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Abstract: In this paper, we obtain a bulk dual to the low energy sector of the SYK

model, including SYK model with U(1) charge, by Kaluza-Klein (KK) reduction from three

dimensions. We show that KK reduction of the 3D Einstein action plus its boundary term

gives the Jackiw-Teitelboim (JT) model in 2D with the appropriate 1D boundary term.

The size of the KK radius gets identified with the value of the dilaton in the resulting

near-AdS2 geometry. In presence of U(1) charge, the 3D model additionally includes a

U(1) Chern-Simons (CS) action. In order to describe a boundary theory with non-zero

chemical potential, we also introduce a coupling between CS gauge field and bulk gravity.

The 3D CS action plus the new coupling term with appropriate boundary terms reduce

in two dimensions to a BF-type action plus a source term and boundary terms. The KK

reduced 2D theory represents the soft sector of the charged SYK model. The pseudo-

Nambu-Goldstone modes of combined Diff /SL(2,R) and U(1)local/U(1) transformations

are represented by combined large diffeomorphisms and large gauge transformations. The

effective action of the former is reproduced by the action cost of the latter in the bulk

dual, after appropriate identification of parameters. We compute chaotic correlators from

the bulk and reproduce the result that the contribution from the “boundary photons”

corresponds to zero Liapunov exponent.
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1 Introduction and summary

Finding simple field theories dual to gravitational systems has been a long standing goal.

In the 1990’s matrix models provided an early impetus to such a search, where a main

ingredient of the duality was symmetries. For example, the c = 1 matrix model was found

to be governed by W∞ symmetries; consequently the dynamics could be abstracted in terms

of quantizing coadjoint orbits of W∞. The latter had a natural realization in terms of two

dimensional string theory, thus establishing a connection between c = 1 matrix model and

two dimensional string theory [1]. A similar approach was taken recently in [2], based on

coadjoint orbits of the Virasoro symmetry group of the SYK model [3–6], to construct a

bulk dual to its ‘soft sector’. In this paper, we explore the possibility of obtaining such

bulk duals by Kaluza-Klein reduction from 3D theories.1

The SYK model, briefly, is a model of interacting fermions at a single point. Its

relevance to the physics of black holes stems from the fact that the model saturates the

quantum chaos bound. The main feature of the theory responsible for this is the appear-

ance of time reparametrization symmetry (henceforth called Diff )2 at the strong coupling

(IR fixed point) in the large N limit (see the original papers mentioned above as well

as [7–11] for further developments). The symmetry is spontaneously broken to SL(2,R),

leading to Nambu Goldstone (NG) modes parameterized by the coset. The IR theory is

singular since the NG modes have precisely zero action (there is no analogue of the pion

kinetic energy term). To regulate the theory, one has to introduce a small breaking of

the reparameterization symmetry by being slightly away from the strong coupling fixed

point; the dynamics of the pseudo NG modes is governed by an action described by the

Schwarzian of the reparametrization function (see (1.2) below).

The original SYK model involved Majorana fermions which did not carry any charge.

In [12], a generalized SYK model with Dirac fermions with a global U(1) was introduced.

At the strong coupling fixed point, this U(1) symmetry is enhanced to local U(1) trans-

formations.3 As in the uncharged case, the theory is singular at the strong coupling limit.

The dynamics of the combined pseudo NG modes, denoted by ϕ(τ) ∈Diff /SL(2,R), and

exp[iφ(τ)] ∈ U(1)local/U(1) is given by the following action [12]:

S[ϕ, φ] = S1 + S2 , (1.1)

S1 = − γ

4π2

∫ β

0
dτ{tan(πϕ(τ)/β), τ} ; (1.2)

S2 =
K

2

∫ β

0
dτ [∂τφ− iµ(∂τ ε(τ))]2 , ε(τ) ≡ ϕ(τ)− τ. (1.3)

In the above, K and γ are constants depending on the coupling J and chemical potential µ,

1We thank E. Witten and D. Stanford for initial suggestions regarding a possible connection of the

viewpoint of [2] to three dimensions.
2Diff represents Diff S1 or Diff R1, depending on whether the system is at a finite temperature or zero

temperature.
3Spontaneously broken by the vacuum to U(1).
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Figure 1. The left panel represents the symmetry orbit of the classical large N solution for

the fermion bilocal G0(τ1, τ2), in the charged SYK model at the IR fixed point J = ∞. The

symmetry group, G is defined as the group of transformations generated by Diff and local U(1)

transformations. The classical solution is invariant under H= SL(2, R)×U(1)global ∈ G. The orbit

represents the Nambu Goldstone modes belonging to the coset G/H. The right panel represents the

symmetry orbit of AdS2 black hole with gauge field under large diffeomorphism and large gauge

transformation. Points of the orbit parameterize the same coset as on the left, and are represented

by the asymptotically AdS2 spacetimes with horizon (1.5) and Aτ given by (4.11).

and are ∼ 1/J . We have used the following notation for the Schwarzian of a function f(x)

{f, x} ≡ f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

,

where ′ denotes derivative with respect to x. The first term in (1.1) is the familiar

Schwarzian from the uncharged case, written at a finite temperature 1/β. The second

term describes the action for the new set of pseudo Nambu Goldstone modes correspond-

ing to U(1) gauge transformations and their coupling to the Diff modes. The pseudo NG

bosons represent the ‘soft’ sector of the charged SYK model, which satisfies the following

condition

ω � J, µ� J , (1.4)

where ω denotes the frequency corresponding to the relative time τ1−τ2 of a bilocal variable

G(τ1, τ2). The configurations of the charged SYK model are schematically represented by

the left panel of figure 1.

The pseudo Nambu Goldstone modes of reparameterization invariance of the SYK

model are reminiscent of large diffeomorphisms of an asymptotically AdS2 geometry. This

idea has been implemented in the bulk dual, in the Jackiw-Teitelboim (JT) models [13, 14]

as well as in the Polyakov gravity model [2], based on the coadjoint orbit point of view

mentioned above. A precise form of asymptotic AdS2 geometries, which implements the

large diffeomorphisms, appears in [2] and is given by

ds2
AAdS2

=
l2

z2

(
dz2 + dτ2

(
1− z2

2

{
tan

(
πϕ(τ)

β

)
, τ

})2
)
, (1.5)

where {τ, z} are the time and radial coordinates in the gravity and l denotes AdS length

scale. As above, ϕ(τ),4 denotes elements of the Diff group. Note that from the bulk

4At finite inverse temperature β the Schwarzian mode is parameterized as f(τ) = β/π tan(πϕ(τ)/β)

where f(τ) is Diff R1 and ϕ(τ) is Diff S1 function.
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viewpoint, the unbroken subgroup SL(2,R) is evident from (1.5), since the Schwarzian is

invariant under the SL(2,R) transformation

tan (πϕ(τ)/β)→ a tan (πϕ(τ)/β) + b

c tan (πϕ(τ)/β) + d
, with ad− bc = 1.

As has been shown in [2, 13, 14], in the presence of appropriate symmetry-breaking terms,

the large diffeomorphisms of the near-AdS2 geometry well capture the low energy dynamics

and thermodynamics of the SYK models.

In this paper, we explore possible origins of the near-AdS2 geometries in three di-

mensions. The original motivation came from the observation that the asymptotically

AdS2 geometries (4.10) of [2] can be obtained as an induced metric on a domain wall from

the asymptotically AdS3 geometries of Brown and Henneaux [15, 16]. In this paper, we find

that a more useful approach appears to be Kaluza-Klein (KK) reduction from 3D Einstein

gravity in a black hole phase, which leads to the JT-type 2D bulk model [13, 14]. A vanish-

ing limit of the KK radius in our case corresponds to an exact AdS2 symmetry (although

such a limit is singular), while a small non-zero KK radius denotes a near-AdS2 config-

uration. Under the KK reduction, the KK radius gets identified with the dilaton of the

JT model. The breaking of the AdS2 symmetry by a non-zero dilaton therefore gets a

geometric understanding in the KK scenario.

The main new ingredient in our model is the treatment of the bulk dual of the charged

SYK model. We find that in the 3D picture, incorporating the U(1) charge comes naturally

by including an abelian Chern-Simons term. We add to 3D Einstein gravity a U(1) Chern-

Simons term as well as a term which couples the two theories. The KK reduction to 2D

gives a BF theory coupled to the JT model with an appropriate coupling between the

two, which reproduces the effective action of the pseudo-Goldstone modes of the charged

SYK model. The 2D gauge fields are now acted on by large diffeomorphisms as well as

large gauge transformations. The configuration space is represented by the right panel of

figure 1. In the near AdS2 background mentioned above, these configurations well capture

the pseudo NG modes of the charged SYK model and reproduce the effective action (1.1)

(see the detailed summary below).

We should remark here that the bulk duals mentioned above do not purport to be a

bulk dual of the full SYK model, rather they represent the ‘soft’ sector (1.4). It is not

clear if there is a local bulk dual for the full SYK model [17, 18]. For proposals of a

bulk dual for the massive modes of SYK model from a 3D viewpoint, see [19–21].5 Note

that the original motivation for considering JT models in [13, 14] also comes from higher

dimensions, namely from AdSd extremal black hole geometries (d ≥ 4) which have an

AdS2 near-horizon geometry, see also [22]. The breaking of the AdS2 isometry in that

case is represented here by the physics away from the near-horizon region. As remarked

above, in our case, of KK reduction from 3D, it is rather different; the breaking of the

AdS2 symmetry is measured by a non-zero KK radius.

5It would be interesting to explore possible connections between this approach and the KK reduction

studied in our present work.
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Summary and organization of results

In section 2 we recapitulate the charged SYK model. We closely follow [12] in this review.

In section 3 we consider the KK reduction of Einstein-U(1) Chern Simons theory in

3D. The salient points are:

• KK reduction of Einstein theory in 3D (with negative cosmological constant) reduces

to a generalized Jackiw-Teitelboim model [23, 24]. The original references for this

are [25–28]; see also the recent papers [29–31] which use these ideas in contexts similar

to that of the present paper.

• The dilaton comes from the radius of the KK direction; as emphasized above, a

small non-zero KK radius corresponds to a small symmetry breaking parameter of

AdS2 symmetry, giving a geometric meaning to such a role played by the dilaton in

the JT model.

• The KK reduction of the BTZ black hole is a 2D black hole with a dilaton solution.

The 2D theory also admits the asymptotically AdS2 solutions (1.5) which are obtained

by applying large diffeomorphism to the 2D black holes.6 We discuss why the 3D

AdS soliton is not relevant for our discussion.

• In section 3.1.3 we discuss the validity of the KK reduction. We show that the energy

regime in which KK reduction is valid coincides with the IR regime of SYK.

• In section 3.2 we introduce a U(1) Chern-Simons theory with a term that couples

it to the Einstein gravity. We reduce the 3D Chern-Simons plus the coupling term

to 2D. This KK reduction leads to a BF-type theory in 2D. The addition of the

coupling between Chern-Simons field and gravity ensures a non zero field strength in

2D theory.

Section 4 contains the combined 2D action. The salient features are,

• The bulk action for the holographic dual of low energy sector of charged SYK is

presented in section 4. We discuss the equation of motion and class of solutions in

this section.

• The generalized JT model has contribution from the KK gauge fields. We show that

a consistent truncation exists under which the KK gauge fields can be set to zero,

after which the 2D theory becomes precisely the JT model. In the context of the

BTZ solution, this truncation amounts to setting the angular momentum to zero.

• To account for thermal effects in gravity we take a black hole geometry as the reference

geometry. This solution is the dimensional reduction of non-rotating BTZ spacetime

in 3D gravity.

6These are KK reductions of BTZ black holes with large diffeomporphisms in 3D in the presence of non-

normalizable deformations (see appendix B) and hence, are not a subset of Brown-Henneaux geometries.
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In the section 5, we present derivation of boundary effective action from 2D gravity.

We closely follow [14] to discuss the action of the soft modes from the bulk. The focus of

the section is,

• We discuss two points of view to look at the NAdS2 gravity. In this paper we adopt

the first point of view (explained in section 5.1). We discuss the physical origin of

the action for the soft modes.

• The soft mode action is eventually a boundary action and thus the boundary behavior

of the fields matter the most in this computation. We, therefore, present a careful

study of boundary fall off and boundary conditions on all the fields and accordingly

propose covariant counter terms so as to keep the on shell action finite.

• Based on the boundary dynamics, in section 5.2, we obtain an effective action, which

represents the action of pseudo Nambu-Goldstone modes of the charged SYK model.

It is given by a Schwarzian plus a sigma model term. The Schwarzian action is

already known from [14]. The sigma model in the context of charged SYK was

proposed in [12].

• The effective action we derive from the bulk agrees with the field theory effective

action given in [12]. We conclude this section with appropriate identification of

parameters in the bulk and boundary theory.

In section 6, we compute chaotic correlators from the bulk. We reproduce the result

that there is no contribution from “boundary photons” to the Liapunov exponent.

2 The charged SYK model

The original SYK model involved Majorana fermions. In [12], a generalized SYK model

with Dirac fermions with a global U(1) symmetry was introduced. The model is given by

a hamiltonian

H =
∑
i1,...,iq

ji1,...,iqψ
†
i1
. . . ψ†iq/2ψiq/2+1

. . . ψiq ,

1 ≤ i1 < . . . < iq/2 ≤ N & 1 ≤ i q
2

+1 < . . . < iq ≤ N ,

where q is an even number and ji1,...,iq are complex Gaussian random variables with

ji1,...iq/2,iq/2+1...,iq = j∗iq/2+1...,iq ,i1,...iq/2
, 〈|ji1...iq |2〉 =

J2((q/2)!)2

N q−1
.

Effective action and Schwinger-Dyson equations

The Euclidean action for this model is

S =

∫
dτ

[
1

2
ψ†i (∂τ − µ)ψi −H

]
, (2.1)

– 6 –
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where µ denotes the chemical potential. The large N limit is characterized by Schwinger-

Dyson equations, which can be derived from the following effective action in terms of the

bilocal field G̃(τ1, τ2) = 1
N

∑
i ψ
†
i (τ1)ψi(τ2) and an auxiliary field Σ̃(τ1, τ2)

S[G̃, Σ̃] =− N

2
Tr ln

[
δ(τ1 − τ2)

(
− ∂

∂τ2
+ µ

)
− Σ̃(τ1, τ2)

]
(2.2)

− N

2

∫
dτ1dτ2

[
Σ̃(τ1, τ2)G̃(τ2, τ1) + J2(−1)q/2

(
G̃(τ1, τ2)

)q/2 (
G̃(τ2, τ1)

)q/2]
.

In fact, the original fermion integral with a quenched average over the disorder reduces,

in the large N limit, to a path integral over the variables G̃(τ1, τ2) and Σ̃(τ1, τ2) with the

above action.7 The large N limit of the above action is characterized by the following

Schwinger-Dyson equations,

Σ(τ) = −(−1)
q
2 qJ2 [G(τ)]q/2[G(−τ)]q/2−1 (2.3)

G(iwn) = [iwn + µ− Σ(iwn)]−1 , (2.4)

here wn denotes the Matsubara frequency and τ = τ1 − τ2 (here Σ and G denote on-shell

fields).

2.1 Symmetry transformations

In the IR regime defined by wn, µ � J [12] one can drop the (iwn + µ) term from (2.4),

leading to an emergent time reparameterization and U(1) gauge symmetry.

The symmetry transformations of the charged SYK model, at strong coupling (the IR

regime), consist of (a) diffeomorphisms parameterized by f : τ̃ = f(τ) ∈ Diff,8 as well as

(b) gauge transformations parameterized by exp[iφ(τ)] ∈ U(1)gauge. We will denote the

combined symmetry group as G,9 which acts on the bilocal meson variable G(τ1, τ2) =

(1/N) ψ†i (τ1)ψi(τ2) and Σ(τ1, τ2) as follows:

G̃(τ̃1, τ̃2)dτ̃∆
1 dτ̃

∆
2 = G(τ1, τ2)dτ∆

1 dτ
∆
2 exp

[
iφ̃(τ̃2)− iφ̃(τ̃1)

]
,

Σ̃(τ̃1, τ̃2)dτ̃
(1−∆)
1 dτ̃

(1−∆)
2 = Σ(τ1, τ2)dτ

(1−∆)
1 dτ

(1−∆)
2 exp

[
iφ̃(τ̃2)− iφ̃(τ̃1)

]
. (2.5)

Infinitesimally, for small φ(τ) (here φ̃(τ̃(τ)) = φ(τ)) and small ε(τ) ≡ f(τ)− τ ,

δG = δεG+ δφG ,

δεG(τ1, τ2) =
[
ε(τ1)∂τ1 + ∆ε′(τ1) + ε(τ2)∂τ2 + ∆ε′(τ2)

]
G(τ1, τ2) , (2.6)

δφG(τ1, τ2) = i (φ(τ2)− φ(τ1))G(τ1, τ2) . (2.7)

7Our expression for the effective action differs slightly from that of [12] because of different conventions

for the bilocal fields and the conserved charge.
8Diff represents Diff S1 or Diff R1, depending on whether the system is at a finite temperature or zero

temperature.
9The action of Diff and U(1)gauge do not commute. The parameterization of the combined symmetry

transformation follows here the convention that the gauge transformation is performed first, followed by a

Diff transformation, as in (2.5).
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The vacuum solution G0(τ1, τ2) at strong coupling10 breaks the symmetry from G to H =

SL(2,R)× U(1)global. The Nambu-Goldstone (NG) modes are therefore parameterized by

the coset space (f(τ), φ(τ)) ∈ G/H. As in the uncharged case, the strict limit J = ∞ is

singular since the NG modes have zero action. In order to make sense of the theory, one

needs to turn on a small value of an irrelevant coupling 1/J , thereby explicitly breaking

the symmetry G. The NG modes now become pseudo Nambu-Goldstone modes, with an

action which is a generalization of the Schwarzian action of the uncharged model [12]. This

action is given by (1.1), (1.2), (1.3).

3 Kaluza-Klein reduction of 3D gravity and Chern-Simons

The bulk dual to the SYK model with Majorana fermions have been previously discussed

in [2, 14]. We want to investigate the possible holographic dual to charged SYK using a

Kaluza-Klein (KK) reduction of 3D gravity. Below, we propose the bulk dual to be a KK

reduced action derived from 3D Einstein gravity with negative cosmological constant and

a U(1) Chern-Simons with a source term. To this end, we perform KK reduction of one

of the coordinates on a circle S1. It is convenient to look at the reduction of AdS3 and

Chern-Simons sector separately.

3.1 3D Einstein gravity

We begin with the three dimensional Einstein action with a negative cosmological constant,

S3DGrav = − 1

16πG3

∫
M3

dτdzdy

√
g(3)

(
R(3) +

2

l2

)
− 1

8πG3

∫
∂M3

dτdy
√
h

(
K(3) − 1

l

)
.

(3.1)

The 3D manifold M3 is parameterized by xM = {τ, y, z}, with a boundary at z = 0, which

we will regulate by a cut-off z = δ. The coordinates on the boundary ∂M3 are given by

xα = {τ, y} with the induced metric hαβ . We have taken the cosmological constant to

be Λ = − 1
l2

, where l denotes AdS length scale. The boundary term above are the usual

Gibbons-Hawking contribution and a counter term to have finite boundary current. We

will work with Euclidean signature throughout this paper.

Varying the above action with Dirichlet boundary condition on the metric yields Ein-

stein equations,

R
(3)
MN −

1

2

(
R(3) +

2

l2

)
g

(3)
MN = 0 . (3.2)

10For example, at zero temperature,

G0(τ1, τ2) = G0(τ) =

{
−C|τ |−2∆, τ > 0

Ce−2πE |τ |−2∆, τ < 0

where E is the ‘spectral asymmetry paramater’ satisfying E =limT→0 |∂µ/∂T |Q , τ = τ1 − τ2, Q and µ are

the U(1) charge and the corresponding chemical potential respectively and C is a constant. For more details

and for the finite temperature two-point function, see [12].
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3.1.1 Kaluza-Klein reduction to 2D

To perform a KK reduction of the 3D gravity we begin with the ansatz,

ds2
3 = gµνdx

µdxν + l2Φ2(dθ +Bµdx
µ)2 , dy = ldθ , θ ≡ θ + 2π , (3.3)

where all the fields in (3.3) are functions of xµ = {τ, z} which parameterize the 2D manifold

M2. The metric on M2 is represented by gµν , Bµ is a vector field and Φ denotes scalar in

M2. Using (3.3), we can derive the following equations

R(3) = R(2) − 2
1

Φ
∇2Φ− l2

4
Φ2F̃ 2 , K(3) = K(2) + nµ

1

Φ
DµΦ ,√

g(3) = l Φ

√
g(2) ,

√
h = l Φ

√
γ . (3.4)

Here F̃ 2 = F̃µνF̃
µν is the field strength for KK gauge field Bµ such that F̃µν = ∂µBν−∂νBµ.

The determinant of the induced metric on the 1D boundary ∂M2 is γ and nα is a unit

normal to the boundary. Using these, the 3D action (3.1) reduces to a Jackiw-Teitelboim

(JT) [23, 24] action plus a term due to KK field strength:

S2DGrav = − 1

16πG2

∫
M2

dτdz
√
g Φ

(
R+

2

l2
− l2

4
Φ2F̃ 2

)
− 1

8πG2

∫
∂M2

dτ
√
γ Φ

(
K − 1

l

)
.

(3.5)

We have dropped the superscripts for now as we will only be working in 2 dimensions, we

will bring them back whenever necessary. Note that G3 = 2πlG2. The details of the above

reduction can be found in appendix A.

3.1.2 KK reduction of specific solutions

BTZ black holes

The equation of motion of 2D gravity can either be derived from the variational principle

in 2D action or they can equivalently be derived from the equation (3.2) and (3.3). We

discuss the 2D equations and their solution in detail in section 4. However, we already

know the BTZ black hole [32] as the solution to (3.2), where the metric is given as,

ds2
BTZ =

(
l2

z2
−Ml +

J2z2

4l4

)
dτ2 +

(
l2

z2
−Ml +

J2z2

4l4

)−1
l4

z4
dz2 +

l2a2

z2

(
dθ − iJ

2

z2

l4
dτ

)2

,

(3.6)

here, z ∈ (0,∞) and the coordinates τ = [0, β], and θ = [0, 2π] represent the conformal

boundary S1×S1. The mass M and angular momentum J are the black hole parameters.

Note that 2πa/β, by definition, represents the ratio of the asymptotic proper radius of θ

and τ circles.
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We can readily identify the solution to the 2D equations, for the action (3.5), from the

above BTZ spacetime. They are,

ds2
2D =

(
l2

z2
−Ml +

J2z2

4l4

)
dτ2 +

(
l2

z2
−Ml +

J2z2

4l4

)−1
l2a2

z4
dz2 ,

Φ =
a

z
.

Bτ = −iJz
2

2l4
, Bz = 0 . (3.7)

Note that, only when the 3D fields are independent of the compactified direction y, the

mapping of solutions under KK reduction is possible. This means that the 3D solutions

of the form (3.3), where the metric components depend on the coordinates {τ, z} only,

provide a solution to the 2D equation of motion directly.

The non-rotating BTZ black hole in the Fefferman-Graham gauge is given as,

ds2
3DBTZ =

l2

4z2

(
Mz2

l
− 1

)2

dτ2 +
l2

z2
dz2 +

l2a2

4z2

(
Mz2

l
+ 1

)2

dθ2 (3.8)

with τ ∈ [0, β], θ ∈ [0, 2π] and β ∼ 1/
√
M .

From this 3D metric, we can write the solutions in 2D gravity to be,

ds2
2D =

l2

4z2

(
Mz2

l
− 1

)2

dτ2 +
l2

z2
dz2,

Φ =
a

2z

(
Mz2

l
+ 1

)
. (3.9)

The above solution represents AdS2 black hole with dilaton Φ.

3D AdS-soliton

The equations (3.2) (and hence equations of motion for the action (3.5)) admit another

well-known solution, the AdS soliton [33],

ds2
soliton =

l2

4z2

(
Mz2

l
+ 1

)2

dτ2 +
l2

z2
dz2 +

l2a2

4z2

(
Mz2

l
− 1

)2

dθ2 (3.10)

with τ ∈ [0, β], θ ∈ [0, 2π] and a ∼ 1/
√
M . The radial coordinate is z ∈ (0,∞) and the

other two coordinates have the period as, y ∈ (0, 2πl) and τ ∈ (0, β). It is easy to show

that for low temperatures the free energy of the soliton solution is lesser compared to that

of BTZ and thus the soliton phase is preferred for low temperatures.

Let us now look at the 2D solutions derived from 3D solutions of the type (3.10). The

solution from the BTZ is given in equation (3.9) and the solution from soliton will be,

ds2
2D =

l2

4z2

(
Mz2

l
+ 1

)2

dτ2 +
l2

z2
dz2 , Φ =

a

2z

(
Mz2

l
− 1

)
. (3.11)
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An apparent puzzle

When one considers KK reduction along the θ-circle, then the KK radius, measured by

the proper radius of the θ-circle at the boundary, must be smaller than various length

scales of relevance of physics in the lower dimension. In particular, this proper radius must

be smaller than that of the τ -circle, which measures the inverse temperature. Now, it is

well-known that under this circumstance, the thermodynamically favourable solution is the

AdS soliton [33] which has a contractible θ-circle and not the BTZ black hole which has

a contractible τ -circle. In that case, to arrive at the 2D black hole (3.8) by KK reduction

from 3D, one has to start from the sub-dominant saddle point of the Euclidean path integral,

namely the BTZ solution. At large N , there is a sense in which one can explore the

perturbative neighbourhood of a sub-dominant saddle point since the tunneling amplitude

to the dominant saddle point (the AdS soliton) is of order e−O(N). In doing so we are

aware that there is a loss of unitarity up to non-perturbative effects of order e−O(N). There

is a complementary argument which says that KK reduction from the 3D soliton solution

along the θ-circle does not in any case make sense. The reason is that for the AdS soliton,

the KK circle contracts in the bulk; this leads to a vanishing dilaton in 2D (see (3.11)) and

consequently uncontrolled quantum fluctuations.

In this paper, we will take the viewpoint that we will consider the classical saddle

point solution (3.8) and its 2D reduction (3.9) and explore the geometries obtained by

considering different boundary curves (we will explain later in section 5.1 how this is the

same as orbits of this solution under large diffeomorphism), which represents the correct

physics of the SYK model. The relevance of the AdS soliton is unclear from the point of

view of the SYK model.

3.1.3 Validity of the Kaluza Klein reduction

Note that in (3.8) if we take z → 0 limit naively then gθθ diverges which would appear to

invalidate the KK reduction. However a sensible KK reduction can be obtained if we work

with a finite cutoff z = δ, in that case gθθ ∼
(
l
δa
)2

up to numerical factors. Hence the KK

radius is RKK ∼ l
δa. For the KK reduction to be valid, the typical energy E of particles

in a bulk correlator should satisfy the relation

E � 1

RKK
∼ δ

l

1

a

Note that the energy E measured in the bulk is related to the energy ω in the boundary

theory by the standard AdS/CFT equation: E = δ
lω.11

Later on in this note we will identify the coefficient a (which is a non-normalizable

deformation of the dilaton) with 1/J (see (5.30)). Hence the above condition for the

validity of the KK reduction reduces to

ω � J

which is the same as the condition (see (1.4)) that we are working in the IR regime of the

SYK theory!

11This is related to the fact that the AdS metric induced on the boundary z = δ is ds2|δ = l2

δ2
(dxµdxµ).
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3.2 3D Chern-Simons

In order to obtain a dual to charged SYK we must include gauge fields in 3 dimensions

besides gravity. The most natural candidate in the long wavelength limit is a U(1) Chern-

Simons (CS) action in an asymptotically AdS3 spacetime (recall that the Maxwell term is

irrelevant in the IR). The action must have a boundary term for a well-defined variational

principle. The CS action, with appropriate boundary conditions and boundary terms,

following [34], is given by

SCS =
i k

8π

∫
AdS3

AdA− k

16π

∫
∂AdS3

dτ dy
√
hhαβ AαAβ . (3.12)

Here, k is a real positive parameter. Although the boundary term introduces a coupling

of the boundary U(1) gauge field to 3D gravity, the U(1) gauge field in the bulk is not

coupled to gravity in the above action, and hence the field strength vanishes as usual. This

forces the Wilson loop around the time circle to vanish in geometries where this circle is

contractible. As we will see below, this implies a vanishing chemical potential. Hence, in

order to have the correct bulk dual to a theory with a non-zero chemical potential, we

must introduce a coupling between the bulk metric and the bulk CS U(1) gauge field. The

simplest such coupling is

SCoupling = − ik
4π

∫
AdS3

dτdzdy

√
g(3) AMJ

M (3.13)

where the JM is a given external source, which we will specify in detail shortly (see (3.15)).

Next, we do a KK reduction along the y direction, as before.

3.2.1 KK reduction to 2D

Under KK compactification along the y direction, the gauge field is taken to be of the form

AMdx
M = Aµdx

µ + l χ dθ . (3.14)

where Aµ and χ denote vector and scalar fields in 2 dimensions.

Unlike the dynamical gauge field, the external current JM can only be a scalar constant

due to diffeomorphism invariance, that is,

Jτ = Jz = 0, Jy = J0 = constant. (3.15)

Then from equation (3.3) for the metric, the KK reduction of the action (3.12) is,

S2DGauge =
ikl

2

∫
M2

χFτzdτdz − J0
ikl

2

∫
M2

√
g Φχ dτdz +

ikl

4

∫
∂M2

χAτdτ

− kl

8

∫
∂M2

dτ
√
γ Φ γττ

(
A2
τ + γττ

(
χ

Φ

)2

+ (lχBτ )2 − 2lχBτAτ

)
, (3.16)

here M2 denotes 2d bulk manifold and ∂M2 is the boundary given by z = δ. We have used

the definition Fαβ = ∂αAβ − ∂βAα. KK Reduction of the gravity sector as described in

section 3.1 remains unaffected by the coupling (3.13) to Chern-Simons fields.
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4 Combined action in 2D: bulk dual to charged SYK

As indicated in the introduction, a conserved U(1) current in the boundary theory implies,

by usual AdS/CFT correspondence, that the bulk theory should have a U(1) gauge field.

We propose the Kaluza-klein reduced CS and the JT action plus the coupling term (3.13)

discussed above as the bulk dual for the low energy sector of the charged SYK model. The

reduced two dimensional action consists of two terms,

S2D = S2DGrav + S2DGauge (4.1)

where S2DGrav and S2DGauge are given by equations (3.5) and (3.16) respectively.

S2D =− 1

16πG2

∫
M2

dτdz
√
g Φ

(
R+

2

l2
− l2

4
Φ2F̃ 2

)
− ikl

2

∫
M2

dτdz
√
g χ (J0 Φ− F )

+
ikl

4

∫
∂M2

duχAu −
kl

8

∫
∂M2

du
√
γ Φ γuu

(
A2
u + γuu

(
χ

Φ

)2

+ (lχBu)2 − 2lχBuAu

)

− 1

8πG2

∫
∂M2

du
√
γ Φ

(
K − 1

l

)
(4.2)

In the above expression, F = 1
2 εµνFµν/

√
g is a scalar function with εµν being the Levi-

Civita symbol (ε01 = −ε10 = 1). The boundary manifold ∂M2 is assumed to be given by

(τ, z) = (τ(u), z(u)) where u is the coordinate of the 1-dimensional boundary manifold and

Au, Bu and γuu are induced gauge fields and metric on this manifold. Hear after we drop

the subscript M2 and ∂M2 from the integrals and only work with the 2D theory.

4.1 Equations of motion and solutions

The classical equations of motion from the above action are,

R+
2

l2
− 3l2

4
Φ2 F̃ 2 − 8πG2ikl χJ0 = 0 , (4.3a)

∇µ(
√
g Φ3F̃µν) = 0 , (4.3b)(

∇µ∇νΦ− gµν∇2Φ +
gµν
2

(
2

l2
− 8πG2ikχJ0

)
Φ

)
+

Φ3l2

4

(
−1

2
gµνF̃

2 + 2gαβF̃αµF̃βν

)
= 0 , (4.3c)

∂τχ = 0 , ∂zχ = 0 , (4.3d)

F = J0 Φ. (4.3e)

Note that it is consistent, in equations (4.3b) and (4.3d), to put

Bµ = 0 and χ = 0 (4.4)
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since all source terms for these fields involve themselves12 (note that F̃µν = ∂µBν − ∂νBµ).

With this, the equations reduce to,

R+
2

l2
= 0, (4.5a)

∇µ∇νΦ− gµν∇2Φ +
gµν
l2

Φ = 0, (4.5b)

F = J0 Φ. (4.5c)

A solution to these equations is the Poincare AdS2 metric,

ds2
ads =

l2

z̃2

(
dz̃2 + dτ̃2

)
(4.6)

in which, using eq. (4.5b), the dilaton takes the following form,

Φ̃(τ̃ , z̃) =
a+ b τ̃ + c (τ̃2 + z̃2)

z̃
(4.7)

Here a, b and c are integration constants. We work in the gauge Ãz̃(τ̃ , z̃) = 0 and with this

choice, eq. (4.5c) leads to,

Ãτ̃ (τ̃ , z̃) = J0l
2

(
a+ bτ̃ + cτ̃2

2z̃2
+ c log(z̃)

)
(4.8)

It is easy to show that a coordinate transformation of the form,

τ̃(τ, z) = f(τ)− 2z2f ′′(τ)f ′(τ)2

4f ′(τ)2 + z2f ′′(τ)2
, z̃(τ, z) =

4zf ′(τ)3

4f ′(τ)2 + z2f ′′(τ)2
, (4.9)

give rise to asymptotically AdS2 solutions of eqs. (4.5a) [2]. These are family of solutions

parametrized in terms of the function f(τ) with the metric given as,

ds2
AAdS2

=
l2

z2

(
dz2 + dτ2

(
1− z2

2
{f(τ), τ}

)2
)
. (4.10)

As it is obvious, under (4.9) the dilaton transforms as Φ(τ, z) = Φ̃(τ̃ , z̃) and the gauge

fields, under the choice Ãz̃(τ̃ , z̃) = 0, transform as,

Aτ (τ, z) = Ãτ̃ (τ̃ , z̃)
∂τ̃(τ, z)

∂τ
(4.11)

Az(τ, z) = Ãτ̃ (τ̃ , z̃)
∂τ̃(τ, z)

∂z
(4.12)

Note that this diffeomorphism breaks the Az = 0 gauge condition, but we can do a simulta-

neous gauge transformation with the diffeomorphism that will restore this gauge condition.

12It is important to mention here that any large gauge transformations of the field Bµ will not affect our

results due to the consistent truncation χ = 0.
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A note on classification of large diffeomorphisms

Large diffeomorphisms given in (4.9) are not bijective maps everywhere inside the bulk but

only near the boundary hence they exactly map AdS2 boundary into boundary of asymp-

totically AdS2 . This map is good for our purpose as we will only need the near boundary

behaviour of fields in this work. They are also in one to one correspondence with bound-

ary time reparameterization functions f(τ) of the Diff R1 group. We would like to point

out that the 2D black hole metric can be generated by taking f(τ) = (β/π) tan(πτ/β).

Coordinate transformations changing the topology from AdS2 to black hole seems surpris-

ing. However, on a careful look we find that this is possible because these maps become

singular at the horizon. Keeping this in mind we make a distinction between geometries

produced by large diffeomorphism of AdS2 and large diffeomorphisms of 2D black hole.

As we are interested in finite temperature systems we will always consider 2D black hole

to be our reference geometry and work with this class of geometries parameterized by

f(τ) = (β/π) tan(πϕ(τ)/β) where ϕ(τ) belongs to Diff S1 group.

4.1.1 2D black hole solutions with dilaton and gauge field

We can check that if we plug in f(τ) = (β/π) tan(πτ/β) in (4.10) we obtain a black hole

solution to the eq. (4.5a), with its horizon at z = β
π ,

ds2
BH =

l2

z2

(
dz2 + dτ2

(
1− z2 π2

β2

)2
)
, (4.13)

and the dilaton in this background is

Φ(τ, z) =
(aπ2 + cβ2)

(
β2 + π2z2

)
2π2β2z

(4.14)

+

(
(aπ2 − cβ2) cos

(
2πτ

β

)
+ bπβ sin

(
2πτ

β

))
β2 − π2z2

2π2β2z
,

with the gauge field Aτ (τ, z) in the gauge Az(τ, z) = 0 is,

Aτ (τ, z) = a1(τ)
1

z2
+ a2(τ) log

(
πz

β

)
+ a3(τ) z2 + a4 . (4.15)

Here ai’s are time dependent functions parameterized by a, b, c and the source J0 (note

that these are the same constants as presented in eq. (4.7)). Detailed expressions for these

coefficients are presented in appendix C. At this point we pause for a couple of comments,

• We have imposed Az(τ, z) = 0 gauge, this will restrict large gauge transformations

to be functions of time only.

• Aτ (τ, z) should vanish at the horizon of the black hole (which is required by Stokes’

theorem for non-singular field strengths included at the horizon). This is arranged

by choosing the integration constant appropriately.

• The solution (4.15) has a log( zπβ ) term, this mode does not have an obvious AdS/CFT

interpretation and gives divergences in the on-shell action. Thus we will switch off

this mode by making a choice of parameters: c = aπ2/β2, b = 0 ( =⇒ a2 = 0)
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• Once the logarithmic mode is switched off (a2 = 0), the leading order divergence

is given by a1, we will show that if we fix a Dirichlet boundary condition for the

dilaton field on the boundary then a1 is also completely fixed by the same boundary

condition due to (4.5c).

• The finite contribution from the gauge field on the boundary will be identified with

the chemical potential of the boundary theory up to multiplicative factors.

As mentioned above, we choose c = aπ2/β2, b = 0. This choice does two things

for us it removes the log mode from the gauge field and it also makes the solutions time

independent,

Φ(τ, z) =
a

z
+
aπ2

β2
z (4.16)

and

Aτ (τ, z) =

(
aJ0l

2

2

)
1

z2
+

(
aJ0l

2π4

2β4

)
z2 − aJ0l

2π2

β2
. (4.17)

This completes our discussion about the bulk action and various classical solutions

to the eqs., (4.5a)–(4.5c). In the next section we derive the action for the soft modes in

the bulk.

5 Effective action for pseudo Nambu-Goldstone modes

In this section, we recall the derivation of effective action for pseudo Nambu Goldstone

(pNG) modes in general theories.

Consider a scenario where we have an action S0(G) symmetric under a group F whose

elements are denoted by f . The classical vacua can be parameterized as Gf0 where G0 is the

reference classical vacuum and f is a group element, as S0 is symmetric under F , S0(G0) =

S0(Gf0). Now if we explicitly add a small symmetry breaking term ∆S such that total action

ST = S0 + ∆S is not symmetric under F (S0(G0) + ∆S(G0) 6= S0(Gf0) + ∆S(Gf0)), then

Gf0 are not exact zero modes of ST and they represent pseudo Nambu Goldstone (pNG)

modes. The action for these pNG modes can be computed by taking a difference between

a reference vacuum G0 and all other vacua Gf0 of S0

SpNG(f) = [S0(Gf0) + ∆S(Gf0)]− [S0(G0) + ∆S(G0)] ,

SpNG(f) = ∆S(Gf0)−∆S(G0), (5.1)

∆S(G0) does not contain any dynamical field. Note that Gf0 is a solution of S0 and in

general is an off shell configuration for ST .

It is also possible that there exists a subgroup H of F whose elements are denoted by

h, for which Gh0 = G0, which will mean ∆S(G0) = ∆S(Gh0). This will indicate SpNG is

symmetric under H.

Let us take a look at how this works out in the SYK model. At the conformal fixed

point, Diff group which is represented by f(τ) is an exact zero mode of the SYK action (it

is easy to see this when SYK action is written in terms of bilocals Σ and G [8]); however at
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this point the theory is singular. In order to get a well defined theory we have to explicitly

break this symmetry by bringing back the term proportional to 1/J this leads to an action

for pNG modes exactly as given in the above discussion. For the conformal two point

function of SYK, Gh = G when h is element of SL(2,R). Thus from above discussion we

expect that the action for pNG modes would have global SL(2,R) symmetry.

5.1 Two ways to understand soft modes from bulk

The soft modes in the bulk can be understood in two equivalent ways.

• In the first point of view (left panel in figure 2),

1. The metric is Poincare AdS2 (4.6) (or AdS2 black hole (4.13) for finite temper-

ature).

2. The boundary curve is given by (τ̃ , z̃) = (f(u), z(u)). In order to fix the proper

length of the boundary we impose γuu = l2/δ2, where γuu is the induced metric

on the boundary and u is the boundary time variable. Imposing this gauge we

get, z(u) = δ f ′(u) +O(δ3)

3. On the boundary curve (f(u), δ f ′(u)) we impose Φ|∂M = Φ(f(u), δ f ′(u)) =

Φr(u)/δ+O(δ) where Φr(u) is a given boundary condition for the dilaton. Note

that the parametric boundary curve is not uniquely described by (f(u), δ f ′(u))

as we still have a freedom to redefine the boundary time variable (u(ũ)) however

the boundary condition on the dilaton removes this freedom.

4. The path integral is over all possible shapes of the boundary parameterized by

f(u), which is the “Schwarzian” mode.

5. The Schwarzian mode at finite temperature is parameterized by f(u) =

(β/π) tan(πϕ(u)/β) where ϕ(u) belongs to Diff S1 group. The length of the

domain and the target circle is β. Note that with this map the β → ∞ (zero

temperature) limit is well defined.

• In the second point of view (right panel in figure 2),

1. The metric is asymptotically AdS2 (4.10) in Fefferman-Graham gauge [2]. This

metric depends on an arbitrary function f(τ) and satisfies (4.5a).

2. The boundary curve is given by (τ(u), δ) where u is the boundary time variable.

Imposing the condition γuu = l2/δ2 tells us τ(u) = u. Hence the boundary curve

is (τ, z) = (u, δ).

3. On the boundary curve (τ, z) = (u, δ), impose Φ|∂M = Φ(u, δ) = Φr(u)/δ+O(δ)

where Φr(u) is a given boundary condition for the dilaton.

4. The path integral is over all the metrics (4.10) parameterized by f(τ = u),

which is the “Schwarzian” mode. These metrics are obtained by performing

large diffeomorphism (4.9) on AdS2 geometry.
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AdS2/black hole metric AAdS2 metric

←− z̃

τ̃

←− z

τ(f(u), δf ′(u)) (u, δ)

Figure 2. The picture in the right panel (asymptotically AdS2 metric with straight boundary) is

achieved by performing large diffeomorphisms (4.9) on the left panel (AdS2/AdS2 black hole metric

with wiggly boundary).

5. A geometry with horizon (finite temperature) is parameterized by f(u) =

(β/π) tan(πϕ(u)/β) where ϕ(u) belongs to Diff S1 group. The length of the

domain and the target circle is β. Note that with this map the β → ∞ (zero

temperature) limit is well defined.

Metric (4.10) is a large diffeomorphism of the Poincare AdS2 metric [2].

Hereafter we will be working with the first point of view, but rewriting following

calculations in the second point of view is straight forward.

Explicit symmetry breaking terms in S2D

We can write the 2D action (4.2) into 2D bulk and 1D boundary terms as

S2D = S0 + Sb, (5.2)

This first term S0 is precisely zero in either of two points of view discussed above. The

non-zero contribution comes from the boundary part (Sb) of the action either in the wiggly

boundary picture (first point of view) or using the large diffeomorphisms (second point of

view). This is exactly analogues to effective action for pseudo Nambu-Goldstone modes

occurring due to explicit symmetry breaking (as described in the beginning of the section).

Therefore, we identity Sb with ∆S of (5.1). We continue our further discussion with the

first point of view, where the bulk metric is the AdS2 black hole and the boundary is

defined to be (τ(u), z(u)) = (ϕ(u), δ ϕ′(u)).

The two terms in (5.2) are,

S0 = − 1

16πG2

∫
M2

dτdz
√
gΦ

(
R+

2

l2
− l2

4
Φ2F̃ 2

)
− ikl

2

∫
M2

dτdz
√
g χ (J0 Φ− F ) (5.3)

and

Sb = ∆S =
ikl

4

∫
∂M2

duχAu −
kl

8

∫
∂M2

duΦ
√
γ γuu

(
A2
u + γuu

(
χ

Φ

)2

+ (lχΦBu)2−2lχBuAu

)

− 1

8πG2

∫
∂M2

du
√
γ Φ

(
K − 1

l

)
(5.4)

Note that the terms in S0 are invariant under large gauge transformations and large dif-

feomorphisms which constitute Diff× U(1)local but the terms in Sb are not invariant.
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5.1.1 Boundary behavior of the fields

As we discussed, the action for the soft modes is ∆S. In order to compute it we need

the expressions for the fields at the boundary. Recall that in the reference black hole

metric (4.13) the boundary curve is defined by (τ(u), z(u)) = (ϕ(u), δ ϕ′(u)). With this,

we outline the boundary behaviour of the fields below.

• The gauge condition on the induced boundary metric is,

γuu = gµν

(
dxµ

du

)(
dxν

du

)
=
l2

δ2
(5.5)

• We choose the boundary condition on the dilaton as

Φ|∂M2 =
Φr(u)

δ
+O(δ), (5.6)

where Φr(u) is arbitrary external field of mass dimension −1.

• The boundary condition for scalar χ and the KK gauge field Bu will be 0.

In addition we can show that,

• the value of the extrinsic curvature on the boundary with AdS2 black hole (4.13) as

the metric is

K =
1

l
+
δ2

l

{
tan

(
π

β
ϕ(u)

)
, u

}
+O(δ4). (5.7)

• We can also find the behaviour of the induced boundary gauge field Au as follows.

The equation (4.5c) on the boundary is,

F |∂M2 = J0 Φ|∂M2 . (5.8)

In the gauge Az = 0, a general form of the field Aτ can be written down as,

Aτ (τ, z) =
C(τ)

z2
+B +D(τ) z2 + . . . (5.9)

The z independent part of the above expression (i.e., B) is made time independent

by doing a time dependent residual gauge transformation.

Using (5.8) and (5.9) we get

2C(ϕ(u))

l2δ ϕ′(u)
+O(δ) = J0

Φr(u)

δ
+O(δ) (5.10)

=⇒ C(ϕ(u))

ϕ′(u)
=
l2J0 Φr(u)

2
. (5.11)

We have found that the boundary condition on the dilaton (5.6) and eq. (5.8) impose

a condition on the leading order term of Aτ in (5.9). This condition on the leading

order coefficient C(τ) will be very crucial in the next section where we propose counter

– 19 –



J
H
E
P
0
2
(
2
0
2
0
)
0
3
3

terms to keep on shell action finite. Next, it is straight forward to define the boundary

gauge field Au as,

Au(u) = Aτ (τ(u), z(u))

(
dτ

du

)
+Az(τ(u), z(u))

(
dz

du

)
. (5.12)

Using the relevant expressions, we obtain,

Au(u) =

(
C(ϕ(u))

(δ ϕ′(u))2
+B +O(δ2)

)
ϕ′(u)

Au(u) =
l2J0 Φr(u)

2 δ2
+B ϕ′(u) +O(δ2). (5.13)

5.1.2 Counter terms

Now that we have all the ingredients to compute the action for the soft modes, it is easy

to see that the Sb with fields behaving as above diverges as δ → 0 (the on-shell action is

not renormalized). In order to see this, let us work with the solutions χ = 0, Bu = 0 and

the AdS2 black hole as the metric. With this choice the bulk terms vanish and we get,

Sb = −kl
8

∫
∂M2

du
√
γ Φ γuuAuAu −

1

8πG2

∫
∂M2

du
√
γ Φ

(
K − 1

l

)
(5.14)

We can see that the quadratically divergent term in (5.13) will make this action divergent.13

This divergence can be removed by adding local boundary gauge and diffeomorphism in-

variant counter terms. We propose the following counter term for the same.

SCT =
kJ0l

2

32

∫
∂M2

du Φ2Au +
k

8J0

∫
∂M2

du Au(γuuAuAu) (5.15)

See appendix D where we give details of the 3D origin of the above terms. The action for

pseudo Nambu-Goldstones in presence of these counter terms becomes,

SpNG = SGravity
b + SGauge

b (5.16)

SGravity
b = − 1

8πG2

∫
∂M2

du
√
γ Φ

(
K − 1

l

)
SGauge
b = −kl

8

∫
∂M2

du
√
γ Φ γuuAuAu +

kJ0l
2

32

∫
∂M2

du Φ2Au

+
k

8J0

∫
∂M2

du Au(γuuAuAu) (5.17)

In the above, we have presented counter terms for the gauge action explicitly (our action

in 3D has an additional coupling term (3.13) with the usual Chern-Simons action). The

counter term in the pure gravity action is the well known −1/l, as used in (3.1). This does

not need any special treatment in this work.

13The reader might wonder, how such a divergence can be understood in 3D which consists of Einstein-

Hilbert plus Chern-Simons action but the divergence arises due to coupling to the external source J0.
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5.2 The soft mode effective action

Drawing parallel with section 5.1, the effective action from ∆SGravity can be evaluated

using (5.5), (5.6) and (5.7).

SGravity
b = − 1

8πG2

∫
du Φr(u)

{
tan

(
π ϕ(u)

β

)
, u

}
(5.18)

Note that in the gravity path integral is an integral over different boundary shapes given

by ϕ(u). We have the AdS2 black hole geometry (4.13) and the boundary condition (5.6)

hence in the above effective action ϕ(u) is the dynamical variable and Φr is an external

coupling.

The U(1) soft mode is the residual gauge transformation which is only a time dependent

function as we are working in the Az = 0 gauge. Therefore, this gauge transformation acts

as follows

Aτ (τ, z)→ Aτ (τ, z) + ∂τ φ̃(τ) (5.19)

with this and (5.12), Au will transform as follows

Au(u)→ Au(u) + ∂τ φ̃(ϕ(u))ϕ′(u) = Au(u) + ∂uφ(u) (5.20)

where φ(u) = φ̃(ϕ(u)) is the U(1) soft mode. Thus the soft mode action ∆SGauge, evaluated

using (5.5), (5.6), (5.13) and (5.20) is

SGauge
b =

k

16

∫
du Φr(u) (∂uφ(u) +B ϕ′(u))2. (5.21)

where B is an undetermined constant in (5.13) which can not be fixed by (5.8).

5.3 Combined effective action

The combined effective action given by adding (5.18) and (5.21) is

SpNG =

∫
du Φr(u)

(
k

16
(∂uφ(u) +B ϕ′(u))2 − 1

8πG2

{
tan

(
π ϕ(u)

β

)
, u

})
, (5.22)

here ϕ(u) and φ(u) are dynamical variables whereas Φr(u) is an external coupling which

can be made constant by choosing a new boundary time Φr(u)(dũ/du) = Φ̄r [14].

SpNG =

∫ β

0
dũ

(
Φ̄rk

16
(φ′(ũ) +B ϕ′(ũ))2 − Φ̄r

8πG2

{
tan

(
π

β
ϕ(ũ)

)
, ũ

})
(5.23)

This is the effective action for the reparameterization and the U(1) soft mode. To determine

B, we compare the on-shell action for the black hole solutions (4.13), (4.14) and (4.17) with

the on-shell action computed from (5.23) with the corresponding soft modes. Plugging these

solutions in ∆SGauge (5.17) with the identification, Φ̄r = a, we get,

SGauge
bon−shell

=
Φ̄3
r k l

4 π4 J2
0

16β4
β. (5.24)
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The corresponding solution as soft modes are ϕ(ũ) = ũ and φ(ũ) = constant. Plugging

these in (5.21) we get

SGauge
bon−shell

=
Φ̄rk

16
B2 β. (5.25)

Comparing (5.24) and (5.25) we get

B = − Φ̄rJ0l
2π2

β2
(5.26)

(The sign is fixed by comparing to black hole solution directly). When we compare the

action (5.23) with the field theory effective action in the next subsection we will see that

B will correspond to the chemical potential of the field theory and as pointed out earlier,

it is proportional to the coupling J0.

SGauge
b effective action with B = 0

We can consider the case where B is 0, this is equivalent to putting J0 = 0. From (4.5c),

it implies that there no electric flux in the system. This case is equivalent to putting the

renormalized boundary value of the gauge field as pure gauge. The action is dual to U(1)

charged SYK model without chemical potential and the effective action is

SGauge
b =

k

16

∫
du Φr(u) (∂uϕ(u))2 . (5.27)

these results have recently appeared in [30] and [31].

5.4 Comparison with field theory

Rewriting ϕ(ũ) = ũ+ε(ũ) and ignoring surface terms plus constants from the action we get

S =

∫ β

0
dũ Φ̄r

(
k

16
(φ′(ũ) +B ε′(ũ))2 − 1

8πG2

{
tan

(
π

β
(ũ+ ε(ũ))

)
, ũ

})
. (5.28)

An effective action for the pseudo NG modes of the U(1) charged SYK model was presented

in [12] (where we have substituted chemical potential using definitions in appendix B

of [12]),

S = N

∫ β

0
dτ̃

(
K

2
(∂τ̃φ(τ̃)− i µ̃ ε′(τ̃))2 − γ

4π2
{tan (π (τ̃ + ε(τ̃))/β) , τ̃}

)
(5.29)

here K and γ are field theory thermodynamic parameters determining compressibility and

specific heat respectively. In the large J (where 2J 2 = q2J2/(2 + 2 cosh(µ/T ))q/2−1),

small µ (near conformal limit) and large q limit, K = q2/(16J ) and γ = 2π2/(J q2). Our

result (5.28) matches with (5.29) with following identifications

Φ̄r =
1

J
, B = − Φ̄rJ0l

2π2

β2
= −iµ̃, Nq2

2
= k,

4πN

q2
=

1

G2
. (5.30)
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6 Quantum chaos

So far our discussion has mostly focused on the soft modes of the charged SYK model and

their bulk dual. As in case of the uncharged model, there are other modes represented

by operators of the form ψi
↔
∂pτ ψi, ψ

†
i

↔
∂pτ ψ

†
i , and ψ†i

↔
∂pτ ψi. Here the two-sided arrow

schematically represents a specific combination of terms with n derivatives on the first

fermion and p− n derivatives on the second fermion. The first two types of operators are

charged while the third set are neutral. The story of correlators of the neutral operators

is similar to that in the uncharged SYK model (briefly reviewed below in section 6.1).

Therefore, in what follows, we will be concerned with charged operators. Let us denote a

typical pair of conjugate charged operators by O(τ), O∗(τ), with scaling dimension ∆.14

As in [2, 14], to compute correlators of these operators from the bulk viewpoint we con-

sider probe scalar fields η(z, τ), η∗(z, τ) whose masses are given by the standard AdS/CFT

correspondence between mass and operator dimensions. The classical action for the probe

scalars will be given by

Smatter =
1

16πGN

∫
√
g
[(
gαβDαη

∗Dβη +m2|η|2
)

+ . . .
]

(6.1)

where the . . . terms are higher order in the fields η. Here the mass m of the scalar field is

determined by the dimension ∆ of the dual operator O:

∆ = 1/2 + ν, ν =
√

1/4 +m2l2 (6.2)

In appendix E we have considered a probe scalar action (E.1) which is coupled to the

Dilaton and is more natural from the 3D viewpoint; we show there that the main conclusions

of the remainder of this section remain unchanged — the main change being in the mass

dimension formula above, which changes to a different one (E.4).

6.1 OTO correlators in the uncharged model

To begin, we will quickly review the calculation in the uncharged case. Let us consider the

Euclidean correlator 〈O(τ1)O(τ2)O(τ3)O(τ4)〉, which is given by

〈O(τ1)O(τ2)O(τ3)O(τ4)〉 =
1

Z[J ]

δ

δJ(τ1)

δ

δJ(τ2)

δ

δJ(τ3)

δ

δJ(τ4)
Z[J ]

∣∣∣∣
J=0

(6.3)

By the usual rules of AdS/CFT, the quantity Z[J ] is given by a bulk path integral with the

following non-normalizable (source-type) boundary condition over the dual scalar field η

η(τ, z) = z
1
2
−νJ(τ) + (higher order in z) , (6.4)

in addition to the non-normalizable dilaton boundary condition we described in the previous

sections. We will (a) first compute the matter path integral, for a fixed metric characterized

by a particular Diff element ϕ, and then (b) integrate over the metrics (i.e. integrate over

14In this section, we will reserve the notation ∆ for the scaling dimension of O, rather than for that of

the fermion.
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the functions ϕ; note that as pointed out earlier this is equivalent to fixing the metric and

integrating over different boundary cut outs). This procedure gives us

Z[ϕ, J ] = exp

[∫
dτdτ ′J(τ)Gϕβ,∆(τ, τ ′)J(τ ′)

]
,

Gϕβ,∆(τ, τ ′) ≡
[
ϕ′(τ)ϕ′(τ ′)

]∆
Gβ,∆(ϕ(τ)− ϕ(τ ′)) (6.5)

Z[J ] =

∫
[dµ[ϕ]] exp[Seff [ϕ[τ ]]]Z[ϕ, J ] (6.6)

Here dµ[ϕ] ≡
∏
τ
Dϕ(τ)
ϕ′(τ) is an SL(2,R)-invariant measure [2, 35]. The effective action

Seff [ϕ] is given by (5.18). To derive the first line, note that if we consider ϕ(τ) = τ

(the identity transformation), corresponding to the AdS2 black hole metric (4.13) (or the

(τ, z) = (τ, δ) boundary curve according to the first point of view in section 5), we will have

the familiar result (using tilde coordinates to distinguish the starting point of the orbit of

large diffeomorphism, which is AdS2 black hole.)

Z[ϕ = τ, J ] = exp

[∫
dτ̃dτ̃ ′J̃(τ̃)Gβ,∆(τ̃ − τ̃ ′)J(τ̃ ′)

]
where Gβ,∆(τ̃ − τ̃ ′) is the thermal two-point function

Gβ,∆(τ̃ − τ̃ ′) = 〈O(τ̃)O(τ̃ ′)〉 =

 π

β sin
(
π(τ̃−τ̃ ′)

β

)
2∆

(6.7)

To compute Z[ϕ, J ] we need to do this computation in the metric (4.10) (with f(τ) =

(β/π) tan(πϕ(τ)/β)) and (4.7). This can be done by applying a large diffeomorphism

transformation asymptotically and noting that under such a transformation the source

term J transforms as

z̃
1
2
−ν J̃(τ̃) = z

1
2
−νJ(τ)

by virtue of (6.4) and the fact that η is a scalar. This leads to the expression for Gϕβ,∆
in (6.5).

Eq. (6.6) is simply obtained by noting that the integral over the space of metrics, as

shown in [2], reduces to the integration of the ϕ-variables with the Schwarzian effective

action.

Using (6.3), (6.5), (6.6) we get

〈O(τ1)O(τ2)O(τ3)O(τ4)〉

=

∫
[dµ[ϕ]] exp[Seff [ϕ]]

(
Gϕβ,∆(τ1, τ2) Gϕβ,∆(τ3, τ4) + (τ2 ↔ τ3) + (τ2 ↔ τ4)

)
(6.8)

In the GN → 0 limit, it is enough to expand Seff [ϕ] up to quadratic order in ε defined

by L(τ) = τ +
√

16πGN ε(τ):

Seff [ε] =
Φ̄r

16πG2

∫ β

0
dτ

[(
ε′′
)2 − (2π

β

)2 (
ε′
)2]

+ . . .
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with propagator

D(ω) =

(
8πG2

Φ̄r

)
1

ω2 [ω2 − (2π/β)2]
(6.9)

Correspondingly, in (6.8), we need to expand the Green’s functions to leading order in ε;

thus:

Gϕβ,∆(τ1, τ2) = Gβ,∆(τ1, τ2) + ε(τ1)δG1 + ε(τ2)δG2 +O(ε2),

Gϕβ,∆(τ3, τ4) = Gβ,∆(τ3, τ4) + ε(τ4)δG3 + ε(τ4)δG4 +O(ε2). (6.10)

Collecting all, the Euclidean four-point correlator is of the form

〈O(τ1)O(τ2)O(τ3)O(τ4)〉 = Gβ,∆(τ1, τ2) Gβ,∆(τ3, τ4) + (τ2 ↔ τ3) + (τ2 ↔ τ4)

+
1

16πGN

(
δG2 δG3〈ε(τ2)ε(τ3)〉+ [(2, 3)→ (1, 3)] + [(2, 3)→ (1, 4)] + [(2, 3)→ (2, 4)]

)
.

(6.11)

In the same manner as in the boundary theory calculation [8], an OTO correlator

〈O(0)O(T )O(0)O(T )〉 can be obtained by an appropriate analytic continuation of the above

expression. The chaotic growth originates from the ε-propagators in the second line of the

above equation (see the schematic representation in figure 3 of the first term in paren-

thesis in the above equation). The pole ω = −2π/β of the propagator(6.9), under the

Lorentzian continuation leads to a growing term proportional to exp[λLT ] for large T ,

with λL = 2π/β.15

6.2 OTO correlators in the charged model

Let us now come back to the charged model. We would like to compute, from the bulk

dual, the OTO correlator of a charged operator O (with charge q): 〈O(0)O∗(t)O(0)O∗(t)〉.
The computation follows along similar lines as in the uncharged case; we will thus highlight

the essential differences.

The bulk path integral is now given by (cf. (6.5), (6.6)

Z[φ, ϕ, J ] = exp

[∫
dτdτ ′J(τ)Gφ,ϕβ,µ,∆(τ, τ ′)J(τ ′)

]
,

Gφ,ϕβ,µ,∆(τ, τ ′) ≡
[
ϕ′(τ)ϕ′(τ ′)

]∆
Gβ,µ,∆(ϕ(τ)− ϕ(τ ′)) exp[iq(ϕ(τ)− ϕ(τ ′))] (6.12)

Z[J ] =

∫
[dµ[φ, ϕ]] exp[Seff [φ[τ ], ϕ[τ ]]]Z[φ, ϕ, J ] (6.13)

The effective action Seff is now given by (5.28). The additional part in the expression for

Gϕ,ϕβ,µ,∆, involving the large gauge transformation φ, comes from the fact from the gauge

15The way this happens in practice is a bit more subtle [8]; the poles of (6.9), ω = 0,±2π/β, correspond to

SL(2,R)zero modes, and hence are excluded from the Matsubara sum involved in the real time propagator

〈ε(0)ε(τ)〉. However, the sum over all other frequencies leads to a contour integral which gets deformed to

a new contour which includes the only the poles ω = 0,±2π/β.
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Boundary graviton

τ1 

τ2

τ4

τ3

Figure 3. Bulk description of OTO corre-

lators in the uncharged SYK model involves

exchange of boundary gravitons; the gravi-

ton propagator (6.9) has a pole ω = −2π/β

which corresponds to maximal Liapunov ex-

ponent λL = 2π/β.

Boundary photon

Boundary graviton

τ1 

τ2
τ3

τ4

Figure 4. For the charged SYK model,

the bulk description of OTO correlators

of charged operators involves exchange of

boundary gravitons and as well as of bound-

ary photons. After appropriate rediagonal-

ization, the gravitons and photons are decou-

pled. The photons do not have any nontrivial

pole and have zero Liapunov exponent.

transformation of J which is inherited from that η (cf. (6.4)). The counterpart of (6.10) is

now given by (up to leading term)

Gφ,ϕβ,µ,∆(τ1, τ2) = Gβ,µ,∆(τ1, τ2) + ε(τ1)δG1 + ε(τ2)δG2 + φ(τ1)δG′1 + φ(τ2)δG′2,

Gφ,ϕβ,µ,∆(τ3, τ4) = Gβ,µ,∆(τ3, τ4) + ε(τ4)δG3 + ε(τ4)δG4 + +φ(τ3)δG′3 + φ(τ4)δG′4. (6.14)

Now, (5.28), a priori, leads to mixed propagators 〈εφ〉. However, by making a field redefi-

nition φ → φ̃ = φ − iµ̃ε, the two fields get decoupled. This leads to an expression similar

to (6.11) which involves terms with ε-propagators as well as φ̃ propagators. The latter

propagator is ∝ 1/ω2, and does not have any other nontrivial pole in the complex plane.

The structure of the Euclidean propagator is schematically represented in figure 4. The

Liapunov growth is governed by the graviton propagator, as before; the boundary photon

propagator does not show any chaotic growth — its Liapunov exponent is zero. This result

was earlier obtained from a field theory calculation in [36].
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A KK reduction of 3D action

We start with the general KK ansatz,

ds2 = g(3)dxMdxN = e2αφg(2)
µν dx

µdxν + l2e2βφ(dθ +Bµdx
µ)2 (A.1)

here α and β are some constants. The labels M , N run over 3D coordinates {τ, z, θ}, and

µ, ν run over 2D coordinates {τ, z}. The metric components gµν , scalar and vector fields,

φ and Bµ are independent of the compactified direction θ. Under this identification we

obtain,

R(3) = e−2αφ

[
R(2) − 2β2∂µφ∂

µφ− 2(α+ β) ∇2φ− l2e−2(2α−β)φ

4
F̃ 2

]
;

K(3) = eαφ
(
K(2) +

α+ β

β
e−βφnα∇αeβφ

)
√
g(3) = l e(2α+β)φ

√
g(2) ;

√
h = l e(α+β)φ√γ (A.2)

F̃ is the field strength tensor for the KK vector field B = Bµdx
µ. Thus the 3D action (3.1)

reduces to a 2D action,

S2DGrav =− l

8G3

∫
M2

dτdz

[√
g(2)Φ−β

(
R(2)+

2

l2
− 2

Φ2
(α+β+β2)∂µΦ∂µΦ + 2(α+β)

1

Φ
∇2Φ

− l
2Φ2(2α−β)

4
F̃ 2

)]
− l

4G3

∫
∂M2

dτ
√
γ Φ(−2α−β)

(
K(2) − α+ β

Φ
nα∇αΦ− 1

l

)
(A.3)

where we have redefined φ as φ = − log Φ. Choosing specific values for the constants as

α = 0 and β = −1, we can remove the kinetic terms for the dilaton using divergence

theorem. This choice of constants leads to,

S2DGrav = − l

8G3

∫
M2

dτdz

√
g(2) Φ

(
R(2) +

2

l2
− l2

4
Φ2F̃ 2

)
− l

4G3

∫
∂M2

dτ
√
γ Φ

(
K(2) − 1

)
(A.4)

With the identification, G3 = 2πlG2, we obtain the action (3.5).

Under KK reduction we write the 3D CS gauge field AMdx
M = Aµdx

µ+χ ldθ, where χ

is 2D scalar field. Using metric and gauge field reduction and dropping all the y derivatives,

it is straight forward to obtain action (3.16)

B Asymptotically AdS2 uplifted to 3D

As seen in section 4.1, with the solution Bµ = 0 and χ = 0, the general solutions to the

equation (4.3a) are the asymptotically AdS2 spacetimes,

ds2
aads =

l2

z2

(
dz2 + dτ2

(
1− z2

2
{f, τ}

)2
)
. (B.1)
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In this background the solution for the dilaton is,

Φ =
a+ bτ̃ + c(τ̃2 + z̃2)

z̃
, (B.2)

where the {τ̃ , z̃} are given by,

τ̃ = f(τ)− 2z2f ′′(τ)f ′(τ)2

4f ′(τ)2 + z2f ′′(τ)2
, z̃ =

4zf ′(τ)3

4f ′(τ)2 + z2f ′′(τ)2
, (B.3)

The 3D oxidation of this solution will be,

ds2
uplift =

l2

z2
dz2 +

l2

z2

(
1− z2

2
{f, τ}

)2

dτ2 + l2Φ2dθ2 . (B.4)

It satisfies the 3D Einstein equations with Λ = −1/l2, see equations (3.2). This 3D solution

violates the Brown and Henneaux conditions. In the metric (B.4) the gθθ component

corresponds to a non-normalizable deformation of AdS3 (parameterized by the f(τ)).

C General expression for gauge field in black hole background

The AdS2 black hole metric is

ds2 =
l2

z2

(
dz2 + dτ2

(
1− z2 π2

β2

)2
)
. (C.1)

The general solution for dilaton in this background is

Φ(τ, z) = (aπ2+cβ2)

(
β2 + π2z2

)
2π2β2z

+

(
(aπ2 − cβ2) cos

(
2πτ

β

)
+ bπβ sin

(
2πτ

β

))
β2 − π2z2

2π2β2z
.

(C.2)

Using the equation of motion (4.3e) in the gauge Az(τ, z) = 0 we get,

∂zAτ (τ, z) + J0
√
g Φ(τ, z) = 0 . (C.3)

General solution for the above equation is

Aτ (τ, z) = a1(τ)
1

z2
+ a2(τ) log

(
πz

β

)
+ a3(τ)z2 + a4 (C.4)

where

a1(τ) =
J0l

2

4π2

(
aπ2 + cβ2 + (aπ2 − cβ2) cos Θ + b πβ sin Θ

)
(C.5)

a2(τ) =
J0l

2

β2

(
(aπ2 − cβ2) cos Θ + b πβ sin Θ

)
(C.6)

a3(τ) =
π2J0l

2

4β4

(
aπ2 + cβ2 − (aπ2 − cβ2) cos Θ− bπβ sin Θ

)
(C.7)

a4 = −J0l
2

2β2
(aπ2 + cβ2) (C.8)

where Θ = 2πτ/β. We have fixed the integration constant by ensuring that Aτ (τ, z)

vanishes on the horizon z = β/π.
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Solutions with b = 0 and c = aπ2/β2

The solution for the dilaton and the gauge field becomes

Φ(τ, z) =
a

z
+
aπ2

β2
z (C.9)

and

Aτ (τ, z) = a1
1

z2
+ a3z

2 + a4, (C.10)

where

a1(τ) =
aJ0l

2

2
, a3(τ) =

aJ0l
2π4

2β4
, a4 = −aJ0l

2π2

β2
. (C.11)

These are Eqns, (4.16) and (4.17), which we write here for completeness. Also, note that

with this choice of parameters, the solutions become independent of time.

D Counter terms

In this appendix we will discuss the 3D origin of the counter terms proposed in (5.15). We

first show that these counter terms cancel divergences in the 3D BTZ background. We

then go on to show that they continue to cancel divergences in the 2D theory after the KK

reduction.

D.1 3D origin of counter terms

The 3D action for the CS gauge fields with the gravity coupling term is

S3D-Gauge =
i k

8π

∫
AdS3

AdA− k

16π

∫
∂AdS3

dτdy
√
h hαβAαAβ −

ik

4π

∫
AdS3

dτdzdy

√
g(3)AMJ

M .

(D.1)

The equations of motion from above action are

Fzy = 0, (D.2a)

Fyτ = 0, (D.2b)

Fτz =

√
g(3) J0. (D.2c)

Let us consider the solution of the metric to be

ds2
3DBTZ =

l2

z2

(
Mz2

l
− 1

)2

dτ2 +
l2

z2
dz2 +

a2

z2

(
Mz2

l
+ 1

)2

dy2 (D.3)

here y ∈ {0, 2πl} and τ ∈ {0, β}. The solution to above equations in the Az = 0 gauge and

with above metric is

Aτ (τ, z) =
J0al

2

2

(
1

z2
+
π4

β4
z2 − 2π2

β2

)
, (D.4a)

Ay(τ, z) = constant. (D.4b)
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Here we have used (π/β)2 = M/l and also noted that the integration constant in the

solution for Aτ is fixed by demanding that the field vanishes at the horizon, z = β/π.

Plugging these solutions into the action, we get

S
on−shell

3D-Gauge ≈ −
kβl

8

[
a3J2

0 l
3

4δ4
− a3J2

0 l
3π2

2β2δ2
+
A2
yl

a
+O(δ2)

]
(D.5)

here we have chosen the boundary surface at z = δ. In the limit δ → 0 the on-shell action

is divergent. We find that these divergences are cured by the following covariant local

counter terms:

S3D-CT =
kl

64π

∫
A ∧ J +

k

16πl

∫
(AµAµ)

(JµJµ)
(A ∧ J) (D.6)

The evaluation of these terms on the above solutions gives

S
on−shell

3D-CT ≈
kβl

8

[
a3J2

0 l
3

4δ4
− a3J2

0 l
3π2

2β2δ2
+
a3J2

0 l
3π4

2β4
+O(δ2)

]
, (D.7)

hence

S
on−shell

3DGauge + S
on−shell

3D−CT =
kβl

8

(
a3J2

0 l
3π4

2β4
−
A2
yl

a

)
+O

(
δ2
)

(D.8)

which is divergence free.

A KK reduction to 2D is performed by writing

A = Aτ dτ + χ dy,

ds2 = g(3)dxMdxN = g(2)
µν dx

µdxν + Φ2(dy + lBµdx
µ)2.

hττ = γττ ,

hyy = Φ2 (D.9)

hence (D.6) reduces to

S3D−CT =
kl

64π

∫
A ∧ J +

k

16πl

∫
(AµAµ)

(JµJµ)
(A ∧ J)

=
kl

64π

∫
dτdy J0 Aτ hyy +

k

16πl

∫
dτdy

hττ A3
τ

J0

=
kJ0l

2

32

∫
dτ Φ2 Aτ +

k

8J0

∫
dτ Aτ (γττ A2

τ ) (D.10)

The last line in the above action contains exactly the counter terms proposed in (5.15) for

the 2D theory.

D.2 Cancellation of divergences with the boundary counter terms

In this section we will show that the counter terms, (5.15) proposed in section 5.1.2 cancel

the divergence coming from the first term in (5.14) (we will denote this term in this section

by Sboundary). Let us first evaluate this term using (5.5), (5.6) and (5.13).

Sboundary = −kl
8

∫
∂M2

du Φ
√
γ γuuAuAu (D.11)

= −
∫
∂M2

du

(
J2

0kl
4Φr(u)3

32δ4
+
J0kl

2Φr(u)2(B ϕ′(u))

8δ2
+
kΦr(u)

8
(B ϕ′(u))2 +O

(
δ2
))
.
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Now let us evaluate the counter terms

SCT = S1
CT + S2

CT =
kJ0l

2

32

∫
∂M2

du Φ2Au +
k

8J0

∫
∂M2

du Au(γuuAuAu). (D.12)

The first term in the above expression is

S1
CT =

kJ0l
2

32

∫
∂M2

du Φ2Au

=

∫
∂M2

du

(
J2

0kl
4Φr(u)3

64δ4
+
J0kl

2Φr(u)2(B ϕ′(u))

32δ2
+O

(
δ2
))

(D.13)

and the second term evaluates to

S2
CT =

k

8J0

∫
∂M2

du (γuu AuAu) Au (D.14)

=

∫
∂M2

du

(
J2

0kl
4Φr(u)3

64δ4
+

3J0kl
2Φr(u)2(B ϕ′(u))

32δ2
+

3kΦr(u)

16
(B ϕ′(u))2 +O

(
δ2
))

.

It is easy to see that the combination

Sboundary + SCT =
k

16

∫
∂M2

du Φr(u) (B ϕ′(u))2 (D.15)

does not diverge as δ → 0 and we have a renormalized on-shell action.

We can also consider a gauge transformed gauge field, Aφu given by

Au → Aφu = Au + ∂uφ(u) (D.16)

to evaluate the combination Sboundary + SCT and the result is

Sboundary + SCT =
k

16

∫
∂M2

du Φr(u) (φ′(u) +B ϕ′(u))2 (D.17)

which is also finite as δ → 0. This result will be used to derive (5.21).

E Quantum chaos from minimally coupled probe scalars in 3D

In this section, we will discuss charged scalars coupled to the dilaton and the metric in 2D,

given by the action

Smatter = − 1

16πG2

∫
d2x
√
g Φ

(
gαβDαη

∗Dβη +m2|η|2
)

(E.1)

in stead of the action (6.1). The present action is more natural from the 3D point of view,

as it comes from a a minimally coupled scalar in 3D:

S3 = − 1

16πG3

∫
d3x

√
g(3)

(
g

(3)
MN ∂Mη∗ ∂Nη +m2|η|2

)
, (E.2)

As mentioned in the text, we have taken here the 3D Euclidean metric to be of the form

(xM = (xµ, y), xµ = (τ, z)),

ds2 = g
(3)
MNdx

MdxN = gµν(z)dxµdxν + Φ(z)2dy2 (E.3)

where we take both the y and τ circles to be compact, with y ∈ (0, 2πl) and τ ∈ (0, β).
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Charge-neutral case. To begin, let us consider the pure gravity situation, relevant for

the uncharged SYK model. In (E.1), we need to consider η to be real. We claim that, if the

scalar η is governed by this new action, with coupling to the dilaton, then the discussion

in section 6.1 remains fairly unchanged except that the mass-dimension relation (6.2) gets

changed to

∆ = 1/2 + ν2, ν2 =
√

1 +m2l2. (E.4)

Essentially the quantity ν in (6.2) changes to

ν → ν2 =
√

1 +m2l2

This modification does not affect the discussion of the Liapunov exponent in section 6.1.

Note that the new dimension formula is a kind of hybrid of 2D and 3D bulk; the origin of

this will be clear below.

The way we prove the new mass-dimension formula is the following. For illustrative

purposes, we first start with the AdS-Poincare metric in 3D (β = ∞). If we applied the

usual machinery of AdS/CFT to the case of the 3D bulk, before doing any KK reduction,

we would obtain, after the appropriate renormalizations [38], that

S3D-onshell =
1

2

∫
dky dkτ ηren(K) ηren(−K) |K|2ν2 , ν2 =

√
1 +m2l2 (E.5)

Here K = (ky, kτ ) are the momenta along y and τ respectively; ηren ∼ δ−(1−ν2) ηboundary,

where the 2D boundary is placed at z = δ. In 3D bulk (equivalently, for 2D CFT), before

doing any KK reduction, we would identify the coefficient of the quanratic η term as two-

point function of the operator O in momentum space, so that in real space X = (y, τ) it

would be

〈O(X1)O(X2)〉 =

∫
dky dkτ |K|2ν2 exp[iK.X] ∝ |X|−2∆2 , X = X1 −X2, ∆2 = 1 + ν2

(E.6)

When we perform a KK reduction, the computation (E.5), of course, remains valid; however

the last computation (E.6), is replaced by a one-dimensional Fourier transform (since KK

reduction implies ky = 0):

〈O(τ1)O(τ2)〉 =

∫
dkτ |kτ |2ν3 exp[ikττ ] ∝ |τ |−2∆, τ ≡ τ1 − τ2, ∆ = 1/2 + ν3. (E.7)

So the operator dimension ∆, corresponding to a mass m of a neutral scalar coupled to

the dilaton and the metric, as in (E.1) with real η, is given by the new mass-dimension

formula (E.4), as claimed above. In case of finite temperature, by following the usual steps

(such as (a) summing over images, to account for the periodic identification of the thermal

circle, or (b) replacing the Fourier transform in the above equation by a Matsubara sum)

we find that the boundary correlator of the dual operator O is given by the equation (6.7)

with ∆ given by the new formula (E.1).
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Charged case. It is easy to show that the discussion of quantum chaos in this case too,

for a charged scalar coupled to the dilaton and the metric as in (E.1), does not have any

other modification, except for the mass-dimension formula which is again given by (E.4).

Once again, this does not affect any of the conclusion arrived at in the main text.

Summary. In summary, we have shown above that if the scalar field is coupled to the

dilaton as well as to the metric, as is natural from the 3D viewpoint, the mass of the scalar

field, dual to a given operator O of dimension ∆, is to be chosen according to the new

mass-dimension formula (E.4), in stead of the standard mass-dimension formula (6.2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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