(2π)3
δ(p2 −M2

ηc) . (2.5)

In the kT -factorization approach, gluons are off-shell, q2i = −q2i , and their four momenta

are written as (
√
s is the pp center-of-mass energy):

q1 = (q1+, 0, q1) , q2 = (0, q2−, q2) , (2.6)

with

q1+ = x1

√
s

2
, q2− = x2

√
s

2
. (2.7)

We can then calculate the phase-space element as

dΦ(2→ 1) =
2π

s
δ

(
x1 −

mT√
s
ey
)
δ

(
x2 −

mT√
s
e−y
)
δ(2)(q1 + q2 − p) dy d2p . (2.8)

We therefore obtain for the inclusive cross section

dσ

dyd2p
=

∫
d2q1
πq21
F(x1, q

2
1)

∫
d2q2
πq22
F(x2, q

2
2) δ

(2)(q1 + q2 − p)
π

(x1x2s)2
|M|2 , (2.9)

– 3 –
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where the momentum fractions of gluons are fixed as x1,2 = mT exp(±y)/
√
s. The off-

shell matrix element is written in terms of the Feynman amplitude as (we restore the

color-indices):

Mab =
qµ1⊥q

ν
2⊥

|q1||q2|
Mab

µν =
q1+q2−
|q1||q2|

n+µn−νMab
µν =

x1x2s

2|q1||q2|
n+µn−νMab

µν . (2.10)

In covariant form, the matrix element reads:

Mab
µν = (−i)4παs εµναβqα1 q

β
2

Tr[tatb]√
Nc

I(q21, q
2
2) . (2.11)

Notice that it fulfills the gauge-invariance constraints

qµ1M
ab
µν = qν2Mab

µν = 0 , (2.12)

which we used in trading the effective polarizations proportional to qµi⊥ to n±µ .2

To the lowest order, it is proportional to the matrix element for the γ∗γ∗ηc vertex.

In particular, the form factor I(q21, q
2
2) is related to the γ∗γ∗ηc transition form factor

F (Q2
1, Q

2
2), Q

2
i = q2i as

F (Q2
1, Q

2
2) = e2c

√
Nc I(q21, q

2
2) , (2.13)

and it can be represented in terms of the LF wave function as

I(q21, q
2
2) = 4mc

∫
dzd2k

z(1− z)16π3
ψ(z,k)

{
1− z

(k − (1− z)q2)
2 + z(1− z)q21 +m2

c

(2.14)

+
z

(k + zq2)
2 + z(1− z)q21 +m2

c

}
.

For details of the derivation and the normalization conventions and relation to the potential

model wave function of the LF radial wave function ψ(z,k), see ref. [15]. In this work,

we will use the calculations of the form factor which were obtained in [15]. There, the

representation of the γ∗γ∗ηc transition form factor in terms of the LF wave function of the

ηc was derived. Several wave-functions obtained from potential models for the cc̄ system

which were previously obtained in ref. [16] were used.

In ref. [15] we also studied the NRQCD limit, where relative motion of quark and

antiquark are neglected. This amounts to ψ(z,k) ∝ δ(z − 1
2)δ(2)(k) and leads to the

transition form factor

FNRQCD(Q2
1, Q

2
2) =

4e2c
√
Nc√

πMηc

1

M2
ηc +Q2

1 +Q2
2

R(0) , (2.15)

where R(0) is the value of the potential-model radial wave function at the spatial origin.

2In the BFKL formalism involving the reggeized gluons [10, 11] one would indeed derive the Feynman-

rules for off-shell gluons with polarizations n±µ . The translation to qµi⊥ is more convenient in comparing to

on-shell or collinear approaches.
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Inserting the explicit form of the matrix element

n+µn−µMab
µν = 4παs(−i)[q1, q2]

Tr[tatb]√
Nc

I(q21, q
2
2)

= 4παs(−i)
1

2
δab

1√
Nc

[q1, q2] I(q21, q
2
2) , (2.16)

and averaging over colors, we obtain our final result:

dσ

dyd2p
=

∫
d2q1
πq41
F(x1, q

2
1)

∫
d2q2
πq42
F(x2, q

2
2) δ

(2)(q1 + q2 − p)

× π3α2
s

Nc(N2
c − 1)

|[q1, q2] I(q21, q
2
2)|2. (2.17)

Parametrizing the transverse momenta as qi = (qxi , q
y
i ) = |qi|(cosφi, sinφi), we can write

the vector product [q1, q2] as

[q1, q2] = qx1q
y
2 − q

y
1q
x
2 = |q1||q2| sin(φ1 − φ2) . (2.18)

In our numerical calculations presented below, we set the factorization scale to µ2F =

m2
T , and the renormalization scale is taken in the form:

α2
s → αs(max {m2

T , q
2
1})αs(max {m2

T , q
2
2}) . (2.19)

2.2 Normalization of the g∗g∗ηc(1S, 2S) form factors

The normalization of the inclusive cross section depends crucially on the value of the

g∗g∗ηc form factor for vanishing gluon virtualities q21 = q22 = 0. The latter in turn is

directly related to the ηc → gg decay width. From the proportionality of the g∗g∗ηc and

γ∗γ∗ηc vertices to the leading order (LO), we obtain, that at LO, the γγ and gg widths are

related by

ΓLO(ηc → gg) =
N2
c − 1

4N2
c

1

e4c

(
αs
αem

)2

ΓLO(ηc → γγ) , (2.20)

where the LO γγ width in turn is related to the transition form factor for vanishing virtu-

alities through

ΓLO(ηc → γγ) =
π

4
α2
emM

3
ηc |F (0, 0)|2 . (2.21)

At NLO, the expressions for the widths read (see e.g. [27, 28])

Γ(ηc → γγ) = ΓLO(ηc → γγ)

(
1− 20− π2

3

αs
π

)
,

Γ(ηc → gg) = ΓLO(ηc → gg)

(
1 + 4.8

αs
π

)
. (2.22)

In order to control the model uncertainty on the normalization, one may want to adjust

its value F (0, 0) to the measured decay width. Here we face the ambiguity of fitting either

– 5 –
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Experimental values Derived from eq. (2.22)

Γtot (MeV) [32] |F (0, 0)|gg[GeV −1]

ηc(1S) 31.9±0.7 0.119±0.001

ηc(2S) 11.3±3.2±2.9 0.053±0.010

Table 1. Total decay widths as well as |F (0, 0)| obtained from Γtot using the next-to-leading order

approximation (see eq. (2.22)).

Experimental values Derived from eq. (2.21) Derived from eq. (2.22)

Γγγ(keV) [32] |F (0, 0)|[GeV −1] |F (0, 0)|γγ [GeV −1]

ηc(1S) 5.0 ±0.4 0.067±0.003 0.079±0.003

ηc(2S) 1.9 ±1.3 ·10−4 · Γηc(2S) 0.033±0.012 0.038±0.014

Table 2. Radiative decay widths as well as |F (0, 0)| obtained from Γγγ using leading order and

next-to-leading order approximation (see formulas eq. (2.21), (2.22)).

to the hadronic or to the γγ width. As there are no other known radiative decays besides

γγ, one may try to identify the gg-width with the total (hadronic) width.

In tables 1, 2, we show the values of |F (0, 0)| obtained in three different ways. In

table 1 we show the result extracted from the total decay width. Here we use the strong

coupling αs = 0.26, which is appropriate to our choice of the renormalization scale in

the production amplitudes. In table 2 we extract the value of |F (0, 0)| from the radiative

decay width in two different ways. The first result is obtained based on eq. (2.21) using

the experimental value for Γ(ηc → γγ) on the left hand side, while the second one uses the

NLO relation 2.22.

We observe a substantial difference between the two different extractions of |F (0, 0)|.
While in the ηc(2S) case, the error bars are too large to claim an inconsistency, the sit-

uation for the ηc(1S) is not satisfactory. This is in fact an old problem and may hint

at an insufficiency of the potential model treatment of the ηc. Various possible solutions

have been proposed, such as an admixture of light hadron states [29], a mixing with a

pseudoscalar glueball [30], or nonperturbative instanton effects in the hadronic decay [31].

2.3 Unintegrated gluon distributions

We use a few different UGDs which are available from the literature, e.g. from the TMDLib

package [33] or the CASCADE Monte Carlo code [34].

1. Firstly we use a glue constructed according to the prescription initiated in [35] and

later updated in [36, 37], which we label below as “KMR”. It uses as an input the

collinear gluon distribution from [38].

2. Secondly, we employ two UGDs obtained by Kutak in [39]. There are two versions

of this UGD. Both introduce a hard scale dependence via a Sudakov form factor into

solutions of a small-x evolution equation. The first version uses the solution of a

– 6 –
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Figure 2. Two-dimensional distributions in (x1, q1T ) (left panel) and in (x2, q2T ) (right panel) for

ηc(1S) production for
√
s = 8 TeV. In this calculation the KMR UGD was used for illustration.

linear, BFKL [8, 9] evolution with a resummation of subleading terms and is denoted

by “Kutak (linear)”. The second UGD, denoted as “Kutak (nonlinear)” uses instead a

nonlinear evolution equation of Balitsky-Kovchegov [40–42] type. Both of the Kutak’s

UGDs can be applied only in the small-x regime, x < 0.01.

3. The third type of UGD which we use has been obtained by Hautmann and Jung [43]

from a description of precise HERA data on deep inelastic structure function by a

solution of the CCFM evolution equations [44–46]. We use “Set 2” of ref. [43].

For the case of the KMR UGD, it has recently been shown in [47], that it includes effectively

also higher order corrections of the collinear factorization approach. In this sense should

give within our approach a result similar to that found recently in the NLO approach [22]

at not too small transverse momenta. In contrast to the collinear NLO approach in our

approach we can go to very small transverse momenta close to pT = 0.

3 Numerical results

Before presenting results for the cross sections let us understand first the kinematical

situation relevant for the LHCb experiment. The gluons entering the g∗g∗ → χc vertex (see

figure 1) are characterized by their longitudinal fractions (x1 or x2) or gluon virtualities at

high-energies directly related to the their transverse momenta q1,2. In figure 2 we show two

dimensional distributions for the first gluon (x1, q1T = |q1|) (left panel) and for the second

gluon (x2, q2T = |q2|) (right panel). We observe a large asymmetry of the two distributions

related to asymmetric LHCb configuration: y ∈ (2, 4.5). The relatively large lower cut

on ηc transverse momentum pT > 6.5 GeV causes that q1T and q2T are themselves not

small and are essentially in the perturbative regime where UGDs should be rather reliable.

Moreover, large pT of the ηc also entails the large factorization scale. In this calculation

we used the KMR UGD described above.

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
0
3
7

(x)
10

log
­6 ­5 ­4 ­3 ­2 ­1 0

(x
)

1
0

/d
lo

g
σ

d

100

200

300

400

500

600

700

800

2x 1x

] 
­1

 normalized to F(0,0)=0.079[GeV

F(0,0) for power­law,

KMR + Kutak (linear)

KMR from MMHT2014nlo

JH set2

KMR + Kutak (nonlinear)

   

(1S)
c

η

 = 8 TeVs

<14GeV
T

6.5GeV<p

2.0<y<4.5

 (GeV)
T

q
0 1 2 3 4 5 6 7 8

 (
n
b
/G

e
V

)
T

/d
q

σ
d

0

20

40

60

80

100

120

140

] ­1 normalized to F(0,0)=0.079[GeV

F(0,0) for power­law,

KMR from MMHT2014nlo

JH set2

KMR + Kutak (linear)

KMR + Kutak (nonlinear)

2.<y<4.5

 > 6.5 GeV
T

p

2
T = m

F

2µ

 =  8TeVs

1T
q

2T
q

Figure 3. Distributions in log10(x1) or log10(x2) (left panel) and distributions in q1T or q2T (right

panel) for the LHCb kinematics. Here the different UGDs were used in our calculations. Here we

show an example, where
√
s = 8 TeV.

The projections on the xi and qiT axes are shown in figure 3. The asymmetric LHCb

kinematics causes that x1 is rather large and x2 is very small — even smaller than 10−5,

much smaller than for other perturbative partonic processes. We observe also a clear

asymmetry in q1T and q2T . The q2T transverse momenta corresponding to small x2 are

substantially larger than q1T of the large-x1 gluon. The low-x gluon therefore transfers the

bulk of the transverse momentum of the ηc at large pT .

We can exploit the good separation in x1,2 to investigate the small-x behaviour of the

unintegrated glue. From our choice of UGDs, the parametrizations of Kutak are available

only for x < 0.01, so we will use these UGDs only for the small-x gluon. To avoid a

proliferation of plots, we will use the Kutak UGDs always together with the KMR UGD

for the large-x gluon. A similar strategy was taken previously in ref. [12].

The distributions for different UGDs in figure 3 are rather similar which makes our

conclusions more universal.

Now we wish to show the behaviour of the different unintegrated gluon distribu-

tion on gluon transverse momentum k2T for small x2 = 10−5 and typical scale parameter

µ2 = 100 GeV2 relevant for the LHCb experiment. In the left panel of figure 4 we plot

F(x,k2, µ2F )/k2, which corresponds to the distribution of the gluon transverse momentum

squared k2. In the right panel the dimensionless UGD F(x,k2, µ2F ) is plotted. We show all

the UGDs used in the present work. The left panel of figure 4 better shows the behaviour

at smaller k2 = k2T , while the right panel emphasizes the large-kT tails. We first observe,

that the “linear” Kutak UGD looks quite similar to the KMR UGD, although both are con-

structed by different procedures. They have in common, that by their construction, both

procedures lead to integrated gluon distributions which well describe jet cross sections at

the LHC. The nonlinear Kutak UGD is considerably smaller than the linear one, especially

at low transverse momenta. At very large transverse momenta the difference between linear

and nonlinear UGDs becomes much smaller. The Jung-Hautmann distribution does not

have an extended tail in k2T as the other distributions, it is however much larger at low

gluon transverse momenta. Can these different UGDs be tested in ηc production?

– 8 –
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Figure 4. Unintegrated gluon densities for typical scale µ2= 100 GeV2 for ηc(1S) production in

proton-proton scattering at LHCb kinematics.

In figure 5 we compare the results of the kT -factorization approach with the LHCb

experimental data for
√
s = 7 and 8 TeV from ref. [13] and with the data for

√
s = 13 TeV

from the recent PhD thesis [14].

The theoretical calculations use an off-shell form factor normalized to the γγ-decay

width at NLO. The off-shell g∗g∗ηc form factor was calculated using the LF wave function

obtained for one of the potentials (the so-called power-law potential) in [16]. It is up to

the color factor proportional to the γ∗γ∗ηc form factor obtained in [15]. The dependence

on the choice of the potential will be discussed below.

The description of data for
√
s = 7, 8 TeV is reasonable for all UGDs. The theoretical

results tend to be somewhat lower than the experimental data, especially at large pT . The

best description is obtained for the KMR UGD and the linear UGD by Kutak.

Our calculations fare a bit worse in the comparison to the data at
√
s = 13 TeV. Here

all the UGDs give results substantially below the data.

As the data have fairly broad bins in pT , in figure 6 we show the results for the KMR

and Jung-Hautmann distributions also in a histogram represention which the reader may

consider better suited for comparison with the LHCb experimental data.

Please note, that we include only the direct production mechanism in the color-singlet

channel. A possible feed down from higher resonances, e.g. from the hc → ηcγ radiative

decay, is not included. See the recent ref. [25] for an estimate which finds a few percent

contribution from the feed down. We also do not include a possible color-octet contribution.

Finally, let us comment that some versions of kT -factorization, e.g. [25], use a different

formula for calculation of the inclusive cross section from UGD and off-shell matrix element,

replacing the “flux-factor” F = 2x1x2s in eq. (2.1) by a different expression with the same

on-shell limit. We insist that our choice is consistent with the Feynman rules derived for

reggeized off-shell gluons [10, 11]. We have checked, that with the expression used in [25],

our results in the LHCb kinematics would decrease by ≈ 20− 30%.

In general the difference between different UGDs is the largest at low pT . Here one

may e.g. expect effects related to nonlinear evolution and gluon saturation. While it is true

– 9 –
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Figure 5. Differential cross section as a function of transverse momentum for prompt ηc(1S)

production compared with the LHCb data [13] for
√
s = 7, 8 TeV and preliminary experimental

data [14] for
√
s = 13 TeV. Different UGDs were used. Here we used the g∗g∗ → ηc(1S) form factor

calculated from the power-law potential.

that the cross section peaks precisely in this most interesting region around pT ∼ 2 GeV

it seems to be exceedingly difficult to measure at pT < 6 GeV. At least this is true in the

pp̄ decay channel used by the LHCb collaboration. Perhaps other decay channels would be

better in this respect. The γγ channel seems interesting as another option. A simulation

of the signal and background would be valuable in this context.

When looking at the different UGDs in figure 4 one observes, that the Jung-Hautmann

distribution stands out in that it does not have an extended tail at k2 � µ2. Does that

have an effect on the large-pT tail of the ηc cross section? In figure 7 we show the trans-

verse momentum distribution in a somewhat broader range of ηc transverse momentum.

We show our results for both LHCb and ATLAS/CMS kinematics. The cross section for

ATLAS/CMS kinematics is somewhat larger than that for the LHCb kinematics, indepen-

dently from the UGD used. Although the Jung-Hautmann UGD leads to a different shape

of the pT -distribution, there is no dramatic effect, such as a cutoff or break at very large

pT . This is due to the fact, that pT enters the hard scale µ, and gluon transverse momenta

much above the hard scale are not dominant.

– 10 –



J
H
E
P
0
2
(
2
0
2
0
)
0
3
7

 (GeV)
T

p
6 7 8 9 10 11 12 13 14

 (
n
b
/G

e
V

)
T

/d
p

σ
d

1

10

210

310

(1S) prompt production, LHCb data
c

η

2.0<y<4.5

]
­1

FF normalized to F(0,0)=0.079[GeV

power­law potential

UGDF: KMR MMHT2014nlo

UGDF: JH 2013 set2

2
T = m

F

2µ =  7TeV   s

 (GeV)
T

p
6 7 8 9 10 11 12 13 14

 (
n
b
/G

e
V

)
T

/d
p

σ
d

1

10

210

310 (1S) prompt production, LHCb data
c

η

2.0<y<4.5

]
­1

FF normalized to F(0,0)=0.079[GeV

power­law potential

UGDF: KMR MMHT2014nlo

UGDF: JH 2013 set2

2
T = m

F

2µ =  8TeV   s

 (GeV)
T

p
6 7 8 9 10 11 12 13 14

 (
n
b
/G

e
V

)
T

/d
p

σ
d

1

10

210

310

410

 A. Usachov PhD Thesis

(1S) prompt production
c

η

 2.0<y<4.5

]­1FF normalized to F(0,0)=0.079[GeV

power­law potential

UGDF: KMR MMHT2014nlo

UGDF: JH 2013 set2

2
T = m

F

2µ =  13TeV   s

Figure 6. Prompt production differential cross section for ηc(1S) compared with the LHCb data [13]
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s = 7, 8 TeV and preliminary experimental data [14] for

√
s = 13 TeV.
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Figure 8. Differential cross section as a function of transverse momentum for prompt ηc(2S)

production for
√
s = 7, 8, 13 TeV.

In figure 8 we show our predictions for the so far unmeasured (at the LHC) ηc(2S).

In this calculation we also adjusted the value of |F (0, 0)| to the γγ width at NLO. The

cross section is in a similar ballpark as for ηc(1S) and the results for different UGDs show

a similar variation as for the ηc(1S) production.

We now wish to turn to the dependence of our results on the cc̄ potential used for

the calculation of the LF wave function. In ref. [15] the γ∗γ∗ → ηc(1S, 2S) transition

form factors, which is closely related to the g∗g∗ηc(1S, 2S) form factors were obtained for

different cc̄ potentials. In figure 9 we show our results for different wave functions (cc̄

potentials). To compare the influence the different wave functions have on the shape of the

cross section, the respective form factors at the on-shell point, |F (0, 0)| were all adjusted

to the same value dictated by the NLO expression for the experimental ηc(1S, 2S) → γγ

decay width.

In figure 10 we relax the normalization to the values predicted by the different poten-

tials. Here the spread of results is bigger than in the previous case. We need to caution

the reader, that generally the results from the phenomenological potentials undershoot

the experimental widths. However, we wish to notice that experimental decay widths are

known only with some precision [32]. In [48] a different values was measured. It appears,
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Figure 9. Transverse momentum distributions calculated with several different form factors ob-

tained from different potential models of quarkonium wave function and one common normalization

of |F (0, 0)| as explained in the text.
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Figure 10. Distributions calculated with several different form factors obtained from different

potential models of quarkonium.

that the behaviour of the off-shell form factors at large q2i is a more reliable result than

their value at the on-shell point, though.

Finally it is interesting to discuss the NRQCD result, using the g∗g∗ → ηc form factor

from eq. (2.15). In figure 11 we show our results for ηc(1S) production using different values

of the wave function at the origin and two different UGDFs. Here R(0) = 0.699 GeV3/2 is

extracted from the experimental value for Γ(ηc(1S)→ γγ) [32] using the NLO expansion for

Γ, whereas R(0) = 0.762 GeV3/2 is the value obtained in ref. [15] for a power-law potential.

The number relevant for describing Γ(ηc(1S)→ γγ) gives rather unsatisfactory distribution

for each UGDFs, better agreement can be obtained using the form factor obtained with

the help of the wave function (see figure 5).

In figure 12 we show the integrated cross section within the LHCb cuts for the three

different energies measured up to now. In this plot we used the KMR UGD. We observe

that the data appear to indicate a faster than linear rise of the cross section, while the
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theoretical calculations predict a slightly slower rise of the cross section with
√
s. We

checked that similar results are obtained with other UGDs. Once more we remind of the

missing feed-down component. A possible color-octet component is not expected to change

the energy dependence, as it is driven by the similar g∗g∗ → cc̄ process.

It is interesting to investigate what is the role of the off-shell form factor. For example

in the approach of ref. [23] gluon virtualities are neglected in the hard matrix element. The

curves in figure 13 clearly show that the effect of the inclusion of gluon virtualities in the

transition form factor is essential and cannot be neglected.

Up to now we concentrated on the kinematics of the LHCb experiment. Could ηc
quarkonia be measured by other experiments at the LHC? In figure 14 we show the ranges

of xi and qT i carried by gluons for a rapidity interval −2.5 < y < 2.5 typical of the
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central detectors of ATLAS or CMS. As in the case of LHCb, we assumed a lower cut on

transverse momentum, pT > 6.5 GeV. In the center-of-mass rapidity interval symmetric

around zero, of course both UGDs enter symmetrically and therefore the distributions of

x1 and x2 coincide, as do the ones for q1T and q2T We find that in the central rapidity

region one would test x1, x2 ∼ 10−4 - 10−2 i.e. the region where the gluon is already known

reasonably well from the HERA experiments. The qiT -distribution has a large plateau at

perturbatively large values, so that we suppose that the predictions of the KMR UGD

should be reliable in this case.

The corresponding transverse momentum distributions are shown in figure 15 for two

different UGDs reliable for this region of longitudinal momentum fractions and gluon trans-

verse momenta. Notice that because there is some contribution of x > 0.01, we cannot use

here the Kutak UGDs, which are unavailable at these x-values.
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4 Conclusions

In the present paper we have discussed in detail the production of pseudoscalar ηc quarkonia

in proton-proton collisions at the LHC energies. The calculations have been performed in

the kT -factorization approach using g∗g∗ → ηc vertex calculated from the cc̄ wave functions.

The latter vertices are closely related to the γ∗γ∗ → ηc transition form factors which were

obtained recently in [15] and which we used in the present work.

We have used different unintegrated gluon distributions available in the literature:

firstly the KMR UGD, which effectively includes higher-order effects of the collinear ap-

proach, secondly two UGDs by Kutak which were obtained by using linear and nonlinear

small-x evolution equations, and thirdly the Jung-Hautmann UGD from 2013, obtained

from a fit to HERA data in a CCFM approach.

We have calculated transverse momentum distributions of both ηc(1S) and ηc(2S)

charmonia. The results of the ηc(1S) have been compared with the experimental data

obtained by the LHCb collaboration for
√
s = 7, 8 GeV [13] and to a measurement at√

s = 13 TeV published in a PhD thesis [14].

A quite good agreement with the data was obtained with the KMR UGD. We have

shown the range of x1, x2 and gluon transverse momenta q1T , q2T probed in the kinematics

of the LHCb experiment [13, 14]. For the LHCb experiment one of the x-values, x1 ∈
(10−2, 10−1) is large, while the second one, x2 ∈ (10−5, 10−4) takes very small values.

For the LHCb experiment we have shown also a large asymmetry in q1T (larger) and q2T
(smaller). It turns out that at large pT of the meson the bulk of transverse momenta

is transferred by the small-x gluon. The Kutak UGD cannot be used for the range of x1
relevant for the LHCb experiment. Therefore in this case we have used two different UGDs:

Kutak UGD for small x2 and KMR UGD for large x1. We have used both the linear and

nonlinear UGDs of Kutak. The mixed UGD scenario with the linear Kutak UGD leads

to very similar transverse momentum distribution of ηc as that for using the KMR UGD

on both sides. Indeed in the considered range of x and kT the linear Kutak UGD is very
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similar as the KMR UGD. The nonlinear version of the Kutak UGD leads to smaller cross

sections, especially for small ηc transverse momenta.

A measurement of ηc at low transverse momenta in the LHCb kinematics would there-

fore be very valuable in the context of searching for nonlinear effects and onset of gluon sat-

uration. One could, for example, consider another measurement for the γγ decay channel.

We have shown that it is crucial to include the dependence on gluon virtualities in

the g∗g∗ → ηc(1S, 2S) vertex. We have also discussed uncertainties related to the g∗g∗ →
ηc(1S,2S) form factor. We have shown results of calculations with the form factor obtained

from different cc̄ potentials from the literature. The associated uncertainty is somewhat

smaller than that related to the choice of UGD. For comparison we have shown also result

for the NRQCD approach, where internal motion of quarks is neglected. The agreement

with the LHCb data cannot be obtained with R(0) corresponding to experimental radiative

decay with for ηc(1S).

A better measurement of ηc(1S,2S) → γγ would be important in this context.
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